Bioestadística - Febrero de 2013

BIOESTADÍSTICA EXAMEN 15 DE FEBRERO DE 2013

DATOS DEL ESTUDIANTE

Nombre	Cédula

- La duración del examen es 3 horas.
- El puntaje mínimo para aprobar es 50 puntos.

Problema 1 (50 puntos)

Considere una urna que contiene 2 bolas rojas, 3 bolas azules y 5 bolas verdes.

- a) (8 puntos) Se extraen dos bolas al azar con reposición. Calcule la probabilidad, p_1 , de que las bolas extraídas sean del mismo color.
- b) (8 puntos) Se extraen dos bolas al azar sin reposición. Calcule la probabilidad, p_2 , de que las bolas extraídas sean del mismo color.

Considere una moneda cargada, donde la probabilidad de obtener Cara es q y la probabilidad de obtener N'umero es 1-q, con 0 < q < 1. Se tira la moneda y a continuación se extraen dos bolas de la urna: si el resultado es Cara entonces las bolas se extraen **con reposición**; si el resultado es N'umero entonces las bolas se extraen **sin reposición**.

- c) (8 puntos) Calcule, en función de q, la probabilidad de que las dos bolas extraídas sean del mismo color.
- d) (12 puntos) Suponga que al final del experimento las bolas extraídas son de colores distintos. Calcule, en función de q, la probabilidad de que las extracciones hayan sido con reposición.
- e) (14 puntos) Calcular el valor de q para que la probabilidad de extraer dos bolas de colores distintos sea igual al doble de la probabilidad de extraer dos bolas del mismo color.

Para uso docente (no completar)

Problema 1	Problema 2	Problema 3	Total

Bioestadística - Febrero de 2013

Problema 2 (24 puntos)

Nota: En el siguiente problema se considera $\alpha = 0.05$.

Un terreno está dividido en 100 parcelas de $1m^2$ cada una. En cada parcela se cuenta la cantidad de plantas de una cierta especie. En la siguiente tabla se muestra el número observado de parcelas, o_i , que contienen 0.1.2 ó 3 o más plantas.

Cantidad de plantas	núm. observado de parcelas (o_i)	p_i	núm. esperado de parcelas (e_i)
0	40		
1	30		
2	20		
3 o más	10		

Se desea estudiar si la variable aleatoria $X=cantidad\ de\ plantas\ por\ parcela$, tiene distribución de Poisson.

- a) (12 puntos) Para una variable, X, Poisson de parámetro $\lambda = 1,04$ calcule:
 - i) **P**(X = 0).
 - ii) P(X = 1).
 - iii) P(X = 2).
 - iv) $P(X \ge 3)$.
- b) (12 puntos) Complete la tabla, donde p_i son las probabilidades calculadas según el modelo propuesto, y e_i son los números esperados correspondientes. Implemente la prueba Chicuadrado para decidir si es razonable suponer que la variable X ajusta a una variable de Poisson de parámetro $\lambda = 1,04$.

Problema 3 (26 puntos)

Nota: En las pruebas de hipótesis utilice el siguiente criterio de decisión: se acepta la hipótesis nula si el p-valor es superior a 0,10.

La siguiente muestra registra las duraciones (en segundos) de los mordidas de diez ejemplares de una especie de serpiente de la selva paraguaya.

5.09 1.83 5.93 7.75 3.12 6.22 7.01 1.31 1.62	5.64
--	------

- a) (6 puntos) Realice dos pruebas de hipótesis para decidir si es razonable suponer que los datos son independientes e idénticamente distribuidos.
- b) (8 puntos) Asuma que los datos corresponden a una distribución normal de valor esperado μ . Construya un Intervalo de Confianza exacto para μ ($\alpha = 0.10$).
- c) (12 puntos) Implemente la prueba de ajuste de Kolmogorov-Smirnov para decidir si es razonable suponer que la muestra ajusta a una distribución normal de valor esperado $\mu = 4$ y desviación estándar $\sigma = 2$.