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NOTES ON THE RESTRICTED THREE-BODY PROBLEM

TABARE GALLARDO

1. JACOBI'S CONSTANT, C

Consider a planet revolving a star with circular orbit of radius a. We redefine units of mass, length
and time such that:

1 — m: mass of star

m: mass planet

the mean motion is n? = u/a®

the constant for two body problem is: G(my +msy) = = k?*((1 —m) +m) = k"

taking unit of length equal to a and taking unit of time such as to make &’ = 1 then

n=1= 2% then using these units the orbital period of the planet is P = 27. The linear velocity
of the planet around the star is V,, = na = 1.

We define the system (Z,y, 2) which rotates with the planet around the baricenter of the system

Q>

with angular velocity @ =nz =1
Consider a particle located in 7= (z,y, z). We can demonstrate the Jacobi’s integral of motion of

the particle where v is the particle’s velocity in the rotating frame:

2(1—m) 2m
—+_
(&1 T2

v =22 4 4 _C

being r; the distance to mass i and C' is a constant.

Demonstration:

The velocity in the inertial frame V and the one in the rotating frame 7 are related by
V=rt+adnr

The inertial acceleration is @ = —VV where V(7) = —(1 — m)/r; — m/ry is the gravitational



potential generated by the two masses.

The rotating system rotates with < = 2 then the relationship between inertial acceleration @ and
the acceleration relative to the rotating system 7 is

G=T+22AF+ 2N (ZAT)

but 7= 2z + p being p'= (z,y,0)

then

multiply by 7
@i = |-
then
- dif = —VVdi = [%-?— 7 ﬁ]dt
integrating
V(A =7 — (22 + 2+ C
or

v =22+ —2V(F) = C

then, the particle’s velocity in the rotating frame becomes

2(1—m)+2_m_0

r T2

v =2+t +

C' is a constant in the R3BP. If planet’s eccentricity is different from zero C' will oscillate around a

mean value.

2. TISSERAND PARAMETER, T

The particle has some orbital elements (a, e, i) and we will make to appear them in Jacobi’s integral.
We need to express position and velocity in the rotating frame (7, 7) as function of position and
velocity V in the inertial frame.

We have
V=rF+@BAFT=F+2A[

Then



—

F=V —2Ap

squaring

V2 =V2 =2V (2Ap) + p?

rearranging

V2=V2=22. (FAV) + p?

V2=V2=22 (FAV) + 22 + 12

V222 (FAV) =02 — g2 — 2 =2m y 2m o

(in a numerical integration it is easier to calculate C' using the inertial frame than the rotating one)
According to the two body problem baricenter-particle:

VZ=2/r—1/aand 2- (FAV)=2-h=/a(l — e2) cosi

then

=3 N

—1_9/a(l1=¢?)cosi =2=m 4 2m _
a T1 T2

The orbital elements (a,e, i) are referred to the baricenter of the system Star+planet and the
inclination is measured with respect to the orbital plane Zy of the planet. In the case of the solar
system m < 1073 so it is possible to assume that (a, e, ) are heliocentric.

If the particle is not very close to the Sun we have r ~ r; then

. +2Va(l —=e?)cosi =2m[- — -]+ C

If the particle is far from the sun and from the planet and taking into account that m < 1072 we

obtain
1
C~—+2+va(l—e?)cosi =T
a

T is known as the Tisserand parameter. In the R3BP (' is constant and T presents some departures
if the orbital elements are determined when the conditions above are not satisfied (near the sun or
the planet). T should be considered as a simple form of calculating C'. It can be easily shown that

fora>0
1 1
Tmax<a) = -+ 2\/a s Tmin(a) = - - 2\/a
a a

For elliptic orbits it is possible to express T'(¢, @, 1) where ¢, Q) are perihelion and aphelion:

T = —+2\/2qQ/ q+ Q) cosi



This is a useful formula when analyzing regions where encounters are possible (¢ < 1,Q > 1).

3. THE ENCOUNTER VELOCITY, U

Suppose the particle is near the planet (r; ~ 1 and 2% +y? ~ 1) but far enough that we can neglect
its gravitational attraction (r ~ Ry ) so the particle is ”at infinity” (m/ry ~ 0). Then from Jacobi’s
integral:

v, ~1+24+0-T

then, under the hypothesis above, the planetocentric velocity ”at infinity” of the particle is
Voo 2 V3—=T=U

U is the encounter velocity with the planet before the gravitational attraction is felt by the particle
(that means ”at infinity”). U is determined by T which is constant, so U is also constant. The orbital
elements (a,e,7) can evolve but 7" and U remain constant, only the orientation of U is modified (U
rotates v after the encounter).

