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There are more things in heaven & earth connected with electromagnetism than are
yet dream’t of in philosophy.

Joseph Henry, letter to Lewis C. Beck (1827)

Reprinted from The Papers of Joseph Henry, Volume I, edited by Nathan Reingold
(Washington, DC: Smithsonian Institution Press). Used by permission of the
Smithsonian Institution. Copyright 1972.

The search for reason ends at the shore of the known; on the immense expanse
beyond it only the ineffable can glide.

Abraham Joshua Heschel, Man is Not Alone (1951)

Why repeat all this? Because there are new generations born every day. Because
there are great ideas developed in the history of man, and these ideas do not last
unless they are passed purposely and clearly from generation to generation.

Richard Feynman, The Meaning of It All (1963)
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Preface

A textbook, as opposed to a treatise, should include everything
a student must know, not everything the author does know.

Kenneth Johnson, quoted by Francis Low (1997)

In his Lectures on Physics, Richard Feynman asserts that “ten thousand years from now, there can be
little doubt that the most significant event of the 19th century will be judged as Maxwell’s discovery
of the laws of electrodynamics”. Whether this prediction is borne out or not, it is impossible to deny
the significance of Maxwell’s achievement to the history, practice, and future of physics. That is why
electrodynamics has a permanent place in the physics curriculum, along with classical mechanics,
quantum mechanics, and statistical mechanics. Of these four, students often find electrodynamics
the most challenging. One reason is surely the mathematical demands of vector calculus and partial
differential equations. Another stumbling block is the non-algorithmic nature of electromagnetic
problem-solving. There are many entry points to a typical electromagnetism problem, but it is rarely
obvious which lead to a quick solution and which lead to frustrating complications. Finally, Freeman
Dyson points to the “two-level” structure of the theory.1 A first layer of linear equations relates the
electric and magnetic fields to their sources and to each other. A second layer of equations for force,
energy, and stress are quadratic in the fields. Our senses and measurements probe the second-layer
quantities, which are determined only indirectly by the fundamental first-layer quantities.

Modern Electrodynamics is a resource for graduate-level readers interested to deepen their under-
standing of electromagnetism without minimizing the role of the mathematics. The book’s size was
dictated by two considerations: first, my aim that it serve both as a classroom text and as a reference
volume; second, my struggle to apply the epigraph at the top of the page.2 Physicists are a prickly and
opinionated bunch, so it is not surprising that there is very little agreement about “everything a student
must know” about electromagnetism at the graduate level. Beyond a very basic core (the main content
of undergraduate texts), the topics which appear in graduate-level textbooks and (electronically) pub-
lished lecture notes depend strongly on the research background of the writer and whether he or she
is a theorist or an experimenter. Some instructors view the subject as a convenient setting to illustrate
the methods of mathematical physics and/or computational physics. Others see it as an opportunity to
introduce topics (optics, plasma physics, astrophysics, biophysics, etc.) into a curriculum which might
otherwise not include them. Still others teach electromagnetism for the main purpose of introducing
the methods of relativistic field theory to their students.

Given the many uses of this foundational course, Modern Electrodynamics purposely contains much
more material than can be comfortably covered in a two-semester course. Presentations with quite

1 F.J. Dyson, “Why is Maxwell’s theory so hard to understand?”, in James Clerk Maxwell Commemorative Booklet
(The James Clerk Maxwell Foundation, Edinburgh, 1999). Available at www.clerkmaxwellfoundation.org/
DysonFreemanArticle.pdf.

2 From the preface to F.E. Low, Classical Field Theory (Wiley, New York, 1997), p. xi.
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xx PREFACE

different emphases can be constructed by making different choices from among the many topics offered
for discussion. All instructors will omit various sections and probably entire chapters. Consistent with
this point of view, I do not offer a single, idiosyncratic “vision” of electromagnetism. Rather, I have
aimed to present what seemed (to me) to be the pedagogically soundest approach for students coming
to this material after a first serious exposure at the junior/senior undergraduate level. In many cases,
the same issue is examined from more than one point of view. The mathematics of the subject is given
its proper due, but the qualitative and physical arguments I provide may ultimately remain with the
reader longer.

The organization of this book reflects my personal experience as an instructor. After experimenting
with relativity-first, Lagrangian-first, and radiation-first approaches, I concluded that the majority of
students grasped the subject matter best when I used a traditional arrangement of topics. The text is
purposely repetitive. This is done both to reinforce key ideas and to help readers who do not read
the text in chapter order. My background as a condensed matter physicist appears in various places,
including an emphasis on the practical (rather than the formal) aspects of microscopic averaging, a
discussion of the limitations of the Lorentz model of dielectric and magnetic matter, and the presence
of an entire chapter devoted to the experimentally important subject of quasistatics.

Every chapter of Modern Electrodynamics contains worked examples chosen either to develop
problem-solving skills or to reveal subtleties of the subject which do not appear when one’s exposure
is limited to a few standard examples. Every chapter also contains several “applications” drawn from
all the major subfields of physics. By and large, these are topics I was unwilling to relegate to the
end-of-chapter homework for fear many readers would never see them. About half the chapters include
a boxed excursion into a issue (often historical) where words serve better than equations, and every
chapter ends with an annotated list of Sources, References, & Additional Reading to acknowledge
my debt to others and to stimulate inquisitive readers. Finally, every chapter contains a large number
of homework problems. These range from undergraduate-type drill problems to more challenging
problems drawn directly from the research literature. Like most textbook authors, I emphasize that
active engagement with the homework problems is an important part of the learning process. This is
particularly important for electromagnetism where the struggle with difficult problems has somehow
(wrongly) been elevated to a rite of passage. My desired outcome is a reader who, after completion
of a course based on this book, can comfortably read and understand (if not necessarily reproduce in
detail) a non-trivial electromagnetic argument or calculation which appears in the course of his or her
research or reading.

The modernity of the text indicated by its title is not associated with the use of particularly “modern”
mathematical methods. Rather, it derives from the inclusion of topics which have attracted new or
renewed attention in recent decades. Examples include the electrostatics of ion channels, the modern
theory of electric polarization, magnetic resonance imaging, the quantum Hall effect, optical tweezers,
negative refraction, the time-domain approach to radiation, the polarization anisotropy of the cosmic
microwave background, near-field optics, and relativistic heavy ion collisions. To keep the text finite,
some familiar special topics from other texts have been omitted or barely touched upon. Examples
include collisions and energy exchange between charged particles, the method of virtual quanta,
transition radiation, energy loss in matter, and classical models of the electron. On the other hand,
Modern Electrodynamics includes an overview of Dirac’s Hamiltonian approach to electrodynamics
and an update on certain “perpetual” problems like the correctness of the Lorentz-Dirac equation of
motion for classical point particles and the Abraham-Minkowski controversy over the electromagnetic
energy-momentum tensor in matter. All of these are illustrative of the self-refreshing nature of a subject
which is re-invented by every new generation to meet its needs.

Finally, two choices I have made may give pause to some readers. One is my use of SI units
throughout. The other is my use of the imaginary number i to impose the metric in special relativity.
The technical rationale for using SI units is given in Section 2.6. An equally good reason is simply that
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PREFACE xxi

this system has become the worldwide standard and nearly all undergraduate textbooks use it without
apology. However, because the physics literature is replete with books and research papers which use
Gaussian units, Appendix B discusses this system and provides an algorithm to painlessly convert
from SI to Gaussian and vice versa.

My reason for using the “old-fashioned” Minkowski metric is purely pedagogical and cannot be
stated more clearly than Nobel prize winner Gerard ’t Hooft did in the preface to his Introduction to
General Relativity (2001), namely: “In special relativity, the i has considerable practical advantage:
Lorentz transformations are orthogonal, and all inner products only come with + signs. No confusion
over signs remains”. Although he switches to a metric tensor to discuss general relativity (as he must),
’t Hooft further champions his use of i in special relativity with the remark, “I see no reason to shield
students against the phenomenon of changes in convention and notation. Such transitions are necessary
whenever one switches from one research field to another. They better get used to it”. That being said,
Appendix D outlines the use of the metric tensor gμν in special relativity.
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1 Mathematical Preliminaries

The enormous usefulness of mathematics in the natural
sciences is something bordering on the mysterious.

Eugene Wigner (1960)

1.1 Introduction

This chapter presents a collection of mathematical notation, definitions, identities, theorems, and
transformations which play an important role in the study of electromagnetism. A brief discussion
accompanies some of the less familiar topics and only a few proofs are given in detail. For more details
and complete proofs, the reader should consult the books and papers listed in Sources, References,
and Additional Reading at the end of the chapter. Appendix C at the end of the book summarizes the
properties of Legendre polynomials, spherical harmonics, and Bessel functions.

1.2 Vectors

A vector is a geometrical object characterized by a magnitude and direction.1 Although not necessary,
it is convenient to discuss an arbitrary vector using its components defined with respect to a given
coordinate system. An example is the right-handed coordinate system with orthogonal unit basis
vectors (ê1, ê2, ê3) shown in Figure 1.1, where

ê1 · ê1 = 1 ê2 · ê2 = 1 ê3 · ê3 = 1 (1.1)

ê1 · ê2 = 0 ê2 · ê3 = 0 ê3 · ê1 = 0 (1.2)

ê1 × ê2 = ê3 ê2 × ê3 = ê1 ê3 × ê1 = ê2. (1.3)

We express an arbitrary vector V in this basis using components Vk = êk · V,

V = V1ê1 + V2ê2 + V3ê3. (1.4)

A vector can be decomposed in any coordinate system we please, so

3∑
k=1

Vk êk =
3∑

k=1

V ′
k ê′

k. (1.5)

1 A more precise definition of a vector is given in Section 1.8.
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2 MATHEMATICAL PRELIMINARIES: DEFINITIONS, IDENTITIES, AND THEOREMS

Figure 1.1: An orthonormal set of unit vectors ê1, ê2, ê3. V is an arbitrary vector.

z

z

y

x

(a) Cylindrical

r

z

y

x

(b) Spherical

Figure 1.2: Two curvilinear coordinate systems.

1.2.1 Cartesian Coordinates
Our notation for Cartesian components and unit vectors is

V = Vx x̂ + Vy ŷ + Vzẑ. (1.6)

In particular, rk always denotes the Cartesian components of the position vector,

r = xx̂ + yŷ + zẑ. (1.7)

It is not obvious geometrically (see Example 1.7 in Section 1.8), but the gradient operator is a vector
with the Cartesian representation

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (1.8)

The divergence, curl, and Laplacian operations are, respectively,

∇ · V = ∂Vx

∂x
+ ∂Vy

∂y
+ ∂Vz

∂z
(1.9)

∇ × V =
(
∂Vz

∂y
− ∂Vy

∂z

)
x̂ +

(
∂Vx

∂z
− ∂Vz

∂x

)
ŷ +

(
∂Vy

∂x
− ∂Vx

∂y

)
ẑ (1.10)

∇2A = ∂2A

∂x2
+ ∂2A

∂y2
+ ∂2A

∂z2
. (1.11)

1.2.2 Cylindrical Coordinates
Figure 1.2(a) defines cylindrical coordinates (ρ, φ, z). Our notation for the components and unit vectors
in this system is

V = Vρ ρ̂ + Vφφ̂ + Vzẑ. (1.12)

The transformation to Cartesian coordinates is

x = ρ cosφ y = ρ sinφ z = z. (1.13)
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1.2 Vectors 3

The volume element in cylindrical coordinates is d 3r = ρdρdφdz. The unit vectors (ρ̂, φ̂, ẑ) form a
right-handed orthogonal triad. ẑ is the same as in Cartesian coordinates. Otherwise,

ρ̂ = x̂ cosφ + ŷ sinφ x̂ = ρ̂ cosφ − φ̂ sinφ (1.14)

φ̂ = −x̂ sinφ + ŷ cosφ ŷ = ρ̂ sinφ + φ̂ cosφ. (1.15)

The gradient operator in cylindrical coordinates is

∇ = ρ̂
∂

∂ρ
+ φ̂

ρ

∂

∂φ
+ ẑ

∂

∂z
. (1.16)

The divergence, curl, and Laplacian operations are, respectively,

∇ · V = 1

ρ

∂(ρVρ)

∂ρ
+ 1

ρ

∂Vφ

∂φ
+ ∂Vz

∂z
(1.17)

∇ × V =
[

1

ρ

∂Vz

∂φ
− ∂Vφ

∂z

]
ρ̂ +

[
∂Vρ

∂z
− ∂Vz

∂ρ

]
φ̂ + 1

ρ

[
∂(ρVφ)

∂ρ
− ∂Vρ

∂φ

]
ẑ (1.18)

∇2A = 1

ρ

∂

∂ρ

(
ρ
∂A

∂ρ

)
+ 1

ρ2

∂2A

∂φ2
+ ∂2A

∂z2
. (1.19)

1.2.3 Spherical Coordinates
Figure 1.2(b) defines spherical coordinates (r, θ, φ). Our notation for the components and unit vectors
in this system is

V = Vr r̂ + Vθ θ̂ + Vφφ̂. (1.20)

The transformation to Cartesian coordinates is

x = r sin θ cosφ y = r sin θ sinφ z = r cos θ. (1.21)

The volume element in spherical coordinates is d 3r = r2 sinθdrdθdφ. The unit vectors are related by

r̂ = x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ x̂ = r̂ sin θ cosφ + θ̂ cos θ cosφ − φ̂ sinφ (1.22)

θ̂ = x̂ cos θ cosφ + ŷ cos θ sinφ − ẑ sin θ ŷ = r̂ sin θ sinφ + θ̂ cos θ sinφ + φ̂ cosφ (1.23)

φ̂ = −x̂ sinφ + ŷ cosφ ẑ = r̂ cos θ − θ̂ sin θ. (1.24)

The gradient operator in spherical coordinates is

∇ = r̂
∂

∂r
+ θ̂

r

∂

∂θ
+ φ̂

r sin θ

∂

∂φ
. (1.25)

The divergence, curl, and Laplacian operations are, respectively,

∇ · V = 1

r2

∂(r2Vr )

∂r
+ 1

r sin θ

∂(sin θ Vθ )

∂θ
+ 1

r sin θ

∂Vφ

∂φ
(1.26)

∇ × V = 1

r sin θ

[
∂(sin θ Vφ)

∂θ
− ∂Vθ

∂φ

]
r̂

(1.27)

+ 1

r

[
1

sin θ

∂Vr

∂φ
− ∂(rVφ)

∂r

]
θ̂ + 1

r

[
∂(rVθ )

∂r
− ∂Vr

∂θ

]
φ̂

∇2A = 1

r2

∂

∂r

(
r2 ∂A

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂A

∂θ

)
+ 1

r2 sin2 θ

∂2A

∂φ2
. (1.28)
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4 MATHEMATICAL PRELIMINARIES: DEFINITIONS, IDENTITIES, AND THEOREMS

1.2.4 The Einstein Summation Convention
Einstein (1916) introduced the following convention. An index which appears exactly twice in a
mathematical expression is implicitly summed over all possible values for that index. The range of
this dummy index must be clear from context and the index cannot be used elsewhere in the same
expression for another purpose. In this book, the range for a roman index like i is from 1 to 3, indicating
a sum over the Cartesian indices x, y, and z. Thus, V in (1.6) and its dot product with another vector
F are written

V =
3∑

k=1

Vk êk ≡ Vk êk V · F =
3∑

k=1

VkFk ≡ VkFk. (1.29)

In a Cartesian basis, the gradient of a scalar ϕ and the divergence of a vector D can be variously written

∇ϕ = êk∇kϕ = êk∂kϕ = êk
∂ϕ

∂rk
(1.30)

∇ · D = ∇kDk = ∂kDk = ∂Dk

∂rk
. (1.31)

If an N ×N matrix C is the product of an N ×M matrix A and an M ×N matrix B,

Cik =
M∑
j=1

AijBjk = AijBjk. (1.32)

1.2.5 The Kronecker and Levi-Cività Symbols
The Kronecker delta symbol δij and Levi-Cività permutation symbol εijk have roman indices i, j , and
k which take on the Cartesian coordinate values x, y, and z. They are defined by

δij =
{

1 i = j,

0 i �= j,
(1.33)

and

εijk =
⎧⎨
⎩

1 ijk = xyz yzx zxy,

−1 ijk = xzy yxz zyx,

0 otherwise.
(1.34)

Some useful Kronecker delta and Levi-Cività symbol identities are

êi · êj = δij δkk = 3 (1.35)

∂krj = δjk Vkδkj = Vj (1.36)

[V × F]i = εijkVjFk [∇ × A]i = εijk∂jAk (1.37)

δij εijk = 0 εijkεijk = 6. (1.38)

A particularly useful identity involves a single sum over the repeated index i:

εijkεist = δjsδkt − δjt δks . (1.39)

A generalization of (1.39) when there are no repeated indices to sum over is the determinant

εki� εmpq =
∣∣∣∣∣∣
δkm δim δ�m
δkp δip δ�p
δkq δiq δ�q

∣∣∣∣∣∣ . (1.40)
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1.2 Vectors 5

Finally, let C be a 3 × 3 matrix with matrix elements C11, C12, etc. The determinant of C can be
written using either an expansion by columns,

detC = εijkCi1Cj2Ck3, (1.41)

or an expansion by rows,

detC = εijkC1iC2jC3k. (1.42)

A closely related identity we will use in Section 1.8.1 is

ε�mn detC = εijkC�iCmjCnk. (1.43)

1.2.6 Vector Identities in Cartesian Components
The Kronecker and Levi-Cività symbols simplify the proof of vector identities. An example is

a × (b × c) = b(a · c) − c(a · b). (1.44)

Using the left side of (1.37), the ith component of a × (b × c) is

[a × (b × c)]i = εijkaj (b × c)k = εijkaj εk�mblcm. (1.45)

The definition (1.34) tells us that εijk = εkij . Therefore, the identity (1.39) gives

[a × (b × c)]i = εkij εk�majb�cm = (δi�δjm − δimδj�)ajb�cm = ajbicj − ajbj ci . (1.46)

The final result, bi(a · c) − ci(a · b), is indeed the ith component of the right side of (1.44). The
same method of proof applies to gradient-, divergence-, and curl-type vector identities because the
components of the ∇ operator transform like the components of a vector [see above (1.8)]. The next
three examples illustrate this point.

Example 1.1 Prove that ∇ · (∇ × g) = 0.

Solution: Begin with ∇ · (∇ × g) = ∂iεijk∂j gk = 1
2∂i∂jgkεijk + 1

2∂i∂jgkεijk . Exchanging the
dummy indices i and j in the last term gives

∇ · ∇ × g = 1
2∂i∂jgkεijk + 1

2∂j ∂igkεjik = 1
2 {εijk + εjik}∂i∂jgk = 0.

The final zero comes from εijk = −εjik , which is a consequence of (1.34).

Example 1.2 Prove that ∇ × (A × B) = A∇ · B − (A · ∇)B + (B · ∇)A − B∇ · A.

Solution: Focus on the ith Cartesian component and use the left side of (1.37) to write

[∇ × (A × B)]i = εijk∂j (A × B)k = εijkεkst ∂j (AsBt ).

The cyclic properties of the Levi-Cività symbol and the identity (1.39) give

[∇ × (A × B)]i = εkij εkst ∂j (AsBt ) = (δisδjt − δit δjs)(As∂jBt + Bt∂jAs).

Therefore,

[∇ × (A × B)]i = Ai∂jBj − Aj∂jBi + Bj∂jAi − Bi∂jAj .

This proves the identity because the choice of i is arbitrary.
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6 MATHEMATICAL PRELIMINARIES: DEFINITIONS, IDENTITIES, AND THEOREMS

Example 1.3 Prove the “double-curl identity” ∇ × (∇ × A) = ∇(∇ · A) − ∇2A.

Solution: Consider the ith Cartesian component. The identity on the left side of (1.37) and the
invariance of the Levi-Cività symbol with respect to cyclic permutations of its indices give

[∇ × (∇ × A)]i = εijk∂j (∇ × A)k = εijk∂j εkpq∂pAq = εkij εkpq∂j ∂pAq.

Now apply the identity (1.39) to get

[∇ × (∇ × A)]i = (δipδjq − δiqδjp)∂j ∂pAq = ∂i∂jAj − ∂j ∂jAi = ∇i(∇ · A) − ∇2Ai.

The double-curl identity follows because

∇2A = ∇2(Ax x̂ + Ay ŷ + Azẑ) = x̂∇2Ax + ŷ∇2Ay + ẑ∇2Az.

1.2.7 Vector Identities in Curvilinear Components
Care is needed to interpret the vector identities in Examples 1.2 and 1.3 when the vectors in question
are decomposed into spherical or cylindrical components such as A = Ar r̂ + Aθ θ̂ + Aφφ̂. This can
be seen from Example 1.3 where the final step is no longer valid because r̂, θ̂ , and φ̂ are not constant
vectors. In other words,

∇2A = ∇ · ∇(Ar r̂ + Aθ θ̂ + Aφφ̂) �= r̂∇2Ar + θ̂ ∇2Aθ + φ̂∇2Aφ. (1.47)

One way to proceed is to work out the components of ∇(Ar r̂), ∇(Aθ θ̂ ), and ∇(Aφφ̂). Alternatively,
we may simply define the meaning of the operation ∇2A when A is expressed using curvilinear
components. For example,

[∇2A]φ ≡ ∂φ(∇ · A) − [∇ × (∇ × A)]φ, (1.48)

and similarly for (∇2A)r and (∇2A)θ .
Exactly the same issue arises when we examine the last step in Example 1.2, namely

[∇ × (A × B)]i = Ai∇ · B − (A · ∇)Bi + (B · ∇)Ai − Bi∇ · A. (1.49)

By construction, this equation makes sense when i stands for x, y, or z. It does not make sense if i
stands for, say, r , θ , or φ. On the other hand, the full vector version of the identity is correct as long
as we retain the r , θ , and φ variations of r̂, θ̂ , and φ̂. For example,

(A · ∇)B =
[
Ar

∂

∂r
+ Aθ

r

∂

∂θ
+ Aφ

r sin θ

∂

∂φ

]
(Br r̂ + Bθ θ̂ + Bφφ̂). (1.50)

Application 1.1 Two Identities for ∇ × L

The −h = 1 version of the quantum mechanical angular momentum operator, L = −ir × ∇, plays a
useful role in the analysis of classical spherical systems. In this application, we prove two operator
identities which will appear later in the text:

(A) ∇ × L = −ir∇2 + i∇(1 + r · ∇)

(B) ∇ × L = (r̂ × L)

(
1

r

∂

∂r
r

)
+ r̂

i

r
L2.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-01 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 14:48

1.3 Derivatives 7

Proof of Identity (A):

We use (1.37), (1.39), and the cyclic property of the Levi-Cività symbol to evaluate the kth component
of ∇ × L acting on a scalar function φ:

[∇ × L]kφ = −i[∇ × (r × ∇)]kφ = −iεmk�εmst ∂�rs∂tφ = −i[∂�rk∂�φ − ∂�r�∂kφ]. (1.51)

Because ∂�r� = 3 and ∂�rk = δ�k ,

∇ × Lφ = [−ir∇2 + i2∇ + i(r · ∇)∇]φ. (1.52)

However,

∂k[r�∂�φ] = ∂kφ + r�∂�∂kφ, (1.53)

which is the kth component of ∇(r · ∇)φ = ∇φ + (r · ∇)∇φ. Substituting the latter into (1.53) gives
Identity (A).

Proof of Identity (B):

We decompose the gradient operator into its radial and angular pieces:

∇ = r̂(r̂ · ∇) − r̂ × (r̂ × ∇) = r̂
∂

∂r
− i

r
r̂ × L. (1.54)

Equation (1.54) and the Levi-Cività formalism produce the intermediate result

∇ × L = (r̂ × L)
∂

∂r
− i

r
(r̂ × L) × L = (r̂ × L)

∂

∂r
− i

r

[
r̂kLLk − r̂L2

]
. (1.55)

However, the angular momentum operator obeys commutation relations which can be summarized as
L × L = iL. Therefore,

r̂ × (L × L) = ir̂ × L ⇒ r̂kLLk − r̂kLkL = ir̂ × L. (1.56)

On the other hand, rkLk = 0 because L is perpendicular to both r and ∇. Therefore, r̂kLLk = ir̂ × L,
which we can substitute into (1.55). The result is identity (B) because, for any scalar function φ,

1

r

[
∂

∂r
(rφ)

]
= ∂φ

∂r
+ φ

r
. (1.57)

�

1.3 Derivatives

1.3.1 Functions of r and |r|
The position vector is r = r r̂ with r =

√
x2 + y2 + z2. If f (r) is a scalar function and f ′(r) = df/dr ,

∇r = r̂ ∇ × r = 0 (1.58)

∇f = f ′r̂ ∇2f = (r2f ′)′

r2
(1.59)

∇ · (f r) = (r3f )′

r2
∇ × (f r) = 0. (1.60)

Similarly, if g(r) is a vector function and c is a constant vector,

∇ · g = g′ · r̂ ∇ × g = r̂ × g′ (1.61)

(g · ∇)r = g (r · ∇)g = rg′ (1.62)
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8 MATHEMATICAL PRELIMINARIES: DEFINITIONS, IDENTITIES, AND THEOREMS

∇(r · g) = g + (r · g′)r
r

∇ · (g × r) = 0 (1.63)

∇ × (g × r) = 2g + rg′ − (r · g′)r
r

∇(c · r) = c. (1.64)

1.3.2 Functions of r − r′

Let R = r − r′ = (x − x ′)x̂ + (y − y ′)ŷ + (z − z′)ẑ. Then,

∇f (R) = f ′(R)R̂ ∇ · g(R) = g′(R) · R̂ ∇ × g(R) = R̂ × g′(R). (1.65)

Moreover, because

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
and ∇′ = x̂

∂

∂x ′ + ŷ
∂

∂y ′ + ẑ
∂

∂z′ , (1.66)

it it straightforward to confirm that

∇′f (R) = −∇f (R). (1.67)

1.3.3 The Convective Derivative
Let φ(r, t) be a scalar function of space and time. An observer who repeatedly samples the value of
φ at a fixed point in space, r, records the time rate of change of φ as the partial derivative ∂φ/∂t .
However, the same observer who repeatedly samples φ along a trajectory in space r(t) that moves with
velocity υ(t) = ṙ(t) records the time rate of change of φ as the convective derivative,

dφ

dt
= ∂φ

∂t
+ dx

dt

∂φ

∂x
+ dy

dt

∂φ

∂y
+ dz

dt

∂φ

∂z
= ∂φ

∂t
+ (υ · ∇)φ. (1.68)

For a vector function g(r, t), the corresponding convective derivative is

dg
dt

= ∂g
∂t

+ (υ · ∇)g. (1.69)

1.3.4 Taylor’s Theorem
Taylor’s theorem in one dimension is

f (x) = f (a) + (x − a)
df

dx

∣∣∣∣
x=a

+ 1

2!
(x − a)2 d2f

dx2

∣∣∣∣
x=a

+ · · · . (1.70)

An alternative form follows from (1.70) if x → x + ε and a → x:

f (x + ε) = f (x) + ε
df

dx
+ 1

2!
ε2 d

2f

dx2
+ · · · . (1.71)

Equivalently,

f (x + ε) =
[

1 + ε
d

dx
+ 1

2!

(
ε
d

dx

)2

+ · · ·
]
f (x) = exp

(
ε
d

dx

)
f (x). (1.72)

This generalizes for a function of three variables to

f (x + εx, y + εy, z + εz) = exp

(
εx

∂

∂x

)
exp

(
εy

∂

∂y

)
exp

(
εz

∂

∂z

)
f (x, y, z), (1.73)

or

f (r + ε) = exp (ε · ∇) f (r) =
[

1 + ε · ∇ + 1

2!
(ε · ∇)2 + · · ·

]
f (r). (1.74)
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1.4 Integrals 9

1.4 Integrals

1.4.1 Jacobian Determinant
The determinant of the Jacobian matrix J relates volume elements when changing variables in an
integral. For example, suppose x and y are N -dimensional space vectors in two different coordinates
systems, e.g., Cartesian and spherical. The volume elements dNx and dNy are related by

dNx = |J(x, y)| dNy =

∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂y1

∂x1

∂y2
· · · ∂x1

∂yN
· · · ·
· · · ·

∂xN

∂y1

∂xN

∂y2
· · · ∂xN

∂yN

∣∣∣∣∣∣∣∣∣∣∣
dNy. (1.75)

1.4.2 The Divergence Theorem
Let F(r) be a vector function defined in a volume V enclosed by a surface S with an outward normal
n̂. If dS = dSn̂, the divergence theorem is∫

V

d 3r ∇ · F =
∫
S

dS · F. (1.76)

Special choices for the vector function F(r) produce various integral identities based on (1.76). For
example, if c is an arbitrary constant vector, the reader can confirm that the choices F(r) = cψ(r) and
F(r) = A(r) × c substituted into (1.76) respectively yield∫

V

d 3r ∇ψ =
∫
S

dSψ (1.77)

∫
V

d 3r ∇ × A =
∫
S

dS × A. (1.78)

1.4.3 Green’s Identities
The choice F(r) = φ(r)∇ψ(r) in (1.76) leads to Green’s first identity,∫

V

d 3r [φ∇2ψ + ∇φ · ∇ψ] =
∫
S

dS · φ∇ψ. (1.79)

Writing (1.79) with the roles of φ and ψ exchanged and subtracting that equation from (1.79) itself
gives Green’s second identity,∫

V

d 3r [φ∇2ψ − ψ∇2φ] =
∫
S

dS · [φ∇ψ − ψ∇φ]. (1.80)

The choice F = P × ∇ × Q in (1.76) and the identity ∇ · (A × B) = B · ∇ × A − A · ∇ × B produces
a vector analog of Green’s first identity:∫

V

d 3r [∇ × P · ∇ × Q − P · ∇ × ∇ × Q] =
∫
S

dS · (P × ∇ × Q). (1.81)
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10 MATHEMATICAL PRELIMINARIES: DEFINITIONS, IDENTITIES, AND THEOREMS

Writing (1.81) with P and Q interchanged and subtracting that equation from (1.81) gives a vector
analog of Green’s second identity:∫

V

d 3r [Q · ∇ × ∇ × P − P · ∇ × ∇ × Q] =
∫
S

dS · [P × ∇ × Q − Q × ∇ × P]. (1.82)

1.4.4 Stokes’ Theorem
Stokes’ theorem applies to a vector function F(r) defined on an open surface S bounded by a closed
curve C. If d� is a line element of C,∫

S

dS · ∇ × F =
∮
C

d� · F. (1.83)

The curve C in (1.83) is traversed in the direction given by the right-hand rule when the thumb points
in the direction of dS. As with the divergence theorem, variations of (1.83) follow from the choices
F = cψ and F = A × c: ∫

S

dS × ∇ψ =
∮
C

d�ψ (1.84)

∮
C

d� × A =
∫
S

dSk∇Ak −
∫
S

dS(∇ · A). (1.85)

1.4.5 The Time Derivative of a Flux Integral
Leibniz’ Rule for the time derivative of a one-dimensional integral is

d

dt

x2(t)∫
x1(t)

dx b(x, t) = b(x2, t)
dx2

dt
− b(x1, t)

dx1

dt
+

x2(t)∫
x1(t)

dx
∂b

∂t
. (1.86)

This formula generalizes to integrals over circuits, surfaces, and volumes which move through space.
Our treatment of Faraday’s law makes use of the time derivative of a surface integral where the surface
S(t) moves because its individual area elements move with velocity υ(r, t). In that case,

d

dt

∫
S(t)

dS · B =
∫
S(t)

dS ·
[
υ(∇ · B) − ∇ × (υ × B) + ∂B

∂t

]
. (1.87)

Proof: We calculate the change in flux from

δ

[∫
B · dS

]
=
∫

δB · dS +
∫

B · δ(n̂dS). (1.88)

The first term on the right comes from time variations of B. The second term comes from time variations
of the surface. Multiplication of every term in (1.88) by 1/δt gives

d

dt

∫
B · dS =

∫
∂B
∂t

· dS + 1

δt

∫
B · δ(n̂dS). (1.89)

We can focus on the second term on the right-hand side of (1.89) because the first term appears already
as the last term in (1.87). Figure 1.3 shows an open surface S(t) with local normal n̂(t) which moves
and/or distorts to the surface S(t + δt) with local normal n̂(t + δt) in time δt .
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1.5 Generalized Functions 11

S(t+δt)

n̂(t+δt)

n̂(t)
d�

(d�×v)δt

S(t)

vδt

C(t)

Figure 1.3: A surface S(t) [bounded by the solid curve labeled C(t)] changes to the surface S(t + δt) (dashed
curve) because each element of surface moves by an amount υδt .

Our strategy is to integrate ∇ · B over the volume V bounded by S(t), S(t + δt), and the ribbon-like
surface of infinitesimal width that connects the two. Figure 1.3 shows that an area element of the latter
is d� × υδt . Therefore, using the divergence theorem,∫

V

d 3r ∇ · B =
∫

S(t+δt)
B · n̂dS −

∫
S(t)

B · n̂dS +
∮
C(t)

B · (d� × υδt). (1.90)

The minus sign appears in (1.90) because the divergence theorem involves the outward normal to the
surface bounded by V .

The volume integral on the left side of (1.90) can be rewritten as a surface integral over S(t) because
d 3r = n̂ dS · υδt . In the circuit integral over C(t), we use the fact that B · (d� × υ) = d� · (υ × B).
Finally, the two surface integrals on the right side of (1.90) can be combined into one. Putting all this
together transforms (1.90) to

δt

∫
S(t)

dS · υ(∇ · B) =
∫
S(t)

B · δ(n̂dS) + δt

∮
C(t)

d� · (υ × B). (1.91)

Finally, we use Stokes’ theorem to write the circuit integral in (1.91) as a surface integral. This gives∫
S(t)

B · δ(n̂dS) = δt

∫
S(t)

dS · υ(∇ · B) − δt

∫
S(t)

dS · ∇ × (υ × B). (1.92)

Substitution of (1.92) into (1.89) produces (1.87).

1.5 Generalized Functions

1.5.1 The Delta Function in One Dimension
The one-dimensional generalized function δ(x) is defined by its “filtering” action on a smooth but
otherwise arbitrary test function f (x):

∞∫
−∞

dxf (x)δ(x − x ′) = f (x ′). (1.93)
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12 MATHEMATICAL PRELIMINARIES: DEFINITIONS, IDENTITIES, AND THEOREMS

An informal definition consistent with (1.93) is

δ(x) = 0 for x �= 0 but

∞∫
−∞

dx δ(x) = 1. (1.94)

If the variable x has dimensions of length, the integrals in these equations make sense only if δ(x) has
dimensions of inverse length. Note also that the integration ranges in (1.93) and (1.94) need only be
large enough to include the point where the argument of the delta function vanishes.

The delta function can be understood as the limit of a sequence of functions which become more
and more highly peaked at the point where its argument vanishes. Some examples are

δ(x) = lim
m→∞

sinmx

πx
(1.95)

δ(x) = lim
m→∞

m√
π

exp(−m2x2) (1.96)

δ(x) = lim
ε→0

ε/π

x2 + ε2
. (1.97)

We prove the correctness of any of these proposed representations by showing that it possesses the
filtering property (1.93). The same method is used to prove delta function identities like

δ(ax) = 1

|a|δ(x), a �= 0 (1.98)

∞∫
−∞

dxf (x)
d

dx
δ(x − x ′) = − df

dx

∣∣∣∣
x=x ′

(1.99)

δ[g(x)] =
∑
n

1

|g′(xn)|δ(x − xn) where g(xn) = 0, g′(xn) �= 0 (1.100)

δ(x − x ′) = 1

2π

∞∫
−∞

dk eik(x−x ′). (1.101)

Formula (1.101) may be read as a statement of the completeness of plane waves labeled with the
continuous index k:

ψk(x) = 1√
2π

e−ikx . (1.102)

The general result for a complete set of normalized basis functions ψn(x) labeled with the discrete
index n is2

δ(x − x ′) =
∞∑
n=1

ψ∗
n (x)ψn(x ′). (1.103)

Example 1.4 Prove the identity (1.101) in the form

δ(x) = 1

2π

∞∫
−∞

dk eikx .

2 ψ∗
n (x) is the complex conjugate of ψn(x).

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-01 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 14:48

1.5 Generalized Functions 13

Solution: By direct calculation,

∞∫
−∞

dk eikx =
∞∫

0

dk eikx +
∞∫

0

dk e−ikx = lim
ε→0

⎡
⎣ ∞∫

0

dk eik(x+iε) +
∞∫

0

dk e−ik(x−iε)

⎤
⎦ .

The convergence factors make the integrands zero at the upper limit, so
∞∫

−∞
dk eikx = lim

ε→0

[
i

x + iε
− i

x − iε

]
= lim

ε→0

2ε

x2 + ε2
= 2πδ(x).

The final equality on the far right follows from (1.97).

1.5.2 The Principal Value Integral and Plemelj Formula
The Cauchy principal value is a generalized function defined by its action under an integral with an
arbitrary function f (x), namely,

P
∞∫

−∞
dx

f (x)

x − x0
= lim

ε→0

⎡
⎣ x0−ε∫

−∞
dx

f (x)

x − x0
+

∞∫
x0+ε

dx
f (x)

x − x0

⎤
⎦ . (1.104)

An important application where the principal value plays a role is the Plemelj formula:

lim
ε→0

1

x − x0 ± iε
= P

1

x − x0
∓ iπδ(x − x0). (1.105)

This expression is symbolic in the sense that it gains meaning when we multiply every term by an
arbitrary function f (x) and integrate over x from −∞ to ∞.

The correctness of (1.105) can be appreciated from Figure 1.4 and the identity

1

x − x0 ± iε
= x − x0

(x − x0)2 + ε2
∓ i

ε

(x − x0)2 + ε2
. (1.106)

The real part of (1.106) generates the principal value in (1.105) because it is a symmetrically cut-off
version of 1/(x − x0). The imaginary part of (1.106) generates the delta function in (1.105) by virtue
of (1.97).

1.5.3 The Step Function and Sign Function
The Heaviside step function �(x) is defined by

�(x) =
{

0 x < 0,

1 x > 0.
(1.107)

The delta function is the derivative of the theta function,

d�(x)

dx
= δ(x). (1.108)
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14 MATHEMATICAL PRELIMINARIES: DEFINITIONS, IDENTITIES, AND THEOREMS

Figure 1.4: The real and imaginary parts of Q(x) = 1/(x − x0 − iε).

A useful representation is

�(x) = lim
ε→0

i

2π

∞∫
−∞

dk
1

k + iε
e−ikx . (1.109)

The sign function sgn(x) is defined by

sgn(x) = d

dx
|x| =

{
−1 x < 0,

1 x > 0.
(1.110)

A convenient representation is

sgn(x) = −1 + 2

x∫
−∞

dyδ(y). (1.111)

1.5.4 The Delta Function in Three Dimensions
The definition (1.93) leads us to define a three-dimensional delta function using an integral over a
volume V and a smooth but otherwise arbitrary “test” function f (r):∫

V

d 3r f (r)δ(r − r′) =
{
f (r′) r′ ∈ V,

0 r′ /∈ V.
(1.112)

A less formal definition consistent with (1.112) is

δ(r) = 0 for r �= 0 but
∫
V

d 3r δ(r) =
{

1 r = 0 ∈ V,

0 r = 0 /∈ V.
(1.113)

These definitions tell us that δ(r) has dimensions of inverse volume. In Cartesian coordinates,

δ(r) = δ(x)δ(y)δ(z). (1.114)

In curvilinear coordinates, the constraint on the right side of (1.113) and the form of the volume
elements for cylindrical and spherical coordinates imply that

δ(r − r′) = δ(ρ − ρ ′)δ(φ − φ′)δ(z − z′)
ρ

= δ(r − r ′)δ(θ − θ ′)δ(φ − φ′)
r2 sin θ

. (1.115)

The special case r′ = 0 requires that we define the one-dimensional radial delta function so

∞∫
0

dr δ(r) = 1. (1.116)
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1.6 Fourier Analysis 15

More generally, if x0 and y0 represent the same point in two different N -dimensional coordinate
systems, we can use ∫

dNx δ(x − x0) =
∫

dNy δ(y − y0) (1.117)

and the Jacobian determinant result (1.75) to deduce that

δ(x − x0) = 1

|J(x, y)|δ(y − y0). (1.118)

1.5.5 Some Useful Delta Function Identities

δ(r − r′) = 1

(2π )3

∫
d 3k eik·(r−r′) (1.119)

∫
d 3r f (r)δ[g(r)] =

∫
S

dS
f (rS)

|∇g(rS)| where g(rS) = 0 defines S (1.120)

∇2 1

|r − r′| = −4πδ(r − r′) (1.121)

∂

∂rk

∂

∂rm

1

r
= 3rkrm − r2δkm

r5
− 4π

3
δij δ(r). (1.122)

Example 1.5 Use the divergence theorem to prove (1.121) in the form

∇2 1

r
= −4πδ(r).

Solution: In spherical coordinates,

∇2 1

r
= 1

r2

∂

∂r
r2 ∂

∂r

1

r
= 0 when r �= 0.

To learn the behavior at r = 0, we integrate ∇2(1/r) over a tiny spherical volume V centered at
the origin. Since dS = r2 sin θdθdφr̂ and ∇(1/r) = −r̂/r2, the divergence theorem gives

∫
V

d 3r ∇2 1

r
=
∫
V

d 3r ∇ · ∇ 1

r
=
∫
S

dS ·
(

− r̂
r2

)
= −

2π∫
0

dφ

π∫
0

dθ sin θ = −4π.

In light of (1.113), these two facts taken together establish the identity.

1.6 Fourier Analysis

Every periodic function f (x + L) = f (x) has a Fourier series representation

f (x) =
∞∑

m=−∞
f̂me

i2πmx/L. (1.123)
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16 MATHEMATICAL PRELIMINARIES: DEFINITIONS, IDENTITIES, AND THEOREMS

The Fourier expansion coefficients in (1.123) are given by

f̂m = 1

L

L∫
0

dxf (x) e−i2πmx/L. (1.124)

For non-periodic functions, the sum over integers in (1.123) becomes an integral over the real line.
When the integral converges, we find the Fourier transform pair:

f (x) = 1

2π

∞∫
−∞

dk f̂ (k) eikx (1.125)

f̂ (k) =
∞∫

−∞
dx f (x) e−ikx . (1.126)

If f (x) happens to be a real function, it follows from these definitions that

f (x) = f ∗(x) ⇒ f̂ (k) = f̂ (−k) (1.127)

In the time domain, it is conventional to write

g(t) = 1

2π

∞∫
−∞

dω ĝ(ω) e−iωt ĝ(ω) =
∞∫

−∞
dt g(t) eiωt . (1.128)

Thus, our convention for the Fourier transform and inverse Fourier transform of a function f (r, t) of
time and all three spatial variables is

f (r, t) = 1

(2π )4

∫
d 3k

∞∫
−∞

dω f̂ (k|ω) ei(k·r−ωt) (1.129)

f̂ (k|ω) =
∫

d 3r

∞∫
−∞

dt f (r, t) e−i(k·r−ωt). (1.130)

1.6.1 Parseval’s Theorem
∞∫

−∞
dtg∗

1 (t) g2(t) = 1

2π

∞∫
−∞

dω ĝ∗
1 (ω) ĝ2(ω). (1.131)

The proof follows by substituting the left member of (1.128) into (1.131) for g∗
1 (t) and g1(t) and using

the representation (1.101) of the delta function.

1.6.2 The Convolution Theorem
A function h(t) is called the convolution of f (t) and g(t) if

h(t) =
∞∫

−∞
dt ′f (t − t ′) g(t ′). (1.132)
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The convolution theorem states that the Fourier transforms ĥ(ω), f̂ (ω), and ĝ(ω) are related by

ĥ(ω) = f̂ (ω)ĝ(ω). (1.133)

We prove this assertion by using the left side of (1.128) to rewrite (1.132) as

h(t) =
∞∫

−∞
dt ′

⎡
⎣ 1

2π

∞∫
−∞

dωf̂ (ω) e−iω(t−t ′)

⎤
⎦
⎡
⎣ 1

2π

∞∫
−∞

dω′ĝ(ω′) e−iω′t ′

⎤
⎦ . (1.134)

Rearranging terms gives

h(t) = 1

2π

∞∫
−∞

dω e−iωt f̂ (ω)

∞∫
−∞

dω′ ĝ(ω′)

⎡
⎣ 1

2π

∞∫
−∞

dt ′ e−i(ω′−ω)t ′

⎤
⎦ . (1.135)

The identity (1.101) identifies the quantity in square brackets as the delta function δ(ω − ω′).
Therefore,

h(t) = 1

2π

∞∫
−∞

dω e−iωt f̂ (ω) ĝ(ω). (1.136)

Comparing (1.136) to the definition on the left side of (1.128) completes the proof.

1.6.3 A Time-Averaging Theorem
Let A(r, t) = a(r) exp(−iωt) and B(r, t) = b(r) exp(−iωt), where a(r) and b(r) are complex-valued
functions. If T = 2π/ω, it is useful to know that

〈Re [A(r, t)] Re [B(r, t)]〉 = 1

T

T∫
0

dt Re [A(r, t)] Re [B(r, t)] = 1
2 Re [a(r)b∗(r)] . (1.137)

We prove (1.137) by writing Re [A] = 1
2 (A+ A∗) and Re [B] = 1

2 (B + B∗) so

〈Re [A] Re [B]〉 = 1

4T

T∫
0

dt
{
abe−2iωt + a∗b∗e2iωt + ab∗ + ba∗} . (1.138)

The time-dependent terms in the integrand of (1.138) integrate to zero over one full period.
Therefore,

〈Re [A] Re [B]〉 = 1

4

[
ab∗ + a∗b

] = 1

2
Re

[
ab∗] = 1

2
Re

[
a∗b

]
. (1.139)
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Example 1.6 Find the Fourier series which represents the periodic function

f (x) =
∞∑

p=−∞
δ(x − 2πp).

Solution: This function is periodic in the interval −π ≤ x < π . Therefore, using (1.124),

f̂m = 1

2π

∞∑
p=−∞

π∫
−π

dx δ(x − 2πp)e−imx = 1

2π
.

Substituting f̂m into (1.123) gives

f (x) = 1

2π

∞∑
m=−∞

eimx = 1

2π
+ 1

π

∞∑
m=1

cosmx.

1.7 Orthogonal Transformations

Let (ê1, ê2, ê3) and (ê′
1, ê′

2, ê′
3) be two sets of orthogonal Cartesian unit vectors. Each is a complete

basis for vectors in three dimensions, so

ê′
i = Aij êj . (1.140)

The set of scalars Aij are called direction cosines. Using the unit vector properties from Section 1.2,

δij = ê′
i · ê′

j = AikAjk. (1.141)

Equation (1.141) says that the transpose of the matrix A, called AT, is identical to the inverse of the
matrix A, called A−1. This is the definition of a matrix that describes an orthogonal transformation,

AAT = AA−1 = 1. (1.142)

There are two classes of orthogonal coordinate transformations. These follow from the determinant
of (1.142):

det [AAT] = detA detAT = (detA)2 = 1. (1.143)

A rotation has det A = 1. Figure 1.5(a) shows an example where

A =
⎡
⎣ cos θ sin θ 0

−sin θ cos θ 0
0 0 1

⎤
⎦ . (1.144)

A reflection has det A = −1. Figure 1.5(b) shows an example where

A =
⎡
⎣−1 0 0

0 1 0
0 0 1

⎤
⎦ . (1.145)

The inversion transformation is represented by Aij = −δij so det A = −1 like a reflection. However,
a sequence of reflections can have det A = 1 like a rotation.
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(a) Rotation (b) Reflection 

ê2 ê2

1
ê

′
2

ê ′
2ê

′
1

ê

′
1

ê 1
ê

r r

Figure 1.5: Orthogonal transformations from the passive point of view. The Cartesian coordinate system
transforms. The position vector r is fixed. (a) a rotation where det A = 1; (b) a reflection where det A = −1.

(a) Rotation (b) Reflection

rr′ ê2

ê1

r

r′

ê2

ê1

Figure 1.6: Orthogonal transformations from the active point of view. The vector r transforms to the vector r′.
The Cartesian coordinate system is fixed. (a) a rotation where det A = 1; (b) a reflection where det A = −1.

1.7.1 Passive Point of View
Consider the position vector r drawn in Figure 1.5. This object can be decomposed using either the
{ê} basis or the {ê′} basis:

r = ri êi = r ′
j ê′

j = (r)′. (1.146)

The notation on the far right side of (1.146) indicates that the vector r is represented in the primed
coordinate system. Substitution of (1.140) in (1.146) shows that the components of r transform like
the unit vectors in (1.140):

r ′
i = Aij rj rj = Akj r

′
k. (1.147)

This description is called the passive point of view. The position vector r is a spectator fixed in space
while the coordinate system transforms. The matrix A is regarded as an operator that transforms the
components of r in the {ê} basis to the components of r in the {ê′} basis. The matrix form of the
transformation connects components of the same vector in different coordinate systems:

(r)′ = Ar. (1.148)

1.7.2 Active Point of View
The active point of view is an alternative (and equivalent) way to think about an orthogonal trans-
formation. Here, the matrix A is regarded as an operator which transforms r to a new vector r′ with
no change in the underlying coordinate system. The matrix form of the transformation connects the
components of different vectors in the same coordinate system:

r′ = Ar. (1.149)

Direct calculation using (1.149) confirms the active point of view illustrated in Figure 1.6 for trans-
formations represented by the rotation matrix (1.144) and the reflection matrix (1.145). Figure 1.6(a)
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shows that r′ is rotated in the clockwise direction with respect to r as compared to the counterclockwise
rotation of the set {ê′} with respect to the set {ê} in Figure 1.5. Figure 1.6(b) shows that r′ is the image
of r reflected in a mirror at x = 0.

1.8 Cartesian Tensors

Tensors are mathematical objects defined by their behavior under orthogonal coordinate transforma-
tions. Physical quantities are classified as rotational tensors of various ranks depending on how they
transform under rotations. In this section, we adopt the passive point of view (Section 1.7.1) where the
Cartesian coordinate system alone transforms.

A tensor of rank 0 is a one-component quantity where the result of a rotational transformation from
the passive point of view is

f ′(r) = f (r). (1.150)

An ordinary scalar is a tensor of rank 0. A tensor of rank 1 is an object whose three components
transform under rotation like the three components of r in (1.147):

V ′
i (r) = AijVj (r). (1.151)

A geometrical vector is a tensor of rank 1 because (1.151) together with (1.140) and (1.141) guarantees
that [cf. Equation (1.5)]

Vi êi = V ′
j ê′

j . (1.152)

Many authors use the transformation rule (1.151) to define the components of a vector. In light of
(1.141), a vector is characterized by the preservation of its length under a change of coordinates:

V ′
i V

′
i = AijVjAikVk = VkVk. (1.153)

A tensor of rank 2 is a nine-component quantity whose components transform under rotation by the
rule

T ′
ij (r) = AikAjmTkm(r). (1.154)

A dyadic is a tensor of rank 2 composed of a linear combination of pairs of juxtaposed (not multiplied)
vectors. The examples we will encounter in this book all have the form3

T ≡ êiTij êj . (1.155)

The structure of (1.155) implies that the scalar product (or vector product) of a dyadic with a vector
that stands to its left (or to its right) is also a vector. For example, the unit dyadic I has Iij = δij so
I = êi êi . A brief calculation confirms that the scalar product of a test vector with I returns the test
vector:

v · I = I · v = v. (1.156)

3 We use boldface type to denote both vectors and dyadics. Context should be sufficient to avoid confusion.
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Example 1.7 Show that the gradient operator (1.8) transforms like a vector under an orthogonal
coordinate transformation.

Solution: The proof follows from the chain rule and the equation on the right side of (1.147). The
latter shows that Akj = ∂rj /∂r

′
k . Therefore, if ϕ(r) is a scalar function,(
∂ϕ

∂rk

)′
= ∂ϕ

∂r ′
k

= ∂ϕ

∂rj

∂rj

∂r ′
k

= Akj

∂ϕ

∂rj
.

This is the transformation rule (1.151) for a vector.

1.8.1 Reflection, Inversion and Pseudotensors
We study here the transformation properties of rotational tensors (Section 1.8) under a general orthog-
onal transformation A. An instructive example is the cross product m = p × w. In component form,

mi = εijkpjwk. (1.157)

By direct calculation using (1.151) and the definition (1.33) of the Kronecker delta,

m′
i = εijkp

′
jw

′
k = εijkAjspsAk�w� = εpjkδipAjsAk�psw�. (1.158)

Using (1.141) to eliminate δip in (1.158) gives

m′
i = εpjkAiqApqAjsAk�psw� = (εpjkApqAjsAk�)Aiqpsw�. (1.159)

In light of (1.43), (1.159) is exactly

m′
i = (detA)Aiqεqs�psw�. (1.160)

Therefore, using (1.157),

m′
i = (det A)Aiqmq. (1.161)

Equation (1.161) shows that m transforms like an ordinary vector under rotations when det A = 1.
An extra minus sign occurs in (1.161) when A corresponds to a reflection or an inversion where
det A = −1.

More generally, any rotational vector where an explicit determinant factor appears in its transfor-
mation rule is called a “pseudovector” or an axial vector to distinguish it from an “ordinary” or polar
vector where no such determinant factor appears in the transformation rule. The nature of the vector
produced by the cross product of two other vectors is summarized by

axial vector × polar vector = polar vector (1.162)

polar vector × polar vector = axial vector (1.163)

axial vector × axial vector = axial vector. (1.164)

Application 1.2 Inversion and Reflection

The position vector r is an ordinary polar vector because the transformation law (1.147) does not
include the determinant factor in (1.161). Therefore, if the orthogonal transformation A corresponds
to inversion, the active point of view (Section 1.7.2) tells us that the effect of inversion is

r → r′ = −r. (1.165)
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By definition, any other polar vector P behaves the same way under inversion:

P → P′ = −P (inversion of a polar vector). (1.166)

Also by definition, an axial vector Q feels the effect of the determinant in (1.161). This introduces a
minus sign for the case of inversion (see Section 1.7), so

Q → Q′ = Q (inversion of an axial vector). (1.167)

This idea generalizes immediately to the case of a pseudoscalar or a pseudotensor of any rank. For
example, if a, b, and c are polar vectors, the triple product a · (b × c) is a pseudoscalar. The Levi-Cività
symbol (1.34) is a third-rank pseudotensor.

The operation of mirror reflection through the x-y plane inverts the z-component of the position
vector so

(x, y, z) → (x ′, y ′, z′) = (x, y,−z). (1.168)

A polar vector P behaves the same way under inversion:

(Px, Py, Pz) → (P ′
x, P

′
y, P

′
z) = (Px, Py,−Pz) (reflection of a polar vector). (1.169)

The transformation matrix for reflection satisfies det A = −1 (see Section 1.7). Therefore, (1.161)
dictates that the transformation law for an axial vector Q includes an overall factor of −1 (compared
to a polar vector). In other words,

(Qx,Qy,Qz) → (Q′
x,Q

′
y,Q

′
z) = (−Qx,−Qy,Qz) (reflection of an axial vector). (1.170)

�

Example 1.8 Show that the magnetic field B is a pseudovector.

Solution: By definition, the position vector r is a polar vector. Therefore, so are the velocity
v = dr/dt and the current density j = ρv. The gradient operator ∇ = ∂/∂r transforms like r under
inversion or reflection, so it is also a polar vector. Finally, Ampère’s law tells us that ∇ × B = μ0j.
Since ∇ and j are polar vectors, we conclude from (1.162) that B is an axial vector.

1.9 The Helmholtz Theorem

Statement:
An arbitrary vector field C(r) can always be decomposed into the sum of two vector fields: one with
zero divergence and one with zero curl. Specifically,

C = C⊥ + C‖, (1.171)

where

∇ · C⊥ = 0 and ∇ × C‖ = 0. (1.172)

An explicit representation of special interest is

C(r) = ∇ × F(r) − ∇�(r). (1.173)

When the following integrals over all space converge, �(r) and F(r) are uniquely given by

�(r) = 1

4π

∫
d 3r ′ ∇′ · C(r′)

|r − r′| (1.174)
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and

F(r) = 1

4π

∫
d 3r ′ ∇′ × C(r′)

|r − r′| . (1.175)

This result is valid for both static and time-dependent vector fields.

Existence:
The delta function properties (1.112) and (1.121) imply that

C(r) =
∫

d 3r ′C(r′) δ(r − r′) = − 1

4π

∫
d 3r ′ C(r′) ∇2 1

|r − r′| . (1.176)

Exchanging C(r′) and ∇2 in the last term and using the double-curl identity in Example 1.3 gives

C(r) = − 1

4π
∇
∫

d 3r ′ ∇ ·
[

C(r′)
|r − r′|

]
+ 1

4π
∇ ×

∫
d 3r ′ ∇ ×

[
C(r′)

|r − r′|
]
. (1.177)

Now, since ∇f (|r − r′|) = −∇′f (|r − r′|), we deduce that

∇′ ·
[

C(r′)
|r − r′|

]
= ∇′ · C(r′)

|r − r′| − C(r′) · ∇ 1

|r − r′| . (1.178)

Moving C(r′) to the right of ∇ in the last term and rearranging gives

∇ ·
[

C(r′)
|r − r′|

]
= ∇′ · C(r′)

|r − r′| − ∇′ · C(r′)
|r − r′| . (1.179)

In exactly the same way,

∇ ×
[

C(r′)
|r − r′|

]
= ∇′ × C(r′)

|r − r′| − ∇′ × C(r′)
|r − r′| . (1.180)

Inserting (1.179) and (1.180) into (1.177) generates four terms:

C(r) = − 1

4π
∇
∫

d 3r ′ ∇′ · C(r′)
|r − r′| + 1

4π
∇ ×

∫
d 3r ′ ∇′ × C(r′)

|r − r′|
(1.181)

+ 1

4π
∇
∫

d 3r ′ ∇′ ·
[

C(r′)
|r − r′|

]
− 1

4π
∇ ×

∫
d 3r ′ ∇′ ×

[
C(r′)

|r − r′|
]
.

The last two integrals in (1.181) are zero when the first two integrals converge. This follows from
(1.76) and (1.78), which show that the divergence theorem transforms the volume integrals in the last
two terms in (1.181) into the surface integrals∫

dS′ · C(r′)
|r − r′| and

∫
dS′ × C(r′)

|r − r′| . (1.182)

The surface of integration for both integrals in (1.182) lies at infinity. Therefore, both integrals vanish
if C(r) goes to zero faster than 1/r as r → ∞. The same condition guarantees that the integrals in the
first two terms in (1.181) converge. The final result is exactly the representation of C(r) given in the
statement of the theorem.

Uniqueness:
Suppose that ∇ · C1 = ∇ · C2 and ∇ × C1 = ∇ × C2. Then, if W = C1 − C2, we have ∇ · W = 0,
∇ × W = 0. The double-curl identity in Example 1.3 tells us that ∇2W = 0 also. With this information,
Green’s first identity (1.79) with φ = ψ = W (W is any Cartesian component of W) takes the form∫

V

d 3r |∇W |2 =
∫
S

dS ·W∇W. (1.183)
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The surface integral on the right side of (1.183) goes to zero when C(r) behaves at infinity as indicated
above. Therefore, ∇W = 0 or W = const. But W → 0 at infinity so W = 0 or C1 = C2 as required.

1.10 Lagrange Multipliers

Suppose we wish to minimize (or maximize) a function of two variables f (x, y). The rules of calculus
tell us to set the total differential equal to zero:

df = ∂f

∂x
dx + ∂f

∂y
dy = 0. (1.184)

But dx and dy are arbitrary, so (1.184) implies that

∂f

∂x
= 0 and

∂f

∂y
= 0. (1.185)

Equation (1.185) is the correct requirement for an extremum if x and y are independent variables.
However, suppose the two variables are constrained by the equation

g(x, y) = const. (1.186)

Equation (1.186) implies that

dg = ∂g

∂x
dx + ∂g

∂y
dy = 0. (1.187)

Therefore, (1.184) and (1.187) together tell us that

∂f/∂x

∂g/∂x
= ∂f/∂y

∂g/∂y
= λ. (1.188)

The constant λ appears because the two ratios in (1.188) cannot otherwise be equal for all values of x
and y. In other words,

∂f

∂x
− λ

∂g

∂x
= 0 and

∂f

∂y
− λ

∂g

∂y
= 0. (1.189)

These are the equations we would have gotten in the first place by trying to extremize, without
constraint, the function

F (x, y) = f (x, y) − λg(x, y). (1.190)

The Lagrange constant λ is not determined (nor does it need to be) by this procedure. Its value can be
adjusted to fix the constant in (1.186) if desired.

�

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is from
E.P. Wigner, “The unreasonable effectiveness of mathematics in the natural sciences”, Communications on
Pure and Applied Mathematics 13, 1 (1960).

Section 1.1 Most of the material in this chapter is discussed in general treatments of mathematical physics.
Three textbooks with rather different styles are

J. Mathews and R.L. Walker, Mathematical Methods of Physics (Benjamin/Cummings, Menlo Park, CA, 1970).

G. Arfken, Mathematical Methods for Physicists, 3rd edition (Academic, San Diego, 1985).

M. Stone and P. Goldbart, Mathematics for Physics (University Press, Cambridge, 2009).
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Four textbooks of electromagnetism with particularly complete treatments of the mathematical preliminaries are
B. Podolsky and K.S. Kunz, Fundamentals of Electrodynamics (Marcel Dekker, New York, 1969).

W. Hauser, Introduction to the Principles of Electromagnetism (Addison-Wesley, Reading, MA, 1971).

R.H. Good, Jr. and T.J. Nelson, Classical Theory of Electric and Magnetic Fields (Academic, New York, 1971).

A.M. Portis, Electromagnetic Fields: Sources and Media (Wiley, New York, 1978).

Section 1.2 Two readable textbooks of vector analysis and vector calculus are
D.E. Bourne and P.C. Kendall, Vector Analysis (Oldbourne, London, 1967).

H.F. Davis and A. D. Snider, Introduction to Vector Analysis, 7th edition (William C. Brown, Dubuque, IA,
1995).

Section 1.4 Our proof of the flux theorem in Section 1.4.5 is adapted from
M. Abraham and R. Becker, The Classical Theory of Electricity and Magnetism (Blackie, London, 1932),
pp. 39-40.

Section 1.5 Lighthill and Barton discuss the delta function and other generalized functions with clarity and
precision.

M.J. Lighthill, Fourier Analysis and Generalized Functions (University Press, Cambridge, 1964).

G. Barton, Elements of Green’s Functions and Propagation (Clarendon, Oxford, 1989).

Frayn and Hnizdo discuss delta function identities with less and more rigor, respectively, in
C.P. Frayn, “Some novel delta function identities”, American Journal of Physics 51, 826 (1983).

V. Hnizdo, “Generalized second-order partial derivatives of 1/r”, European Journal of Physics 32, 287 (2011).

Section 1.6 A good, short introduction to Fourier transforms and their applications to physics is
T. Schücker, Distributions, Fourier Transforms and Some of Their Applications to Physics (World Scientific,
Singapore, 1991).

Section 1.7 The distinction between the passive and active points of view for an orthogonal transformation is
made in all editions of

H. Goldstein, Classical Mechanics (Addison-Wesley, Cambridge, MA, 1950).

Section 1.8 Hauser (see Section 1.1 above) is particularly good on Cartesian tensors. See also
J. Rosen, “Transformation properties of electromagnetic quantities under space inversion, time reversal, and
charge conjugation”, American Journal of Physics 41, 586 (1973).

Section 1.9 For more on the Helmholtz theorem, see
R.B. McQuistan, Scalar and Vector Fields: A Physical Interpretation (Wiley, New York, 1965)

J. Van Bladel, “A discussion of Helmholtz’ theorem", Electromagnetics 13, 95 (1993).

Van Bladel discusses a generalization of the Helmholtz decomposition theorem to the case when C(r) → 0 does
not go to zero more rapidly than 1/r as r → ∞.

Problems
1.1 Levi-Cività Practice I

(a) Let (ê1, ê2, ê2) be unit vectors of a right-handed, orthogonal coordinate system. Show that the Levi-Cività
symbol satisfies

εijk = êi · (êj × êk).

(b) Prove that

a × b = det

∣∣∣∣∣∣
ê1 ê2 ê3

a1 a2 a3

b1 b2 b2

∣∣∣∣∣∣ = εijk êiaj bk.

(c) Prove that εijkεist = δjsδkt − δjt δks .
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(d) In quantum mechanics, the Cartesian components of the angular momentum operator L̂ obey the
commutation relation [L̂i , L̂j ] = i−hεijkL̂k . Let a and b be constant vectors and prove the commutator
identity

[L̂ · a, L̂ · b] = i−hL̂ · (a × b).

1.2 Levi-Cività Practice II Evaluate the following expressions which exploit the Einstein summation con-
vention.

(a) δii
(b) δij εijk
(c) εijkε�jk
(d) εijkεijk

1.3 Vector Identities Use the Levi-Cività symbol to prove that

(a) (A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C).
(b) ∇ · (f × g) = g · (∇ × f) − f · ( ∇ × g).
(c) (A × B) × (C × D) = (A · C × D)B − (B · C × D)A.
(d) The 2 × 2 Pauli matrices σx, σy, and σz used in quantum mechanics satisfy σiσj = δij + iεijkσk. If a

and b are ordinary vectors, prove that (σ · a)(σ · b) = a · b + iσ · (a × b).

1.4 Vector Derivative Identities Use the Levi-Cività symbol to prove that

(a) ∇ · (f g) = f ∇ · g + g · ∇f.
(b) ∇ × (f g) = f ∇ × g − g × ∇f.
(c) ∇ × (g × r) = 2g + r

∂g
∂r

− r(∇ · g).

1.5 Delta Function Identities A test function as part of the integrand is required to prove any delta function
identity. With this in mind,

(a) Prove that δ(ax) = 1

|a| δ(x), a �= 0.

(b) Use the identity in part (a) to prove that

δ[g(x)] =
∑
m

1

|g′(xm)| δ(x − xm), where g(xm) = 0 and g′(xm) �= 0.

(c) Confirm that

I =
∞∫

0

dx δ(cos x) exp(−x) = 1

2 sinh(π/2)
.

1.6 Radial Delta Functions

(a) Show that δ(r)/r = −δ′(r) when it appears as part of the integrand of a three-dimensional integral in
spherical coordinates. Convince yourself that the test function f (r) does not provide any information.
Then try f (r)/r .

(b) Show that ∇ · [δ(r − a)r̂] = (a2/r2)δ′(r − a) when it appears as part of the integrand of a three-
dimensional integral in spherical coordinates.

1.7 A Representation of the Delta Function Show that D(x) = lim
m→∞

sinmx

πx
is a representation of δ(x) by

showing that
∫∞

−∞ dxf (x)D(x) = f (0).
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1.8 An Application of Stokes’ Theorem Without using vector identities,

(a) use Stokes’ Theorem
∫
dS · (∇ × A) = ∮

ds · A with A = c × F where c is an arbitrary constant vector
to establish the equality on the left side of∮

C

ds × F =
∫
S

dS {n̂i∇Fi − n̂(∇ · F)} =
∫
S

dS (n̂ × ∇) × F.

(b) confirm the equality on the right side of this expression.
(c) show that

∮
C

r × ds = 2
∫
S

dS.

1.9 Three Derivative Identities Without using vector identities, prove that

(a) ∇f (r − r′) = −∇′f (r − r′).
(b) ∇ · [A(r) × r] = 0.
(c) dQ = (ds · ∇)Q where dQ is a differential change in Q and ds is an element of arc length.

1.10 Derivatives of exp(ik · r) Let A(r) = c exp(ik · r) where c is constant. Show that, in every case,
the replacement ∇ → ik produces the correct answer for ∇ · A, ∇ × A, ∇ × (∇ × A), ∇(∇ · A), and
∇2A.

1.11 Some Integral Identities Assume that ϕ(r) and |G(r)| both go to zero faster than 1/r as r → ∞.

(a) Let F = ∇ϕ and ∇ · G = 0. Show that
∫
d 3r F · G = 0.

(b) Let F = ∇ϕ and ∇ × G = 0. Show that
∫
d 3r F × G = 0.

(c) Begin with the vector with components ∂j (PjG) and prove that∫
V

d 3r P = −
∫
V

d 3r r(∇ · P) +
∫
S

dS(n̂ · P)r.

1.12 Unit Vector Practice Express the following in terms of r̂, θ̂ , and φ̂:

∂ r̂
∂θ

∂ r̂
∂φ

∂ θ̂

∂θ

∂ θ̂

∂φ

∂φ̂

∂θ

∂φ̂

∂φ

1.13 Compute the Normal Vector Compute the unit normal vector n̂ to the ellipsoidal surfaces defined by
constant values of

�(x, y, z) = V

[
x2

a2
+ y2

b2
+ z2

c2

]
.

Check that you get the expected answer when a = b = c.

1.14 A Variant of the Helmholtz Theorem I Mimic the proof of Helmholtz’ theorem in the text and prove
that

ϕ(r) = −∇ · 1

4π

∫
V

d 3r ′ ∇′ϕ(r′)
|r − r′| + ∇ · 1

4π

∫
S

dS′ ϕ(r′)
|r − r′| .

1.15 A Variant of the Helmholtz Theorem II A vector function Z(r) satisfies ∇ · Z = 0 and ∇ × Z = 0
everywhere in a simply-connected volume V bounded by a surface S. Modify the proof of the Helmholtz
theorem in the text and show that Z(r) can be found everywhere in V if its value is specified at every point
on S.
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1.16 Densities of States Let E be a positive real number. Evaluate

(a) g1(E) =
∞∫

−∞
dkx δ(E − k2

x).

(b) g2(E) =
∞∫

−∞
dkx

∞∫
−∞

dky δ(E − k2
x − k2

y).

(c) g3(E) =
∞∫

−∞
dkx

∞∫
−∞

dky

∞∫
−∞

dkz δ(E − k2
x − k2

y − k2
z ).

1.17 Dot and Cross Products Let b be a vector and n̂ a unit vector.

(a) Use the Levi-Cività symbol to prove that b = (b · n̂)n̂ + n̂ × (b × n̂).
(b) Interpret the decomposition in part (a) geometrically.
(c) Let ω = a · (b × c) where a, b, and c are any three non-coplanar vectors. Now let

A = b × c
ω

B = c × a
ω

C = a × b
ω

.

Express � = A · (B × C) entirely in terms of ω.

1.18 Sij and Tij

(a) What property must Sij have if εijkSij = 0?
(b) Let b and y be vectors. The components of the latter are defined by yi = bkTki where Tij = −Tji is an

anti-symmetric object. Find a vector ω such that y = b × ω. Why does it makes sense that T and ω

could have the same information content?

1.19 Two Surface Integrals Let S be the surface that bounds a volume V . Show that (a)
∫
S

dS = 0;

(b) 1
3

∫
S

dS · r = V.

1.20 Electrostatic Dot and Cross Products If a and b are constant vectors, ϕ(r) = (a × r) · (b × r) is the
electrostatic potential in some region of space. Find the electric field E = −∇ϕ and then the charge density
ρ = ε0∇ · E associated with this potential.

1.21 A Decomposition Identity Let A and B be vectors. Show that

AiBj = 1

2
εijk(A × B)k + 1

2
(AiBj + AjBi).
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2 The Maxwell Equations

If you wake up a physicist in the middle of the night and
say “Maxwell”, he is sure to say “electromagnetic field”.

Rudolph Peierls (1962)

2.1 Introduction

All physical phenomena in our Universe derive from four fundamental forces. Gravity binds stars
and creates the tides. The strong force binds baryons and mesons and controls nuclear reactions. The
weak force mediates neutrino interactions and changes the flavor of quarks. The fourth force, the
Coulomb-Lorentz force, animates a particle with charge q and velocity υ in the presence of an electric
field E and a magnetic field B:

F = q(E + υ × B). (2.1)

The subject we call electromagnetism concerns the origin and behavior of the fields E(r, t) and B(r, t)
responsible for the force (2.1).

We will come to learn that the electric and magnetic fields are very closely related. However, like
many siblings, the time-independent quantities E(r) and B(r) do not look alike and do not interact.
Static electric fields require charge separation. The largest such separations (∼ 105 m) are associated
with electrostatic discharges in the upper atmosphere. Static magnetic fields (apart from magnetic
matter) require only charge in steady motion. As far as is known, the maximum size of magnetic field
patterns may approach cosmic dimensions (∼ 1020 m).

Time-dependent E and B fields are more like a newly married couple. Initially, they remain close
to their sources. Then, in a moment of subtle reorganization, they break free and—in the form of
electromagnetic radiation—race away to an independent, intertwined existence. The two fields are
inextricably bound together in the X-rays which reveal the atomic-scale structure of DNA, in the
microwaves which facilitate contemporary telecommunications, and in the radio waves which reveal
the large-scale structure of the Universe.

The full story of these matters is neither short nor simple. In this chapter, we begin with the primitive
concepts of charge and current. A brief review of the history of electromagnetism leads to definitions
for E(r, t) and B(r, t) and to the Maxwell equations which relate the fields to sources of charge and
current. We then turn to the relationship between microscopic electromagnetism and macroscopic
electromagnetism. This includes a discussion of spatial averaging and a derivation of the matching
conditions required by the macroscopic theory. Two short sections discuss the limits of validity of the
classical theory and the SI system of units used in this book. The chapter concludes with a heuristic
“derivation” of the Maxwell equations.
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2.1.1 Electric Charge
The word electric derives from the Greek word for amber (ηλεκτρoν), a substance which attracts bits
of chaff when rubbed. Sporadic and often contradictory reports of this peculiar phenomenon appeared
for centuries. Then, in 1600, William Gilbert dismissed all of them as “esoteric, miracle-mongering,
abstruse, recondite, and mystical”. His own careful experiments showed that many materials, when
suitably prepared, produced an “electric force” like amber.

Electrical research was revolutionized in 1751 when Benjamin Franklin postulated that rubbing
transfers a tangible electric “fluid” from one body to another, leaving one with a surplus and the
other with a deficit. When word of the American polymath’s proposal reached Europe, Franz Aepinus
realized that the electric charge Q was a variable that could be assigned to an electric body. He used
it to express Franklin’s law of conservation of charge in algebraic form. He also pointed out that the
electric force was proportional to Q. Today, we understand charge to be an intrinsic property of matter,
like mass. Moreover, no known particle possesses a charge which is not an integer multiple of the
minimum value of the electron charge1

e = 1.602 177 33(49) × 10−19 C. (2.2)

Typically, a neutral atom, molecule, or macroscopic body acquires a net charge only through the gain
or loss of electrons, each of which possesses a charge −e.

Despite the fundamental discreteness of charge implied by its quantization, electromagnetic theory
develops most naturally if we define a continuous charge per unit volume or volume charge density,
ρ(r). By construction, dQ = ρ(r)d 3r is the amount of charge contained in an infinitesimal volume
d 3r . The total charge Q in a finite volume V is

Q =
∫
V

d 3r ρ(r). (2.3)

Classically, this is a straightforward definition when ρ(r) is a continuous function of the usual sort.
It is equally straightforward in quantum mechanics because the charge density is defined in terms
of continuous wave functions. For example, the charge density for a system of N indistinguishable
particles (each with charge q) described by the many-particle wave function �(r1, r2, . . . , rN ) is

ρ(r) = q

∫
d 3r2

∫
d 3r3 · · · d 3rN |�(r, r2, . . . , rN )|2. (2.4)

It is often useful to imagine continuous distributions of charge which are confined to infinitesimally
thin surface layers. This suggests we identify rS as a point centered on an infinitesimal element of
surface dS and define a charge per unit area, or surface charge density, σ (rS) so dQ = σ (rS)dS. The
total charge associated with a finite surface S is

Q =
∫
S

dS σ (rS). (2.5)

A charge per unit length, or linear charge density λ(�), plays a similar role for continuous distributions
confined to a one-dimensional filament. In that case, dQ = λ(�)d�, where � points from the origin to
to the line element d�.

Finally, we return to (2.2) and use the absence of data to establish a finite size for the electron
as motivation to define a classical point charge as a vanishingly small object which carries a finite

1 We omit quarks, particles with fractional charge, because they cannot be separated from the hadrons they constitute.
Equation (2.2) defines the Coulomb (C) as the charge carried by 6.2415096 × 1018 electrons.
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(a) (b)S

dS
d�

C

K

j n̂

Figure 2.1: (a) The current I is the integral over S of the projection of the volume current density j onto the area
element dS; (b) the current I is the integral over C of the projection of K × n̂ (the cross product of the surface
current density K and the surface normal n̂) onto the line element d�.

amount of charge.2 The mathematical properties of the delta function are well suited to this task and
we represent the charge density of N point charges qk located at positions rk as

ρ(r) =
N∑
k=1

qkδ(r − rk). (2.6)

Substituting (2.6) into (2.3) yields the correct total charge. However, one should be alert for possible
(unphysical) divergences in other quantities associated with the singular nature of (2.6).

2.1.2 Electric Current
Electric charge in organized motion is called electric current. The identification of electric current
as electric charge in continuous motion around a closed path is due to Alessandro Volta. Volta
was stimulated by Luigi Galvani and his observation that the touch of a metal electrode induces
the dramatic contraction of a frog’s leg. A skillful experimenter himself, Volta discovered that the
contraction was associated exclusively with the passage of electric charge through the frog’s leg.
Subsequent experiments designed to generate large electric currents led him to invent the battery
in 1800.

