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Abstract

explicamos un poco

1. Jacobi’s constant, C

Consider a planet revolving a star with circular orbit of radius a. We redefine units of mass, length

and time such that:

1−m: mass of star

m: mass planet

the mean motion is n2 = µ/a3

the constant for two body problem is: G(m1 +m2) = µ = k′2((1−m) +m) = k′2

taking unit of length equal to a and taking unit of time such as to make k′ = 1 then

n = 1 = 2π
P then using these units the orbital period of the planet is P = 2π. The linear velocity of

the planet around the star is Vp = na = 1.

We define the system (x̂, ŷ, ẑ) which rotates with the planet around the baricenter of the system with

angular velocity ~ω = nẑ = 1ẑ.

Consider a particle located in ~r = (x, y, z). We can demonstrate the Jacobi’s integral of motion of the

particle where v is the particle’s velocity in the rotating frame:

v2 = x2 + y2 +
2(1−m)

r1
+

2m

r2
− C

being ri the distance to mass i and C is a constant.

Demonstration:
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The velocity in the inertial frame ~V and the one in the rotating frame ~̇r are related by

~V = ~̇r + ~ω ∧ ~r

The inertial acceleration is ~α = −∇V where V(~r) = −(1−m)/r1−m/r2 is the gravitational potential

generated by the two masses.

The rotating system rotates with ~ω = ẑ then the relationship between inertial acceleration ~α and the

acceleration relative to the rotating system ~̈r is

~α = ~̈r + 2ẑ ∧ ~̇r + ẑ ∧ (ẑ ∧ ~r)

but ~r = zẑ + ~ρ being ~ρ = (x, y, 0)

then

~α = ~̈r + 2ẑ ∧ ~̇r − ~ρ

multiply by ~̇r:

~α · ~̇r =
[
~̈r · ~̇r − ~ρ · ~̇ρ

]
then

~α · d~r = −∇Vd~r =
[
~̈r · ~̇r − ~ρ · ~̇ρ

]
dt

integrating

−2V(~r) = ~̇r
2
− (x2 + y2) + C

or

v2 = x2 + y2 − 2V(~r)− C

then, the particle’s velocity in the rotating frame becomes

v2 = x2 + y2 +
2(1−m)

r1
+

2m

r2
− C

C is a constant in the R3BP. If planet’s eccentricity is different from zero C will oscillate around a mean

value.
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Figure 1: Level curves for different values of C for µ = 0.2. Martinez Pais 2003.
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2. Tisserand parameter, T

The particle has some orbital elements (a, e, i) and we will make to appear them in Jacobi’s integral.

We need to express position and velocity in the rotating frame (~r,~v) as function of position and velocity

~V in the inertial frame.

We have

~V = ~̇r + ~ω ∧ ~r = ~̇r + ẑ ∧ ~ρ

Then

~̇r = ~V − ẑ ∧ ~ρ

squaring

v2 = ~V 2 − 2~V · (ẑ ∧ ~ρ) + ρ2

rearranging

v2 = ~V 2 − 2ẑ · (~ρ ∧ ~V ) + ρ2

v2 = ~V 2 − 2ẑ · (~r ∧ ~V ) + x2 + y2

~V 2 − 2ẑ · (~r ∧ ~V ) = v2 − x2 − y2 = 2(1−m)
r1

+ 2m
r2
− C

(in a numerical integration it is easier to calculate C using the inertial frame than the rotating one)

According to the two body problem baricenter-particle:

V 2 = 2/r − 1/a and ẑ · (~r ∧ ~V ) = ẑ · ~h =
√
a(1− e2) cos i

then

2
r −

1
a − 2

√
a(1− e2) cos i = 2(1−m)

r1
+ 2m

r2
− C

The orbital elements (a, e, i) are referred to the baricenter of the system Star+planet and the incli-

nation is measured with respect to the orbital plane x̂ŷ of the planet. In the case of the solar system

m < 10−3 so it is possible to assume that (a, e, i) are heliocentric.