It follows that when T" > 3 encounters cannot exist. When T" < 3 they could exist but they are not
guaranteed. For example: a = 2,e = 0,7 = 90° implies 7" = 0.5 but the particle never approaches
the planet. This can be showed in a plot of the Minimum Orbit Intersection Distance (MOID) with
respect to the Tisserand parameter. Objects with 7' > 3 cannot have low MOID values.

If U ~ 0 the planetocentric orbit is quasi-parabolic and a temporary capture by the planet is
possible. Then, objects with T" ~ 3 can experience temporary captures by the planet.

The greatest heliocentric velocity the particle can get after the encounter is V,, + U =14 U. The
escape velocity from the system is v/2, so if U > /2 — 1 the particle eventually can escape from
the solar system and conversely if U < v/2 — 1 the particle will never leave the solar system by this
mechanism. Note that only prograde orbits have U < 1.

The final heliocentric velocity is a vectorial sum:

V=V, +U or V2=1+U?+2U cosf

being 6 the angle between V; and U'. If U > /2 — 1 there exists some . so that for 8 < 6. the

corresponding V' is greater than the ejection velocity. This situation occurs for

1-U?
2U

cos b =



If we can assume that U’ is randomized (deflection 7 is so great that € can get all values from 0
to 7) then the probability of ejection per encounter is equal to the probability P(6 < 0,,) and

this is equal to the solid angle subtended by 6., over 47 which is equal to

2 _
Poo:P(egem):%(1—coseoo)=%&J1 (U >v2—1,7>90)

Conversely, a comet in an hyperbolic heliocentric orbit has a probability of being captured after an
encounter and is equal to 1 — P,,. These results are only valid for encounters satisfying the conditions
(U > V2 -1,y > 90°). These are very strong conditions, for example, a particle encountering the
Earth never satisfies v > 90° with ¢ > o.. So, the P, should be weighted with the probability
P(~ > 90°) which is very low. Weidenschilling (1975) recalculate this issue obtaining more realistic
values for the ejection probability.

Finally, it is possible to show that the probability of an encounter of a minor body with the planet

with an impact parameter less or equal to o per orbital revolution of the minor body is given by

a?U
msiniy/2 —1/a — a(l — €2)

p(o) =

This is the famous formula given by Opik (1951), valid for ¢ < Ry where the two body scheme

can be applied. An application can be found in www fisica.edu.uy/~gallardo/opik/
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Figure 2. Tisserand parameter 7'(q, @, = 0). The region where encounters are possible.



Some asteroids, centaurs, TNOs and comets wrt Jupiter
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Figure 3. MOID with Jupiter as function of T" for some objects. For T' > 3 there are not close encounters.
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Fig. 1. Short-period comets (solid circles) and asteroids (open circles) plotted on a scatter dia-
gram of semimajor axis vs eccentricity (Kresdk 1985). Increasing circle size indicates esti-
mated size of the objects: diameter < 1 km or lost, 1 to 3 km, 3 to 10 km, 10 to 30 km and >
30 km. Different regions identified within the diagram are: (A) transjovian region, (B) Jupiter
domain of weak cometary activity, (C) Jupiter domain of strong cometary activity, (D) minor
planets region, and (E) Apollo-Aten region. The dashed line going from upper left to lower
right corresponds to a Tisserand invariant of 3.0, the usual dividing line between comets and
asteroids. However, note the several asteroids above the line in the cometary region C; the
figure has been modified to include seven new asteroids in or near region C discovered since
Kresdk's (1985) work was published.

Figure 4. Kresak’s diagram. Regions B and C corresponds to T' < 3 and regions A, D and E to T" > 3.
Asteroids II.
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Figure 14.12. Position of known comets in the plane of the Tisserand parameter T and the
ratio a, /a between the semimajor axes of Jupiter and the comet: the unphysical regions are
in dark grey. Dashed lines indicate the values T = 2 and 3 (see Fig. 14.11); the thin dashed
line labelled ¢ = 2.5 shows T for a 2.5 AU perihelion comet in the ecliptic (objects above and
to the left of this curve are very difficult to detect because they never get close to the Sun).
Adapted from H. Levison, Comet taxonomy, in: Completing the Inventory of the Solar System,
eds. T.W. Rettig and J.M. Hahn (Astronomical Society of the Pacific), p. 173 (1996).

Figure 5. Populations of minor bodies in space (1/a,T’). Bertotti et al. 2003.