We make the concept of electric current quantitative using Figure 2.1(a). By analogy with fluid
flow, let n̂ be the local unit normal to an element of surface dS and let dS = dSn̂. We define a current
density j(r, t) so dI = j · dS = j · n̂dS is the rate at which charge passes through dS. The total current
that passes through a finite surface S is

I = dQ

dt
=
∫
S

dS · j. (2.7)

We can write an explicit formula for j (r, t) when a velocity field υ(r, t) characterizes the motion of a
charge density ρ(r, t). In that case, the fluid analogy suggests that the current density is

j = ρυ. (2.8)

If the charge is entirely confined to a two-dimensional surface, it is appropriate to replace (2.8) by
a surface current density

K = σ υ. (2.9)

2 Electron-positron scattering experiments judge the electron to be a structure-less object with a charge radius less than
1.2 × 10−19 m. See A. Bajo, I. Dymnikova, A. Sakharov, et al., in Quantum Electrodynamics and Physics of the
Vacuum, edited by G. Cantatore, AIP Conference Proceeding, volume 564 (AIP, Woodbury, NY, 2001), pp. 255-262.
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Figure 2.1(b) shows that the current which flows past a curve C on a surface can be expressed in terms
of the local surface normal n̂ using

I =
∫
C

d� · K × n̂ =
∫
C

K · (n̂ × d�). (2.10)

The second integral in (2.10) makes it clear that only the projection of K onto the normal to the line
element d� (in the plane of the surface) contributes to I [cf. (2.7)].

2.1.3 Conservation of Charge
As far as we know, electric charge is absolutely conserved by all known physical processes. The only
way to change the net charge in a finite volume is to move charged particles into or out of that volume.
Chemical reactions create and destroy chemical species, and quantum processes create and destroy
elementary particles, but the total charge before and after any of these events is always the same.
Indeed, the most stringent tests of this principle of charge conservation search for the spontaneous
decay of the electron into neutral particles like photons and neutrinos. If this occurs at all, the mean
time for decay exceeds 1024 years (Belli et al. 1999).

For our purposes, the most useful statement of charge conservation begins with the surface integral
representation of the current I in (2.7). If we choose the surface S to be closed, the divergence theorem
(Section 1.4.2) permits us to express I as an integral over the enclosed volume V :

I =
∫
V

d 3r ∇ · j. (2.11)

Because the vector dS in (2.7) points outward from V , (2.11) is the rate at which the total charge Q
decreases in the volume V . An explicit expression for the latter is

− dQ

dt
= − d

dt

∫
V

d 3r ρ = −
∫
V

d 3r
∂ρ

∂t
. (2.12)

Equating (2.11) and (2.12) for an arbitrary volume yields a local statement of charge conservation
called the continuity equation,

∂ρ

∂t
+ ∇ · j = 0. (2.13)

The continuity equation says that the total charge in any infinitesimal volume is constant unless there
is a net flow of pre-existing charge into or out of the volume through its surface.

Application 2.1 Moving Point Charges

Let N point charges qk follow trajectories rk(t). The charge density of this system of moving point
charges is a time-dependent generalization of (2.6):

ρ(r, t) =
N∑
k=1

qk δ(r − rk(t)). (2.14)

We can use the continuity equation to derive the corresponding current density. The particle velocities
are υk(t) = ṙk(t), so the chain rule gives

∂ρ

∂t
=
∑
k

qk
∂

∂t
δ(r − rk) = −

∑
k

qkυk · ∇δ(r − rk). (2.15)
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2.2 The Maxwell Equations in Vacuum 33

Since ∇ · υk = 0, this can be written in the form

∂ρ/∂t = −∇ ·
∑
k

qkυk δ(r − rk). (2.16)

This formula is consistent with the continuity equation (2.13) if

j (r, t) =
N∑
k=1

qkυk δ(r − rk). (2.17)

�

2.2 The Maxwell Equations in Vacuum

The unification of electricity, magnetism, and optics was achieved by James Clerk Maxwell with the
publication of his monumental Treatise on Electricity and Magnetism (1873). Maxwell characterized
his theory as an attempt to “mathematize” the results of many different experimental investigations
of electric and magnetic phenomena. A generation later, Heinrich Hertz famously remarked that
“Maxwell’s theory is Maxwell’s system of equations.” He made this statement because he “not always
felt quite certain of having grasped the physical significance” of the arguments given by Maxwell in
the Treatise. The four “Maxwell equations” Hertz had in mind (independently proposed by Heaviside
and Hertz) are actually a concise version of twelve equations offered by Maxwell.

It is traditional to develop the Maxwell equations through a review of the experiments that motivated
their construction. We do this here (briefly) for the simple reason that every physicist should know
some of the history of this subject. As an alternative, Section 2.7 offers a heuristic “derivation” of the
Maxwell equations based on symmetry arguments and minimal experimental input.

2.2.1 Electrostatics
Experimental work by Priestley, Cavendish, and Coulomb at the end of the 18th century established the
nature of the force between stationary charged objects. Extrapolated to the case of point charges, the
force on a charge q at the point r due to N point charges qk at points rk is given by the inverse-square
Coulomb’s law:

F = 1

4πε0

N∑
k=1

qqk
r − rk

| r − rk|3 . (2.18)

The pre-factor 1/4πε0 reflects our choice of SI units (see Section 2.6). Using the point charge density
(2.6), we can restate Coulomb’s law in the form

F = qE(r), (2.19)

where the vector field E(r) is called the electric field:

E(r) = 1

4πε0

∫
d 3r ′ ρ(r′)

r − r′

| r − r′|3 . (2.20)

Generalizing, we define (2.20) to be the electric field for any choice of ρ(r). This definition makes
the principle of superposition explicit: the electric field produced by an arbitrary charge distribution
is the vector sum of the electric fields produced by each of its constituent pieces. Given (2.20), the
mathematical identities

∇ 1

|r − r′| = − r − r′

| r − r′|3 and ∇2 1

|r − r′| = −4πδ(r − r′) (2.21)
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are sufficient to show that

∇ · E = ρ/ε0 and ∇ × E = 0. (2.22)

The first equation of (2.22) is Gauss’ law. It is the first of the four Maxwell equations. The second
equation of (2.22) is valid for electrostatics only.

2.2.2 The Field Concept
An important conceptual shift occurs when we pass from (2.18) to (2.19). The first of these conjures
up the picture of a non-local force which acts between pairs of charges over arbitrarily large distances.
By contrast, Coulomb’s law in the form (2.19) suggests the rather different picture of an electric field
which pervades all of space.3 A particle experiences a force determined by the local value of the field
at the position of the particle. For static problems, the “action-at-a-distance” and field points of view
are completely equivalent.

The true superiority of the field approach becomes evident only when we turn to time-dependent
problems. In that context, we will see that fields can exist quite independently of the presence or
absence of charged particles. We will endow them with properties like energy, linear momentum,
and angular momentum and treat them as dynamical objects with the same mechanical status as the
particles.

2.2.3 Magnetostatics
William Gilbert was the first person to conduct systematic experiments on the nature of magnetism.4 In
de Magnete (1600), Gilbert correctly concluded that the Earth behaves like a giant permanent magnet.
But it was not until 1750 that John Michell showed that the force between the ends (“poles”) of two
rod-like permanent magnets follows an inverse-square law with attraction (repulsion) between unlike
(like) poles. Somewhat later, Coulomb and Gauss confirmed these results and Poisson eventually
developed a theory of magnetic “charge” and force in complete analogy with electrostatics.

In 1820, Oersted made the dramatic discovery that a current-carrying wire produces effects quali-
tatively similar to those of a permanent magnet. Biot, Savart, and Ampère followed up quickly with
quantitative experiments. A watershed moment occurred when Ampère published his calculation of
the force on a closed loop carrying a current I due to the presence of N other loops carrying currents
Ik (see Figure 2.2). If r points to the line element d� of loop I and rk points to the element d�k of the
kth loop, Ampère’s formula for the force on I is5

F = −μ0

4π

∮
Id� ·

N∑
k=1

∮
Ikd�k

r − rk
|r − rk|3 . (2.23)

The pre-factor μ0/4π reflects our choice of SI units (see Section 2.6).
With a bit of manipulation, (2.23) can be recast in the form

F =
∮

Id� × B(r), (2.24)

3 The concept of the field, if not its mathematical expression, is generally credited to Michael Faraday. See McMullin
(2002) in Sources, References, and Additional Reading.

4 See the first paragraph of Section 2.1.1. The word magnetic derives from the proper name Magnesia. This is a district
of central Greece rich in the naturally magnetic mineral lodestone.

5 The scalar product in (2.23) is d� · d�k .
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d�
d�k

I
Ik

r rk

O

Figure 2.2: Two filamentary loops carry current I and Ik . The vectors r and rk point to the line elements d� and
d�k , respectively.

where the magnetic field B(r) has a form first determined by Biot and Savart in 1820:

B(r) = μ0

4π

N∑
k=1

∮
Ikd�k × r − rk

|r − rk|3 . (2.25)

Later (Section 9.3.1), we will learn that the substitution I
∮
d� → ∫

d 3r j transforms formulae valid
for linear circuits into formulae valid for volume distributions of current. Accordingly, we generalize
(2.25) and define the magnetic field produced by any time-independent current density as

B(r) = μ0

4π

∫
d 3r ′ j(r′) × (r − r′)

|r − r′|3 . (2.26)

The principle of superposition is again paramount: the magnetic field produced by a steady current
distribution is the vector sum of the magnetic fields produced by each of its constituent pieces.

In 1851, William Thomson (later Lord Kelvin) used an equivalence between current loops and
permanent magnets due to Ampère to show that the magnetic field produced by both types of sources
satisfies

∇ · B = 0 and ∇ × B = μ0j. (2.27)

It is a worthwhile exercise to confirm that (2.26) is consistent with both equations in (2.27) as long as
the current density satisfies the steady-current condition [cf. (2.13)],

∇ · j = 0. (2.28)

The first equation of (2.27) is the second of the Maxwell equations. It has no commonly agreed-upon
name. The equation on the right side of (2.27), which is valid for magnetostatics only, is often called
Ampère’s law.

2.2.4 Faraday’s Law
Michael Faraday was the greatest experimental scientist of the 19th century.6 Of particular importance
was Faraday’s discovery that a transient electric current flows through a circuit whenever the magnetic
flux through that circuit changes (Figure 2.3). Starting from surprisingly different points of view, the
mathematical expression of this fact was achieved by Neumann, Helmholtz, Thomson, Weber, and
Maxwell. In modern notation, Faraday’s observation applied to a circuit with resistance R means that

− d

dt

∫
S

dS · B = IR. (2.29)

6 Every physicist should at least glance through Faraday’s Diary or his Experimental Researches in Electricity. Both are
wonderfully readable chronicles of over 40 years (1820-1862) of experimental work.
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N

S

υ

N

S

υ

S SC

I I

Figure 2.3: A typical experiment which reveals Faraday’s law. Current flows in opposite directions in the
filamentary wire C when the permanent magnet moves upward or downward. The area S is bounded by the
wire C.

The domain of integration S is any surface whose boundary curve coincides with the circuit. Our
convention is that the right-hand rule relates the direction of current flow to the direction of dS. In that
case, the minus sign in (2.29) reflects Lenz’ law: the current creates a magnetic field which opposes
the original change in magnetic flux.

To complete the story, we need only recognize that scientists of the 19th century understood Ohm’s
law for current flow in a closed circuit C to mean that

IR =
∮
C

d� · E. (2.30)

For our application, the path C in (2.30) bounds the surface S in (2.29). Therefore, after setting (2.30)
equal to (2.29), Stokes’ theorem (Section 1.4.4) yields the differential form of Faraday’s law, the third
Maxwell equation:

∇ × E = −∂B
∂t

. (2.31)

2.2.5 The Displacement Current
The displacement current is Maxwell’s transcendent contribution to the theory of electromagnetism.
Writing in 1862, Maxwell used an elaborate mechanical model of rotating “magnetic” vortices with
interposed “electric” ball bearings (see Figure 2.4) to argue that the current density j in Ampère’s law
must be supplemented by another term when the electric field varies in time. This is the displacement
current, jD = ε0∂E/∂t . Inserting this into (2.27), we get the fourth and final Maxwell equation, usually
called the Ampère-Maxwell law,

∇ × B = μ0j + 1

c2

∂E
∂t

. (2.32)

Today, it is usual to say that the displacement current is absolutely required if Ampère’s law and
Gauss’ law are to be consistent with the continuity equation (2.13). This argument was unavailable to
Maxwell because he did not associate electric current with electric charge in motion.7

Maxwell dispensed entirely with mechanical models when he wrote his Treatise. Instead, he intro-
duced jD without motivation, remarking only that it is “one of the chief peculiarities” of the theory.

7 Maxwell (who worked long before the discovery of the electron) did not regard charge as an intrinsic property of
matter subject to a law of conservation. To him, Gauss’ law did not mean that charge was the source of an electric
field. It meant that spatial variations of an electric field were a source of charge. Maxwell’s conception of current is
not easily summarized. See Buchwald (1985) in Sources, References, and Additional Reading.
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Figure 2.4: Maxwell’s sketch of a mechanical model of rotating hexagonal vortices with interposed ball
bearings. He inferred the existence of the displacement current from a study of the kinematics of this device.
Figure from Maxwell (1861).

Presumably, the fact that the displacement current was essential for wave solutions which propagate at
the speed of light had convinced him of its basic correctness. The rest of the world became convinced
in 1888 when Hertz discovered electromagnetic waves (in the microwave range) with all the properties
predicted by Maxwell’s theory.

2.2.6 Putting It All Together
Classical electromagnetism summarizes a vast body of experimental information using the concepts
of charge density ρ(r, t), current density j(r, t), electric field E(r, t), and magnetic field B(r, t). We
have seen in this chapter that partial differential equations connect the fields to the sources and vice
versa. Two of these are the explicitly time-dependent curl equations (2.31) and (2.32). Two others
are the divergence equations in (2.22) and (2.27), which survive the transition from static fields to
time-dependent fields without change. Taken together, we get the foundational equations of our subject
and the main result of this chapter, the Maxwell equations:

∇ · E = ρ

ε0
∇ · B = 0 (2.33)

∇ × E = −∂B
∂t

∇ × B = μ0j + 1

c2

∂E
∂t

. (2.34)

The direct connection to experience comes when we specify the force which ρ(r, t) and j (r, t) exert
on a charge density ρ�(r, t) and current density j�(r, t):

F(t) =
∫

d 3r [ρ�(r, t)E(r, t) + j�(r, t) × B(r, t)]. (2.35)

The electric part of (2.35) generalizes Coulomb’s law of electrostatics to time-dependent situations.
The magnetic part of (2.35) was derived by Oliver Heaviside in 1889 by supplementing the Maxwell
equations with a postulated expression for the energy of interaction between a current loop and an
external magnetic field. An essentially similar derivation was presented somewhat later by Lorentz.
Following tradition, we will call (2.35) the “Coulomb-Lorentz” force law.
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(b)(a)

Figure 2.5: Contour plot of the valence charge density of crystalline silicon: (a) ρ(r) extracted from X-ray
diffraction data; (b) ρ(r) computed from quantum mechanical calculations and the Maxwell equations. Periodic
repetition of either plot in the vertical and horizontal directions generates one plane of the crystal. The
rectangular contours reflect “bond” charge between the atoms (black circles). The white regions of very low
valence charge density reflect nodes in the sp3 wave functions. Figure from Tanaka, Takata, and Sakata (2002).

2.3 Microscopic vs. Macroscopic

Hendrik Lorentz had the brilliant insight that the Maxwell equations developed to analyze macroscopic
phenomena might apply to microscopic situations as well if the source densities ρ(r, t) and j(r, t) were
themselves microscopic. This motivated him to propose a classical model for neutral matter based on
point charge densities like (2.6) and their associated current densities (2.17). Lorentz understood that
his model would produce electric and magnetic fields which varied rapidly on a microscopic scale. He
also understood that only a spatial average over such variations could be relevant to macroscopic mea-
surements. Lorentz therefore proposed to derive Maxwell’s macroscopic theory by suitably averaging
over his microscopic theory.

Lorentz’ idea makes sense today if quantum mechanical expressions are used for the charge and
current densities. However, before any consideration is given to averaging, it is necessary to prove
what Lorentz supposed: namely, that Maxwell’s electromagnetism is valid when the sources of charge
and current are truly microscopic. Particularly compelling evidence for the microscopic validity of
Maxwell’s theory comes from the remarkable agreement between experiment and theory for the
spectrum of atomic hydrogen.8 At the level of the single-particle Dirac equation, the bound-state
energy levels for an electron moving in the classical Coulomb field of a proton are

E(n, j ) = mc2

[
1 + α2

(n− δ)2

]−1/2

δ = j + 1
2 −

√
(j + 1

2 )2 − α2, (2.36)

wherem is the reduced mass, n and j are the principal and total angular momentum quantum numbers,
and α = e2/4πε0

−hc ≈ 1/137 is the fine structure constant. Historically, the discrepancies between
the measured energy levels and (2.36) stimulated the rapid development of quantum electrodynamics
(QED) in the late 1940s. QED effects contribute to the energy levels at order α5 and thus are very
small indeed.

Today, it is commonplace to calculate the spectrum and other properties of atoms, molecules, and
solids by combining microscopic Maxwell theory with non-relativistic or relativistic quantum mechan-
ics. The calculations are necessarily approximate because the quantum part of the problem cannot be
solved exactly for multi-electron systems. Nevertheless, quantitative agrement with experiment is the
norm as long as the spatial variations of the charge density and electrostatic potential are retained
in full. This is illustrated by Figure 2.5, which compares the charge density in crystalline silicon

8 See, e.g., G.W. Erickson, “Energy levels of one-electron atoms”, Journal of Physical and Chemical Reference Data 6,
831 (1977).
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1

3

2

Figure 2.6: Spherical volumes centered at arbitrary points in space r1, r2, and r3.

as measured by X-ray diffraction with quantum mechanical calculations of the same quantity. First-
principles calculations for diamagnetic molecules and ferromagnetic solids show similar agreement
with experiment when the relevant magnetic fields are computed using microscopic magnetostatics.
Indeed, all such evidence suggests that the vacuum Maxwell equations (2.33) and (2.34) are valid
for all length scales down to the Compton wavelength of the electron λ c = h/mc � 2.43 × 10−12 m
(see Section 2.5). We take this to be the spatial resolution scale for the theory.

In contrast to the spatial degrees of freedom, there is no compelling reason to average over time in
the microscopic Maxwell equations. The period of typical electron motion in atoms is 10−15–10−16 s.
If this motion were averaged away, no consistent Maxwell theory of ultraviolet or X-ray radiation
could be contemplated. This is clearly undesirable.

2.3.1 Lorentz Averaging
Lorentz spatial averaging is a mathematical procedure which produces slowly varying macroscopic
sources and fields from rapidly varying microscopic sources and fields. No single averaging scheme
applies to every physical situation and the desired resolution scale typically differs from problem to
problem. Moreover, the average is almost never carried out explicitly. Nevertheless, it is important
to grasp the basic ideas because Lorentz averaging produces certain characteristic features of the
macroscopic theory which are absent from the microscopic theory (see Section 2.3.2).

Quantum mechanical calculations show that microscopic quantities like the electric field Emicro(r, t)
can vary appreciably on the scale of the Bohr radius aB. These spatial variations average out when
viewed at the much larger resolution scale of a macroscopic observer. This suggests the following
three-step procedure: (1) center a sphere with volume � � a3

B at every microscopic point r (see
Figure 2.6); (2) carry out a spatial average of Emicro(r, t) over the volume of the sphere,

E(r, t) = 1

�

∫
�

d 3s Emicro(s + r, t); (2.37)

and (3) exploit the fact that E(r, t) varies slowly on the resolution scale of the continuous variable r
and replace E(r, t) by E(R, t) where R is a low-resolution spatial variable. By “low resolution” we
mean that the distance between two “adjacent” points in the continuous R-space is approximately
the diameter of the averaging sphere (as measured in r-space). Thus, the “distant” points r1 and r3

in Figure 2.6 could serve as adjacent points in R-space. E(R, t) is the macroscopic electric field we
seek.

For a gas, a good rule of thumb for the averaging sphere is to choose � in Figure 2.6 and in (2.37)
equal to the inverse density of atoms. For a crystal, � is better chosen as the volume of a unit cell.
If necessary or desirable, one can perform an additional spatial average of the macroscopic variable
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E(R, t) over a larger length scale determined by the spatial resolution of an experimental probe or by
the spatial extent of density or compositional inhomogeneities.

Some authors offer much more elaborate and mathematically formal discussions of Lorentz aver-
aging than we have done here. However, experience shows that it matters little whether one uses
(2.37) or some alternative scheme (e.g., one which employs a smoothly varying weight function rather
than a sharp cutoff to the averaging volume) to eliminate the spatial variations that occur within the
averaging volume. What matters most is that the spatial averaging algorithm be a linear operation.
This implies that the space and time derivatives which appear in the Maxwell equations commute with
spatial averaging. For example, if we use angle brackets to denote the complete Lorentz averaging
procedure, it is not difficult to confirm using (2.37) that

∇R × E(R) = 〈∇r × Emicro(r)〉 (2.38)

and

∂E
∂t

=
〈
∂Emicro

∂t

〉
. (2.39)

Similar results apply to ∇R · E and to the space and time derivatives of B. The important conclusion
to be drawn from identities like (2.38) and (2.39) is that the Maxwell equations have exactly the
same form whether they are written in microscopic variables or macroscopic variables. Therefore, to
simplify notation, we will generally write simply E(r, t) and B(r, t) and rely on context to inform the
reader whether these symbols refer to microscopic or macroscopic quantities.

A small cloud appears on the Lorentz averaging horizon when we turn to quantities which are
bilinear in the fields and sources. An example is the force on the charge density ρ(r, t) and current
density j(r, t) in a volume V due to electromagnetic fields E(r, t) and B(r, t):

F =
∫
V

d 3r {ρE + j × B} . (2.40)

Interpreted as a microscopic formula, direct substitution of ρ and j from (2.6) and (2.17) confirms that
(2.40) reproduces the Lorentz force law (2.1) for each microscopic particle. However, it is generally
the case that 〈ρ E〉 �= 〈ρ〉〈E〉 and 〈j × B〉 �= 〈j〉 × 〈B〉. How, then, shall we compute the force on a
macroscopic body? The answer, not often stated explicitly, is that we simply assume that (2.40) remains
valid when all the variables are interpreted macroscopically. No ambiguities arise as long as F is the
total force on an isolated sample of macroscopic matter in vacuum.

2.3.2 The Macroscopic Surface
Lorentz averaging unavoidably produces singularities and discontinuities in macroscopic quantities
when the averaging is performed in the immediate vicinity of a surface or interface. This is so because
the input microscopic quantities (which are perfectly smooth and continuous at every point in space)
exhibit rapid spatial variations near surfaces which are uncharacteristic of the variations which occur
elsewhere. To illustrate this, the top panel of Figure 2.7 shows a contour map of the microscopic,
ground state, valence electron charge density ρ0(r) near a flat, crystalline surface of metallic Ag in
vacuum. The density was calculated by quantum mechanical methods similar to those used to obtain
Figure 2.5(b).

The corrugation of the contour lines of ρ0(r) adjacent to the vacuum region (to the right) is
characteristic of vacuum interfaces. Another characteristic feature—the “spilling-out” of the electron
distribution into the vacuum—becomes most apparent when we average ρ0(r) over planes parallel to
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Figure 2.7: Side view of the free surface of crystalline Ag metal. The vacuum lies to the right. Top panel:
contour plot of the valence electron charge density ρ0(r) in one crystalline plane perpendicular to the surface.
The white circles are regions of very high electron density centered on the atomic nuclei. Bottom panel: the solid
curve labeled ρ̄0(z) is ρ0(r) averaged over planes parallel to the surface. The local maxima of this curve are
rounded off and do not accurately reflect the electron density near the nuclei; the dashed curve labeled σλ(z) is
the planar average of the change in electron density induced by an electric field directed to the left; the solid
curve labeled Ez(z) is the planar average of the electric field perpendicular to the macroscopic surface. The
vertical scale is different for each curve. The solid vertical line is the location z = 0 of the macroscopic surface.
Tick marks on the horizontal scale are separated by 2aBohr � 1 Å. Figure adapted from Ishida and Liebsch
(2002). Copyright 2002 by the American Physical Society.

the surface with area A. The function that results,

ρ̄0(z) = 1

A

∫
A

dxdyρ0(r), (2.41)

is plotted in the bottom panel of Figure 2.7. The essential point is that ρ̄0(z) falls to zero in the vacuum
over a distance comparable to the interatomic spacing. The change of scale which accompanies Lorentz
averaging in the z-direction destroys the fine resolution needed to see this behavior. This obliges us
to define the “edge” of the macroscopic surface (solid vertical line) as a plane where the macroscopic
charge distribution falls discontinuously to zero.

Now apply a horizontal electric field perpendicular to the surface and directed to the left. This
perturbation induces a distortion of the electron wave functions in the immediate vicinity of the Ag
surface. If ρ̄(z) is the planar average of the electronic charge density in the presence of the field and σ
is the induced charge per unit area of surface, a function λ(z) is defined by

ρ̄(z) = ρ̄0(z) + σλ(z). (2.42)
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The dashed curve of σλ(z) in the lower panel of Figure 2.7 shows that the main effect of the electric
field is to pull some electronic charge away from the last plane of nuclei and farther out into the
vacuum. The horizontal scale (about 1Å between tick marks) shows that the width of the dashed
curve cannot be resolved macroscopically. Therefore, after Lorentz averaging in the z-direction, all the
induced charge resides in a single, two-dimensional plane. Quantitatively, Lorentz averaging replaces
the smooth microscopic function σλ(z) by a singular macroscopic delta function:9

σλ(z) → σδ(z) (Lorentz averaging). (2.43)

The curve labeled Ez(z) in the lower panel of Figure 2.7 is the planar average of the microscopic
electric field (see Section 2.4.2) in the direction normal to the surface.Ez(z) is non-zero in the vacuum,
but falls very rapidly to zero in the near-surface region. Therefore, a Lorentz average in the z-direction
recovers the familiar result that the macroscopic electric field just outside a perfect conductor drops
discontinuously to zero just inside a perfect conductor (see Section 5.2.2).

2.3.3 Matching Conditions
There is an analytic connection between the discontinuous electric field and the singular distribution
of surface charge discussed in the previous section. To discover it, let the plane z = 0 separate two
regions labeled L and R. EL(r) and ρL(r) are the macroscopic electric field and charge density in
region L. ER(r) and ρR(r) are the macroscopic electric field and charge density in region R. Now, the
step function �(z) is defined (Section 1.5.3) by

�(z) =
⎧⎨
⎩

0 z < 0,

1 z > 0.
(2.44)

Using this function, we can write the electric field at every point in space as

E(r) = ER(r)�(z) + EL(r)�(−z). (2.45)

The charge density can be written similarly except that we must allow for the possibility of a surface
charge density σ (x, y) localized exactly at z = 0. In light of (2.43), we write

ρ(r) = ρR(r)�(z) + ρL(r)�(−z) + σδ(z). (2.46)

Motivated by Gauss’ law, ∇ · E = ρ/ε0, the divergence of (2.45) is10

∇ · E = [∇ · ER]�(z) + [∇ · EL]�(−z) + ẑ · (ER − EL)δ(z). (2.47)

On the other hand, ∇ · EL = ρL/ε0 and ∇ · ER = ρR/ε0. Therefore, if we set (2.46) equal to (2.47)
times ε0 and use square brackets to denote the evaluation of EL and ER at points which are infinitesi-
mally close to one another on opposite sides of z = 0, the final result is

ẑ · [ER − EL] = σ/ε0. (2.48)

This is a matching condition which relates the discontinuity in the normal component of the macro-
scopic electric field to the magnitude of the singular charge density at the interface. Our derivation
based on the differential form of Gauss’ law draws explicit attention to the non-analytic nature of the

9 The centroid of λ(z) does not exactly coincide with macroscopic termination of the zero-field charge distribution. We
may locate the macroscopic induced charge density at z = 0 nevertheless because the error we make is undetectable
at the macroscopic scale.

10 ∇ · [f�(±z)] = �(±z)∇ · f + f · ∇�(±z) = �(±z)∇ · f ± δ(z)f · ẑ.
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Figure 2.8: An infinitesimally thin interface between two macroscopic regions (labeled 1 and 2) carries a
surface charge density σ and a surface current density K. The unit normal n̂1 points outward from region 1. The
unit normal n̂2 points outward from region 2.

macroscopic fields and sources [exemplified by (2.45) and (2.46)] when surfaces and interfaces are
present.

Three additional matching conditions follow similarly from the three remaining Maxwell equations.
The general case is an interface with a surface charge density σ (rS) and a surface current density
K(rS). If the unit normal n̂1 points outward from region 1 and the unit normal n̂2 points outward from
region 2 (Figure 2.8), the full set of matching conditions is

n̂2 · [E1 − E2] = σ/ε0

n̂2 · [B1 − B2] = 0
(2.49)

n̂2 × [E1 − E2] = 0

n̂2 × [B1 − B2] = μ0K.

The two middle equations in (2.49) express the fact that the normal component of B(r, t) and the
tangential component of E(r, t) are continuous across the interface. The last equation in (2.49) indicates
that the tangential component of B(r, t) suffers a discontinuity proportional to the local surface current
density. Later in the text, we will derive the relations (2.49) using more “physical” arguments.

We close with the remark that the stated matching conditions apply only to an interface which is at
rest in the frame of reference where the fields are measured. The last two conditions in (2.49) each
acquire an extra term when the interface moves with velocity v namely,11

n̂2 × [E1 − E2] − (v · n̂2)[B1 − B2] = 0
(2.50)

n̂2 × [B1 − B2] + (v̂ · n̂2)

c2
[E1 − E2] = μ0K.

2.4 The Maxwell Equations in Matter

The 19th-century founders of electromagnetism understood their subject very differently than we do
today. The physical nature of charge and current inside matter was unknown, so attention focused
on the response of an experimental sample to external sources of charge or current. As a result, the
theory developed somewhat differently from the “history” recounted in Section 2.2. William Thomson
(Lord Kelvin) appreciated that the magnetic field B produced by Faraday induction differed in some
essential way from the field (called H by him) induced in matter by a steady external current. Similarly,

11 See Namias (1988) in Sources, References, and Additional Reading.
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Maxwell appreciated that the electric field E responsible for the force on a charged object differed in
some essential way from the field (called D by him) induced in matter by an external charge.

Today, we understand that the distinction between Thomson’s B and H and Maxwell’s E and D
arises when we distinguish the fields produced by charge and current densities intrinsic to the matter
from the fields produced by sources extrinsic to the matter. It nevertheless proves useful to retain the
19th-century language of the founders. First, it is deeply embedded in the literature and developed
intuition of the subject. Second, there are many situations where the four-field formalism simplifies
calculations. Finally, the constitutive relationships between D and E (on the one hand) and between H
and B (on the other hand) force us to confront the quantum effects which distinguish real matter from
mere distributions of charge and current.12

2.4.1 Macroscopic Sources and Fields
The macroscopic charge density is zero at every point inside an isolated sample of neutral matter.13

The same is true of the macroscopic current density if we except ferromagnetic matter. There being
no sources, it follows that an isolated sample of matter produces no electromagnetic field. However,
suppose we introduce “free” densities of charge and current, ρf (r, t) and jf (r, t), which are entirely
extrinsic to the matter. The fields produced by the extrinsic sources induce charge reorganization and
current flow in dielectric matter and current flow in magnetic matter. The fields produced by these
induced sources contribute to the total field both inside and outside the matter.

It is traditional to use a vector field P(r, t) to characterize the polarization of a dielectric. A vector
field M(r, t) is used similarly to characterize the magnetization of a magnet. These quantities enter
Maxwell’s theory by writing

ρ(r, t) = ρf (r, t) − ∇ · P(r, t) (2.51)

and

j(r, t) = jf (r, t) + ∇ × M(r, t) + ∂P(r, t)
∂t

. (2.52)

Later chapters will explain why (2.51) and (2.52) have the forms they do.
We now define the auxiliary macroscopic fields introduced by Maxwell and Thomson as

D(r, t) = ε0E(r, t) + P(r, t) (2.53)

and

H(r, t) = μ−1
0 B(r, t) − M(r, t). (2.54)

These definitions are natural because, when (2.51) and (2.52) are substituted into (2.33) and (2.34),
the resulting equations have a very simple form in terms of the auxiliary fields namely,

∇ · D = ρf ∇ · B = 0 (2.55)

and

∇ × E = −∂B
∂t

∇ × H = jf + ∂D
∂t

. (2.56)

12 Some textbooks refer to E as the “electric field”, H as the “magnetic field”, D as the “electric displacement”, and B
as the “magnetic induction”. In this book, only the electric field E and the magnetic field B are fundamental. We give
no special names to the auxiliary fields D and H.

13 This macroscopic charge density is the Lorentz average (Section 2.3.1) of the microscopic charge density associated
with the distribution of protons and electrons in the matter. The microscopic charge density is non-zero and varies
rapidly in space.
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Comparing (2.55) and (2.56) to the vacuum Maxwell equations (2.33) and (2.34) shows that the first
and the last of the matching conditions in (2.49) change to

n̂2 · [D1 − D2] = σf
(2.57)

n̂2 × [H1 − H2] = Kf .

The two scalar equations in (2.55) and the six components of the two vector equations of (2.56) are
not sufficient to determine the twelve components of E, B, D, and H. So-called “constitutive relations”
of the form D = D{E,B} and H = H{E,B} are needed to close the equation set. When the field
strengths are low, a linear approximation is often valid. In the static limit, this defines the dielectric
permittivity ε and the magnetic permeability μ of macroscopic electrodynamics:

D(r) = εE(r) B(r) = μH(r). (2.58)

Equivalently, we can work with the electric susceptibility χ and the magnetic susceptibility χm:

P(r) = ε0χE(r) M(r) = χmH(r). (2.59)

In this book, we will use the term “simple” media to refer to matter where (2.58) and (2.59) are
good approximations. We will also discuss “less-simple” media where these formulae break down and
require generalization.

2.4.2 Microscopic Fields
Figure 2.5 and Figure 2.7 testify to our ability to calculate charge densities and electric fields in matter
at the microscopic scale. On the other hand, not every macroscopic equation in the preceding section
remains valid when we pass to the micro-scale. An example is the constitutive relation (2.58), which is
known to be incorrect for microscopic applications. Indeed, rather than using Dz(z) = εEz(z), or even
Dz(z) = ε(z)Ez(z), the field Ez(z) plotted in the bottom panel of Figure 2.7 was calculated using a
spatially non-local dielectric function ε(z, z′) which permits the field at one point in space to influence
the field at nearby points in space:14

Dz(z) =
∫

dz′ε(z, z′)Ez(z
′). (2.60)

Substituting (2.60) into ∇ · D = 0 gives

d

dz

∫
dz′ε(z, z′)Ez(z

′) = 0. (2.61)

This integrates to ∫
dz′ε(z, z′)Ez(z

′) = Ez(∞), (2.62)

where the integration constant Ez(∞) is the (specified) field far from the surface (in the vacuum)
where ε(z → ∞, z′) = δ(z − z′). The hard part of this problem is the quantum mechanical calculation
of ε(z, z′). Once that is known, (2.62) is an integral equation for Ez(z) which yields the smooth and
continuous function plotted in Figure 2.7.

14 Usually, ε(z, z′) → 0 if |z − z′| is larger than one or two atomic spacings.
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2.5 Quantum Limits and New Physics

The domain of classical electromagnetism is very large, but not infinite. The known limits of the theory
are set by quantum mechanics. The unknown limits of the theory are set by the possible discovery of
“new physics” which would render the theory incomplete. This section provides a brief introduction
to both these topics.

2.5.1 Quantized Matter
Classical electromagnetism is a theory of the electromagnetic field and its interaction with matter.
The entire enterprise works wonderfully well for macroscopic distributions of matter like capacitors,
electromagnets, circuit elements, and antennas. Difficulties arise at the micro-scale when quantum
effects begin to assert themselves. The photoelectric effect and the absorption and emission of radiation
by atoms are historically significant examples where this occurs. Happily, the solution in many cases is
a semi-classical description where the matter is treated quantum mechanically and the electromagnetic
field is treated classically. Calculations of this kind produce quantitatively accurate results for the
rates at which matter absorbs/emits electromagnetic waves and for the rate at which electrons are
liberated from matter by photoemission. We will see an example in Chapter 20, where the replacement
of a classical particle current by a first-quantized particle current transforms a completely classical
expression into a proper quantum mechanical expression.

2.5.2 Vacuum Polarization
Maxwell’s theory is the classical limit of quantum electrodynamics (QED), a theory where charged
particles and electromagnetic fields are treated on an equal footing as quantum objects. It is the most
accurate theory of Nature we possess. Second quantization produces electrodynamic effects which
cannot be described by any classical theory. An example is vacuum polarization, which is the virtual
excitation of electron-positron pairs in the presence of an external electromagnetic field. If the external
field is produced by a static point charge q, this relativistic quantum effect modifies Coulomb’s
law at distances less than the Compton wavelength of the electron, λ c = h/mc. To lowest order in
the fine structure constant, α = e2/2ε0hc, the QED result for the electrostatic potential of a point
charge is15

ϕ(r) = q(r)

4πε0r
= q

4πε0r
×

⎧⎪⎪⎨
⎪⎪⎩

1 − 2α

3π
ln(r/λ c) r/λ c � 1,

1 + α

4
√
π

(
r

λ c

)−3/2

e−2r/λ c r/λ c � 1.
(2.63)

We can interpret the behavior of q(r) as the quantum analog of the screening of a point charge q by a
medium with dielectric permittivity ε = ε0κ (Chapter 6). In a dielectric medium, polarization charge
in the immediate vicinity of the source reduces the effective value of the charge from q to q/κ . In
the present case, the divergent “bare” charge q(0) polarizes the vacuum in its immediate vicinity by
attracting virtual electrons and repelling virtual positrons. When observed from distances r � λ c, the
effective magnitude of the source charge is “renormalized” to the finite value q.

15 See Section 114 of V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii, Quantum Electrodynamics, 2nd edition
(Pergamon, Oxford, 1980).
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The effects of vacuum polarization become significant when the external field strengths approach

Ec ∼ mc2

eλ c
= m2c3

eh
∼ 1018 V/m

Bc ∼ m2c2

eh
∼ 109 T.

(2.64)

Detailed calculations predict a dramatic effect: the breakdown of the linearity of the vacuum Maxwell
equations (and thus the principle of superposition) when the field strengths approach (2.64). This QED
result (valid for slowly varying fields) can be cast in the form of non-linear constitutive relations for
the vacuum. To lowest order in α, virtual pair production generates a vacuum polarization P and a
vacuum magnetization M given by16

P = 2ε0α

E2
c

{
2(E2 − c2B2)E + 7c2(E · B)B

}
(2.65)

M = − 2α

μ0E2
c

{
2(E2 − c2B2)B + 7(E · B)E

}
.

At the time of this writing, these effects have not yet been detected.

2.5.3 Quantum Fluctuations
An entirely different restriction on the validity of classical electrodynamics arises because E(r, t) and
B(r, t) are non-commuting vector operators in QED rather than c-number vector fields. We infer from
the uncertainty principle that the electric field and the magnetic field cannot take on sharp values
simultaneously. Quantum fluctuations of the field amplitudes and phases are always present, even in
the vacuum state. On the other hand, the fields produced by macroscopic sources like a light bulb, a
laser, a microwave generator, or a blackbody radiator invariably exhibit (much larger) non-quantum
fluctuations also. The non-classical regime of quantum optics emerges when the classical fluctuations
are suppressed to reveal the quantum fluctuations.

Glauber (1963) pointed out that it is possible to distinguish a classical electromagnetic field from
a quantum electromagnetic field by focusing on the (time-averaged) field intensity operator Î and
expectation values like

g(2) = 〈Î 2〉
〈Î 〉2

. (2.66)

Field intensity is a positive quantity, so g(2) ≥ 0 whether the fluctuations are classical or quantum.
However, for fields described by classical electrodynamics, the sharper inequality g(2) ≥ 1 holds.

Quantum effects generally reveal themselves when we pass from the macroscopic limit of many
atoms to the microscopic limit of one or a few atoms. This suggests that a single atom should be
a good source of non-classical radiation. The data for g(2) shown in Figure 2.9 illustrate this for
low-intensity laser light directed through a cavity containing about a dozen Rb atoms. The parameter
� = 2(ωL − ωA)τ is the difference between the laser frequency ωL and the frequency ωA of a Rb
atomic transition, normalized by the radiative lifetime τ of the transition. When � � 0, the atoms
resonantly scatter the laser light and non-classical values 0 ≤ g(2) < 1 are seen. This means that the
operator character of the field variables plays an essential role in the description of the transmitted

16 See, for example, M. Soljačić and M. Segev, “Self-trapping of electromagnetic beams in vacuum supported by QED
nonlinear effects”, Physical Review A 62, 043817 (2000) and references therein.
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Δ
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Figure 2.9: Cavity QED data for g(2) as defined in (2.66). The horizontal axis is the laser detuning �. The
classical theory is valid only when g(2) ≥ 1. The solid line is a guide to the eye. Figure adapted from Foster,
Mielke, and Orozco (2000). Copyright 2000 by the American Physical Society.

light. As the detuning � increases, the atoms scatter less and less. Eventually, g(2) exceeds unity and
classical theory suffices to describe the transmitted light as well as the incident light.17

2.5.4 New Physics
The Maxwell equations are the mathematical expression of the known facts of experimental electro-
magnetism. They are subject to modification if any future experiment gives convincing evidence for
deviations from any of these “facts”. Conversely, one can speculate that the laws of physics are not
precisely as we usually imagine them and posit that the Maxwell equations differ (albeit minutely)
from their usual form. If so, the modified theory will predict heretofore unobserved phenomena which
can be sought in the laboratory. If not seen in experiment, such measurements set limits on the size of
the presumed deviations from the orthodox theory.

Two examples of very long standing are the possibilities that (i) Coulomb’s law is not precisely
inverse-square and (ii) magnetic charge exists and is a source for magnetic fields. The Coulomb
question is often addressed by supposing that the force between two point charges varies as 1/r2+ε

rather than as 1/r2. This proposal—which we interpret today as a signature of a non-zero mass for the
photon—has a variety of experimental implications. An electrostatic test was performed by Maxwell
himself, who concluded that |ε | ≤ 5 × 10−5. Contemporary experiments of the same basic design
give |ε | ≤ 6 × 10−17.18 Magnetic charge is the subject of Section 2.5.5 below.

Apart from the massive photon and magnetic charge, a variety of other “new physics” scenarios have
been suggested which alter the Maxwell equations in various ways. These speculations include (a)
charge is not exactly conserved; (b) electromagnetism is not exactly the same in every inertial frame;
and (c) electromagnetism violates rotational and/or inversion symmetry. There is no experimental
evidence for any of these at the present time, but it is necessary to keep an open mind.

2.5.5 Magnetic Charge
As first-rate physical theories go, the Maxwell equations are embarrassingly asymmetrical. ∇ · E
is proportional to an electric charge density ρ, but ∇ · B is not proportional to a magnetic charge

17 In this experiment, the average number of photons in the cavity is always much less than one. That is,
ε0E

2V/−hω � 1, where V is the cavity volume. The data for � > 2 in Figure 2.9 show that very small mean photon
number alone is not sufficient to guarantee that an electromagnetic field is non-classical.

18 See Sources, References, and Additional Reading for references to the experimental and theoretical literature on this
subject.
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ρm

cρe

Figure 2.10: Allowed values of ρm and cρe lie on the circle. The radius vector indicates the ratio of magnetic
charge to electric charge for a hypothetical elementary particle.

density ρm. Similarly, an electric current density j appears in the Ampère-Maxwell law, but no
magnetic current density jm appears in Faraday’s law. To the extent that we associate symmetry with
mathematical beauty, the Maxwell equations violate Dirac’s dictum that “physical laws should have
mathematical beauty”.19

This state of affairs has led many physicists to symmetrize the Maxwell equations by supposing that
(i) magnetic charge exists and (ii) the motion of particles with magnetic charge produces a magnetic
current density jm which satisfies ∇ · jm + ∂ρm/∂t = 0. If we temporarily let ρe and j e stand for the
usual electric charge density and current density, these assumptions generalize (2.33) and (2.34) to20

∇ · E = ρe

ε0
∇ · B = μ0ρm (2.67)

∇ × E = −μ0jm − ∂B
∂t

∇ × B = μ0j e + 1

c2

∂E
∂t

. (2.68)

The new terms acquire meaning from a similarly generalized Coulomb-Lorentz force density,21

f = (ρeE + j e × B) + (ρmB − jm × E/c2). (2.69)

For present purposes, the most interesting property of (2.67), (2.68), and (2.69) is that they are
invariant to a duality transformation of the fields and sources parameterized by an angle θ :

E′ = E cos θ + cB sin θ cB′ = −E sin θ + cB cos θ (2.70)

cρ ′
e = cρe cos θ + ρm sin θ ρ ′

m = −cρ sin θ + ρm cos θ (2.71)

cj ′
e = cj e cos θ + jm sin θ j ′

m = −cj e sin θ + jm cos θ. (2.72)

This means that E′, B′, ρ ′
e, j ′

e, ρ
′
m, and j ′

m satisfy exactly the same equations as their unprimed
counterparts. The only constraints are those imposed by the transformation itself:

c2ρ2
e + ρ2

m = c2ρ ′
e

2 + ρ ′
m

2
. (2.73)

Duality implies that it is strictly a matter of convention whether we say that a particle has electric
charge only, magnetic charge only, or some mixture of the two. To see this, let the circle in Figure 2.10 be
the locus of values of cρe and ρm permitted by (2.73). The radius vector specifies the ratio ρm/cρe for a
hypothetical elementary particle with, say, electric charge e < 0 and magnetic charge g > 0. However,
if the same ratio applies to every other particle in the Universe, no electromagnetic prediction changes
if we exploit dual symmetry and rotate the radius vector (choose θ ) to make ρm = 0 for every particle.

19 Famously written on a blackboard at Moscow State University in 1955.
20 A particle with no electric charge and one unit of magnetic charge is called a magnetic monopole.
21 We have chosen the SI unit of magnetic charge as the A·m. Some authors choose this unit as the weber, in which case

μ0ρm → ρm and μ0jm → jm in our extended Maxwell equations and the magnetic charge and current contributions
to (2.69) should be divided by μ0.
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This brings us back to the original Maxwell-Lorentz equations, which are consistent with all known
experiments. On the other hand, if an elementary particle is ever discovered where the intrinsic ratio
g/ce differs from the value shown in Figure 2.10, the option to simultaneously “rotate away” magnetic
charge for all particles disappears. In that case, (2.67), (2.68), and (2.69) become the fundamental
electromagnetic laws of Nature. This exciting possibility keeps searches for magnetic monopoles an
active part of experimental physics.

2.6 SI Units

Maxwell’s theory of electromagnetism forced a merger of two mature disciplines (electricity and
magnetism) which had developed their own terminologies and practical systems of units. To design
a common system of units, practitioners adhered to two principles: self-consistency and convenience.
The first was easy to achieve. But, because convenience is in the eye of the beholder, it was inevitable
that many different systems of electromagnetic units would be developed and put into use. Most
prominent among these today are SI (Système International) units and Gaussian (G) units. This
section gives a brief introduction to the SI units used exclusively in this book. Appendix B describes
the Gaussian system and explains how to convert from SI to Gaussian and vice-versa.

The SI system is designed to ensure that mechanical energy and electrical energy are measured
in exactly the same units. To that end, the meter (m), kilogram (kg), and second (s) are defined
as independent base units for length, mass, and time. The derived unit of force is the newton
(N = kg·m/s2). We begin by applying these choices to the force on a point charge q1 due to the
presence of a point charge q2 at a distance r . If ke is a constant to be determined below, this force is

Fe = ke
q1q2

r2
= q1E. (2.74)

The right side of (2.74) defines E = keq2/r
2 as the magnitude of the radial electric field at a distance

r from a point charge q2. Another application is the force on a length L2 of straight wire carrying
a current I2 due to the presence of a parallel wire with current I1 at a distance d. If km is a second
constant to be determined below, this force is

Fm = km
2I1I2L2

d
= I1L2B. (2.75)

The right side of (2.75) defines B = 2kmI2/d as the magnitude of the circumferential magnetic field
at a perpendicular distance d from an infinite wire carrying a current I2.

The SI system defines the ampere (A) as a fourth independent base unit of current. The derived
unit of charge is the Coulomb (C = A·s) because I = dq/dt relates charge and current. With this
information, (2.74) and (2.75) imply that E/B has dimensions of velocity and that ke/km is a constant
with dimensions of (velocity)2. These facts are all we need to write dimensionally correct forms for
the Lorentz force law,

F = q(E + υ × B), (2.76)

and the Maxwell equations,

∇ · E = 4πkeρ ∇ · B = 0 (2.77)

∇ × E = −∂B
∂t

∇ × B = 4πkmj + km

ke

∂E
∂t

. (2.78)

The factors of 4π are needed to guarantee that these equations reproduce the electric field for a point
charge and the magnetic field of an infinite straight wire as defined in (2.74) and (2.75).
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To make further progress, we put ρ = j = 0 and take the curl of one of the two equations in (2.78).
We then use the vector identity ∇ × (∇ × F) = −∇2F + ∇(∇ · F) and substitute in from the other
curl equation in (2.78). When these steps are carried out, separately, for each equation in (2.78), the
result is

∇2E − km

ke

∂2E
∂t2

= 0 and ∇2B − km

ke

∂2B
∂t2

= 0. (2.79)

These equations have wave-like solutions which propagate at the speed of light c (as seen in experiment)
if

ke

km
= c2. (2.80)

Until 1983, the value of c was determined from experiment. Since that time, the speed of light has
been defined (by the General Conference on Weights and Measures) as exactly

c = 299 792 458 m/s. (2.81)

This legislation demotes the meter to a derived unit. It is the distance traveled by light in 1/299792458
seconds.

We have said that the raison d’être of the SI system is to make the joule (J = N·m) the natural unit
of electrical energy, just as it is for mechanical energy. In 1901, Giorgi pointed out that this will be the
case if the constant in (2.75) is chosen to be

km = 10−7 N

A2
. (2.82)

This choice fixes the definition of the ampere. It is the constant current which, if maintained in two
straight parallel conductors of infinite length and negligible circular cross section, produces a force of
2 × 10−7 N per meter of length when the two wires are separated by a distance of 1 m.

Finally, SI eliminates (“rationalizes”) the factors of 4π in the Maxwell equations by introducing a
magnetic constant μ0 where

μ0 = 4πkm = 4π × 10−7 N

A2
, (2.83)

and, using (2.80), an electric constant ε0 where

ε0 = 1/μ0c
2 = 1/4πke. (2.84)

With these definitions, (2.77) and (2.78) take the forms quoted in (2.33) and (2.34). No particular
physical meaning attaches to either μ0 or ε0.

The polarization P has dimensions of a volume density of electric dipole moment. The magnetization
M has dimensions of a volume density of magnetic dipole moment. This is enough information to
see that (2.51) and (2.52) are dimensionally correct. Dimensional consistency similarly dictates the
appearance of the factors ε0 andμ0 in (2.53) and (2.54). This leads to the form of the in-matter Maxwell
equations written in (2.55) and (2.56). On the other hand, these definitions imply that in vacuum there
is a field D and a field E which describe exactly the same physical state, but which are measured in
different units. The same is true for B and H in vacuum.

2.7 A Heuristic Derivation

We have emphasized that the principles of electromagnetism can only be revealed by experiment.
Nevertheless, it is an interesting intellectual exercise to try to deduce the Maxwell equations using only
symmetry principles, minimal theoretical assumptions, and (relatively) minimal input from experiment.
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The most profound discussions of this type exploit the symmetries of special relativity.22 Here, we
use a heuristic argument based on inversion and rotational symmetry, translational invariance, and
four pieces of experimental information: the existence of the Lorentz force, charge conservation,
superposition of fields, and the existence of electromagnetic waves.

We begin with experiment and infer the existence of the electric field E(r, t) and the magnetic field
B(r, t) from trajectory measurements on charged particles. These reveal the Lorentz force,

F = q(E + υ × B). (2.85)

We will assume that electromagnetism respects the symmetry operations of rotation and inversion.
This means that (2.85) must be unchanged when these orthogonal transformations (Section 1.7) are
performed.

Rotational invariance is guaranteed by the fact that F, E, and υ × B are all first-rank tensors (vectors).
As for inversion, we deduce from the discussion in Section 1.8.1 that F, E, and υ × B must all be
polar vectors or they must all be axial vectors.23 The position vector r is a polar vector. Therefore,
since υ = dr/dt and F = d(mυ)/dt , the force F is also a polar vector. This means that E and υ × B
must be polar vectors as well. We have just seen that υ is a polar vector. Hence, (1.162) shows that B
must be an axial vector.

Our task now is to guess an equation of motion for each field which respects the same symmetries.
For the moment, we neglect sources of charge and current. The experimental fact of superposition of
fields restricts us to linear equations and, for simplicity, we consider only first derivatives of space and
time. The most straightforward guesses, that ∂E

/
∂t ∝ E and ∂B

/
∂t ∝ B, cannot be correct because

they lead to (unphysical) exponential growth or decay of the fields as a function of time.24 The more
interesting guesses, that ∂E

/
∂t ∝ B and ∂B

/
∂t ∝ E, cannot be accepted either because they mix

polar vectors and axial vectors on different sides of the same equation. The guesses ∂E
/
∂t ∝ r × B

and ∂B
/
∂t ∝ r × E repair this problem, but violate the reasonable requirement that the dynamical

equations should not change if r → r + c where c is a constant vector. That is, the field equations
should be invariant to uniform translations.

The gradient operator ∇ ≡ ∂
/
∂r changes sign under inversion, but is unchanged when r → r + c.

This suggests the use of ∇ · B and ∇ · E. Unfortunately, these are scalars and thus unacceptable for the
right side of a vector equation of motion. On the other hand, if k1 and k2 are constants, viable candidate
equations of motion which respect the symmetry operations of rotation, inversion, and translation are

∂E
∂t

= k1∇ × B and
∂B
∂t

= k2∇ × E. (2.86)

We now conduct an experiment which monitors charge and field in two adjacent, infinitesimal
cubical volumes of space (Figure 2.11). Our first observation, at t = 0, finds both boxes empty. The
next observation, at t = dt, reveals equal and opposite static charges in the boxes and a negatively
directed electric field everywhere on their common wall. No magnetic field is detected. By charge
conservation, an electric current must have flowed through the wall at t = 1

2dt and separated charges
which were spatially coincident at t = 0. This current is the only possible source of the electric field
because the charges and the field appeared simultaneously at t = dt. A logical inference is25

∂E
∂t

= k3 j at t = 1
2dt. (2.87)

22 See, for example, L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, 2nd edition (Addison-Wesley,
Reading, MA, 1962), Chapter 4.

23 We assume that the electric charge q is unchanged by spatial inversion.
24 Alternatively, we may demand that both sides of the equation transform indentically under time-reversal. See

Table 15.1 of Section 15.1.
25 The alternative E ∝ −j contradicts the static experimental results at t = dt .
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E

Figure 2.11: A charge-separation experiment. At t = 0 no charge or fields are detected in two adjacent volume
elements. At t = dt positive charge appears in the right box, negative charge appears in the left box, and an
electric field is detected on their common face.

Combining (2.87) with (2.86) yields

∂E
∂t

= k1∇ × B + k3j and
∂B
∂t

= k2∇ × E. (2.88)

These are the desired equations of motion.
As a final step, take the divergence of both members of (2.88) and use the continuity equation (2.13).

This gives

∂

∂t
(∇ · B) = 0 and

∂

∂t
(∇ · E + k3ρ) = 0. (2.89)

If we take as “initial conditions” the vanishing of ∇ · B and ∇ · E + k2ρ, the two equations in (2.89)
guarantee that these conditions will remain in place for all time:

∇ · E = −k3ρ and ∇ · B = 0. (2.90)

The structures of (2.88) and (2.90) are now completely determined. It remains only to determine the
constants. This depends on the choice of units, as discussed in Section 2.6.

�

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is from Chapter 2 of
C. Domb, Clerk Maxwell and Modern Science (Athlone Press, Bristol, 1963).

Section 2.1 For more on nearly static atmospheric electric fields and nearly static cosmic magnetic fields, see
E.R. Williams, “Sprites, elves, and glow discharge tubes”, Physics Today, November 2001.

R.M. Kulsrud and E.G. Zweibel, “On the origin of cosmic magnetic fields”, Reports on Progress in Physics 71,
046901 (2008).

The experimental test of conservation of charge mentioned in the text is
P. Belli, R. Bernabei, C.J. Dai, et al., “New experimental limit on electron stability”, Physics Letters B 460, 236
(1999).

Section 2.2 Two well-regarded histories of electromagnetism are
E.T. Whittaker, A History of the Theories of Aether and Electricity (Philosophical Library, New York, 1951).

O. Darrigol, Electrodynamics from Ampère to Einstein (University Press, Oxford, 2000).

A thought-provoking essay by a philosopher and historian of science is
E. McMullin, “The origins of the field concept in physics”, Physics in Perspective 4, 13 (2002).
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To learn how Maxwell and his contemporaries thought about electromagnetism in the years before the discovery
of the electron, see

M.S. Longair, Theoretical Concepts in Physics (University Press, Cambridge, 1984).

J.Z. Buchwald, From Maxwell to Microphysics (University Press, Chicago, 1985).

B.J. Hunt, The Maxwellians (University Press, Cornell, 1991).

Figure 2.4 was taken from the first reference below. The second reference is Maxwell’s Treatise:
J.C. Maxwell, “On physical lines of force”, Philosophical Magazine 21, 281 (1861).

J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon, Oxford, 1873).

Our discussion of duality and magnetic charge was inspired by Section 6.11 of
J.D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1999).

Section 2.3 Figure 2.5 was taken from
H. Tanaka, M. Takata, and M. Sakata, “Experimental observation of valence electron density by maximum
entropy method”, Journal of the Physical Society of Japan 71, 2595 (2002).

An excellent discussion of the passage from microscopic electromagnetism to macroscopic electromagnetism (and
much else) is contained in

F.N.H. Robinson, Macroscopic Electromagnetism (Pergamon, Oxford, 1973).

A formal treatment of Lorentz averaging which uses the cell-averaging method of the text is
C. Brouder and S. Rossano, “Microscopic calculation of the constitutive relations”, European Physical Journal
B 45, 19 (2005).

Microscopic electromagnetic fields near surfaces are discussed in
A. Zangwill, Physics at Surfaces (University Press, Cambridge, 1988).

A. Liebsch, Electronic Excitations at Metal Surfaces (Plenum, New York, 1997).

Figure 2.7 was taken from
H. Ishida and A. Liebsch, “Static and quasistatic response of Ag surfaces to a uniform electric field”, Physical
Review B 66, 155413 (2002).

The delta function approach to deriving the field matching relations has been re-invented many times over the
years. A particularly complete treatment is

V. Namias, “Discontinuity of the electromagnetic fields, potentials, and currents at fixed and moving bound-
aries", American Journal of Physics 56, 898 (1988).

Section 2.4 An interesting discussion of the origin and use of non-local dielectric functions like the one which
appears in Section 2.4.2 is

U. Ritschel, L. Wilets, J.J. Rehr, and M. Grabiak, “Non-Local dielectric functions in classical electrostatics and
QCD models”, Journal of Physics G: Nuclear and Particle Physics 18, 1889 (1992).

Section 2.5 An excellent introduction to non-classical light, quantum optics, and semi-classical radiation
theory is

R. Loudon, The Quantum Theory of Light, 3rd edition (University Press, Oxford, 2000).

The original proposal to use correlation measurements to distinguish classical from non-classical light was
R. Glauber, “The quantum theory of optical coherence”, Physical Review 130, 2529 (1963).

Figure 2.9 was taken from
G.T. Foster, S.L. Mielke, and L.A. Orozco, “Intensity correlations in cavity QED”, Physical Review A 61, 53821
(2000).

Electromagnetic tests for “new physics” are the subject of
L.-C. Tu, J. Luo, and G.T. Gilles, “The mass of the photon”, Reports on Progress in Physics 68, 77
(2005).

Q. Bailey and A. Kostelecky, “Lorentz-violating electrostatics and magnetostatics”, Physical Review D 70,
76006 (2004).

A.S. Goldhaber and W.P. Trower, “Magnetic monopoles”, American Journal of Physics 58, 429 (1990).
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Section 2.6 The superiority of either the Gaussian or the SI unit system is self-evident to the passionate advocates
of each. We draw the reader’s attention to two articles which inject some levity into this dreary debate:

W.F. Brown, Jr., “Tutorial paper on dimensions and units”, IEEE Transactions on Magnetics 20, 112 (1984).

H.B.G. Casimir, “Electromagnetic units”, Helvetica Physica Acta 41, 741 (1968).

Section 2.7 This section was constructed from arguments given in
A.B. Midgal, Qualitative Methods in Quantum Theory (W.A. Benjamin, Reading, MA, 1977).

P.B. Visscher, Fields and Electrodynamics (Wiley, New York, 1988).

Problems
2.1 Measuring B Let F1 and F2 be the instantaneous forces that act on a particle with charge q when it moves

through a magnetic field B(r) with velocities υ1 and υ2, respectively. Without choosing a coordinate system,
show that B(r) can be determined from the observables υ1 × F1 and υ2 × F2 if υ1 and υ2 are appropriately
oriented.

2.2 The Coulomb and Biot-Savart Laws The electric and magnetic fields for time-independent distributions
of charge and current which go to zero at infinity are

E(r) = 1

4πε0

∫
d 3r ′ ρ(r′)

r − r′

|r − r′|3 B(r) = μ0

4π

∫
d 3r ′j(r′) × r − r′

|r − r′|3 .

(a) Calculate ∇ · E and ∇ × E.
(b) Calculate ∇ · B and ∇ × B. The curl calculation exploits the continuity equation for this situation.

2.3 The Force between Current Loops Let r1 (r2) point to a line element ds1 (ds2) of a closed loop C1 (C2)
which carries a current I1 (I2). Experiment shows that the force exerted on I1 by I2 is

F1 = −μ0

4π

∮
C1

I1ds1 ·
∮
C2

I2ds2
r1 − r2

|r1 − r2|3 .

(a) Show that
∮
C1

ds1 · r1 − r2

|r1 − r2|3 = 0.

(b) Use (a) to show that F1 =
∮
C1

I1ds1 × B2(r1) where B2(r) is the magnetic field produced by loop C2.

2.4 Necessity of Displacement Current The magnetostatic equation ∇ × B = μ0j is not consistent with
conservation of charge for a general time-dependent charge density. Show that consistency can be achieved
using ∇ × B = μ0j + jD and a suitable choice for jD.

2.5 Prelude to Electromagnetic Angular Momentum A particle with charge q is confined to the x-y
plane and sits at rest somewhere away from the origin until t = 0. At that moment, a magnetic field
B(x, y) = �δ(x)δ(y)ẑ turns on with a value of � which increases at a constant rate from zero. During the
subsequent motion of the particle, show that the quantity L + q
/2π is a constant of the motion where L
is the mechanical angular momentum of the particle with respect to the origin and 
 = �ẑ.

2.6 Time-Dependent Charges at Rest Consider a collection of point particles fixed in space with charge
density ρ(r, t) = ∑

k qk(t)δ(r − rk). Suppose that E(r, t = 0) = B(r, t = 0) = 0 and

E(r, t) = 1

4πε0

∑
k

qk(t)
r − rk

|r − rk|3 .

(a) Construct a simple current density which satisfies the continuity equation.
(b) Find B(r, t) and show that this field and E(r, t) satisfy all four Maxwell equations.
(c) Describe the flow of charge predicted by the current density computed in part (a).
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2.7 Rotation of Free Fields in Vacuum Let θ be a parameter and define “new” electric and magnetic field
vectors as linear combinations of the usual electric and magnetic field vectors:

E′ = E cos θ + cB sin θ

cB′ = −E sin θ + cB cos θ.

(a) Show that E′ and B′ satisfy the Maxwell equations without sources (ρ = j = 0) if E and B satisfy these
equations.

(b) Discuss the implications of this result for source-free solutions of the Maxwell equations where E ⊥ B
everywhere in space.

2.8 A Current Density Which Varies Linearly in Time An infinitely long cylindrical solenoid carries a
spatially uniform but time-dependent surface current density K(t) = K0(t/τ ). K0 and τ are constants. Find
the electric and magnetic fields everywhere in space. Hint: Begin with a simple guess for the magnetic field
outside the solenoid.

2.9 A Charge Density Which Varies Linearly in Time If α is a real constant, the continuity equation is
satisfied by the charge and current distributions

ρ(r, t) = αt j(r, t) = −α

3
r.

The given j represents current flowing in toward the origin of coordinates. But the given ρ is translationally
invariant, i.e., it does not distinguish any origin of coordinates. Resolve this apparent conflict.

2.10 Coulomb Repulsion in One Dimension A point particle with charge q and mass m is fixed at the origin.
An identical particle is released from rest at x = d. Find the asymptotic (x → ∞) speed of the released
particle.

2.11 Ampère-Maxwell Matching Conditions A surface current density K(rS, t) flows in the z = 0 plane
between region 1 (z > 0) from region 2 (z < 0). Each region contains arbitrary, time-dependent distributions
of charge and current.

(a) For fields B(r, t) and E(r, t), use the theta function method of the text to derive a matching condition
based on the Ampère-Maxwell law,

∇ × B = μ0j + 1

c2

∂E
∂t

.

(b) Explain how to adapt this result to an interface that is not flat.

2.12 A Variation of Gauss’ Law In 1942, Boris Podolsky proposed a generalization of electrostatics which
eliminates the divergence of the Coulomb field for a point charge. His theory retains ∇ × E = 0 but replaces
Gauss’ law by

(1 − a2∇2)∇ · E = ρ
/
ε0.

(a) Find the electric field predicted by this equation for a point charge at the origin by integrating the
corresponding Podolsky-Poisson equation over an infinitesimal spherical volume. It will be convenient
at some point to write

ϕ(r) = q

4πε0r
u(r).

(b) Suggest a physical meaning for the parameter a.

2.13 If the Photon Had Mass . . . If the photon had a mass m, the electric field would remain E = −∇ϕ but
Poisson’s equation would change to include a length L = −h/mc:

∇2ϕ = − ρ

ε0
+ ϕ

L2
.
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Experimental searches for m use a geometry first employed by Cavendish where two concentric conducting
shells (radii r1 < r2) are maintained at a common potential � by an infinitesimally thin connecting wire.
When m = 0, all excess charge resides on the outside of the outer shell; no charge accumulates on the inner
shell.

(a) Use the substitution ϕ(r) = u(r)/r to solve the generalized Poisson equation above in the space between
the shells. Find also the electric field in this region.

(b) Use the generalization of Gauss’ law implied by the modified Poisson equation to find the charge Q on
the inner shell.

(c) Show that, to leading order when L → ∞,

Q ≈ 2πε0

3

r1�

L2

( r2

L

)2
(

1 + r1

r2

)
.

2.14 A Variation of Coulomb’s Law Suppose that the electric potential of a point charge at the origin were

ϕ(r) = q

4πε0

1

r1+η , 0 < η < 1.

Compute the electric potential inside and outside a spherical shell of radius R with uniform surface charge
density σ = Q/4πR2. Check the η → 0 limit.
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3 Electrostatics

The subject I am going to recommend to your attention almost
terrifies me. The variety it presents is immense, and the

enumeration of facts serves to confound rather than to inform.
The subject I mean is electricity.

Leonhard Euler (1761)

3.1 Introduction

Maxwell’s field theory tells us that every time-independent charge distribution ρ(r) is the source of a
vector field E(r) which satisfies the differential equations

∇ × E(r) = 0 (3.1)

and

ε0∇ · E(r) = ρ(r). (3.2)

The electric field E(r) demands our attention because the force F and torque N exerted by ρ(r) on a
second charge distribution ρ�(r) are

F =
∫

d 3r ρ�(r)E(r) (3.3)

and

N =
∫

d 3r r × ρ�(r)E(r). (3.4)

If it happens that neither F nor N is of direct interest, the energy associated with E(r), ρ(r), and ρ�(r)
usually is. We will derive several equivalent expressions for electrostatic total energy and potential
energy later in the chapter.

3.1.1 The Scope of Electrostatics
Sommerfeld (1952) divides electrostatics into summation problems and boundary value problems. In
a summation problem, ρ(r) is specified once and for all at every point in space and the problem to find
E(r) reduces to performing an integral. Boundary value problems arise when ρ(r) cannot be specified
once and for all at every point in space. This occurs when matter of any kind is present because the
Coulomb force (3.3) induces the charge density inside the matter to redistribute itself until mechanical
equilibrium is established. For historical reasons, this charge rearrangement is called electrostatic
induction when conductors are involved and electric polarization when non-conductors are involved.
Remarkably, E(r) can still be uniquely determined everywhere, provided we specify a model for the
polarizable matter. A complete model fixes both the behavior of E(r) inside the matter and boundary
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or matching conditions for the Maxwell differential equations. This chapter and the next deal primarily
with summation problems. Chapter 7 and Chapter 8 focus on electrostatic boundary value problems.

3.2 Coulomb’s Law

It is no accident that the electrostatic Maxwell equations specify exactly the curl of E(r) and the
divergence of E(r). The Helmholtz theorem (Section 1.9) guarantees that these two quantities provide
just enough information to determine E(r) uniquely. When the integrals converge, the theorem provides
the explicit formula

E(r) = −∇
∫

d 3r ′ ∇′ · E(r′)
4π | r − r′| + ∇ ×

∫
d 3r ′ ∇′ × E(r′)

4π | r − r′| . (3.5)

Substituting (3.1) and (3.2) into (3.5) gives

E(r) = −∇ 1

4πε0

∫
d 3r ′ ρ(r′)

| r − r′| . (3.6)

The gradient operator in (3.6) can be moved inside the integral because it does not act on the variable
r′. Then, because

∇ 1

| r − r′| = − r − r′

| r − r′|3 , (3.7)

we arrive at a superposition integral for the electric field produced by ρ(r′):

E(r) = 1

4πε0

∫
d 3r ′ ρ(r′)

r − r′

| r − r′|3 . (3.8)

Coulomb’s law is the name given to the force that ρ(r′) exerts on ρ�(r) when we substitute (3.8)
into (3.3):

F = 1

4πε0

∫
d 3r

∫
d 3r ′ρ�(r)ρ(r′)

r − r′

| r − r′|3 . (3.9)

It follows immediately from (3.9) that the force that ρ� exerts on ρ is F� = −F. This means that F = 0
if ρ = ρ�. No distribution of charge can exert a net force on itself.1

Example 3.1 (a) Find E on the symmetry axis of a ring with radius R and uniform charge per unit
length λ. (b) Use the results of part (a) to find E on the symmetry axis of a disk with radius R and
uniform charge per unit area σ . (c) Use the results of part (b) to find E for an infinite sheet with
uniform charge density σ . Discuss the matching condition at z = 0.

Solution: (a) By symmetry, points on opposite sides of the ring in Figure 3.1 contribute equally to
|E| at points (0, 0, z) on the symmetry axis. Moreover, the components of E transverse to ẑ cancel.
The total charge of the ring is Q = 2πRλ. Therefore, since R, z, and α are constant for all points
on the ring,

Ering(z ≥ 0) = λ

4πε0

∮
d�

cosα

z2 + R2
ẑ = λ

4πε0

2πRz

(z2 + R2)3/2
ẑ = Q

4πε0

z

(z2 + R2)3/2
ẑ.

We note in passing that Ering(z = 0) = 0 because contributions to the field from opposite sides of
the ring cancel. Ering(z → ∞) = 0 is consistent with the Helmholtz theorem and is generally true
for fields produced by finite-sized sources.

1 In practice, ρ�(r) is often a portion of ρ(r). The force (3.9) is generally non-zero in that case.
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R

x

y

α
αz

λ

Figure 3.1: A ring with uniform charge per unit length λ.

(b) We superpose the fields produced by rings of radius r with Q(r) = 2πrdrσ :

Edisk(z > 0) = z

4πε0

R∫
0

dr
2πrσ

(z2 + r2)3/2
ẑ = σ

2ε0

[
1 − z√

z2 + R2

]
ẑ.

(c) The limit R → ∞ of Edisk gives the field of an infinite sheet:

Esheet(z > 0) = σ

2ε0
ẑ.

By symmetry, E(z < 0) = −E(z > 0) in all three cases. For the disk and the sheet at z = 0,

E(0+) − E(0−) = σ

ε0
ẑ.

This agrees with the general matching condition in (2.49).

3.3 The Scalar Potential

The electric field integral (3.8) is difficult to evaluate for all but the simplest choices of ρ(r). However,
a glance back at (3.6) shows that we can define a function called the electrostatic scalar potential,

ϕ(r) = 1

4πε0

∫
d 3r ′ ρ(r′)

|r − r′| , (3.10)

and write the electric field in the form

E(r) = −∇ϕ(r). (3.11)

This is a great simplification because the scalar integral (3.10) is almost always easier to evaluate than
the vector integral (3.8) for E(r). Two special cases are worth noting. First, if all the charge is confined
to a two-dimensional surface and σ (rS) is the charge density per unit area at a surface point rS , (3.10)
reduces to

ϕ(r) = 1

4πε0

∫
dS

σ (rS)

|r − rS | . (3.12)

Similarly, if all the charge is confined to a one-dimensional filament and � points to a filamentary
element where the charge per unit length is λ(�), (3.10) takes the form2

ϕ(r) = 1

4πε0

∫
d�

λ(�)

|r − �| . (3.13)

2 A one-dimensional charged filament is a good first approximation to a DNA molecule in vivo because the phosphate
groups of its backbone become de-protonated at pH values typical of physiological environments. The negative linear
charge density acquired is λ ≈ −|e|/1.7 Å.
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Finally, we note for future reference that Gauss’ law (3.2) combined with (3.11) gives

∇2ϕ(r) = −ρ(r)/ε0. (3.14)

This is Poisson’s equation. It can be used as a matter of choice to find ϕ(r) when ρ(r) is specified
once and for all. It is used as a matter of necessity to find ϕ(r) when polarizable matter is present (see
Chapters 7 and 8).

Example 3.2 The distributions of charge in different atomic nuclei look very similar apart from a
change of scale.3 In figure 3.2, ρA(r) is the charge density of nucleus A and if ρB (r) is the charge
density of nucleus B. The two are related by ρB (λr) = ρA(r), where λ is a constant. Find the
relation between the potentials ϕA(r) and ϕB (r) and between the electric fields EA(r) and EB (r).

r

A B

λr

Figure 3.2: Two nuclei related to one another by a change of scale.

Solution: Using the stated information,

ϕA(r) = 1

4πε0

∫
d 3r ′ ρA(r′)

|r − r′| = 1

4πε0

∫
d 3r ′ ρB (λr′)

|r − r′| .

Changing integration variables to λr′ gives

ϕA(r) = 1

4πε0

1

λ2

∫
d 3(λr ′)

ρB (λr′)
|λr − λr′| = 1

λ2
ϕB (λr).

Then, because E = −∇ϕ,

EB (λr) = − ∂

∂(λr)
ϕB (λr) = − ∂

∂(λr)
λ2ϕA(r) = λEA(r).

3.3.1 The Coulomb Force is Conservative
The gradient formula (3.11) implies that the mechanical work done by F = qE when a point charge q
moves from r1 to r2 depends only on the numerical values of ϕ(r1) and ϕ(r2):

WE {r1 → r2} = q

r2∫
r1

d� · E(r) = −q
r2∫

r1

d� · ∇ϕ = −q [ϕ(r2) − ϕ(r1)] . (3.15)

Put another way, the work done by the electric force does not depend on the path taken between the
end points. This is the defining characteristic of a conservative force. Alternatively, we can compute
the work done when q traverses a closed path C through any simply connected portion of space (see
Figure 3.3). This work is zero because Stokes’ theorem (Section 1.4.4) and (3.1) give

Wcycle = q

∮
C

d� · E = q

∫
S

d S · ∇ × E = 0. (3.16)

3 See, for example, B. Frois and C.N. Papanicolas, “Electron scattering and nuclear structure”, Annual Reviews of Nuclear
and Particle Science 37, 133 (1987).
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1
r

2
r

Figure 3.3: A closed path C that can be used in (3.16) to demonstrate that the work done by the Coulomb force
is path-independent.

This shows that the work done along the path from r1 to r2 in Figure 3.3 is the negative of the work
done along the remainder of the closed circuit. Reversing the direction of the latter shows that the
work done is path-independent. This amounts to a demonstration that (3.11) is correct without the use
of the Helmholtz theorem.4

The work (3.15) is unchanged if ϕ(r) → ϕ(r) + ϕ̄ where ϕ̄ is an arbitrary constant. This freedom
may be used to fix the zero of potential at any point we choose. Therefore, if we choose ϕ(r0) = 0, the
potential difference

ϕ(r) − ϕ(r0) = −
r∫

r0

d� · E (3.17)

simplifies to

ϕ(r) = −
r∫

r0

d� · E. (3.18)

We note in passing that (3.10) implicitly assumes that the zero of potential is at infinity when ρ(r′) is
confined to a finite volume of space.

3.3.2 Matching Conditions for ϕ(r)
The macroscopic matching conditions for the electrostatic potential follow from the behavior of
the electric field in the vicinity of an interface with surface charge density σ (rS) (Section 2.3.3).
Specifically, if n̂2 is the outward normal to region 2 and we define the directional derivative as
∂/∂n2 ≡ n̂2 · ∇, the condition n̂2 · (E1 − E2) = σ/ε0 in (2.49) and E = −∇ϕ give[

∂ϕ2

∂n2
− ∂ϕ1

∂n2

]
= σ

ε0
. (3.19)

Otherwise, consider the integral on the right side of (3.17) when r0 and r are infinitesimally close
together but on opposite sides of a surface point rS . Since |d�| → 0, the integral can be non-zero only
if the normal component of E diverges. But (3.19) shows that E is at most discontinuous. Therefore,
the integral is zero and ϕ(r) is continuous when we pass from one side of a charged interface to the
other:5

ϕ1(rS) = ϕ2(rS). (3.20)

4 Equation (3.16) shows that the Coulomb force is conservative because it is a central force [see the rightmost identity
in (1.65)], not because it is an inverse-square force.