If the particle is not very close to the Sun we have r ' r1 then

1
a + 2

√
a(1− e2) cos i = 2m

[
1
r1
− 1

r2

]
+ C

If the particle is far from the sun and from the planet and taking into account that m < 10−3 we

obtain

C ' 1

a
+ 2
√
a(1− e2) cos i = T

T is known as the Tisserand parameter. In the R3BP C is constant and T presents some departures

if the orbital elements are determined when the conditions above are not satisfied (near the sun or the
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Figure 2: Tisserand parameter T (a, e, i = 0).

planet). T should be considered as a simple form of calculating C. It can be easily shown that for a ≥ 0

Tmax(a) =
1

a
+ 2
√
a , Tmin(a) =

1

a
− 2
√
a

For elliptic orbits it is possible to express T (q,Q, i) where q,Q are perihelion and aphelion:

T =
2

q +Q
+ 2
√

2qQ/(q +Q) cos i

This is a useful formula when analyzing regions where encounters are possible (q < 1, Q > 1).
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Figure 3: Tisserand parameter T (q,Q, i = 0). The region where encounters are possible.

3. The encounter velocity, U

Suppose the particle is near the planet (r1 ' 1 and x2 + y2 ' 1) but far enough that we can neglect

its gravitational attraction (r ∼ RH) so the particle is ”at infinity” (m/r2 ' 0). Then from Jacobi’s

integral:

v2∞ ' 1 + 2 + 0− T

then, under the hypothesis above, the planetocentric velocity ”at infinity” of the particle is

v∞ '
√

3− T = U

U is the encounter velocity with the planet before the gravitational attraction is felt by the particle (that

means ”at infinity”). U is determined by T which is constant, so U is also constant. The orbital elements

(a, e, i) can evolve but T and U remain constant, only the orientation of ~U is modified (U rotates γ after

the encounter).

It follows that when T > 3 encounters cannot exist. When T < 3 they could exist but they are not

guaranteed. For example: a = 2, e = 0, i = 90o implies T = 0.5 but the particle never approaches the
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planet. This can be showed in a plot of the Minimum Orbit Intersection Distance (MOID) with respect

to the Tisserand parameter. Objects with T > 3 cannot have low MOID values.

If U ∼ 0 the planetocentric orbit is quasi-parabolic and a temporary capture by the planet is possible.

Then, objects with T ∼ 3 can experience temporary captures by the planet.

The greatest heliocentric velocity the particle can get after the encounter is Vp + U = 1 + U . The

escape velocity from the system is
√

2, so if U ≥
√

2− 1 the particle eventually can escape from the solar

system and conversely if U <
√

2 − 1 the particle will never leave the solar system by this mechanism.

Note that only prograde orbits have U < 1.

The final heliocentric velocity is a vectorial sum:

~V = ~Vp + ~U ′ or V 2 = 1 + U2 + 2U cos θ

being θ the angle between ~Vp and ~U ′. If U >
√

2 − 1 there exists some θ∞ so that for θ ≤ θ∞ the

corresponding V is greater than the ejection velocity. This situation occurs for

cos θ∞ = 1−U2

2U

If we can assume that ~U ′ is randomized (deflection γ is so great that θ can get all values from 0 to

π) then the probability of ejection per encounter is equal to the probability P (θ ≤ θ∞) and this is

equal to the solid angle subtended by θ∞ over 4π which is equal to

P∞ = P (θ ≤ θ∞) =
1

2
(1− cos θ∞) =

U2 + 2U − 1

4U
(U >

√
2− 1, γ > 90o)

Conversely, a comet in an hyperbolic heliocentric orbit has a probability of being captured after an

encounter and is equal to 1 − P∞. These results are only valid for encounters satisfying the conditions

(U >
√

2− 1, γ > 90o). These are very strong conditions, for example, a particle encountering the Earth

never satisfies γ > 90o with σ > σc. So, the P∞ should be weighted with the probability P (γ ≥ 90o)

which is very low. Weidenschilling (1975) recalculate this issue obtaining more realistic values for the

ejection probability.

Finally, it is possible to show that the probability of an encounter of a minor body with the planet

with an impact parameter less or equal to σ per orbital revolution of the minor body is given by

p(σ) =
σ2U

π sin i
√

2− 1/a− a(1− e2)

This is the famous formula given by Öpik (1951), valid for σ < RH where the two body scheme can

be applied. An application can be found in www.fisica.edu.uy/∼gallardo/opik/
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Figure 4: MOID with Jupiter as function of T for some objects. For T > 3 there are not close encounters.
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Figure 5: Kresak’s diagram. Regions B and C corresponds to T < 3 and regions A, D and E to T > 3. Asteroids II.
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Figure 6: Populations of minor bodies in space (1/a, T ). Bertotti et al. 2003.
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