5 We will see in Section 4.3.2 that ϕ(r) suffers a jump discontinuity at an interface endowed with a distribution of point
electric dipoles oriented perpendicular to the interface.
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Since the mere existence of the potential depends on the fact that ∇ × E = 0, it is implicit in the
discussion just above that (3.20) carries the same information as the matching condition n̂2 × [E1 −
E2] = 0 in (2.49).

3.3.3 Earnshaw’s Theorem

Statement: The scalar potential ϕ(r) in a finite, charge-free region of space R takes its maximum or
minimum values on the boundary of R.

Proof: Suppose, to the contrary, that ϕ(r) has a local minimum at a point P in R. This means that
n̂ · ∇ϕ > 0 at every point on a tiny closed surface S that encloses P . It follows that∫

S

dS n̂ · ∇ϕ > 0. (3.21)

Using E = −∇ϕ and the divergence theorem, we get an equivalent statement in terms of an integral
over the volume V that bounds S: ∫

V

d 3r ∇ · E < 0. (3.22)

But ∇ · E = ρ
/
ε0 and ρ = 0 everywhere in V . This contradicts (3.22). Therefore, the original assump-

tion that P is a local minimum cannot be true. A similar argument shows that ϕ(r) has no local maxima
inside R.

3.3.4 Equipotential Surfaces and Electric Field Lines
The equation

ϕ(r) = ϕ0 (3.23)

defines a family of two-dimensional surfaces in three-dimensional space. According to the left-hand
equality in (3.15), no work is required to move a charge along such an equipotential surface. Now,
consider any path between r1 and r2 which lies entirely on an equipotential surface. From the right-hand
equality in (3.15),

r2∫
r1

d � · E = 0. (3.24)

This shows that either E ≡ 0 along the path or the direction of E is perpendicular to the equipotential
surface at every point.

As a tool for visualization, we define an electric field line as a continuous curve drawn so that the
differential element of arc length d� points in the direction of E(r) at every point. In other words, if λ
is a constant,

d � = λE. (3.25)

From the argument just above, we conclude that every electric field line is locally normal to some
equipotential surface (except at “null” points where E = 0). This is consistent with the usual geomet-
rical interpretation of the gradient definition E = −∇ϕ. Two electric field lines cannot cross (except
at a null point) because E(r) has a unique direction at every point in space.
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Figure 3.4: Field lines and equipotential curves for a uniform, horizontal electric field (directed to the right)
superposed with the electric field of a point charge. The plane of the figure passes through the position of the
point charge. Two of the depicted equipotentials encircle the point charge and close on themselves. All the
other equipotential curves intersect both the top and bottom boundaries of the diagram. The two classes of
equipotentials are separated by the single equipotential which intersects itself (dashed-dot). A second dashed-dot
curve separates the electric field lines into two classes: those that begin on the point charge and those that do not.
Figure reproduced from Maxwell (1891), by permission of Oxford University Press.

The electric field line construction is straightforward for a point charge at the origin where (3.10)
with ρ(r) = qδ(r) gives

ϕ(r) = q

4πε0

1

r
. (3.26)

The equipotential surfaces are concentric spherical shells and the electric field lines are radial outward
for q > 0 and radial inward for q < 0. More generally, we get a set of differential equations for
the field lines by writing out the components of (3.25). In Cartesian coordinates, say, where E(r) =
Ex x̂ + Ey ŷ + Ezẑ, the equation set is

dx

Ex

= dy

Ey

= dz

Ez

= λ. (3.27)

Analytic solutions of (3.27) are rare, so, with Maxwell (1891), “we cannot afford to despise the
humbler method of actually drawing tentative figures on paper and selecting that which appears least
unlike the figure we require”. Figure 3.4 shows some electric field lines and equipotential curves for a
uniform, horizontal field (directed to the right) superposed with the field of a point charge.
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z L

rr

( , )z

z L

Figure 3.5: A line segment with uniform linear charge density λ.

Maxwell drew the number density of field lines that pass through any differential element of
equipotential surface proportional to |E(rS)| at that element. This implies that the net number of lines
that pass through an arbitrary surface S is proportional to the electric flux

�E =
∫
S

dS n̂ · E. (3.28)

For the special case of a closed surface S, the divergence theorem and ∇ · E = ρ/ε0 show that the
electric flux (3.28) is proportional to the total charge QV enclosed by V :

�E =
∫
V

d 3r ∇ · E = 1

ε0

∫
V

d 3r ρ(r) = QV

ε0
. (3.29)

In words, the net number of electric field lines that leave (enter) S is proportional to the net positive
(negative) charge enclosed by S. If QV = 0, every electric field line that enters V must also leave V .

Field line drawings can be a great aid to building physical intuition. Unfortunately, topological
distortions are inevitable when a two-dimensional diagram is used to represent a three-dimensional
vector field. For example, the total field plotted in Figure 3.4 is dominated by the field produced by
the point charge itself at points sufficiently close to the charge. This means that the density of lines
adjacent to q should be uniformly distributed around the charge. However, if we were to “fill in” extra
field lines to the left of the point charge to do so, the continuation of these lines as they bend around
to the right would incorrectly give the impression of a non-uniform field very far to right of the point
charge.6

3.3.5 A Charged Line Segment
Figure 3.5 shows a one-dimensional line segment of length 2L which carries a uniform charge per unit
length λ. This is a situation where the electrostatic potential, equipotential surfaces, and electric field
lines can be calculated exactly. We present it here because it illustrates several of the ideas presented
earlier and because the results will be used in Chapter 5 to study the electrostatics of a conducting
disk. Unfortunately, the geometrical method of solution does not generalize to other distributions of
charge.

6 See Wolf et al. (1996) in Sources, References, and Additional Reading for further discussion of this point.
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A line segment is a cylindrically symmetric. Therefore, the integral (3.13) for an observation point
(z, ρ) is

ϕ(z, ρ) = λ

4πε0

+L∫
−L

dz′√
(z′ − z)2 + ρ2

= λ

4πε0
ln

[√
(L− z)2 + ρ2 + L− z√
(L+ z)2 + ρ2 − L− z

]
. (3.30)

Equation (3.30) simplifies considerably because r± =
√
ρ2 + (L± z)2 are the distances from the

line segment end points to the observation point (see Figure 3.5). The key is to define new coordinates
(u, t) using

u = 1
2 (r− + r+)

t = 1
2 (r− − r+).

(3.31)

In these variables, (3.30) reads

ϕ = λ

4πε0
ln

(
u+ t + L− z

u− t − L− z

)
. (3.32)

The identity ut = −zL permits us to eliminate both z and t from (3.32). Specifically,

ϕ = λ

4πε0
ln

[
(u+ L)(1 + t/L)

(u− L)(1 + t/L)

]
= λ

4πε0
ln

(
u+ L

u− L

)
. (3.33)

The function on the far right side of (3.33) does not depend on t . Therefore, the equipotentials are
simply surfaces of constant u.

Using (3.31), the equipotential condition reads

r+ + r− = const. (3.34)

For a given value of the constant, the set of points in the plane that satisfies (3.34) is the geometrical
definition of an ellipse.7 The foci of the ellipse are the end points of the charged line segment. The
curves of constant t are hyperbolae with the same foci (Figure 3.6). The latter may be identified with
electric field lines because they are everywhere orthogonal to the equipotentials. More generally, the
equipotentials for this problem are prolate ellipsoidal surfaces of revolution. This is the result we will
exploit in Application 5.1 to calculate the charge density on the surface of a perfectly conducting
disk.

We now return to (3.30) and study the potential at points that are either very far from, or very near
to, the charged line segment. For example, if z � L, the potential at an observation point that lies at a
distance R =

√
ρ2 + z2 from the origin of coordinates is approximately

ϕ ≈ λ

4πε0
ln

(
1 − z/R + L/R

1 − z/R − L/R

)
. (3.35)

If, in addition, R � z and R � L, we can use the fact that ln(1 + x) ≈ x when x � 1 and the fact
that Q = 2Lλ is the total charge of the rod to deduce that (3.35) simplifies to

ϕ ≈ 1

4πε0

Q

R
. (3.36)

This illustrates a general phenomenon: any finite, charged object “looks” like a point charge when
viewed from a sufficiently large distance. The precise meaning of “sufficiently large distance” will be
made clear in the next chapter.

7 See, for example, Section 2.66 of I.N. Bronshtein and K.A. Semendyayev, Handbook of Mathematics (Van Nostrand
Reinhold, New York, 1985).
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Figure 3.6: The equipotential surfaces of a charged line segment are ellipsoids of revolution. The corresponding
electric fields lines are hyperboloids of revolution.

Consider next an observation point that lies very near the origin of coordinates. In that limit, z � L

and ρ � L so

ϕ(ρ) ≈ λ

4πε0
ln

(√
L2 + ρ2 + L√
L2 + ρ2 − L

)
≈ − λ

2πε0
ln ρ + λ

2πε0
ln(2L). (3.37)

The first term on the far right side of (3.37) is the scalar potential for an infinitely long line with
uniform charge density λ. This must be the case because, to an observer very close to the segment but
far away from its end points, the finite line segment “looks” as if it were infinitely long. The second
term on the far right side of (3.37) is a constant that plays no role when we compute the electric field:

E = −∇ϕ = λ

2πε0ρ
ρ̂. (3.38)

The fact that the constant diverges when L → ∞ has no observable consequences. It is an artifact of
the unphysical extension of the charge density to infinity.

Example 3.3 An origin-centered spherical shell of infinitesimal thickness has uniform surface
charge density σ = Q/4πa2. A small hole of radius b � a is drilled in the shell at the point R
(see Figure 3.7). Find the electric field at all observation points r where |r − R| � b.

Figure 3.7: A charged spherical shell of radius a with a hole of radius b.

Solution: We exploit the fact that any distribution of charge can be represented as the sum or
superposition of two or more other charge distributions. Here, we regard the spherical shell with
a hole drilled out as the sum of a complete spherical shell and a spherical cap (which just covers
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the hole) with a surface charge density equal to the negative of surface charge density of the shell.
Because b � a, the spherical cap is essentially a disk of radius b. Because |r − R| � b, the electric
field of the disk is essentially the same as the electric field of a point charge with the same total
charge. From what we have said, the latter is Q′ = −πb2σ = −Qb2/4a2. Therefore, using a step
function �(r − a), which is equal to one if r > a and is zero otherwise, the electric field observed
at r is

E(r) = Q

4πε0

r̂
r2
�(r − a) + Q′

4πε0

r − R
|r − R|3 .

3.4 Gauss’ Law and Solid Angle

Equations (3.28) and (3.29) combine to give the integral form of Gauss’ law,

ε0

∫
S

dS · E(r) = QV . (3.39)

This section explores two aspects of this fundamental law. We begin with the role of symmetry to
make (3.39) a useful tool to find E(r). This leads to a derivation of the matching conditions for E(r)
at a charged surface and to an expression for the electrostatic force exerted on such a surface. We then
introduce the geometrical concept of solid angle and combine this with Coulomb’s law for a point
charge to provide a derivation of (3.39) that does not make use of ∇ · E = ρ/ε0.

3.4.1 The Importance of Symmetry
The invariance of a charge distribution to spatial symmetries like rotation, translation, and reflection
in a plane is essential to direct calculations of the electric field using (3.39). The invariance is used
to determine the direction of the field everywhere and to identify the components of r upon which
E(r) truly depends. Both of these are needed to identify a surface S where dS · E reduces to a scalar
constant. For example, the charge distribution ρ0(r) = ρ0(r) in Figure 3.8(a) is invariant to rotations
around its origin. This implies that E(r, θ, φ) = E(r)r̂. Therefore, if Q(r) is the net charge enclosed
by a Gaussian sphere of radius r , (3.39) shows that

E(r) = E(r)r̂ ⇒ E(r) = Q(r)

4πε0r2
. (3.40)

When Q(r) = Q, the integral (3.18) yields the point charge potential

ϕ(r) = Q

4πε0r
. (3.41)

An infinitely long cylinder of charge [Figure 3.8(b)] is invariant to translations along the cylinder
axis and rotations around the cylinder axis. Therefore, if λ(ρ) is the charge per unit length enclosed
by a Gaussian cylinder of radius ρ,

E(r) = E(ρ)ρ̂ ⇒ E(ρ) = λ(ρ)

2πε0ρ
. (3.42)

For a uniformly charged line, (3.18) yields

ϕ(ρ) = − λ

2πε0
ln ρ, (3.43)
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z

r

(a)

(b)

(c)

Figure 3.8: Shaded areas are highly symmetrical distributions of charge: (a) ρ0(r, θ, φ) = ρ0(r);
(b) ρ0(ρ, φ, z) = ρ0(ρ); (c) ρ0(x, y, z) = ρ0(z). Dashed lines outline possible choices for Gaussian surfaces.

plus a divergent constant of integration as discussed for (3.37). Finally, an infinite slab of charge
[Figure 3.8(c)] is invariant to translations along the x- and y-axes. If σ (z) is the charge per unit area
enclosed by a parallelepiped of width 2z, Gauss’ law tells us that

E(r) = E(z)ẑ ⇒ E(z) = σ (z)

2ε0

z

|z| . (3.44)

Up to another (infinite) constant, the potential for σ (z) = σ is

ϕ(z) = − σ

2ε0
|z|. (3.45)

It is important to remark that the symmetry of a charge distribution, i.e., its invariance with respect to
spatial operations like rotation, translation, and reflection, tells us only that these symmetry operations
transform one solution for E(r) into another. The Gauss’ law solution is the solution because it is
unique by Helmholtz’ theorem.8

The potentials (3.41), (3.43), and (3.45) are also worthy of comment. The first of these—the point
charge potential—is the building block we used to derive the superposition integral appropriate to
situations where the source charge density possesses no particular symmetry:

ϕ(r) = 1

4πε0

∫
d 3r ′ ρ(r′)

|r − r′| . (3.46)

Two-dimensional charge densities are invariant to translations along a fixed direction, say, ẑ. To find
the corresponding potential, we can superpose line charge potentials like (3.43), each weighted by its
own charge per unit length �(x, y)dxdy. This produces the potential

ϕ(x, y) = − 1

2πε0

∫
dx ′

∫
dy ′ ln

√
(x − x ′)2 + (y − y ′)2 �(x ′, y ′). (3.47)

The charge density shown in Figure 3.8(b) is a special case of this situation where �(x, y) =
�(
√
x2 + y2). A similar argument applies to one-dimensional charge distributions that are invari-

ant to translations along x and y as in Figure 3.8(c). Superposing sheet potentials like (3.45) with
charge per unit area γ (z)dz gives the potential

ϕ(z) = − 1

2ε0

∫
dz′|z − z′| γ (z′). (3.48)

8 The Helmholtz theorem (Section 1.9) can fail if the charge density does not go to zero fast enough at infinity. We can
establish uniqueness for infinite lines and planes of charge as the limit of a sequence of charged lines and planes with
finite extent.
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Example 3.4 Begin with the electric field and derive an expression for the potential ϕ(r) produced
by a spherically symmetric charge distribution ρ(r).

Solution: Let

Q(r) = 4π

r∫
0

dss2ρ(s)

be the charge contained within a ball of radius r centered at the origin. Equation (3.40) gives the
electric field due to Q(r) as

E(r) = Q(r)

4πε0r2
r̂.

Using (3.18) with d� = dr ′r̂ and r0 at infinity, the potential at r is

ϕ(r) = −
r∫

∞
d� · E(r′) = − 1

ε0

r∫
∞

dr ′

r ′2

r ′∫
0

dss2ρ(s) =
r∫

∞
d

(
1

r ′

)
u(r ′)

where

u(r ′) = 1

ε0

r ′∫
0

dss2ρ(s).

Integrating by parts gives

ϕ(r) = u(r ′)
r ′

∣∣∣∣r
∞

−
r∫

∞

dr ′

r ′
du

dr ′

or

ϕ(r) = 1

ε0r

∫ r

0
dr ′r ′2ρ(r ′) + 1

ε0

∫ ∞

r

dr ′r ′ρ(r ′).

3.4.2 Matching Conditions for E(r)
We can use the field (3.44) to re-derive the matching conditions (2.49) for the electric field near an
arbitrarily shaped surface S that carries a surface charge density σ (rS) (Figure 3.9). The key is to let
E1 and E2 be the electric fields at points that are infinitesimally close to each other, but on opposite
sides of S.

E1 and E2 may each be decomposed into two contributions: (1) the field Edisk produced by the tiny, flat
disk of charge (centered on rS) shown shaded in Figure 3.9; and (2) the field ES produced by the surface
S with the tiny disk at rS removed. When viewed at very close range, Edisk is indistinguishable from the
field (3.44) produced by an infinite, flat sheet of charge with uniform charge density σ = σ (rS). This
field changes sign when the observation point passes through the disk. Conversely, ES is smooth and
continuous when the observation point passes through the hole created by the removed disk. Hence,
by superposition,

E1 = ES − σ

2ε0
n̂1 and E2 = ES − σ

2ε0
n̂2. (3.49)
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2
( )E r

1
n̂

2
n̂

( )
S

r

1
( )E r

Figure 3.9: A surface S endowed with charge density σ (rS ). The unit normal vector n̂1 points outward from
region 1. The unit normal vector n̂2 points outward from region 2.

Subtracting the two equations in (3.49) gives E1 − E2 = n̂2σ/ε0. Taking the dot product and cross
product of this expression with n̂2 produces the expected matching conditions,

n̂2 · [E1 − E2] = σ (rS)/ε0 (3.50)

and

n̂2 × [E1 − E2] = 0. (3.51)

3.4.3 The Force on a Charged Surface
It is not immediately obvious how to calculate the Coulomb force on a charged surface S because
(3.50) says that n̂ · E is discontinuous there. On the other hand, no surface element can exert a force
on itself. Therefore, the quantity ES in (3.49) must be solely responsible for the force per unit area felt
at rS . Since n̂1 = −n̂2, the sum of the two equations in (3.49) gives ES as the simple average of E1

and E2. Therefore, the desired force density is

f = σES = 1
2σ (E1 + E2). (3.52)

3.4.4 Solid Angle
This section introduces the geometrical concept of solid angle and uses it (together with Coulomb’s
law for a point charge) to derive the integral form of Gauss’ law (3.39). The solid angle will return
later when we discuss magnetostatics.

Figure 3.10 shows an origin of coordinates O ′ and vectors r and rS that label an observation point
O and a point on a surface S, respectively. A set of rays fan out radially from O to every point of
S. By definition, the solid angle �S subtended by S at O is that part of the area of a sphere of unit
radius centered at O that is cut off by the rays. In other words, we project every surface element
dS = dSn̂ onto the direction of rS − r, divide by the square of this distance (because we are interested
in projection onto a unit sphere), and sum over all such elements. This gives

�S(r) =
∫
S

d�S(r) =
∫
S

dS · rS − r
|rS − r|3 . (3.53)

It is worth noting that �S(r) changes sign when the observation point r passes through the surface
S. This happens because rS − r changes direction (relative to S) while dS does not. The direction of
the latter is fixed (by convention) so that (3.53) is positive when the curvature of S tends to enclose
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S
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S
r r

unit sphere

O
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| |
S
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r r
r r

Figure 3.10: �S is the solid angle subtended at the observation point O by the surface S. See text for discussion.

O

O

S

S

VV

Figure 3.11: A closed surface S that encloses a volume V . The solid angle �S = 0 if the observation point O is
outside V . �S = 4π if O is inside V .

the observation point. We note in passing that if O ′ coincides with O (so r = 0) and S is a spherical
surface centered at O (so n̂ = r̂S) we get the familiar result

d�S = dS
n̂ · r̂S
r2
S

= dS

r2
S

= sin θdθdφ. (3.54)

We now put O ′ = O and specialize to a closed surface S that encloses a volume V . The left side of
Figure 3.11 shows that every ray from O intersects S an even number of times if O is outside of V .
Adjacent intersections where the ray enters and exits V make the same projection onto a unit sphere
centered at O but cancel one another in the sum (3.53) because n̂ · r̂S changes sign. Conversely, if O
is inside of V (right side of Figure 3.11), every ray makes an odd number of intersections and the set
of intersections closest to O project onto the complete unit sphere with surface area 4π . With a slight
change in notation, this determines our final geometrical result:

�S =
∫
S

dS · r̂
r2

=
{

4π
0

O ∈ V

O /∈ V .
(3.55)

In light of Coulomb’s formula for the electric field of a point charge at O, (3.55) is exactly Gauss’ law
for a point charge:

�E(S) =
∫
S

dS · E = q

4πε0
�S. (3.56)
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3.4 Gauss’ Law and Solid Angle 73

The general result (3.39) follows by superposition. The reader should note the crucial role played in
this demonstration by the inverse-square nature of the electric force. Gauss’ law is not valid for other
laws of force.

Application 3.1 Field Lines for a Point Charge in a Uniform Field

A non-trivial application of the solid angle concept permits us to find an equation for the field lines
plotted in Figure 3.4 for a point charge q > 0 in a uniform electric field E = Eẑ. Figure 3.12 illustrates
a few representative field lines redrawn from that figure.

r
S

SR

θ S′ z

P P′

q

Figure 3.12: Representative electric field lines redrawn from Figure 3.4. The polar coordinates (r, θ )
label a point P . One electric field line passes through both P and P ′. The complete field line pattern is
rotationally symmetric around the z-axis. The same is true of the Gaussian surface composed of the disks
S and S ′ (dotted) and the surface of revolution SR . The heavy dashed arc indicates a cap-shaped portion of
a spherical surface centered at q that passes through P .

Choose one field line and one point P on that line. By the rotational symmetry of the diagram
with respect to the z-axis, P defines the perimeter of a circular disk S which lies perpendicular to the
plane of the diagram. Let us compute the electric flux � through S. We can use (3.56) to compute the
contribution from the point charge. Adding the contribution from the uniform field gives

�E(S) = q�S/4πε0 + Eπr2 sin2 θ. (3.57)

By construction, the solid angle�S subtended by the disk S is the same as the solid angle subtended by
the dashed spherical cap of radius r shown in Figure 3.12. For the cap, n̂ = r̂S and dS = r2

S sin θdθdφ.
Therefore,

�S =
∫
S

dS
n̂ · r̂S
r2
S

=
∫ 2π

0
dφ

∫ θ

0
sin θdθ = 2π (1 − cos θ ). (3.58)

Now, choose any other point P ′ which lies on the same electric field line as P and let S ′ be the
axis-centered disk (parallel to S) which passes through P ′. Our interest is the closed Gaussian surface
G formed by S, S ′, and the surface of revolution SR generated by the electric field line segment PP ′.
By construction, the electric flux that passes through SR is zero. Moreover, there is no charge inside
G. Therefore, if �E(S ′) is the flux through S ′, the total flux condition (3.29) tells us that

�E(S) +�E(S ′) = 0. (3.59)

The point P ′ is arbitrary except that it shares a field line with P . Therefore, for each choice of r and
θ , �E(S ′) is a fixed real constant (independent of P ′) which we may combine with the constant q/2ε0

that appears when (3.58) is substituted into (3.57). If we let a = 2πε0E/q and b = 1 + 2ε0�E(S ′)/q,
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the final result is an equation for one field line in Figure 3.12:

ar2 sin2 θ − cos θ = −b. (3.60)

To create the field line pattern, we make a choice for (r , θ ) and calculate the corresponding value of
�E(S ′) [as the negative of �E(S) from (3.59)]. This produces a value for b. The latter is common to
the entire field line, which we plot by varying θ and using (3.60) to find r . Thereafter, every choice for
(r , θ ) that produces a distinct value for b produces a distinct field line. �

3.5 Electrostatic Potential Energy

In classical mechanics, we define the potential energy V of a system acted upon by a conservative
force F so that a small displacement δs of the system induces the change

δV = −F · δs. (3.61)

Equivalently,

F = −δV

δs
= −∇V. (3.62)

Since the Coulomb force F = qE is conservative (Section 3.3.1) and E = −∇ϕ, we deduce from
(3.62) that the electrostatic potential energy of a point charge in an electric field is

VE = qϕ(r). (3.63)

This identifies the electrostatic potential ϕ(r) as a potential energy per unit charge, or specific potential
energy. By superposition, the generalization of (3.63) for a charge distribution ρ2(r) in the field of an
electrostatic potential ϕ1(r) is

VE =
∫

d 3r ρ2(r)ϕ1(r). (3.64)

A quick application of (3.63) uses Earnshaw’s theorem (Section 3.3.3) to conclude the following:
no set of isolated charges can be held in stable equilibrium by electrostatic forces alone. This is so
because mechanical equilibrium of, say, q1 is possible only if the potential energy q1ϕ(r) (produced
by the other charges) has a local minimum at r1. But Earnshaw’s theorem shows that such a local
minimum cannot exist in the free space not occupied by any other charge. Hence, any point charge
inserted into a pre-existing electrostatic field cannot be in stable equilibrium. This argument shows
why no classical model of matter composed of positively charged nuclei and negatively charged point
electrons can be correct. Quantum mechanics is essential for the stability of matter.

3.5.1 Coulomb Force from Variation of Potential Energy
To gain confidence in (3.64), let us confirm that the expected Coulomb force results from the change
in VE induced by an infinitesimal displacement δs of ρ2(r). We assume that the source of ϕ1(r) is fixed
in space. The key observation is that the displacement δs induces a charge density change9

δρ2(r) = ρ2(r − δs) − ρ2(r). (3.65)

9 Figure 3.13 shows a rigid displacement δs of a charge distribution from an initial location with center of mass R
(solid outline) to a final location with center of mass R + δs (dotted outline). We are interested in the change in
charge at the point r in space. This is δρ(r) = ρfinal(r) − ρinitial(r). Or, using the position of the center of mass
as a parameter, δρ(r) = ρ(r,R + δs) − ρ(r,R). On the other hand, ρ(r + δs,R + δs) = ρ(r,R). Therefore,
ρ(r,R + δs) = ρ(r − δs,R). Using this in the last formula for δρ establishes (3.65).
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r

R

O

δs

Figure 3.13: Demonstration that δρ(r) = ρ(r − δs) − ρ(r).

The corresponding change in the presumptive potential energy (3.64) is

δVE =
∫

d 3r ϕ1(r)δρ2(r). (3.66)

Therefore, to first order in the small quantity δs,

δVE =
∫

d 3r ϕ1(r) [ρ2(r − δ s) − ρ2(r)] = −
∫

d 3r ϕ1(r)∇ρ2(r) · δs. (3.67)

Integrating the last term in (3.67) by parts gives

δVE =
∫

d 3r ρ2(r)∇ϕ1(r) · δs = −
∫

d 3r ρ2(r)E1(r) · δs. (3.68)

Comparing (3.68) to (3.61) shows that the force exerted on ρ2(r) by the field E1 = −∇ϕ1 is exactly
the Coulomb force,

F = −∂VE

∂s
=
∫

d 3r ρ2(r) E1(r). (3.69)

3.5.2 Green’s Reciprocity Relation
The definition (3.46) of the electrostatic potential permits us to rewrite (3.64) in an important way:∫

d 3rρ2(r)ϕ1(r) = 1

4πε0

∫
d 3r

∫
d 3r ′ ρ2(r)ρ1(r′)

|r − r′| =
∫

d 3r ′ϕ2(r′)ρ1(r′). (3.70)

The equality of the first and last terms in (3.70) is not obvious. It says that the potential energy of ρ2(r)
in the field produced by ρ1(r) is equal to the potential energy of ρ1(r) in the field produced by ρ2(r).
This is called Green’s reciprocity relation.10

Reciprocity is often used to solve electrostatic problems that are difficult to analyze by other means.
An example is the force between two non-overlapping, spherically symmetric charge distributions
with total charges Q1 and Q2 (Figure 3.14). Our strategy is to use (3.62) and the potential energy
(3.70). We begin with the fact that the Gauss’ law electric field produced by ρ2(r ′) outside of itself
is exactly the same as the electric field produced by a point charge Q2 located at the center of ρ2(r ′)
(black dot in Figure 3.14). The electrostatic potential ϕ2(r ′) is similarly identical to the point charge
potential ϕP (r ′) = Q2/(4πε0r

′) everywhere outside ρ2(r ′).
Using first this point charge observation and then the reciprocity relation (3.70), we can write the

potential energy of ρ1(r) in the field produced by ρ2(r ′) in terms of the charge density ρP (r) of the Q2

point charge:

VE =
∫

d 3r ρ1(r)ϕ2(r) =
∫

d 3r ρ1(r)ϕP (r) =
∫

d 3r ρP (r)ϕ1(r). (3.71)

10 Some authors refer to (3.70) as Green’s reciprocity theorem or Green’s reciprocal relation.
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r
R

1
(r)

2
(r′)

r′

Figure 3.14: Two spherical charge distributions with total charges Q1 and Q2. The two distributions do not
overlap and the vector R points from the center of ρ1(r) to the center of ρ2(r ′).

Since ρP (r) = Q2δ(r − R), the potential energy we seek is

VE = Q2

∫
d 3r δ(r − R)ϕ1(r) = Q2ϕ1(R) = Q1Q2

4πε0R
. (3.72)

The final equality in (3.72) follows from the fact that ϕ1(r), like ϕ(r ′), has the form of a point charge
potential outside of itself. We conclude that the potential energy (and hence the force) between ρ1(r)
and ρ2(r ′) is the same as if all the charge of each was concentrated at a point at its center.

Example 3.5 Use Green’s reciprocity relation and an empty sphere with charge spread uniformly
over its surface to prove this “mean value theorem”: the average of ϕ(r) over a spherical surface S
that encloses a charge-free volume is equal to the potential at the center of the sphere:

1

4πR2

∫
S

dS ϕ(r) = ϕ(0).

Solution: We use (3.70) and let ϕ(r) and its source ρ(r) play the roles of ϕ1(r) and ρ1(r). We
choose the “reciprocal system” as suggested in the statement of the problem, i.e.,

ρ2(r) = q

4πR2
δ(r − R) ϕ2(r) = q

4πε0

⎧⎪⎨
⎪⎩

1

R
r ≤ R,

1

r
r ≥ R.

Now, ∫
d 3r ρ2(r)ϕ1(r) = q

4πR2

∫
S

dSϕ(r) = q〈ϕ〉S.

On the other hand, since ρ(r) is non-zero only outside the sphere of radius R,∫
d 3r ′ ρ1(r′)ϕ2(r′) = q

4πε0

∫
r ′>R

d 3r ′ ρ(r′)
r ′ = qϕ(0).

This proves the theorem because q is arbitrary.

3.6 Electrostatic Total Energy

The total electrostatic energyUE is defined as the total work required to assemble a charge distribution
from an initial state where all the charge is dispersed at spatial infinity. We imagine that the work is
performed quasistatically by an external agent in such a way that no dissipative effects occur. This
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ensures that the process is reversible in the thermodynamic sense. UE is important for many reasons,
not least because it achieves its minimum value for the ground state of the electrostatic system.
An example is a model charge density ρ(r) which depends on one or more variational parameters.
MinimizingUE with respect to these parameters produces an approximation of the ground state charge
density.

It is not difficult to compute UE for a collection of N stationary point charges qk located at positions
rk . No work is required to bring the first charge into position from infinity because E = 0 everywhere.
The work W12 required to bring the second charge into position is the negative of the work calculated
in (3.15) because the external agent does work against the Coulomb force exerted by the first charge.
Therefore, if ϕ1(r) is the electrostatic potential (3.26) produced by q1,

W12 = q2[ϕ1(r2) − ϕ1(∞)] = q2ϕ1(r2) = 1

4πε0

q1q2

|r1 − r2| . (3.73)

The third charge interacts with both q1 and q2 so additional work W13 +W23 must be done. This
generalizes to

UE = W = 1

4πε0

N∑
j=1

N∑
i>j

qiqj

|ri − rj | , (3.74)

or

UE = 1

4πε0

1

2

N∑
i=1

N∑
j �=i

qiqj

|ri − rj | = 1

2

N∑
i=1

qiϕ(ri). (3.75)

The factor of 1
2 in (3.75) corrects for overcounting; the double sum counts each distinct pair of charges

twice rather than once as in (3.74). Recalling (3.10), the analog of (3.75) for a continuous distribution
of charge is

UE = 1

8πε0

∫
d 3r

∫
d 3r ′ ρ(r)ρ(r′)

|r − r′| = 1

2

∫
d 3r ρ(r)ϕ(r). (3.76)

The total energy cannot depend on exactly how a charge distribution is assembled. In practice, the
symmetry of a problem often suggests a convenient method of assembly to find UE . An example is a
ball of charge with uniform charge density ρ = Q/ 4

3πR
3. Rather than evaluate (3.76), we can compute

the work required to “build” the ball by successively adding spherical layers of uniform charge and
thickness dr . At an intermediate stage of assembly, the ball has radius r and (3.73) identifies the
work done against the Coulomb force to add an increment of charge dq = 4πr2drρ as dW = ϕSdq,
where ϕS is the electrostatic potential at the surface of the ball. The method of Example 3.4 gives this
potential as ϕS = ρr2/3ε0. Therefore, the energy we seek is

UE = 4π

3ε0
ρ2

R∫
0

drr4 = 3

5

Q2

4πε0R
. (3.77)

A variation of the method used to obtain (3.77) can be exploited to derive (3.76) without passing
through the point charge result (3.75). If ρ(r) and ϕ(r) are the final charge density and electrostatic
potential, the idea is to let the charge distribution at any intermediate stage of the assembly process
be λρ(r), where λ is a real number which increases continuously from 0 to 1. By linearity, the scalar
potential at the same intermediate stage is λϕ(r). Therefore, as in the preceding charged-ball problem,
the work done against the Coulomb force when we add an infinitesimal bit of charge (whereupon
λ changes to λ+ δλ) to any volume element is [(δλ)ρ(r)][λϕ(r)] = [(δλ)λ][ρ(r)ϕ(r)]. In agreement
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with (3.76), the total work done is

UE =
1∫

0

δλλ

∫
d 3r ρ(r)ϕ(r) = 1

2

∫
d 3r ρ(r)ϕ(r). (3.78)

Finally, it is worth remarking that the electrostatic total energy UE is a quantity which clearly
illustrates the fundamental limitations of the point charge concept in classical electrodynamics. UE

diverges for a single point charge, whether we try to evaluate (3.75) with N = 1 or consider (3.77) in
the limit R → 0. This unphysical behavior is the price we pay for the computational advantages of
writing charge densities as a sum of delta functions as in (2.6). There are circumstances where this
divergence can be hidden (see Section 23.6.3), but its presence manifests itself in other ways.

3.6.1 UE is Positive-Definite
The electrostatic total energy is a non-negative quantity. To see this, it is simplest to eliminate ρ(r)
from the far right side of (3.76) using Gauss’ law and then integrate by parts. The result is

UE = −1

2
ε0

∫
d 3r E · ∇ϕ + 1

2
ε0

∫
d 3r ∇ · (ϕE). (3.79)

The divergence theorem applied to the last term in (3.79) gives zero because E(r) → 0 at infinity for
any realistic source. Then, because E = −∇ϕ in electrostatics,

UE = 1

2
ε0

∫
d 3r |E|2 ≥ 0. (3.80)

UE ≥ 0 appears to contradict (3.75) for, say, two equal and opposite point charges. There is no
contradiction because the latter explicitly excludes the positive but unphysically infinite self-energy
of each point charge [computed by inserting E = q r̂/4πε0r into (3.80)]. This characteristic pathology
(remedied only by quantum electrodynamics) shows that the point charge concept must be used with
care in classical calculations. By contrast, the self-energy part of (3.80) is integrable and makes a
positive (but finite) contribution to the total energy for smooth and non-singular distributions ρ(r) of
either sign.

Equation (3.80) invites us to ascribe a positive-definite electrostatic energy density to every point in
space,

uE(r) = 1
2ε0|E(r)|2. (3.81)

This turns out to be correct (see Chapter 15), but a deduction based on (3.80) is unwarranted because
(3.76) would lead us to make the same claim for 1

2ρ(r)ϕ(r), which is numerically a very different
quantity.

Thomson’s Problem

The classical “plum pudding” model of the atom was devised by J.J. Thomson in 1904. A con-
temporary variation of this model asks: what mechanically stable arrangement of N negative point
charges qk has the lowest energy when all the charges are constrained to lie on the surface of
a spherical shell of uniform compensating positive charge? The presence of the positive charge
vitiates Earnshaw’s theorem but, by symmetry, has no other effect on the spatial arrangement of
the point charges. The problem thus reduces to minimizing the total energy (3.74) subject to the
constraint that each vector rk has fixed length.

Surprisingly, the solutions do not always correspond to configurations of maximal symmetry.
Thus, for N = 8, the minimum energy does not occur when the charges are placed at the corners of
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a cube. Instead,UE is minimized when the charges are placed at the corners of a twisted, rectangular
parallelepiped. The search for the ground state is non-trivial because the number of configurations
that correspond to local energy minima increases exponentially with N . For large N , the charges
arrange themselves locally onto a triangular lattice with six nearest neighbors per charge. Many,
but not all, of the ground states are found to possess exact or distorted icosahedral symmetry. If
qk = |rk| = 1, numerical studies show that the energy of the minimum energy configuration is
very well approximated by

UE(N ) � 1

4πε0

1

2
(N2 −N3/2).

Roughly speaking, the first term is the average energy of N charges distributed randomly over
the surface of the sphere. The second term corrects for the fact that the charges are not randomly
distributed but arrange themselves to maximize their distances from each other.

Thomson’s problem has a direct bearing on a remarkable phenomenon called charge inversion
that occurs when large spherical ions with charge Zq are placed in solution with small, mobile
particles with charge −q. It is reasonable to suppose that Z mobile particles would attach to the
surface of each macro-ion to neutralize its charge. However, the form of UE(N ) above actually
produces a lower energy when N > Z particles attach!

3.6.2 Interaction Total Energy is Potential Energy
Finally, it is instructive to compute UE for a charge distribution that is the sum of two parts so
ρ(r) = ρ1(r) + ρ2(r). Using (3.76), the total energy is

UE[ρ1 + ρ2] = UE[ρ1] + UE[ρ2] + 1

4πε0

∫
d 3r

∫
d 3r ′ ρ1(r)ρ2(r′)

|r − r′| . (3.82)

The first two terms on the right side of (3.82) are the total energies of ρ1 and ρ2 in isolation. We
identify the third term as the interaction energy between ρ1(r) and ρ2(r):

VE = 1

4πε0

∫
d 3r

∫
d 3r ′ ρ1(r)ρ2(r′)

|r − r′| . (3.83)

We use the symbol VE in (3.83) because the interaction total energy is exactly the potential energy
(3.70). We make this nearly self-evident point here because the same statement will not be true when
we turn to magnetostatic energy in Chapter 12.

We note also a special case of (3.82) that arises when ρ2(r) is unspecified but serves to create an
external potential ϕext(r). In that case, the term UE[ρ2] is absent from (3.82) and we deduce that the
total electrostatic energy of a charge distribution ρ1(r) in an external potential is

UE = 1

8πε0

∫
d 3r

∫
d 3r ′ ρ1(r)ρ1(r′)

|r − r′| +
∫

d 3rρ1(r)ϕext(r). (3.84)

Application 3.2 The Ionization Potential of a Metal Cluster

Experiments show that IN , the ionization potential of a molecular cluster composed of N atoms of
a monovalent metallic material like potassium is well represented by the formula [Bréchignac et al.
(1989)]

IN = Ufinal
E − U initial

E = W + aN−1/3. (3.85)

In this formula, a is a constant and W is the work function of a macroscopic (N → ∞) sample of
the metal. We will estimate W and a using a model which replaces the cluster by a sphere of radius
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R and each atom in the cluster by a sphere of radius RS < R. Conservation of volume implies that
R = RSN

1/3. The volume of each atomic sphere is chosen as 4
3π R

3
S = n−1 where n is the valence

electron density of the metal.
Figure 3.15 shows models for the cluster before and after the ionization event. The initial state

diagram shows the atomic sphere of the one atom that will lose its valence electron by ionization. The
electron is modeled as a negative point charge at the center of the sphere (black dot). The neutralizing
positive charge of the ionic core is shown smeared out over the sphere volume into a uniform density
ρ+ = |e|n (gray sphere). In the final state diagram, the point electron is gone (ionized) and the total
ionic positive charge +|e| left behind is shown distributed over the cluster surface. This simulates the
attraction of the ionic charge to the departed electron. Finally, in both the initial and final state, we
smear out the total charge of the N − 1 neutral atoms that do not participate in the ionization event
uniformly over the volume of the entire cluster. This produces the white regions in Figure 3.15 where
ρ(r) = 0.

2R

34
3 S

Rπ

Initial state atom Final state ion

2R

Figure 3.15: Classical models of the charge distribution of a molecular cluster before (left) and after
(right) an ionization event. Regions of uniform positive charge density are shaded. Regions of zero charge
density are unshaded. The positive charge of the shaded sphere on the left is compensated by the negative
charge of the electron to be ionized (black dot) at its center.

U initial
E is the sum of the self-energy of the shaded positive sphere on the left side of Figure 3.15

and the potential energy of interaction between that sphere and the electron at its center. There is no
contribution from the non-shaded volume because ρ(r) = 0 there. With respect to the position of the
electron, Gauss’ law gives the electric field of the sphere as

Ei =

⎧⎪⎨
⎪⎩

er

4πε0R
3
S

r ≤ RS,

er
4πε0r3

r ≥ RS.

(3.86)

The scalar potential of the point electron is ϕ−e(r) = −e/4πε0r . Therefore,11

U initial
E = 1

2
ε0

∫
d 3r|Ei|2 +

∫
d 3rρ+ϕ−e = 1

4πε0

e2

RS

[
3

5
− 3

2

]
. (3.87)

By assumption,Ufinal
E is the electrostatic energy of a sphere with total charge +e uniformly distributed

over its surface. From Gauss’ law, the electric field is zero inside the sphere and Ef = r̂e/4πε0r
2 outside

the sphere. Therefore,

Ufinal
E = 1

2
ε0

∫
r>R

d 3r|Ef |2 = e2

8πε0R
. (3.88)

11 The first term in (3.87) is an alternative calculation of (3.77).
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Using R = RSN
1/3, the predicted ionization potential has the form anticipated in (3.85):

IN = Ufinal
E − U initial

E � e2

4πε0RS

[
9

10
+ 1

2
N−1/3

]
. (3.89)

�

3.7 The Electric Stress Tensor

Let E(r) be the electric field produced by a charge density ρ(r) which occupies a volume �. The force
exerted on the charge density ρ(r ∈ V ) by the charge density ρ(r ∈ �− V ) is

F =
∫
V

d 3r ρ(r)E(r). (3.90)

For many applications, it proves useful to eliminate ρ from (3.90) using ε0∇ · E = ρ. To do this easily,
we adopt the Einstein convention and sum over repeated Cartesian indices (see Section 1.2.4). In that
case, ∇ · E = ∂iEi , and

Fj = ε0

∫
V

d 3r Ej ∂iEi = ε0

∫
V

d 3r
[
∂i(Ej Ei) − Ei∂iEj

]
. (3.91)

Now, ∇ × E = 0 implies that ∂iEj = ∂jEi . Therefore,

Fj = ε0

∫
V

d 3r
[
∂i(EiEj ) − Ei∂jEi

] = ε0

∫
V

d 3r ∂i(EiEj − 1
2δijE · E). (3.92)

The final member of (3.92) motivates us to define the Cartesian components of the Maxwell electric
stress tensor as

Tij (E) = ε0(EiEj − 1
2δijE

2). (3.93)

With this definition and the divergence theorem, (3.92) takes the form

Fj =
∫
V

d 3r ∂iTij (E) =
∫
S

dS n̂iTij (E). (3.94)

Often, the stress tensor components in (3.93) are used to define the dyadic (Section 1.8)

T(E) = êiTij (E)êj = x̂Txx(E)x̂ + x̂Txy(E)ŷ + x̂Txz(E)ẑ + ŷTyx(E)x̂ + · · · . (3.95)

In this language, the net force on the charge inside the closed surface S is

F =
∫
S

dS n̂ · T(E). (3.96)

Direct substitution from (3.93) confirms that an explicit vector form of (3.96) is

F = ε0

∫
S

dS
[
(n̂ · E)E − 1

2 (E · E)n̂
]
. (3.97)
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n̂
E

t̂

E

θ

dS

Figure 3.16: The electric field line is coplanar with the surface unit normal n̂ and the unit tangent vector t̂. The
angle θ lies between n̂ and the electric field line at the surface element dS.

3.7.1 Applications of the Electric Stress Tensor
Let us apply (3.97) to a spherical balloon which carries a uniform charge per unit area σ . The Gauss’
law electric field is zero everywhere inside the balloon and takes the value E = r̂σ/ε0 just outside
the balloon’s surface. If we choose the balloon surface as S, the two terms in the integrand of (3.97)
combine to give a force per unit area f = r̂σ 2/2ε0. This agrees with (3.52) where this situation yields
f = 1

2σ [0 + r̂σ/ε0]. This force density tends to expand the size of the balloon (so each individual bit
of charge gets farther apart from every other bit) while keeping the position of the center of mass fixed
(F = 0). More generally, Figure 3.16 shows that the electric field E at any surface element dS can
be decomposed into components along the surface normal n̂ and a unit vector t̂ that is tangent to the
surface and coplanar with E and n̂:

E = E(n̂ cos θ + t̂ sin θ ). (3.98)

Figure 3.16 does not indicate the direction of E because (3.98) transforms (3.97) into

F = 1
2ε0

∫
S

dS E2(n̂ cos 2θ + t̂ sin 2θ). (3.99)

The great virtue of (3.97) and (3.99) is that they replace the volume integral (3.91) by a surface
integral, which is often simpler to evaluate. We also gain the view that the net force on the charge inside
V is transmitted through each surface element n̂ dS by a vector force density f where fj = n̂iTij (E).
It is important to appreciate that the surface in question need not be coincident with the boundary
of the charge distribution. Indeed, the fact that Tij (E) can be evaluated at any point in space leads
very naturally to the idea that the vacuum acts as a sort of elastic medium capable of supporting
stresses (measured by E) which communicate the Coulomb force. Faraday, Maxwell, and their con-
temporaries believed strongly in the existence of this medium, which they called the “luminiferous
aether”.

We can use (3.99) to extract mechanical information from the field line patterns shown in Figure 3.17
for two equal-magnitude charges. The key is to choose the perpendicular bisector plane to be part of a
surface S that completely encloses one charge when viewed from the other charge (see Figure 3.18).
The charges are both positive in the left panel and the field lines bend toward tangency as they approach
the bisector plane. This corresponds to θ = π/2 in Figure 3.16 and a force density − 1

2ε0E
2n̂ in (3.99).

Since n̂ is the outward normal, this tells us that the net force on the bisector plane tends to push the
bisector plane away from the viewing charge. This is consistent with Coulomb repulsion between the
charges. By contrast, the field lines are normal to the bisector plane when the charges have opposite
sign (right panel of Figure 3.17). This corresponds to θ = 0 in Figure 3.16 and a force per unit area
+ 1

2ε0E
2n̂. For this case, the net force tends to pull the bisector toward the viewing charge. This is

consistent with Coulomb attraction between the charges.
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Figure 3.17: The electric field lines associated with two identical, positive point charges (left panel) and two
equal but opposite point charges (right panel).

Example 3.6 Confirm that the stress tensor formalism reproduces the familiar Coulomb force law
between two identical point charges separated by a distance 2d. Hint: Integrate (3.97) over a surface
S that includes the perpendicular bisector plane between the charges.

x

r

q

d z

y

P
q

Figure 3.18: The force between two identical charges may be calculated by integrating the electric stress
tensor over the bowl-shaped surface (shaded) in the limit when the bowl radius goes to infinity.

Solution: Locate the charges at ±d on the z-axis. To find the force on the charge at z = −d
we choose S as the surface of the solid bowl-shaped object shown in Figure 3.18. This surface
encloses the half-space z < 0 in the limit when the bowl radius goes to infinity. In the same limit,
the hemispherical portion of the bowl makes no contribution to the stress tensor surface integral
(3.97) because dSE2 → 0 as r → ∞. Therefore, it is sufficient to integrate over the bisector plane
z = 0 where the outward normal n̂ = ẑ.

The charge distribution has mirror symmetry with respect to z = 0. Therefore, the field EP at any
point P on the bisector must lie entirely in that plane. That is, n̂ · EP = 0. The distance between P
and either charge is d/ cos θ where θ is the angle between the z-axis and the line which connects
either charge to P . Counting both charges, the component of the electric field in the plane of the
bisector at the point P is

E‖ = 2 × q

4πε0d2
cos2 θ sin θ.

Since r = d tan θ , the differential element of area on the bisector is

dS = rdrdφ = d2 sin θ

cos3 θ
dθ dφ.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-03 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 14:57

84 ELECTROSTATICS: THE ELECTRIC FIELD PRODUCED BY STATIONARY CHARGE

Only the second term in (3.97) contributes, so the force on the charge enclosed by S is

F = −ε0

2
ẑ
∫
z=0

dS E2
‖ = −ε0

2
ẑ
[

q

2πε0d

]2
2π∫

0

dφ

π/2∫
0

dθ cos θ sin3 θ = −ẑ
1

4πε0

q2

(2d)2
.

This is indeed Coulomb’s law.

�

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is taken from Letter XXIII of Volume II of
L. Euler, Letters on Different Subjects in Natural Philosophy Addressed to a German Princess (Arno, New York,
1975).

Section 3.1 The most complete treatment of electrostatics is the three-volume treatise
E. Durand, Electrostatique (Masson, Paris, 1964).

Volume I is devoted to basic theory and the potential and field produced by specified distributions of charge.
Readers unfamiliar with the French language will still benefit from the beautiful drawings of electric field line
patterns and equipotential surfaces for many electrostatic situations. Four textbooks which distinguish electrostatics

from boundary value potential theory are
A. Sommerfeld, Electrodynamics (Academic, New York, 1952).

M.H. Nayfeh and M.K. Brussel, Electricity and Magnetism (Wiley, New York, 1985).

L. Eyges, The Classical Electromagnetic Field (Dover, New York, 1972).

W. Hauser, Introduction to the Principles of Electromagnetism (Addison-Wesley, Reading, MA, 1971).

Section 3.3 See Section 15.3.1 for a classical argument due to Eugene Wigner which relates the freedom to
choose the zero of the electrostatic potential to the conservation of electric charge.

Example 3.2 is an electrostatic version of a scaling law derived by Newton for the gravitational force. See Section 86
of the thought-provoking monograph

S. Chandrasekhar, Newton’s Principia for the Common Reader (Clarendon, Oxford, 1995).

Figure 3.4 is taken from this reprint of the 3rd edition (1891) of Maxwell’s Treatise:
J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon, Oxford, 1998).

The problems associated with projecting three-dimensional field line patterns onto two-dimensional diagrams are
discussed in

A. Wolf, S.J. Van Hook, and E.R. Weeks, “Electric field lines don’t work”, American Journal of Physics 64, 714
(1996).

Section 3.4 Application 3.1 is taken from
T.M. Kalotas, A.R. Lee, and J. Liesegang, “Analytical construction of electrostatic field lines with the aid of
Gauss’ law”, American Journal of Physics 64, 373 (1996).

Our discussion of symmetry and Gauss’ law is adapted from
R. Shaw, “Symmetry, uniqueness, and the Coulomb law of force”, American Journal of Physics 33, 300
(1965).

Section 3.6 Entry points into the literature of Thomson’s problem and charge inversion are, respectively,
E.L. Altschuler and A. Pérez-Garrido, “Defect-free global minima in Thomson’s problem of charges on a
sphere”, Physical Review E 73, 036108 (2006).

A.Yu. Grosberg, T.T. Nguyen, and B.I. Shklovskii, “The physics of charge inversion in chemical and biological
systems”, Reviews of Modern Physics, 74, 329 (2002).
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The empirical formula (3.85) in Application 3.2 comes from the paper
C. Bréchignac, Ph. Cahuzak, F. Carlier, and J. Leygnier, "Photoionization of mass-selected ions: A test for the
ionization scaling law", Physical Review Letters 63, 1368 (1989).

Figure 3.17 and the discussion of the electric stress tensor in Section 3.7 are based on the treatment in
E.J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981).

Problems
3.1 Charged Particle Refraction

(a) A point charge q > 0 with total energy E travels through a region of constant potential V1 and
enters a region of potential V2 < V1. Show that the trajectory bends so that the angles θ1 and θ2 in
the diagram below obey a type of “Snell’s law” with a characteristic “index of refraction” for each
medium.

(b) Describe the charge distribution which must exist at the V1-V2 interface.

2

1

1V
2V

3.2 Symmetric and Traceless The Cartesian components of the electric field in a charge-free region of space
are Ek = Ck +Djkrj , where Ck and Djk are constants.

(a) Prove that Djk is symmetric (Djk = Dkj ) and traceless (
∑

k Dkk = 0).
(b) Find the most general electrostatic potential that generates the electric field in part (a).

3.3 Practice Superposing Fields This problem exploits the ring and disk electric fields calculated in
Example 2.1.

(a) Find E(r) inside and outside a uniformly charged spherical shell by superposing the electric fields
produced by a collection of charged rings.

(b) Find E(r) inside and outside a uniformly charged spherical volume by superposing the electric fields
produced by a collection of uniformly charged disks.

3.4 Five Charges in a Line Draw the electric field line pattern for a line of five equally spaced charges with
equal magnitude but alternating algebraic signs, as sketched below.

+ − + − +

Be sure to choose the scale of your drawing and the number of lines drawn so that all salient features of
the pattern are obvious.

3.5 Gauss’ Law Practice Use Gauss’ law to find the electric field when the charge density is:

(a) ρ(x) = ρ0 exp
{
−κ√

x2
}

. Expresses the answer in Cartesian coordinates.

(b) ρ(x, y) = ρ0 exp
{
−κ√x2 + y2

}
. Express the answer in cylindrical coordinates.

(c) ρ(x, y, z) = ρ0 exp
{
−κ√x2 + y2 + z2

}
. Express the answer in spherical coordinates.
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3.6 General Electrostatic Torque Show that the torque exerted on a charge distribution ρ(r) by a distinct
charge distribution ρ ′(r′) is

N = − 1

4πε0

∫
d 3r

∫
d 3r ′ r × r′

|r − r′|3 ρ(r)ρ ′(r′).

3.7 Field Lines for a Non-Uniformly Charged Disk The z-axis coincides with the symmetry axis of a flat
disk of radius a in the x-y plane. The disk carries a uniform charge per unit area σ < 0. The rim of the disk
carries an additional uniform charge per unit length λ > 0. Use a side (edge) view and sketch the electric
field lines everywhere assuming that the total charge of the disk is positive. Your sketch must have enough
detail to reveal any interesting topological features of the field line pattern.

3.8 The Electric Field of a Charged Slab and a Charged Sheet

(b) Find E(r) if ρ(x, y, z) = σ0 δ(x) + ρ0θ (x) − ρ0θ (x − b).
(c) Show by explicit calculation that ρ(x, y, z) does not exert a net force on itself.

3.9 The Electric Flux Through a Plane A charge distribution ρ(r) with total charge Q occupies a finite
volume V somewhere in the half-space z < 0. If the integration surface is z = 0, prove that∫

z=0

dS ẑ · E = Q

2ε0
.

3.10 Two Electrostatic Theorems

(a) Use Green’s second identity,
∫
V
d 3r (f∇2g − g∇2f ) = ∫

S
dS · (f∇g − g∇f ), to prove that the poten-

tial ϕ(0) at the center of a charge-free spherical volume V is equal to the average of ϕ(r) over the surface
S of the sphere. We proved this theorem in the text using Green’s reciprocity relation.

(b) Use the result of part (a) to provide an alternative to the derivation of Earnshaw’s theorem given in the
text.

3.11 Potential, Field, and Energy of a Charged Disk A two-dimensional disk of radius R carries a uniform
charge per unit area σ > 0.

(a) Calculate the potential at any point on the symmetry axis of the disk.
(b) Calculate the potential at any point on the rim of the disk. Hint: Use a point on the rim as the origin.
(c) Sketch the electric field pattern everywhere in the plane of the disk.
(d) Calculate the electrostatic total energy UE of the disk.

3.12 A Charged Spherical Shell with a Hole The figure below shows a circular hole of radius b (white) bored
through a spherical shell (gray) with radius R and uniform charge per unit Area σ .

2R

2b

(a) Show that E(P ) = (σ/2ε0)[1 − sin(θ0/2)]r̂, where P is the point at center of the hole and θ0 is the
opening angle of a cone whose apex is at the center of the sphere and whose open end coincides with
the edge of the hole. Perform the calculation by summing the vector electric fields produced at P by all
the other points of the shell.

(b) Use an entirely different argument to explain why E(P ) ≈ (σ/2ε0)r̂ when θ0 � 1.
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3.13 A Uniformly Charged Cube The figure below shows a cube filled uniformly with charge. Determine the
ratio ϕ0/ϕ1 of the potential at the center of the cube to the potential at the corner of the cube. Hint: Think
of the cube as formed from the superposition of eight smaller cubes.

0

1

s

3.14 A Variation on Coulomb’s Law Suppose the electrostatic potential of a point charge were V (r) =
(1/4πε0)r−(1+ε) rather than the usual Coulomb formula.

(a) Find the potential V (r) at a point at a distance r from the center of a spherical shell of radius R > r

with uniform surface charge per unit area σ . Check the Coulomb limit ε = 0.
(b) To first order in ε, show that

V (R) − V (r)

V (R)
= ε

2

[
R

r
ln
R + r

R − r
− ln

4R2

R2 − r2

]
.

Since the time of Cavendish, formulae like this one have been used in experimental tests of the correctness
of Coulomb’s law.

3.15 Practice with Electrostatic Energy Let the space between two concentric spheres with radii a and R ≥ a

be filled uniformly with charge.

(a) Calculate the total energy UE in terms of the total charge Q and the variable x = a/R. Check the a = 0
and a = R limits.

(b) Minimize UE with respect to x (keeping the total charge Q constant). Identify the physical system
which achieves the minimum you find.

3.16 Interaction Energy of Spheres

(a) Evaluate the relevant part of the integral UE = 1
2

∫
d 3r ρ(r)ϕ(r) to find the interaction energy VE

between two identical insulating spheres, each with radius R and charge Q distributed uniformly over
their surfaces. The center-to-center separation between the spheres is d > 2R. Do not assume that
d � R.

(b) Produce a physical argument to explain the dependence of VE on R.

3.17 Electrostatic Interaction Energy

(a) Use the electrostatic total energy

UE = 1

2

∫
d 3r ρ(r)ϕ(r)

to find the interaction energy VE between two identical insulating spheres, each with radius R and
charge Q distributed uniformly over their surfaces. The center-to-center separation between the spheres
is d > 2R, but do not assume that d � R.

(b) Produce a physical argument to explain the dependence of VE on R.
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3.18 Ionization Energy of a Model Hydrogen Atom A model hydrogen atom is composed of a point nucleus
with charge +|e| and an electron charge distribution

ρ−(r) = − |e|
πa2r

exp(−2r
/
a).

Show that the ionization energy (the energy to remove the electronic charge and disperse it to infinity) of
this atom is

I = 3

8

e2

π ε0a
.

Hint: ignore the (divergent) self-energy of the point-like nucleus.

3.19 Two Spherical Charge Distributions A spherical charge distribution ρ1(r) has total charge Q1 and a
second, non-overlapping spherical charge distribution ρ2(r) has total charge Q2. The distance between the
centers of the two distributions is R. Use the strss tensor formalism to prove that the interaction energy
between the two is

VE = 1

4πε0

Q1Q2

R
.

Hint: It is not necessary to evaluate any integrals explicitly.

3.20 Two Electric Field Formulae

(a) Show that the electric field produced by a uniform charge density ρ confined to the volume V enclosed
by a surface S can be written

E(r) = ρ

4πε0

∫
S

dS′

|r − r′| .

(b) Show that the electric field due to an arbitrary but localized charge distribution can always be written in
the form

E(r) = − 1

4πε0

∫
d 3r ′ ∇′ρ(r′)

|r − r′| .

3.21 The Potential of a Charged Line Segment The line segment from P to P ′ in the diagram below carries
a uniform charge per unit length λ. The vector a is coincident with the segment. The vectors b and c point
from the observation point r to the beginning and end of a, respectively.

r

a

c
b

P

′P

O

Evaluate the integral for the potential in a coordinate-free manner by parameterizing the line source using a
variable s ′ which is zero at the point on the charged segment that is closest to r. Show thereby that

ϕ(r) = λ

4πε0
ln

∣∣∣∣∣∣
b · a
a

+
√(

b · a
a

)2

+ |b × a|2
a2

∣∣∣∣∣∣∣∣∣∣∣c · a
a

+
√( c · a

a

)2
+ |b × a|2

a2

∣∣∣∣∣
.
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3.22 A Variation on Coulomb’s Law Suppose that the electrostatic potential produced by a point charge was
not Coulombic, but instead varied with distance in a manner determined by a specified scalar function f (r):

ϕ(r) = q

4πε0
f (|r|).

(a) Calculate the potential produced by an infinite flat sheet at z = 0 with uniform charge per unit area σ .
(b) Use the result of part (a) to show that the associated electric field would be

E(z) = ẑ
σ

2ε0
zf (z).

3.23 A Non-Uniform Charge Distribution on a Surface Let d and s be two unequal lengths. Assume that
charge is distributed on the z = 0 plane with a surface density

σ (ρ) = −qd
2π (ρ2 + s2)3/2

.

(a) Integrate σ to find the total charge Q on the plane.
(b) Show that the potential ϕ(z) produced by σ (ρ) on the z-axis is identical to the potential produced by a

point with charge Q on the axis at z = −s.

3.24 The Energy outside a Charged Volume The potential takes the constant value ϕ0 on the closed surface
S which bounds the volume V . The total charge inside V is Q. There is no charge anywhere else. Show that
the electrostatic energy contained in the space outside of S is

UE(out) = 1

2
Qϕ0.

3.25 Overcharging A common biological environment consists of large macro-ions with chargeQ < 0 floating
in a solution of point-like micro-ions with charge q > 0. Experiments show that N micro-ions adsorb onto
the surface of each macro-ion. Model one macro-ion as a sphere with its charge uniformly distributed over
its surface. As explained in the boxed discussion of “Thomson’s Problem” in the text, the minimum energy
configuration of N � 1 point charges on the surface of a sphere of radius R has total energy

E(N ) = q2

4πε0R

1

2

[
N2 −N3/2

]
.

(a) Derive the N2 term in E(N ) by smearing out the micro-ion charge over the surface of the macro-ion.
(b) Give a qualitative argument for the N3/2 dependence of the second term in E(N ) using the fact that the

first term does not account for the fact that the charges try to avoid one another on the sphere’s surface.
(c) Find N by minimizing the sum of E(N ) and the interaction energy between the micro-ions and the

macro-ion. Show thereby that the micro-ions do not simply neutralize the charge of the macro-ion.
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4 Electric Multipoles

The electrical phenomena outside the sphere are identical with
those arising from an imaginary series of singular points all at

the center of the sphere.
James Clerk Maxwell (1891)

By permission of Oxford University Press

4.1 Introduction

Human beings are very large compared to the size of many of the charge distributions that interest
them. Sub-atomic particles, atoms, molecules, and biological cells all produce electrostatic potentials
which humans sample only at points that lie very far from the source charge density. An atomic electron
(with non-zero angular momentum) similarly samples the electrostatic potential of its parent nucleus
only at points very far removed from the nucleus itself. Examples like these motivate us to seek an
approximation to the Coulomb integral,

ϕ(r) = 1

4πε0

∫
d 3r ′ ρ(r′)

|r − r′| , (4.1)

which isolates the physics most important to a distant observer. Such a scheme adds value even when
(4.1) can be evaluated exactly.

This chapter develops the electrostatic multipole expansion as a systematic approximation to ϕ(r)
when r lies far from any point within a localized charge distribution. By “localized” we mean that the
distribution is confined (or nearly so) to a finite volume of space, e.g., a sphere of radius R like the one
shown in Figure 4.1. By “far”, we mean that r � R, where r is measured from the same point asR. For
distant observation points, the ratioR/r is a small parameter which justifies truncation of the multipole
expansion after a small number of terms. The expansion coefficients, called multipole moments, carry
information about the source. In what follows, we present the expansion in both Cartesian and spherical
coordinates because both appear widely in the research literature. We also distinguish an “exterior”
multipole expansion (applicable to Figure 4.1, where the observation point lies entirely outside the
charge distribution) from an “interior” multipole expansion (where the observation point lies inside an
empty volume and all the charge lies outside that volume).

4.1.1 The Electric Multipole Expansion
We begin with an exterior multipole expansion that is valid for observation points which lie far outside
the sphere drawn in Figure 4.1. This implies that r ′ � r in (4.1) and it is reasonable to replace the
factor |r − r′|−1 by the first few terms of the Taylor series (see Section 1.3.4)

1

|r − r′| = 1

r
− r′ · ∇ 1

r
+ 1

2
(r′ · ∇)2 1

r
− · · · . (4.2)
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R
r

r′
ρ

Figure 4.1: A localized charge distribution with total charge Q is confined entirely within a sphere of radius R.
The observation point is r where r � R.

Substitution of (4.2) into (4.1) produces a series (convergent for r > R) known as the primitive
Cartesian electric multipole expansion. Using the Einstein convention where repeated indices are
summed over x, y, and z (Section 1.2.4),

ϕ(r) = 1

4πε0

{[∫
d 3r ′ρ(r′)

]
1

r
−
[∫

d 3r ′ρ(r′)r ′
i

]
∇i

1

r
(4.3)

+
[

1

2

∫
d 3r ′ ρ(r′)r ′

i r
′
j

]
∇i∇j

1

r
− · · ·

}
.

The charge density ρ(r) appears in the integrals enclosed by square brackets in (4.3). For later
convenience, we give these integrals special names and evaluate them using the charge density ρ(r) =∑

α qαδ(r − rα) for a collection of point objects. The electric monopole moment is the total charge

Q =
∫

d 3r ρ(r) =
∑
α

qα. (4.4)

The electric dipole moment is the vector

p =
∫

d 3r ρ(r)r =
∑
α

qαrα. (4.5)

The electric quadrupole moment is a tensor defined by the nine scalars

Qij = 1
2

∫
d 3r ρ(r)ri rj = 1

2

∑
α qαrαirαj . (4.6)

Using these definitions and working out the derivatives simplifies (4.3) to

ϕ(r) = 1

4πε0

{
Q

r
+ p · r

r3
+ Qij

3rirj − r2δij

r5
+ · · ·

}
. (4.7)

The charge density in Figure 4.1 is confined to a sphere of radius R. Order-of-magnitude estimates
for the dipole moment (4.5) and the quadrupole moment (4.6) based on this observation are pi ∼ QR

and Qij ∼ QR2, respectively. Applying this information to the series (4.7) shows that each successive
term is smaller than the one that precedes it by a factor of R/r � 1. This implies that the asymptotic
(long-distance) behavior of the electrostatic potential from a localized charge distribution is determined
by the first non-zero term of the multipole expansion. Accordingly, the first term in (4.7) dominates the
long-distance behavior of the electrostatic potential for objects with a net charge Q �= 0. This confirms
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O

H

H

p

Figure 4.2: Contours of constant charge density for an H2O molecule. This object has a non-zero electric dipole
moment p because chemical bonding draws negative (electron) charge toward the oxygen atom from the
hydrogen atoms. Figure adapted from Bader (1970).

the observation made in Section 3.3.5 that all such objects behave like point charges when viewed
from a sufficiently great distance.

4.2 The Electric Dipole

The second term in (4.7) describes the distant electrostatic potential produced by most electrically
neutral (Q = 0) objects like neutrons, atoms, molecules, plasmas, and ordinary matter. This is the
electric dipole potential,

ϕ(r) = 1

4πε0

p · r
r3

r � R. (4.8)

The integral that defines the electric dipole moment p in (4.5) is non-zero for any spatially extended
object where the “centers” of positive charge and negative charge do not coincide. We say that a
system has a permanent electric dipole moment when p �= 0 is a property of its ground state charge
density. A polar molecule like water is a good example (Figure 4.2). We speak of an induced dipole
moment when p �= 0 is produced by an external electric field. This is the situation with essentially all
conductors and dielectrics.

Whatever the physical origin of the dipole moment, (4.8) approximates the true potential far from
the distribution. This statement is well defined because the numerical value of p is independent of the
choice of origin when Q = 0. To see this, let p′ denote the new dipole moment when we shift the
origin by a vector d so r = r′ + d. Then, because d 3r = d 3r ′ and ρ(r′) = ρ(r),

p′ =
∫

d 3r ′ ρ(r′)r′ =
∫

d 3r ρ(r)(r − d) = p −Qd. (4.9)

Hence, p′ = p, ifQ = 0.Conversely, the electric dipole moment is not uniquely defined for any system
with a net charge.

Since E = −∇ϕ, the moment p also completely characterizes the asymptotic dipole electric
field,

E(r) = 1

4πε0

3r̂(r̂ · p) − p
r3

r � R. (4.10)

This formula takes a simple form in polar coordinates because E(r) must be unchanged when the
vector p rotates about its own axis. Thus, the choice p = pẑ and the identity ẑ = r̂ cos θ − θ̂ sin θ
reduce (4.10) to the azimuthally symmetric form

E(r, θ) = p

4πε0r3

[
2 cos θ r̂ + sin θ θ̂

]
. (4.11)
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p

Figure 4.3: Lines of E(r) for an electric dipole p = p ẑ located at the center of the diagram. The localized
charge distribution responsible for the field is too small to be seen on the scale used in the diagram. The black
dots are two points on a circular orbit around the z-axis. See text for details.
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Figure 4.4: The binding energy of an electron captured by a polar molecule. One debye (D) is = 3.36 ×
10−30 C-m. Figure adapted from Desfrançois et al. (1994).

An equation for the electric field lines follows from the polar analog of the Cartesian formula (3.27):

dr

Er

= rdθ

Eθ

⇒ 1

r

dr

dθ
= 2 cot θ ⇒ r = k sin2 θ. (4.12)

The integration constant k parameterizes the family of electric field lines (solid curves) shown in
Figure 4.3.

The characteristic 1/r3 dependence of the dipole field (4.11) differs from the 1/r2 behavior of the
point charge electric field. A more important difference is that (4.11) is angle-dependent. This has
many consequences. Not least of these is that the force F = qE that an electric dipole exerts on a
point charge q is non-central and leads to non-trivial orbital dynamics. For example, the black dots in
Figure 4.3 are two points on a circular orbit around the z-axis in a plane perpendicular to that axis.
This can be a stable orbit for an electron because the electric force is always centripetal (the vertical
component of E is zero). Figure 4.3 implies that an entire family of such circular orbits exists, each
one requiring a particular orbital speed to satisfy Newton’s second law.

Formal classical mechanics confirms this qualitative prediction. Moreover, the main result of such
an analysis—stable bound states exist if the electric dipole moment is large enough—survives the
transition to quantum mechanics. Figure 4.3 thus provides a qualitative rationalization for the exper-
imental fact that a neutral polar molecule can capture an incoming electron to form a stable negative
ion. The data plotted in Figure 4.4 indicate that the ionic bound state does indeed disappear when the
dipole moment of the host molecule is too small.
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Example 4.1 Let E(r) be the electric field produced by a charge density ρ(r) which lies entirely
inside a spherical volume V of radius R. Show that the electric dipole moment of the distribution
is given by

p = −3ε0

∫
V

d 3r E(r).

Solution: Assume first that ρ(r) does not lie entirely inside V . If we place the origin of coordinates
at the center of V , Coulomb’s law gives

1

V

∫
V

d 3r E(r) = 1

V

∫
V

d 3r
1

4πε0

∫
d 3s ρ(s)

r − s
|r − s|3 .

Reversing the order of integration and extracting a minus sign produces

1

V

∫
V

d 3r E(r) = − 1

V

∫
d 3s

⎡
⎣ 1

4πε0

∫
V

d 3r ρ(s)
s − r

|s − r|3

⎤
⎦ .

The factor ρ(s) is a constant as far as the integration over r is concerned. Therefore, the quantity
in square brackets is the electric field E(s) produced by a sphere of volume V = 4πR3/3 with
constant and uniform charge density ρ(s). From Gauss’ law, the latter is

E(s) =

⎧⎪⎪⎨
⎪⎪⎩
ρ(s)

3ε0
s s < R,

V

4πε0

ρ(s)

s3
s s > R.

Therefore, if pin is the dipole moment due to the part of ρ which lies inside V and Eout(0) is the
electric field at the origin due to the part of ρ which lies outside V ,

1

V

∫
V

d 3r E(r) = − 1

3ε0V

∫
s<R

d 3s ρ(s)s − 1

4πε0

∫
s>R

d 3s ρ(s)
s
s3

= − 1

3ε0

pin

V
+ Eout(0).

We get the stated result if all of ρ(r) is contained in V so Eout(0) = 0 and pin = p. On the other
hand, if none of the charge is contained in V ,

E(0) = 1

V

∫
d 3r E(r).

Parity and The Dipole Moment

A well-known theorem of quantum mechanics states that the electric dipole moment is zero for
any microscopic system described by a wave function with definite parity:

p =
∫

d 3r ρ(r)r = < ψ | r |ψ >= 0.

The theorem applies to isolated electrons, atoms, and molecules because the Hamiltonian for each
of these is invariant under the parity operation. How, then, do we understand the dipole moment
of the water molecule indicated in Figure 4.2 and the table of permanent electric dipole moments
found in every handbook of molecular properties?
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O

P

r r0

sb

r   r0

0
sbr r

+q/s

–q/s

Figure 4.5: A dipole with total charge Q = 0 and dipole moment p = qb. The potential is measured at the
observation point P . O is the origin of coordinates.

Handbooks write p = pn + pe, where pn is a contribution from the nuclei treated as point charges
and pe is computed from the integral above using electron wave functions computed in a body-
fixed frame of reference. The latter are not eigenstates of the parity operator applied to the electron
coordinates alone. The quantum mechanical theorem applies to the total molecular wave function
in the laboratory frame, including the nuclear coordinates. We get p = 0 in that case because all
orientations of the body frame dipole moment are equally probable.

4.2.1 The Point Electric Dipole
The word “dipole” comes from a geometrical construction due to Maxwell. It begins with the placement
of two (“di”) equal and opposite charges (“poles”) ±q/s at opposite ends of a vector sb (Figure 4.5).
Now let s → 0. If p = qb, the electrostatic potential of the resulting “point dipole” located at r0 is

ϕ(r) = lim
s→0

1

4πε0

[
q/s

|r − r0 − sb| − q/s

|r − r0|
]

= − 1

4πε0
p · ∇ 1

|r − r0| . (4.13)

This formula is exact because the higher-order terms in the Taylor expansion of |r − r0 − sb|−1 all
vanish in the s → 0 limit. The potential (4.13) is identical to (4.8) except that (4.13) is valid at every
point in space (except r0). This is reasonable because r � R is always valid when the source size
R → 0.

We can derive an analytic formula for the source charge density that produces the point dipole
potential (4.13) by applying Maxwell’s limiting process directly to the charge density of two point
charges. An alternative method exploits (4.13), Poisson’s equation (3.14), and the delta function
identity (1.121) to get

ρD(r) = −ε0∇2ϕ(r) = p
4π

· ∇∇2 1

|r − r0| = −p · ∇δ(r − r0). (4.14)

As far as we know, point electric dipoles with the singular charge density (4.14) do not exist in Nature.
Nevertheless, we will find ρD(r) a useful tool for computation when the size of a charge distribution
is very small compared to all other characteristic lengths in an electrostatic problem.

4.2.2 The Singularity at the Origin
The electric field of a point electric dipole must be given by (4.10) when r �= r0. But what happens
precisely at r = r0? Given that the point dipole was constructed from two delta function point charges,
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it is reasonable to guess that a delta function lies at the heart of the electric field of the dipole as well.
To check this, it is simplest to use Example 4.1 and a spherical integration volume V centered at r0.
In that case, ∫

V

d 3r E(r) = − p
3ε0

. (4.15)

On the other hand, it is clear from the symmetry of Figure 4.3 that (4.11) integrates to zero over the
volume of any origin-centered sphere. Therefore, if this behavior persists as V → 0, (4.15) will be
true if the total electric field of a point dipole is1

E(r) = 1

4πε0

[
3n̂(n̂ · p) − p

|r − r0|3 − 4π

3
p δ(r − r0)

]
. (4.16)

The unit vector n̂ = (r − r0)/|r − r0|. A useful way to think about the delta function in (4.16) will
emerge in Application 6.1 of Chapter 6, devoted to dielectric matter.

4.2.3 The Dipole Force
The electric dipole moment emerges in a natural way when we calculate the force exerted on a
neutral charge distribution ρ(r′) by an external electric field E(r′) that changes slowly in space. By
“slowly” we mean that, over the entire spatial extent of the distribution, E(r′) is well approximated by
a two-term Taylor series expansion around a reference point r located somewhere inside ρ(r′). Since
∇′f (r′)|r′=r ≡ ∇f (r), the expansion in question is

E(r′) = E(r) + [
(r′ − r) · ∇]E(r) + · · · . (4.17)

The total charge (4.4) is zero by assumption. Therefore, (4.17) gives the first non-zero contribution
to the force on ρ(r) as

F =
∫

d 3r ′ ρ(r′)E(r′) =
∫

d 3r ′ρ(r′)(r′ · ∇)E(r). (4.18)

Using the definition of p in (4.5), we learn that the force on ρ(r) is entirely characterized by its dipole
moment:

F = (p · ∇)E(r). (4.19)

Equation (4.19) is completely general. When p is a constant vector, the fact that ∇ × E = 0 and the
identity ∇(p · E) = p × (∇ × E) + E × (∇ × p) + (p · ∇)E + (E · ∇)p transform (4.19) to2

F = ∇(p · E). (4.20)

We emphasize that an electric field gradient is needed to generate a force.
An alternative derivation of (4.19) exploits the fact that the force depends only on p. The idea is to

calculate the force that E exerts on a point dipole density (4.14) with the same dipole moment p as
ρ(r). After an integration by parts, the result of this second calculation for a constant p is

F =
∫

d 3r ′ E(r′)ρD(r′) = p ·
∫

d 3r ′ δ(r′ − r)∇′ E(r′). (4.21)

Equation (4.21) reproduces (4.19) because the delta function changes ∇′ to ∇ as well as E(r′) to E(r).

1 Equation (4.16) also follows directly from (1.122).
2 Equation (4.20) is not valid for induced electric moments where p ∝ E and thus varies in space.
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4.2.4 The Dipole Torque
We can mimic the force calculation in (4.21) to find the Coulomb torque (3.4) exerted on ρ(r) by a
field E that varies slowly in space:

N =
∫

d 3r ′ r′ × E(r′)ρD(r′) =
∫

d 3r ′ δ(r′ − r)(p · ∇′)(r′ × E). (4.22)

The delta function integration gives (p · ∇)(r × E). Therefore, because ∇i r� = δi�, the kth component
of the torque is3

Nk = pi∇iεk�mr�Em = εk�mpi{δi�Em + r�∇iEm}. (4.23)

Using the dipole force F in (4.19), the vector form of (4.23) is

N = p × E + r × F. (4.24)

The first term in (4.24) is a torque which tends to rotate p around its center of mass into the direction
of E. The second term in (4.24) is a torque which tends to rotate the center of mass of p around an
origin defined by the tail of the position vector r.

4.2.5 The Dipole Potential Energy
The potential energy of interaction between ρ(r) and a slowly varying field E(r) can be calculated
using VE from (3.64) and the singular charge density (4.14). In detail,

VE(r) =
∫

d 3r ′ ϕ(r′)ρD(r′) = −
∫

d 3r ′ ϕ(r′)p · ∇′δ(r′ − r). (4.25)

When p is constant, the (by now) familiar integration by parts yields

VE(r) = −p · E(r). (4.26)

A quick check uses (4.26) to compute the force and torque on p. We reproduce (4.20) immediately
because

F = −∇VE = ∇(p · E). (4.27)

To find the torque, we ask how (4.26) changes when the dipole moment p rotates rigidly by an
infinitesimal amount δα about its center.4 The usual rules of mechanics give the change in the dipole
moment as

δp = δα × p. (4.28)

Therefore, the change in VE is

δVE = −δp · E = −(δα × p) · E = −(p × E) · δα. (4.29)

This confirms (4.24) because δVE = −N · δα defines the torque.

3 Recall from (1.37) that ak = εk�mb� cm is the kth Cartesian component of a = b × c.
4 The right-hand rule determines the rotation sense by an angle |δα| with respect to an axis pointed in the direction

of δα.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-04 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 15:34

98 ELECTRIC MULTIPOLES: APPROXIMATE ELECTROSTATICS FOR LOCALIZED CHARGE

Figure 4.6: Fluorescence microscopic image (40 µm × 160 µm) looking down onto a liquid mixture of
cholesterol and a phospholipid trapped at an air-water interface parallel to the image. The black regions are long,
thin “drops” of the liquid, with a thickness of exactly one molecule. Figure from Seul and Chen (1993).

4.2.6 The Dipole-Dipole Interaction
We can apply (4.26) to compute the total electrostatic energyUE of a collection ofN pre-existing point
dipoles located at positions r1, r2, . . . , rN . As in the corresponding point charge problem (Section 3.6),
it costs no energy to bring the first dipole p1 into position. The work done by us to bring p2 into position
is exactly the interaction energy (4.25), with the electric field (4.10) of p1 playing the role of Eext:

W12 = −p2 · E1(r2) = 1

4πε0

{
p1 · p2

|r2 − r1|3 − 3p1 · (r2 − r1)p2 · (r2 − r1)

|r2 − r1|5
}
. (4.30)

Repeating the logic of the point charge example leads to the total energy:

UE = W = 1

4πε0

1

2

N∑
i=1

N∑
j �=i

{
pi · pj

|ri − rj |3 − 3pi · (ri − rj )pj · (ri − rj )

|ri − rj |5
}
. (4.31)

A more compact form of (4.31) makes use of the electric field E(ri) at the position of the ith dipole
produced by all the other dipoles:

UE = −1

2

N∑
i=1

pi · E(ri). (4.32)

4.3 Electric Dipole Layers

A distribution of point electric dipoles confined to a surface may be characterized by a dipole moment
per unit area. If rS is a point on the surface, we use the symbol τ (rS) for this quantity. Consider, for
example the collection of polar molecules trapped at an air-water interface shown in Figure 4.6. The
microscope image does not resolve individual molecules, but it is known that the permanent electric
dipole moment p of each molecule points directly at the reader (and thus perpendicular to the trapping
interface). The molecules in the image have condensed into liquid “drops” (the black regions) that
are one molecule thick and shaped like long thin rectangles. Thermal disorder is responsible for the
observed meandering and deviations from rectangularity. We will explain at the end of the section
(see Application 4.1) why each drop has essentially the same width. Here, we focus on the potential
produced by such a system.

Let the dipole moment of each molecule in Figure 4.6 be p = qb, where b is the molecule’s length
and q is an effective charge. If each molecule occupies an area S of the interface, it is natural to
characterize the closely spaced molecules in each drop by a uniform electric dipole moment per unit
area τ , where

τ = p
S

= qb
S

= σb. (4.33)

The uniform surface charge density σ = q/S defined by (4.33) suggests a crude representation where
we model each drop in Figure 4.6 by two oppositely charged rectangular surfaces separated by the
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b b

Figure 4.7: Side view of a dipole layer: two oppositely charged surfaces with areal charge densities ±σ
separated by a distance b. In the macroscopic limit, b → 0 and σ → ∞ with the dipole moment density τ = σb
held constant.

microscopic distance b (see Figure 4.7). This abstraction makes no attempt to model the actual charge
density of each molecule. Rather, we pass to the macroscopic limit (b → 0 and σ → ∞ with τ = σb
held constant) where the size of the molecules (and the separation between them) is unresolved as in
Figure 4.6. This makes the surface electric dipole density τ a macroscopic property exactly like the
surface charge density σ .

The construction illustrated in Figure 4.7 is called a dipole layer.5 In our example, the macroscopic
surface dipole density of the dipole layer derives from the intrinsic dipole moment of the constituent
molecules. More commonly, dipole layers arise (in the absence of intrinsic dipoles) when mobile
charges exist near surfaces or boundary layers. This occurs frequently in plasma physics, condensed
matter physics, biophysics, and chemical physics. An example is the surface of a metal (see the graph
of ρ0(r) in Figure 2.7) where the electrons “spill out” beyond the last layer of positive ions. After
Lorentz averaging (Section 2.3.1), the electrostatics of this situation is well described by a surface
distribution of electric dipole moments.

4.3.1 The Potential of a Dipole Layer
The most general dipole layer is a charge-neutral macroscopic surface S (not necessarily flat) endowed
with a dipole moment per unit area that is not necessarily uniform or oriented perpendicular to the
surface. This leads us to generalize (4.33) to

τ = dp
dS

. (4.34)

The electrostatic potential produced by such an object is computed by superposing point dipole
potentials as given by (4.13). Therefore,

ϕ(r) = − 1

4πε0

∫
S

dp(rS) · ∇ 1

|r − rS | = − 1

4πε0

∫
S

dS τ (rS) · ∇ 1

|r − rS | . (4.35)

A judicious rewriting of (4.35) reveals the singular charge density ρL(r) associated with a dipole layer.
The key is to convert the surface integral (4.35) to a volume integral using a delta function. For a dipole
layer which coincides with z = 0, we write r′

S = x ′ x̂ + y ′ ŷ and r′ = r′
S + z′ẑ to get

ϕ(r) = − 1

4πε0

∫
d 3r ′δ(z′)τ (r′

S) · ∇ 1

|r − r′| . (4.36)

Now change the argument of the gradient operator from r to r′ and integrate (4.36) by parts. Two
minus signs later, we get the desired result,

ϕ(r) = − 1

4πε0

∫
d 3r ′ ∇′ · {τ (r′

S)δ(z′)
}

|r − r′| . (4.37)

Comparing (4.37) with (4.1) shows that a surface dipole layer at z = 0 is equivalent to the volume
charge density6

ρL(r) = −∇ · {τ (rS)δ(z)} . (4.38)

5 Some authors reserve the term “double layer” for a dipole layer where every dipole points normal to the surface.
6 Comparing (4.38) to (2.51) shows that the polarization of this dipole layer is P(r) = τ (x, y)δ(z).
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Figure 4.8: The charge density (solid curve) and electrostatic potential (dashed curve) associated with a
microscopic dipole layer of finite thickness. In the macroscopic limit, ϕ is discontinuous by an amount �ϕ and
ρL is singular at z = 0.

To interpret (4.38), we define a “surface gradient”,

∇S ≡ x̂
∂

∂x
+ ŷ

∂

∂y
, (4.39)

and an effective surface charge density,

σ (rS) = −∇S · τ (rS). (4.40)

In this language, the singular charge density (4.38) associated with an arbitrary dipole layer is

ρL(r) = −τz(rS)δ′(z) + σ (rS)δ(z). (4.41)

The first term in (4.41) is the charge density associated with the component of the layer dipole
moment perpendicular to the surface. To see this, compare the capacitor-like charge density in Fig-
ure 4.7 with the solid curve in Figure 4.8 labeled ρL(z).

The latter is a smooth microscopic charge density which Lorentz averages to the macroscopic delta
function derivative in (4.41). The associated electrostatic potential (dashed curve in Figure 4.8) is
similarly reminiscent of the potential of a parallel-plate capacitor. In detail, the Poisson equation
relates the curvature of the potential directly to the charge density:

ε0
d2ϕ(z)

dz2
= −ρL(z). (4.42)

The surface charge density σ (rS) in (4.41) arises exclusively from the components of τ (rS) parallel
to the surface plane. Qualitatively, the negative end of each in-plane point dipole exactly cancels the
positive end of the immediately adjacent in-plane dipole unless there is a variation in the magnitude or
direction of the dipoles along the surface. The resulting incomplete cancellation is the origin of (4.40).

4.3.2 Matching Conditions at a Dipole Layer
The matching condition, ε0n̂2 · [E1 − E2] = σ (rS), tells us that the second term in (4.41) generates a
jump in the normal component of the electric field at z = 0. To discover the effect of the first term, we
write out the Poisson equation (4.42) using only the first term on the right-hand side of (4.41) as the
source charge:

ε0
d2

dz2
ϕ(rS, z) = τz(rS)δ′(z). (4.43)
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Up to an additive constant, integration of (4.43) over z implies that

ε0
d

dz
ϕ(rS, z) = τz(rS)δ(z). (4.44)

The constant disappears when we integrate (4.44) from z = 0− to z = 0+. What remains is a matching
condition for the potential:

ϕ(rS, z = 0+) − ϕ(rS, z = 0−) = τz(rS)/ε0. (4.45)

The condition (4.45) shows that the electrostatic potential suffers a jump discontinuity at a dipole-layer
surface. The variation in ϕ(z) sketched as the dashed curve in Figure 4.8 makes this entirely plausible.
The potential rises from left to right across this microscopic dipole layer because the electric field
inside the layer points from the positive charge on the right to the negative charge on the left.

The discontinuity (4.45) implies that the tangential component of the electric field is not continuous
if the dipole-layer density varies along the surface. In the language of Section 2.3.3, the reader can
show that

n̂2 × [E1 − E2] = ∇ × {n̂2(n̂2 · τ )} /ε0. (4.46)

Under certain conditions, (4.46) generates corrections to the Fresnel formulae (Section 17.3.2) which
describe the reflection and transmission of electromagnetic waves from interfaces.7

Application 4.1 Monolayer Electric Dipole Drops

Apart from thermal fluctuations, the width w of every rectangular drop in Figure 4.6 is nearly the
same, independent of the drop length L. To see why, we ignore interactions between different drops
and assume L � w � a, where a is the lateral distance between nearest-neighbor molecules. The
energy of each drop is the sum of an electrostatic energy UE and a “perimeter” energy UC of chemical
origin. The equilibrium drop width we seek is the value of w that minimizes the total energy UE + UC

keeping the drop area A = Lw fixed. The chemical energy is straightforward. If λ is the chemical
energy per unit length of drop perimeter, we use L � w to write

UC ≈ 2Lλ = 2λA

w
. (4.47)

L

y

a

w

Figure 4.9: Top view looking down onto one monolayer-height rectangular “drop” of area A = Lw. A
polar molecule pointing out of the page occupies every a × a square of the indicated checkerboard. Black
dots highlight one complete row of molecules and one molecule at a distance y from the row.

To compute UE , focus on the top view of one rectangular drop shown in Figure 4.9 and imagine
every square of the inscribed checkerboard occupied by one polar molecule with its dipole moment
pointed out of the page. The black dots draw attention to one row of molecules and one molecule
sitting at a distance y from that row. For electrostatic purposes, the rectangle consists of w/a parallel
rows (length L) of parallel dipoles. The lateral separation between molecules is a, so (4.33) implies
that each row carries a dipole moment per unit length τa. The assumed orientation of the dipoles

7 See D.C. Langreth, “Macroscopic approach to the theory of reflectivity”, Physical Review B 39, 10020 (1989).
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implies that the electrostatic interaction energy of two such rows separated by a distance y comes
entirely from the first term in the curly brackets in (4.31):

U (y) = 1

4πε0

L∫
0

dx1

L∫
0

dx2
τ 2a2

[(x1 − x2)2 + y2]3/2
= τ 2a2

4πε0

2

y2

{√
L2 + y2 − y

}
. (4.48)

Since L � y, a valid approximation to (4.48) is U (y) � τ 2a2L/2πε0y
2. The total electrostatic energy

follows by summing over every pair of lines. There are w/a − 1 lines separated by a distance a,
w
/
a − 2 lines separated by a distance 2a, etc. Therefore, when w � a,

UE = τ 2L

2πε0

w/a∑
n=1

(w/a − n)

n2
≈ τ 2L

2πε0

w/a∫
1

dn
(w/a − n)

n2
≈ τ 2L

2πε0

{w
a

− ln
w

a

}
. (4.49)

The total energy is the sum of (4.49) and the chemical perimeter energy (4.47):

UT = UC + UE = 2A

w

[
λ+ τ 2

4πε0

(w
a

− ln
w

a

)]
. (4.50)

Keeping A fixed and minimizing UT with respect to w gives the equilibrium width we seek,

w0 ≈ a exp(4πε0λ/τ
2). (4.51)

The width w0 is independent of the drop length L, as claimed in the statement of the problem. The
exponential dependence of w0 on material parameters is characteristic of two-dimensional dipole
systems. Experiments show that the addition of more molecules does not increase the width of any
drop beyond w0. Instead, new drops form with a width w0. �

4.4 The Electric Quadrupole

The third (electric quadrupole) term dominates the multipole expansion (4.7) when the charge distri-
bution of interest has zero net charge and zero dipole moment ( Q = p = 0). All atomic nuclei have
this property,8 as do all homonuclear diatomic molecules (like N2). The asymptotic (r → ∞)

ϕ(r) = 1

4πε0
Qij

3rirj − δij r
2

r5
. (4.52)

Repeating (4.6), the components of the electric quadrupole tensor are

Qij = 1
2

∫
d 3r ρ(r)rirj . (4.53)

Mimicking (4.9), it is not difficult to show that these scalars are uniquely defined and do not depend
on the choice of the origin of coordinates if Q = p = 0. Note also that the explicit appearance of
Cartesian factors like xy or z2 in the integrand does not compel us to evaluate the integral (4.53) using
Cartesian coordinates.

The name “quadrupole” comes from a geometrical construction similar to the dipole case of Fig-
ure 4.5. This time, we place two oppositely oriented point dipoles ± p/s (thus four charges in total)
at opposite ends of a vector sc (Figure 4.10).9 In the limit s → 0, a calculation similar to (4.13) gives

8 See the box which follows Example 4.1.
9 The multiple derivative structure of (4.3) guarantees that each term in the multipole expansion can be represented by

point charge configurations constructed from suitable pairings in space of the configurations which describe the
previous term. This guarantees that each configuration is electrically neutral and that only 2n-poles appear.
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sc

s–p

sp

Figure 4.10: A quadrupole composed of two oppositely directed dipoles.

the electrostatic potential of a “point quadrupole” located at the origin:

ϕ(r) = 1

4πε0
(c · ∇)(p · ∇)

1

r
. (4.54)

This is identical to (4.52) with

Qij = 1
2 (cipj + cjpi). (4.55)

The manifestly symmetric definition (4.55) is needed because Qij = Qj i is explicit in (4.53). By
direct construction, or by mimicking (4.14), the reader can confirm that the corresponding singular
charge density for a point quadrupole at the origin is

ρQ(r) = Qij∇i∇j δ(r). (4.56)

The symmetry Qij = Qji implies that only six (rather than nine) independent numbers are needed
to characterize a general quadrupole tensor:10

Q =
⎡
⎣Qxx Qxy Qxz

Qxy Qyy Qyz

Qxz Qyz Qzz

⎤
⎦ . (4.57)

This information can be packaged more efficiently if we adopt the principal axis coordinate system
(x ′, y ′, z′) to evaluate the integrals in (4.53). By definition, the quadrupole tensor Q′ is diagonal in this
system, with components

Q′
ij = 1

2δij
∫
d 3r ′ ρ(r′)r ′

i r
′
j . (4.58)

In the general case, familiar theorems from linear algebra tell us that

Q′ = U−1QU, (4.59)

where U is the unitary matrix formed from the eigenvectors of Q. These eigenvectors can always
be found because Q is a symmetric matrix. We conclude that the three numbers Q′

xx , Q′
yy , and Q′

zz

are sufficient to completely characterize the quadrupole potential (4.52) in the principal axis system.
The reader will recognize the direct analogy between the electric quadrupole moment tensor and the
moment of inertia tensor used in classical mechanics.

4.4.1 The Traceless Quadrupole Tensor
It is usually not convenient (or even possible) to measure the components of Q directly in the
principal axis system defined by (4.59). Luckily, a strategy exists that economizes the description

10 Recall from Section 1.8 that we use boldface symbols for tensor quantities like Q. Context should prevent confusion
with the total charge Q.
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of the quadrupole potential even if we are forced to work in an arbitrary coordinate system. The
calculation begins by using (4.53) to write out (4.52):

ϕ(r) = 1

4πε0

{
1

2

∫
d 3r ′ ρ(r′)r ′

i r
′
j

}
3rirj − r2δij

r5
. (4.60)

The key step uses the identity

r ′
i r

′
j r

2δij = r2r ′2 = rirj r
′2δij (4.61)

to write (4.60) in the form

ϕ(r) = 1

4πε0

{
1

2

∫
d 3r ′ ρ(r′)

(
3r ′

i r
′
j − δij r

′2)} rirj

r5
. (4.62)

Therefore, if we define a symmetric, traceless quadrupole tensor,

�ij = 1

2

∫
d 3r ′ ρ(r′)(3r ′

i r
′
j − r ′2δij ) = 3Qij −Qkkδij , (4.63)

the quadrupole potential (4.60) simplifies to

ϕ(r) = 1

4πε0
�ij

rirj

r5
. (4.64)

As its name implies, the point of this algebraic manipulation is that the tensor  has zero trace:

Tr[] = δij�ij = 1

2

∫
d 3r ρ(r)(3riri − r2δii) = 0. (4.65)

This is important because the constraint

Tr[] = �xx +�yy +�zz = 0 (4.66)

reduces the number of independent components of  by one. Hence, a complete characterization of
the quadrupole potential in an arbitrary coordinate system requires specification of only five numbers
(the independent components of the traceless Cartesian quadrupole tensor ) rather than six numbers
(the components of the primitive Cartesian quadrupole tensor Q). Equivalently, it always possible to
choose the vectors c and p in (4.54) so |c| = |p|. This similarly reduces the number of independent
Cartesian components from six to five.

4.4.2 Force and Torque on a Quadrupole
The force and torque exerted on a point quadrupole in an external electric field can be calculated using
the method of Section 4.2.3. The results are

F = Qij∇i∇jE (4.67)

and

N = 2(Q · ∇) × E + r × F. (4.68)

The corresponding electrostatic interaction energy is

VE(r) = −Qij∇iEj (r) = − 1
3�ij∇iEj (r). (4.69)

A glance back at (4.63) shows that the two expressions in (4.69) differ by a term proportional to
δij ∂iEj = ∇ · E. This is zero because the source charge for the external field E is assumed to be far
from the quadrupole. Following the logic of Section 4.2.3, it not difficult to show that (4.67), (4.68),
and (4.69) are valid for any neutral charge distribution with p = 0 if the electric field does not vary
too rapidly over the volume of the distribution.
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4.4 The Electric Quadrupole 105

Application 4.2 Nuclear Quadrupole Moments

Most atomic nuclei are rotationally symmetric with respect to one principal axis. If we call this the
z-axis, the symmetry and the trace condition (4.66) imply that only one independent component of the
quadrupole tensor is needed to characterize these nuclei:

�zz = −2�xx = −2�yy. (4.70)

The algebraic sign of the single parameter Q ≡ �zz characterizes the shape of the proton charge
distribution.11 A cigar-shaped nucleus (Q > 0) is called prolate; a pumpkin-shaped nucleus (Q < 0)
is called oblate (Figure 4.11). These deviations from nuclear sphericity were first inferred by Schüler
and Schmidt (1935) from systematic energy shifts in experimental hyperfine spectra which were
interpretable only if the total atomic energy included an electrostatic term like (4.69).

Spherical

z

OblateProlate

0Q 0Q 0Q

Figure 4.11: Quadrupole distortions of a sphere characterized by Q = zz.
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Figure 4.12: Ground state electric quadrupole parameter Q for odd-mass nuclei. Solid (open) circles are
nuclei with odd proton (neutron) number Z(N ). The data are scaled by ZR2 where R is the nuclear radius.
The vertical lines label “magic” numbers where nuclear shells or subshells close. The curves are guides to
the eye. Figure from Rowe and Wood (2010).

Figure 4.12 summarizes quadrupole moment data for odd-mass nuclei. Closed-shell nuclei are
spherical, so Q ≈ 0 when the nuclear-shell model predicts major shell or subshell closings at certain

11 There should be no confusion with the total charge Q defined in (4.4).
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“magic” numbers (vertical lines in Figure 4.12). Oblate shapes are observed for nuclei with very few
nucleons in excess of a shell closing. This can be understood qualitatively from �zz in (4.63) if we
imagine nucleons orbiting the closed shell in the z = 0 plane. It is an open question of nuclear physics
to explain (in simple terms) the predominance of prolate shapes in Figure 4.12. �

Example 4.2 Evaluate the traceless quadrupole tensor  in the principal axis system for an ellipsoid
with volume V , uniform charge density ρ, and semi-axes ax , ay , and az. Choose the center of the
ellipsoid as the origin of coordinates.

Solution: Only the diagonal elements of  are non-zero in the principal axis system. We compute,
say,

�xx = 1
2ρ
∫
V
d 3r ′ {3x ′2 − r ′2} .

A change of variables to ri = r ′
i /ai transforms the r′ integration over the ellipsoid volume to an r

integration over the volume of a unit sphere. �xx depends on the choice of origin because the total
charge

ρ V = (4π
/

3)ρ axayaz �= 0.

The suggested choice of the sphere center leads us to compute

�xx = 1
2ρaxayaz

∫
d 3r(2a2

xx
2 − a2

yy
2 − a2

z z
2).

However, because the integration volume is a sphere of radius one,∫
d 3r x2 =

∫
d 3r y2 =

∫
d 3r z2 = 1

3

∫
d 3r r2 = (4π

/
3)
∫ 1

0 drr4 = 4π/15.

Using this, we conclude that

�xx = 1
10ρV (2a2

x − a2
y − a2

z ).

Then, by symmetry,

�yy = 1
10ρV (2a2

y − a2
z − a2

x)

and

�zz = 1
10ρV (2a2

z − a2
x − a2

y).

Note that �xx +�yy +�zz = 0.

4.5 Spherical Mathematics

The Cartesian multipole expansion (4.3) is not particularly well suited to systems with natural spherical
symmetry. Therefore, despite the discussion of nuclear quadrupole moments in the previous section,
most treatments of multipole electrostatics in atomic physics and nuclear physics use an alternative,
“spherical” expansion. The mathematics needed to derive this expansion begins by replacing the Taylor
series used in Section 4.1.1,

1

|r − r′| = 1

r
− r′ · ∇ 1

r
+ 1

2
(r′ · ∇)2 1

r
− · · · r ′ < r, (4.71)
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4.5 Spherical Mathematics 107

with the binomial expansion

1

|r − r′| = 1√
r2 − 2r · r′ + r ′2 = 1

r

[
1 − 2(r̂ · r̂′)

r ′

r
+ r ′2

r2

]−1/2

r ′ < r. (4.72)

4.5.1 Legendre Polynomials
It is tedious to evaluate the right side of (4.72) using

1√
1 + z

= 1 − 1

2
z + 1 · 3

2 · 4
z2 − · · · −1 < z ≤ 1. (4.73)

On the other hand, the expansion we get by doing so is precisely the one used to define the real-valued
Legendre polynomials, P� (x), which are well known and tabulated. Specifically,

1√
1 − 2xt + t2

≡
∞∑
�=0

t�P� (x) |x| ≤ 1, 0 < t < 1. (4.74)

Appendix C summarizes the most important properties of these well-studied functions of mathematical
physics. We note here only the orthogonality relation,

1∫
−1

dxP� (x)P� ′ (x) = 2

2� + 1
δ�� ′ , (4.75)

the completeness relation,

∞∑
�=0

2�+ 1

2
P�(x)P�(x

′) = δ(x − x ′), (4.76)

and the first few Legendre polynomials,

P0(x) = 1

P1(x) = x (4.77)

P2(x) = 1
2 (3x2 − 1).

The main result we need here comes from applying (4.74) to (4.72) with t = r ′/r and x = r̂ · r̂′. This
gives the very useful identity

1

|r − r′| = 1

r

∞∑
�=0

(
r ′

r

)�

P� (r̂ · r̂′) r ′ < r. (4.78)

Example 4.3 Use the expansion (4.78) to find the force between two non-overlapping, spherically
symmetric charge distributions ρ1(r) and ρ2(r ′) whose centers are separated by a distance R

(Figure 4.13).

r R
rr

r′

2
r( ′)1

( )r

Figure 4.13: Two spherical charge distributions that do not overlap in space.
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Solution: We will compute F = −∇VE where VE is the interaction energy. By Gauss’ law, the
electric field produced by ρ2(r ′) outside of itself is just the field produced by a point charge
Q2 = ∫

d 3r ′ ρ2(r ′) placed at r′ = 0. The potential produced by ρ2(r ′) outside itself is similarly a
point charge potential. Hence, the potential energy of interaction is

VE =
∫

d 3r ρ1(r)ϕ2(r) = Q2

4πε0

∫
d 3r

ρ1(r)

|r − R| .

R is a fixed vector which we align along the z-axis. In that case, r̂ · R̂ = cos θ where θ is the usual
polar angle. Therefore, because P0(cos θ ) = 1 and r < R, (4.78) gives

VE = Q2

4πε0

∫
d 3r ρ1(r)

1

R

∞∑
�=0

( r
R

)�
P�(cos θ )P0(cos θ ).

Only the � = 0 term survives the sum because the orthogonality relation (4.75) shows that the
integral over θ gives 2δ�,0. Using this information,

VE = Q2

4πε0R

∫
d 3r ρ1(r) = Q1Q2

4πε0R
.

We conclude that the potential energy between ρ1(r) and ρ2(r ′) is the same as if the total charge
of each distribution was concentrated at its center. Hence, the force which ρ1(r) exerts on ρ2(r ′)
is

F = −∇RVE = Q1Q2

4πε0

R̂
R2

.

4.5.2 Spherical Harmonics
The argument of the Legendre polynomials in (4.78) is r̂ · r̂′ = cos γ . Figure 4.14 shows that cos γ is
an awkward variable because neither r nor r′ is a constant vector. It would be much more convenient
if the right side of (4.78) were expressed explicitly in terms of the spherical coordinates r = (r, θ, φ)
and r′ = (r ′, θ ′, φ′) defined with respect to a fixed set of coordinate axes in space. This is the role of
the spherical harmonic addition theorem,

P�(r̂ · r̂′) = 4π

2�+ 1

+�∑
m=−�

Y ∗
�m(θ ′, φ′)Y�m(θ, φ). (4.79)

The complex-valued spherical harmonics Y�m(θ, φ) are also well-studied functions of mathemati-
cal physics. As implied by (4.79), the index m takes on 2� + 1 integer values −�, . . . , 0, . . . +�.
Appendix C summarizes their most important properties. With the notation � ≡ (θ, φ), we mention
here only that they are orthonormal,∫

d�Y ∗
�m(�)Y� ′m′ (�) = δ��′δmm′ , (4.80)

and complete,12

∞∑
�=0

�∑
m=−�

Y�m(�)Y ∗
�m(�′) = 1

sin θ
δ(θ − θ ′)δ(φ − φ′). (4.81)

12 See Section 7.4.1 for the definition of completeness.
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r

′r

′

′ 

y

x

z

Figure 4.14: Relation between r = (r, θ, φ) and r′ = (r ′, θ ′, φ′) where r̂ · r̂′ = cos γ.

The first few spherical harmonics are

Y00(�) = 1√
4π

Y10(�) =
√

3

4π
cos θ =

√
3

4π

z

r
(4.82)

Y1 ±1(�) = ∓
√

3

8π
sin θ exp(±iφ) = ∓

√
3

8π

x ± iy

r
.

4.5.3 The Inverse Distance
Substitution of (4.79) into (4.78) produces a spherical expansion for the inverse distance referred to a
single origin of coordinates:

1

|r − r′| = 1

r

∞∑
�=0

4π

2� + 1

(
r ′

r

)� �∑
m=−�

Y ∗
�m(�′)Y�m(�) r ′ < r. (4.83)

Even better, the alert reader will notice that an exchange of the primed and unprimed variables in
(4.83) produces a formula for 1/|r − r′| that is valid when r ′ > r . This leads us to define r< as the
smaller of r and r ′ and r> as the larger of r and r ′ in order to write a formula which covers both cases:

1

|r − r′| = 1

r>

∞∑
�=0

4π

2� + 1

(
r<

r>

)� �∑
m=−�

Y ∗
�m(�<)Y�m(�>). (4.84)

A similar generalization applies to the Legendre identity (4.78).

4.6 Spherical and Azimuthal Multipoles

We derive multipole expansions of the electrostatic potential ϕ(r) appropriate to systems with natural
spherical symmetry by substituting (4.84) into

ϕ(r) = 1

4πε0

∫
d 3r ′ ρ(r′)

|r − r′| . (4.85)

The version of (4.84) with r > r ′ produces an exterior multiple expansion analogous to (4.3) that is
valid for observation points that lie outside the charge distribution. The version of (4.84) with r < r ′

gives an interior multipole expansion whose character and usefulness we will explore below.
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r
R

Figure 4.15: A charge distribution ρ(r) (shaded) lies completely outside an origin-centered sphere of radius R.
An interior multipole expansion is valid at observation points r inside the sphere.

4.6.1 The Exterior Spherical Expansion
When the charge density is localized and confined to the sphere of radius R in Figure 4.1, the spherical
analog of the Cartesian expansion (4.3) which converges for observation points exterior to the sphere
is

ϕ(r) = 1

4πε0

∞∑
�=0

�∑
m=−�

A�m

Y�m(�)

r�+1
r > R. (4.86)

The complex numbers A�m are the exterior spherical multipole moments of the charge distribution:

A�m = 4π

2� + 1

∫
d 3r ′ ρ(r′) r ′� Y ∗

�m(�′). (4.87)

The order-of-magnitude estimate A�m ∼ QR� shows that, like the Cartesian multipole expansion,
(4.86) is an expansion in the small parameter R/r . Moreover, there is a simple relation between A�m

and A�−m because the spherical harmonics obey

Y�−m(θ, φ) = (−1)mY ∗
�m(θ, φ). (4.88)

The coefficient of 1/r�+1 in (4.86) must be identical to the corresponding coefficient in the Cartesian
expansion (4.7). This means that the information encoded by the three spherical moments A10, A11,

andA1 −1 is exactly the same as the information encoded by the three components of the electric dipole
moment vector p. Put another way, each A1m can be written as a linear combination of the pk and vice
versa. Similarly, the five spherical moments A2m carry the same information as the five components
of the traceless quadrupole tensor .13 When higher moments are needed (as in some nuclear, atomic,
and molecular physics problems), the relatively simple analytic properties of the spherical harmonics
usually make the spherical multipole expansion the method of choice for approximate electrostatic
potential calculations.

4.6.2 The Interior Spherical Expansion
The expansion (4.86) is only valid for observation points that lie outside a bounded distribution ρ(r).
Another common situation is depicted in Figure 4.15. This shows a region of distributed charge ρ(r)
which completely surrounds a charge-free, origin-centered sphere of radius R. To study ϕ(r) inside
the sphere, we choose the version of (4.84) that applies when r < r ′ and substitute this into (4.85).

13 It is not obvious that the traceless tensor  is relevant here rather than the primitive tensor Q. This point is explored
in Section 4.7.
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The result is a formula for the potential that is valid at observation points in the interior of the sphere
in Figure 4.15:

ϕ(r) = 1

4πε0

∞∑
�=0

�∑
m=−�

B�m r
� Y ∗

�m(�) r < R. (4.89)

The complex numbers B�m in (4.89) are the interior spherical multipole moments of the charge
distribution:

B�m = 4π

2� + 1

∫
d 3r ′ ρ(r′)

r ′�+1 Y�m(�′). (4.90)

The Cartesian analog of the interior expansion (4.89) is a power expansion of ϕ(x, y, z) around the
origin of coordinates.

Example 4.4 Use the multipole expansion method to find ϕ(r) for a spherically symmetric but
otherwise arbitrary charge distribution.

Solution: Figure 4.16 shows an observation point r at a distance r from the center of the distribution.
We use an exterior expansion to find the contribution to ϕ(r) from the charge in the volume V and
an exterior expansion to find the contribution to ϕ(r) from the charge in the volume V ′.

V V ′

r

Figure 4.16: A spherically symmetric charge distribution of infinite extent.

Since Y00 = 1/
√

4π is a constant, there is no loss of generality if we write ρ(r) = ρ(r)Y00 =
ρ(r)Y ∗

00. Then, the exterior and interior multipole moments defined in (4.87) and (4.90) are

A�m(r) = 4π

2�+ 1

∫
d�′Y00(�′)Y ∗

�m(�′)

r∫
0

dr ′r ′2ρ(r ′) = 4πδ�,0δm,0

r∫
0

dr ′r ′2ρ(r ′)

B�m(r) = 4π

2�+ 1

∫
d�′Y ∗

00(�′)Y�m(�′)

∞∫
r

dr ′ ρ(r ′)
r ′�−1

= 4πδ�,0δm,0

∞∫
r

dr ′r ′ρ(r ′).

Since only the A00 and B00 terms survive we drop the constant factor Y00 from the definition of
ρ(r) and add the potentials (4.86) and (4.89) to get the desired final result,

ϕ(r) = 1

4πε0

{
A00(r)

r
+ B00(r)

}
= 1

ε0

⎧⎨
⎩1

r

r∫
0

ds s2ρ(s) +
∞∫
r

ds sρ(s)

⎫⎬
⎭ .

This agrees with the formula derived for this quantity in Example 3.4.
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4.6.3 Azimuthal Multipoles
Specified charge densities that are azimuthally symmetric with respect to a fixed axis in space occur
quite frequently. For that reason, it is worth learning how (4.86) and (4.89) simplify when ρ(r, θ, φ) =
ρ(r, θ ). We will need two properties of the spherical harmonics:

Y�0(θ, φ) =
√

2� + 1

4π
P� (cos θ ) (4.91)

and

1

2π

2π∫
0

dφ Y�m(θ, φ) =
√

2� + 1

4π
P� (cos θ )δm, 0. (4.92)

Using (4.92), the expansion coefficients (4.87) and (4.90) become A�m = A�δm0
√

4π/(2� + 1) and
B�m = B� δm0

√
4π/(2� + 1), where14

A� =
∫

d 3r ′ r ′� ρ(r ′, θ ′)P� (cos θ ′) (4.93)

and

B� =
∫

d 3r ′ 1

r ′�+1
ρ(r ′, θ ′)P� (cos θ ′). (4.94)

Substituting A�m and B�m into (4.86) and (4.89), respectively, and using (4.91) yields exterior and
interior azimuthal multipole expansions in the form

ϕ(r, θ ) = 1

4πε0

∞∑
�=0

A�

r�+1
P� (cos θ ) r > R, (4.95)

ϕ(r, θ ) = 1

4πε0

∞∑
�=0

B� r
�P� (cos θ ) r < R. (4.96)

Application 4.3 The Potential Produced by σ (θ ) = σ0 cos θ

A situation which occurs frequently in electrostatics is an origin-centered spherical shell with radius
R and a specified surface charge density

σ (θ ) = σ0 cos θ. (4.97)

We can represent the potential produced by (4.97) using the exterior azimuthal multipole expansion
(4.95) for the space outside the shell and the interior azimuthal multipole expansion (4.96) for the
space inside the shell. The fact that P1(x) = x and the orthogonality relation (4.75) for the Legendre
polynomials show that the expansion coefficients (4.93) and (4.94) are

A� =
∫

dS R�P�(cos θ )σ (θ ) = σ0R
�+2

2π∫
0

dφ

π∫
0

dθ sin θP�(cos θ ) cos θ = 4π

3
R3σ0δ�,1

(4.98)

B� =
∫

dS
1

R�+1
P�(cos θ )σ (θ ) = σ0R

1−�
2π∫

0

dφ

π∫
0

dθ sin θP�(cos θ ) cos θ = 4π

3
σ0δ�,1.

14 Notice that (4.93) and (4.94) include an integration over the azimuthal angle φ.
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The corresponding potential is

ϕ(r, θ ) = σ0

3ε0

⎧⎨
⎩
r cos θ r < R,

R3

r2
cos θ r > R.

(4.99)

Note that the two expansions agree at r = R. This reflects the continuity of the electrostatic potential as
the observation point passes through a layer of charge. The fact that only the � = 1 term survives tells us
that the electric field outside the shell is exactly dipolar. The interior “dipole” potential is proportional
to r cos θ = z. This gives a constant electric field E ‖ ẑ inside the shell because E = −∇ϕ. �

4.6.4 Preview: the Connection to Potential Theory
The multipole calculation outlined in Application 4.3 exploited the fact that all the source charge lay
on the surface of a spherical shell. Another approach to this problem, called potential theory, uses the
same information to infer that ϕ(r) satisfies Laplace’s equation both inside the shell and outside the
shell:

∇2ϕ(r) = 0 r �= R. (4.100)

From this point of view, (4.95) and (4.96) are linear combinations of elementary solutions of Laplace’s
equation with azimuthal symmetry. The coefficients A� and B� are chosen so the potentials inside
and outside the sphere satisfy the required matching conditions (Section 3.3.2) at r = R. If the source
charge on the shell is not azimuthally symmetric, similar remarks apply to a potential given by the
simultaneous use of (4.86) and (4.89). We will explore potential theory in detail in Chapters 7 and 8.

Example 4.5 Find the electrostatic potential produced by a uniformly charged line bent into an
origin-centered circular ring in the x-y plane. The charge per unit length of the line is λ = Q/2πR.

Solution: The potential ϕ(r, θ ) is determined completely by an interior and exterior azimuthal
multipole expansion with respect to an origin-centered sphere of radiusR. In spherical coordinates,
the volume charge density of the ring is

ρ(r) = (λ
/
r)δ(r − R)δ(cos θ ).

Note that the right side of this equation is dimensionally correct and satisfies the necessary condition
Q = ∫

d 3rρ(r) = 2π Rλ. Using (4.93) and (4.94), the expansion coefficients are A� = QR�P� (0)
and B� = QR−(�+1)P� (0). Therefore,

ϕ(r, θ ) = Q

4πε0r

∞∑
�=0

(
R

r

)�

P� (0)P� (cos θ ) r ≥ R,

ϕ(r, θ ) = Q

4πε0R

∞∑
�=0

( r
R

)�
P� (0)P� (cos θ ) r ≤ R.

As it must be, the potential is continuous as the observation point passes through the ring.

Application 4.4 The Liquid Drop Model of Nuclear Fission

Bohr and Wheeler (1939) famously discussed a “liquid drop” model of the nucleus where a sphere
of uniform charge density � = Q/(4πR3

0/3) undergoes a small amplitude shape distortion as the first
step toward fission. Surface energy opposes fission because the distortion increases the nuclear surface
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area. Electrostatics favors fission because the distortion lowers the Coulomb self-energy of the system.
The latter dominates when the nuclear charge is large enough. To see this, we will show the following.

Claim A: Up to quadrupole order, the most general azimuthally symmetric distortion of a uniform
sphere with charge q and radius R0 which preserves both the volume and the position of the center of
mass has a surface described by

R(θ ) = R0

{
1 − α2

5
+ αP2(cos θ )

}
α � 1. (4.101)

Claim B: If U0 is the self-energy of the undistorted nucleus, the change in electrostatic energy
induced by the shape distortion (4.101) is

�UE = − 1
5U0α

2. (4.102)

Proof of Claim A: The most general azimuthally symmetric form for the nuclear shape (up to
quadrupole order) is

R(θ ) = R0 {1 + α0P0(cos θ ) + α1P1(cos θ ) + α2P2(cos θ )} . (4.103)

The α1 term can be discarded because it corresponds to a rigid displacement of the center of mass
of the undistorted sphere along the z-axis. To see this, note first that P1(cos θ ) = cos θ = z on the
unit sphere. Then, to first order in α1 � 1, the presumptive shape equation r = 1 + α1z implies that
r2 = 1 + 2α1z. On the other hand r2 = x2 + y2 + z2. Equating these two expressions for r2 implies
that x2 + y2 + (z − α1)2 = 1 (to first order in α1). This is the equation of the displaced unit sphere
shown in Figure 4.17(a).

z z

( )a ( )b

Figure 4.17: Small-amplitude distortions of a unit sphere: (a) �R(θ ) = α1P1(cos θ );
(b) �R(θ ) = α2P2(cos θ ).

To preserve the sphere volume, we use P0(cos θ ) = 1 and demand that

4π

3
R3

0 = 2π

π∫
0

dθ sin θ

R(θ )∫
0

drr2 = 2π

3
R3

0

1∫
−1

dx [1 + α0 + α2P2(x)]3 . (4.104)

The integral on the far right is performed using the orthogonality relation (4.75) for the Legendre
polynomials. By omitting terms that are higher order than quadratic in the alpha parameters, we find

4π

3
R3

0 = 4π

3
R3

0 + 4πR3
0

(
α0 + α2

0 + 1
5α

2
2

)
. (4.105)

To second order in the alpha parameters, we must put α0 = −α2
2/5 to make (4.105) an equality. This

proves Claim A if we set α = α2 in (4.101).

Proof of Claim B: Let ϕ0(r) be the electrostatic potential of the undistorted nucleus and use a step
function to write the undistorted nuclear charge density as ρ0(r) = ��(R0 − r). The same quantities
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for the shape-distorted nucleus are ϕ(r) and ρ(r, θ ) = ��(R(θ ) − r). With this notation, the change
in total Coulomb energy (3.78) upon distortion is

�UE = 1
2

∫
d 3r [ρ(r)ϕ(r) − ρ0(r)ϕ0(r)] . (4.106)

To evaluate the first integral in (4.106), we focus on ρ(r) and expand �(R(θ ) − r) to second order in
α and write δ′(R0 − r) for the radial derivative of δ(R0 − r). This gives

ρ(r, θ ) � ρ0(r) + α�P2(cos θ )R0δ(R0 − r)

−α2
[

1
5�R0δ(R0 − r) + 1

2�R
2
0P

2
2 (cos θ )δ′(R0 − r)

]+ · · · (4.107)

It is convenient to write (4.107) as ρ � ρ0 + ρ1 + ρ2 where the subscript indicates the power of the
small parameter α in each term. The corresponding potential is ϕ � ϕ0 + ϕ1 + ϕ2. This means that the
product ρ(r)ϕ(r) contains nine terms. One of these terms is ρ0ϕ0. Three other terms are of order α3

and can be neglected. The remaining five terms can be reduced to three because Green’s reciprocity
relation (Section 3.5.2) implies that∫

d 3rρ0(r)ϕ1(r) =
∫

d 3rρ1(r)ϕ0(r) (4.108)

and ∫
d 3rρ0(r)ϕ2(r) =

∫
d 3rρ2(r)ϕ0(r). (4.109)

We conclude that (to second order in α) the distortion-induced change in Coulomb energy (4.106) is

�UE �
∫

d 3r{ρ0ϕ1 + 1
2ρ1ϕ1 + ρ2ϕ0} = �U0 +�U1 +�U2. (4.110)

To find ϕ0, it is simplest to evaluate the formula derived in Example 3.4 at the end of of Section 3.4.1:

ϕ0(r) = 1

ε0r

∫ r

0
dss2ρ0(s) + 1

ε0

∫ ∞

r

dssρ0(s). (4.111)

The charge density ρ0(r) equals � when r < R0 and zero otherwise. Therefore,

ϕ0(r) =

⎧⎪⎪⎨
⎪⎪⎩

(3R2
0 − r2)�

6ε0
r < R,

�R3
0

3ε0r
r > R0.

(4.112)

To find ϕ1, we note from (4.107) that ρ1(r) has the form ρ1 = σδ(R0 − r) with effective surface
charge density σ = αϕP2(cos θ )R0. This means that the matching condition (3.19) must be imposed
at r = R0:

∂ϕ1

∂r

∣∣∣∣
r=R−

0

− ∂ϕ1

∂r

∣∣∣∣
r=R+

0

= σ

ε0
= α�R0P2(cos θ )

ε0
. (4.113)

The potential itself has an exterior multipole expansion (4.95) for r > R0 and an interior multipole
expansion (4.96) for r < R0. However in light of (4.113), it should be sufficient to keep only the � = 2
term in each. Therefore, imposing the continuity of ϕ1 at r = R0, we write

ϕ1(r, θ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

4πε0
C2

(
r

R0

)2

P2 cos(θ ) r < R0,

1

4πε0
C2

(
R0

r

)3

P2 cos(θ ) r > R0.

(4.114)
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Substituting (4.114) into (4.113) determines the coefficient C2. The final result is

ϕ1(r, θ ) =

⎧⎪⎪⎨
⎪⎪⎩
α�r2P2(cos θ )

5ε0
r < R0,

α�R5
0P2(cos θ )

5ε0r3
r > R0.

(4.115)

With ρ0, ρ1, ρ2, ϕ0, and ϕ1 in hand, it is straightforward to evaluate the three energy integrals in
(4.110) which determine �UE using the Legendre orthogonality relation (4.75) and (for the ρ2ϕ0

piece) the fact that ϕ′
0(r) is continuous at r = R0. The results are

�U0 = 0 �U1 = 2π

25ε0
�2R5

0α
2 �U2 = − 2π

15ε0
�2R5

0α
2. (4.116)

Since � = Q/(4πR3
0/3), the sum of the three energies in (4.116) gives the total change in electrostatic

energy produced by a quadrupole shape distortion of a spherical nucleus with constant charge density
as

�UE = −
{

3

5

Q2

4πε0R0

}
α2

5
. (4.117)

This proves Claim B because, using (3.77), the total energy of the undistorted nucleus is

U0 = 1

2

∫
d 3rρ0(r)ϕ0(r) = 3

5

Q2

4πε0R0
. (4.118)

�

4.7 Primitive and Traceless Multipole Moments

There is a deep connection between the spherical multipole expansion derived in Section 4.6 and a
traceless version of the Cartesian multiple expansion derived in Section 4.1.1, namely that the number
of independent traceless Cartesian multipole moments T

(� )
ij ...m is equal to the number of spherical

multipole moments A�m Beginning at � = 2, the number in question is smaller (often much smaller)
than the number of independent primitive Cartesian multipole moments, C(�)

ij ...m. Our proof of these
statements begins with an explicit formula for the entire primitive Cartesian multiple expansion. A
convenient form is

ϕ(r) = 1

4πε0

∞∑
�=0

C
(�)
ij ...mN

(�)
ij ...m(r), (4.119)

where the primitive electric moment of order � is

C
(�)
ij ...m = 1

�!

∫
d 3r ρ(r) rirj · · · rm︸ ︷︷ ︸

� terms

(4.120)

and

N
(�)
ij ...m(r) = (−1)� ∇i∇j · · · ∇m︸ ︷︷ ︸

� terms

1

r
. (4.121)

A complete traceless Cartesian multipole expansion is obtained by (i) substituting the expansion
(4.78) of |r − r′|−1 into Coulomb’s formula (4.85) for the electrostatic potential; and (ii) writing out
the Legendre polynomials (4.77) explicitly using r̂ · r̂′ = rir

′
i /rr

′ and r2 = rirj δij . The first few terms

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-04 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 15:34

4.7 Primitive and Traceless Multipole Moments 117

1

0

1

.2..

0 1 2 . . . 1

Number of balls in A
Number of balls in B

Figure 4.18: (�+ 1) × (�+ 1) matrix for calculation of the number of independent components of a completely
symmetric �-rank tensor.

generated by this procedure are

ϕ(r) = 1

4πε0

{
Q

r
+ p · r

r3
+�ij

rirj

r5
+ · · ·

}
. (4.122)

The monopole (� = 0) and dipole (� = 1) terms in (4.122) are the same as those in the primitive
multiple expansion (4.7). However, the � = 2 term is not the quadrupole potential (4.52) expressed in
terms of the primitive moments Qij . Instead, it is the quadrupole potential (4.64) expressed in terms
of the traceless moments �ij . The complete series (4.122) is

ϕ(r) = 1

4πε0

∞∑
�=0

T
(� )
ij ...m

� terms︷ ︸︸ ︷
rirj · · · rm
r2�+1

, (4.123)

where the scalars T (� )
ij ...m are the components of an �th-order traceless Cartesian multipole moment:

T
(�)
ij ···m = (−1)�

�!

∫
d 3yρ(y)y2�+1 ∂

∂yi

∂

∂yj
· · · ∂

∂ym

1

|y| . (4.124)

The meaning of “traceless” is that we get zero when the trace operation is performed over any pair of
indices:

δij T
(� )
ij ...m = δimT

(� )
ij ...m = · · · · · · = δmjT

(� )
ij ...m = 0. (4.125)

The representation of the electrostatic potential by this traceless Cartesian expansion (4.123) is com-
pletely equivalent to the primitive Cartesian expansion (4.119). However, as we will now show, the
traceless representation is much more efficient.

4.7.1 Counting Multipole Moments
The primitive Cartesian moments C(� )

ij ···m defined in (4.120) are symmetric with respect to the inter-
change of any two indices. This means that the number of independent components of the tensor
C(� )—call this number M—is equal to the number of ways that each of � indices takes one of the three
values (x, y, z) regardless of their order. This is equivalent to counting the number of ways to place �
indistinguishable balls in three distinguishable urns, A, B, and C. Figure 4.18 represents this problem
in matrix form. Each row indicates the number of balls put into urn A. Within any row, each column
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indicates the number of balls put into urn B. The remaining balls are put into urn C. Each shaded box
of the matrix thus represents one possible placement of the balls in the three urns. This means that the
number of shaded boxes in Figure 4.18 is the number M we seek. Hence,

M = 1 + 2 + · · · + (�+ 1) = 1
2 (� + 2)(� + 1). (4.126)

The traceless tensor T (� )
ij ...m defined by (4.123) is also symmetric with respect to index interchange.

This tensor would have M independent components also, except that each of the trace conditions
(4.125) reduces this number by one. Moreover, each trace represents a choice of two indices to be
made equal out of a total of � indices. This means that the number of traces is the binomial coefficient(

�

2

)
= �!

2!(� − 2)!
= 1

2�(� − 1). (4.127)

Therefore, the number of independent components of T (�)
ij ...m is

M ′ = 1
2 (� + 2)(� + 1) − 1

2�(� − 1) = 2� + 1. (4.128)

Comparing (4.126) to (4.128) shows that M ′ � M when � � 1. Beginning with the quadrupole term,
the traceless moments represent the potential with increasing efficiency.

The number 2�+ 1 can been seen in another way using Maxwell’s construction of multipole
moments. The geometrical constructions shown in Figures 4.5 and 4.10 do not immediately generalize
to higher primitive moments because there is no unique way to choose and orient two quadrupoles,
two octupoles, etc. so they are “equal and opposite” as we did with two charges and two dipole vectors.
However, for traceless moments, the dipole and quadrupole potential formulae (4.13) and (4.54) can
be generalized. It turns out15 that the potential of a “point 2�-pole” located at the origin can be written
in the form

ϕ(r) = (−)�

4πε0

� terms︷ ︸︸ ︷
(a · ∇)(b · ∇) · · · (p · ∇)

1

r
. (4.129)

This representation is correct only if |a| = |b| = · · · = |p|. Thus, the potential (4.129) is characterized
by two Cartesian components for each vector and one (common) magnitude, i.e., 2�+ 1 independent
parameters.

It is very satisfying to find that the spherical expansion (4.86) and the traceless Cartesian expansions
(4.123) and (4.129) all involve a multiple moment with 2� + 1 components for each spatial factor
r−(�+1). This means we can generalize the remarks made at the end of Section 4.6.1 for the dipole and
quadrupole and assert that each A�m can be written as a linear combination of the 2� + 1 components
of T(� ) and vice versa. In the language of group theory, both representations of the potential are
irreducible, i.e., maximally efficient in our language.

Application 4.5 The Dielectric Polarization P(r)

In Section 2.4.1, we asserted without proof that a general charge density in the presence of matter can
always be written in the form

ρ(r, t) = ρc(r, t) − ∇ · P(r, t). (4.130)

15 See G.F. Torres del Castillo and A. Méndez-Garrido, “Differential representation of multipole fields", Journal of
Physics A 37, 1437 (2004).
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We can support this claim (in the static limit) and generalize (4.14) and (4.56) also by producing a
multipole expansion for the charge density of a collection of N point charges qα located at positions
rα:

ρ(r) =
N∑
α=1

qαδ(r − rα). (4.131)

Our strategy is to write a Taylor series (Section 1.3.4) for each delta function in (4.131) with respect
to a common origin where rα = 0. This gives

ρ(r) =
∑
α

qα

{
1 − rα · ∇ + 1

2
(rα · ∇)2 + · · ·

}
δ(r). (4.132)

The total charge, dipole moment, and quadrupole moment components of (4.131) are

Q =
∑
α

qα, p =
∑
α

qαrα, Qij = 1
2

∑
α qαrα irα j . (4.133)

Therefore, the expansion (4.132) reads

ρ(r) = {
Q− p · ∇ +Qij∇i∇j − · · ·} δ(r). (4.134)

An exercise in integration by parts confirms that substituting (4.134) into (4.1) reproduces the entire
multipole expansion (4.7) or (4.119). More to the point, (4.134) has the advertised form

ρ(r) = Qδ(r) − ∇ · P(r), (4.135)

with

Pi(r) =
∞∑
�=1

(−1)�−1C
(� )
ij ...m ∇j · · · ∇m︸ ︷︷ ︸

�−1 terms

δ(r). (4.136)

The highly singular nature of the polarization function (4.136) is a direct consequence of the singular
nature of the charge density (4.131). We will learn to construct well-behaved versions of P(r) in
Chapter 6. �

�

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is from Section 144(b) of

J.C. Maxwell, A Treatise on Electricity and Magnetism, 3rd edition (Clarendon, Oxford, 1891).

Section 4.1 Textbooks of electromagnetism usually do not treat the different electric multipole expansions which
appear in the research literature. Our discussion is modeled on the excellent treatment in

L. Eyges, The Classical Electromagnetic Field (Dover, New York, 1972).

Other textbooks with better-than-average discussions of electric multipoles are

W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd edition (Addison-Wesley, Reading,
MA, 1962).

R.K. Wangsness, Electromagnetic Fields, 2nd edition (Wiley, New York, 1986).

M.A. Heald and J.B. Marion, Classical Electromagnetic Radiation, 3rd edition (Saunders, Fort Worth, TX, 1995).
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Gray and Gubbins discuss static electric multipoles of all types (primitive Cartesian, traceless Cartesian, azimuthal,
and spherical). Wikswo and Swinney use pictorial representations of electric multipoles to good effect:

C.G. Gray and K.E Gubbins, Theory of Molecular Fluids (Clarendon, Oxford, 1984), Chapter 2.

J.P. Wikswo, Jr. and K.R. Swinney, “A comparison of scalar multipole expansions”, Journal of Applied Physics
56, 3039 (1984).

Section 4.2 Figure 4.2, Figure 4.4, and Example 4.1 were taken, respectively, from

R.F.W. Bader, An Introduction to the Electronic Structure of Atoms and Molecules (Clarke, Irwin & Co.,
Toronto, 1970).

C. Desfrançois, H. Abdoul-Carime, N. Khelifa, and J.P. Schermann, “From 1/r to 1/r2 potentials: Electron
exchange between Rydberg atoms and polar molecules”, Physical Review Letters 73, 2436 (1994).

D.R. Frankl, “Proof of a theorem in electrostatics”, American Journal of Physics 41, 428 (1973).

Searches for an intrinsic electric dipole moment for the electron and neutron are discussed in

B.C. Regan, E.D. Commins, C.J. Schmidt, and D. DeMille, “New limit on the electron electric dipole moment”,
Physical Review Letters 88, 071805 (2002).

S.K. Lamoreaux and R. Golub, “Experimental searches for the neutron electric dipole moment”, Journal of
Physics G 36, 1004002 (2009).

Our footnote regarding the singular part of the point electric dipole field comes from

J. Franklin, “Comment on some novel delta function identities", American Journal of Physics 78, 1225 (2010).

Section 4.3 Older discussions of electric dipole layers frame the issue in the context of the contact potential
difference that develops between two metals with different work functions. See, e.g., Chapter II of Part 1 of

M. Planck, Theory of Electricity and Magnetism, 2nd edition (Macmillan, London, 1932).

Figure 4.6 and Example 4.1 come, respectively, from

M. Seul and V.S. Chen, “Isotropic and aligned stripe phases in a monomolecular organic film", Physical Review
Letters 70, 1658 (1993).

D.J. Keller, H.M. McConnell, and V.T. Moy, “Theory of superstructures in lipid monolayer phase transitions”,
Journal of Physical Chemistry 90, 2311 (1986).

Section 4.4 The torque exerted on an electric quadrupole by an electric field is the basis for one method to
detect buried land mines and other hidden explosives. A good review is

A.N. Garroway, M.L. Buess, J.B. Miller, el al., “Remote sensing by nuclear quadrupole resonance”, IEEE
Transactions on Geoscience 39, 1108 (2001).

The paper mentioned in Application 4.2 where nuclear quadrupole moments were first inferred is

H. Schüler and Th. Schmidt, “On the deviation of nuclei from spherical symmetry” (in German), Zeitschrift
für Physik 94, 457 (1935).

Figure 4.12 was taken from

D.J. Rowe and J.L. Wood, Fundamentals of Nuclear Models (World Scientific, Hackensack, NJ, 2010).

Section 4.6 The electrostatic calculation outlined in Application 4.4 was presented first in

N. Bohr and J.A. Wheeler, “The mechanism of nuclear fission”, Physical Review 56, 426 (1939).

Our discussion of the electrostatics of nuclear fission is taken from a paper dedicated to the teaching of Julian
Schwinger:

J. Bernstein and F. Pollock, “The calculation of the electrostatic energy in the liquid drop model of nuclear
fission: A pedagogical note”, Physica A 96, 136 (1979).

Section 4.7 The connection between dielectric polarization P(r) and a multipole expansion of the singular charge
density of a collection of classical point charges is part of much larger discussion of multipole electrodynamics in

D.P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics (Academic, London, 1984).
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Problems
4.1 Dipole Moment Practice Find the electric dipole moment of:

(a) a ring with charge per unit length λ = λ0 cosφ where φ is the angular variable in cylindrical coordinates.
(b) a sphere with charge per unit areas σ = σ0 cos θ where θ is the polar angle measured from the positive

z-axis.

4.2 Smolochowski’s Model of a Metal Surface A surprisingly realistic microscopic model for the charge
density of a semi-infinite metal (with z = 0 as its macroscopic surface) consists of a positive charge
distribution

n+(z) =
{
n̄ z < 0,
0 z > 0,

and a negative charge distribution

n−(z) =
{
n̄
{
1 − 1

2 exp(κz)
}

z < 0,

1
2 n̄ exp(−κz) z > 0.

(a) Sketch n+(z) and n−(z) on the same graph and give a physical explanation of why they might be
reasonable.

(b) Calculate the dipole moment p per unit area of surface for this system.
(c) Calculate the electrostatic potential ϕ(z) and sketch it in the interval −∞ < z < ∞.
(d) Calculate and explain the value of ϕ(∞) − ϕ(−∞).
(d) Calculate the total electrostatic energy per unit area of this system.

4.3 The Charge Density of a Point Electric Dipole The text used Poisson’s equation to show that the charge
density of a point electric dipole with moment p located at the point r0 is ρD(r) = −p · ∇δ(r − r0).

(a) Derive the given formula for ρD(r) using a limiting process analogous to the one used in the text to find
its electrostatic potential.

(b) Show that the formula given above for ρD(r) is correct by demonstrating that it produces the expected
dipole potential when inserted into the Coulomb integral for ϕ(r).

4.4 Stress Tensor Proof of No Self-Force Use the electric stress tensor formalism to prove that no isolated
charge distribution ρ(r) can exert a net force on itself. Distinguish the cases when ρ(r) has a net charge and
when it does not.

4.5 Point Charge Motion in an Electric Dipole Field Place a point electric dipole p = p ẑ at the origin and
release a point charge q (initially at rest) from the point (x0, y0, 0) in the x-y plane away from the origin.
Show that the particle moves periodically in a semi-circular arc.

4.6 The Energy to Assemble a Point Dipole Show that dW = −E(r) · dp is the work increment required to
assemble a point electric dipole with moment dp at r beginning with charge dispersed at infinity.

4.7 Dipoles at the Vertices of Platonic Solids Identical point electric dipoles are placed at the vertices of the
regular polyhedra shown below. All the dipoles are parallel but the direction they point is arbitrary. Show
that the electric field at the center of each polyhedron is zero.
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4.8 Two Coplanar Dipoles Two coplanar dipoles are oriented as shown in the figure below.

′

p

′p

Find the equilibrium value of the angle θ ′ if the angle θ is fixed.

4.9 Potential of a Double Layer

(a) Show that the potential due to a double-layer surface S with a dipole density τ (rS) n̂ is

ϕ(r) = − 1

4τε0

∫
S

d�τ (rS),

where d� is the differential element of solid angle as viewed from r.
(b) Use this result to derive the matching condition at a double-layer surface.

4.10 A Spherical Double Layer A soap bubble (an insulating, spherical shell of radius R) is uniformly coated
with polar molecules so that a dipole double layer with τ = τ r̂ forms on its surface. Find the potential at
every point in space. Check that the matching condition is satisfied at r = R.

4.11 The Distant Potential of Two Charged Rings The z-axis is the symmetry axis for an origin-centered ring
with charge Q and radius a which lies in the x-y plane. A coplanar and concentric ring with radius b > a

has charge −Q. Calculate the lowest non-vanishing Cartesian multipole moment to find the asymptotic
(r → ∞) electrostatic potential if both charge distributions are uniform. Hint: Use cylindrical coordinates
(s, φ, z) to perform the integrations.

4.12 The Potential Far from Two Neutral Disks The diagram shows two identical, charge-neutral, origin-
centered disks. One disk lies in the x-z plane. The other is tipped away from the first by an angle α around
the z-axis. The charge density of each disk depends only on the radial distance from its center. Find the

angle α at which the asymptotic electrostatic potential in the x-y plane has the form ϕ(x, y) = A/s3, where
A is a constant and s = √

x2 + y2.

4.13 Interaction Energy of Adsorbed Molecules Molecules adsorbed on the surface of a solid crystal sur-
face at low temperature typically arrange themselves into a periodic arrangement, e.g., one molecule lies
at the center of each a × a square of a two-dimensional checkerboard formed by the surface atoms of
the crystal. For diatomic molecules which adsorb with their long axis parallel to the surface, the ori-
entation of each molecule is determined by the lowest-order electrostatic interaction between nearby
molecules.

(a) The CO molecule has a small electric dipole moment p. The sketch below shows a portion of the
complete checkerboard where the arrangement of dipole moments is parameterized by an angle α. Treat
these as point dipoles and consider the interaction of each dipole with its eight nearest neighbors only.
Find the angle α that minimizes the total energy and show that the energy/dipole is

U = 1

8πε0

p2

a3

{
1√
2

− 6

}
.
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(b) The N2 molecule has a small quadrupole moment because covalent bonding builds up some negative
(electron) charge in the bond region between the atomic nuclei. Use this fact and a qualitative argument
to help you make a sketch which illustrates the orientational order for a checkerboard of N2 molecules.

4.14 Practice with Cartesian Multipole Moments Find the primitive, Cartesian monopole, dipole, and
quadrupole moments for each of the following charge distributions. Use the geometrical center of each
as the origin.

(a) Two charges +q at two diagonal corners of a square (±a,±a, 0) and two minus charges −q at the two
other diagonals of the square (±a,∓a, 0).

(b) A line segment with uniform charge per unit length λ which occupies the interval −� ≤ z ≤ +�.
(c) An origin-centered ring in the x-y plane with uniform charge per unit length λ and radius R.

4.15 The Many Faces of a Quadrupole

(a) Place two charges +q at two diagonal corners of a square (±a,±a, 0) and two minus charges −q at the
two other diagonals of a square (±a,∓a, 0). Evaluate the primitive quadrupole moment components
Qij = 1

2

∫
rirjρ(r)dV and use the result to write down the asymptotic electrostatic potential in Cartesian

coordinates.
(b) Write the primitive electric quadrupole tensor explicitly in the form Q = îQij ĵ , where 1̂ = x̂, 2̂ = ŷ,

3̂ = ẑ, and Qij are the corresponding matrix elements. Do not write down the vanishing components for
the situation of part (a). The remaining parts of this problem exploit the fact that your formula is written
in Cartesian coordinates, but gives a valid representation of the quadrupole tensor in any coordinate
system.

(c) Express the Cartesian unit vectors x̂, ŷ, ẑ in terms of the spherical polar unit vectors r̂ , θ̂ , φ̂. Substituting
these expressions into the expression for the quadrupole tensor you wrote down in part (b), determine
all nine matrix elements of Q in spherical polar coordinates, i.e., Qrr , Qrθ , etc.

(d) Write down the expression for the corresponding electric potential in spherical polar coordinates (where
now 1̂ = r̂ , 2̂ = θ̂ , 3̂ = φ̂) without substituting the matrix elements of Q. Write down only the non-
vanishing terms.

(e) Combining the results of parts (c) and (d), compute the electric potential and compare with the answer
from part (a).

(f) Explain why you cannot begin in spherical coordinates and use the formula for Qij quoted in part (a) to
reproduce the results of part (d).

4.16 Properties of a Point Electric Quadrupole

(a) Show that the charge density of a point quadrupole is ρ(r) = Qij∇i∇j δ(r − r0).
(b) Show that the force on a point quadrupole in a field E(r) is Qij∂i∂jE(r0).
(c) Show that the torque on a point quadrupole in a field E(r) is N = 2(Q · ∇) × E + r × F where (Q · ∇)i =

Qij∇j .

(d) Show that the potential energy of a point quadrupole in a field E(r) is VE = −Qij∂iEj (r0).
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4.17 Interaction Energy of Nitrogen Molecules How does the leading contribution to the electrostatic inter-
action energy between two nitrogen molecules depend on the distance R between them?

4.18 A Black Box of Charge A charge distribution is contained entirely inside a black box. Measurements of
the electrostatic potential outside the box reveal that all of the exterior multipole moments for � = 1, 2, . . .
are zero in a coordinate system with its origin at the center of the box. This does not imply that the charge
distribution is spherically symmetric. Prove this by constructing a counter-example.

4.19 Foldy’s Formula The low-energy Born approximation to the amplitude for electron scattering from a
neutron is proportional to the volume integral of the potential energy of interaction between the electron and
the neutron,

f (0) = − m

π−h2

∫
d 3rVE(r).

(a) Write a formula for VE(r) if ρN (s) is the charge density of the neutron and ϕ(s) is the electrostatic
potential of the electron.

(b) Suppose that ρN (s) = ρN (|s|) and that ϕ(s) varies slowly over the region of space occupied by the
neutron’s charge distribution. Show that the scattering amplitude gives information about the second
radial moment of the neutron charge density:∫

d 3rVE(r) = −1

6

e

ε0

∫
d 3s s2ρN (s).

4.20 Practice with Spherical Multipoles

(a) Evaluate the exterior spherical multipole moments for a shell of radius R which carries a surface charge
density σ (θ, φ) = σ0 sin θ cosφ.

(b) Write ϕ(r > R, θ, φ) in the form ϕ(x, y, z, r).
(c) Evaluate the interior spherical multipole moments for the shell of part (a).
(d) Write ϕ(r < R, θ, φ) in the form ϕ(x, y, z, r)
(e) Check the matching conditions for ϕ and E at r = R.
(f) Extract the dipole moment p of the shell from your answer to part (b).

4.21 Proof by Interior Multipole Expansion Let V be a charge-free volume of space. Use an interior spherical
multipole expansion to show that the average value of the electrostatic potential ϕ(r) over the surface of any
spherical sub-volume inside V is equal to the potential at the center of the sub-volume.

4.22 The Potential outside a Charged Disk The z-axis is the symmetry axis of a disk of radius R which lies
in the x-y plane and carries a uniform charge per unit area σ . Let Q be the total charge on the disk.

(a) Evaluate the exterior multipole moments and show that

ϕ(r, θ) = Q

4πε0r

∞∑
�−0

(
R

r

)� 2

�+ 2
P�(0)P�(cos θ ) r > R.

(b) Compute the potential at any point on the z-axis by elementary means and confirm that your answer
agrees with part (a) when z > R. Note: P�(1) = 1.

4.23 Exterior Multipoles for Specified Potential on a Sphere

(a) Let ϕ(R, θ, φ) be specified values of the electrostatic potential on the surface of a sphere. Show that the
general form of an exterior, spherical multipole expansion implies that

ϕ(r) =
∞∑
�=0

�∑
m=−�

(
R

r

)�+1

Y�m(�)
∫

d�′ϕ(R,�)Y ∗
�′m′ (�′) r > R.
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(b) The eight octants of a spherical shell are maintained at alternating electrostatic potentials ±V as shown
below in perspective view (a) and looking down the z-axis from above in (b).

VV

V
V

z

x

y
V

VV

V

(a) (b)

Use the results of part (a) to find the asymptotic (r → ∞) form of the potential produced by the shell.

4.24 A Hexagon of Point Charges Six point charges form an ideal hexagon in the z = 0 plane as shown below.
The absolute values of the charges are the same, but the signs of any two adjacent charges are opposite.

(a) What is the first non-zero electric multipole moment of this charge distribution? You need not compute
its value.

(b) The electrostatic potential far from this distribution varies as ϕ(r) ∝ r−N . What is N?

y

x

q

q q

q

q

q

a

4.25 Analyze This Potential An asymptotic (long-distance) electrostatic potential has the form

ϕ(r, θ, φ) = A

r
+ Bx2

r5
+ higher-order terms.

(a) Use a traceless Cartesian multipole expansion to show that no localized charge distribution exists which
can produce an asymptotic potential of this form.

(b) Repeat part (a) using a primitive Cartesian multipole expansion.
(c) Show that a suitable ρ(r) can be found which produces the given potential if we remove the restriction

that the charge distribution is localized.
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5 Conducting Matter

It is evident that the electric fluid in conductors may be
considered as moveable.
Henry Cavendish (1771)

5.1 Introduction

A perfect conductor is a macroscopic model for real conducting matter with the property that static
electric fields are completely excluded from its interior. Since ε0∇ · E(r) = ρ(r), a precise definition
of a perfect conductor1 is that both the macroscopic electric field and the macroscopic charge density
vanish everywhere inside its volume V :

E(r) = ρ(r) = 0 r ∈ V. (5.1)

This definition implies that all excess charge accumulates on the surface of a conductor in the form of
a surface charge density σ (rS). The simplest case is an isolated conducting sphere with net charge Q
and radius R. By symmetry, the surface charge density is uniform so σ = Q/4πR2. The Gauss’ law
electric field outside such a sphere is identical to the electric field of a point charge. In light of (5.1),
the continuous electrostatic potential of the sphere is

ϕ(r) =

⎧⎪⎪⎨
⎪⎪⎩

Q

4πε0R
r ≤ R,

Q

4πε0r
r ≥ R.

(5.2)

5.2 Electrostatic Induction

Cavendish (1771) conceived the idea of a perfect conductor to rationalize the electrostatic properties of
metals. In the presence of an external field Eext, his idea was that the Coulomb force rearranges charge
inside the metal until the condition (5.1) is satisfied. This rearrangement process is called polarization
in the general case and electrostatic induction when applied to conductors. The equilibrium state cor-
responds to zero net force on every particle. In a metal, the charge density ρ(r) of “mobile” conduction
electrons is associated with quantum mechanical wave functions which spread out over every atom
in the sample. The force density ρ(r)Eext(r) distorts the wave functions in such a way that charges
with opposite signs are displaced in opposite directions. This force competes with potential energy

1 Henceforth, the word “conductor” will always mean “perfect conductor”.
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Figure 5.1: Electrostatic induction in a neutral conductor. (a) External field Eext(r) induces charge
rearrangement; (b) The charge distribution that produces mechanical equilibrium creates a field Eself (r)
(not shown) with the property that E(r) = Eext(r) + Eself (r) = 0 at every point inside the conductor. Eself (r)
is generally dipolar far outside the conductor. Minus (plus) signs indicate a local surfeit (deficit) of
electrons.

effects that favor chemical bond formation. Metals are easier to polarize than dielectrics (Chapter 6)
because their electronic wave functions feel a relatively smoother potential energy landscape. A perfect
conductor is maximally polarizable because, by definition, it possesses a perfectly flat potential energy
landscape which offers no barriers to electrostatic induction.

Electrostatic induction in a real metal does not involve any long-range displacement of charge.
Equilibrium is re-established by tiny perturbations of the conduction electron wave functions at every
point in the conductor. When summed over all occupied states, the corresponding perturbed charge
density Lorentz averages to zero at all interior points. This is the meaning of (5.1). At all surface
points, the perturbed charge density amounts to tiny excesses or deficits of electronic charge which
Lorentz average to the macroscopic surface charge density σ (rS) (cf. Section 2.3.2).

The electric field outside a conductor can be quite complicated because it depends on the shape of
the conductor, its net charge, and whether or not an external field Eext(r) is present. Conversely, the
field inside a conductor always satisfies (5.1). Therefore, if Eself (r) labels the electric field produced
by σ (rS), a more explicit version of (5.1) is

E(r) = Eext(r) + Eself (r) = Eext(r) + 1

4πε0

∫
S

dS ′ σ (r′)
r − r′

|r − r′|3 = 0 r ∈ V. (5.3)

Figure 5.1 illustrates the phenomenon of electrostatic induction for a neutral conductor immersed in a
uniform external field. Panel (a) shows the polarization of charge induced by Eext. This charge creates a
field, which induces additional charge rearrangement, which alters the field, and so on until mechanical
equilibrium is achieved. The final surface charge distribution σ (rS) creates the field Eself (r) in (5.3).
Inside the conductor, Eself (r) = −Eext(r). Far outside the conductor, Eself (r) is a dipole electric field
parameterized by the macroscopic dipole moment

p =
∫
S

dSrσ (r). (5.4)

Figure 5.1(b) shows the total field (5.3) after mechanical equilibrium has been re-established. The
field outside the conductor is recognizably distorted from a uniform field by Eself (r). We will see
in Example 5.1 that the correction to the exterior field is exactly dipolar for a spherical conductor.
Quadrupole and higher multipole contributions are present for non-spherical conductors.
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5.2.1 Thomson’s Theorem of Electrostatics
All physical systems in mechanical equilibrium arrange their charge density to minimize their total
energy. Physical systems differ only in the degree to which quantum mechanical contributions to the
energy compete with electrostatic contributions to the energy to dictate the arrangement of charge.2

By definition, a perfect conductor is a system where quantum mechanics contributes negligibly to
the total energy (except to fix the size and shape of the body). This implies that the fundamental
origin of electrostatic induction and the screening and shielding properties of conductors must come
from minimizing the classical electrostatic energy alone. This is the content of Thomson’s theorem
of electrostatics, which minimizes UE with respect to ρ(r) subject only to holding the total charge,
shape, and volume of the sample fixed.

Statement: The electrostatic energy of a body of fixed shape and size is minimized when its charge
Q distributes itself to make the electrostatic potential constant throughout the body. Since E = −∇ϕ,
this is the E = 0 condition for the interior of a perfect conductor.

Proof: Let ρ(r) be the charge density of a body of volume V . If ϕext(r) is the potential due to any fixed
external charges, the total electrostatic energy is given by (3.84):

UE[ρ] = 1

8πε0

∫
V

d 3r

∫
V

d 3r ′ ρ(r)ρ(r′)
|r − r′| +

∫
V

d 3r ρ(r)ϕext(r). (5.5)

Our aim is to minimize UE subject to the constraint that Q = ∫
V
d 3r ρ(r). The method of Lagrange

multipliers (Section 1.10) achieves this constrained minimization by introducing a constant λ and
performing an unconstrained minimization of

I [ρ] = UE[ρ] − λ

∫
V

d 3r ρ(r). (5.6)

This means that, to first order in δρ, we insist that

δI = I [ρ + δρ] − I [ρ] = 0. (5.7)

Both ρ(r) and ρ(r′) appear in I [ρ]. Therefore, to calculate δI , we let ρ(r) → ρ(r) + δρ(r) and
ρ(r′) → ρ(r′) + δρ(r′) in (5.6). Neglecting terms of order (δρ)2, the result is

δI = 1

8πε0

∫
V

d 3r

∫
V

d 3r ′
[
ρ(r)δρ(r′)
|r − r′| + δρ(r)ρ(r′)

|r − r′|
]

+
∫
V

d 3r δρ(r)ϕext(r) − λ

∫
V

d 3r δρ(r). (5.8)

Exchanging the variables r and r′ in the first term in square brackets in (5.8) gives

δI =
∫
V

d 3r δρ(r)

⎧⎨
⎩ 1

4πε0

∫
V

d 3r ′ ρ(r′)
|r − r′| + ϕext(r) − λ

⎫⎬
⎭ = 0. (5.9)

Finally, the variation δρ(r) is arbitrary, so the quantity in curly brackets must vanish:

1

4πε0

∫
V

d 3r ′ ρ(r′)
|r − r′| + ϕext(r) = λ r ∈ V. (5.10)

2 The energy gained by the formation of chemical bonds is an example of a quantum mechanical contribution to the
total energy.
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5.2 Electrostatic Induction 129

The left side of (5.10) is ϕtot(r), the total electrostatic potential at a point r ∈ V . The right side
of (5.10) is the constant Lagrange parameter λ. Therefore, the energy extremum occurs when ϕtot(r)
assumes the constant value λ throughout V . The fact that the neglected terms of order (δρ)2 are positive
definite tells us that (5.10) corresponds to an energy minimum rather than an energy maximum.

Example 5.1 Find the potential produced by a conducting sphere of radius R in a uniform electric
field E0. Show also that the sphere acquires a dipole moment p = αε0E0 where α = 4πR3. The
constant α is called the polarizability.

E0 = E0?

R θ +
+

+

+

−

−
−

−

Figure 5.2: A conducting sphere in a uniform external field Eẑ. Plus and minus signs indicate the induced
surface charge density σ (θ ).

Solution: By symmetry, a uniform external field induces an azimuthally symmetric charge density
σ (θ ) on the surface of the sphere. This is shown in Figure 5.2. Inside the conducting sphere, σ (θ )
must produce an electric field Eself = −E0. Since E0 = E0ẑ, the corresponding potential is

ϕself (r < R, θ) = E0z = E0r cos θ.

Outside the sphere, σ (θ ) produces a potential that can be represented using an exterior azimuthal
multipole expansion (Section 4.6.3). The first few terms of such an expansion are

ϕself (r > R, θ) = A

r
+ B

r2
cos θ + C

r3
P2(cos θ ) + · · · .

The potential must be continuous at r = R. Therefore, given ϕself (r < R, θ) above, the only
possibility for the exterior potential is

ϕself (r > R, θ) = E0R
3

r2
cos θ.

On the other hand, the potential of a point electric dipole with dipole moment p = p ẑ is

ϕ(r, θ ) = 1

4πε0

p

r2
cos θ.

Comparing the two preceding potentials shows that ϕself (r > R, θ) is exactly dipolar (true only
for a sphere) and that the induced electric dipole moment is indeed p = αε0E0 with polarizability
α = 4πR3. This conforms to a general rule that the polarizability of a compact polarizable object
scales with its volume.

Example 5.2 A single conductor is formed by two uncharged metal spheres connected by an
infinitesimally thin wire; see Figure 5.3. The sphere with radius R1 is centered at r1 and the sphere
with radius R2 is centered at r2. Find an approximate expression for the dipole moment induced
in the conductor by a uniform external field E0. Assume that the wire cannot support a net charge
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and that the spheres are separated from one another by a distance that is large compared to both R1

and R2.

O

1r
2r

2
R

1R

1

0
E

Figure 5.3: A external field E0 polarizes two distant metal spheres connected by a thin conducting wire.

Solution: The electric field polarizes the system but leaves no charge on the connecting wire. This
means that sphere 1 acquires a net charge −Q if sphere 2 acquires a net charge Q. If the separation
between the spheres is large enough, the charge density on each may be taken as approximately
uniform. This is the crucial approximation needed to write the potential at the center of each sphere
as the sum of the external potential and its own monopole potential as given by (5.2):

ϕ1 = −E0 · r1 − Q

4πε0R1

ϕ2 = −E0 · r2 + Q

4πε0R2
.

But, ϕ1 = ϕ2 because the two spheres are connected by a conducting wire. This fixes the value of
Q at

Q = 4πε0
R1R2

R1 + R2
E0 · (r2 − r1).

The induced electric dipole moment is

p = Q(r2 − r1) = Qd = 4πε0
R1R2

R1 + R2
(E0 · d)d.

The reader can check that the condition E0 · (r2 − r1) � E0R1, E0R2, implies that the non-
uniformity of the charge density on each sphere produces a negligible correction to the self-
monopole potentials used in our solution.

5.2.2 The Surface Charge Density
The charge density σ (rS) at the surface of a conductor enters the electric field matching conditions
(written in terms of the outward normal n̂ to the conductor surface),

n̂ × [Eout − Ein] = 0 (5.11)

n̂ · [Eout − Ein] = σ (rS)
/
ε0. (5.12)

Because Ein(r) = 0, (5.11) tells us that the tangential component of Eout(r) is zero just outside a
conducting surface:

n × Eout|S = 0. (5.13)
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5.2 Electrostatic Induction 131

With this information, (5.12) implies that the electric field just outside a conductor is strictly normal
to the conductor surface with a magnitude proportional to the local surface charge density:

Eout(rS) = n̂ σ (rS)/ε0. (5.14)

Equation (5.14) tells us that the charge density at the surface of a conductor is determined by the
electric field immediately outside itself:

σ (rS) = ε0n̂ · Eout(rS). (5.15)

A quick application of (5.15) is to compute the dipole moment of the polarized sphere in Example 5.1
directly from the integral (5.4). To find the surface charge density, we use the total potential (the sum
of the external potential and the induced self-potential) outside the sphere found in Example 5.1:

σ (θ ) = −ε0
∂

∂r

[
−Er cos θ + ER3

r2
cos θ

]
r=R

= 3ε0E cos θ. (5.16)

Since r = r sin θ cosφx̂ + r sin θ sinφŷ + r cos θ ẑ, only the z-component survives the angular inte-
gration and we confirm the result found in Example 5.1 that

p =
∫

dS σ (θ )r = 2πR3

π∫
0

dθ sin θ cos θ σ (θ ) ẑ = 4πε0R
3Eẑ. (5.17)

The surface charge density (5.16) is non-uniform because the external field breaks the symmetry of
the sphere. Non-uniform surface charge density is similarly the rule for an isolated conductor with a
non-spherical shape and a non-zero net charge. An unexpected result is that σ (rS) diverges at the edge
of conductors with sharp, knife-like edges. An example is a conducting disk with radius R, net charge
Q, and a vanishingly small thickness, where3

σ (ρ) = Q

4πR
√
R2 − ρ2

. (5.18)

We provide a derivation of (5.18) in the next section for interested readers. The generality of the
divergence phenomenon for conductors with sharp edges will emerge in Chapter 7.

Application 5.1 σ (rS) for a Conducting Disk

There is no truly simple way to calculate the surface charge density (5.18) for a charged, conducting
disk. In this Application, we use a method which regards the disk as the limiting case of a squashed
ellipsoid. The role of the latter becomes clear when we recall the example studied in Section 3.3.5
of a uniformly charged line segment (−L < z < L) with total charge Q. In terms of the variables
r± =

√
ρ2 + (z ± L)2 (see Figure 5.4) and

u = 1
2 (r+ + r−), (5.19)

our main result from (3.33) was that the segment produced an electrostatic potential

ϕ(u) = Q/2L

4πε0
ln
u+ L

u− L
. (5.20)

Equation (5.20) tells us that u = b defines a family of equipotential surfaces parameterized by the
constant b. On the other hand, u = b written using (5.19) is the geometric definition of a prolate

3 The thickness cannot be literally zero because an “interior” must be definable where (5.1) is valid.
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ellipsoid of revolution:

1
2 (r+ + r−) = b. (5.21)

Therefore, by superimposing a conducting ellipsoid on any of the equipotential surfaces of the charged
line segment, we can find the surface charge density of the ellipsoid using (5.20) and σ = −ε0∇ϕ · n̂|S .

a
L

r

b

z

r

L

Figure 5.4: A prolate ellipsoid of revolution with semi-minor axis a and semi-major axis b. The focal
length L = √

b2 − a2. The line segments r± begin at opposite foci and end at the same point on the
ellipsoid surface. The surface is the locus of points where r+ + r− = 2b.

The electric field associated with (5.20) is guaranteed to be normal to the surface of the ellipsoid.
Therefore, since ϕ = ϕ(ρ, z) and E = −∇ϕ, (5.14) gives the charge density we seek as (Q > 0)

σ (ρ, z) = ε0|∇ϕ|S = ε0

√(
∂ϕ

∂z

)2

+
(
∂ϕ

∂ρ

)2
∣∣∣∣∣∣
S

= ε0

∣∣∣∣∂ϕ∂u
∣∣∣∣
u=b

√(
∂u

∂z

)2

+
(
∂u

∂ρ

)2
∣∣∣∣∣∣
S

. (5.22)

Now, du = (∂u/∂ρ)dρ + (∂u/∂z)dz = 0 on S because u = b on S. This transforms (5.22) to

σ (ρ, z) = ε0

∣∣∣∣∂ϕ∂u
∣∣∣∣
u=b

∣∣∣∣∂u∂ρ
∣∣∣∣
S

√
1 +

(
dρ

dz

)2
∣∣∣∣∣∣
S

. (5.23)

The identity L2 = b2 − a2 and straightforward differentiation give the first quantity we need to
evaluate (5.23): ∣∣∣∣∂ϕ∂u

∣∣∣∣
u=b

= Q

4πε0a2
. (5.24)

Similarly, ∣∣∣∣∂u∂ρ
∣∣∣∣
S

= 1

2

[
∂r+
∂ρ

+ ∂r−
∂ρ

]
S

= bρ

r+r−

∣∣∣∣
S

. (5.25)

We evaluate (5.25) using two more relations from Section 3.3.5:

t = 1

2
(r− − r+) and ut = −zL. (5.26)

Then, in light of (5.19) and the fact that u = b defines S,

r+r−|S = u2 − t2
∣∣
S

= 1

b2

[
b4 − z2(b2 − a2)

]
. (5.27)

Multiplying the factor of b4 in (5.27) by the left side of the equation for the surface of the ellipsoid,

ρ2

a2
+ z2

b2
= 1, (5.28)

and substituting the result into (5.25) gives∣∣∣∣∂u∂ρ
∣∣∣∣
S

= ρ

a2b

[
ρ2

a4
+ z2

b4

]−1

. (5.29)
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Finally, because (5.28) guarantees that ρdρ/a2 + zdz/b2 = 0 on the surface of the ellipsoid,

dρ

dz

∣∣∣∣
S

= −a2

b2

z

ρ
. (5.30)

Substituting (5.24), (5.29), and (5.30) into (5.23) gives the formula we seek for the density of charge
on the surface of a conducting prolate ellipsoid:

σ (ρ, z) = Q

4πa2b

1√
ρ2/a4 + z2/b4

. (5.31)

This formula turns out to be valid for an oblate (b < a) ellipsoid as well [Stratton (1941)]. Therefore,
since the limit b → 0 flattens the ellipsoid into a flat circular disk, we use (5.28) to rewrite (5.31) as

σ (ρ, z) = Q

4πa2

1√
ρ2b2/a4 + (1 − ρ2/a2)

. (5.32)

The b → 0 limit yields the surface charge density of a flat conducting disk of radius a:

σ (ρ) = Q

4πa
√
a2 − ρ2

. (5.33)

Geometrically, σ (ρ) is the charge per unit area that results when a hemisphere with uniform charge
density Q/4πa2 is projected onto its equatorial plane. As advertised, σ (ρ) diverges at the perimeter of
the disk. We will see in Chapter 7 that this behavior is neither exceptional nor particularly unexpected
for conductors with macroscopic knife-edges. The divergence reduces to a simple maximum for a real
metal disk with finite rounding. �

5.3 Screening and Shielding

Conductors have the unique ability to screen or shield a suitably placed sample from the effects of an
electric field. By this we mean that a conductor interposed between a sample and a source of electric
field generally reduces (and ideally eliminates) the field at the position of the sample. The canonical
example of this phenomenon is a neutral conductor with a vacuum cavity “scooped” out of its interior.
Figure 5.5(a) shows such a conductor together with a point charge external to its volume. By the
definition of a conductor, the electric field is zero at every point in or on the conductor body. The key
to shielding is that E(r) = 0 inside the cavity also.

We prove this assertion by supposing that the electric field inside the cavity is not zero. Every line
of Ecavity(r) must begin on positive charge at some particular point A on the cavity boundary and end
on negative charge at a distinct point B on the cavity boundary. We now perform a line integral around
the dashed closed path in Figure 5.5(a) which begins at A, follows the path of the presumptive field
line inside the cavity to B, and then returns to A by a path that lies entirely inside the body of the
conductor. This line integral is zero for any electrostatic field (Section 3.3.1). Therefore, since the field
is zero in the body of the conductor,

0 =
∮

d� · E =
B∫

A

d� |Ecavity| +
A∫

B

d� · Econductor =
B∫

A

d� |Ecavity|. (5.34)

We conclude from this that Ecavity = 0 because the integrand on the far right side of (5.34) is positive
definite.

The fact that Ecavity = 0 implies that any object placed inside the cavity is completely shielded
from the electrostatic effects of the exterior point charge q. The field responsible for the shielding
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++ +

+ +
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--+
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0E=

q

q
+

+

+

--

--
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--

(a) (b)

0E ≠

Figure 5.5: A perfect conductor with a cavity: (a) The electric field inside an empty cavity is always zero. If
there is source charge outside the conductor, the outer surface of the conductor develops a surface charge density.
See text for discussion of the dashed closed loop. (b) The electric field outside the conductor is not zero when
there is source charge inside the cavity. The conductor develops a surface charge density on the cavity surface
and on the outer surface of the conductor.

is produced by a surface charge density which develops on the outer surface of the conductor by
electrostatic induction. Every electric field line that leaves q terminates on the outer surface of the
conductor or goes off to infinity. No charge develops on the boundary of the cavity because Ecavity plays
the role of Eout in (5.15). This type of screening has tremendous practical importance, particularly so
because walls made from a metallic mesh shield electrostatic fields almost as effectively as solid metal
walls (see Section 7.5.1).

Conversely, a conductor does not screen the space outside of itself from charge placed inside a
scooped-out cavity. This is illustrated by Figure 5.5(b) where the point charge in the cavity induces a
surface charge density on both the walls of the cavity and on the exterior surface of the conductor. The
latter is necessary because Gauss’ law requires non-zero electric flux to pass through any Gaussian
surface that encloses the conductor. It is not obvious, but the field outside the conductor does not
depend on the exact position of the point charge inside the cavity.4

5.4 Capacitance

Conductors are used to store electric charge because their surfaces (where the charge resides) are easily
accessible. We use the concept of capacitance to measure the quantitative capacity of any particular
conductor to store charge, whether in isolation or in the presence of other conductors.

5.4.1 Self-Capacitance
Let V be the potential of an isolated conductor with volume � and surface S. Thomson’s theorem
(Section 5.2.1) and Coulomb’s law ensure that the electrostatic potential produced by the conductor
is ϕ(r) = V ϕ̃(r) where ϕ̃(r ∈ �) = 1 and ϕ̃(|r| → ∞) → 0. Gauss’ law and E = −∇ϕ give the total
charge on the conductor as

Q = −ε0V

∫
S

dS · ∇ϕ̃. (5.35)

4 It may amuse the reader to try to prove this statement using only the information provided so far. We give a proof in
Section 7.3.1.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-05 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 9:15
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The proportionality of Q to V in (5.35) leads us to define a purely geometrical quantity called the
self-capacitance:

C = Q

V
= −ε0

∫
S

dS · ∇ϕ̃. (5.36)

The self-capacitance of a sphere follows immediately from (5.36) because (5.2) gives the potential
at its surface as Q/4πε0R. Hence,

C = 4πε0R (sphere of radius R). (5.37)

For an origin-centered conducting disk, we can use the surface charge density (5.33) to compute the
potential at the center of the disk from

ϕ(0) = 1

4πε0

∫
S

dS ′ σ (r′
S)

| r′
S |

= V. (5.38)

Bearing in mind that both sides of the disk carry a surface charge σ (ρ), (5.38) reduces to

V = 2

4πε0

Q

4πR

2π∫
0

dφ

R∫
0

dρ√
R2 − ρ2

= Q

8ε0R
. (5.39)

Using (5.36), the self-capacitance of the disk is

C = 8ε0R (disk of radius R). (5.40)

On dimensional grounds alone, the self-capacitance must be proportional to ε0× length. The charge
on a conductor is confined to its surface, so we might guess that C ∝ ε0

√
A where A is the surface

area. Indeed, the simple formula

C � ε0

√
4πA (5.41)

turns out to be a remarkably good approximation, even for open structures.5 Figure 5.6 illustrates the
quality of (5.41) for the case of an ellipsoid of revolution.

5.4.2 What Does it Mean to ‘‘Ground’’ a Conductor?
The Earth is a very large and spherical conductor whose self-capacitance (5.37) is extraordinarily large
compared to any laboratory conductor. Therefore, because the net charge of the Earth (due to lightning
activity) is finite, we can use (5.36) to put CEarth → ∞ and ϕEarth → 0 as a first approximation. This
amounts to treating the Earth as a charge reservoir because finite amounts of charge may be added to
or taken from its surface without appreciably changing its potential from zero.

We “ground” a conductor (fix its potential at zero) by connecting it to Earth using a fine conducting
wire. Figure 5.7 illustrates two common situations. If the conductor initially has a net charge Q, the
connection to ground causes this charge to spontaneously flow to the Earth. This lowers the potential
energy of every charge on the conductor and leads to a final equilibrium state of Q = ϕ = 0 for
the conductor. Conversely, an initially uncharged conductor will draw charge “up from ground” due
to Coulomb attraction if a charge q is added to the system. This example of electrostatic induction
similarly lowers the energy of the connected system of conductor + ground.

5 See Chow and Yovanovich (1982) in Sources, References, and Additional Reading.
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1

2

3
Exact
Approximation

a
a

b b

C
4π ε0b

a/b

Figure 5.6: Normalized self-capacitance of an ellipsoid of revolution as a function of the aspect ratio a/b (note
logarithmic scale). The dimension a is varied while b is held constant. Dashed curve is (5.41). Solid curve is the
exact result from Landau and Lifshitz (1960).

Q

q

(b)(a)

Figure 5.7: A spherical conductor connected to the Earth by a fine conducting wire. The arrows on the wire
show that (a) a conductor with initial charge Q spontaneously loses its charge to Earth when grounded; (b) an
initially uncharged conductor draws charge up from ground in the presence of a nearby charge q. The symbol for
ground is used in panel (b).

5.4.3 The Capacitance Matrix
A modern integrated circuit contains thousands of metallic contacts. A capacitance matrix C describes
how the contacts influence one another electrostatically. The matrix elements Cij (which must be
measured or calculated) generalize (5.36) by relating the conductor charges Qi to the conductor
potentials ϕj for a collection of N conductors:

Qi =
N∑
j=1

Cijϕj . (5.42)

To see that (5.42) is correct, Figure 5.8 shows a conductor with potential ϕ1 in the presence of N − 1
other conductors held at zero potential by connection to ground. The charge on conductor 1 associated
with ϕ1 induces each zero-potential conductor to acquire a net charge of its own drawn, up from
ground.6 Specifically,

Q
(1)
1 = C11ϕ1 Q

(1)
2 = C21ϕ1 · · · · Q

(1)
N = CN1ϕ1, (5.43)

6 Technically, we need a theorem from Section 7.3 to guarantee that the charge drawn up to each grounded conductor is
uniquely determined by the potential ϕ1.
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1 0

3 0

4 0

2 0

Figure 5.8: Sketch of four conductors. Conductor 1 is held at a non-zero potential ϕ1. The other three conductors
are held at zero potential. A few representative electric field lines are indicated for the case when ϕ1 > 0.

where the coefficients of capacitance C11, C21 . . . , CN1 depend only on the shapes and geometrical
arrangement of the conductors. If the wires used to ground the conductors are sufficiently thin, the
charges and potentials in (5.43) do not change if we remove these wires after static equilibrium has
been reached.

Now consider a second situation where conductor 2 is held at potential ϕ2 �= 0 while all the other
conductors are held at zero potential by connection to ground. The same considerations apply as above
(including the removal of the physical connections to ground at the end) and we infer that the charges
on each conductor are

Q
(2)
1 = C12ϕ2 Q

(2)
2 = C22ϕ2 . . . . Q

(2)
N = CN2ϕ2. (5.44)

Repeating this scenario N − 2 times, each time grounding only one conductor, produces N − 2 more
expressions like (5.43) and (5.44) for the charge on each conductor. The final step is to superpose all
of the foregoing solutions to produce a situation where conductor 1 has potential ϕ1, conductor 2 has
potential ϕ2, etc. We get the desired formula (5.42) by straightforward addition because the charge on
the kth conductor is

Qk = Q
(1)
k +Q

(2)
k + · · · +Q

(N )
k . (5.45)

The diagonal elements Ckk of the capacitance matrix are not simply the self-capacitances discussed
in Section 5.4. This can be seen from Figure 5.8 where the charge induced on the grounded conductors
influences the potential of the non-grounded conductor. The off-diagonal elementsCkj are called mutual
or cross capacitances. The most important property of these quantities is that they are symmetric in
their indices:

Cij = Cji. (5.46)

We prove (5.46) using Green’s reciprocity relation (Section 3.5.2), which relates a charge distribution
ρ(r) and its potential ϕ(r) to an entirely different charge distribution ρ ′(r) and its potential ϕ′(r):∫

d 3r ϕ(r)ρ ′(r) =
∫

d 3r ϕ′(r)ρ(r). (5.47)

For a collection of N conductors, reciprocity relates a situation where the conductors possess charges
Qi and potentials ϕi to an entirely different situation where the same set of conductors possess charges
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Q′
i and potentials ϕ′

i . This reduces (5.47) to

N∑
i=1

ϕiQ
′
i =

N∑
i=1

ϕ′
iQi. (5.48)

On the other hand, (5.42) applies to both Qi and Q′
i in (5.48). Therefore,

N∑
i=1

N∑
j=1

ϕiCijϕ
′
j =

N∑
i=1

N∑
j=1

ϕ′
iCijϕj . (5.49)

Exchanging the dummy indices on one side of (5.49) proves that (5.46) is correct.
The elements of the capacitance matrix satisfy the Maxwell inequalities:

Ckk > 0

Ckj < 0∑
j

Ckj ≥ 0.
(5.50)

These inequalities can be understood from a version of Figure 5.8 where the kth conductor is held at
unit positive potential and all the other conductors are held at zero potential. For this situation, all the
electric field lines must begin on conductor k and end on one of the other conductors (or at infinity).
In particular, no field lines directly connect any other pair of conductors. The inequalities (5.50)
follow from the facts that Qm = Cmk and that the number of fields lines that leave each conductor is
proportional to the total charge on that conductor (Gauss’ law). We get

∑
j Ckj = 0 only when no

field lines escape to infinity.

Example 5.3 Figure 5.9(a) shows a point charge q a perpendicular distance z0 from one of two
parallel and infinite conducting plates separated by a distance d. Use Green’s reciprocity to find
the amount of charge drawn up from ground by each plate.

0L 0R

q

LQ RQ

d

0z

′ 0L
′
R V

′ 0q

′
LQ ′

RQ

d

0z

(a) (b)

0( )z 0′( )z

Figure 5.9: Application of Green’s reciprocity relation to find the charges QL and QR induced on two
infinite, grounded plates by an interposed point charge q.

Solution: Treat the point charge in Figure 5.9(a) as an infinitesimal spherical conductor placed at
z = z0 with potential ϕ(z0) and charge q. The planes at z = 0 and z = d have charges QL and QR

and potentials ϕL and ϕR , respectively. If we use the same notation for the “primed” charges and
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potentials, the reciprocity relation (5.48) with N = 3 reads

ϕL Q
′
L + ϕR Q

′
R + ϕ(z0) q ′ = ϕ′

L QL + ϕ′
R QR + ϕ′(z0) q.

The trick to using reciprocity is to choose physically sensible values for the primed variables in
order to isolate the desired quantities and eliminate the unwanted quantities from the preceding
equation. Since ϕ(z0) is unknown, we choose q ′ = 0 and fix the potentials on the plates at ϕ′

L = 0
and ϕ′

R = V [see Figure 5.9(b)]. Since ϕL = ϕR = 0, these choices reduce the preceding equation
to

0 = VQR + ϕ′(z0)q.

By translational invariance, the charge density is uniform on the primed plates. This means that E′ is
constant and ϕ′(z) = Az + B between the plates. The boundary values ϕ′

L(0) = 0 and ϕ′
R(d) = V

fix the constants so ϕ′(z0) = z0V/d . This determines QR . A second comparison system with
ϕ′′
L = V and ϕ′′

R = 0 determines QL. Altogether, we find

QL = −
(

1 − z0

d

)
q and QR = −z0

d
q.

The charge induced on each plate is directly proportional to the distance between q and the other
plate. The total charge drawn by both plates is −q. This implies that every electric field line that
begins on the point charge ends on one of the plates. We will explore the generality of this result
in Chapter 7.

Example 5.4 N + 1 identical conductors labeled m = 0, 1, . . . , N are arranged in a straight line.
The capacitance matrix is

Cij =
⎧⎨
⎩

C0 i = j,

−C |i − j | = 1,
0 |i − j | > 1.

Suppose conductor m = 0 at the end of the line has charge Q and all the other conductors are
uncharged. Find an approximate expression for the potential ϕm on every conductor in the limit
C � C0.

Solution: The charge-potential relations (5.42) are

Q = C0ϕ0 − Cϕ1

0 = C0ϕm − C(ϕm+1 + ϕm−1) m �= 0, N

0 = C0ϕN − CϕN−1.

The last equation is ϕN = (C
/
C0)ϕN−1. Substituting this into the middle equation withm = N − 1

and using C � C0 produces(
C0

C
− C

C0

)
ϕN−1 = ϕN−2 or ϕN−1 ≈ (C

/
C0)ϕN−2.

Repeating this argument gives ϕm = (C
/
C0)ϕm−1. Therefore, ϕm = (C

/
C0)mϕ0. But Q = C0 ϕ0

in the same limit, so

ϕm ≈ Q

C0

(
C

C0

)m

= Q

C0
exp

{−m ln(C0
/
C)
}
.
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The Triode

Before semiconductor technology made low-power vacuum tubes obsolete, the triode performed
many of the same functions as the transistor. In this device, a current in the form of a stream of
electrons flows through an enclosed vacuum between a heated cathode and an anode. The figure
below is the circuit diagram symbol for a triode. The essential feature is that a voltage applied to a
metal grid controls the magnitude of the current.

Cathode

Grid

Anode

−e

The operation of the triode can be understood qualitatively as follows. Let ϕC, ϕG, and ϕA be the
potential (voltage) of the cathode, grid, and anode, respectively. According to (5.42), the charge
QC on the cathode is

QC = CCCϕC + CCGϕG + CCAϕA.

This equation shows that the grid voltage modulates the charge on the cathode QC regardless of
the potential difference between the cathode and the anode. From (5.14), QC is proportional to
the field strength EC just outside the cathode. This field, in turn, determines the acceleration (and
hence the current) of electrons toward the anode. Note that the physical placement of the grid
between the cathode and the anode in the figure above is irrelevant to this argument.

5.4.4 The Two-Conductor Capacitor
Figure 5.10 shows a capacitor composed of two conductors with equal and opposite charge. To
analyze this arrangement—so familiar from elementary circuit theory—we use the inverse P = C−1

of the capacitance matrix7 to write

ϕi =
N∑
j=1

Pij Qj . (5.51)

The Pij are called coefficients of potential. Since Q1 = −Q2, (5.51) for a capacitor simplifies to

ϕ1 = P11Q1 + P12Q2 = (P11 − P12)Q

ϕ2 = P21Q1 + P22Q2 = (P12 − P22)Q.
(5.52)

Subtracting the second equation in (5.52) from the first gives the potential difference ϕ1 − ϕ2 =
(P11 + P22 − 2P12)Q. This leads us to define the capacitance C of the capacitor8 as

C = Q

ϕ1 − ϕ2
= 1

P11 + P22 − 2P12
= C11C22 − C2

12

C11 + C22 + 2C12
. (5.53)

7 The Maxwell inequalities (5.50) guarantee that this inverse exists.
8 Older literature speaks more descriptively of the capacity C of a condenser.
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1Q Q

2Q Q

Figure 5.10: The electric field near a two-conductor capacitor.

Figure 5.11: The fringe electric field near a parallel-plate capacitor.

The last equality in (5.53) follows from the matrix inverse,

P = C−1 =
[
C11 C12

C12 C22

]−1

= 1

C11C22 − C2
12

[
C22 −C12

−C12 C11

]
. (5.54)

The limit C12 � C11, C22 is noteworthy because it simplifies (5.53) to

1

C
= 1

C11
+ 1

C22
. (5.55)

If the same limit reducesCkk to the self-capacitance of conductor k, (5.55) identifies the two-conductor
capacitance C as the two constituent self-capacitances added in parallel.

More generally, if S is any surface that encloses the positive conductor,

C =
ε0
∫
S

dS · E

2∫
1
d� · E

. (5.56)

The line integral in the denominator of (5.56) follows any path from the positive conductor to the
negative conductor in Figure 5.10. The most familiar example of a two-conductor capacitor is the
“parallel-plate” geometry where a distance d separates two flat conducting plates with uniform surface
charge densities ±Q/A. If d � √

A, we use (5.14) and a uniform field approximation to write
|E| = Q/Aε0 = (ϕ1 − ϕ2)/d . The capacitance follows from the leftmost equality in (5.53),

C0 = ε0A

d
. (5.57)

Figure 5.11 shows E(r) for a parallel-plate capacitor where d is not very small compared to
√
A.

The presence of “fringe” electric field lines which begin and end on the outer surfaces of the plates
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shows that some of the charge of each plate resides on those outer surfaces. This implies that |E|
between the plates is slightly less than the infinite-plate value Q/Aε0. The correspondingly smaller
value of the denominator in (5.56) tells us that the capacitance Cexact of a real parallel-plate capacitor
exceeds (5.57).

5.5 The Energy of a System of Conductors

The total electrostatic energy of a collection of N conductors is straightforward to calculate because
the charge of the kth conductor Qk is distributed with density σk(rS) over its surface Sk where the
potential ϕk is constant. This gives

UE = 1
2

∫
d 3r ρ(r)ϕ(r) = 1

2

N∑
k=1

ϕk
∫
Sk

dS σk(rS) = 1
2

N∑
k=1

Qk ϕk. (5.58)

Substituting (5.42) and (5.51) into (5.58) produces the alternative expressions

UE = 1
2

N∑
i=1

N∑
j=1

ϕi Cij ϕj (5.59)

and

UE = 1
2

N∑
i=1

N∑
j=1

Qi Pij Qj . (5.60)

For a two-conductor capacitor, we use the results of Section 5.4.4 to evaluate the sum in (5.60). The
result is

UE = 1
2Q

2(P11 + P22 − 2P12) = Q2

2C
= 1

2
C(ϕ1 − ϕ2)2. (5.61)

This proves that C > 0 in (5.53) because we have proved previously (Section 3.6.1) that UE ≥ 0.
The same formula gives the charging energy of a single isolated conductor if C denotes the self-
capacitance:

UE = Q2

2C
. (5.62)

Application 5.2 Coulomb Blockade

It is not difficult to transfer a macroscopic number of electrons to and from a macroscopic conductor
because the charging energy (5.62) gained or lost is extremely small. This is no longer true for a
“quantum dot” (a conducting object whose size scale R is microscopic rather than macroscopic)
because (5.41) and (5.62) show that the charging energy UE ∝ R−1 is large. In practice, it is possible
to interpose a microscopically thin layer of insulating material between a quantum dot (R ∼ 10 nm)
and a much larger conductor which functions as an electron reservoir (Figure 5.12). The insulator
creates a potential energy barrier between the dot and the reservoir. At very low temperature, electrons
tunnel through the barrier to and from the dot, one by one, if it is energetically favorable to do so. Our
task is to find the charge Q on the dot as a function of an external potential ϕ applied to the dot.
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0
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2
2
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C

Figure 5.12: Left: two-dimensional quantum dot (shaded circle) separated from an electron reservoir
(shaded annulus) by an insulating ring (white). Right: charge on the quantum dot as a function of an
external potential ϕ applied to the dot. See text for discussion.

If N is the number of electrons on the dot and C is the capacitance of the dot-reservoir capacitor,
the total electrostatic energy of the system is

UE(N ) = (Ne)2
/

2C −Neϕ. (5.63)

In fact, C ≈ C11, the self-capacitance of the dot, because C22 � C11, C12 in (5.53). When ϕ = 0, UE

is smallest when N = 0. Otherwise, the energy difference

UE(N +M) − UE(N ) = {(N +M/2)e/C − ϕ}Me (5.64)

first becomes negative when ϕ = e(N +M/2)/C. This quantity is smallest for M = 1 so, as ϕ

increases, the charge on the dot jumps from N to N + 1 when ϕC/e = N + 1/2. This implies that
the dot charge Q(ϕ) is the staircase function plotted in Figure 5.12. The horizontal segments in this
figure are regions of “Coulomb blockade” where the charge on the dot does not increase as the applied
potential increases due to the large cost in electrostatic energy. This phenomenon can be used to
establish a capacitance standard by simply counting electrons.

When kT is much larger than the charging energy, electrons are thermally excited over the insulating
barrier in copious numbers. This phenomenon washes out the quantum staircase and we obtain the
macroscopic result Q = Cϕ. This is the straight line plotted in Figure 5.12. The dotted curve is for an
intermediate temperature. �

5.6 Forces on Conductors

In Section 3.4.3, we derived f = 1
2σ (Ein + Eout) as the electrostatic force per unit area on an element

of surface. Since E = 0 inside a conductor, the net force on the center of mass of a conductor involves
only the field just outside the conductor surface. Using (5.14), we find

F = 1

2

∫
dS σEout = 1

2ε0

∫
dS σ 2n̂. (5.65)

The same force expression follows from the Maxwell stress tensor formula (3.97) because the electric
field just outside a conductor is E = n̂σ/ε0. The outward normal n̂ in the integrand of (5.65) shows
that an outward pressure acts on every element of surface. This pressure (which is opposed by quantum
mechanical forces of cohesion) reflects the tendency of infinitesimal bits of charge of the same sign to
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repel each other on each element of surface. Of course, a conductor cannot exert a net force on itself,
so the integral (5.65) must be zero for a conductor in isolation.

In Chapter 8, we calculate the force (5.65) when a charge distribution ρ(r) is responsible for Eout.
Here, we study the force exerted on a given conductor by other conductors which may be present and
exploit the total energy of a collection of conductors computed in Section 5.5. Our strategy is to mimic
Section 3.5.1 where we calculated the Coulomb force F = −δVE/δs from the change in electrostatic
potential energy δVE that occurs when a charge distribution is displaced by an infinitesimal amount
δs. A subtlety is that we can perform the displacement in one of two ways: holding the charge of the
other conductors constant or holding the potential of the other conductors constant. Equations (5.42)
and (5.51) remind us that these quantities are not independent. Therefore, since partial derivatives will
be involved, it is important to work with an energy function whose natural independent variables are
the same as the variables we propose to hold constant. The mathematics needed to do this is familiar
to students of classical mechanics and thermodynamics.

5.6.1 Charges Held Constant
Consider a collection of N conductors with center-of-mass positions Rk , charges Qk , and potentials
ϕk . If the conductors are isolated, conservation of charge guarantees that the charge of any one of them
cannot change when its center of mass suffers an infinitesimal displacement. To find the force exerted
on any one of them, the proper quantity to vary must be a natural function of the conductor charges.
We assert this is the total electrostatic energy,

UE = UE(Q1, . . . ,QN,R1, . . . ,RN ). (5.66)

Equation (5.66) follows from the definition of UE as the total work done to assemble a charge
distribution. The work-energy theorem identifies dUE = ϕk dQk as the change in energy when a bit
of charge dQk is brought from infinity (zero potential) to the surface of a conductor with potential ϕk .
For our problem, this generalizes to

dUE =
N∑
k=1

ϕk dQk −
N∑
k=1

Fk · dRk. (5.67)

The negative sign in the second term ensures that the force Fk on the kth conductor moves the system
toward lower energy.

On the other hand, it is a matter of calculus that the total differential of (5.66) is

dUE =
N∑
k=1

(
∂UE

∂Qk

)
Q′,R
dQk +

N∑
k=1

(
∂UE

∂Rk

)
Q,R′
· dRk. (5.68)

The subscript Q in (5.68) stands for the entire set of conductor charges. The subscript Q′ stands for
the entire set of conductor charges except for the one involved in the derivative. A similar notation is
used for other variables. Comparing (5.68) to (5.67), we conclude that

ϕk =
(
∂UE

∂Qk

)
Q′,R

and Fk = −
(
∂UE

∂Rk

)
Q,R′

. (5.69)

All of this is precisely analogous to the situation in thermodynamics where the relation dU = T dS −
pdV confirms that the internal energy U = U (S, V ) is a natural function of entropy and volume with
T = (∂U

/
∂S)V and p = −(∂U

/
∂V )S. In this sense, the partial derivative on the left side of (5.69)

shows that ϕk and Qk are conjugate variables like pressure and volume.
Because the Qk are held constant, the partial derivative on the right side of (5.69) is simplest to

evaluate using (5.60) as our expression for UE . This expresses the force exerted on the kth conductor
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in terms of the coefficients of potential Pij ,9

Fk = −1

2

∑
i,j

QiQj

(
∂Pij

∂Rk

)
Q,R′

. (5.70)

5.6.2 Potentials Held Constant
Electrostatic potential is not a conserved quantity like charge. Therefore, physical connection to a
battery (or to ground) is required to maintain the potential of a conductor at a fixed value. Moreover, to
calculate forces, we are obliged to replace the total energy UE in (5.66) with an energy-like quantity
that is a natural function of the potential rather than of the charges.

We showed in the previous section that ϕk and Qk are conjugate variables. Therefore, follow-
ing a procedure familiar from thermodynamics and classical mechanics10 we perform a Legendre
transformation on UE and define

ÛE = UE −
N∑
i=1

Qiϕi. (5.71)

To check that this is correct, we compute the differential dÛE and use (5.67). The result is

dÛE = dUE −
N∑
i=1

ϕidQi −
N∑
i=1

Qidϕi = −
N∑
i=1

Qidϕi −
N∑
i=1

Fi · dRi . (5.72)

The usual rules of calculus then confirm that

ÛE = ÛE(ϕ1, . . . , ϕN ,R1, . . . ,RN ), (5.73)

with

Qi = −
(
∂ÛE

∂ϕi

)
ϕ′,R

and Fi = −
(
∂ÛE

∂Ri

)
ϕ,R′

. (5.74)

To make further progress, we combine (5.71) with (5.58) to get the explicit formula

ÛE = − 1
2

∑
i

ϕiQi. (5.75)

Comparing (5.75) with (5.58) shows that ÛE happens to equal −UE . Therefore, since the poten-
tials ϕk are now held constant, it is simplest to evaluate the right side of (5.74) using the negative
of (5.59). This expresses the force exerted on the kth conductor in terms of the coefficients of
capacitance:

Fk = 1

2

N∑
i=1

N∑
j=1

ϕiϕj

(
∂Cij

∂Rk

)
ϕ,R′

. (5.76)

9 See, however, Section 5.6.3.
10 In thermodynamics, the internal energy U (S, V ) is a natural function of entropy S and volume V . To get a natural

function of temperature and volume, we use F = U − T S to define the Helmholtz free energy F (T , V ). In classical
mechanics, the Lagrangian L(q, q̇) is a natural function of position q and velocity q̇. To get a natural function of
position and momentum p, we use H = pq̇ − L to define the Hamiltonian H (p, q). The overall minus sign in the
latter example compared to (5.71) is conventional.
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Example 5.5 Calculate the force acting on a metal sheet of thickness t inserted a distance x into a
capacitor with parallel-plate separation d > t and voltage difference V ; see Figure 5.13. The fringe
fields can be neglected if an energy method is used to find F.

Solution: By symmetry, the force is in the x-direction only. Since the potential is held constant,
we calculate the force from (5.74) in the form

Fx = −∂ÛE

∂x
= ∂UE

∂x
= lim

�→0

UE(x +�) − UE(x)

�
.

x x

0

V

t d

0

Figure 5.13: A conducting sheet of thickness t partially inserted into a capacitor with plate separation d > t .

The energy in this formula is

UE = 1

2
ε0

∫
d 3r |E|2.

Moreover, there is no contribution to the force formula from the energy stored in the capacitor to
the right of the point x +�. Since E = 0 inside the slab and

V =
d∫

0

d� · E,

the magnitude of the electric field is V/(d − t) above and below the slab. The electric field
magnitude is V/d between x and x +�. Therefore, if w is width of the capacitor in the direction
perpendicular to the paper,

UE(x +�) − UE(x) = 1

2
ε0

(
V

d − t

)2

w(x +�)(d − t)

−
[

1

2
ε0

(
V

d − t

)2

wx(d − t) + 1

2
ε0

(
V

d

)2

w�d

]
.

We conclude that

F = 1

2
ε0V

2w

[
1

d − t
− 1

d

]
x̂.

This force tends to draw the conductor into the capacitor. The same conclusion follows from (5.65)
only if we take account of the non-uniformity of the electric field near the end of the slab. The
contributions to this force integral are equal, opposite, and vertical on the top and bottom faces of
the slab. The contributions to (5.65) in the +x-direction come from charge induced by electric field
lines which bend around and terminate on the vertical edge of the slab that lies inside the capacitor.

5.6.3 Why UE Differs From ÛE

A naive force calculation using Fk = −∂UE/∂Rk and (5.59) gives the negative of (5.76). This wrong
answer reflects the fact that UE is not a natural function of the ϕk . Physically, the sign change
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1ϕ

B

2ϕ
F

δR2ϕ1B

2B2ϕ 2B

Figure 5.14: Two conductors maintained at fixed potentials by batteries.

occurs because the fixed-potential conductors do not form a closed system. Instead, each conductor
is connected to a charge reservoir (a battery) which supplies or extracts charge from the conductor to
maintain its potential during an infinitesimal displacement.

Figure 5.14 shows two conductors held at fixed potentials ϕ1 and ϕ2 by batteries B1 and B2. The
vector F indicates the mechanical force exerted on conductor ϕ2 by conductor ϕ1. When the conductor
ϕ2 suffers a rigid displacement δR, the charge on ϕ1 changes from Q

(0)
1 to Q1 and the charge on ϕ2

changes from Q
(0)
2 to Q2. Our strategy is to compute the energy change �ÛE which occurs during this

process from the change �Esys that occurs in the total energy:

�Esys = F · δR +�UE +�Ebatt = 0. (5.77)

In (5.77), F · δR is the work done by F, �UE is the change in the total electrostatic energy associated
with the conductors, and �Ebatt is the change in the total energy of the batteries. The zero on the
far right side of (5.77) is a statement of the conservation of energy for the isolated system shown in
Figure 5.14.

The fixed potential relation on the far right side of (5.74) permits us to eliminate F · δR in (5.77) in
favor of �ÛE . Consequently,

�ŨE = �UE +�Ebatt. (5.78)

The change in electrostatic energy follows from (5.58):

�UE = UE(Q1,Q2) − UB (Q(0)
1 ,Q

(0)
2 ) = 1

2

N∑
k=1

ϕk(Qk −Q
(0)
k ). (5.79)

As for�Ebatt, the batteries are external to the conductors, so the work done by them is calculable using
(5.67). Using N = 2 and the fact that positive work done to maintain the potentials on the conductors
reduces the total energy of the batteries,

�Ebatt = −Wbatt = −
N∑
k=1

Qk∫
Q

(0)
k

ϕkdQk = −
N∑
k=1

ϕk(Qk −Q
(0)
k ). (5.80)

Substituting (5.79) and (5.80) into (5.78) gives

�ŨE = −1

2

N∑
k=1

ϕk(Qk −Q
(0)
k ). (5.81)

Hence, in agreement with (5.75),

ŨE = −1

2

N∑
k=1

ϕkQk. (5.82)

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-05 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 9:15

148 CONDUCTING MATTER: ELECTROSTATIC INDUCTION AND ITS CONSEQUENCES

Given all these remarks, the reader may be surprised to learn that the charge-fixed formula (5.70)
and potential-fixed formula (5.76) give exactly the same force for a static collection of conductors.
This must be the case because the displacements imagined in Sections 5.6.1 and 5.6.2 are not real, but
merely virtual. Consequently, the same force must result whether (in our minds) we hold the charges
fixed or hold the potentials fixed. We can illustrate this using the attractive force which acts between
the two conductors in Figure 5.10. From the fixed-charge point of view, we use (5.61) and (5.69) to
get the force on conductor 1 as

F1 = −∂UE

∂R1
= −Q2

2

∂

∂R1

1

C
= UE

C

∂C

∂R1
. (5.83)

From the fixed-potential point of view, (5.61), (5.74), and the fact that ÛE = −UE give the same result:

F1 = −∂ÛE

∂R1
= 1

2
(ϕ1 − ϕ2)2 ∂C

∂R1
= UE

C

∂C

∂R1
. (5.84)

Example 5.6 (a) Calculate the total energy change when the parallel-plate separation increases
from s to s + δs for the capacitor C in Figure 5.15. Use this to find the force between the plates
of capacitor C. (b) Repeat the calculation when the switches are closed. Ignore the effect of the
connecting wires and assume that s2 is very small compared to the capacitor plate area A.

q

–q –q′

q′
sC C′

Figure 5.15: Two parallel-plate capacitors.

Solution: (a) With the switches open, C is an isolated system with total energy UE = q2/2C.
From (5.57), the capacitance C = ε0A/s and σ = q/A so

δUE = −1

2

( q
C

)2
δC = 1

2

( q
C

)2 ε0Aδs

s2
= σ 2

2ε0
Aδs.

The energy increases as δs increases so the force per unit area is attractive. This is consistent with
the negative sign in F = −δUE/δs = −σ 2A/2ε0 because the direction of the force is opposite to
the direction of δs.

(b) With the switches closed, the total energy of the system is UE = q2/2C + q ′2/2C ′. When
we change s, there is a change δC and a flow of charge between the capacitors. Therefore, because
δq = −δq ′,

δUE = −1

2

( q
C

)2
δC + q

C
δq + q ′

C ′ δq
′ = −1

2

( q
C

)2
δC +

(
q

C
− q ′

C ′

)
δq.

The last term in parenthesis is zero because q = VC and q ′ = VC ′ where V is the (common)
potential difference between the plates. The term that remains is the energy change computed
earlier, so the force is the same. In the reservoir limit C ′ → ∞, it is not difficult to check that the
energy change above is −δÛE as it should be.
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E = 0

q

Figure 5.16: A real conductor with a point charge q inside a scooped-out cavity. The electric field is zero in the
bulk of the conductor (grey) except within a screening layer (black) of thickness � at the surfaces.

5.7 Real Conductors

Section 5.3 discussed the screening properties of a perfect conductor with a cavity scooped out of its
interior. Among other things, we learned that a point charge q inside the cavity induces charge on the
surfaces of both the cavity and the conductor. Figure 5.16 shows that real conducting matter behaves
similarly except that the infinitesimally thin layers of induced surface charge spread out into diffuse
layers of thickness �. This screening length � varies from ∼ 10−10 m for a good metal to ∼ 10−8 m
for a biological plasma, ∼10−5 m for a laboratory plasma, and ∼ 10 m for an astrophysical plasma.

To understand the origin of the screening layer, consider an infinite system with three sources
of charge: (1) a positive point charge at the origin; (2) a uniform distribution of positive charge
with density en0; and (3) a distribution of mobile negative charge with density −en(r). This model
approximates a point impurity in a metal where the positive ions are immobile. It also approximates a
point impurity in an astrophysical, biological, or laboratory plasma where the positive ions move very
slowly compared to the electrons.

The Poisson equation (2.14) for this model is

ε0∇2ϕ(r) = −e[n0 − n(r)] − qδ(r). (5.85)

When q = 0, translational invariance implies that n(r) = n0 and ϕ(r) = 0 if the system is overall
charge-neutral. When q �= 0, a spatially varying electrostatic potential arises and a spatially varying
charge density develops in response. Intuitively, we expect negative charge to move from points of low
potential to points of high potential. To describe this behavior, recall first that the chemical potential
μ(r) is the control parameter for particle number density in near-equilibrium situations.11 This means
that n0 = n0(μ). Moreover, n0(μ) is a non-decreasing function of its argument.12 These facts suggest
a simple way to control the migration of mobile negative charge: replace n = n0(μ) by

n(r) = n0(μ+ eϕ(r)). (5.86)

This local approximation captures the dominant response of mobile charge at the point r to the
electrostatic potential at the point r.

To make progress, expand (5.86) to first order in ϕ(r) and use the result to approximate the first term
on the right-hand side of (5.85)) as

−e[n0(μ) − n0(μ+ eϕ)] ≈ e2 ∂n0

∂μ
ϕ. (5.87)

11 Position-dependent chemical potentials are discussed in, e.g., P.M. Morse, Thermal Physics, 2nd edition
(Benajmin/Cummings, Reading, MA, 1969).

12 This follows from the thermodynamic identity (∂n/∂μ)T ,V = −n2V −1(∂V/∂P )T = n2κ ≥ 0, where κ is the
isothermal compressibility.
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Next, define

1

�2
= e2

ε0

∂n0

∂μ
(5.88)

and substitute (5.87) into (5.85) to get

∇2ϕ(r) − ϕ(r)

�2
= −qδ(r). (5.89)

It is not difficult to solve (5.89) if we focus on points away from the origin, where (5.89) simplifies to

∇2ϕ(r) − ϕ(r)

�2
= 0. (5.90)

A point charge is spherically symmetric. Therefore, ϕ(r) = ϕ(r) and a brief calculation confirms that
(5.90) simplifies to

d2(rϕ)

dr2
− rϕ

�2
= 0. (5.91)

The solution to (5.91) which satisfies the physical boundary conditions ϕ(r → ∞) = 0 and
ϕ(r → 0) = q

/
4πε0r is

ϕ(r) = q

4πε0r
exp(−r/�). (5.92)

It is not difficult to check using (5.85) that the electron density implied by (5.92) satisfies∫
d 3r n(r) = −q. (5.93)

We conclude from (5.93) that the mobile negative charge attracted toward the origin exactly compen-
sates the positive charge of the point impurity. The decaying exponential in (5.92) makes it clear that
the electric field is essentially zero at any distance greater than about � from the point charge.13 For
this reason, � is called the screening length.

For a sample of finite size, Gauss’ law provides a boundary condition at the conductor surface that
can be used with (5.90) to confirm our assertion that the positively charged layer in Figure 5.16 extends
a distance � into the conductor. Similarly, if we replace the point charge by a uniform, static, external
electric field, one finds from (5.90) that the electric field penetrates a distance � into the bulk of the
conductor. All of this shows that, for a sample with a characteristic size D, the ratio �

/
D measures

how nearly “perfectly” the conductor responds to electrostatic perturbations.

5.7.1 Debye-Hückel and Thomas-Fermi Screening
The qualitative physics of the screening layer lies in the proportionality between ∂n0

/
∂μ and the

compressibility quoted in footnote 12. By definition, a perfect conductor has zero screening length.
Therefore, according to (5.88), this system is infinitely compressible in the sense that it costs no
energy to squeeze all the screening charge into an infinitesimally thin surface layer. By contrast, the
screening charge in a classical thermal plasma (like the cytoplasm of a cell or a doped semiconductor)
has finite compressibility because the charges gain configurational entropy by spreading out in space.
The screening electrons in a metal similarly resist compression because, as the quantum mechanical
particle-in-a-box problem teaches us, the kinetic energy of the electrons increases as the volume of the
box decreases. For these reasons, the infinitesimally thin surface distributions of a perfect conductor
broaden into the screening layers illustrated in Figure 5.16.

13 Compare the exponential in (5.92) with the exponential in (2.63).
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Quantitatively, we need the function n0(μ) to compute � from (5.88). For our “classical” examples,
it is a standard result of Boltzmann statistics that the particle density depends on chemical potential as

n0(μ) = (2πmkT )3/2

h3
exp

{
μ
/
kT
}
. (5.94)

The associated screening length calculated from (5.88) is

�DH =
√
ε0kT

e2n
. (5.95)

The subscript “DH” in (5.95) honors P. Debye and E. Hückel, who identified this quantity in their
analysis of screening in electrolytes. Typically, �DH ∼ 10 − 100 Å in such solutions and also in doped
semiconductors. For a metal, Fermi statistics at T = 0 gives the dependence of the particle density on
chemical potential as

n0(μ) = 8π

3

(
2mμ

h2

)3/2

. (5.96)

Using (5.96) in (5.88) gives the screening length,

�TF =
√
πaB

4kF
, (5.97)

where μ = −h2
k2
F /2m and aB = 4πε0

−h2
/me2. Here, the subscript “TF” remembers L.H. Thomas and

E. Fermi because the approximations of this section were used by them in a statistical theory of atomic
structure. In a good metal, �TF ∼ 1 Å.

�

Sources, References, and Additional Reading

The Cavendish quotation at the beginning of the chapter is taken from Section 98 of “An attempt to explain some
of the principal phenomena of electricity by means of an elastic fluid”, Philosophical Transactions 61, 584 (1771).
The article is reprinted (with a penetrating commentary) in

J.C. Maxwell, The Electrical Researches of the Honourable Henry Cavendish (Frank Cass, London, 1967).

Section 5.1 Textbooks that discuss the physics of conductors without an immediate plunge into boundary value
potential theory include

V.C.A. Ferraro, Electromagnetic Theory (Athlone Press, London, 1954).

W.T. Scott, The Physics of Electricity and Magnetism, 2nd edition (Wiley, New York, 1966).

R.K. Wangsness, Electromagnetic Fields, 2nd edition (Wiley, New York, 1986).

In the course of his study of thermal fluctuations, Einstein considered the effect of a heat bath on the charge carried
by the surface of a conductor. He proposed to use amplification by successive steps of electrostatic induction to
observe the tiny changes in charge predicted by his theory. The story is told in detail in

D. Segers and J. Uyttenhove, “Einstein’s ‘little machine’ as an example of charging by induction”, American
Journal of Physics 74, 670 (2006).

Section 5.2 Application 5.1 is taken from the surprisingly readable
G. Green, An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism
(1828). Facsimile edition by Wezäta-Melins Aktieborg, Göteborg, Sweden (1958), Section 12.

Techniques used to find σ (rS ) for a conducting disk different from the one used in Application 5.1 include (i)
solving Laplace’s equation in ellipsoidal coordinates; (ii) solving an integral equation; and (iii) a purely geometric
approach. These methods are discussed, respectively, in
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J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

L. Egyes, The Classical Electromagnetic Field (Dover, New York, 1972).

A.M. Portis, Electromagnetic Fields: Sources and Media (Wiley, New York, 1978).

Section 5.3 A pedagogical discussion of electrostatic shielding which complements the one given in the text is
S.H. Yoon, “Shielding by perfect conductors: An alternative approach”, American Journal of Physics 71, 930
(2003).

Section 5.4 The approximate self-capacitance formula (5.41) and the exact formulae graphed in Figure 5.6 are
discussed, respectively, in

Y.L. Chow and M.M. Yovanovich, “The shape factor for the capacitance of a conductor”, Journal of Applied
Physics 53, 8470 (1982).

L.D. Landau and E.M. Lifshitz, The Electrodynamics of Continuous Media (Pergamon, Oxford, 1960).

Example 5.4 is a simplified version of a problem analyzed in
K.K. Likharev, N.S. Bakhvalov, G.S. Kazacha, and S.I. Serdyukova, “Single-electron tunnel junction array”, IEEE
Transactions on Magnetics 25, 1436 (1989).

The boxed material after Example 5.4 comes from
A. Marcus, “The theory of the triode as a three-body problem in electrostatics”, The American Physics Teacher
7, 196 (1939).

The capacitance matrix is important to the design of very large scale integrated (VLSI) circuits. A typical example is
Z.-Q. Ning, P.M. Dewilde, and F.L. Neerhoff, “Capacitance coefficients for VLSI multilevel metallization lines”,
IEEE Transactions on Electron Devices 34, 644 (1987).

Section 5.5 Entry points to learn about Coulomb blockade and quantum dots are
H. Grabert and M.H. Devoret, Coulomb Blockade Phenomena in Nanostructures, NATO ASI Series B, vol-
ume 294 (Plenum, New York, 1992).

M.W. Keller, A.L. Eichenberger, J.M. Martinis, and N.M. Zimmerman, “A capacitance standard based on
counting electrons”, Science 285, 1707 (1999).

Section 5.6 Our “thermodynamic” approach to the forces exerted on conductors was inspired by the masterful
but characteristically terse discussion in Section 5 of Landau and Lifshitz (see Section 5.4 above).

Examples 5.5 and 5.6 were adapted, respectively, from
O.D. Jefimenko, Electricity and Magnetism (Appleton-Century-Crofts, New York, 1966).

W.M. Saslow, Electricity, Magnetism, and Light (Academic, Amsterdam, 2002).

Section 5.7 An excellent introduction to the screening response of “real” conductors (both classical and quan-
tum) to static and non-static perturbations is

J.-N. Chazalviel, Coulomb Screening by Mobile Charges (Birkhäuser, Boston, 1999).

Problems
5.1 A Conductor with a Cavity A solid conductor has a vacuum cavity of arbitrary shape scooped out of its

interior. Use Earnshaw’s theorem to prove that E = 0 inside the cavity.

5.2 Two Spherical Capacitors A spherical conducting shell with radius b is concentric with and encloses a
conducting ball with radius a. Compute the capacitance C = Q/�ϕ when

(a) the shell is grounded and the ball has charge Q.
(b) the ball is grounded and the shell has charge Q.

5.3 Concentric Cylindrical Shells A capacitor is formed from three very long, concentric, conducting,
cylindrical shells with radii a < b < c. Find the capacitance per unit length of this structure if a fine wire
connects the inner and outer shells and λb is the uniform charge per unit length on the middle cylinder.
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5.4 A Charged Sheet between Grounded Planes Two infinite conducting planes are held at zero potential at
z = −d and z = d. An infinite sheet with uniform charge per unit area σ is interposed between them at an
arbitrary point.

(a) Find the charge density induced on each grounded plane and the potential at the position of the sheet of
charge.

(b) Find the force per unit area which acts on the sheet of charge.

0 z dd

00

5.5 The Charge Distribution Induced on a Neutral Sphere A point charge q lies a distance r > R from the
center of an uncharged, conducting sphere of radius R. Express the induced surface charge density in the
form

σ (θ ) =
∞∑
�=1

σ�P�(cos θ )

where θ is the polar angle measured from a positive z-axis which points from the sphere center to the point
charge.

(a) Show that the total electrostatic energy is

UE = 1

ε0

∞∑
�=0

σ�

2�+ 1

[
R3σ�

2

4π

2�+ 1
+ q R�+2

r�+1

]
.

(b) Use Thomson’s theorem to find σ (θ ).

5.6 Charge Transfer between Conducting Spheres A metal ball with radius R1 has charge Q. A second
metal ball with radius R2 has zero charge. Now connect the balls together using a fine conducting wire.
Assume that the balls are separated by a distance R which is large enough that the charge distribution on
each ball remains uniform. Show that the ball with radius R1 possesses a final charge

Q1 = QR1

R1 + R2

[
1 + (R1 − R2)R2

(R1 + R2)R

]
.

5.7 Concentric Spherical Shells Three concentric spherical metallic shells with radii c > b > a have charges
ec, eb, and ea , respectively. Find the change in potential of the outermost shell when the innermost shell is
grounded.

5.8 Don’t Believe Everything You Read in Journals A research paper published in the journal Applied
Physics Letters describes experiments performed with three identical spherical conductors suspended from
above by insulating wires so a (fictitious) horizontal plane passes through the center of all three spheres. It
was reported that a large voltage V applied to one sphere induced equal and opposite rotation in the two
isolated spheres (see top view below). The authors suggested that the isolated spheres were set into motion
by electrostatic torque. Show, to the contrary, that this torque is zero.

V
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5.9 A Dipole in a Cavity A point electric dipole with moment p is placed at the center of a hollow spherical
cavity scooped out of an infinite conducting medium.

(a) Find the surface charge density induced on the surface of the cavity.
(b) Show that the force on the dipole is zero.

5.10 Charge Induction by a Dipole A point dipole p is placed at r = r0 outside a grounded conducting sphere
of radius R. Use Green’s reciprocity (and a comparison system with zero volume charge density) to find the
charge drawn up from ground onto the sphere.

p

0rR

5.11 Charge Induction by a Potential Patch The square region defined by −a ≤ x ≤ a and −a ≤ y ≤ a in
the plane z = 0 is a conductor held at potential ϕ = V. The rest of the plane z = 0 is a conductor held at
potential ϕ = 0. The plane z = d is also a conductor held at zero potential. Use Green’s reciprocity relation
to find the total charge induced on the entire z = 0 plane.

V 2a
2a

d

5.12 Charge Sharing among Three Metal Balls Four identical conducting balls are attached to insulating
supports that sit on the floor as shown below. One ball has charge Q; its support is fixed in space. The other
three balls are uncharged but their supports can be moved around. Describe a procedure (that involves only
moving and/or bringing balls into contact) that will leave the +Q ball with its full charge and give the three
originally uncharged balls charges q, −q/2, and −q/2. You may assume that q < Q.

Q

5.13 A Conducting Disk
A conducting disk of radius R held at potential V sits in the x-y plane centered on the z-axis.

(a) Use the charge density for this system calculated in the text to find the potential everywhere on the
z-axis.

(b) Ground the disk and place a unit point charge q0 on the axis at z = d. Use the results of part (a) and
Green’s reciprocity relation to find the amount of charge brought up from ground to the disk.

5.14 The Capacitance of Spheres

(a) What is the self-capacitance (in farads) of the Earth? How much energy is required to add one electron
to the (neutral) Earth?

(b) What is the self-capacitance (in farads) of a conducting nanosphere of radius 10 nm? How much energy
(in electron volts) is required to add one electron to the (neutral) sphere?
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(c) Two conducting spheres with radii RA and RB are separated by a distance R and carry net charges
QA and QB. Find the potential matrix P and the capacitance matrix C assuming that the two spheres
influence one another but that R � RA,RB so that the charge density on each remains spherical.

(d) Compare the diagonal elements of C computed at the end of part (c) with the self-capacitances of the
spheres.

5.15 Practice with Green’s Reciprocity The text derived Green’s reciprocity theorem for a set of conductors
as a special case of a more general result. For conductors with charges and potentials (qk, ϕK ) and the same
set of conductors with charges and potentials (q̃k, ϕ̃k), the theorem reads

N∑
i=1

qi ϕ̃i =
N∑
i=1

q̃iϕi .

(a) Use the symmetry of the capacitance matrix to prove the theorem directly.
(b) Three identical conducting spheres are placed at the corners of an equilateral triangle. When the sphere

potentials are (φ, 0, 0), their charges are (q, q0, q0). What is the charge q ′ on each sphere when the
potential of each sphere is φ′?

(c) What is the potential on each sphere when their charges are (q ′′, 0, 0)?

5.16 Maxwell Was Not Always Right A non-conducting square has a fixed surface charge distribution. Make
a rectangle with the same area and total charge by cutting off a slice from one side of the square and gluing
it onto an adjacent side. The energy of the rectangle is lower than the energy of the square because we have
moved charge from points of high potential to points of low potential. An even lower energy results if we
let the charge of the rectangle rearrange itself in any manner that keeps the total charge fixed. By definition,
the rectangle is now a conductor. The electrostatic energy UE = Q2

/
2C of the rectangle is lower, so the

capacitance of the rectangle is larger than the capacitance of the square.
Maxwell made this argument in 1879 in the course of editing the papers of Henry Cavendish. Much later,

the eminent mathematician György Polya observed that the conclusion is correct but that “Maxwell’s proof
is amazingly fallacious.”

(a) Find the logical error in Maxwell’s argument.
(b) Make a physical argument which shows that Crect > Csq. Hint: Think about the electrostatic energy cost

to add a bit of charge δQ to either the square or the rectangle.

5.17 Two-Dimensional Electron Gas Capacitor Let d be the separation between two infinite, parallel, perfectly
conducting plates. The lower surface of the upper plate has charge per unit area σ1 > 0. The upper surface
of the lower plate has charge per unit area σ2 > 0. At a distance L above the lower plate, there is an
infinite sheet of charge with charge per unit area σ0 = − (σ1 + σ2). If we approximate the latter by a two-
dimensional electron gas, elementary statistical mechanics tells us that the energy per unit area of the sheet

is u0 = π−h2
σ 2

0

/
2me2.

Fix σ1 and show that the total energy per unit area of the system is minimized when

σ2 = −σ1
C2

C2 + C0
,

where C2 is a characteristic geometric capacitance and C0 is the “quantum capacitance” of the two-
dimensional electron gas. Discuss the classical limit of C0 and confirm that the corresponding value for σ2

makes sense.

5.18 Two Pyramidal Conductors Two pyramid-shaped conductors each carry a net charge Q.

(a) Transfer charge δQ from pyramid 2 to pyramid 1. Derive a condition on the coefficients of potential Pij

which guarantees that this charge transfer lowers the total energy of the system.
(b) Show that the condition in part (a) implies a condition on the coefficients of capacitance.
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(c) Under what circumstances can the condition in part (b) be used to determine that pyramid 1 is larger
than pyramid 2?

5.19 Capacitance Matrix Practice A grounded metal plate is partially inserted into a parallel-plate capacitor
with potential difference ϕ2 − ϕ1 > 0 as shown in the diagram below. Find the elements of the capacitance
matrix. Assume that all plates extend a distance d in the direction perpendicular to the paper. Ignore fringing
fields.

a
1

2

b
y

x

5.20 Bounds on Parallel-Plate Capacitance Let C be the capacitance of capacitor formed from two identical,
flat conductor plates separated by a distance d. The plates have area A and arbitrary shape. When d � √

A

, we know that the capacitance approaches the value C0 = Aε0

/
d.

(a) If δE = E − E0, prove the identity∫
V

d 3r |E|2 −
∫
V

d 3r |E0|2 =
∫
V

d 3r |δE|2 + 2
∫
V

d 3r E0 · δE.

(b) Let E = −∇ϕ be the actual field between the finite-area plates and let E0 = −∇ϕ0 be the uniform field
that would be present if A were infinite. Use the identity in part (a) to prove that C > C0, using V as
the volume between the finite-area plates. Assume that the potentials ϕ and ϕ0 take the same (constant)
values on the plates.

5.21 A Two-Wire Capacitor A long, straight wire has length L and a circular cross section with area πa2.
Arrange two such wires so they are parallel and separated by a distance d. You may assume that L � d � a

and ignore end effects.

(a) Graph the electrostatic potential along the straight line that connects the center of one wire to the center
of the other wire for the case when the two wires have equal and opposite charge per unit length.

(b) Derive an approximate expression for the capacitance of this two-conductor system.

5.22 An Off-Center Spherical Capacitor A battery maintains the potential difference V between the spheres
of a spherical capacitor with capacitance C. Move the center of the inner sphere away from the center of the
outer sphere by an amount � and call the new capacitance C ′.

(a) Use a symmetry argument to show that C ′ = C to first order in �.
(a) Use a force/energy argument to show that C ′ = C to first order in �.

5.23 The Force between Conducting Hemispheres

(a) A spherical metal shell is charged to an electrostatic potential V . Cut this shell in half and pull the halves
infinitesimally apart. Find the force with which one hemisphere of the shell repels the other hemisphere.

(b) A spherical capacitor is formed from concentric metal shells with charges ±Q and radii b > a. Cut this
capacitor in half and pull the halves infinitesimally apart. Find the force with which the two halves repel
one another.
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5.24 Holding a Sphere Together A conducting shell of radius R has total charge Q. If sawed in half, the two
halves of the shell will fly apart. This can be prevented by placing a point charge Q′ at the center of the
shell.

(a) What value of Q′ which just barely keep the shell together?
(b) How does the answer to part (a) change for the case of an insulating sphere with uniform charge density

σ = Q/4πR2?

5.25 Force Equivalence Confirm the assertion made in the text that the inverse relation between the matrix
of capacitive coefficients and the matrix of potential coefficients implies the equivalence of these two
expressions for the force on the kth conductor of a collection of N conductors:

Fk = 1
2

N∑
i=1

N∑
j=1

ϕiϕj

(
∂Cij

∂Rk

)
R′,ϕ

and Fk = − 1
2

N∑
i=1

N∑
j=1

QiQj

(
∂Pij

∂Rk

)
R′,Q

.
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6 Dielectric Matter

If we develop only a macroscopic description of matter in an
electric field, we shall find it hard to answer some rather obvious

sounding questions.
Edward M. Purcell (1965)

6.1 Introduction

A dielectric is a medium that cannot completely screen a static, external, macroscopic electric field
from its interior. This property of incomplete screening is a consequence of chemical bonding and
other quantum mechanical effects which constrain the rearrangement of its internal charge density
when an external field is applied. The same constraints are responsible for the fact that dielectrics do
not conduct (or poorly conduct) electric current.

Like a conductor, a dielectric responds to an external field Eext(r) by distorting its ground state
charge density to produce a field Eself (r). The total electric field is the sum of these two fields. Unlike a
conductor, the total macroscopic field is non-zero both inside and outside the volume of the dielectric:

Etot(r) = Eself (r) + Eext(r) �= 0. (6.1)

The charge distortions that produce Eself (r) are small for gases and liquids because individual electrons
are strongly bound to individual nuclei. Charge rearrangement is greater in solid dielectrics where
electrons are not necessarily bound to specific nuclei. Nevertheless, chemical bonding effects produce
potential energy maxima and minima which inhibit the electron wave functions from exploring some
parts of configuration space. We make contact with Chapter 5 with the observation that a perfect
conductor is a special case of a dielectric where the non-electrostatic potential energy landscape for
charge rearrangement is perfectly flat.

6.2 Polarization

The word polarization is used in two ways in the theory of dielectric matter. First, polarization refers
to the rearrangement of internal charge that occurs when matter is exposed to an external field. Second,
polarization is the name given to a function P(r) used to characterize the details of the rearrangement.
We begin with the intuitive idea of polarization and specify that the source of Eext(r) in (6.1) is a
charge density ρf (r) which is wholly extraneous to the dielectric. A long tradition refers to this as
free charge. Examples of free charge include the charge on the surface of capacitor plates and point
charges we might place inside or outside the body of a dielectric.

The source of Eself (r) in (6.1) is often called bound charge. A more descriptive term is polarization
charge and we will use the symbol ρP(r) for its density. To understand the origin of ρP(r), we remind the
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reader that the macroscopic charge density ρ(r) is zero at every point inside a neutral dielectric when
Eext = 0 (see Section 2.4.1). When Eext first appears, positive charge is pushed in one direction and
negative charge is pushed in the opposite direction. Charge rearrangement continues until mechanical
equilibrium is re-established, and we identify ρP(r) as the macroscopic charge density that makes
the Coulomb force density ρP(r)Etot(r) equal and opposite to the force density produced by chemical
bonding and other non-electrostatic effects. The total charge density that enters Maxwell’s theory is
the sum of the “free” and “bound” charge densities:

ρ(r) = ρf (r) + ρP(r). (6.2)

We use a model-independent approach to introduce the polarization P(r). The first step is to separate
the macroscopic polarization charge density into a surface part, σP(rS), and a volume part, ρP(r). Next,
we recognize that a neutral dielectric with volume V and surface S remains a neutral dielectric in the
presence of free charge of any kind. In that case, the polarization charge densities satisfy the constraint∫

V

d 3r ρP(r) +
∫
S

dS σP(rS) = 0. (6.3)

A neutral conductor satisfies (6.3) with ρP(r) = 0 and σP(rS) �= 0. A dielectric uses the polarization
P(r) to satisfy (6.3) with ρP(r) �= 0 and σP(rS) �= 0. The key observation is that the left side of (6.3) is
identically zero if the divergence theorem is used after substituting

ρP(r) = −∇ · P(r) r ∈ V, (6.4)

σP(rS) = P(rS) · n̂(rS) rS ∈ S, (6.5)

P(r) = 0 r /∈ V. (6.6)

Three remarks are germane. First, the vector n̂(rS) in (6.5) is the outward unit normal to the surface
S at the point rS . Second, P(r) = 0 outside the sample in (6.6) because polarization is associated with
matter and there is no matter outside V .1 Third, the equations (6.4), (6.5), and (6.6) do not determine
P(r) uniquely. This follows from Helmholtz’ theorem (Section 1.9) and the fact that we did not specify
∇ × P(r) inside the sample volume V .

To summarize, the macroscopic electrostatic field of a dielectric sample is produced by macroscopic
polarization charge densities ρP(r) and σP(r). These, in turn, are determined by the polarization P(r)
of the sample. The latter is fundamental to the theory and our attention must now turn to its physical
meaning and methods that can be used to calculate it.

6.2.1 The Volume Integral of P(r)
An important clue to the physical meaning of the polarization P(r) is that its volume integral is the total
electric dipole moment p of a dielectric sample. To see this, we integrate the kth Cartesian component
of P(r) over the sample volume V . Because P · ∇rk = Pk ,∫

V

d 3r Pk =
∫
V

d 3r ∇ · (rkP) −
∫
V

d 3r rk(∇ · P). (6.7)

1 Some authors build (6.6) into their definition of P(r). This generates the surface density (6.5) as a singular piece
of the volume density (6.4). An example is a dielectric which occupies the half-space z ≤ 0 with polarization
P(r) = P0(r)�(−z). In that case, ρP = −∇ · P(r) = −�(−z)∇ · P0 + δ(z)P0 · ẑ. The last term is σP. Our preference
is to display the volume and surface parts of the polarization separately.
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Using the divergence theorem and the definitions in (6.4) and (6.5),∫
V

d 3r Pk =
∫
S

dS rkσP(rS) +
∫
V

d 3r rk ρP(r). (6.8)

The right-hand side of (6.8) defines the kth Cartesian component of the electric dipole moment p of
the sample. We conclude that the integral of the polarization P(r) over the volume of a dielectric is
equal to the total dipole moment of the dielectric:∫

V

d 3r P(r) = p. (6.9)

6.2.2 The Lorentz Model
Following Lorentz (1902), many authors use a microscopic version of (6.9) to identify P(r) as an
“electric dipole moment per unit volume”. The physical idea is to regard a polarized dielectric as a
collection of atomic or molecular electric dipoles. The mathematical prescription defines the polar-
ization at a macroscopic point r as the electric dipole moment of a microscopic cell with volume �
labeled by r:2

P(r) = 1

�

∫
�

d 3s s ρmicro(s) = p(r)

�
. (6.10)

For finite �, (6.10) replaces the true charge distribution in each cell by a point electric dipole. In the
limit � → 0, the Lorentz approximation replaces the entire dielectric by a continuous distribution of
point electric dipoles with a density P(r) computed from (6.10).

Despite its widespread use, the Lorentz formula (6.10) is usually a poor approximation to the true
polarization (see Section 6.2.3). The exceptions which prove the rule are dielectric gases, non-polar
liquids, and molecular solids where the constituent atoms and molecules interact very weakly. The
inaccuracies of the Lorentz model appear consistently for all dielectrics where chemical bonding is
important and “bond charge” is present on the boundaries of the averaging cell �. Worse, (6.10)
generally gives different values for p(r)/� when one uses different (but equally sensible) choices for
�. The simple model of an ionic crystal shown in Figure 6.1 shows that this can be true even when no
bond charge is present. The two panels show two choices for the Lorentz cell �. Using (6.10), they
lead to oppositely directed P(r) vectors. Other cell choices give other values, including P(r) = 0.

6.2.3 The Modern Theory of Polarization
In the 1990s, an unambiguous theory of the polarization P(r) was developed which abandons the
Lorentz point of view. To get a flavor for this approach, we recall from (6.4) that the dielectric charge
density ρ(r) is the (negative) divergence of the polarization. This implies that P(r) contains more
information than ρ(r). However, if the polarization were simply the dipole moment per unit volume of
the charge density, P(r) would contain less information than ρ(r). We resolve this paradox by recalling
from (2.4) that quantum mechanics defines ρ(r) as the absolute square of a system’s wave function.
P(r) contains more information than ρ(r) because the polarization subtly encodes information about
the phase of the system wave function. This is the essential insight provided by the modern theory of
polarization.3

2 In this chapter, r is a macroscopic variable and s is a microscopic variable. In Section 2.3.1 on Lorentz averaging, the
macroscopic variable was called R and the microscopic variable was called r.

3 See Resta and Vanderbilt (2007) in Sources, References, and Additional Reading.
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Figure 6.1: Cartoon view of an ionic crystal. White spheres are negative ions. Black spheres are positive ions.
The arrows indicate the local polarization P(r) computed from Lorentz’ formula (6.10). The figure, reproduced
from Purcell (1965), repeats periodically like a checkerboard.

Figure 6.2: Contour plot of the charge density induced in a NaBr crystal by an electric field that points from the
lower left to the upper right. Shaded and unshaded regions correspond, respectively, to an excess or deficit of
negative (electron) charge compared to the unpolarized state. The dots on the upper and lower borders are Na
nuclei. The three dots across the middle are Br nuclei. The figure repeats periodically like a checkerboard.
Reproduced from Umari et al. (2001). Copyright 2001, American Institute of Physics.

We indicated in Section 2.4.1 that a current density jP = ∂P/∂t is associated with time variations of
the polarization. Without going into details, we use this formula to state the entirely plausible answer:
replace (6.10) by the Lorentz cell average of the local, time-integrated current density of polarization
charge which flows when an external electric field is switched on to polarize a dielectric:4

P(r) = 1

�

∫
�

d 3s

∞∫
−∞

dt jP,micro(s, t). (6.11)

A quantum mechanical calculation is generally required to find the microscopic current density
jP,micro(s, t).

An important application of (6.11) is to test the quality of the Lorentz approximation. Figure 6.2
shows a contour plot of the (quantum mechanically) calculated microscopic charge density ρmicro(s)
induced in a NaBr crystal by an external electric field E. This is a favorable case where the Lorentz

4 This definition assumes that P = 0 at t = −∞.
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picture that motivates (6.10) might be expected to be correct. Therefore, it is comforting to see that the
field does indeed displace charge in a dipole-like fashion inside the cell defined by the dashed lines.
A smaller, oppositely directed dipole displacement occurs very close to each nucleus. However, the
macroscopic P(r) calculated from the Lorentz formula (6.10) (using the dashed cell as �) turns out to
account for less than half of the true polarization calculated from (6.11). The majority of P(r) comes
from polarization currents which flow between averaging cells. These currents play no role in the
Lorentz approximation. Similar calculations performed for covalent dielectrics like silicon produce
highly complex plots for ρ(r) and P(r) which completely rule out an interpretation of the polarization
in terms of cell dipole moments. The Lorentz picture is qualitatively incorrect for these dielectrics.

To summarize, Lorentz’ physical model of a dielectric composed of polarized atoms or molecules
is realistic only when those entities retain their individual integrity as quantum mechanical objects.
Gases, simple liquids, and van der Waals-bonded molecular solids satisfy this criterion, but the vast
majority of dielectrics do not. For these latter cases, the Lorentz formula (6.10) is not reliable and
more sophisticated methods are needed to calculate P(r). However, once P(r) is known—by whatever
means—it turns out that Lorentz’ notion that a dielectric behaves like a continuous distribution of
point electric dipoles with density P(r) is rigorously correct. We delay the proof of this assertion until
Section 6.3.1 in order to gain some introductory appreciation of the potential and field produced by
polarized matter.

6.3 The Field Produced by Polarized Matter

This section focuses on the potential ϕP and field EP produced by polarized matter, regardless of how
the polarization P(r) is produced. Section 6.4 combines EP with the field produced by other sources
to get the electric field E of the Maxwell equations.

We assume that P(r) is specified once and for all. In that case, the macroscopic charge densities
(6.4) and (6.5) inserted into the general expressions (3.10) and (3.12) produce the scalar potential

ϕP(r) = 1

4πε0

∫
V

d 3r ′ −∇′ · P(r′)
|r − r′| + 1

4πε0

∫
S

dS ′ · P(r′)
|r − r′| . (6.12)

The corresponding Coulomb’s law electric field is EP = −∇ϕP, or

EP(r) = 1

4πε0

∫
V

d 3r ′ −∇′ · P(r′)
|r − r′|3 (r − r′) + 1

4πε0

∫
S

dS ′ · P(r′)
r − r′

|r − r′|3 . (6.13)

The integrals in (6.12) and (6.13) converge and give ϕP(r) and EP(r) correctly everywhere, including
points that lie inside V .

The special case of a uniformly polarized sample simplifies (6.13) considerably because ∇ · P = 0
leaves only the surface integral to evaluate. The divergence theorem transforms the latter to

EP(r) = 1

4πε0

∫
V

d 3r ′ ∇′
k

[
Pk

r − r′

|r − r′|3
]
. (6.14)

Now, move the constant Pk outside the integral and replace ∇′
k by −∇k using the fact that the gradient

acts only on a function of r − r′. The final result, known as Poisson’s formula, expresses EP(r) in
terms of the electric field E(r) produced by the same object with the uniform polarization replaced by
a uniform charge density with unit magnitude:

EP(r) = −P · ∇ 1

4πε0

∫
V

d 3r ′ r − r′

|r − r′|3 = −(P · ∇)E(r). (6.15)
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6.3 The Field Produced by Polarized Matter 163

Application 6.1 A Uniformly Polarized Sphere

The electric field produced by a sphere of radius R with uniform polarization P plays a role in many
applications. We derive it here by two different methods.

Method I: A direct application of Poisson’s formula (6.15) requires the electric field of a sphere with
uniform charge density ρ = 1. This is a standard problem solved using Gauss’ law in integral form.
The field is

E(r) =

⎧⎪⎪⎨
⎪⎪⎩

r
3ε0

r < R,

rV
4πε0r3

r > R.

(6.16)

Then, because ∇i rj = δij and ∇i(rj /r3) = ∇j (ri/r3), (6.15) gives

EP(r) =

⎧⎪⎪⎨
⎪⎪⎩

− P
3ε0

r < R,

V

4πε0

{
3(r̂ · P)r̂ − P

r3

}
r > R.

(6.17)

Figure 6.3 is a plot of EP(r) as given by (6.17). Every electric field line begins at a point where
the surface polarization charge density P · n̂ is positive and ends at a point where σP is negative.
Outside the sphere, EP(r) is identical to the electric field of a point dipole at the origin with moment
p = VP. This is the dipole moment of the entire sphere [see (6.9)]. Inside the sphere, the electric field
is constant5 and anti-parallel to P. Moreover, a glance back at (4.16) shows that this constant electric
field is identical to the singular (delta function) part of the electric field of a point electric dipole.
We conclude that a point electric dipole may sensibly be regarded as the R → 0 limit of a uniformly
polarized sphere.

Figure 6.3: The electric field of a uniformly polarized sphere. Inside the sphere, EP is anti-parallel to the
polarization density vector P. Outside the sphere, EP(r) is exactly dipolar.

Method II: If P = P ẑ, there is no volume polarization charge density and the surface polarization
charge density is

σP = P · r̂ = P cos θ. (6.18)

5 The electric field inside a polarized volume is constant if and only if the volume shape is ellipsoidal. EP generally
points in a different direction than P. See Brownstein (1987) in Sources, References, and Additional Reading.
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In Application 4.3, we used a multipole method to find the electrostatic potential produced by a charge
density of the form (6.18) confined to the surface of a sphere. Writing that result in the language of
the current problem gives

ϕ(r, θ ) = P

3ε0

⎧⎪⎨
⎪⎩
z r < R,

R3

r2
cos θ r > R.

(6.19)

The electric field E = −∇ϕ computing using (6.19) reproduces (6.17). �

6.3.1 Polarized Matter as a Superposition of Point Dipoles
In this section, we identify the fundamental physics behind ϕP(r) in (6.12) and explain why the
Lorentz model has enduring value, despite its deficiencies as a physical model for dielectric matter
(see Section 6.2.3). The essential step is to rewrite the surface integral in (6.12) using the divergence
theorem. This gives

ϕP(r) = 1

4πε0

∫
V

d 3r ′ −∇′ · P(r′)
|r − r′| + 1

4πε0

∫
V

d 3r ′ ∇′ ·
[

P(r′)
|r − r′|

]
. (6.20)

Writing out the divergence explicitly,

∇′ ·
[

P(r′)
|r − r′|

]
= ∇′ · P(r′)

|r − r′| + P(r′) · ∇′ 1

|r − r′| , (6.21)

and substituting back into (6.20) produces a cancellation of two terms. The final result is the convergent
integral

ϕP(r) = 1

4πε0

∫
V

d 3r ′ P(r′) · ∇′ 1

|r − r′| . (6.22)

Equation (6.22) is a key result. Because ∇′|r − r′|−1 = −∇|r − r′|−1, comparing (6.22) with (4.13)
or (4.35) shows that ϕP(r) is the electrostatic potential produced by collection of point electric dipoles
with moments dp(r) = P(r)d 3r . In other words, (6.22) is the electrostatic potential produced by a
volume distribution of point electric dipole moments with density P(r). What does this mean?

We know from Section 4.2.1 that point electric dipoles do not exist in Nature. We also know
(from Section 6.2.2) that the Lorentz model of molecular dipoles is only occasionally applicable
to real dielectric matter. Nevertheless, (6.22) shows that the electrostatic potential of a dielectric is
indistinguishable from the potential produced by a continuous distribution of fictitious point electric
dipoles with a dipole moment per unit volume equal to P(r). This shows that Lorentz’ idea to represent
a polarized solid by a volume distribution of point dipoles is perfectly valid. We simply must provide
a better approximation for P(r) than Lorentz could offer.

The point dipole representation of the polarization qualitatively rationalizes the dependence of the
polarization charge densities ρP(r) and σP(r) on P(r). Consider the one-dimensional representation of
P(r) shown in Figure 6.4. In the interior, the positively charged end of one dipole compensates the
negatively charged end of an adjacent dipole unless there is some variation in either the magnitude
or the direction of the dipole density. This is the origin of the volume polarization charge density
ρP = −∇ · P. Similarly, the projection onto the surface normal of those point dipoles which reside
just at the sample surface leaves some charge uncompensated in the sense just described. This is the
origin of the surface charge density σ = P · n̂.
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6.4 The Total Electric Field 165

Figure 6.4: One-dimensional point dipole representation of the polarization P(r) with ρP = −∇ · P and
σP = P · n̂. The size of each arrow is proportional to the magnitude of P(r) at that point.

The point of view offered in this section leads some authors to construct an alternative to the electric
field (6.13) by superposing point dipole electric fields (Section 4.2.1) suitably weighted by P(r). This
gives

E†
P(r) = 1

4πε0

∫
V

d 3r ′
{

3(r − r′)P(r′) · (r − r′)
|r − r′|5 − P(r′)

|r − r′|3
}
. (6.23)

We have been careful to label this field E†
P(r) to distinguish it from the field EP(r) in (6.13). The two are

identical for observation points r that lie outside the dielectric volume V . Awkwardly, (6.23) diverges
for observation points that lie inside the polarized sample. The divergence is handled by scooping out
an infinitesimal vacuum cavity around r and studying the limit as the volume of the cavity goes to
zero. Unfortunately, the value for the integral obtained by doing this is not unique – it depends on the
shape of the cavity.6 This leads us to eschew (6.23) in favor of (6.13) when EP(r) is needed at interior
points.

6.4 The Total Electric Field

The total electric field E in the Maxwell equations is the sum of the electric field EP produced by
the polarization charge ρP(r) = −∇ · P and the electric field produced by all charges not associated
with dielectric bodies. We designated the latter “free charge” with density ρf (r) at the beginning of
Section 6.2. Gauss’ law involves the total charge, which is the sum of the polarization charge and the
free charge. Therefore,

ε0∇ · E(r) = ρ(r) = ρP(r) + ρf (r) = −∇ · P(r) + ρf (r). (6.24)

6.4.1 The Auxiliary Field D(r)
Motivated by (6.24), it is traditional to define an auxiliary vector field D(r) which combines the electric
field with the polarization,7

D(r) = ε0E(r) + P(r). (6.25)

The fundamental electrostatic condition remains valid in matter:

∇ × E = 0. (6.26)

Therefore, the preceding three equations imply that

∇ · D = ρf (6.27)

and

∇ × D = ∇ × P. (6.28)

6 Older textbooks speak of “cavity definitions” for the field inside matter in this context.
7 For historical reasons, D(r) is often called the “electric displacement” in the older literature of electromagnetism.
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2 2
( ), ( )E r D r

1
n̂

2
n̂

( )Sf
r

1 1
( ), ( ) E r D r

Figure 6.5: A boundary layer with free charge density σf separates two dissimilar dielectrics. The unit normal
n̂1 points outward from region 1. The unit normal n̂2 points outward from region 2.

If Qf is the free charge enclosed by a surface S, it is often useful to exploit the integral form of (6.27),∫
S

dS · D = Qf . (6.29)

Elementary applications of (6.29) sometimes create the false impression that free charge is the sole
source of the auxiliary field D. The truth emerges when we use the Helmholtz theorem (Section 1.9)
to express D(r) explicitly in terms of its divergence (6.27) and curl (6.28). This gives

D(r) = −∇
∫

d 3r ′ ρf (r′)
4π |r − r′| + ∇ ×

∫
d 3r ′ ∇′ × P(r′)

4π |r − r′| . (6.30)

The second term in (6.30) tells us that most spatial variations in P(r) (including abrupt changes at
macroscopic surfaces and interfaces) contribute to D(r). It is interesting that this term has the same
structure as a magnetic field B = ∇ × A in the Coulomb gauge.

6.4.2 Matching Conditions
Following the method of Section 2.3.3 (or otherwise), the matching conditions implied by (6.27) and
(6.28) at an interface between two regions of space endowed with a surface density of free charge σf
are (Figure 6.5)

n̂2 · (D1 − D2) = σf (6.31)

and

n̂2 × (D1 − D2) = n̂2 × (P1 − P2). (6.32)

In light of (6.25), the latter is simply the familiar

n̂2 × (E1 − E2) = 0. (6.33)

6.4.3 Constitutive Relations
The equations (6.25), (6.26), and (6.27) cannot be solved simultaneously unless one (i) specifies P(r)
once and for all or (ii) invokes a constitutive relation that relates P(r) to E(r). It is here where we
distinguish real dielectric matter from mere charge by using experiment, theory, or phenomenology to
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inject quantum mechanical and/or statistical mechanical information into classical electrodynamics.
For example, a ferroelectric is a form of matter where P can exist in the absence of E. We will not pause
to treat this case because it is rather uncommon. Instead, we focus on the vast majority of systems
which are unpolarized in the absence of a field but which acquire a uniform macroscopic polarization
in the presence of a uniform external electric field. The general rule revealed by experiment is

Pi = ε0χijEj + ε0χ
(2)
ijkEjEk + · · · . (6.34)

The tensor character of the constants χij and χ
(2)
ijk allows for the possibility that P is not parallel to

E. This is realized in spatially anisotropic matter. The second-order and higher-order terms in (6.34)
allow for the possibility that the polarization depends non-linearly on the field. This is realized in all
matter when the electric field strength is large enough.

6.5 Simple Dielectric Matter

The first term on the right-hand side of (6.34) is sufficient to describe the polarization of a linear
dielectric. In this book, a dielectric that is both linear and spatially isotropic will be called simple. A
simple dielectric obeys the constitutive relation

P = ε0χE. (6.35)

The constant χ is called the electric susceptibility. We also introduce the permittivity ε and the
dimensionless dielectric constant κ through

P = (ε − ε0)E = ε0(κ − 1)E. (6.36)

Statistical mechanical arguments show that χ ≥ 0.8 Therefore, ε ≥ ε0 and κ ≥ 1 as well. This is
plausible because a dielectric incompletely screens an external field. In a simple medium, the auxiliary
field defined in (6.25) becomes

D = εE = κε0E = ε0(1 + χ)E. (6.37)

Experiments show that (6.35), (6.36), and (6.37) apply equally well to macroscopic fields that vary
with position in a simple medium.

Example 6.1 A point dipole p0 is embedded at the center of a dielectric sphere with volume V and
dielectric constant κ . Find the total dipole moment ptot of the entire system.

Solution: From (6.9) and (6.36), the dipole moment of the polarizable dielectric is

p =
∫
V

d 3r P = ε0(κ − 1)
∫
V

d 3r E.

On the other hand, we proved in Example 4.1 that∫
V

d 3r E = −ptot

3ε0
.

Therefore,

ptot = p0 + p = p0 − 1
3 (κ − 1)ptot,

8 See, for example, T.M. Sanders, Jr., “On the sign of the static susceptibility”, American Journal of Physics 56, 448
(1988).
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or

ptot = 3

2 + κ
p0.

Since κ ≥ 1, a dielectric medium generally screens (reduces the magnitude of) the embedded
dipole.

6.5.1 Fields and Sources in Simple Dielectric Matter
We begin our study of simple dielectrics by inserting (6.37) into the Maxwell equation (6.27) to get

ε∇ · E + E · ∇ε = ρf . (6.38)

The general problem posed by (6.38) is difficult, particularly when the dielectric “constant” varies
smoothly with position. In this book, we restrict ourselves to situations no more complicated than
Figure 6.7 in Section 6.5.3 below, where the dielectric constant takes (different) constant values in
distinct regions of space separated by sharp boundaries. In each region, (6.38) simplifies to

ε∇ · E = ρf . (6.39)

The global electric field is constructed from the fields calculated in each region by enforcing the
matching conditions (6.31) and (6.33) at each sharp boundary. Alternately, because ∇ × E = 0 is
always true in electrostatics, we can insert E = −∇ϕ into (6.39) and solve a Poisson equation,

ε∇2ϕ = −ρf , (6.40)

in each region where the permittivity is constant. Section 6.5.5 explores this potential-theory approach
to simple dielectric matter.

Inserting (6.35) and (6.37) into the Maxwell equation (6.28) gives zero on both sides because
∇ × E = 0. On the other hand, writing (6.28) in the form

∇ × P = 0 (6.41)

seems to imply that the second integral in (6.30) vanishes, from which we might conclude that
free charge is the only source of the field D(r). This is not true (in general) because a contribution
to the polarization integral survives from every surface Sk where the dielectric constant changes
discontinuously. We leave it as an exercise for the reader to show that (6.30) reduces in this case to

D(r) = −∇
∫

d 3r ′ ρf (r′)
4π |r − r′| +

∑
k

∇ ×
∫

dS ′
k

P(r′) × n̂(r′)
4π |r − r′| . (6.42)

Finally, we have learned that polarization charge is the fundamental source of the field produced
by a polarization P(r). Using (6.36) and (6.39), the volume and surface polarization charge densities
produced by a simple dielectric with permittivity ε0κ are

ρP = −∇ · P =
(

1

κ
− 1

)
ρf (6.43)

and

σP = P · n̂|S = ε0(κ − 1)E|S. (6.44)

Typically, there is a contribution to (6.44) from both sides of an interface between two simple dielectrics.
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d

f

E = E0

–σf

Figure 6.6: A capacitor with fixed plate charge density σf . Plus and minus signs denote polarization charge at
the surface of the dielectric. A few lines of the electric field E = Eẑ are indicated.

6.5.2 Simple Dielectric Response to Free Charge
A point charge embedded in a medium with dielectric constant κ is an example of a volume distribution
of free charge ρf (r). According to (6.43), the point charge induces a polarization charge which occupies
the same point in space as the point charge itself. This macroscopic statement is a consequence of
Lorentz averaging (Section 2.3). In microscopic reality, the point charge polarizes nearby matter and
partially neutralizes itself by attracting nearby charges in the dielectric (of opposite sign) to itself.
Because κ ≥ 1, this partial neutralization appears on the macroscopic level when we use (6.43) to
calculate the total volume charge density,

ρ(r) = ρP(r) + ρf (r) = ρf (r)

κ
. (6.45)

The screening physics of (6.45) is built in when we solve Gauss’ law (6.39) for a point charge q0

embedded at r0 in a simple dielectric medium:

E(r) = q0

4πε

r − r0

|r − r0|3 = Evac(r)

κ
. (6.46)

The corresponding solution of the Poisson equation (6.40) for the electrostatic potential is

ϕ(r) = q0

4π ε

1

|r − r0| = ϕvac(r)

κ
. (6.47)

It is not always appreciated that the field and potential produced by the embedded point charge are
screened (reduced) by a factor of κ compared to the case of a point charge in vacuum, whether the
observation point lies within the dielectric medium or not.9 This is a consequence of the spatially local
character of (6.45).

A Parallel-Plate Capacitor with Fixed Charge
Figure 6.6 shows a parallel-plate capacitor with vacuum capacitance C0 = ε0A/d . What happens
when a dielectric is inserted to fill the space between the plates and the system is isolated so the plate
charge Q remains fixed? The charge density σf = Qf /A is fixed also, so Gauss’ law (6.29) and a
pillbox-shaped Gaussian surface with one face inside the lower conducting plate and one face inside
the dielectric tell us that D = σf ẑ.

Therefore,

E = D
ε

= E0

κ
. (6.48)

The electric field is reduced (screened) compared to its value E0 = ẑσ/ε0 in the absence of the
dielectric. This is consistent with (6.46) because the free charge at the surface of each metal plate is

9 If the observation point lies outside the medium, there are generally other contributions to the total field besides the
field from the screened point charge itself. See Section 6.5.3.
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1
2

q

Figure 6.7: A point charge q embedded at the center of a sphere with dielectric constant κ1. The sphere is itself
embedded in an infinite volume with dielectric constant κ2.

partially neutralized by polarization charge that appears at the dielectric surfaces. At the lower surface,
say, the definition (6.5) of σP gives

σP = −P · ẑ = −ε0(κ − 1)E · ẑ = 1 − κ

κ
σf . (6.49)

This gives the total charge density at the metal/dielectric interface (which is the source of E) as a
special case of (6.45):

σ = σf + σP = σf /κ. (6.50)

The potential difference between the plates is

�ϕ =
d∫

0

d� · E = 1

κ

d∫
0

d� · E0. (6.51)

We have assumed that the charge Q of the plate does not change. Therefore, the capacitance of the
dielectric-filled capacitor is

C = Q

�ϕ
= κC0. (6.52)

6.5.3 Polarization Charge at a Simple Interface
The polarization charge induced at the common interface between two polarized dielectrics is the
source of an electric field at every point in space. This observation resolves the following “paradox”.
Figure 6.7 shows a point charge q embedded in a sphere of radius R and dielectric constant κ1. The
sphere is itself embedded in an infinite medium with dielectric constant κ2. We begin with the spherical
symmetry of the problem and use Gauss’ law in the form (6.29) to get

D(r) = q

4π

r̂
r2
. (6.53)

Since D = εE, we conclude that E1(r) = q r̂/4πε1r
2 in medium 1 and E2(r) = q r̂/4πε2r

2 in
medium 2. On the other hand, (6.46) tells us that the electric field produced by the embedded point
charge at every point in space is

Eq (r) = q

4πε1

r̂
r2
. (6.54)

If (6.54) holds true in medium 2, how does the Gauss’ law field quoted just above for E2(r) arise?
There is no true paradox here because E2(r) is the sum of two terms: the field (6.54) produced by

q and a field Eσ (r) produced by a uniform density of surface polarization charge σP at the r = R
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dielectric interface. The spherical symmetry of the boundary guarantees that there is no comparable
contribution to E1(r). By Gauss’ law,

Eσ (r) = σPR
2

ε0

r̂
r2

r > R. (6.55)

We get σP itself from (6.5), noting that both dielectrics make a contribution:

σP(r) = r̂ · (P1 − P2)|r=R = r̂ · [ε0(κ1 − 1)E1 − ε0(κ2 − 1)E2]r=R . (6.56)

However, D1(R) = D2(R) because there is no free charge at the interface. Therefore

σP = r̂ · (D1 − D2)r=R − ε0r̂ · (E1 − E2)r=R = −ε0r̂ · D(R)

[
1

ε1
− 1

ε2

]
. (6.57)

Inserting D(R) from (6.53) into (6.57) gives

Eσ (r) = q

4πε0

r̂
r2

[
1

κ2
− 1

κ1

]
r > R. (6.58)

Combining (6.54) with (6.55) produces the elementary Gauss’ law result,

E2(r) = Eq (r) + Eσ (r) = q

4πε2

r̂
r2

r > R. (6.59)

Example 6.2 A point charge q sits at z = −d on the z-axis (Figure 6.8). Find the polarization
charge density σP(x, y) induced on the plane z = 0 when the half-space z > 0 is filled with a
medium with dielectric constant κR and the half-space z < 0 is filled with a medium with dielectric
constant κL.

L R

q d

r

z

0
( , )x yr

Figure 6.8: Two semi-infinite dielectrics meet at a planar interface. A point charge q sits a distance d to the
left of the interface. The point r0 = (x, y) lies in the z = 0 plane.

Solution: This problem is typically solved using the method of images (Section 8.3.3). The
alternative method offered here is less elegant, but will deepen the reader’s understanding of the
electrostatics of dielectrics.

Let EL and ER be the electric fields at points infinitely close to, but on opposite sides of, an
interface point r0 = (x, y). The surface polarization charge density at r0 is

σP(r0) = ẑ · (PL − PR) = ε0(χLEL − χRER) · ẑ.

The sources of EL and ER are the screened point charge q/κL and the surface polarization charge
σP(r0) we are trying to find. Following Section 3.4.2, the field produced by the surface charge on
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either side of (but very near) the surface itself is the sum of two terms: a contribution ±ẑσP(r0)/2ε0

from the charge infinitesimally near to r0 and a contribution ES from the surface charge away from
r0. But ES has no component along ẑ. Therefore, using the trigonometric factor d/r to project out
the z-component of the point charge field,

ε0EL · ẑ = 1

4πκL

q

r2

d

r
− σP(r0)

2
ε0ER · ẑ = 1

4πκL

q

r2

d

r
+ σP(r0)

2
.

There is no free charge at the interface, so the matching condition (6.31) is

κLEL · ẑ = κRER · ẑ.

Combining all these equations gives the polarization surface charge density as

σP(x, y) = 1

2πκL

κL − κR

κL + κR

qd

(x2 + y2 + d2)3/2
.

We will use this result in Example 6.7 to find the force exerted on q by the dielectric.

6.5.4 Simple Dielectric Response to Fixed Fields
In the absence of free charge, the Maxwell equations (6.26) and (6.27) simplify to

∇ × E = 0 and ∇ · D = 0. (6.60)

The most interesting aspect of these equations is the matching conditions they imply, namely,

n̂ × [E1 − E2]S = 0 and n̂ · [D1 − D2]S = 0. (6.61)

The tangential component of E and the normal component of D are continuous at a dielectric interface
with no free charge.

A Parallel-Plate Capacitor with Fixed Potential
Figure 6.9 shows a parallel-plate capacitor with vacuum capacitanceC0 = ε0A/d . What happens when
a dielectric is inserted to fill the space between the plates and the potential difference V between the
plates is held constant? Because the left side of

V =
d∫

0

d� · E (6.62)

is fixed, the field between the plates is

E = E0 = V

d
ẑ. (6.63)

In contrast to (6.48), the electric field is not screened by the dielectric.
The polarization charge density induced at the lower surface of the dielectric is

σP = −P · ẑ = −ε0(κ − 1)V/d. (6.64)

On the other hand, D = ε0κE, so the charge density induced on the lower metal plate is

σf = D · ẑ = ε0κ
V

d
. (6.65)

This shows that the capacitance C with fixed potential is the same as the capacitance (6.52) we found
earlier for fixed charge:

C = σfA

V
= κC0. (6.66)
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d

V

0

E = E0

Figure 6.9: A capacitor with fixed plate potentials. Plus and minus signs denote polarization charge at the
surface of the dielectric. A few lines of the electric field E = Eẑ are indicated.

The sum of (6.65) and (6.64) is exactly the free charge density σ0 = ε0V/d that produces the field
E0 when the dielectric is absent. In other words, E = E0 when the dielectric is present because charge
flows from the battery (or whatever maintains the plates at fixed potential) to the surface of the plates
to exactly cancel the polarization charge on the adjacent dielectric surfaces. Faraday exploited (6.65)
to determine κ for many materials. His method was to measure the change in the amount of charge
drawn onto the metal plates of a (spherical) capacitor when a dielectric was interposed between them.
The SI unit of capacitance is called the farad to honor this aspect of Faraday’s work.

Macroscopically, the charge densities (6.65) and (6.64) are spatially coincident. This is not so
microscopically, and (6.65) implies that the local electric field immediately adjacent to both metal
plates is larger in magnitude than the electric field produced by the vacuum capacitor. If so, there must
also be regions inside the dielectric where the electric fields is smaller than (or oppositely directed
from) the field of the vacuum capacitor. We will return to this point at the end of Section 6.6.2.

Application 6.2 Refraction of Field Lines at a Dielectric Interface

The matching conditions (6.61) imply that the lines of E(r) refract when they pass from a medium
with permittivity ε1 to a medium with permittivity ε2. Figure 6.10 shows a flat interface between these
media and uses the angles α1 and α2 to label the angle between the interface normal and the electric
field vector in each medium. The continuity of the normal component of D = εE and the continuity
of the tangential component of E read

Figure 6.10: The refraction of E(r) at a flat interface between two simple dielectrics.

ε1E1 cosα1 = ε2E2 cosα2

E1 sinα1 = E2 sinα2.
(6.67)

Dividing one equation in (6.67) by the other gives the desired law of refraction:

ε1 cotα1 = ε2 cotα2. (6.68)
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The case ε2 � ε1 is interesting because both α1 ≈ 0 and α2 ≈ π/2 satisfy the law of refraction. The
first solution is consistent with E = (σ/ε0)n̂ for the electric field just outside the surface of a perfect
conductor. The second solution says that the lines of D and E in the high-permittivity material are
nearly parallel to the interface with the low-permittivity material. The actual solution adopted by
Nature depends on the detailed geometry of the problem, including the positions of free charges away
from the interface. �

6.5.5 Potential Theory for a Simple Dielectric
Gauss’ law for simple dielectric matter (6.39) combined with E = −∇ϕ tells us that the electrostatic
potential inside a simple dielectric with permittivity ε = ε0κ satisfies Poisson’s equation with ρ(r)
replaced by ρf (r)/κ:

ε0∇2ϕ = −ρf /κ. (6.69)

As discussed in Section 3.3.2, the matching conditions (6.33) and (6.31) can be expressed entirely in
potential language, namely,

ϕ1(rS) = ϕ2(rS) (6.70)

and [
κ2
∂ϕ2

∂n2
− κ1

∂ϕ1

∂n2

]
S

= σf

ε0
. (6.71)

When there is no free charge anywhere, the Poisson-like equation (6.69) reduces everywhere to
Laplace’s equation,

∇2ϕ = 0. (6.72)

The matching condition (6.71) simplifies similarly to

κ1
∂ϕ1

∂n

∣∣∣∣
S

= κ2
∂ϕ2

∂n

∣∣∣∣
S

. (6.73)

Chapters 7 and 8 discuss methods to solve the Laplace and Poisson equations, respectively, when
simple dielectric matter is present.

Example 6.3 Figure 6.11 shows a spherical cavity scooped out of an infinite medium with dielectric
constant κ . Capacitor plates at infinity produce a fixed and uniform external field E0 = E0ẑ. Find
the potential and field everywhere.

0 ˆE z ′r′

r

R

Figure 6.11: A sphere of radius R scooped out of a medium with dielectric constant κ . The field lines shown
are for the external field E0 = E0ẑ only.
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Solution: The field E0 induces a uniform polarization P0 = P0ẑ in the original infinite uniform
medium. After the cavity is created, a polarization charge density σ (θ ) = P0 · n̂ = −P0 cos θ
develops on its surface.10 This charge distribution produces an electric field which supplements
E0. This is the situation analyzed in Application 4.3, where we showed that a charge density
σ (θ ) ∝ cos θ confined to sphere produces a potential that varies as r cos θ inside the sphere and
cos θ/r2 outside the sphere. Consequently, the total potential has the form

ϕ(r, θ ) =

⎧⎪⎨
⎪⎩
Ar cos θ r ≤ R,(

−E0r + B

r2

)
cos θ r ≥ R.

The contribution −E0r cos θ to ϕ(r, θ ) is associated with the unscreened E0. This is consistent
with the discussion immediately above of the parallel-plate capacitor with fixed plate potential.

The matching conditions (6.70) and (6.73) applied at r = R determine the coefficients A and B:

A = − 3κ

2κ + 1
E0 and B = − κ − 1

2κ + 1
E0R

3.

The total field E = −∇ϕ outside the cavity is sum of E0 and a pure dipole field. The total field
inside the cavity is uniform, points in the same direction as E0, and is larger in magnitude than E0:

Ein = −A = 3κ

2κ + 1
E0 > E0.

Physically, this occurs because the polarization charge density is positive (negative) on the left
(right) hemisphere of the cavity in Figure 6.11:

σP(θ ) = P · n̂ = −ε0(κ − 1)Eout · r̂.

It is worth noting that σP(θ ) = P · n̂ is not the same as σ (θ ) = P0 · n̂ introduced at the beginning of
the problem because the final electric field (and hence the final polarization) in the medium is not
uniform. This fact does not invalidate our solution because σP(θ ) and σ (θ ) are both proportional to
cos θ , which is the only information we used to help determine the form of ϕ(r, θ ) above.

6.6 The Physics of the Dielectric Constant

Table 6.1 lists the experimental dielectric constants for two gases (helium and nitrogen), two liquids
(methane and water), and two solids (silicon dioxide and silicon). The electrostatics of the physical
models which predict these numbers is interesting. All make essential use of the local electric field
that exists inside a polarized dielectric.

6.6.1 The Electric Polarizability
Example 5.1 of Section 5.2 demonstrated that a uniform electric field E0 induces an electric dipole
moment p = 4πε0R

3E0 in a conducting sphere of radiusR. More generally, we define the polarizability
α of any small dielectric body as the proportionality constant between a uniform field E0 and the dipole
moment p induced in the body by that field:11

p = αε0E0. (6.74)

10 There is a negative sign because n̂ is the outward unit normal to the dielectric surface.
11 Compare (6.74) with (6.35).
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Table 6.1. Dielectric constants at
105 Pa (1 atm) and 20o C.

Substance κ

He 1.000065
N2 1.00055
CH4 1.7
SiO2 4.5
Si 11.8
H2O 80

Equation (6.74) generalizes to microscopic bodies like atoms and molecules where the value of the
induced dipole moment depends on the value of a microscopic electric field at the position of the atom
or molecule:

p(r) = αε0Emicro(r). (6.75)

Hundreds of research papers have been devoted to calculations and measurements of electric polariz-
abilities.

6.6.2 The Clausius-Mossotti Formula
The Lorentz model for polarizable matter (Section 6.2.2) relates the macroscopic dielectric constant κ
[see (6.36)] of a dielectric gas to the microscopic polarizability α [see (6.75)] of the constituent atoms
or molecules. The main ingredient is the spatial integral over a suitable averaging volume � of the
microscopic electric field on the right side of (6.75):12

E(R) = 1

�

∫
�

d 3r Emicro(r). (6.76)

We also need an alternative definition of the cell-averaged dipole moment pR first defined in (6.10),
namely,

pR = 1

�

∫
�

d 3r p(r). (6.77)

Finally, because n = 1/� is the density of molecules in the gas, (6.10), (6.76), and (6.77) combine to
generate an expression for the polarization P which appears in the macroscopic equation (6.25):

D(R) = ε0E(R) + P(R) = ε0E(R) + nαε0E(R). (6.78)

Comparing (6.78) with (6.37) shows that the static dielectric constant is

κ = 1 + nα. (6.79)

Our derivation of (6.79) implicitly assumes that the dimensionless parameter nα is much smaller
than one. To see this, note first that the field in (6.75) which polarizes the molecule in a given cell
cannot include the microscopic field Eself (r) produced by the molecule itself. On the other hand, the
macroscopic field E(R) in (6.78) is the average of the field in a given cell from all sources, including

12 This is the Lorentz averaging procedure discussed in Section 2.3.1. We follow the notation of that section where r
denotes a microscopic spatial variable and R denotes a macroscopic spatial variable.
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Eself (r). Therefore, it is necessary to subtract the Lorentz average of the self-field when we calculate
the polarization:

P(R) = nαε0

⎧⎨
⎩E(R) − 1

�

∫
�

d 3s E self (s)

⎫⎬
⎭ = nαε0Elocal(R). (6.80)

The local field Elocal(R) defined by (6.80) is a better approximation to the macroscopic field that
polarizes each molecule. We have performed the integral in (6.80) already for the case of a spherical
cell (Example 4.1). The result given there is a good approximation for non-spherical cells also,
particularly if the cell is large compared to the size of the molecular charge distribution:

1

�

∫
�

d 3s Eself (s) = − p
3ε0�

= −P(R)

3ε0
. (6.81)

Substituting (6.81) into (6.80) gives an algebraic equation for P(R). The solution,

P(R) = nαε0

1 − nα/3
E(R), (6.82)

together with the leftmost equation in (6.78) gives the desired result for the dielectric constant:

κ = 1 + nα

1 − nα/3
. (6.83)

Only when nα � 1 does (6.83) reproduce (6.79). In that limit, the averaging volume� is large and the
self-field makes a negligible contribution to the Lorentz average. Experimental tests of (6.83) usually
employ an equivalent form known as the Clausius-Mossotti formula:

κ − 1

κ + 2
= nα

3
. (6.84)

Non-polar gases and a few simple liquids like He, N2, and C6H6 obey formula (6.84) rather well. The
polarizability is either measured independently or estimated from α = 3V .13

We can also combine (6.80) with (6.82) to discover that (cf. Example 6.1)

Elocal(R) = E(R)

1 − nα/3
= κ + 2

3
E(R). (6.85)

This formula confirms the remark made at the end of Section 6.5.4 that the local electric field typically
exceeds the average macroscopic field inside a dielectric. Elocal(R) is due to all the other molecules,
so it is characteristic of the volume between gas molecules. This may be contrasted with the volume
inside each molecule where (the reader may wish to confirm) the dipole self-field is very large and
directed oppositely to Elocal(R).

6.6.3 Polar Liquids and Solids
Table 6.1 reports the dielectric constants for liquid methane and water. Experiments show that CH4

obeys the Clausius-Mossotti relation (6.84) while H2O does not. The physical reason for this is that
methane is a non-polar molecule while water is a polar molecule with a permanent electric dipole
moment p0 (see Figure 4.2). Onsager (1936) realized that the presence of p0 dramatically affects the
local field needed to calculate κ . He derived a generalization of the Clausius-Mossotti formula using,
in part, the cavity calculation of Example 6.3 generalized to include a dipole p0 at the center of the
cavity.

13 See the remark preceding (6.74).
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Figure 6.12: The local field Emicro(r) (solid curves) and the macroscopic field E (horizontal lines) for four
Group IV crystals: 1 = C, 2 = Si, 3 = Ge, 4 = Sn. The horizontal axis is a line (parallel to D) that passes
through two nuclei in the averaging cell. The latter repeats periodically in the horizontal direction. Figure adapted
from Baldereschi, Car, with permission from Elsevier and Tosatti (1979).

No simple formula predicts the dielectric constants of the solids SiO2 (quartz) and Si in Table 6.1.
Reliable estimates for such systems require quantum mechanical perturbation theory. The relevant
perturbation is a uniform field, which it will be convenient to call D. The response is the total electric
field Emicro(r). Given the latter, we compute the macroscopic electric field from (6.76). Every averaging
cell is the same in a perfect crystal so E(R) = E. The static dielectric constant follows immediately
from ε0κ = D/E.

Figure 6.12 shows Emicro(r) for a sequence of Group IV dielectric solids. For each material, the
horizontal line is the macroscopic field (6.76). The calculation uses |D| = 1, so the intercept of each
line with the vertical axis is 1/κ . Notice that κ increases and the intracell variations in Emicro(r)
decrease as one proceeds down the Group IV column of the periodic table. This corresponds to
increasing spreading out (delocalization) of the electronic wave functions.

6.6.4 The Limit κ → ∞
The discussion just above implies that κ → ∞ produces E(R) = 0 inside a dielectric exposed to a
static external field. The latter is the definition of a perfect-conductor. For that reason, the κ → ∞
limit of a formula derived using dielectric theory often reproduces the results of a perfect-conductor
calculation. This can be a useful strategy to check calculations and to build intuition. Some caution
is required because there is no reason to expect perfect-conductor behavior in the κ → ∞ limit when
there is free charge in intimate contact with the dielectric. This occurs, e.g., when a point charge is
embedded in the bulk of a dielectric or when free charge accumulates on the surface of a dielectric
(see Section 6.5.4).

6.7 The Energy of Dielectric Matter

The total energy is a fundamental property of dielectric matter. It contributes essentially to the ther-
modynamics of a dielectric and greatly facilitates the calculation of forces that act on and in dielectric
matter. In this section, we compute (i) the total energy of a polarized dielectric and (ii) the change in
energy which occurs when a dielectric becomes polarized. Both calculations are done in two ways.
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Figure 6.13: A conductor with charge Q and potential ϕ embedded in a dielectric medium.

6.7.1 The Total Energy UE

Figure 6.13 shows a charged conductor embedded in an infinite dielectric medium. The charge on the
conductor is the source of the field in the dielectric. Therefore, the mechanical work ϕδQ required
to transport a charge δQ from infinity to the conductor surface (see Section 5.6.1) is identical to the
energy δUE required to change the field in the dielectric. Our goal is to write δUE entirely in terms
of field.14 Accordingly, if S is the conductor surface and V is the infinite volume not occupied by the
conductor, Gauss’ law and the divergence theorem give

�UE = ϕ δQ =
∫
S

dS · δDϕ = −
∫
V

d 3r ∇ · (δDϕ). (6.86)

We assume there is no free charge in V . This makes ∇ · (δD) = 0 and simplifies (6.86) to the desired
final expression,

δUE = −
∫
V

d 3r ∇ϕ · δD =
∫

d 3r E · δD. (6.87)

The final integral in (6.87) is over all of space because E = 0 in the volume occupied by the conductor.
An alternative derivation of (6.87) identifies the different contributions to the total energy. We

learned in Section 6.2.3 that polarization is created in a dielectric when an electric field E(r) induces
a flow of polarization charge ρP(r) with a current density jP = ∂P/∂t . Put another way, the Coulomb
force density ρP(r)E(r) does quasistatic work on an element of matter with velocity υ(r) at a rate

ρP(r)E(r) · υ(r) = jP(r) · E(r). (6.88)

This work is done against the cohesive forces of matter which hold the dielectric together and oppose
the creation of the polarization charge. Therefore, for an isolated dielectric, the work done by the
electric field increases the internal energy of the matter at a rate per unit volume

∂umat

∂t
= ∂P

∂t
· E. (6.89)

To get the change in total energy density, we add to (6.89) the rate of change of the electric field energy
density ufield = 1

2ε0E
2.15 Using D = ε0E + P, we get a change in total internal energy density which

agrees with (6.87):

duE = dufield + dumat = d
{

1
2ε0E

2
}+ E · dP = E · dD. (6.90)

14 This will make the result applicable to cases where the source of the field inside a dielectric is not a charged
conductor.

15 It is an assumption that the field energy density in the dielectric is the same as the field energy density in the vacuum.
See Section 9.14 of Purcell (1965) and Section 4.2 of Bobbio (2000) in Sources, References, and Additional Reading.
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The total energy is the net work required to establish the field D. Our final result is the desired
expression for the total energy of a macroscopic polarized object:

UE =
∫

d 3r

D∫
0

E · δD. (6.91)

It is important to appreciate that the integration from zero to D in (6.91) cannot be performed until we
have specified a constitutive relation which relates D(r) to E(r) in every volume element of a sample
with arbitrary shape.

Our use of the symbol UE indicates that (6.91) is the dielectric analog of the function used in
Section 5.6.1 to compute the force on isolated conductors. That earlier quantity was a natural function
of the free charges Qk carried by conductors labeled k = 1, 2, . . . , N . The same is true here because
(6.90) shows that UE is a natural function of D and free charge determines the latter from ∇ · D = ρf .
Hence, if R labels the center of mass of the dielectric,

UE = UE(D,R) or UE = UE(Qk,R). (6.92)

The analog of (5.69) is

E = 1

V

(
∂UE

∂D

)
R

and F = −
(
∂UE

∂R

)
D

or F = −
(
∂UE

∂R

)
Q

. (6.93)

6.7.2 UE for a Simple Dielectric
The integral in (6.91) is tractable only for simple choices of the dielectric constitutive relation. By far
the most common situation is a simple dielectric where D = εE and

UE[D] =
∫

d 3r

D∫
0

D · δD
ε

= 1

2

∫
d 3r

|D|2
ε

= 1

2

∫
d 3r E · D. (6.94)

Equation (6.94) predicts that free charge is attracted to regions where ε is large. This is so because
the D-field produced by free charge is largest near to itself and the volume integral of |D|2/ε in (6.94)
is minimized when ε is large in the same regions of space where |D| is large. This is sensible because
the Coulomb energy is lowered when q polarizes the medium to draw charge of the opposite sign
toward itself. If we except situations constrained by symmetry, a more general statement is that |E|
tends to be large where ε is large and small where ε is small. This is so because the polarization
created by E in a simple medium amounts to a collection of point electric dipoles aligned with E
with magnitudes proportional to ε. Therefore, the potential energy −p · E [see (4.26)] gained by each
dipole is maximized when E is large in regions where ε is large.

Application 6.3 A Classical Model for Quark Confinement

Quantum chromodynamics (QCD) assigns a “color” degree of freedom to quarks. For some purposes,
the QCD vacuum may be regarded as a dielectric medium for color charge with a vanishingly small
dielectric constant κ . Because κ < 1, this fictitious dielectric medium “anti-screens” free charge in
the sense that (6.43) tells us that the polarization charge has the same sign as the free charge, thus
enhancing the effect of the latter. On the other hand, Coulomb repulsion prevents the free charge and
the polarization charge from getting too close together. This suggests that a tiny sphere with color
charge q and radius a digs itself a vacuum hole of radius R in the dielectric. This is indicated in both
panels of Figure 6.14.
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(a) (b)

Figure 6.14: Classical models for (a) a free quark and (b) a quark-antiquark pair (meson). The QCD
vacuum is modeled as an infinite dielectric medium with a dielectric constant κ → 0: (a) a tiny sphere
(radius a) with “color” charge q at the center of a spherical cavity (radius R) scooped out of the dielectric
induces surface polarization charge of the same sign; (b) a tiny dipole at the center of a spherical cavity
produces lines of D which do not leave the cavity when κ → 0. Figure from Lee (1980).

We focus first on the “free quark” situation depicted in Figure 6.14(a) and minimize the sum of
the electrostatic energy (6.94) and a surface energy US given by the product of the cavity area and an
energy per unit area γ . The fields inside and outside the cavity satisfy

ε0Ein = Din = q

4πr2
r̂ = Dout = κε0Eout. (6.95)

The large value of Eout implied by (6.95) when κ → 0 arises from the large density of surface
polarization charge σP indicated in Figure 6.14(a). We split the integral (6.94) into UE = Uin + Uout

and focus on the limit a � R. A straightforward calculation gives

Utot = Uin + Uout + US = q2

8πε0

{
1

a
+ 1

κR

}
+ γ 4πR2. (6.96)

MinimizingUtot with respect toR shows that (6.96) has a stable minimum at a cavity radiusR∗ ∝ κ−1/3.
On the other hand, the energyUtot(R∗) ∝ κ−2/3. The divergence of this energy when κ → 0 “explains”
why free quarks are never seen in isolation.

Figure 6.14(b) illustrates a classical model for a meson (a quark-antiquark pair) composed of
two tiny spheres with equal and opposite charge. The energetic preference to eliminate D from
regions of space with a vanishingly small dielectric constant [see the commentary following (6.94)]
is easily accommodated by the creation of a cavity and a slight distortion of the natural field line
pattern of a dipole. This geometry has Uout = 0 because Dout = 0 when κ = 0. In the same limit,
dimensional analysis tells us that Uin must contain a term proportional to p2/ε0R

3, where p is the
dipole moment of the two charges. This implies that a cavity does indeed form around the charges
because Utot = Uin + US has an absolute minimum at a κ-independent value of R. The total energy of
this classical meson is finite in the κ → 0 limit appropriate to QCD. �

6.7.3 The Energy to Polarize Simple Matter
Let E0 be an electric field in vacuum. It is an interesting task to calculate the change in energy
that occurs when a simple dielectric is inserted into the field, holding the charges which created E0

fixed. Because the dielectric polarizes, the electric field E0(r) changes to E(r) and the auxiliary field
D0(r) = ε0E0(r) changes to D(r). Using (6.94), the change in total energy is

�UE = 1

2

∫
d 3r [ E · D − E0 · D0 ] . (6.97)
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By adding and subtracting 1
2 (E · D0 − E0 · D), we can write (6.97) in the form

�UE = 1

2

∫
d 3r [ E · (D − D0) + (D − D0) · E0 + E · D0 − D · E0 ] . (6.98)

This complication is temporary because, as we shall now prove, only the last two integrals in (6.98)
are non-zero.

The trick is to adopt a geometry like Figure 6.13 and follow the steps from (6.86) to (6.87) in reverse
order. This shows that ∫

d 3r E · (D − D0) = ϕ (Q−Q0). (6.99)

The right-hand side of (6.99) is zero because we have held the charge fixed. By the same logic,

∫
d 3r (D − D0) · E0 = (Q−Q0)ϕ0 = 0. (6.100)

The identity D = ε0(E + P) transforms the two remaining terms in (6.98) into the desired final
expression,

�UE = −1

2

∫
d 3r P · E0. (6.101)

6.7.4 The Physical Origin of �UE

The derivation of (6.101) in the preceding section does not address the physical origin of �UE . To
correct this, we begin with the special case of a linear dielectric with a very small size and use a different
method to calculate�UE . For such an object, we know from Section 6.6.1 that an external electric field
E0 induces an electric dipole moment p = αE0. One contribution to �UE is the interaction energy
(4.26) between E0 and the moment p in the final state:

Uext = −p · E0 = −pE0. (6.102)

The energy gain (6.102) is opposed by the energy U int required to create the dipole in the first place.
This is the work done by the field against internal cohesive forces which oppose the creation of the
dipole moment. Uint must be (at least) quadratic in p to produce a total energy with an absolute
minimum. Hence, we write

�UE = Uext + U int = −pE0 + ζp2, (6.103)

and determine the positive constant ζ by minimizing �UE with respect to p. Using p = αE0, the final
result can be written

�UE = −p · E0 + 1

2α
p · p = −1

2
p · E0 = −1

2
α |E0|2. (6.104)

The similarity of (6.104) to (6.101) is apparent.
A finite-sized sample differs from the “point” object to which (6.104) applies because the field at

any point in a finite dielectric is the sum of the external field E0 and the field Eself created by the
dielectric itself. Taking this into account, our strategy is to derive (6.101) by following the derivation
of (6.104) as closely as possible. Thus, we write

�UE = U ext + U int + Uself, (6.105)

where U ext is the interaction energy between P(r) and the external field E0(r) and U int is the energy
required to overcome the internal cohesive forces and polarize the dielectric. The new term U self is the
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interaction energy between P(r) and the field Eind(r) produced by the dielectric itself. We calculate
each of these in turn.

The first term on the right side of (6.105) is a generalization of the interaction energy −p · E0 in
(6.102) to the case of a continuous distribution of point dipoles with density P(r); namely,

U ext = −
∫

d 3r P(r) · E0(r). (6.106)

U self follows similarly from the self-energy (4.32) of a collection of point dipoles:

U self = −1

2

∫
d 3r P(r) · Eind(r). (6.107)

We compute U int using the fact that (6.89) is the rate of change of energy required to create a bit of
polarization density δP. Since E = E0 + Eind, the linearity between P and E allows us to perform the
integral exactly as we did in (6.94):

U int =
∫

d 3r

P∫
0

E · δP = 1

2

∫
d 3r P(r) · [E0(r) + Eind(r)] . (6.108)

The terms which involve Eind cancel when we sum (6.106), (6.107), and (6.108) to get�UE in (6.105).
The result is exactly the same as �UE in (6.101).

Example 6.4 A parallel-plate capacitor has a fixed surface charge density Q0/A. The electric field
is E0 when the potential difference between the plates is ϕ0. The potential difference changes to ϕ
when a linear, isotropic dielectric sample with volume V is placed between the plates. Show that
the magnitude of the dipole moment induced in the dielectric is p = ε0A�ϕ, where �ϕ = ϕ − ϕ0.

Solution: Since |E0| = Q0/Aε0 is uniform, and the dipole moment of the sample is p = ∫
V
d 3r P,∫

V

d 3r P · E0 = pQ0

Aε0
.

P = 0 outside the dielectric. Therefore, nothing changes if we expand V to a volume V ′ which
includes the positively charged capacitor plate. Then, if E is the electric field between the plates
after the insertion of the dielectric,∫

V

d 3r P · E0 =
∫ ∫

V ′

d 3r [(D − ε0E0) · E0 + ε0(E0 − E) · E0] .

If Q is the charge on the positive plate after the insertion of the sample, the method of integration
used to derive (6.87) and (6.101) gives, in the present case,

pQ0

Aε0
= (Q−Q0)ϕ0 + (ϕ0 − ϕ)Q0.

This gives the desired result because Q = Q0, by assumption.

6.7.5 The Energy Functional ÛE

We conclude our discussion of energy and dielectric matter by mimicking the logic used for conductors
in Section 5.6.2 to derive an energy function for a dielectric in the presence of N conductors held at
fixed potentials ϕk . Accordingly, we use a Legendre transformation to define an energy function ÛE
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from

ÛE = UE −
∫

d 3r D · E = −1

2

∫
d 3r D · E. (6.109)

Since UE = UE[D], variation of (6.109) gives

δÛE = δ

[
UE −

∫
d 3r D · E

]
= −

∫
d 3r D · δE. (6.110)

This shows that ÛE is a natural function of E rather than D. The notation is again the same as we used
for conductors because [cf. (6.86) and (6.87)],∫

d 3r D · δE =
∑
k

Qk δϕk. (6.111)

As anticipated, (6.111) shows that ÛE may be regarded as a natural function of the fixed potentials
applied to any conductors in the problem. Therefore, when we carry over from UE the implicit
dependence of the energy on the center of mass coordinate R of the dielectric,

ÛE = ÛE(E,R) or ÛE = ÛE(ϕk,R). (6.112)

Our aim is to derive the analog of the partial derivative relations in (6.93). The first step uses the
rules of calculus and (6.112) to conclude that

δÛE = ∂ÛE

∂E

∣∣∣∣∣
R

· δE + ∂ÛE

∂R

∣∣∣∣∣
E

· δR. (6.113)

Next, compare (6.113) to (6.110) and insist that the mechanical force on a dielectric always acts to
reduce its energy. The formulae that result are the relations we seek:

D = − 1

V

(
∂ÛE

∂E

)
R

and F = −
(
∂ÛE

∂R

)
D

or F = −
(
∂ÛE

∂R

)
ϕ

. (6.114)

We will use the force formula on the far right side of (6.114) in Example 6.8 at the end of the chapter.

6.8 Forces on Dielectric Matter

The subject of this section is the electric forces that act on dielectric matter. The calculations needed are
quite straightforward when we ask for the net force on an entire isolated object in vacuum. Subtleties
arise when we ask for the force density needed to calculate the force on a sub-volume of a dielectric
sample. For that reason, we treat the two cases separately.

6.8.1 An Isolated Dielectric Body
Figure 6.15 shows an isolated sample of dielectric matter with polarization P(r) in an external electric
field E0(r). It is immaterial whether P is due to E0 or not. The electromagnetic force on this object
is given by Coulomb’s law applied to (i) the volume and surface polarization charge densities, ρP =
−∇ · P and σP = P · n̂, and (ii) whatever free charge density ρf happens to be present inside the
dielectric. Thus,

F =
∫

d 3r
[
ρf (r) − ∇ · P(r)

]
E0(r) +

∫
dS · P(rS)E0(rS). (6.115)
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( )P r

0
( )E r

Figure 6.15: Polarized matter in vacuum exposed to an external electric field E0(r). The displayed field lines
represent the external field only.

An alternative point of view recalls from Section 6.3.1 that P(r) behaves exactly like a volume distri-
bution of point electric dipoles. Therefore, a generalization of the point dipole results of Section 4.2.1
suggests that the force on the sample volume is

F =
∫

d 3r [ρf (r) + P(r) · ∇ ]E0(r). (6.116)

The force formulae (6.115) and (6.116) are equal by virtue of the vector identity∫
dS(n̂ · a)b =

∫
d 3r (∇ · a) b +

∫
d 3r (a · ∇) b. (6.117)

The total electric field, E(r) = E0(r) + Eself (r), is the sum of the external field and the field produced
by the dielectric. However, because a dielectric cannot exert a net force on itself, (6.115) does not change
if we replace E0(r) by E(r) in the volume integral and E0(rS) by Eavg(rS) = 1

2 [Ein(rS) + Eout(rS)] in
the surface integral. The average is required because a surface charge distribution generally creates a
discontinuity in the field right at the surface (see Section 3.4.3). In other words, a valid expression for
the force on an isolated dielectric is

F =
∫

d 3r
[
ρf (r) − ∇ · P(r)

]
E(r) +

∫
dS · P(rS)Eavg(rS). (6.118)

We leave it as an exercise for the reader to transform (6.118) into the form of (6.116) that can be used
in conjunction with the total field:

F =
∫

d 3r [ρf (r) + P(r) · ∇ ]E(r) + 1

2ε0

∫
dS [n̂(rS) · P(rS)]2 . (6.119)

We note in closing that the bilinear character of the integrands in this section raises the same
questions about the macroscopic validity of our force formulae as arose in the Lorentz averaging
discussion of Section 2.3.1. For that reason, it is necessary to treat the validity of (6.118) and (6.119)
as logically independent assumptions of the macroscopic theory subject to verification by experiment.

Example 6.5 How does the force between a charged object and an uncharged simple dielectric
depend on the distance r between them? Assume that r is large compared to the size of either
object.

Solution: Because the object sizes are small compared to r , the variation of the electric field
at the position of the dielectric can be taken as E0 = (Q/4πε0)r̂/r2. For the same reason, the
force (6.116) on the dielectric can be written in terms of the dipole moment p = ∫

d 3r P(r) of the
dielectric body:

F =
∫

d 3r (P · ∇)E0 � (p · ∇)E0.
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The dielectric is linear, so p = γ E0 where γ is a constant. Therefore, because ∇ × E0 = 0,

F = γ (E0 · ∇)E0 = 1
2γ ∇|E0|2 ∝ −Q2 r̂

r5
.

This force is always attractive, independent of the sign ofQ. The charged object attracts polarization
charge of unlike sign and repels polarization charge of like sign. The former is nearer to Q than
the latter and thus dominates the net Coulomb interaction.

With other choices for the non-uniform external field E0(r), the force F = 1
2γ ∇|E0|2 has been

successfully used to sort, position, and transport many different types of minute dielectric bodies,
including living cells. This phenomenon is known as dielectrophoresis, from the Greek verb
meaning “to bear” or “to carry”.16

6.8.2 A Simple Dielectric Sub-Volume
The formulae derived in the previous section from Coulomb’s law give the net force on an isolated
dielectric body in vacuum. They cannot be used to find the force on a dielectric sub-volume. To see
this, consider the force per unit area f = f ẑ which acts on the infinitesimally thin sub-volume enclosed
by the dashed lines in Figure 6.16. This is the force per unit area which acts on the abrupt interface
where the dielectric constant changes from κ1 to κ2. More precisely, it is the force per unit area which
acts on the polarization charge density σP at the z = 0 interface.

Let us calculate f using Coulomb’s law (6.115) applied to the sub-volume bounded by the surfaces
z = ε and z = −ε in the limit when ε → 0. There is no contribution from the volume integrals.
Therefore,

f = σPE0 = [P1 · ẑ + P2 · (−ẑ)]E0 =
[
ε0
κ1 − 1

κ1
E0 − ε0

κ2 − 1

κ2
E0

]
E0ẑ. (6.120)

Gauss’ law gives the external field applied to the dielectric as E0 = σf /ε0. The final result is the
following incorrect formula for the force per unit area on the dielectric interface:

f = σ 2
f

ε0

(
1

κ2
− 1

κ1

)
ẑ (incorrect). (6.121)

The problem with (6.121) emerges when we take the limit κ1 → ∞ to get

f → σ 2
f

κ2ε0
ẑ. (6.122)

According to Section 6.6.4, κ1 → ∞ amounts to replacing the z < 0 matter in Figure 6.16 by a perfect
conductor. Therefore, (6.122) should be the force per unit area which the upper plate exerts on the
lower plate of Figure 6.16 in that limit. If the plate area is A and the plate separation is d, (6.52) tells
us that the capacitance is C = κ2ε0A/d . Then, using (5.83) with R = −ẑd to evaluate the force on
the lower plate, the force density in question is

f = Q2

2C

∂C

∂R
= − 1

A

Q2

2C2

∂C

∂d
ẑ = σ 2

f

2κ2ε0
ẑ. (6.123)

This differs from (6.122) by a factor of 2. We will derive a correct version of (6.121) in Example 6.6.

16 See Voldman (2006) in Sources, References, and Additional Reading for more information about dielectrophoresis.
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1

2

z

f

f

Figure 6.16: A fixed-charge capacitor where ε(z) changes abruptly from ε1 to ε2 at z = 0. The force on the
interface polarization charge is the force exerted on the dielectric sub-volume enclosed by the dotted lines.

6.8.3 The Role of Short-Range Forces
The force formulae derived in Section 6.8 fail when applied to a dielectric sub-volume because they
omit the effect of short-range, non-electrostatic forces which act on the sub-volume boundary. These
quantum mechanical forces (which are responsible for elasticity) contribute to the field-induced force
of interest because their magnitude and direction are polarization-dependent. On the other hand,
internal forces of this kind cancel out when we sum over all sub-volumes to find the net force on an
entire body.

Brown (1951) calculate forces in dielectric matter using the theory of elastic stress generalized
to take account of dielectric polarization. This direct and explicit method highlights three important
points. First, the surface terms needed to correct (6.116) and (6.115) for a sub-volume are not the
same. Second, the requirements of local mechanical equilibrium make it possible to express the final
force entirely in terms of macroscopic quantities. Third, a force density expression exists (due to
Helmholtz) for which the associated surface term may be ignored because it integrates to zero (at least
for a dielectric fluid). The goal of the next section is to derive Helmholtz’ force density formula and
apply it to the interface problem of Figure 6.16.

6.8.4 Force from Variation of Energy for a Simple Dielectric
In this section, we calculate the electrostatic force on a simple dielectric medium from the change in
energy UE which accompanies a virtual displacement δr of the dielectric:

δUE = −F · δr. (6.124)

This generalizes the derivation in Section 3.5.1 of the Lorentz force and produces F in the form of
an integral over all of space. Moreover, the integrand of this integral agrees with the force density
obtained by other methods where one can check that the effects of short-range forces cancel out when
integrated over the surface of any sub-volume (see Section 6.8.3).

Beginning with UE = 1
2

∫
d 3r |D|2/ε from (6.94), the variation of UE has two terms:

δUE =
∫

d 3r
D · δD
ε

− 1

2

∫
d 3r

D · D
ε2

δε =
∫

d 3r E · δD − 1

2

∫
d 3r E2δε. (6.125)

The integrations in (6.125) are taken over all of space. Moreover, if the variations δD and δε are
induced by a displacement δr of the matter, the analog of Figure 3.13 gives [see (3.65)]

δD = D(r − δr) − D(r) = −(δr · ∇)D (6.126)

and

δε = ε(r − δr) − ε(r) = −(δr · ∇)ε. (6.127)
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Substituting these into (6.125) gives

δUE = −
∫

d 3r E · (δr · ∇)D + 1

2

∫
d 3r E2∇ε · δr. (6.128)

The second term in (6.128) already has the desired form (6.124). To transform the first term, we use
the vector identity

∇ × (δr × D) = δr(∇ · D) − (δr · ∇)D, (6.129)

integration by parts, and the Maxwell equations ∇ · D = ρf and ∇ × E = 0. The final result is called
the Helmholtz formula:

F = −δUE

δr
=
∫

d 3r ρf (r)E(r) − 1

2

∫
d 3r E2(r)∇ε(r). (6.130)

When the domain of integration is restricted to a sub-volume, (6.130) gives the mechanical force
exerted on that sub-volume.

It is worth noting that (6.130) does not contain the polarization P or the polarization charge density
ρP explicitly. From this point of view, the electric field exerts a force only on free charge and at points
in space where the dielectric “constant” varies in space. The physically correct force at the abrupt
dielectric interface in Figure 6.16 comes precisely from this latter contribution (see Example 6.6).

Example 6.6 Use (6.130) to calculate the force per unit area on the ε1/ε2 interface (z = 0) of the
parallel-plate capacitor shown in Figure 6.16. Check the limit κ1 → ∞.

Solution: The force (6.130) is non-zero only in the immediate vicinity of the z = 0 interface where
ε(z) changes abruptly. Therefore, with E = Ezẑ, the force per unit area is f = f ẑ where

f = −1

2

0+∫
0−

E2
z

dε

dz
dz.

Formally, ε(z) = ε1�(−z) + ε2�(z) so dε/dz = (ε2 − ε1)δ(z). This makes the integral ill-defined
because Ez is not continuous at z = 0. However, Dz is continuous [see (6.31)] and Gauss’ law
gives Dz = σf everywhere between the capacitor plates. Therefore,

f = −1

2

0+∫
0−

D2
z

ε2

dε

dz
dz = 1

2

0+∫
0−

D2
z

d

dz

(
1

ε

)
dz = σ 2

f

2ε0

(
1

κ2
− 1

κ1

)
.

Independent of the direction of the electric field, this force tends to increase the volume of the
medium with large ε and decrease the volume of the medium with small dielectric constant.

Since E0 = σf /ε0 is the electric field between the plates of a vacuum capacitor, the κ1 → ∞
limit of the force density can be written in the form

f → 1

2

E0

κ2
σf .

As discussed in the paragraph following (6.122), this is the expected force of attraction per unit
area between the plates of a capacitor filled with matter with dielectric constant κ2.

6.8.5 The Electric Stress Tensor for a Simple Dielectric
The subtleties of the Helmholtz formula (6.130) revealed by Example 6.6 motivate us to rewrite the
force in a form that avoids ∇ε. To do this, we use 1

2E
2∂j ε = 1

2∂j (DkEk) −Dk∂jEk and replace the
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6.8 Forces on Dielectric Matter 189

last term in this identify by Dk∂kEj because ∇ × E = 0. Then, because ∇ · D = ρf , (6.130) takes
the form

F =
∫

d 3r (∇ · D)E −
∫

d 3r (D · ∇)E − 1

2

∫
d 3r ∇(D · E). (6.131)

Now convert the last term in (6.131) to a surface integral and use the identity (6.117) with a = D and
b = E to do the same with the first two terms. The result is a very convenient formula for calculations
that should remind the reader of a similar formula derived in Section 3.7 for the force on a distribution
of pure charge in vacuum:

F =
∫
S

dS
{
(n̂ · D)E − 1

2 n̂(D · E)
}
. (6.132)

This expression has two important virtues compared to the Helmholtz formula (6.130): (i) it contains
no space derivatives; and (ii) it requires only the evaluation of a surface integral rather than a volume
integral. A non-trivial use of (6.132) is the subject of Application 6.4 below.

Finally, the structure of the integrand in (6.132) motivates us to define an electric stress tensor for
dielectric matter as

Tij (D) ≡ DiEj − 1
2δijD · E. (6.133)

This object is symmetric because DiEj = εEiEj . Moreover, in vacuum where D = ε0E, (6.133)
reduces to the Maxwell electric stress tensor defined in Section 3.7. Using (6.133), (6.132) takes the
form

F =
∫
S

dS n̂ · T (D). (6.134)

A volume integral version of (6.134) follows from the divergence theorem; namely, the j th component
of the force (6.132) on a dielectric sub-volume � is

Fj =
∫
�

d 3r ∂iTij (D). (6.135)

Application 6.4 The Electric Force on an Embedded Volume

Figure 6.17 shows a simple dielectric with permittivity ε = κε0. Embedded in this dielectric is a point
charge q and a second dielectric with permittivity ε ′ = κ ′ε0. A point charge q ′ is embedded in the
second dielectric. Our goal is to find the force exerted on the embedded dielectric and q ′. In principle,
this force can be computed using the Helmholtz formula (6.130). We proceed differently and use the
stress tensor method to emphasize the failure of a formula like (6.115) when applied to a dielectric
sub-volume.

q

q′κ′

κ

Figure 6.17: The dashed line is the boundary S of a volume � which is infinitesimally larger than the
volume of a dielectric with permittivity κ ′. The latter is embedded in a larger dielectric with permittivity κ .

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-06 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 11:24
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Our strategy is to use (6.132) and choose S as a surface (dashed in Figure 6.17) which bounds a
volume � which is infinitesimally larger than the physical volume of the embedded dielectric. D = εE
everywhere on S, we can pull ε outside the integral and then transform the surface integral into a
volume integral as we did to get (6.135). The result is

Fj = ε

∫
�

d 3r ∂i(EiEj − 1
2δijE · E). (6.136)

Repeating the algebraic steps used in Section 3.7 (in reverse order) shows that (6.136) reduces to

F = κ

∫
�

d 3r ρ(r)E(r). (6.137)

The charge ρ(r) in (6.137) is the sum of the free and polarization charge densities in �. This makes
(6.137) superficially similar to the volume integral in (6.118). The difference is the multiplicative
factor κ which (not obviously) comes from the field-dependent short-range force (see Section 6.8.3)
exerted on the κ ′ dielectric by the κ dielectric. �

Example 6.7 Find the force exerted on the point charge q in Example 6.2.

Solution: The force on q is given by (6.137) or (equivalently) the first term in (6.130). E(r) is the
field produced by the surface charge distribution σP computed in Example 6.2. By symmetry, we
need only the z-component of this field evaluated at the position of the point charge. Therefore, since
s = xx̂ + yŷ labels points on the interface and r = √

s2 + d2 is the distance to q (see Figure 6.8),

F = −ẑ
∫

d 2s
q

4πε0

σP(s)(d ẑ + s)

|d ẑ + s|3 = −ẑ 2π
∫ ∞

0
dss

q

4πε0

{
1

2πκL

κL − κR

κL + κR

qd

r3

}
d

r3
.

The integral is straightforward so

Fon q = −ẑ
1

κL

κL − κR

κL + κR

1

4πε0

( q

2d

)2
.

The force between q and the interface is attractive when κR > κL and repulsive when κR < κL.
This agrees with Section 6.7.2 where we concluded that free charge is attracted to regions where
the dielectric constant is large. We will return to this example in Section 8.3.3.

Example 6.8 Figure 6.18 shows a slab of simple dielectric matter partially inserted into the gap
d between the square (L× L) plates of a capacitor. If the fixed potential difference between the
plates is V , show that the slab is drawn into the capacitor by a force F = x̂ε0(κ − 1)LV 2/2d .
Ignore fringe field effects.

d

L

L

x = –b x = 0 x = s

Figure 6.18: A dielectric slab partially inserted into a capacitor.
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Method I: If E is the actual electric field inside the polarized volume V of the dielectric, (6.101)
gives the total energy gain of the system as

�ÛE = −1

2

∫
V

d 3r P · E0 = −1

2
ε0(κ − 1)

∫
V

d 3r E · E0.

For fixed potential difference, |E0| = |E| = V/d , so

�ÛE = −1

2
ε0(κ − 1)

V 2

d2
× (Lds).

This gives the force F = −∂ÛE/∂s = x̂ε0(κ − 1)LV 2/2d as required.

Method II: There is no free charge in the dielectric so (6.130) gives the force on the dielectric as

F = −1

2

∫
d 3rE2 ∇ε.

If we ignore fringing effects, E = V/d inside the capacitor and E = 0 outside the capacitor.
Therefore, we can ignore the x = −b end of the dielectric and write ε(x) = ε0�(x − s) + ε�(s −
x). This gives ∇ε = ε0(1 − κ)δ(x − s)x̂. The electric field is continuous at x = s so, since the
cross sectional area of the dielectric is Ld ,

F = −1

2
Ld

(
V

d

)2

ε0(1 − κ)x̂ = ε0(κ − 1)L
V 2

2d
x̂.

Remark: Unfortunately, neither Method I nor Method II clearly identifies the true physical origin
of the force that attracts the dielectric into the capacitor. We are interested in the net force on the
entire volume V of the dielectric, so it is permissible to use the fundamental law (6.116)

F =
∫
V

d 3r [ P(r) · ∇ ]E0(r).

This formula shows that the force can only come from those portions of the dielectric where the
capacitor electric field E0(r) deviates from uniformity. In other words, the force arises entirely
from the fringing field near the edges of the capacitor plates.

�

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is taken from Chapter 9 of
E.M. Purcell, Electricity and Magnetism (McGraw-Hill, New York, 1965).

Section 6.1 The book cited above by Purcell contains the best elementary discussion of the physics of dielectrics.
Two intermediate-level textbooks distinguished by the instructive examples they present are

O.D. Jefimenko, Electricity and Magnetism (Appleton-Century-Crofts, New York, 1966).

D.J. Griffiths, Introduction to Electrodynamics, 3rd edition (Prentice-Hall, Upper Saddle River, NJ, 1999).

Section 6.2 Our approach to volume and surface polarization charge follows
L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960).

The original discussion of Lorentz and a well-presented version of this traditional theory of polarized matter are
H.A. Lorentz, “The fundamental equations for electromagnetic phenomena in ponderable bodies deduced
from the theory of electrons”, Proceedings of the Royal Academy of Amsterdam 5, 254 (1902).

C.J.F. Böttcher, The Theory of Electric Polarization (Elsevier, Amsterdam, 1952).

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-06 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 11:24

192 DIELECTRIC MATTER: POLARIZATION AND ITS CONSEQUENCES

A good description of the modern theory of polarized matter by its originators is

R. Resta and D. Vanderbilt, “Theory of polarization: A modern approach”, in Physics of Ferroelectrics:
A Modern Perspective, edited by K.M. Rabe, C.H. Ahn, and J.-M. Triscone (Springer, New York, 2007),
pp. 31-68.

Figure 6.1 comes from Purcell (see Section 6.1 above). Figure 6.2 in Section 6.2.3 is taken from

P. Umari, A. Dal Corso, and R. Resta, “Inside dielectrics: Microscopic and macroscopic polarization”, in
Fundamental Physics of Ferroelectrics, edited by H. Krakauer (AIP, Melville, NY, 2001), pp. 107-117.

Section 6.3 The theorem quoted in Application 6.1 is the subject of

K.R. Brownstein, “Unique shape of uniformly polarizable dielectrics”, Journal of Mathematical Physics 28,
978 (1987).

Section 6.5 The examples in this section were drawn from

W.T. Scott, The Physics of Electricity and Magnetism, 2nd edition (Wiley, New York, 1966).

L. Eyges, The Classical Electromagnetic Field (Dover, New York, 1972).

A.M. Portis, Electromagnetic Fields: Sources and Media (Wiley, New York, 1978).

Section 6.6 There are many ways to derive the Clausius-Mossotti formula (6.84), not all of them completely
legitimate. Three useful discussions of this subject are

B.R.A. Nijboer and F.W. De Wette, “The internal field in dipole lattices”, Physica 25, 422 (1958).

M. Bucher, “Re-evaluation of the local field”, Journal of the Physics and Chemistry of Solids 51, 1241 (1990).

D.E. Aspnes, “Local field effects and effective medium theory: A microscopic perspective”, American Journal
of Physics 50, 704 (1982).

Onsager’s calculation of the dielectric constant for water appears in

L. Onsager, “Electric moments of molecules in liquids”, Journal of the American Chemical Society 58, 1486
(1936).

The source for Figure 6.12 is

A. Baldereschi, R. Car, and E. Tosatti, “Microscopic local fields in dielectrics”, Solid State Communications 32,
757 (1979).

Section 6.7 Our treatment of energy in dielectric matter benefitted from Landau and Lifshitz (see Section 6.2
above) and Egyes (see Section 6.5 above). Two discussions which make contact with the statistical mechanical
(Hamiltonian) point of view are

R. Balian, From Microphysics to Macrophysics (Springer, Berlin, 2007), Volume I, Section 6.6.5.

O. Narayan and A.P. Young, “Free energies in the presence of electric and magnetic fields”, American Journal
of Physics 73, 293 (2005).

Authors who recognize that it is an assumption to set the field energy density in a dielectric equal to the field
energy in vacuum include Purcell (see Section 6.1 above) and

S. Bobbio, Electrodynamics of Materials (Academic, San Diego, 2000).

Figure 6.14 and the classical model of quark confinement in Application 6.3 come from the article by Lee.
Example 6.4 is taken from the book by Robinson.

T.D. Lee, “Is the physical vacuum a medium?”, Transactions of the New York Academy of Sciences, Series II,
40, 111 (1980).

F.N.H. Robinson, Macroscopic Electromagnetism (Pergamon, Oxford, 1973).

Section 6.8 The subject of forces in and on dielectric matter is subtle and complex. Our discussion is consistent
with, but less complete than, those in Landau and Lifshitz (see Section 6.2 above), Robinson and Bobbio (see
Section 6.7 above), and

J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Example 6.5 explains the origin of dielectrophoresis. A review of this subject in a biophysical context is

J. Voldman, “Electrical forces for micro-scale cell manipulation”, Annual Reviews of Biomedical Engineering
8, 425 (2006).
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An instructive discussion of the role of short-range forces in dielectric force calculations is
D.L. Webster, “Unscrambling the dielectric constant”, The American Physics Teacher 2, 149 (1934).

Example 6.6 was familiar to Maxwell. Our method of solution follows
J. Schwinger, L.L. DeRaad, Jr., K.A. Milton, and W-Y. Tsai, Classical Electrodynamics (Perseus, Reading, MA,
1998).

Application 6.4 is taken from
W.F. Brown, Jr., “Electric and magnetic forces: A direct calculation”, American Journal of Physics 19, 290
(1951).

Example 6.8 has been discussed by generations of physicists. Our treatment is based on
S. Margulies, “Force on a dielectric slab inserted into a parallel-plate capacitor”, American Journal of Physics
52, 515 (1984).

Problems
6.1 Polarization by Superposition Two spheres with radius R have uniform but equal and opposite charge

densities ±ρ. The centers of two spheres fail to coincide by an infinitesimal displacement vector δ. Show by
direct superposition that the electric field produced by the spheres is identical to the electric field produced
by a sphere with a suitably chosen uniform polarization P.

6.2 How to Make a Uniformly Charged Sphere Find a polarization P(r) which produces a polarization
charge density in the form of an origin-centered sphere with radius R and uniform volume charge density
ρP .

6.3 The Energy of a Polarized Ball Find the total electrostatic energy of a ball with radius R and uniform
polarization P.

6.4 A Hole in Radially Polarized Matter The polarization in all of space has the form P = P�(r − R)r̂,
where P and R are constants. Find the polarization charge density and the electric field everywhere.

6.5 The Field at the Center of a Polarized Cube A cube is polarized uniformly parallel to one of its edges.
Show that the electric field at the center of the cube is E(0) = −P/3ε0. Compare with E(0) for a uniformly
polarized sphere. Hint: Recall the definition of solid angle.

6.6 Practice with Poisson’s Formula Confirm Poisson formula (derived in Section 6.3) for the case when
the volume V is a rectangular slab which is infinite in the x and y directions and occupies the interval
−t ≤ z ≤ t otherwise. Keep the direction of P0 arbitrary.

6.7 Isotropic Polarization The electrostatic polarization inside an origin-centered sphere is P(r) = P(r).

(a) Show that ϕ(r) outside the sphere is equal to the potential of a point electric dipole at the origin with a
moment equal to the electric dipole moment of the entire sphere.

(b) What is ϕ(r) inside the sphere?

6.8 E and D for an Annular Dielectric

(a) The entire volume between two concentric spherical shells is filled with a material with uniform
polarization P. Find E(r) everywhere.

(b) The entire volume inside a sphere of radius R is filled with polarized matter. Find D(r) everywhere if
P = P r̂/r2.

6.9 The Correct Way to Define E Students are often told that E = Fq/q defines the electric field at a point if
Fq is the measured force on a tiny charge q placed at that point. More careful instructors let q → 0 to avoid
the polarization of nearby matter due to the presence of q. Unfortunately, this experiment is impossible to
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perform. A better definition uses Fq and the force F−q measured when −q sits at the same point. There is
no need to let q → 0, even if conductors or (linear) dielectric matter is present. Derive an expression that
relates E to Fq and F−q .

6.10 Charge and Polarizable Matter Coincident A polarizable sphere of radius R is filled with free charge
with uniform density ρc. The dielectric constant of the sphere is κ .

(a) Find the polarization P(r).
(b) Confirm explicitly that the total volume polarization charge and the total surface polarization charge

sum to the expected value.

6.11 Cavity Field A uniform electric field E0 exists throughout a homogeneous dielectric with permittivity ε.
What is the electric field inside a vacuum cavity cut out of the interior of the dielectric in the shape of a
rectangular pancake with dimensions L× L× h? Assume that h � L and express Ecav entirely in terms of
E0, n̂, ε, and ε0.

6.12 Making External Fields Identical An origin-centered sphere with permittivity ε and radius a is placed
in a uniform external electric field E0. What radius b < a should an origin-centered, perfectly conducting
sphere similarly placed in a similar field E0 have so that the two situations produce identical electric fields
for r > a?

6.13 The Capacitance Matrix for a Spherical Sandwich Two concentric, spherical, conducting shells have
radii R2 > R1 and charges q2 and q1. The volume between the shells is filled with a linear dielectric with
permittivity ε = κε0. Determine the elements of the capacitance matrix for this system.

6.14 A Spherical Conductor Embedded in a Dielectric A spherical conductor of radius R1 is surrounded by
a polarizable medium which extends from R1 to R2 with dielectric constant κ .

(a) The conductor has charge Q. Find E everywhere and confirm that the total polarization charge is zero.
(b) The conductor is grounded and the entire system is placed in a uniform electric field E0. Find the

electrostatic potential everywhere and determine how much charge is drawn up from ground to the
conductor.

6.15 A Parallel-Plate Capacitor with an Air Gap A air-gap capacitor with parallel-plate area A discharges
by the electrical breakdown of the air between its parallel plates (separation d) when the voltage between
its plates exceeds V0. Lay a slab with dielectric constant κ and thickness t < d on the surface of the lower
plate and maintain a potential difference V between the plates.

(a) Find the capacitance of this structure with the dielectric slab present.
(b) Show that the value of V where electric breakdown occurs in the air portion of the capacitor gap is

V ′ = V0

[
1 − t

d

(
1 − 1

κ

)]
.

6.16 Helmholtz Theorem for D(r) Write the Helmholtz theorem expression for D(r) and eliminate D itself
from the integrals you write down. How does this formula simplify (if at all) for simple dielectric matter?

6.17 Electrostatics of a Doped Semiconductor A semiconductor with permittivity ε occupies the space z ≥ 0.
One “dopes” such a semiconductor by implanting neutral, foreign atoms with uniform density ND in the
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near-surface region 0 ≤ z ≤ d. Assume that one electron from each dopant atom ionizes and migrates to
the free surface of the semiconductor. The final result (illustrated by the diagram) is a region with uniform
positive charge density eND and a layer of negative charge with density σ localized at z = 0.

(a) Find and sketch the electric field E+(z) at every point in space produced by the volume charge.
(b) Find σ and the electric field E−(z) produced by σ . Sketch E− on the same graph used to sketch E+ in

part (a).
(c) Sketch the total electric field and check that your graph is consistent with integrating Gauss’ law from

z = −∞ to z = ∞.

6.18 Surface Polarization Charge Point charges q1, q2, . . ., qN are embedded in a body with permittivity κin.
The latter is itself embedded in a body with permittivity κout. Find the total polarization charge Qpol induced
on the boundary between the two dielectrics.

6.19 An Elastic Dielectric The parallel-plate capacitor shown below is made of two identical conducting plates
of area A carrying charges ±q. The capacitor is filled with a compressible dielectric solid with permittivity
ε and elastic energy

Ue = 1

2
k(d − d0)2.

(a) Find the equilibrium separation between the plates d(q).
(b) Sketch the potential difference between the plates V (q). Comment on any unusual behavior of the

differential capacitance Cd (q) = dq/dV .

q

−q

d

6.20 A Dielectric Inclusion A dielectric body with permittivity εin is embedded in an infinite volume of
dielectric matter with permittivity εout. The entire system is polarized by an external electric field Eext. If ϕ
is the exact electrostatic potential and S is the surface of the embedded body, show that the dipole moment
of the system can be written in the form

p = (εout − εin)
∫
S

dS n̂ϕ(rS).

6.21 A Classical Meson Application 6.4 modeled a meson (a quark-antiquark pair) as a finite dipole placed at
the center of a spherical cavity with radius R and unit dielectric constant scooped out of an infinite medium
with dielectric constant κ → 0. For this problem, we replace the finite dipole by a point dipole p.

(a) Find D and E everywhere for finite κ .
(b) Confirm the statements made in the Application regarding D and UE when κ = 0. Assume a cutoff

distance a � R to simulate the size of the original dipole.

6.22 An Application of the Dielectric Stress Tensor A metal ball with charge Q sits at the center of a thin,
spherical, conducting shell. The shell has charge Q′ and the space between the shell and the ball is filled
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with matter with dielectric constant κ . Use the stress tensor method to prove that if the shell were split into
two hemispheres, the two halves stay together only if Q′ has the opposite sign to Q and

1 − 1√
κ

≤
∣∣∣∣Q′

Q

∣∣∣∣ ≤ 1 + 1√
κ
.

6.23 Two Dielectric Interfaces The figure shows two fixed-potential capacitors filled with equal amounts of
two different types of simple dielectric matter. Use the stress tensor method to compare the force per unit
area which acts on the two dielectric interfaces. Express your answer in terms of the electric field E0 which
would be present if the dielectric matter were absent.

1

2
2 1

6.24 The Force on an Isolated Dielectric The text proved that the force on an isolated dielectric is

F =
∫

d 3r
[
ρf (r) − ∇ · P(r)

]
E(r) +

∫
dS · P(rS)Eavg(rS),

where E(r) is the total field at an interior point r and Eavg(rS) is the average of the total field just inside and
just outside the dielectric at the surface point rS . Show that this expression can be rewritten in the form

F =
∫

d 3r [ρf (r) + P(r) · ∇ ]E(r) + 1

2ε0

∫
dS [n̂(rS) · P(rS)]2 .

6.25 Minimizing the Total Energy Functional Use the method of Lagrange multipliers to show that, among all
functions D(r) which satisfy ∇ · D = ρf , the minimum (not merely the extremum) of UE = 1

2

∫
d 3r |D|2/ε

occurs when D(r) = εE(r). Assume that n̂ · D takes specified values on the boundary surface of the volume
V of integration. Hint: Because ∇ · D(r) = ρf (r) is a constraint at every r, it is necessary to use a Lagrange
function ϕ(r) (rather than a single Lagrange constant) to enforce the constraint throughout V .
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7 Laplace’s Equation

The problem of finding the solution to any electrostatic problem
is equivalent to finding a solution of Laplace’s equation

throughout the space not occupied by conductors.
Sir James Jeans (1925)

7.1 Introduction

A recurring theme in electrostatics is the inevitable rearrangement of charge which occurs inside matter
when electric fields are present. The Coulomb integral,

ϕ(r) = 1

4πε0

∫
d 3r ′ ρ(r′)

|r − r′| , (7.1)

loses it usefulness for these situations because we cannot specify ρ(r) once and for all. Luckily, a
different approach is available for finding the potential produced by conductors and linear dielectrics.
This is possible because we have introduced explicit models for the behavior of these materials in an
electrostatic field.

E = 0 inside a perfect conductor (Section 5.1) and the potential inside a material with dielectric
constant κ satisfies Poisson’s equation (Section 6.5.5):

ε0∇2ϕ(r) = −ρf (r)/κ. (7.2)

Matching conditions describe how the potential behaves when an abrupt interface with free charge
density σf separates a material with dielectric constant κ1 from a material with dielectric constant
κ2 (Figure 7.1). If ϕ1(rS) and ϕ2(rS) are the potentials in the two regions infinitesimally close to an
interface point rS , the matching conditions are

ϕ1(rS) = ϕ2(rS) (7.3)

and

κ1
∂ϕ1

∂n1

∣∣∣∣
S

+ κ2
∂ϕ2

∂n2

∣∣∣∣
S

= σf

ε0
. (7.4)

When combined with suitable boundary conditions, the three preceding equations lead to a strategy to
solve electrostatics problems for conductors and linear dielectrics known as potential theory.
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κ ϕ ˆ
2n

1
n̂

2 2
κ ϕ

fσ

1 1
,

,

Figure 7.1: An interface where dielectric properties change abruptly. n̂1 is the outward normal from region 1; n̂2

is the outward normal from region 2.

7.2 Potential Theory

Potential theory—the branch of mathematics devoted to the study of the Poisson and Laplace
equations—is a mature subject which has been in continuous development for over 200 years. For
that reason, physics students of the 21st century are entitled to ask whether two chapters devoted to
19th-century mathematics are really necessary when numerical solvers of the Poisson and Laplace
equations are available on every desktop computer. Users of these packages know that the abil-
ity to rapidly change geometries and boundary conditions is an invaluable aid to building physical
insight. Sophisticated graphical interfaces make it possible to study the details with unprecedented
ease.

The case for analytic methods is self-evident when a particular Laplace or Poisson problem admits
a closed-form solution where both global behavior and limiting cases lay in plain view. The argument
is less straightforward when the solution takes the form of sums of products of functions which
are typically evaluated numerically anyway. Nevertheless, physicists have exploited this approach
for generations and the contemporary student must acquire familiarity (if not absolute fluency) just
to make sense of the literature. Moreover, complicated-looking analytic formulae often simplify
dramatically in various limits of physical interest. If so, the intuitive virtues of the simple analytic
solution return. Finally, despite the assurances of software developers, it is always worthwhile to use
an analytic solution (no matter how complicated) as a check on the correctness of a purely numerical
solution.

In this chapter, we begin by demonstrating that the solution to Poisson’s equation is unique in
(vacuum or linear dielectric) spaces bounded by conductors. We then limit ourselves to situations
where one or more surface charge densities σ (rS) account for all the charge in the system. This special
case simplifies our task to solving Laplace’s equation at all points that do not lie on the charged
surfaces:

∇2ϕ(r) = 0. (7.5)

If σ (rS) happens to be known, it is a matter of taste and computational convenience whether we
evaluate the integral (7.1) or use the matching conditions to knit together the global potential ϕ(r)
from the separate solutions of (7.5) that are valid on opposite sides of each interface. The solution for
ϕ(r) obtained in this way is identical to (7.1) and thus is unique by Helmholtz’ theorem (Section 1.9).
The usual case is that σ (rS) is not known and we use the methods of potential theory to find it.
More precisely, we use potential theory to find ϕ(r) and then calculate σ (rS) post factum using the
matching condition (7.4). By uniqueness, the calculated σ (rS) and (7.1) reproduce the Laplace equation
solution.

The main task of this chapter is to explore the methods that have been developed to solve (7.5)
for different geometries. We place special emphasis on separation of variables and analytic function
theory. The next chapter deals with Poisson’s equation in full generality.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-07 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:29

7.3 Uniqueness 199

V
0

S 1
S

2
S

Figure 7.2: A volume V bounded by a closed exterior surface S0 and two closed interior surfaces S1 and S2.

7.3 Uniqueness

The diverse methods of potential theory often lead to representations for ϕ(r) that look remarkably
different. Nevertheless, if the physical problem is well posed, all such representations are strictly
equivalent at every point in the solution domain. This is guaranteed by the fact that the solutions to
the Poisson equation are unique when suitable conditions are satisfied. Therefore, if a valid solution is
obtained by any means—including guesswork—it is the solution.

We will prove uniqueness for the solution of Poisson’s equation in the connected volume V shown
in Figure 7.2. The volume is bounded by any number of non-overlapping closed surfaces S1, S2, . . .

and an outer enclosing surface S0. These surfaces need not coincide with matter-vacuum interfaces.
There may also be a volume density of source charge ρ(r) in V . The proof proceeds by contradiction.
Thus, we suppose that V supports two distinct solutions of the Poisson equation with the same charge
density ρ(r). In other words, ∇2ϕ1(r) = −ρ(r)/ε and ∇2ϕ2(r) = −ρ(r)/ε for all r ∈ V .

Our strategy is to construct the difference �(r) = ϕ1(r) − ϕ2(r) and observe that ∇2� = 0 in V .
Therefore, Green’s first identity (Section 1.4.3),∫

V

d 3r
(
f ∇2g + ∇f · ∇g) =

∫
S

dS · f ∇g, (7.6)

with f = g = � gives ∫
V

d 3r|∇� |2 =
∑
i

∫
Si

dS ·�∇�. (7.7)

The sum is over all the bounding surfaces Si and each vector dSi points outward from V . The key
observation is that the integrand on the left side of (7.7) is non-negative. This means that ∇�(r) = 0
if boundary conditions are chosen so that the right side of (7.7) vanishes. In that case, ϕ1(r) = ϕ2(r)
(up to an inessential constant) and the potential that solves Poisson’s equation is unique.

Each term in the sum on the right side of (7.7) has the same form. Therefore, we focus on making
the following integral equal to zero:

I =
∫
S

dS ·�∇�. (7.8)

There are three ways to do this:

1. Dirichlet boundary conditions specify the value of the potential at each surface point. I = 0 because
the constraint ϕ1(rS) = ϕ2(rS) implies that �(rS) = 0.

2. Neumann boundary conditions specify the value of the normal component of the gradient of
the potential at each surface point. I = 0 in this case because the corresponding constraint n̂ ·
∇ϕ1(rS) = n̂ · ∇ϕ2(rS) implies that dS · ∇�(rS) = 0.
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3. Mixed boundary conditions specify ϕ(rS) over a portion of S and specify n̂ · ∇ϕ(rS) over the
remainder. This gives I = 0 as well.

More detailed considerations1 show that these choices are mutually exclusive. That is, we cannot
specify both ϕ(rS) and n̂ · ∇ϕ(rS) simultaneously at any point on the bounding surface. If we do, the
problem becomes over-determined and no solution exists.

7.3.1 Uniqueness When Conductors are Present
The epigraph at the beginning of this chapter considers the bounding surfaces Sk in Figure 7.2 to be
perfectly conducting.2 In that case, it is straightforward to prove that the solution to Poisson’s equation
in V is unique if, for every conductor, we specify either

(A) the conductor potential ϕS (7.9)

(B) the conductor total charge QS.

Choice A is a Dirichlet condition. Choice B is related to a Neumann condition, but provides less
information. It is nevertheless sufficient to guarantee uniqueness because, using Gauss’ law, (7.8) for
a conductor surface is∫

S

dS ·�∇� = −(ϕ1 − ϕ2)
∫
S

dS · (E1 − E2) = (ϕ1 − ϕ2)(Q1 −Q2)/ε0. (7.10)

We note in passing that choice B explains why the electric field outside a perfect conductor is
independent of how charge is distributed inside a vacuum cavity scooped out of the body of the
conductor (see Section 5.3). Only the total amount of such charge matters to the unique solution.

The alternatives in (7.9) are mutually exclusive. Suppose we compute ϕ(r) everywhere from ϕS
data. Since E = n̂ σ/ε0 at the surface of a conductor, its total charge is

QS =
∫
S

dS σ (rS) = −ε0

∫
S

dS n̂ · ∇ϕ(rS). (7.11)

Conversely, we can compute ϕ(r) in terms of a set of unspecified constants ϕS = ϕ(rS). Then, given
QS data for each conductor, (7.11) written out for every conductor is a set of linear equations that
determine the ϕS. Indeed, they are just the capacitance equations

Qi =
∑
j

Cij ϕj . (7.12)

As a practical matter, Neumann boundary conditions do not arise when only dielectric matter and/or
perfect conductors are present. They occur instead when a steady current flows through an ohmic
medium (Chapter 9) and when superconductors are present (Chapter 13). Mixed boundary conditions
occur occasionally, but the mathematics needed to apply them is rather exotic.3 For these reasons, all
the potential theory problems worked out in this chapter have Dirichlet boundary conditions.

1 See, e.g., P.M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Section 6.1.
2 The enclosing surface S0 need not be a conductor if it is placed at infinity. The condition ϕ(r) → 0 as r → ∞ is a

Dirichlet condition.
3 See Sneddon (1966) and Fabrikant (1991) in Sources, References, and Additional Reading.
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1z z

1r r
1

1

1

1

1x x
1y y

1z z

(a)

(c)

(b)

Figure 7.3: Volumes bounded by surfaces where one coordinate variable is constant: (a) spherical coordinates:
(b) Cartesian coordinates; (c) cylindrical coordinates.

Example 7.1 An uncharged and isolated conductor of arbitrary shape has a cavity of arbitrary
shape scooped out of its interior. A point dipole p sits inside the cavity. Show that E(r) = 0 is the
unique solution outside the conductor. Contrast with the case of a point charge in the cavity.

Solution: Let the conductor fill all of space except for the cavity. The dipole induces a surface
charge density σ ∗(rS) on the cavity wall S. By the definition of a conductor, the field produced
by σ ∗(rS) exactly cancels the field due to p everywhere outside the cavity. In other words, p and
σ ∗(rS) together produce E = 0 at every point outside the cavity. For that reason, the same will be
true if we apply σ ∗(rS) to the cavity wall of the original finite-size conductor. Unlike the case of
a point charge in a scooped-out cavity, this can be done without inducing charge on the outside
surface of the conductor because Gauss’ law guarantees that σ ∗(rS) integrates to zero over the
cavity wall. Moreover, E(r) is still zero everywhere outside the cavity, including the space outside
the conductor. The total conductor charge is zero, so the exterior solution E(r) = 0 is unique by
choice B of (7.9).

7.4 Separation of Variables

Many potential problems have a symmetry that makes one particular coordinate system most natural
for its description. Consider the three empty volumes shown in Figure 7.3. Each has been constructed
so every bounding surface is defined by a constant value for one spherical, Cartesian, or cylindrical
coordinate. Semi-infinite and infinite volumes are included by expanding the range of the relevant
coordinates beyond what is shown in the figure. Our task is to solve ∇2ϕ = 0 in each volume subject
to specified conditions on each boundary surface.

In an orthogonal coordinate system where (u, v,w) labels a point in space, the method of separation
of variables assumes a product solution of the form

ϕ(u, v,w) = A(u)B(v)C(w). (7.13)
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This guess separates Laplace’s partial differential equation into three ordinary, second-order differential
equations in 13 different coordinate systems.4 The separation process generates three undetermined
“separation constants” (not all independent) which serve as parameters in the differential equations
and labels for their solutions. Thus, if α is the sole separation constant in the differential equation
for A(u), the most general solution of the latter is an arbitrary sum of its two linearly independent
solutions: aαAα(u) + ãαÃα(u). Similarly, if β and γ are the sole separation constants in the differential
equations for B(v) and C(w), respectively, the most general solution to Laplace’s equation is a sum
over all possible values of the separation constants of products of the form (7.13):

ϕ(u, v,w) =
∑
αβγ

[
aαAα(u) + ãαÃα(u)

] [
bβBβ (v) + b̃β B̃β (v)

] [
cγ Cγ (w) + c̃γ C̃γ (w)

]
. (7.14)

The art to solving a potential problem by separation of variables is to determine the expansion
coefficients, aα , ãα , bβ , b̃β , cγ , and c̃γ and the nature (real, imaginary, integer) and values of the
separation constants α, β, and γ that must be retained in the sums. If the retained values of a
separation constant turn out to take on continuous (rather than discrete) values, the corresponding
sum in (7.14) should be read as an integral. The various constants are chosen so the total potential
(i) satisfies the boundary conditions, (ii) remains finite throughout the solution volume, and (iii) respects
the symmetries of the physical problem. The method is best understood by the study of examples, so
the next several sections provide a variety of these for problems with Cartesian, azimuthal, spherical,
cylindrical, and polar symmetry. In all but the simplest cases, it turns out to be essential to arrange
matters so that some of the separated differential equations have boundary conditions which produce
a Sturm-Liouville eigenvalue problem. This ensures that the associated eigenfunctions are complete
and orthonormal in the manner described in the next section. The boundary conditions needed to do
this are either homogeneous Dirichlet (ϕ = 0), homogeneous Neumann (∂ϕ/∂n = 0), periodic, or
boundedness at infinity.

7.4.1 Complete and Orthonormal Sets of Functions
A set of eigenfunctions, ψk(v), defined on the interval a ≤ v ≤ b is said to be complete if any function
F (v) defined on the same interval can be written as a linear combination of the ψk(v). In other words,
coefficients Fk exist such that

F (v) =
∑
k

Fkψk(v) a ≤ v ≤ b. (7.15)

A convenient statement of completeness is the closure relation,∑
k

ψk(v)ψ∗
k (v′) = δ(v − v′). (7.16)

The index k takes discrete values when the range of v is finite and continuous values when the range
of v is semi-infinite or infinite. In the latter case, the sum becomes an integral in (7.16).

To show that closure implies completeness, we write

F (v) =
b∫

a

dv′δ(v − v′)F (v′) a ≤ v, v′ ≤ b. (7.17)

4 Besides Cartesian, spherical, and cylindrical coordinates, Laplace’s equation is separable in conical, bispherical,
ellipsoidal, parabolic cylindrical, elliptic cylindrical, oblate spheroidal, prolate spheroidal, parabolic, paraboloidal,
and toroidal coordinates.
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Substituting (7.16) into (7.17) gives

F (v) =
∑
k

b∫
a

dv′ψk(v)ψ∗
k (v′)F (v′). (7.18)

This confirms (7.15) with

Fk =
b∫

a

dv′ψ∗
k (v′)F (v′). (7.19)

Finally, consider F (v) = ψj (v) in (7.15). This forces Fk = δkj and substitution into (7.19) gives the
orthonormality relation

b∫
a

dv ψ∗
k (v)ψj (v) = δkj . (7.20)

7.5 Cartesian Symmetry

For potential problems with natural rectangular boundaries, the trial solution ϕ(x, y, z) =
X(x)Y (y)Z(z) converts Laplace’s equation,

∇2ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
= 0, (7.21)

into

X′′(x)

X(x)
+ Y ′′(y)

Y (y)
+ Z′′(z)

Z(z)
= 0. (7.22)

Each of the three ratios in (7.22) is a function of only one variable. Therefore, their sum can be zero
only if each is separately equal to a distinct constant. This gives

d2X

dx2
= α2X,

d2Y

dx2
= β2Y, and

d2Z

dx2
= γ 2Z, (7.23)

where the separation constants α2, β2, and γ 2 are real5 and satisfy

α2 + β2 + γ 2 = 0. (7.24)

The methodology outlined in Section 7.4 directs us to identify all the elementary solutions of the
differential equations in (7.23). The separation constants can be zero or non-zero, so

Xα(x) =
{
A0 + B0x α = 0,
Aαe

αx + Bαe
−αx α �= 0,

(7.25)

Yβ (y) =
{
C0 +D0y β = 0,
Cβe

βy +Dβe
−βy β �= 0,

(7.26)

Zγ (z) =
{
E0 + F0z γ = 0,
Eγ e

γ z + Fγ e
−γ z γ �= 0.

(7.27)

5 The possibility that α, β, and γ are neither purely real nor purely imaginary is precluded by the boundary conditions
for all the problems we will encounter in this book.
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Figure 7.4: An empty box with five walls maintained at zero potential and the z = 0 bottom wall maintained at
potential V (x, y).

The linearity of Laplace’s equation permits us to superpose the products of these elementary solutions.
Therefore, using a delta function to enforce (7.24), the general solution reads

ϕ(x, y, z) =
∑
α

∑
β

∑
γ

Xα(x)Yβ (y)Zγ (z)δ(α2 + β2 + γ 2). (7.28)

The form of (7.25) shows that α can be restricted to positive real values if α2 > 0 and to positive
imaginary values if α2 < 0. Similar remarks apply to β and γ .

As an example, let us use (7.28) to find the electrostatic potential inside the rectangular box shown
in Figure 7.4. We assume that all the walls are fixed at zero potential except for the z = 0 wall, where
the potential takes specified values V (x, y).6 The homogeneous Dirichlet boundary conditions on the
vertical side walls are not difficult to satisfy if we write α = iα′ and β = iβ ′ in (7.25) and (7.26). We
then choose α′, β ′, and the expansion coefficients to make Xα(x) and Yβ (y) sine functions that vanish
at x = a and y = b, respectively. Bearing in mind the delta function constraint, (7.28) takes the form

ϕ(x, y, z) =
∞∑
m=1

∞∑
n=1

sin
(mπx

a

)
sin

(nπy
b

) [
Emn exp(γmnz) + Fmn exp(−γmnz)

]
, (7.29)

where

γ 2
mn =

(mπ
a

)2
+
(nπ
b

)2
. (7.30)

Our next task is to choose Emn and Fmn so the potential vanishes at z = c. If Vmn are coefficients still
to be determined, a convenient way to write the result is

ϕ(x, y, z) =
∞∑
m=1

∞∑
n=1

Vmn sin
(mπx

a

)
sin

(nπy
b

) sinh[γmn(c − z)]

sinh(γmnc)
. (7.31)

It remains only to impose the final boundary condition that ϕ(x, y, 0) = V (x, y). This gives

V (x, y) =
∞∑
m=1

∞∑
n=1

Vmn sin
(mπx

a

)
sin

(nπy
b

)
, (7.32)

which is a double Fourier sine series representation of V (x, y). To find the coefficients Vmn, multiply
both sides of (7.32) by sin(m′πx/a) sin(n′πy/b) and integrate over the intervals 0 ≤ x ≤ a and
0 ≤ y ≤ b. This completes the problem because the orthogonality integral

π∫
0

ds sin(ms) sin(ns) = π

2
δmn (7.33)

6 We assume that a thin strip of insulating material isolates the bottom wall from the others.
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Figure 7.5: The potential in a box with three ϕ = 0 walls and three ϕ �= 0 walls represented as the sum of three
box potentials, each with five ϕ = 0 walls and one ϕ �= 0 wall.

shows that

Vmn = 4

ab

a∫
0

b∫
0

dxdy V (x, y) sin
(mπx

a

)
sin

(nπy
b

)
. (7.34)

It was not an accident that a Fourier series appeared in (7.32) when the need arose to represent the
arbitrary boundary data V (x, y). The key was the homogeneous Dirichlet (zero potential) boundary
condition imposed on each of the vertical walls in Figure 7.4. This transformed the differential
equations for X(x) and Y (y) into eigenvalue problems with complete sets of orthogonal sine functions
as their eigenfunctions.

Our example raises the question of how to “arrange” a complete set of eigenfunctions if we
had specified non-zero potentials on any (or all) of the vertical side walls. The solution (indicated
schematically in Figure 7.5) is to superpose the separated-variable solutions to several independent
potential problems, each like the one we have just solved but with a different wall held at a non-zero
potential. This general approach works for other coordinate systems also. Application 7.1 illustrates
another method.

Application 7.1 A Conducting Duct

Figure 7.6 is a cross sectional view of an infinitely long, hollow, conducting duct. The walls are main-
tained at the constant potentials indicated and our task is to find the electrostatic potential everywhere
inside the duct. A straightforward approach to this problem mimics Figure 7.5 and superposes the
solutions of three different potential problems, each with only one wall held at a non-zero potential.
The reader can confirm that only two problems actually need be superposed: one with V ′ = 0 and
another with V = 0. In this Application, we follow a third path and use the β = 0 solution in (7.26)
to remove the inhomogeneous boundary condition ϕ(x, L) = V ′. More generally, we use a system-
atic “inspection” method which retains every elementary solution in (7.25), (7.26), and (7.27) until a
boundary condition or other physical consideration forces us to remove it. Uniqueness guarantees that
the solutions obtained by these three approaches will agree numerically at every point, despite their
different analytic appearances.

′

Figure 7.6: Cross sectional view of a conducting duct with Dirichlet boundary conditions.
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The translational invariance of the duct implies that ϕ(x, y, z) = ϕ(x, y). This means that Eγ =
Fγ = 0 in (7.27) when γ �= 0. The γ = 0 contribution survives withE0 = 1 and F0 = 0. Using (7.24),
γ = 0 implies that β2 = −α2, which in turn implies that the α = 0 solution X0(x) pairs exclusively
with the β = 0 solution Y0(y) in (7.28). Otherwise, we choose α2 > 0 so the β �= 0 basis functions in
(7.26) are complex exponentials (or sines and cosines). The general solution for the potential at this
juncture is

ϕ(x, y) = (a0 + b0x)(c0 + d0y) +
∑
α

(aαe
αx + bαe

−αx)(cα sinαy + dα cosαy). (7.35)

The boundary condition at y = 0 simplifies (7.35) to

ϕ(x, 0) = 0 = (a0 + b0x)c0 +
∑
α

(aαe
αx + bαe

−αx)dα. (7.36)

This shows that c0 = dα = 0. We are free to choose d0 = cα = 1 in the resulting expression for ϕ(x, y),
so the boundary condition ϕ(x, L) = V ′ reads

V ′ = (a0 + b0x)L+
∑
α

(aαe
αx + bαe

−αx) sinαL. (7.37)

Equation (7.37) becomes an identity when we choose b0 = 0, a0 = V ′/L, and α = mπ/L where
m is a positive integer. In other words, we can use the β = 0 linear solution in (7.26) to account
for the inhomogeneous boundary condition at y = L. The potential inside the duct now takes the
form

ϕ(x, y) = V ′

L
y +

∞∑
m=1

(ame
mπx/L + bme

−mπx/L) sin
mπy

L
. (7.38)

The constants am and bm in (7.38) are determined by the two boundary conditions that remain,

ϕ(0, y) = V = V ′

L
y +

∞∑
m=1

(am + bm) sin
mπy

L
(7.39)

and

ϕ(L, y) = V = V ′

L
y +

∞∑
m=1

(ame
mπ + bme

−mπ ) sin
mπy

L
. (7.40)

The key step is to multiply both (7.39) and (7.40) by sin(nπy/L) and exploit the orthogonality
integral (7.33). For each value of m, this gives two equations for the two unknowns, am and bm,
namely,

am + bm = �m = ame
mπ + bme

−mπ , (7.41)

where

�m = 2

L

L∫
0

dy sin
mπy

L

(
V − V ′

L
y

)
= 2

mπ

[
V + (−1)m(V ′ − V )

]
. (7.42)

It remains only to solve (7.41) for am and bm. This bit of algebra gives

am = �m

2

emπ − 1

sinhmπ
and bm = �m

2

e−mπ − 1

sinhmπ
. (7.43)

Substituting these coefficients back into (7.38) completes the problem. �
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Figure 7.7: Edge view of a “parallel-plate” Faraday cage composed of two parallel arrays of infinitely long
charged lines aligned parallel to the y-axis. Each line has a uniform charge per unit length λ. The diagram repeats
periodically out to x = ±∞. The two walls of the cage are separated by a distance d. Within each wall, the
charged lines are separated by a distance a.

Faraday’s diary, January 15 1836

Have been for some days engaged in building up a cube of 12 feet in the side. It consists of a slight
wooden frame held steady by diagonal ties of cord; the whole being mounted on four glass feet.
The sides, top and bottom are covered in paper. The top and bottom have each a cross framing
of copper wire connected by copper wires passing down the four corner uprights. The sheets of
paper which constitute the four sides have each two slips of tin foil pasted on their inner surface.
These are connected below with copper wire so that all the metallic parts are in communication.
Access to the inside was made by cutting a flap in the paper. Connecting this cube by a wire with
the Electrical Machine, I can quickly and well electrify the whole. I now went in the cube standing
on a stool and [my assistant] Anderson worked the machine until the cube was fully charged. I
could by no appearance find any traces of electricity in myself or the surrounding objects. In fact,
the electrification without produced no consequent effects within.

7.5.1 Faraday’s Cage
The diary entry just above describes a wire mesh “cage” which effectively shields its interior from an
electrostatic potential applied to its surface. The physics of the shielding can be understood using the
“parallel-plate” cage shown in Figure 7.7, where an infinite number of infinitely long and uniformly
charged lines lie in two parallel planes. This is a good model for a grid of conducting wires because,
if every line carries a charge per unit length λ, the potential at a distance s � a from any particular
line (regarded as the origin) is

ϕ(s) = − λ

2πε0
ln |s| + const. (7.44)

The equipotentials of (7.44) are cylinders so the charged lines are electrostatically equivalent to an
array of conducting wires held at a common potential.

To find the potential between the “plates” of the cage, we begin with the potential produced by
the lower grid of wires alone. The reflection symmetry of the grid implies that this two-dimensional
potential must obey ϕ(−x,−z) = ϕ(x, z). Moreover, ϕ(x, z) → 0 as |z| → ∞ because the source
charge is localized in the z-direction. This tells us to choose the sign of the separation constant so
Z(z) in (7.27) decays exponentially away from the grid in both directions. Putting all this information
together yields a separated-variable solution for the lower grid of wires with the form

ϕ(x, z) = A+ B|z| +
∑
γ

Cγ cos(γ x) exp(−γ |z|). (7.45)
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It is essential that we retain the term proportional to |z| [ the γ = 0 term in (7.27) ] because, when
|z| � a, the grid is indistinguishable from an infinite charged sheet. Indeed, precisely this fact tells us
that A = 0 and

B = −λ/2aε0. (7.46)

The geometry of the wires imposes the periodicity condition ϕ(x + a, z) = ϕ(x, z). This means that
the separation constant γ takes the discrete values γ = 2πm/a with m = 1, 2, . . . Accordingly,

ϕ(x, z) = − λ

2aε0
|z| +

∞∑
m=1

Cm cos(2πmx/a) exp(−2πm|z|/a). (7.47)

We fix the expansion coefficients Cm by imposing the matching condition (7.4) in the form

∂ϕ

∂z

∣∣∣∣
z=0−

−∂ϕ

∂z

∣∣∣∣
z=0+

= σ (x)

ε0
. (7.48)

The relevant σ (x) is the surface charge density of the array of charged lines,

σ (x) = λ

∞∑
p=−∞

δ(x − pa). (7.49)

A brief calculation using the Fourier expansion7

∞∑
p=−∞

δ(x − 2πp) = 1

2π
+ 1

π

∞∑
m=1

cosmx (7.50)

yields the potential created by the z = 0 wire mesh:

ϕ(x, z) = − λ

2aε0
|z| + λ

2πε0

∞∑
m=1

1

m
cos(2πmx/a) exp(−2πm|z|/a). (7.51)

The reader can confirm that (7.51) reproduces (7.44) in the plane of the grid.
The upper grid of wires contributes a potential identical to (7.51) except that z → z − d where d is

the separation between the two grids. When we add the two together, the first term in (7.51) cancels
the corresponding term in the upper grid potential when 0 < z < d. The remaining, mesh-induced,
contributions are exponentially small if z � a and d − z � a. Therefore, the electric field inside the
cage is essentially zero at all observation points that lie farther away from the cage walls than the
spacing between the wires of the cage. The condition d � a is a design prerequisite for all practical
Faraday cages.

7.5.2 The Electrostatic Potential Has Zero Curvature
The duct potential (7.38) and the cage potential (7.51) are both composed of products of sinusoidal and
exponential functions in orthogonal directions. This is a consequence of the constraint (7.24) imposed
on the separation constants. Since Laplace’s equation (7.5) is the origin of the constraint, we can use
geometrical language and ascribe this behavior to the requirement that the total curvature of ϕ(r)
vanish at every point where ∇2ϕ = 0. This insight provides a qualitative understanding of Earnshaw’s
theorem8 because it says that the one-dimensional curvatures of the potential along each of the three
Cartesian directions cannot all have the same algebraic sign.

7 See Example 1.6.
8 Earnshaw’s theorem states that ϕ(r) cannot have a local maximum or a local minimum in a charge-free volume of

space. See Section 3.3.3.
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Figure 7.8: An origin-centered ring in the z = 0 plane with uniform charge per unit length λ = Q/2πR. The
dashed sphere separates space into a region with r < R and a region with r > R.

The zero-curvature condition guarantees that the solutions of Laplace’s equation are not bounded in
at least one Cartesian direction. Nevertheless, as both the duct and cage examples demonstrate, true
divergence never occurs because a steadily increasing potential along some direction always signals
the eventual appearance of a region of source charge where Laplace’s equation is no longer valid. The
only possible solution to ∇2ϕ = 0 in completely empty space is ϕ = const., which corresponds to no
electric field at all.

7.6 Azimuthal Symmetry

In Example 4.5, we found the potential of a uniformly charged ring (Figure 7.8) by evaluating all of its
electrostatic multipole moments. Another way to solve this problem exploits separation of variables in
spherical coordinates. The azimuthal symmetry of the ring implies that ϕ(r, θ, φ) = ϕ(r, θ ). Therefore,
for this problem (and any problem with azimuthal symmetry), the Laplace equation reduces to

∇2ϕ = 1

r2

∂

∂r

(
r2 ∂ϕ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
= 0. (7.52)

With a change of variable to x = cos θ , the trial solution ϕ(r, x) = R(r)M(x) separates (7.52) into the
two ordinary differential equations

d

dr

(
r2 dR

dr

)
− κR = 0 (7.53)

and

d

dx

[
(1 − x2)

dM

dx

]
+ κM = 0. (7.54)

If we write the real separation constant as κ = ν(ν + 1), it is straightforward to verify that (7.53) is
solved by

Rν(r) = Aν r
ν + Bν r

−(ν+1). (7.55)

The same substitution in (7.54) produces Legendre’s differential equation:

(x2 − 1)
d2M

dx2
+ 2x

dM

dx
− ν(ν + 1)M = 0. (7.56)

The linearly independent solutions of (7.56) are called Legendre functions of the first and second
kind. We denote them by Pν(x) and Qν(x), respectively. This yields the general solution to Laplace’s
equation for a problem with azimuthal symmetry as

ϕ(r, θ ) =
∑
ν

[
Aνr

ν + Bνr
−(ν+1)

]
[CνPν(cos θ ) +DνQν(cos θ )] . (7.57)
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For arbitrary values of ν, the Legendre functions have the property that Pν(−1) = Qν(± 1) = ∞.
These divergences are unphysical, so (7.57) in full generality applies only to problems where the
domain of interest does not include the z-axis. An example is the space between two coaxial cones
which open upward along the positive z-axis with their common vertex at the origin of coordinates. If
we ask for the potential inside one such cone, (7.57) can include all the Pν(x)—but none of the Qν(x).

It remains only to provide a representation of the potential that can be used for problems where the
entire z-axis is part of the physical domain. The answer turns out to be (7.57), provided we exclude
the Qν(x) functions and restrict the values of ν to the non-negative integers, � = 0, 1, 2, . . . The latter
choice reduces the Pν(cos θ ) functions to the Legendre polynomials P�(cos θ ) (see Section 4.5.1),
which are finite and well behaved over the entire angular range 0 ≤ θ ≤ π . The Q�(cos θ ) functions
remain singular at θ = π .

7.6.1 A Uniformly Charged Ring
The charged ring in Figure 7.8 is a problem where the potential is required over the full angular range
0 ≤ θ ≤ π . In such a case, the preceding paragraph tells us that only the Legendre polynomials may
appear in (7.57). Accordingly,

ϕ(r, θ ) =
∞∑
�=0

[
A� r

� + B� r
−(�+1)

]
P� (cos θ ). (7.58)

On the other hand, neither r� nor r−(�+1) is finite throughout the entire radial domain 0 ≤ r < ∞. This
suggests a divide-and-conquer strategy: construct separate, regular solutions to Laplace’s equation in
the disjoint regions r < R and r > R and match them together at the surface of the ring (r = R). We
will do this for a general (but specified) charge density σ (θ ) applied to a spherical surface at r = R

and then specialize to the uniformly charged ring.
A representation which ensures that ϕ(r, θ ) is both regular at the origin and goes to zero as

r → ∞ is

ϕ(r, θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
�=0

c�

( r
R

)�
P� (cos θ ) r ≤ R,

∞∑
�=0

c�

(
R

r

)�+1

P� (cos θ ) r ≥ R.

(7.59)

Notice that (7.59) builds in the continuity of the potential at r = R as specified by (7.3). Using an
obvious notation, the matching condition (7.4) is9

ε0

[
∂ϕ<

∂r
− ∂ϕ>

∂r

]
r=R

= σ (θ ). (7.60)

When applied to (7.59), this gives

ε0

∞∑
�=0

c�

R
(2�+ 1)P�(cos θ ) = σ (θ ). (7.61)

9 The representation (7.59) is valid for any value of R. We choose the radius of the ring in order to exploit the matching
condition (7.60).
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The final step is to multiply (7.61) by Pm(cos θ ) and integrate over the interval 0 ≤ θ ≤ π using the
orthogonality relation for the Legendre polynomials,

1∫
−1

dxP� (x)Pm (x) = 2

2� + 1
δ�m. (7.62)

This yields the expansion coefficients in the form

cm = R

2ε0

π∫
0

dθ sin θ σ (θ )Pm(cos θ ). (7.63)

We infer from Example 4.5 that the surface charge density of the uniformly charged ring sketched in
Figure 7.8 is σ (θ ) = (λ/R) δ(cos θ ). Plugging this into (7.63) gives cm = QPm(0)/4πε0R. Therefore,
the electrostatic potential (7.59) of the ring is

ϕ(r, θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q

4πε0

∞∑
�=0

r�

R�+1
P� (0)P� (cos θ ) r ≤ R,

Q

4πε0

∞∑
�=0

R�

r�+1
P� (0)P� (cos θ ) r ≥ R.

(7.64)

This agrees with the multipole solution obtained in Example 4.5.

Application 7.2 Going Off the Axis

It is not absolutely necessary to use the matching condition (7.60) to find the expansion coefficients
c� in (7.59). An alternative method exploits the uniqueness of the solutions to Laplace’s equation. The
idea is to compare the general formula (7.59) with an easily computable special case. For the latter,
we let φ be the azimuthal variable, specialize to the charged ring, and use the Coulomb integral (7.1)
to find the potential on the z-axis:

ϕ(z) = λ

4πε0

2π∫
0

Rdφ√
R2 + z2

= Q

4πε0

1√
R2 + z2

. (7.65)

This expression can be rewritten using the generating function for the Legendre polynomials (see
Section 4.5.1):

1√
1 − 2xt + t2

=
∞∑
�=0

t� P� (x) |x| ≤ 1, 0 < t < 1. (7.66)

When |z| < R, use of (7.66) with x = 0 in (7.65) gives

ϕ(z) = Q

4πε0

1√
R2 + z2

= Q

4πε0R

∞∑
�=0

(z
/
R)�P� (0). (7.67)

Comparing this with (7.59) specialized to the z-axis (where r = z and θ = 0) gives c� =
QP� (0)/4πε0R as before because P� (1) = 1. Given the c� , we can now use (7.59) to “go off the
axis” and find the potential everywhere. This procedure shows that any azimuthally symmetric poten-
tial is uniquely determined by its values on the symmetry axis. �
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Example 7.2 In 1936, Lars Onsager constructed a theory of the dielectric constant for a polar
liquid using a model of a point dipole p placed at the center of a spherical cavity of radius a scooped
out of an infinite medium with dielectric constant κ . Find the electric field that acts on the dipole
if the entire system is exposed to a uniform external electric field E0 ‖ p.

Solution: Let the polar axis in spherical coordinates point along E0 and p. The presence of the
external field guarantees that ϕ(r → ∞) → −E0r cos θ . The presence of the point dipole at the
center of the cavity guarantees that ϕ(r → 0) = p cos θ/(4πε0r

2). Everywhere else, the potential
satisfies Laplace’s equation. Therefore, because both sources behave as P1(cos θ ) = cos θ , only
cos θ terms can be present in the general solution (7.59). In other words,

ϕ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
Ar + p

4πε0r2

]
cos θ r ≤ a,

[
−E0r + B

r2

]
cosθ r ≥ a.

There is no free charge at the cavity boundary, so the matching conditions (7.3) and (7.4) are

ϕin(a, θ ) = ϕout(a, θ )
∂ϕin

∂r

∣∣∣∣
r=a

= κ
∂ϕout

∂r

∣∣∣∣
r=a

.

Therefore, we find without complication that

A = − 3κ

2κ + 1
E0 − 2p

4πε0a3

κ − 1

2κ + 1
and B = −a3E0

κ − 1

2κ + 1
+ p

4πε0

3

2κ + 1
.

The electric field that acts on the dipole is E = −∇ϕ for r ≤ a minus the contribution from p itself:

E(0) = 3κ

2κ + 1
E0 + 2p

4πε0a3

κ − 1

2κ + 1
.

7.7 Spherical Symmetry

In this section, we solve Laplace’s equation for problems with natural spherical boundaries that
lack full azimuthal symmetry. These situations require the complete Laplacian operator in spherical
coordinates:

∇2ϕ = 1

r2

∂

∂r

(
r2 ∂ϕ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
+ 1

r2 sin2 θ

∂2ϕ

∂φ2
= 0. (7.68)

The trial solution ϕ(r, θ, φ) = R(r)Y (θ, φ) separates (7.68) into the ordinary differential equation

d

dr

(
r2 dR

dr

)
= �(�+ 1)R (7.69)

and the partial differential equation

− 1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
− 1

sin2 θ

∂2Y

∂φ2
= �(�+ 1)Y. (7.70)

The choice of the separation constant as �(� + 1) allows us to borrow the solution of the radial
equation (7.69) from Section 7.6:

R� (r) = A� r
� + B� r

−(�+1). (7.71)
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The notation indicates that we have already specialized to the case where � is a non-negative inte-
ger. In practice, this case applies to the vast majority of non-contrived electrostatics problems with
spherical boundaries. Moreover, when � = 0, 1, 2, . . . , (7.70) is exactly the eigenvalue equation for
the (dimensionless) quantum mechanical orbital angular momentum operator L̂2:

L̂2Y�m(θ, φ) = �(� + 1)Y�m(θ, φ). (7.72)

The complex-valued eigenfunctions Y�m(θ, φ) are the spherical harmonics introduced in
Section 4.5.2. From the point of view of separation of variables, the constant m2 separates (7.70)
into two ordinary differential equations when we write Y (θ, φ) = B(θ )G(φ). The choice of m as an
integer in the range −� ≤ m ≤ � guarantees that the spherical harmonics are finite and well behaved
when 0 ≤ θ < π and 0 ≤ φ < 2π . Appendix C gives a table of spherical harmonics and lists a few of
their properties. Here, we exhibit only the orthogonality integral,10∫

d� Y ∗
� ′m′ (�)Y�m(�) = δ�� ′δmm′ , (7.73)

and the phase relation

Y�,−m(θ, φ) = (−)mY ∗
�m(θ, φ). (7.74)

Combining all the above, the general solution to Laplace’s equation in spherical coordinates is

ϕ(r, θ, φ) =
∞∑
�=0

�∑
m=−�

[
A�mr

� + B�mr
−(�+1)

]
Y�m(θ, φ). (7.75)

A typical problem requires a partition of the radial space as in (7.59) to ensure that the solution is
regular at the origin and at infinity. Thus, (7.75) shows why the exterior multipole expansion (4.86)
represents the potential for r > R when charge occurs only inside an origin-centered sphere of radius
R:

ϕ(r, θ, φ) = 1

4πε0

∞∑
�=0

�∑
m=−�

A�m

Y�m(θ, φ)

r�+1
r > R. (7.76)

The solution (7.75) also shows why the interior multipole expansion (4.89) represents the potential for
r < R when charge occurs only outside an origin-centered sphere of radius R:

ϕ(r, θ, φ) = 1

4πε0

∞∑
�=0

�∑
m=−�

B�m r
� Y ∗

�m(θ, φ) r < R. (7.77)

These expansions are valid only in regions of space free from the source charge which defines the
multipole moments A�m and B�m.

Application 7.3 The Unisphere

The stainless steel “Unisphere” is the largest representation of the Earth ever constructed (Figure 7.9).
Let this object be a model for a spherical conducting shell from which finite portions of the surface
have been removed. The real Unisphere is grounded for safety. Here, we assume the shell is charged
to a potential ϕ0 and show that the difference in the surface charge density inside and outside the shell
is a constant over the entire surface.

10 d� ≡ sin θdθdφ.
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Figure 7.9: The “Unisphere” was the symbol of the 1964 World’s Fair. The sphere radius is R ≈ 18 m.
Photograph from www.fotocommunity.de.

Place the origin of coordinates at the center of the shell. A representation that guarantees that ϕ(r)
is regular, continuous, and satisfies Laplace’s equation everywhere off the shell is

ϕ(r, θ, φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
�m

A�m

( r
R

)�
Y�m(θ, φ) r ≤ R,

∑
�m

A�m

(
R

r

)�+1

Y�m(θ, φ) r ≥ R.

(7.78)

The Dirichlet boundary condition is

ϕ0 =
∑
�m

A�m Y�m(θ, φ)|on , (7.79)

where the subscript “on” indicates that the equality holds only for angles (θ, φ) which coincide with
the conducting surface of the shell. Therefore, the charge density difference �σ (θ, φ) = σout(θ, φ) −
σin(θ, φ) between the outer and inner surfaces of the shell is

�σ (θ, φ) = ε0

[
∂ϕ>

∂r
+ ∂ϕ<

∂r

]
on

= −ε0

R

∑
�m

A�m Y�m(θ, φ)|on = −ε0 ϕ0

R
. (7.80)

As advertised, this is indeed a constant, independent of (θ, φ). �

Example 7.3 An origin-centered sphere has radius R. Find the volume charge density ρ(r, θ, φ)
(confined to r < R) and the surface charge density σ (θ, φ) (confined to r = R) which together
produce the electric field given below. Express the answer using trigonometric functions.

E = −2V0x

R2
x̂ + 2V0y

R2
ŷ − V0

R
ẑ x2 + y2 + z2 ≤ R2.

Solution: Integrating each component of E = −∇ϕ gives

x̂ : ϕ = V0

R2
x2 + f (y, z)

ŷ : ϕ = − V0

R2
y2 + g(x, z)

ẑ : ϕ = V0

R
z + h(x, y).
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Therefore,

ϕin(x, y, z) = V0

R2

(
x2 − y2

)+ V0

R
z + const. x2 + y2 + z2 ≤ R2.

Direct computation in Cartesian coordinates shows that ϕin satisfies Laplace’s equation. Since
ρ = −ε0∇2ϕ, we conclude that there is no volume charge inside the sphere. On the other hand,
in spherical coordinates, we know that solutions of Laplace’s equation take the form (7.78). This
means that the x2 − y2 term in ϕin is (at worst) a linear combination of � = 2 terms. The z term in
ϕin is an � = 1 term. Therefore, because x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ ,

ϕ(r, θ, φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
V0

r

R
cos θ + V0

( r
R

)2
sin2 θ cos 2φ r ≤ R,

V0

(
R

r

)2

cos θ + V0

(
R

r

)3

sin2 θ cos 2φ r ≥ R.

The charge density follows from the matching condition

σ (θ, φ) = ε0

[
∂ϕin

∂r
− ∂ϕout

∂r

]
r=R

= ε0
V0

R

(
3 cos θ + 5 sin2 θ cos 2φ

)
.

7.8 Cylindrical Symmetry

Laplace’s equation in cylindrical coordinates is

∇2ϕ = 1

ρ

∂

∂ρ

(
ρ
∂ϕ

∂ρ

)
+ 1

ρ2

∂2ϕ

∂φ2
+ ∂2ϕ

∂z2
= 0. (7.81)

For problems with cylindrical boundaries or, more generally, for problems with a unique preferred
axis, the trial solution ϕ(ρ, φ, z) = R(ρ)G(φ)Z(z) separates (7.81) into three ordinary differential
equations with two real separation constants α2 and k2:

ρ
d

dρ

(
ρ
dR

dρ

)
+ (k2ρ2 − α2)R = 0 (7.82)

d2G

dφ2
+ α2G = 0 (7.83)

d2Z

dz2
− k2Z = 0. (7.84)

Boundary and regularity (finiteness) conditions may or may not decide for us whether to choose α2

and k2 positive or negative. If both are chosen positive, the elementary solutions for G(φ) and Z(z) are

Gα(φ) =
{
x0 + y0φ α = 0,
xα exp(iαφ) + yα exp(−iαφ) α �= 0,

(7.85)

and

Zk(z) =
{
s0 + t0z k = 0,
sk exp(kz) + tk exp(−kz) k �= 0.

(7.86)
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7.8.1 Bessel Functions
The radial equation (7.82) is Bessel’s differential equation. If we let k = iκ , the elementary solutions
of this equation are

Rk
α(ρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A0 + B0 ln ρ k = 0, α = 0,

Aαρ
α + Bαρ

−α k = 0, α �= 0,

Ak
αJα(kρ) + Bk

αNα(kρ) k2 > 0,

Ak
αIα(κρ) + Bk

αKα(κρ) k2 < 0.

(7.87)

Jα(x) and Nα(x) are called Bessel functions of the first and second kind, respectively. The modified
Bessel functions Iα(x) and Kα(x) are Bessel functions with pure imaginary arguments:

Iα(κρ) = i−αJα(ikρ) Kα(κρ) = π

2
iα+1[Jα(ikρ) + iNα(ikρ)]. (7.88)

We define Jα(x), Nα(x), Iα(x), and Kα(x) for x ≥ 0 only and refer the reader to Appendix C for more
information. However, when α is real, it is important to know that Jα(x) is regular everywhere, Nα(x)
diverges as x → 0, and the asymptotic behavior (x � 1) of both is damped oscillatory:

Jα(x) →
√

2

πx
cos(x − απ

/
2 − π

/
4)

Nα(x) →
√

2

πx
sin(x − απ

/
2 − π

/
4).

(7.89)

The modified Bessel function Iα(x) is finite at the origin and diverges exponentially as x → ∞. Kα(x)
diverges as x → 0 but goes to zero exponentially as x → ∞.

The general solution of Laplace’s equation in cylindrical coordinates is a linear combination of the
elementary solutions

ϕ(ρ, φ, z) =
∑
α

∑
k

Rk
α(ρ)Gα(φ)Zk(z). (7.90)

The results of the previous paragraph show that the choice k2 > 0 produces a solution (7.90) which pairs
oscillatory Bessel function behavior for R(ρ) with real exponential functions for Z(z). Conversely,
the choice k2 < 0 pairs a Fourier representation for Z(z) with modified Bessel functions and thus
real exponential behavior for R(ρ). The fact that ϕ(ρ, φ, z) always exhibits simultaneous oscillatory
and exponential behavior in its non-angular variables is the cylindrical manifestation of the “zero-
curvature” property of the solutions to Laplace’s equation discussed in Section 7.5.2. Finally, the
matching conditions produce two natural constraints on the angular variation in (7.90). The first,
G(0) = G(2π ), is a consequence of the continuity of the potential (7.3). The second,G ′(0) = G ′(2π ) ,
is a consequence of (7.4) if the full angular range 0 ≤ φ ≤ 2π is free of charge. Using (7.85), both
conditions together force α = n where n = 0, 1, 2, . . . is a non-negative integer.

7.8.2 Fourier-Bessel Series
An interesting class of potential problems asks us to solve ∇2ϕ = 0 inside a cylinder of radius
R when the potential is specified on two cross sections, say, ϕ(ρ ≤ R, φ, z = z1) = f1(ρ, φ) and
ϕ(ρ ≤ R, φ, z = z2) = f2(ρ, φ). In the spirit of the problem defined by Figure 7.4, this calls for
complete sets of eigenfunctions in the variables ρ and φ. Periodic boundary conditions are appropriate
for the angular variable and a glance at (7.85) shows that the functions Gm(φ) = exp(imφ) suffice
if m = 0,±1,±2, . . . This forces α = m in (7.87) and we are further restricted to functions Rk

m(ρ)
which are finite at the origin. Accordingly, the radial eigenfunctions are the set of functions which
satisfy the homogeneous boundary condition Jm(kR) = 0. This condition fixes the allowed values

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-07 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:29
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of the separation constant at kmn = xmn/R where xmn is the nth zero of the Bessel function Jm(x).
Invoking completeness, we conclude it must be possible to construct a Fourier-Bessel series where,
say,

f1(ρ, φ) =
∞∑

m=−∞

∞∑
n=1

cmnJm(xmnρ/R) exp(imφ). (7.91)

To compute the cmn, multiply both sides of (7.91) by ρJm(kmn′ρ) exp(−im′φ) and integrate over the
intervals 0 ≤ ρ ≤ R and 0 ≤ φ < R. This is sufficient because the exponential and Bessel functions
satisfy the orthogonality relations

1

2π

2π∫
0

dφ ei(m−m′)φ = δmm′ (7.92)

and
R∫

0

dρ ρJm(kmnρ)Jm(kmn′ρ) = δnn′
1

2
R2[Jm+1(kmnR)]2. (7.93)

Application 7.4 An Electrostatic Lens

In 1931, Davisson and Calbick discovered that a circular hole in a charged metal plate focuses electrons
exactly like an optical lens focuses light.11 In fact, all electrostatic potentials with cylindrical symmetry
have this property. Figure 7.10 shows another common electron lens: two adjacent and coaxial metal
tubes of radius R separated by a small gap d. A potential difference VR − VL is maintained between
the tubes. In this Application, we calculate the potential inside the tubes (in the d → 0 limit) and
briefly discuss their focusing properties.

d

LV RVR
z

Figure 7.10: A two-tube electron lens.

If we separate variables in Laplace’s equation in cylindrical coordinates, the rotational symmetry
of the tubes fixes the separation constant in (7.83) at α = 0. The choices x0 = 1 and y0 = 0 in (7.85)
reduce ϕ(ρ, φ, z) to ϕ(ρ, z). Here, we write k = iκ and show (by construction) that the problem can
be solved using radial functions with k2 < 0 only. We invite the reader to show that a solution which
looks different (but which is numerically equal by uniqueness) can be constructed using only radial
functions with k2 > 0. The potential must be finite at ρ = 0. Therefore, the discussion in Section 7.8.1
tells us that the most general form of the potential at this point is

ϕ(ρ, z) = 1

2π

∫ −∞

−∞
dκA(κ)I0(|κ|ρ)eiκz + const. (7.94)

The extracted factor of 2π emphasizes that (7.94) is a Fourier integral. Therefore, an application of
Fourier’s inversion theorem (i.e., the orthogonality of the complex exponential functions) gives

A(κ) = 1

I0(|κ|ρ)

∫ ∞

−∞
dzϕ(ρ, z)e−iκz. (7.95)

11 C.J. Davisson and C.J. Calbick, “Electron lenses”, Physical Review 38, 585 (1931).
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To evaluate (7.95), we let d → 0 in Figure 7.10 so ϕ(R, z) = VL when z < 0 and ϕ(R, z) = VR when
z > 0. This gives12

A(κ) = 1

I0(|κ|R)

[
VL

∫ 0

−∞
dze−iκz + VR

∫ ∞

0
dze−iκz

]
= 1

iκ

VR − VL

I0(|κ|R)
. (7.96)

Consequently,

ϕ(ρ, z) = VR − VL

2πi

∫ ∞

−∞

dκ

κ

I0(|κ|ρ)

I0(|κ|R)
eiκz + const. (7.97)

The real part of the integrand in (7.97) is an odd function of κ . Therefore, the potential inside the tube
is

ϕ(ρ, z) = VR + VL

2
+ VR − VL

π

∫ ∞

0

dκ

κ

I0(κρ)

I0(κR)
sin κz. (7.98)

The additive constant in (7.97) was chosen to make ϕ(ρ, 0) = 1
2 (VR + VL) in (7.98).

LV RV0z =

Figure 7.11: A two-tube electron lens with the symmetry axis (dashed) and a few equipotentials (light
solid lines) indicated. The heavy solid lines are two particle trajectories drawn for VR > VL. Figure
adapted from Heddle (1991).

Figure 7.11 is a cut-open view of the two tubes with a few equipotentials of (7.98) drawn as light solid
lines. The dark solid lines are the trajectories of two charged particles. Although they move in opposite
directions, both initially follow straight-line paths parallel to the z-axis in the E = 0 region inside
one tube. Both particles bend in the vicinity of the gap and then cross the z-axis during subsequent
straight-line motion in the E = 0 region of the other tube. In the language of optics, the E �= 0 regions
of space on opposite sides of z = 0 deflect particles moving from left to right in Figure 7.11 first
like a converging lens and then like a diverging lens. Particles moving from right to left are deflected
first like a diverging lens and then like a converging lens. The diverging effect is weaker than the
converging effect.13 Therefore, particles are always focusing toward the symmetry axis on the far side of
the gap. �

7.9 Polar Coordinates

There are many physical situations where the electrostatic potential is effectively a function of two
(rather than three) spatial variables. The conducting duct (Application 7.1) and the Faraday cage
(Section 7.5.1) are examples we solved in Cartesian coordinates. When the symmetry of the problem

12 We use the regularization
∫ ±∞

0 dz e−iκz = lim
α→0

∫ ±∞
0 dz e−iκze∓αz.

13 We leave it as an exercise for the reader to show that this is a generic feature of charged particle motion near the
symmetry axis of a cylindrical potential.
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(a) (b) (c)

ββ
β

Figure 7.12: Side view of a two-dimensional wedge (0 ≤ φ ≤ β) cut out of perfectly conducting (shaded)
matter. The conductor is held at zero potential and otherwise fills all of space.

warrants it, it may be more natural to study separated-variable solutions of the two-dimensional
Laplace’s equation written in polar coordinates,

∇2ϕ = 1

ρ

∂

∂ρ

(
ρ
∂ϕ

∂ρ

)
+ 1

ρ2

∂2ϕ

∂φ2
= 0. (7.99)

Alternatively, a general, separated-variable solution to (7.99) follows from the cylindrical-coordinates
solution (7.90) with Z(z) = 1 and k = 0. If we switch from exponential functions to sinusoidal
functions of the polar angle φ, the result can be written

ϕ(ρ, φ) = (A0 + B0 ln ρ)(x0 + y0φ) +
∑
α �=0

[Aαρ
α + Bαρ

−α][xα sinαφ + yα cosαφ]. (7.100)

If, say, the potential far from the origin were due to a uniform electric field E = E0x̂, it would be
necessary to put B0 = Aα = 0 except for the single term E0ρ cosφ.

7.9.1 The Electric Field near a Sharp Corner or Edge
The electric field E(ρ, φ) inside a two-dimensional wedge (0 ≤ φ ≤ β) bounded by a grounded perfect
conductor (Figure 7.12) provides insight into the nature of electric fields near sharp conducting corners.
The potential cannot be singular as ρ → 0 so (7.100) simplifies to

ϕ(ρ, φ) = A+ Bφ +
∑
α>0

Cαρ
α sin(αφ + δα). (7.101)

We get A = B = 0 because ϕ(0, φ) = 0. Moreover, ϕ(ρ, 0) = ϕ(ρ, β) = 0 implies that δα = 0
and α = mπ

/
β where m is a positive integer. The coefficients Cm are determined by boundary or

matching conditions far from ρ = 0 which we do not specify. On the other hand, the m = 1 term
dominates the sum as ρ → 0. Therefore, up to a multiplicative constant, the potential very near the
apex is

ϕ(ρ, φ) ≈ ρπ/β sin (πφ/β). (7.102)

The associated electric field is

E = −∇ϕ = −π

β
ρπ/β−1

{
ρ̂ sin(πφ/β) + φ̂ cos(πφ/β)

}
. (7.103)

Equation (7.103) correctly gives E as a vertically directed constant vector when β = π [Fig-
ure 7.12(b)]. Otherwise, |E | → 0 as ρ → 0 when β < π [Figure 7.12(a)] but |E | → ∞ as ρ → 0
when β > π [Figure 7.12(c)]. This singular behavior is not new: we saw in (5.33) that the surface
charge density of a conducting disk has a square-root singularity at its edge. This is consistent with the
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electric field here in the limit β → 2π . A related singularity is often invoked to explain the behavior
of a lightning rod.14

Analogy with Gas Diffusion

Imagine a collection of gas particles that diffuse from infinity toward the wedge in Figure 7.12.
Each particle sticks to the wedge at the point of impact. The space and time dependence of the gas
density n(r, t) is governed by the diffusion constantD and the diffusion equation,D∇2n = ∂n/∂t .
If we continuously supply gas from infinity, the density quickly reaches a time-independent steady
state governed by ∇2n(r) = 0. The boundary condition for this equation is n(rS) = 0 at the wedge
surface because “sticking” irreversibly removes particles from the gas. This establishes a one-to-
one correspondence between the steady-state gas diffusion problem and the electrostatic problem
solved just above. The analog of the electric field for the gas problem is the particle number current
density j(r) = −D∇n. Now recall that diffusing particles execute a random walk in space. When
β > π , such particles are very likely to encounter the convex apex before any other portion of
the wedge, i.e., there is a large flux of particles to the apex. Conversely, when β < π , diffusing
particles are very unlikely to reach the concave corner before striking another portion of the wedge.
The net particle flux to the corner is very small. These are precisely the behaviors exhibited by
E(r) near the apex.

Example 7.4 Find ϕ(ρ, φ) in the region bounded by the two arcs ρ = ρ1 and ρ = ρ2 and the two
rays φ = φ1 and φ = φ2. All the boundaries are grounded except that ϕ(ρ, φ2) = f (ρ). How does
the nature of the separation constant change in the limit ρ1 → 0?

Solution: The homogeneous boundary conditions ϕ(ρ1, φ) = ϕ(ρ2, φ) = 0 eliminate the α = 0
terms in the general solution (7.100). On the other hand, it seems impossible to satisfy these
boundary conditions using the functions ρα and ρ−α until we realize that ρ±α = exp(±α ln ρ). The
choice α = iγ then turns the ρ dependence of (7.100) into a Fourier series in the variable ln ρ. The
general solution at this point is

ϕ(ρ, φ) =
∑
γ �=0

(Aγ e
iγ ln ρ + Bγ e

−iγ ln ρ)(xγ sinh γφ + yγ cosh γφ).

We satisfy ϕ(ρ2, φ) = 0 by choosing the ratio Aγ /Bγ so the radial functions are sin {γ ln(ρ/ρ2)}.
We satisfy ϕ(ρ1, φ) = 0 by choosing γ = mπ/ ln(ρ1/ρ2) where m is an integer. The condition
ϕ(r, φ1) = 0 leads to

ϕ(ρ, φ) =
∞∑

m=−∞
Am sin

{
mπ ln(ρ/ρ2)

ln(ρ1/ρ2)

}
sinh

{
mπ(φ − φ1)

ln(ρ1/ρ2)

}
.

Finally, let θ = π ln(ρ/ρ2)/ ln(ρ1/ρ2), multiply both sides of the foregoing by sin(nθ ), and integrate
over the interval 0 ≤ θ ≤ π . This completes the solution because the orthogonality of the sine
functions uniquely determines the Am.

14 The field is very large but not truly singular near a rounded edge or near the tip of a lighting rod. Our analysis is
approximately valid as long as the edge or tip is spatially isolated from other parts of the conductor and the radius of
curvature of the edge or tip is small compared to any other length scale in the problem.
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As ρ1 → 0, the interval between successive values of the separation constant γ goes to zero
in the sum above because �γ = �mπ/ ln(ρ1/ρ2) = π/ ln(ρ1/ρ2). This means that the sum on α

should be replaced by an integral over α. If, in addition, we absorb some constants into α,

ϕ(ρ, φ) =
∞∫

−∞
dγA(γ ) sin {γ ln(ρ/ρ2)} sinh {γ (φ − φ1)} .

The Fourier inversion theorem expresses the functionA(α) as an integral over the boundary function
f (ρ).

7.10 The Complex Potential

The theory of analytic functions is uniquely suited to finding solutions to the Laplace equation in two
dimensions:

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
= 0. (7.104)

To see why, recall first that all electrostatics problems satisfy

∇ × E = 0 =⇒ E = −∇ϕ. (7.105)

In charge-free regions of space, it is also true that

∇ · E = 0 =⇒ E = ∇ × C. (7.106)

Therefore, because E(x, y) = −∇ϕ(x, y) is not a function of z, there is no loss of generality if we
choose C(x, y) = −ψ(x, y)ẑ. In that case, (7.105) and (7.106) give

Ex = −∂ϕ

∂x
= −∂ψ

∂y
(7.107)

Ey = −∂ϕ

∂y
= ∂ψ

∂x
. (7.108)

The equations on the far right sides of (7.107) and (7.108) are called the Cauchy-Riemann equations.
Using them, it is straightforward to confirm that both ϕ(x, y) and ψ(x, y) satisfy Laplace’s equation:

∇2ϕ = 0 = ∇2ψ. (7.109)

More importantly, if w = x + iy is a complex variable, the Cauchy-Riemann equations also imply
that

f (w) = ϕ(x, y) + i ψ(x, y) (7.110)

is an analytic function This means that the derivative

df

dw
= lim

�w→0

f (w +�w) − f (w)

�w
(7.111)

is independent of the direction of�w in the complex plane. For example,�w = �x when we compute
the limit along a path parallel to the real axis. This gives

df

dw
→ ∂f

∂x
= ∂ϕ

∂x
+ i

∂ψ

∂x
. (7.112)
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The choice �w = i�y means that we compute (7.111) along a path parallel to the imaginary axis.
The result in this case is

df

dw
→ ∂f

∂(iy)
= ∂ψ

∂y
− i

∂ϕ

∂y
. (7.113)

Equating the real and imaginary parts of (7.112) and (7.113) reproduces the Cauchy-Riemann equations
(7.107) and (7.108).

The Cauchy-Riemann equations also guarantee that

∇ϕ · ∇ψ = ∂ϕ

∂x

∂ψ

∂x
+ ∂ϕ

∂y

∂ψ

∂y
= −∂ψ

∂y

∂ψ

∂x
+ ∂ψ

∂x

∂ψ

∂y
= 0. (7.114)

This shows that the curves ϕ(x, y) = const. are everywhere perpendicular to the curves ψ(x, y) =
const. Since (7.105) identifies ϕ(x, y) as the electrostatic potential, we infer that the curves ψ(x, y) =
const. correspond to electric field lines. Finally, it is convenient for calculations to combine the electric
field components in (7.107) and (7.108) into a single complex number E and use (7.112) to write

E = Ex − iEy = − df

dw
. (7.115)

The foregoing sketch of the theory of analytic functions applies to two-dimensional electrostatic
boundary value problems if we can find an analytic function f (w)—known as the complex potential—
where either its real part or its imaginary part satisfies the boundary conditions. Conversely, we generate
a storehouse of useful information by systematically surveying analytic functions and identifying the
two-dimensional potential problems they describe.

7.10.1 A Uniform Electric Field
The simplest complex potential is

f (w) = −E0w = −E0(x + iy) = ϕ + iψ. (7.116)

The physical potential is Ref = ϕ(x) = −E0x, which we identify as the potential of a uniform electric
field E = E0x̂. The straight electric field lines correspond to constant values of Imf = −E0y.

7.10.2 A Quadrupole Potential
A quadrupole potential can be represented by the complex potential

f (w) = − 1
2w

2 = − 1
2 (x + iy)2 = − 1

2 (x2 − y2) − ixy = ϕ + iψ. (7.117)

The solid lines in Figure 7.13 show equipotentials where ϕ(x, y) = const. The dashed lines are electric
field lines where ψ(x, y) = const. From (7.115), the field itself is

E = x x̂ − y ŷ. (7.118)

The figure also shows portions of four conducting rods (pointed out of the plane of the paper) that can
produce this field because their surfaces are coincident with equipotentials.

7.10.3 A Conducting Strip in an External Field
An interesting example is

f (w) =
√
w2 − a2 = ϕ + iψ. (7.119)
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x

y

+

+

Figure 7.13: Equipotentials (solid curves) and electric field lines (dashed curves) for a pure quadrupole
potential. Electrodes shaped like equipotentials are indicated. Figure from Klemperer (1972).
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Figure 7.14: Electric field lines (solid curves) and equipotentials (dashed curves) near a conducting plate in a
uniform electric field parallel to the x-axis. Figure from Durand (1966).

In (7.119), ϕ = Ref is a constant (equal to zero) when w = x and |x| < a. Moreover, f (w) → w

when |w| � a. This suggests that ϕ(x, y) is the electrostatic potential of a unit strength electric field
E0 = −x̂ perturbed by a two-dimensional conducting plate (−a < x < a) oriented parallel to the field
in the y = 0 plane.

We confirm this assignment by squaring the equation on the far right side of (7.119), setting
w = x + iy, and equating real and imaginary parts. The two equations that result are

x2 − y2 − a2 = ϕ2 − ψ2 and xy = ψϕ. (7.120)

Eliminating ψ from (7.120) gives an equation (parameterized by different constant values of ϕ) for
the equipotentials shown as dashed lines in Figure 7.14. Eliminating ϕ from (7.120) similarly gives an
equation for the (solid) electric field lines in Figure 7.14. These are parameterized by different constant
values of ψ . The electric field lines are not normal to the conductor at x = y = 0 because x = 0 and
y = 0 are ϕ = 0 equipotentials which intersect at that point.

It is instructive to calculate the charge density induced on the plate’s surface. By symmetry, the
charge distribution is the same on the top and bottom, but it is worth seeing how this comes out of the
mathematics. Specifically,

σ = ε0E · n̂|S = ±ε0Ey |y=0, (7.121)

where the upper (lower) sign refers to the upper (lower) surface of the plate. In light of (7.115), the
surface charge density is

σ (x) = ±ε0

[ −ix√
w2 − a2

]
y→0

. (7.122)
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Figure 7.15: The function f (w) = √
w2 − a2 is single-valued in the w = x + iy plane if w + a = r1 exp(iθ1)

and w − a = r2 exp(iθ2) with −π ≤ θ1, θ2 < π .

The y → 0 step must be taken carefully because the factor
√
w2 − a2 in (7.122) is not single-valued.

We proceed by introducing the branch cuts shown as dashed lines in Figure 7.15. One line runs
from x = +a to x = −∞, the other from x = −a to x = −∞. Branch cuts cannot be crossed, so we
use angles θ1 and θ2 restricted to −π ≤ θ1, θ2 ≤ π to write two polar forms for an arbitrary point in
the w = x + iy plane:

w = −a + r1 exp(iθ2) and w = a + r2 exp(iθ2). (7.123)

The parameterizations in (7.123) have the effect of making the square root in (7.122) a single-valued
function

1√
w2 − a2

= 1√
r1r2

exp{−i 1
2 (θ1 + θ2)}. (7.124)

The angle θ2 is π on the top of the plate and −π on the bottom of the plate. In both cases, θ1 = 0,
r1 = a + x, and r2 = a − x. Using this information in (7.124) to evaluate (7.122) shows that

σ (x) = ±ε0

[ −ix√
a2 − x2

] [
−i sin

(
±π

2

)]
= −ε0

x√
a2 − x2

. (7.125)

The negative sign is consistent with Figure 7.14 because the unperturbed electric field points in the −x-
direction. The square-root singularity in (7.125) is the same one we found in (5.33) for the conducting
disk and in (7.103) with β = 2π .

7.10.4 Conformal Mapping
The search for analytic functions which satisfy prescribed boundary conditions for any particular two-
dimensional potential problem would be hopeless if not for the fact that analytic functions generate
conformal mappings of the complex plane into itself. For example,g(w) = u(x, y) + iv(x, y) describes
a mapping from the complexw = x + iy plane to the complex g = u+ iv plane. Conformal mappings
transform curves into curves with the property that the angle of intersection between two curves is not
changed by the transformation. In other words, a conformal map preserves the electrostatic property
(7.114) that equipotentials and electric field cross at right angles.

We are now in a position to suggest a solution method for two-dimensional Laplace problems with
awkward-shaped boundaries: find a conformal map which deforms the boundaries of the posed problem
into the boundaries of a problem where Laplace’s equation is easy to solve. The inverse mapping
then deforms the equipotentials and field lines of the easy problem into the equipotentials and field
lines of the posed problem. There are many tools available to aid in the search for suitable conformal
transformations. For example, the Riemann mapping theorem states that any simply-connected domain
in thew-plane can be mapped into a circular disk in the g-plane. Riemann’s theorem is not constructive,
but a great many explicit mapping functions for other situations have been analyzed and catalogued
for ready application.
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Figure 7.16: Left side: a cylinder with unit radius in the w = x + iy plane. Right side: Equation (7.126) maps
the interior of the cylinder to the upper half g = u+ iv plane. The point C is at ∞ on the u-axis.

7.10.5 The Potential inside a Split Cylinder
The left side of Figure 7.16 is a cross sectional view of a hollow conducting cylinder with unit radius.
The upper half of the cylinder is grounded. The (infinitesimally displaced) lower half of the cylinder
is held at potential V . To find the potential everywhere inside the cylinder, we consider the mapping

g(w) = −i w − 1

w + 1
. (7.126)

The points labeled A-E in and on the cylinder in the w-plane map to the corresponding points labeled
A-E in the g plane. Specifically, the upper semi-circle in the w-plane maps to the positive u-axis and
the lower semi-circle in the w-plane maps to the negative u-axis.

It is not hard to find the potential everywhere in the upper half g-plane when the negative real axis
is held at potential V and the positive real axis held at zero potential. If arg[g] is the argument of
the complex number g, the separated-variable solution of Laplace’s equation (7.100) that satisfies the
boundary conditions is

ϕ(g) = V

π
φ = V

π
arg[g]. (7.127)

We now use (7.126) to express (7.127) in the original variables

ϕ(x, y) = V

π
arg

[
−i w − 1

w + 1

]
= V

π
tan−1

[
1 − x2 − y2

2y

]
. (7.128)

The argument of the inverse tangent is a fixed constant on each equipotential. This defines a family of
equipotential curves parameterized by a constant c:

x2 + (y + c)2 = 1 + c2. (7.129)

These are portions of circles centered on x = 0 that pass through both (1, 0) and (−1, 0) in the x-y
plane. The solid lines in Figure 7.17 are a few of these equipotentials. The dashed lines represent
electric field lines.

7.10.6 The Fringing Field of a Capacitor
In his Treatise on Electricity and Magnetism, Maxwell famously used conformal mapping to study
the fringing field at the edges of a finite-area parallel-plate capacitor. If g = u+ iv is a typical point
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226 LAPLACE’S EQUATION: THE POTENTIAL PRODUCED BY SURFACE CHARGE

Figure 7.17: Equipotentials (solid curves) and electric field lines (dashed curves) for the two-dimensional
potential problem defined by the left side of Figure 7.16.

Figure 7.18: The equipotentials and electric field lines near the edge of a semi-infinite parallel-plate capacitor
obtained by conformal mapping. Figure from Maxwell (1873), by permission of Oxford University Press.

in the complex g-plane, the mapping function he used for this purpose is

w = d

2π
{1 + g + exp(g)} . (7.130)

Separating (7.130) into real and imaginary parts gives

x = d

2π
{1 + u+ eu cos v} and y = d

2π
{b + eu sin v}. (7.131)

The choice v = ±π gives y = ±d/2. However, as u varies linearly from −∞ to +∞, x varies
non-linearly from −∞ to zero (when u = 0) and then back to −∞. In other words, the two plates
of an infinite parallel-plate capacitor in the g-plane (v = ±iπ for all u) map to the two plates of a
semi-infinite parallel-plate capacitor in the w-plane (y = ±d/2 with x < 0).

In light of (7.116), we conclude that constant values of the real and imaginary parts of the complex
potential f (u, v) = u+ iv in the g-plane map to the electric field lines and equipotentials of a semi-
infinite capacitor in the w-plane. Figure 7.18 shows the result of doing this with a close-up view in the
vicinity of the capacitor edge.

7.11 A Variational Principle

Thomson’s theorem for electrostatics (Section 5.2.1) established that, among all charge densities
ρ(r) with total charge Q in a volume V , the electrostatic energy is lowest for the particular charge
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7.11 A Variational Principle 227

density that produces a constant value for the electrostatic potential throughout V . We prove a related
theorem in this section: among all potential functions ϕ(r) which take constant values on a set of
(conductor) surfaces, the electrostatic energy is lowest for the particular potential function which
satisfies Laplace’s equation in the volume bounded by the surfaces. When this theorem is applied to
candidate potential functions with adjustable parameters, we have a variational principle that can be
used to find approximate solutions to Laplace’s equation.

To begin, let ϕ(r) be the exact solution to an electrostatic Dirichlet problem with specified constant
values for the potential on a fixed set of (conductor) surfaces. Now let ψ(r) be an arbitrary function
which takes the same specified values on the surfaces. Physical intuition suggests that the electrostatic
energy UE[ψ] associated with ψ is greater than the electrostatic energy UE[ϕ] associated with ϕ. To
prove this, we must show that δUE = UE[ψ] − UE[ϕ] > 0, where

UE[ϕ] = ε0

2

∫
d 3r ∇ϕ · ∇ϕ. (7.132)

There is no loss of generality if we write

ψ(r) = ϕ(r) + δϕ(r), (7.133)

as long as the variation δϕ(r) satisfies δϕ(rS) = 0. This ensures that ϕ(r) and ψ(r) satisfy the same
boundary conditions.

The change in energy associated with the variation (7.133) is

δUE = UE[ϕ + δϕ] − UE[ϕ] = ε0

∫
d 3r ∇ϕ · ∇δϕ + ε0

2

∫
d 3r |∇δϕ|2. (7.134)

Now apply ∇ · (δϕ E) = E · ∇δϕ + δϕ∇ · E to the first integral and use the divergence theorem. This
gives

δUE = −ε0

∫
dS δϕ n̂ · ∇ϕ − ε0

∫
d 3r δϕ ∇2ϕ + ε0

2

∫
d 3r |∇δϕ|2. (7.135)

The first term on the right side of (7.135) vanishes because δϕ vanishes at all boundary points. The
second term is zero because ϕ(r) satisfies Laplace’s equation. The expression that remains establishes
the result we seek,

δUE = ε0

2

∫
d 3r |∇δϕ|2 > 0. (7.136)

The lowest electrostatic energy is achieved by the unique potential function that satisfies the boundary
conditions and solves Laplace’s equation.

The result (7.136) is actually a bit more general than we have indicated. First, it is not necessary
that ϕ(rS) assume only constant values. If the bounding surfaces are not conductors, we still have
δϕ(rS) = 0 if more general Dirichlet conditions are specified. The surface integral in (7.135) also
vanishes if the special Neumann condition n · ∇ϕ(rS) = 0 is imposed on some or all of the bounding
surfaces.

With the information just gained, the following procedure immediately suggests itself to find
approximate solutions to boundary value potential theory problems. Construct a trial solution to
Laplace’s equation ψ(r) that satisfies the boundary conditions exactly but otherwise depends on some
number of adjustable parameters. Minimize UE[ψ] with respect to those parameters. The resulting
function does not satisfy Laplace’s equation exactly but the total energy differs from the exact answer
UE[ϕ] by an amount that is quadratic in the difference between ϕ(r) and ψ(r). This is significant
because most applications demand accuracy in the energy (or force) rather than accuracy in the
potentials themselves. Of course, δUE can be made as small as we like simply by adding more and
more variational parameters to the candidate function ψ(r).
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Example 7.5 Use ψ(x, y) = ϕ0x(L− x) exp(−py) as a trial solution with a variational parameter
p to find the electrostatic potential inside a rectangular slot with boundary conditions ψ(x, 0) =
ϕ0x(L− x), ψ(0, y) = ψ(L, y) = 0, and ψ(x, y → ∞) = 0.

Solution: The trial potential satisfies the boundary conditions but not Laplace’s equation.
We find p by minimizing UE(p). The trial electric field is E(x, y) = ϕ0

[
(2x − L)x̂ +

px(L− x)ŷ
]

exp(−py). Therefore,

UE(p) = 1
2ε0

L∫
0
dx

∞∫
0
dy E · E = 1

12ε0ϕ
2
0L

3[p−1 + pL2/10].

The minimum of UE(p) occurs when p = √
10/L. This gives the optimal solution as

ψ(x, y) = ϕ0x(L− x) exp[−
√

10y/L].

For comparison, the exact separated-variable solution is

ϕ(x, y) =
∞∑
n=1

An sin
nπx

L
e−nπy/L with An = 2ϕ0

L

L∫
0

dx x (L− x) sin
nπx

L
.

The largest contribution to the sum comes from the n = 1 term:

ϕ1(x, y) = (8ϕ0L
2/π3) sin(πx/L)e−πy/L.

This compares very well with the variational solution in both magnitude and shape.

�
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M. Szilagyi, Electron and Ion Optics (Plenum, New York, 1988).

Section 7.10 Two textbooks of electromagnetism with good discussions of complex variable methods for two-
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Problems
7.1 Two Electrostatic Theorems Use the orthogonality properties of the spherical harmonics to prove the

following identities for a function ϕ(r) which satisfies Laplace’s equation in and on an origin-centered
spherical surface S of radius R:

(a)
∫
S

dS ϕ(r) = 4πR2ϕ(0).

(b)
∫
S

dSzϕ(r) = 4π

3
R4 ∂ϕ

∂z

∣∣∣∣
r=0

.

7.2 Green’s Formula Let n̂ be the normal to an equipotential surface at a point P . The principal radii of
curvature of the surface at P are R1 and R2. A formula due to George Green relates normal derivatives
(∂
/
∂n ≡ n̂ · ∇) of the potential ϕ(r) (which satisfies Laplace’s equation) at the equipotential surface to the

mean curvature of that equipotential surface κ = 1
2 (R−1

1 + R−1
2 ):

∂2ϕ

∂n2
+ 2κ

∂ϕ

∂n
= 0.

Derive Green’s equation by direct manipulation of Laplace’s equation.

7.3 Poisson’s Formula for a Sphere The Poisson integral formula

ϕ(r) = (R2 − r2)

4πR

∫
|r′

S|=R

dS ′ ϕ̄(r′
S)

|r − r′
S|3

|r| < R

gives the potential at any point r inside a sphere if we specify the potential ϕ̄(rS) at every point on
the surface of the sphere. Derive this formula by summing the general solution of Laplace’s equation inside
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the sphere using the derivatives (with respect to r and R) of the identity

1

|r − r′
S|

=
∞∑
�=0

r�

R�+1
P�(r̂ · r̂′

S).

7.4 The Potential inside an Ohmic Duct The z-axis runs down the center of an infinitely long heating duct
with a square cross section. For a real metal duct (not a perfect conductor), the electrostatic potential ϕ(x, y)
varies linearly along the side walls of the duct. Suppose that the duct corners at (±a, 0) are held at potential
+V and the duct corners at (0,±a) are held at potential −V. Find the potential inside the duct beginning
with the trial solution

ϕ(x, y) = A+ Bx + Cy +Dx2 + Ey2 + Fxy.

7.5 The Near-Origin Potential of Four Point Charges Four identical positive point charges sit at (a, a),
(−a, a), (−a,−a), and (a,−a) in the z = 0 plane. Very near the origin, the electrostatic potential can be
written in the form

ϕ(x, y, z) = A+ Bx + Cy +Dz + Exy + Fxz +Gyz +Hx2 + Iy2 + Jz2.

(a) Deduce the non-zero terms in this expansion and the algebraic signs of their coefficients. Do not calculate
the exact value of the non-zero coefficients.

(b) Sketch electric field lines and equipotentials in the z = 0 plane everywhere inside the square and a little
bit outside the square.

7.6 The Microchannel Plate The parallel plates of a microchannel plate electron multiplier are segmented
into conducting strips of width b so the potential can be fixed on the strips at staggered values. We model
this using infinite-area plates, a finite portion of which is shown below. Find the potential ϕ(x, y) between
the plates and sketch representative field lines and equipotentials. Note the orientation of the x- and y-axes.

1 1

02 2

x

y
d

b

7.7 A Potential Patch by Separation of Variables The square region defined by −a ≤ x ≤ a and −a ≤ y ≤ a

in the z = 0 plane is a conductor held at potential ϕ = V . The rest of the z = 0 plane is a conductor held at
potential ϕ = 0. The plane z = d is also a conductor held at zero potential.

V 2a
2a

d

(a) Find the potential for 0 ≤ z ≤ d in the form of a Fourier integral.
(b) Find the total charge induced on the upper surface of the lower (z = 0) plate. The answer is very simple.

Do not leave it in the form of an unevaluated integral or infinite series.
(c) Sketch field lines of E(r) between the plates.
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7.8 A Conducting Slot The figure shows an infinitely long and deep slot formed by two grounded conductor
plates at x = 0 and x = a and a conductor plate at z = 0 held at a potential ϕ0. Find the potential inside the
slot and determine its asymptotic behavior when z � a.

0x x a

0

0

z

x

7.9 A Two-Dimensional Potential Problem in Cartesian Coordinates Two flat conductor plates (infinite in
the x- and y-directions) occupy the planes z = ±d. The x > 0 portion of both plates is held at ϕ = +ϕ0.
The x < 0 portion of both plates is held at ϕ = −ϕ0. Derive an expression for the potential between the
plates using a Fourier integral to represent the x variation of ϕ(x, z).

x

z
d

d−
0−ϕ

0
ϕ

7.10 An Electrostatic Analog of the Helmholtz Coil A spherical shell of radius R is divided into three
conducting segments by two very thin air gaps located at latitudes θ0 and π − θ0. The center segment is
grounded. The upper and lower segments are maintained at potentials V and −V , respectively. Find the
angle θ0 such that the electric field inside the shell will be as nearly constant as possible near the center of
the sphere.

0

0

V

V

0

R

7.11 Make a Field inside a Sphere Find the volume charge density ρ and surface charge density σ which must
be placed in and on a sphere of radius R to produce a field inside the sphere of

E = −2V0
xy

R3
x̂ + V0

R3
(y2 − x2)ŷ − V0

R
ẑ.

There is no other charge anywhere. Express your answer in terms of trigonometric functions of θ and φ.

7.12 The Capacitance of an Off-Center Capacitor A spherical conducting shell centered at the origin has
radius R1 and is maintained at potential V1. A second spherical conducting shell maintained at potential V2

has radius R2 > R1 but is centered at the point sẑ where s � R1.
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(a) To lowest order in s, show that the charge density induced on the surface of the inner shell is

σ (θ ) = ε0
R1R2(V2 − V1)

R2 − R1

[
1

R2
1

− 3s

R3
2 − R3

1

cos θ

]
.

Hint: Show first that the boundary of the outer shell is r2 ≈ R2 + s cos θ .
(b) To lowest order in s, show that the force exerted on the inner shell is

F =
∫

dS
σ 2

2ε0
n̂ = ẑ2πR2

1

π∫
0

dθ sin θ
σ 2(θ )

2ε0
cos θ = − Q2

4πε0

sẑ
R3

2 − R3
1

.

(c) Integrate the force in (b) to find the capacitance of this structure to second order in s.

7.13 The Plane-Cone Capacitor A capacitor is formed by the infinite grounded plane z = 0 and an infinite,
solid, conducting cone with interior angle π/4 held at potential V . A tiny insulating spot at the cone vertex
(the origin of coordinates) isolates the two conductors.

4

0

V

(a) Explain why ϕ(r, θ, φ) = ϕ(θ ) in the space between the capacitor “plates”.
(b) Integrate Laplace’s equation explicitly to find the potential between the plates.

7.14 A Conducting Sphere at a Dielectric Boundary A conducting sphere with radius R and charge Q sits
at the origin of coordinates. The space outside the sphere above the z = 0 plane has dielectric constant κ1.
The space outside the sphere below the z = 0 plane has dielectric constant κ2.

R

Q

1

2

(a) Find the potential everywhere outside the conductor.
(b) Find the distributions of free charge and polarization charge wherever they may be.

7.15 The Force on an Inserted Conductor A set of known constants αn parameterizes the potential in a volume
r < a as

ϕext(r, θ) =
∞∑
n=1

αn

( r
R

)n
Pn(cos θ ).

Let ẑ point along θ = 0 and insert a solid conducting sphere of radius R < a at the origin. Show that the
force exerted on the sphere when it is connected to ground is in the z-direction and

Fz = 4πε0

∞∑
n=1

(n+ 1)αnαn+1.

Hint: The Legendre polynomials satisfy (n+ 1)Pn+1(x) + nPn−1(x) = (2n+ 1)xPn(x).

7.16 A Segmented Cylinder The figure below is a cross section of an infinite, conducting cylindrical shell.
Two infinitesimally thin strips of insulating material divide the cylinder into two segments. One segment is
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held at unit potential. The other segment is held at zero potential. Find the electrostatic potential inside the
cylinder.

R

y

x

1=

0ϕ

ϕ

α
α

=

7.17 An Incomplete Cylinder The figure below shows an infinitely long cylindrical shell from which a finite
angular range has been removed. Let the shell be a conductor raised to a potential corresponding to a charge
per unit length λ. Find the fraction of charge which resides on the inner surface of the shell in terms of λ
and the angular parameter p. Hint: Calculate Qin −Qout.

2
p

7.18 The Two-Cylinder Electron Lens Two semi-infinite, hollow cylinders of radius R are coaxial with the
z-axis. Apart from an insulating ring of thickness d → 0, the two cylinders abut one another at z = 0 and are
held at potentials VL and VR . Find the potential everywhere inside both cylinders. You will need the integrals

λ

∫ 1

0
ds s J0(λs) = J1(λ) and 2

∫ 1

0
ds s J0(xns)J0(xms) = J 2

1 (xn)δnm.

The real numbers xm satisfy J0(xm) = 0.

R

d

LV RV

7.19 A Periodic Array of Charged Rings Let the z-axis be the symmetry axis for an infinite number of
identical rings, each with charge Q and radius R. There is one ring in each of the planes z = 0, z = ±b,
z = ±2b, etc. Exploit the Fourier expansion in Example 1.6 to find the potential everywhere in space. Check
that your solution makes sense in the limit that the cylindrical variable ρ � R, b. Hint: If Iα(y) and Kα are
modified Bessel functions,

I ′
α(y)Kα(y) − Iα(y)K ′

α(y) = 1/y.

7.20 Axially Symmetric Potentials Let V (z) be the potential on the axis of an axially symmetric electrostatic
potential in vacuum. Show that the potential at any point in space is

V (ρ, z) = 1

π

π∫
0

dζ V (z + iρ cos ζ ).

Hint: Show that the proposed solution satisfies Laplace’s equation and exploit uniqueness.
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7.21 Circular-Plate Capacitor Consider a parallel-plate capacitor with circular plates of radius a separated by
a distance 2L.

z

2L

aV

V

A paper published in 1983 proposed a solution for the potential for this situation of the form

ϕ(ρ, z) =
∞∫

0

dk A(k)f (k, z)J0(kρ),

where J0 is the zero-order Bessel function and

A(k) = 2V

1 − e−2kL

sin(ka)

πk
.

(a) Find the function f (k, z) so the proposed solution satisfies the boundary conditions on the surfaces of
the plates. You may make use of the integral

∞∫
0

dk
sin(ka)

k
J0(kρ) =

{
π/2 0 ≤ ρ ≤ a

sin−1(a/ρ) ρ ≥ a.

(b) Show that the proposed solution nevertheless fails to solve the problem because the electric field it
predicts is not a continuous function of z when ρ > a.

7.22 A Dielectric Wedge in Polar Coordinates Two wedge-shaped dielectrics meet along the ray φ = 0.
The opposite edge of each wedge is held at a fixed potential by a metal plate. The system is invariant to
translations perpendicular to the diagram.

(a) Explain why the potential ϕ(ρ, φ) between the plates does not depend on the polar coordinate ρ.
(b) Find the potential everywhere between the plates.

2

1

2
0

2V

1

1V

7.23 Contact Potential The x > 0 half of a conducting plane at z = 0 is held at zero potential. The x < 0 half
of the plane is held at potential V . A tiny gap at x = 0 prevents electrical contact between the two halves.

0V
x

z
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(a) Use a change-of-scale argument to conclude that the z > 0 potential ϕ(ρ, φ) in plane polar coordinates
cannot depend on the radial variable ρ.

(b) Find the electrostatic potential in the z > 0 half-space.
(c) Make a semi-quantitative sketch of the electric field lines and use words to describe the most important

features.

7.24 A Complex Potential Give a physical realization of the electrostatic boundary value problem whose
solution is provided by the complex potential

f (w) = i
V1 + V2

2
+ V1 − V2

2
ln

[
R + iw

R − iw

]
.

7.25 A Cylinder in a Uniform Field by Conformal Mapping An infinitely long conducting cylinder (radius
a) oriented along the z-axis is exposed to a uniform electric field E0ŷ.

(a) Consider the conformal map g(w) = w + a2/w, where g = u+ iv and w = x + iy. Show that the
circle |w| = a and the parts of the x-axis that lie outside the circle map onto the entire u-axis.

(b) Let the potential on the cylinder be zero. What is the potential on the x-axis? Use this potential and
the mapping in part (a) to solve the corresponding electrostatic problem in the g-plane. Find a complex
potential f (u, v) which satisfies the boundary conditions.

(c) Map the complex potential from part (b) back into the w-plane. Find the physical electrostatic potential
ϕ(x, y) and the electric field E(x, y). Sketch the electric field and the equipotentials.
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8 Poisson’s Equation

It may not be amiss to give a general idea of the method that has
enabled us to arrive at results, remarkable in their simplicity and

generality, which it would be very hard if not impossible to
demonstrate in the ordinary way.

George Green (1828)

8.1 Introduction

Poisson’s equation for the electrostatic potential in vacuum ϕ(r) is

∇2ϕ(r) = −ρ(r)
/
ε0. (8.1)

When ρ(r) is completely specified, ϕ(r) can be calculated by direct integration or by evaluating
Coulomb’s integral (7.1). These options are not available when (i) polarizable matter is present and
(ii) at least some portion of ρ(r) consists of true volume charge. This state of affairs obliges us to
solve (8.1) as a boundary value problem in potential theory. Most often, the volume part of ρ(r) is
specified and the task at hand is to find the field produced by the charge induced on the surface of
nearby conductors and/or isotropic linear dielectrics.

The most effective solution strategies for (8.1) exploit the principle of superposition. We construct
ϕ(r) as the sum of a particular solution of Poisson’s equation and a general solution of Laplace’s
equation. The latter is chosen so the total potential satisfies the specified boundary conditions. The
method of images exploits exactly the same idea for the case of point and line charges in the presence
of conductors and/or dielectrics. These special solutions are valuable because the solutions to (8.1)
for more complex volume distributions are constructed by superposing the potentials from point or
line sources with suitable weights. The Green function method brings this point of view to its greatest
level of generality and sophistication.

8.2 The Key Idea: Superposition

Superposition is the key idea used to solve Poisson’s equation in electrostatics. Consider the prototype
problem of a point charge q fixed at r0 in a volume V with specified values for the potential ϕ(r) on
the boundary surface of V . The unique solution to this problem can always be written in the form

ϕ(r) = q

4πε0|r − r0| + a solution to Laplace’s equation in V. (8.2)

The first term in (8.2) is the potential of a point charge in infinite space. It is a particular solution of
the Poisson equation (8.1) with ρ(r) = qδ(r − r0). By superposition, the potential (8.2) is a solution
of the same Poisson equation because any solution of Laplace’s equation contributes zero to the right
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0z

0z
z

q

q

V

′V

0z

Figure 8.1: A point charge q at a distance z0 above an infinite, grounded, conducting plane at z = 0. The
potential in V (z ≥ 0) is unchanged if the conductor is replaced by an “image” charge −q at a distance z0 below
the z = 0 plane.

side of Poisson’s equation. The role of the second term in (8.2) is to guarantee that the total potential
satisfies the Dirichlet conditions imposed on the boundary of the volume V . It is always possible to
do this because, by completeness (Section 7.4), the necessary function can be represented by the most
general separated-variable solution of Laplace’s equation. Put another way, the point charge q induces
charge on the boundary of V and the field produced by this charge satisfies Laplace’s equation in V .
We will see in Section 8.4 how this scenario generalizes for the case of an arbitrary but specified ρ(r).

The science of solving Poisson-type boundary value problems in electrostatics is to find at least one
representation where (8.2) satisfies the boundary conditions. By uniqueness (Section 7.3), all other
representations are (numerically) equivalent. The art to solving these problems is to find a form for
(8.2) that is as simple as possible. The method described in the next section is unsurpassed in this
regard.

8.3 The Method of Images

The method of images solves a small but important class of Poisson equation problems where a planar,
spherical, or cylindrical boundary separates space into a volume V and a complementary volume V ′.
If a point (or line) charge is present in V , the method delivers the electrostatic potential in V by
introducing fictitious “image” charges into V ′. The boundary is usually assumed to be grounded and
the volumes may be vacuum or filled with a simple dielectric.

8.3.1 A Point Charge and a Conducting Plane
Figure 8.1 shows a point charge q which lies a distance z0 above an infinite, grounded, conducting
plane at z = 0. We choose V as the half-space z ≥ 0 and V ′ as the half-space z < 0. The method
exploits the fact that the plane z = 0 remains an equipotential at ϕ = 0 if we replace the conductor by
a fictitious “image” point charge −q at a distance 2z0 below q.

To be consistent with (8.2), it is crucial that the potential due to the image charge in V ′ satisfies
Laplace’s equation in V . This guarantees that the potential produced by q and its image satisfies the
same Poisson equation in V . Therefore, by uniqueness, the potential ϕ(r ∈ V ) is exactly the same for
the two problems. The method tells us nothing about the potential in V ′.

Directly from Figure 8.1, the potential for z ≥ 0 in cylindrical coordinates is

ϕ(ρ, z ≥ 0) = q

4πε0

[
1√

ρ2 + (z − z0)2
− 1√

ρ2 + (z + z0)2

]
. (8.3)
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The first term on the right side of (8.3) is a particular solution of Poisson’s equation for z ≥ 0. The
second (image) term is a solution of Laplace’s equation for z ≥ 0 which ensures that the total potential
satisfies the boundary condition ϕ(z = 0) = 0. This shows that (8.3) has exactly the structure of the
solution envisioned in (8.2). The associated electric field in the solution volume V is the superposition
of two inverse-square Coulomb fields, one from the real charge and one from the image charge:

E(ρ, z ≥ 0) = q

4πε0

[
ρρ̂ + (z − z0)ẑ

[ρ2 + (z − z0)2]3/2
− ρρ̂ + (z + z0)ẑ

[ρ2 + (z + z0)2]3/2

]
. (8.4)

By construction, the field line pattern for (8.4) is identical to the pattern on the positive charge side of
the planar boundary on the right side of Figure 3.17.

The true source of the second term in (8.3)—the “image potential”—is the charge induced on the
conductor surface by the point charge q. Using (8.4), that charge is distributed according to

σ (ρ) = ε0ẑ · E(ρ, z = 0) = − qz0

2π (ρ2 + z2
0)3/2

. (8.5)

The total amount of charge drawn up from ground is

qind =
∫
z=0

dS σ = −q
2π∫

0

dφ

2π

∞∫
0

s ds

(s2 + 1)3/2
= −q. (8.6)

The fact that qind = −q means that every electric field line that leaves q terminates somewhere on the
infinite conducting plane. No electric flux escapes to infinity.

The force exerted on the plane by the point charge is

F(z0) = ẑ
2ε0

∫
S

dS σ 2 = ẑ
q2

4πε0z
2
0

∞∫
0

s ds

(s2 + 1)3
= ẑ

q2

4πε0

1

(2z0)2
. (8.7)

The equal and opposite force Fq exerted on the point charge by the plane is precisely the Coulomb
force that the fictitious image charge exerts on the real charge. To check this, we subtract the field Eself

created by q itself from (8.4) and compute

Fq (z0) = q[E − Eself ](ρ, z0) = −ẑ
q2

4πε0

1

(2z0)2
. (8.8)

This wonderful and quite general result is true because the image charge produces the physically
correct electric field at the position of q.

A more subtle question is the interaction potential energy VE(z) between the point charge q and the
grounded plane. By definition, Fq = −∇VE where the gradient acts on the coordinates of q. Therefore,

VE(z0) = −
z0∫

∞
d ẑ · Fq (z) = − q2

16πε0

1

z0
. (8.9)

VE(z0) may be compared with the interaction potential energy ṼE(z0) between q and the image point
charge −q. The electrostatic potential produced by the latter is the second term in (8.3), so

ṼE(z0) = q ×
[
− q

4πε0

1√
ρ2 + (z + z0)2

]
(0,z0)

= − q2

8πε0

1

z0
. (8.10)

The energies (8.9) and (8.10) differ because the interaction potential energy is part of the total energy
of assembly (Section 3.6.2). In the presence of q, no work is required to transport charge from infinity
to the grounded plane (because the charges move on an equipotential) whereas work must be done to
bring the image charge from infinity to its final position.
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Image-Potential States

Direct evidence for the existence of the image force comes from measured binding energies of
electrons trapped just outside flat metal surfaces. If (8.8) is correct, the binding energies should
be the eigenvalues of a one-dimensional Schrödinger equation with the potential energy function
(8.9):

V (z) = − 1

4πε0

e2

4z
.

If we interpret V (z) as the Coulomb energy between an electron with charge e/2 and a “proton”
with charge e/2, the predicted eigenvalues are E(n) = ε(n)/16, where ε(n) is Bohr’s formula for
the energy levels of a hydrogen atom:

ε(n) = −(me4/2−h2)/n2 = −(13.6 eV)/n2.

This prediction is borne out quantitatively by photoelectric effect measurements of electrons bound
to noble metal surfaces.a

8.3.2 Image Theory from Potential Theory
Not everyone would think to solve the boundary value problem in Figure 8.1 by superposing the
potential of a true charge with the potential of a fictitious charge. Therefore, it is reassuring to learn
that the image solution (8.3) can be derived more or less directly using (8.2) and separation of variables.
We are looking to supplement the first term in (8.2) with a solution of Laplace’s equation that makes
the total potential for z ≥ 0 vanish at z = 0. A key observation is that the charge induced on the flat
surface (which produces the Laplace potential) has cylindrical symmetry around the z-axis. Looking
back at this class of solutions of Laplace’s equation (Section 7.8) and choosing the one that goes to
zero at z → ∞, we conclude that

ϕ(ρ, z ≥ 0) = q

4πε0

1√
ρ2 + (z − z0)2

+
∞∫

0

dkA(k)J0(kρ)e−kz. (8.11)

The expansion coefficients A(k) in (8.11) are chosen to make ϕ(ρ, z = 0) = 0. This would be
difficult to do if not for the Bessel function identity1

1√
ρ2 + z2

=
∞∫

0

dkJ0(kρ)e−k|z|. (8.12)

Using (8.12) to represent the first term in (8.11), we see by inspection that ϕ(ρ, z = 0) = 0 if we
choose A(k) = −q exp(−kz0)/4πε0. This means that the potential we seek is

ϕ(ρ, z ≥ 0) = q

4πε0

1√
ρ2 + (z − z0)2

+ −q
4πε0

∞∫
0

dkJ0(kρ)e−k(z+z0). (8.13)

a See Fauster (1994) in Sources, References, and Additional Reading.
1 We know that (ρ2 + z2)−1/2 = ∫∞

0 dkB(k)J0(kρ)e−k|z| because both sides are bounded and cylindrically symmetric
solutions of Laplace’s equation away from the origin. Now let ρ = 0. This gives B(k) = 1 because J0(0) = 1 and∫∞

0 dke−k|z| = 1/|z|.
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Using (8.12) again to rewrite the second term in (8.13) shows that the latter is exactly the image
solution (8.3).

We leave it as an exercise for the reader to confirm that the method of images solves the two-
dimensional Poisson problem that results when the point charge in Figure 8.1 is replaced by an infinite
line of uniform charge density oriented perpendicular to the plane of the figure.

Example 8.1 A point dipole p sits a distance d from the flat surface of a grounded metal sample.
Calculate the work required to rotate the dipole from a perpendicular orientation (pointed directly
at the plane) to a parallel orientation.

Solution: Figure 8.2 shows the dipole p (not to scale) misaligned by an angle α from the per-
pendicular orientation. The plus and minus charges which constitute the dipole form images of
themselves of opposite sign a distance d behind the surface of the conductor. Therefore, if the real
dipole is p = −p cosαx̂ + p sinαŷ in the coordinate system shown, the image dipole is

p′ = −p cosαx̂ − p sinαŷ.

x

y

d

p p

d

′

Figure 8.2: A point dipole in vacuum and its image inside a grounded metal sample.

The electric field produced by the image at the position r = 2d x̂ of the real dipole is

E′ = 3r(p′ · r) − p′r2

4πε0r5
= −2p cosαx̂ + p sinαŷ

32πε0d3
.

The torque exerted by the image dipole on the real dipole is

N = p × E′ = p2

32πε0d3
sinα cosαẑ.

Therefore, the work required to rotate the dipole from perpendicular to parallel orientation is

W =
π/2∫
0

dα · N = p2

32πε0d3

∫ π/2

0
dα sinα cosα = p2

64πε0d3
.

8.3.3 Dielectric Boundaries
The planar interface in Figure 8.3 separates space into two semi-infinite simple dielectrics. The method
of images can be used to find the total electric field E∗ at the position of the point charge q embedded
in the medium with dielectric constant κL. We may then apply (6.130) to find the force F = qE∗ which
the dielectric exerts on q.
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z

z

Figure 8.3: A point charge q lies a distance d from the z = 0 interface between two semi-infinite linear
dielectrics.

We learned in Section 6.5.5 that the electrostatic potential for this type of problem must satisfy two
matching conditions at the dielectric interface:

ϕL(rS) = ϕR(rS) (8.14)

and

κL
∂ϕL

∂n

∣∣∣∣
S

= κR
∂ϕR

∂n

∣∣∣∣
S

. (8.15)

To find the potential ϕL(r) in the z < 0 half-space, we fill all space with dielectric constant κL and
supplement the potential of the charge q at z = −d with the potential of an image charge qR at z = d.
To find the potential ϕR(r) in the z > 0 half-space, we fill all space with dielectric constant κR and
place an image charge qL at z = −d.2 Section 6.5.2 taught us that the potential of an embedded point
charge is screened by the dielectric constant of its host medium. Therefore, the proposed image system
generates the potentials

ϕL(ρ, z) = 1

4πεL

[
q√

ρ2 + (z + d)2
+ qR√

ρ2 + (z − d)2

]
(8.16)

and

ϕR(ρ, z) = 1

4πεR

qL√
ρ2 + (z + d)2

. (8.17)

A few lines of algebra shows that (8.16) and (8.17) do indeed satisfy (8.14) and (8.15) if the image
charges take the values

qR = κL − κR

κL + κR
q and qL = 2κR

κL + κR
q. (8.18)

The force on q comes entirely from the field produced by qR evaluated at the position of q. This is the
electric field associated with the second term in (8.16) evaluated at (0,−d). Therefore,

F = − 1

4πεL

q qR

4d 2
ẑ. (8.19)

This agrees with the result obtained in Example 6.7 by another method. It is an instructive exercise to
use the stress tensor formalism (Section 6.8.5) to check that the force exerted on the dielectric interface
by the point charge is exactly the negative of (8.19).

Figure 8.4 shows the lines of E(r) for this problem. In the κR matter, the straight lines reflect the
point charge electric field from qL alone. In the κL material, the curved lines reflect the superposed
Coulomb fields from q and qR . Apart from the “refraction” of the field lines at the dielectric boundary

2 The placement of qR and qL at z = ±d is not obvious for this problem.
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z z

Figure 8.4: Lines of E(r) for a point charge near a flat dielectric interface for κL > κR (left panel) and κL < κR
(right panel). Figure from Durand (1966).

(see Application 6.2), the most interesting feature is the change of sign of the curvature of the field
lines near the point charge for κL > κR compared to κL < κR . This can be understood because (8.18)
shows that qR is positive in the first case and negative in the second case. Therefore, a glance back at
Figure 3.17 shows that the field in medium κL resembles the z < 0 part of the field between two point
charges of opposite sign when κL < κR and the z < 0 part of the field between two point charges of
like sign when κL > κR .

When κR → ∞, the image charge qR = −q and the field in medium κL reduces to the z < 0 part
of the field of an electric dipole. The field lines in this case are strictly perpendicular to the dielectric
interface at z = 0. Since this is the behavior of field lines at the surface of a perfect conductor, we
confirm our earlier deduction (Section 6.6.4) that a linear dielectric without embedded free charge
behaves like a perfect conductor when its permittivity goes to infinity.

8.3.4 Multiple Images
Poisson problems with multiple planar boundaries sometimes can be solved using multiple images.
The only restriction is that the solution volume remain image-free. Consider the potential produced by
a point charge q that lies on the z-axis midway between two infinite, parallel, grounded, conducting
plates (Figure 8.5). Our previous experience tells us that an image charge −q placed on the z-axis at
z = 3d/2 makes the plane z = d a zero equipotential. The plane z = 0 will be a zero equipotential
also if we add an image −q at z = −d/2 and another charge q at z = −3d/2. Unfortunately, these two
images destroy the zero equipotential at z = d. Additional images at z = 5d/2 and z = 7d/2 repair
the damage at z = d, but at the cost of spoiling the equipotential at z = 0. One quickly realizes that
an infinite sequence of images is needed: positive charges at z = 2dm+ d/2 and negative charges at
z = 2dm− d/2 where m = 0, ±1, ±2, . . .

As Figure 8.5 shows, the final image system is an infinite set of collinear and equally spaced point
charges with equal magnitude and alternating sign. Any intuition we may have about the potential
produced by this set of charges may be applied immediately to the potential in the volume 0 ≤ z ≤ d.
For example, the multiple point charge problem has cylindrical symmetry around the z-axis where
the charges lay. This means that the potential satisfies Laplace’s equation everywhere away from the
z-axis:

∇2ϕ = ∂2ϕ

∂ρ2
+ 1

ρ

∂ϕ

∂ρ
+ ∂2ϕ

∂z2
≈ ∂2ϕ

∂ρ2
+ ∂2ϕ

∂z2
= 0. (8.20)

The approximation indicated just above applies when ρ � d, the latter being the only length scale in
the problem. The final equation on the far right side of (8.20) is a two-dimensional, Cartesian-type
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0 d 2d 3dd2d

z
q

Figure 8.5: A positive point charge q on the z-axis lies midway between two grounded conducting plates at
z = 0 and z = d. The other charges shown are images.

Laplace equation to which the method of separation of variables applies. The general solution is (7.35)
with x replaced by ρ and y replaced by z. But the line of point charges has periodicity L = 2d in the
z-direction. Therefore, when ρ � d, the general solution will be dominated by the α = 2π/L term in
(7.35). Dimensional analysis determines the pre-factor (up to a factor of order one), so the expected
asymptotic behavior of the potential is3

ϕ(ρ, z) ∼ q

ε0d
exp(−πρ/d) sin(πz

/
d) ρ � d, 0 ≤ z ≤ d. (8.21)

Applying this result to the volume between the grounded plates in Figure 8.5 shows that the charge
induced on the plates screens the 1/r potential of the point charge very effectively.

Application 8.1 The Electrostatics of an Ion Channel

Figure 8.6 shows protein tubules embedded in the wall of a cell. The hollow channel of each tubule
is a pathway for ions to travel back and forth between the cell interior and the cell exterior. The cell
exterior, the channel, and the cell interior are mostly water with a dielectric constant κW ≈ 80. The
tubule itself has a dielectric constant κL ≈ 2. In this Application, we estimate the energy of a positive
ion in such a channel and show that an energy barrier must be overcome for an ion to pass entirely
through the channel.

Figure 8.6: Protein tubules embedded in wall of a cell. Figure from Gonzales and Carrasco (2003) with
permission from Elsevier.

Figure 8.7 shows the electric field line pattern when the ion sits at the midpoint of a model ion
channel with length L and radius a � L. The field lines bend parallel to the channel walls to avoid
the low-permittivity tubule. This is consistent with the discussion in Application 6.2 and with the
left panel of Figure 8.4 in the limit κL � κR when qR ≈ q in (8.18). It also means that, except very

3 Example 8.4 confirms this expectation.
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z

Figure 8.7: A positive ion q sits at the midpoint of a channel which connects two reservoirs of ion-filled
water. The protein walls of the channel have a dielectric constant κL that is much less than the dielectric
constant κW of water.

near the point charge, the field strength in Figure 8.7 may be calculated using ε0∇ · E = q/κW and
a cylindrical Gaussian surface formed from the channel walls and the two vertical caps indicated by
dashed lines in Figure 8.7. This gives the constant field

E0 = q

2πε0a2κW
. (8.22)

E0 is exactly the field produced by an infinite plane at the center of the channel with uniform surface
charge density σ = q/πa2.

The electrostatic energy (6.94) is a function of the position z of the ion, where z = −L/2 and
z = L/2 label the left and right ends of the channel, respectively:

UE(z) = 1

2

∫
d 3r E · D. (8.23)

To estimate (8.23) for our channel of volume V = πa2L, we replace the highly conducting reservoirs
by grounded conducting planes at the entrance and exit of the channel. Based on (8.22), we similarly
replace q by a plane with charge density σ . Figure 8.8 shows this equivalent electrostatic problem
when q is off-center. The presence of the grounded planes implies that EL �= ER , where EL is the
constant field to the left of σ and ER is the constant field to the right of σ . The voltage drop

∫
d� · E

across the channel is zero and the total charge drawn up from ground onto the two grounded planes is
−σ . These two conditions can be written in the form

EL(L/2 + z) = ER(L/2 − z)
(8.24)

EL + ER = q

ε0πa2κW
.

LE
REL R

σ

2
L+

2
L− z

Figure 8.8: A model for the electrostatics of Figure 8.7 replaces the point charge at z by a plane with
charge density σ = q/πa2 and replaces the reservoirs by grounded conducting planes at the ends of the
channel. The midpoint of the channel is z = 0.
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8.3 The Method of Images 245

It is straightforward to solve (8.24) for EL and ER and evaluate (8.23) using the fact that EL occupies
a volume V ( 1

2 + z/L) and ER occupies a volume V ( 1
2 − z/L). The final result shows that the ion must

surmount a quadratic potential energy barrier to pass through the channel:

UE(z) = 2πε0E
2
0V

(
1

4
− z2

L2

)
. (8.25)

The energy barrier at z = 0 predicted by (8.25) is much larger than kT at ambient temperature. Entropy
effects and a better treatment of the interaction of the ion with the molecules of the tubule must be
taken into account to lower the barrier sufficiently far to make ion passage through a cell wall plausible
in vivo.4 �

8.3.5 A Point Charge outside a Conducting Sphere
The method of images can be used to find the electrostatic potential outside (inside) a grounded,
spherical, conducting shell when a point charge is placed outside (inside) the shell. Figure 8.9 shows
a point charge q outside such a shell and, by symmetry, the presumptive image charge q ′ must lie
somewhere on the z-axis defined by q and the center of the sphere. Therefore, if θ is the angle defined
in Figure 8.9, the equipotential requirement on the surface of the sphere is

ϕ(R, θ ) = 1

4πε0

{
q√

s2 + R2 − 2sR cos θ
+ q ′

√
b2 + R2 − 2bR cos θ

}
= 0. (8.26)

Two special cases of (8.26) are

q2(b2 + R2) = q ′2(s2 + R2) θ = π/2, (8.27)

and

q2(b − R)2 = q ′2(s − R)2 θ = 0. (8.28)

Subtracting (8.28) from (8.27) gives q2b = q ′2s. With this information, both (8.27) and (8.28) become

sb2 − (s2 + R2)b + sR2 = 0. (8.29)

The physically sensible root of this quadratic equation gives the position and magnitude of the image
charge as

b = R2

s
and q ′ = −R

s
q = − b

R
q. (8.30)

The image charge lies inside the sphere because the left equation in (8.30) defines R as the geometric
mean of s and b.

Substituting (8.30) into (8.26) correctly produces ϕ(R, θ ) = 0 for all values of θ . By uniqueness,
we conclude that a point charge q located at any point s outside a grounded, conducting sphere of
radius R produces the following electrostatic potential at any other point r outside the sphere:

ϕ(r) = q

4πε0

{
1

|r − s| − R/s

|r − sR2/s2|
}

s, r > R. (8.31)

Gauss’ law applied to the image system tells us that q ′ is the integrated charge drawn up to the
conducting sphere from ground. Because |q ′| < q, not all the electric field lines which begin at q
terminate on the conducting sphere. The remainder go off to infinity. This “loss” of flux to infinity
differs from the case of the conducting plane in Figure 8.1 because the surface area of a sphere is finite.

4 See Kamenev et al. (2006) in Sources, References, and Additional Reading.
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Figure 8.9: A point charge q outside a grounded, conducting sphere. An image system with q ′ �= −q makes
r = R an equipotential surface.

The force exerted by q on the grounded conducting sphere is −qES , where ES is the electric field
produced by the sphere at the position of q. This can be computed from F = q∇ϕ(r)|r=s or directly
from Coulomb’s inverse-square force law using the position and magnitude of the image charge
determined above. In other words, the force exerted on the sphere is

F = − qq ′

4πε0

ŝ
(s − b)2

= q2

4πε0

Rs
(s2 − R2)2

. (8.32)

We note that this force is always attractive and that its asymptotic (s � R) behavior with distance is
inverse-cube rather than the inverse-square behavior seen in (8.7).

Example 8.2 Let �(r, θ, φ) be any function that satisfies Laplace’s equation inside a sphere of
radius r = R. Show that �(r, θ, φ) = (R/r)�(R2/r, θ, φ) satisfies Laplace’s equation outside the
sphere. Choose � as the potential of a point charge q at s with s > R and show that (8.31) is
identical to

ϕ(r ≥ R, θ, φ) = �(r, θ, φ) −�(r, θ, φ).

This example exploits the method of inversion to derive a solution of Laplace’s equation in one
domain from a known solution of Laplace’s equation in a complementary domain.

Solution: Let the operator L2 stand for all the angle-dependent pieces of the Laplacian operator
in spherical coordinates. By the assumption of the problem,

∇2� = 1

r

∂2

∂r2
(r�) + L2

r2
� = 0 r < R.

Now, substitute the proposed solution � into this equation, let u = R2/r , and use the chain rule.
The result is

∇2�(r, θ, φ) = R5

r5

[
1

u

∂2

∂u2
(u�) − L2

u2
�

]
= R5

r5
∇2�(u, θ, φ).

The rightmost term of this expression is zero whenu = R2/r < R. Following the chain of equalities
to the left tells us that �(r, θ, φ) satisfies Laplace’s equation when r > R. Now choose

�(r) = q

4πε0|r − s| .

This function satisfies Poisson’s equation outside the sphere and Laplace’s equation inside the
sphere. We have just shown that the associated inverse function �(r) satisfies Laplace’s equation
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outside the sphere. Therefore, since �(R, θ, φ) = �(R, θ, φ), the unique potential in r ≥ R that
vanishes at at r = R is

ϕ(r ≥ R, θ, φ) = �(r, θ, φ) −�(r, θ, φ).

It remains only to show that −�(r) is the image term in (8.31). To that end, let sẑ be the position
of q in Figure 8.9 so r = (r, θ, φ). The Legendre polynomial expansion (4.78) of the true point
charge potential when r > s is

�(r, θ, φ) = 1

4πε0

q

r

∞∑
�=0

( s
r

)�
P� (cos θ ).

Therefore, since R2/r < s when r > s > R,

−R

r
�(R2/r, θ, φ) = 1

4πε0

−qR/s
r

∞∑
�=0

(
R2/s

r

)�

P�(cos θ ).

This is the potential of a point charge q ′ = −qR/s on the positive z-axis at a distance R2/s < R

from the origin—in other words, the potential of the image charge in Figure 8.9.

8.3.6 Other Sphere Problems
It is straightforward to generalize the grounded-sphere problem to the case of a conducting sphere held
at a fixed potential ϕ0. Just add to (8.31) the potential from a second image with charge q0 = 4πε0Rϕ0

placed at the center of the sphere. This raises the potential of the sphere from zero to ϕ0. The unique
solution is

ϕ(r) = q

4πε0

{
1

|r − s| − R/s

|r − sR2/s2|
}

+ Rϕ0

r
s, r > R. (8.33)

Nearly identical reasoning produces the potential of a point charge q in the presence of an isolated
conducting sphere that carries a net charge Q. We use image charges at the center to replace the net
charge of the grounded sphere by Q. This gives a potential outside the sphere of

ϕ(r) = q

4πε0

{
1

|r − s| − R/s

|r − sR2/s2|
}

+ 1

4πε0

Q+ qR/s

r
s, r > R. (8.34)

WhenQ = 0, (8.34) is the potential of a point charge outside an isolated, neutral, spherical conductor.
The force between these two objects is (8.32) plus the repulsive force between q and the image charge
qR/s at the center of the sphere. A moment’s reflection shows that the net force is always attractive.
This raises the question: is the same conclusion true for a conductor with an arbitrary shape? When the
distance s is very large, the force is surely attractive and shape-independent because the conductor may
be replaced by a dipole that points away from q. Otherwise, we can identify at least one class of shapes
where the force is repulsive for some distances. We prove this in a more general setting as follows.

Let ρ(r) be a finite, but otherwise arbitrary, charge distribution. This distribution possesses a
collection of equipotential surfaces, including a zero equipotential at infinity. Now consider a two-
dimensional conductor whose shape, in part or in full, matches any one of the equipotential surfaces
of ρ(r). The electrostatic interaction energy VE between the conductor and ρ(r) is zero at infinity
and (because Q = 0) zero again when the conductor overlays the shape-matching equipotential sur-
face. Moreover, VE decreases from zero as the conductor moves in from infinity because (see above)
F = −∇VE is attractive when the conductor is far away from ρ(r). Therefore, the force must become
repulsive as the conductor approaches the special equipotential and VE returns to zero. Figure 8.10
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q

R

z

Figure 8.10: At z = 0, the isolated, conducting, hemispherical shell is coincident with one of the equipotentials
of the point charge q. Figure from Levin and Johnson (2011).

shows a point charge on the symmetry axis of a neutral, conducting, hemispherical, shell. The inter-
action energy VE = 0 when z = 0, and our argument shows that the force between the two objects is
initially repulsive as z increases and then turns attractive. The reader is encouraged to interpret this
result in terms of the angular distribution of charge induced on the surface of the shell.

Finally, the experience of Section 8.3 suggests that the method of images could be applied to find the
potential produced by a point charge near a dielectric sphere. This turns out to be true, but the image is
(surprisingly) not a simple point charge. It is a finite line segment with a continuous but non-uniform
linear charge density.5

8.3.7 A Line Charge outside a Conducting Cylinder
Let the circle in Figure 8.9 be the cross section of an infinitely long conducting cylinder. We define a
two-dimensional Poisson problem by re-interpreting the point q in Figure 8.9 as the cross section of
an infinitely long line charge at s = sx̂ with uniform charge per unit length λ. Up to a constant, the
potential of this line charge is

ϕ0(r) = − λ

2πε0
ln |r − s|. (8.35)

We seek a solution for ϕ(x, y) outside the cylinder as the sum of the potentials from the true line
charge and from a parallel image line charge with uniform density λ′ placed at the position of q ′. Using
(8.35), our ansatz for the potential is

ϕ(x, y) = − λ

2πε0
ln
√

(x − s)2 + y2 − λ′

2πε0
ln
√

(x − b)2 + y2 (8.36)

or

ϕ(x, y) = − 1

4πε0
ln

[(x − s)2 + y2]+λ

[(x − b)2 + y2]−λ′ , x2 + y2 > R2. (8.37)

Our challenge is to find the equipotential surfaces of (8.37) by finding conditions where the numerator
and denominator of the logarithm have a constant ratio C. A moment’s reflection shows that this is
only possible if λ′ = −λ. Writing out this condition and collecting terms gives

x2 + 2

[
bC − s

1 − C

]
x + y2 = Cb2 − s2

1 − C
. (8.38)

The choice C = s/b produces our solution because it reduces (8.38) to the equation of an origin-
centered cylinder with radius R = √

sb. In other words, the Poisson problem outside the cylinder is
solved by an image line charge inside the cylinder with position and charge density

b = R2

s
and λ′ = −λ. (8.39)

5 See P. Bussemer, “Comment on image theory for electrostatic and magnetostatic problems involving a material
sphere”, American Journal of Physics 62, 657 (1994).

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-08 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:43

8.3 The Method of Images 249

R

b21

Figure 8.11: A line charge λ embedded in a dielectric cylinder κ2. The cylinder is embedded in an infinite
dielectric space κ1.

Comparing these values to (8.30) shows that the point and line images sit at the same distance
from the origin but that the source and image lines have the same strength. Unlike the point charge
and the sphere, every electric field line that leaves the line charge terminates on the infinitely long
cylinder.

It is worth noticing that the choices in (8.39) do not give zero for the constant value of the potential
on the cylinder surface. To make it zero, we must add a constant to the right side of (8.36). This simple
expedient is not possible for the sphere problem because the charge and potential of a conducting
sphere cannot be specified independently. The difference arises because the point charge potential
(8.2) goes to zero at infinity while the line charge potential (8.35) diverges at infinity.

8.3.8 A Dielectric Cylinder
Figure 8.11 shows an infinite line with charge density λ embedded at a point b inside a cylinder with
radius R and dielectric constant κ2. The cylinder is itself embedded in an infinite space with dielectric
constant κ1. Figure 8.12 shows image systems that determine the potential both inside and outside the
cylinder. To find ϕin(ρ, φ), we fill all space with dielectric constant κ2 = ε2/ε0 and supplement the
source line charge with a line with charge density λ′ at the “inverse point” that lies a distance s = R2/b

from the origin of the cylinder [cf. (8.39)].
To find ϕout(ρ, φ), we fill all space with dielectric constant κ1 = ε1/ε0 and place an image line with

charge density λ′′ at the position of the original line. The cylinder is net neutral, so it is necessary to
add an image line somewhere inside the cylinder with compensating charge density λ− λ′′. The only
point that suggests itself is the origin. Accordingly, if Cin and Cout are constants, the potential created
by these image systems is

ϕin = − λ

2πε2
ln ρ2 − λ′

2πε2
ln ρ1 + Cin (8.40)

ϕout = − λ′′

2πε1
ln ρ2 − λ− λ′′

2πε1
ln ρ + Cout. (8.41)

The potentials (8.40) and (8.41) must be equal when ρ, ρ1, and ρ2 meet at any point on the cylinder
boundary as shown in Figure 8.12. Our choice of the inverse point for λ′ has the effect of making the
smallest and largest of the three triangles in Figure 8.12(a) geometrically similar. This implies that
ρ1/R = ρ2/b. Using this fact to eliminate ρ1 from (8.40) we demand that the coefficients of ln ρ2

agree when we set ϕin = ϕout on the boundary where ρ = R. This implies that

κ1(λ+ λ′) = κ2λ
′′. (8.42)
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Figure 8.12: Line charges used to solve the Poisson problem defined by Figure 8.11 for (a) ϕin: the source line λ
inside the cylinder plus an image line λ′ outside the cylinder; (b) ϕout: an image line λ′′ at the position of the
source line and an image line λ− λ′′ at the center of the cylinder.

It is algebraically awkward to enforce the scalar potential matching condition (8.15) derived from
the continuity of the normal component of D(r). The calculation simplifies considerably if we use a
trick and write the D-field produced by a line charge using a “vector potential” rather than the scalar
potential (8.35). Specifically, with K a constant, let

ψ(φ) = λ

2π
φ +K, (8.43)

so

D(ρ) = ∇ × (ψ ẑ) = 1

ρ

∂ψ

∂φ
ρ̂ = λ

2πρ
ρ. (8.44)

This representation is useful because the continuity of (8.44) implies that ψ is continuous at any
boundary.

Using the angles defined in Figure 8.12, we superpose the ψ-potentials from the true and image line
charges to write the total potentials inside and outside the cylinder boundary:

ψin = λ

2π
θ + λ′

2π
(π − θ + φ) +Kin (8.45)

ψout = λ′′

2π
θ + λ− λ′′

2π
φ +Kout. (8.46)

Setting the coefficients of θ and φ equal in (8.45) and (8.46) gives

λ− λ′′ = λ′. (8.47)

Combining (8.47) with (8.42) fixes the image charge densities at

λ′ = κ2 − κ1

κ2 + κ1
λ and λ′′ = 2κ1

κ2 + κ1
λ. (8.48)

These values are exactly the same as those used to solve the corresponding problem with a planar
dielectric interface in Section 8.3.3.

8.4 The Green Function Method

In this section, we derive a general solution to the Poisson equation in a volume V ,

∇2ϕ(r) = −ρ(r)/ε0 r ∈ V, (8.49)

with either Dirichlet or Neumann conditions specified on the volume’s boundary surface S. The
solution exploits a function of two variables called the Green function, G(r, r′), which satisfies (8.49)
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when r ∈ V and ρ(r) is a point charge density located at r = r′ ∈ V :

∇2G(r, r′) = −δ(r − r′)/ε0 r, r′ ∈ V. (8.50)

The Green function is unique if the boundary conditions are satisfied when r lies on S.
The connection between the potential and the Green function becomes clear when we substitute

f (r′) = ϕ(r′) and g(r′) = G(r′, r) into Green’s second identity (1.80),∫
V

d 3r ′(f ∇′2g − g∇′2f ) =
∫
S

dS ′ n̂′ · (f ∇′g − g∇′f ). (8.51)

The unit normal n̂′ points outward from V . Using (8.49) and (8.50) explicitly, the notation ∂ϕ/∂n ≡
n̂ · ∇ϕ permits us to write (8.51) in the form

ϕ(r ∈ V ) =
∫
V

d 3r ′ ρ(r′)G(r′, r) − ε0

∫
S

dS ′ ϕ(r′)
∂G(r′, r)

∂n′ + ε0

∫
S

dS ′ G(r′, r)
∂ϕ(r′)
∂n′ . (8.52)

Equation (8.52) is an integral equation for ϕ(r) which involves the boundary values of both ϕ and
∂ϕ/∂n. The key to the Green-function method is to choose boundary conditions for G(r, r′) which
transform (8.52) into an explicit formula for ϕ(r). There are two natural choices.

The Miller of Nottingham

The theory developed in this section first appeared in an 1828 memoir by George Green (1793-
1841) entitled An Essay on the Application of Mathematical Analysis to the Theories of Electricity
and Magnetism. The Essay is remarkable, not least because the young Green received only one year
of schooling before he was apprenticed to his father’s flour mill. Only at the age of 30 did Green
join the Nottingham Subscription Library and discover higher mathematics through the works of
Laplace, Lagrange, Legendre, and Poisson. Greatly stimulated, Green worked out his ideas and
published his 72-page Essay (privately) for a subscription list of local notables. It received little
attention and the discouraged Green returned to milling. A few years later, he followed the advice
of friends and entered Cambridge as a 40-year-old undergraduate. Green graduated in 1837 and
quickly published six papers on hydrodynamics, acoustics, and optics before returning abruptly to
Nottingham in 1841. He died there at the age of 47, almost entirely unknown. William Thomson
(later Lord Kelvin) found a copy of the Essay just after his own graduation from Cambridge in
1845. He arranged for its publication (in Germany) in 1850. Riemann coined the term “Green
function” soon thereafter. The first widely seen edition in English was published in 1871.

8.4.1 Dirichlet Boundary Conditions
The Dirichlet Green function satisfies (8.50) and the Dirichlet boundary condition

GD(rS, r′) = 0 rS ∈ S, r′ ∈ V. (8.53)

This choice makes the last integral in (8.52) zero. Therefore, once we have solved for GD(r, r′) and
supplied the boundary data ϕS(rS), the unique solution for the potential is

ϕ(r ∈ V ) =
∫
V

d 3r ′ ρ(r′)GD(r′, r) − ε0

∫
S

dS ′ ϕS(r′)
∂GD(r′, r)

∂n′ . (8.54)
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8.4.2 Neumann Boundary Conditions
The Neumann Green function satisfies (8.50) and a Neumann boundary condition which involves the
area A of the surface S which bounds V :

∂GN (rS, r′)
∂n

= − 1

ε0A
rS ∈ S r′ ∈ V. (8.55)

This choice6 reduces the first surface integral in (8.52) to the average value of the potential over S,

〈ϕ〉S = 1

A

∫
S

d 3r ϕ(r). (8.56)

Therefore, once we have solved for GN (r, r′) and supplied the boundary data ∂ϕS(rS)/∂n, (8.52)
simplifies to a formula for the unique potential in V :

ϕ(r ∈ V ) = 〈ϕ〉S +
∫
V

d 3r ′ ρ(r′)GN (r′, r) + ε0

∫
S

dS ′ ∂ϕS(r′)
∂n′ GN (r′, r). (8.57)

Neumann boundary conditions do not occur naturally in electrostatics problems with stationary
charge.7 It is true that σ (rS) = −ε0∂ϕ(rS)/∂n relates the normal derivative of the potential to the
surface charge density on a perfect conductor. Nevertheless, ∂ϕ/∂n can never be prescribed in advance;
it is determined by the solution of the boundary value problem. We can imagine specifying the surface
charge density on the surface of a non-conductor, but, in that case, σ (rS) is almost always associated
with a matching condition, not a boundary condition.

Mixed boundary conditions (Neumann and Dirichlet conditions on different parts of S) arise when,
say, a conducting shell occupies a finite portion of a boundary surface. Finite-sized capacitor plates
and apertures in conducting walls fall into this category also. Unfortunately, the mathematics needed
to treat this class of problems is fairly exotic.8

8.5 The Dirichlet Green Function

The Dirichlet Green function has a simple physical interpretation. According to (8.50) and (8.53),
GD(r, r′) is the electrostatic potential at any point r in a volume V bounded by grounded conducting
walls (or infinity) due to a unit-strength point charge placed at any point r′ in the same volume.
Remarkably, GD(r, r′) is also the electrostatic potential at any point r′ ∈ V due to a unit-strength
point charge placed at any point r ∈ V . The latter statement is not obvious, but is a consequence of
the reciprocal property of the Dirichlet Green function,

GD(r, r′) = GD(r′, r). (8.58)

We leave the proof of (8.58) as an exercise for the reader.
Two further points are worth noting. First, the usual Coulomb potential satisfies (8.50) and (8.53)

when the bounding surface S recedes to infinity. In this context, the Coulomb potential is called the
free-space Green function,

G0(r, r′) = 1

4πε0

1

|r − r′| . (8.59)

6 ∂GN (rS, r′)/∂n = 0 cannot be used as a boundary condition for (8.50) because integrating the latter over V and using
the divergence theorem shows that

∫
dS·∇ GN (r, r′) = −1/ε0.

7 Neumann boundary conditions occur in the theory of steady current flow (Chapter 9) and in the theory of conducting
waveguides (Chapter 19).

8 See Sneddon (1966) and Fabrikant (1991) in Sources, References, and Additional Reading.
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r

′r

( )a

r

r

( )b

′

Figure 8.13: (a) r and r′ lie inside a grounded shell of finite volume; (b) r and r′ lie outside a grounded shell of
finite volume.

Second, two distinct Green functions can be defined for a zero-potential surface which encloses a finite
volume (Figure 8.13). GD(r, r′) is an interior Green function when r and r′ both lie inside the finite
volume. GD(r, r′) is an exterior Green function when r and r′ both lie outside the finite volume. The
reciprocity relation (8.58) applies to both the interior and exterior Green functions.

8.5.1 The Magic Rule
Using (8.58), it is convenient to write (8.54) in the form

ϕ(r ∈ V ) =
∫
V

d 3r ′ GD(r, r′)ρ(r′) − ε0

∫
S

dS ′ ϕS(r′)
∂GD(r, r′)

∂n′ . (8.60)

Barton (1989) refers to (8.60) as the “magic rule” for Poisson’s equation. The name is apt because (8.60)
uses superposition and a Green function calculated once (for a given V ) to deliver ϕ(r) for arbitrary
choices of ϕS(rS) and ρ(r). On the other hand, it may be difficult to actually compute GD(r, r′) for
all values of r ∈ V and r′ ∈ V . For that reason, (8.60) is particularly well suited to “production-line"
calculations where the potential is desired for many different choices of ϕS(rS) and ρ(r).

The general features of the magic rule can be appreciated without any detailed knowledge of the
Green function. First, we should check that ϕ(rS) calculated from (8.60) actually produces the specified
boundary value ϕS(rS). In light of (8.53), only the second term in (8.60) contributes. Moreover, the
curved integration surface S appears flat when the observation point approaches rS . Therefore, we are
justified in replacing S by the x-y plane with rS at the origin. If we orient the positive z-axis to point
toward V ,

ϕ(rS) = ε0 lim
z→0+

∫
z′=0

dS ′ ϕS(r′)
∂GD(0, 0, z|r′)

∂z′

∣∣∣∣∣∣
z′=0

. (8.61)

A key insight is that the Dirichlet Green function in (8.61) is exactly the potential in the z′ > 0 half-
space above a flat, grounded conductor due to a unit point charge on the positive z-axis. But this is
exactly the problem we solved in Section 8.3 using the method of images. Therefore, making use of
(8.3), we find that

lim
z→0+

ε0
∂GD

∂z′

∣∣∣∣
z′=0

= lim
z→0+

1

2π

z

[x ′2 + y ′2 + z2]3/2
. (8.62)

Finally, the presumed correctness of (8.61) implies that the right side of (8.62) is a representation of
the two-dimensional delta function δ(x ′)δ(y ′). This is so because (i) it vanishes when z → 0 unless
x ′ = 0 and y ′ = 0 and (ii) its integral over a disk of radius R centered at the origin is unity. The latter
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is best carried out in polar coordinates with ρ ′ =
√
x ′2 + y ′2 = zσ because

lim
z→0

R∫
0

dρ ′ ρ ′ z

(ρ ′2 + z2)3/2
= lim

z→0

R/z∫
0

dσ
σ

(σ 2 + 1)3/2
= 1. (8.63)

We now turn to the first term—the volume integral—in the magic rule (8.60). The meaning of this
term is best appreciated if we choose the boundary surface S to be a perfect conductor held at potential
ϕ0. In that case, the divergence theorem and (8.50) reduce the surface integral in (8.60) to the constant
value ϕ0. We then mimic (8.2) and decompose the Green function according to

GD(r, r′) = 1

4πε0

1

|r − r′| +�(r, r′) r, r′ ∈ V. (8.64)

The point charge potential on the right side of (8.64) is a particular solution of (8.50). Therefore, the
function �(r, r′) must (i) solve Laplace’s equation in V ,

∇2�(r, r′) = 0 r, r′ ∈ V, (8.65)

and (ii) ensure that the sum (8.64) satisfies the boundary condition (8.53). Substituting (8.64) into the
(remaining) volume term in (8.60) gives

ϕ(r ∈ V ) = 1

4πε0

∫
V

d 3r ′ ρ(r′)
|r − r′| +

∫
V

d 3r ′ �(r, r′)ρ(r′) + ϕ0. (8.66)

The first term is the direct effect of ρ(r). The second term is the indirect effect of ρ(r). That is, �(r, r′)
is electrostatic potential at r due to the charge induced on the conductor surface by a unit strength
point charge at r′.

A quick application of (8.66) is to find the force on a point charge q located at a point s inside
(or outside) an oddly shaped, perfectly conducting shell. Because ρ(r′) = qδ(r′ − s), and the charge
cannot exert a force on itself,

F(s) = qEind(s) = −q2∇�(r, s)
∣∣
r=s . (8.67)

8.5.2 Calculation of Dirichlet Green Functions
We have seen that the Dirichlet Green function is the electrostatic potential of a unit-strength point
charge in the presence of a grounded boundary. For planar and spherical boundaries, the method of
images is sufficient to find GD(r, r′). In the sections to follow, we outline three other methods used
to calculate Dirichlet Green functions. They are discussed in order of increasing explicitness of their
treatment of the delta function singularity in (8.50).

8.5.3 The Method of Eigenfunction Expansion
This approach to GD(r, r′) is best understood by analogy with the quantum mechanics of a free
particle trapped in a volume V by impenetrable walls. The eigenfunctions of such a particle satisfy the
Schrödinger equation (in appropriate units),

− ∇2ψn(r) = λnψn(r) r ∈ V, (8.68)

and the boundary condition,

ψn(rS) = 0. (8.69)
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The eigenvalues λn are real and positive. The normalized eigenfunctions are complete (Section 7.4) so∑
n

ψn(r)ψ∗
n (r′) = δ(r − r′). (8.70)

Using this information, only two steps are needed to prove that the Dirichlet Green function for the
volume V is

GD(r, r′) = 1

ε0

∑
n

ψn(r)ψ∗
n (r′)

λn
. (8.71)

First, GD(r, r′) satisfies the differential equation (8.50). This follows from (8.70) and, using (8.68),
the fact that

∇2GD(r, r′) = 1

ε0

∑
n

∇2ψn(r)ψ∗
n (r′)

λn
= − 1

ε0

∑
n

ψn(r)ψ∗
n (r′). (8.72)

Second, GD(r, r′) satisfies the boundary condition (8.53). This is a consequence of (8.69):

GD(rS, r′) = 1

ε0

∑
n

ψn(rS)ψ∗
n (r′)

λn
= 0. (8.73)

Example 8.3 Find the charge density that must be glued to the surface of an insulating, cubical box
(0 ≤ x, y, z ≤ a) so the electric field everywhere outside the box is identical to the field produced
by a (fictitious) point charge Q located at the center of the box.

(x,y)σ

Q−
a

Figure 8.14: A grounded box with a point charge −Q at its center.

Solution: Replace the box in question by an identical box with perfectly conducting walls. Ground
the box and put a point charge −Q at its center (Figure 8.14). The charge drawn up from ground
must exactly annul the field of the point charge at every point outside the box. In other words, at
every exterior point, the field produced by the charge induced on the inside surface of the box is
identical to the field of a point charge +Q at the center of the box. This is the charge density we
should glue to the surface of the insulating box.

By symmetry, it is sufficient to consider only the z = a surface of the box. Since the interior
Dirichlet Green functionGD(x, y, z; x ′, y ′, z′) is exactly the electrostatic potential at (x, y, z) inside
the box due to a unit point charge at (x ′, y ′, z′) inside the box, the charge density of interest is

σ (x, y) = −ε0Q
∂

∂z
GD(x, y, z; 1

2 a,
1
2 a,

1
2 a)

∣∣
z=a .

A straightforward application of separation of variables to (8.68) yields the normalized eigenfunc-
tions indexed by the positive integers n, � , and m:

ψn�m(x, y, z) =
√

8

a3
sin

[nπx
a

]
sin

[
�πy

a

]
sin

[mπz
a

]
.
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The eigenvalues are λn�m = (π2/a2)(n2 + �2 +m2) so, by (8.71), the Green function is

GD(r, r′)= 8

ε0π2a

∞∑
n,� ,m=1

sin
[nπx

a

]
sin

[
�πy

a

]
sin

[mπz
a

]
sin

[
nπx ′

a

]
sin

[
�πy ′

a

]
sin

[
mπz′

a

]
n2 + �2 +m2

.

Using the first equation above, this gives the surface charge density in the form of the infinite
series

σ (x, y) = 8Q

πa2

∑
n,� ,m odd

(−1)
1
2 (n+�+m−3) m

n2 + �2 +m2
sin

[nπx
a

]
sin

[
�πy

a

]
.

The reader is invited to use the method of images to derive an entirely different representation for
the Green function calculated here and compare the numerical convergence of the corresponding
formula for σ (x, y) with the one obtained here.

8.5.4 The Method of Direct Integration
The direct-integration method proceeds in four steps. First, write δ(r − r′) in (8.50) as the product
of three one-dimensional delta functions. Second, use completeness relations to represent two of
the three delta functions. Third, use the same relations to motivate an ansatz for a Green function
which transforms (8.50) into an inhomogeneous, ordinary differential equation. Finally, integrate this
differential equation taking proper account of the point charge singularity and the boundary conditions.

As an example, let us find a cylindrical representation of the free-space Green function,

G0(r, r′) = 1

4πε0

1

|r − r′| . (8.74)

This problem amounts to solving (8.50) in the form

∇2G0(ρ, φ, z; ρ ′, φ′, z′) = − 1

ε0

δ(ρ − ρ ′)δ(φ − φ′)δ(z − z′)
ρ

, (8.75)

with the boundary condition that G0(r, r′) → 0 when |r| → ∞.
Our strategy calls for replacing two of the delta functions in (8.75) with completeness relations

constructed from orthonormal solutions to Laplace’s equation in cylindrical coordinates (Section 7.8).
There are no boundaries in the z- or φ-directions, so it is appropriate to use completeness relations
constructed from “plane wave” exponential functions like

δ(z − z′) = 1

2π

∞∫
−∞

dk eik(z−z′) = 1

π

∞∫
0

dk cos k(z − z′) (8.76)

and

δ(φ − φ′) = 1

2π

∞∑
m=−∞

eim(φ−φ′). (8.77)

Guided by (8.76) and (8.77), we look for a Green function of the form

G0(r, r′) = 1

2π2

∞∑
m=−∞

∞∫
0

dk eim(φ−φ′) cos k(z − z′)Gm(ρ, ρ ′|k). (8.78)
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Substituting (8.78) into (8.75) eliminates the delta functions (8.76) and (8.77) from the right side of
(8.75) and leaves an ordinary differential equation for Gm(ρ, ρ ′|k):

1

ρ

d

dρ

(
ρ
dGm

dρ

)
−
(
k2 + m2

ρ2

)
Gm = − 1

ε0

δ(ρ − ρ ′)
ρ

. (8.79)

When ρ �= ρ ′, (8.79) is Bessel’s equation (7.82) with α = m and k2 < 0. Looking back at Sec-
tion 7.8.1, we see that the solution of (8.79) must be a linear combination of the modified Bessel
functions Im(kρ) and Km(kρ). Im(x) is regular at the origin and diverges as x → ∞, while Km(x)
diverges as x → 0 and goes to zero as x → ∞. Our solution must also behave properly at ρ = 0 and
as ρ → ∞. Therefore, if A is a constant, ρ> = max[ρ, ρ ′], and ρ< = min[ρ, ρ ′], the Green function
we need is

Gm(ρ, ρ ′|k) = AIm(kρ<)Km(kρ>). (8.80)

This formula builds in the fact that Gm(ρ, ρ ′|k) is continuous at ρ = ρ ′. If it were not, we would have
dGm/dρ ∝ δ(ρ − ρ ′) and d2Gm/dρ

2 ∝ δ′(ρ − ρ ′), which contradicts (8.79).
The constant A is determined by a “jump condition” obtained by integrating (8.79) over an infinites-

imal interval from ρ = ρ ′ − δ to ρ = ρ ′ + δ:

dGm

dρ

∣∣∣∣
ρ=ρ ′+δ

− dGm

dρ

∣∣∣∣
ρ=ρ ′−δ

= − 1

ε0ρ ′ . (8.81)

Physically, (8.81) is nothing more or less than the matching condition n̂2 · [E1 − E2] = σ/ε0 for the
case of a point charge on the cylindrical surface ρ = ρ ′. Finally, we use (8.80) to evaluate (8.81). The
result is

A{Km(kρ ′)I ′
m(kρ ′) −K ′

m(kρ ′)Im(kρ ′)} = 1

ε0kρ ′ . (8.82)

The quantity in curly brackets is the Wronskian of the modified Bessel functions Km(x) and Im(x) (see
Appendix C.3.1):

W [Km(x), Im(x)] = Km(x)I ′
m(x) −K ′

m(x)Im(x) = 1

x
. (8.83)

This fixes A = 1/ε0 in (8.82).
We conclude that the desired cylindrical representation of the free-space Green function is

G0(r, r′) = 1

2π2ε0

∞∑
m=−∞

∞∫
0

dk eim(φ−φ′) cos k(z − z′)Im(kρ<)Km(kρ>). (8.84)

This formula is the cylindrical analog of the spherical representation (4.84) derived in connection with
the multipole expansion:

1

4πε0

1

|r − r′| = 1

4πε0r>

∞∑
�=0

4π

2� + 1

(
r<

r>

)� �∑
m=−�

Y ∗
�m(�<)Y�m(�>). (8.85)

Indeed, the reader may wish to derive (8.85) using the method of direct integration and the completeness
relation for the spherical harmonics,

∞∑
�=0

�∑
m=−�

Y ∗
�m(θ ′, φ′)Y�m(θ, φ) = δ(cos θ − cos θ ′)δ(φ − φ′). (8.86)
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Example 8.4 Find the potential between two infinite, grounded plates coincident with z = 0 and
z = d when a point charge q is interposed between them at z = z0. Find the charge induced on the
z = d plate.

Solution: The Dirichlet Green function for this problem (the potential between the plates) satisfies
(8.75) with the boundary condition that GD(r, r′) vanishes at z = 0 and z = d. The construction
algorithm is same as the one that led to (8.84) except that we replace the delta function representation
(8.76) by a completeness relation constructed from solutions of Laplace’s equation that satisfy the
zero-potential boundary conditions at z = 0 and z = d:

2

d

∞∑
n=1

sin
[nπz

d

]
sin

[
nπz′

d

]
= δ(z − z′).

Proceeding exactly as before, the Green function for the volume between the plates is

GD(r, r′) = 1

ε0πd

∞∑
n=1

∞∑
m=−∞

eim(φ−φ′) sin
[nπz

d

]
sin

[
nπz′

d

]
Im

(nπρ<
d

)
Km

(nπρ>
d

)
.

The potential is rotationally symmetric around an axis perpendicular to the plates which passes
through the point charge position (x0, y0, z0). Therefore, if we choose the origin of coordinates so
x0 = y0 = 0, we can put m = 0 and ρ ′ = 0 in the Green function. Because I0(0) = 1, we conclude
that the potential between the plates is

ϕ(ρ, z) = q

ε0πd

∞∑
n=1

sin
[nπz

d

]
sin

[nπz0

d

]
K0

(nπρ
d

)
.

We note in passing that the asymptotic behavior of the modified Bessel function is

Kα(x � 1) �
√

π

2x
e−x .

This implies that the n = 1 term dominates the sum when ρ � d. Up to a slowly varying pre-factor,
it also confirms the correctness of the long-distance exponential decay we predicted in (8.21) for
this problem. The charge induced on the z = d plate is9

Q(d) = ε0

2π∫
0

dφ

∞∫
0

dρ ρ
∂ϕ

∂z

∣∣∣∣
z=d

= 2q

π

∞∑
n=1

(−1)n
1

n
sin

[nπz0

d

] ∞∫
0

dy yK0(y) = − z0

d
q.

This confirms the result found in Example 5.3 (Section 5.4.3) using Green’s reciprocity theorem.

8.5.5 The Method of Splitting
We conclude with a calculational method which splits the Green function into two terms. One term is
the Coulomb potential of a point charge at r = r′. The other term is a linear combination of solutions
to Laplace’s equation chosen to guarantee that the boundary conditions are satisfied. This was the
strategy used in (8.64), which we repeat here for convenience:

GD(r, r′) = G0(r, r′) +�(r, r′) = 1

4πε0

1

|r − r′| +�(r, r′). (8.87)

9 The integral over y is one and the sum over n is −πz0/2d . See, e.g., I.S. Gradshteyn and I.M. Ryzhik, Table of
Integrals, Series, and Products (Academic, New York, 1980).
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The symmetry of the problem dictates the forms of both G0(r, r′) and �(r, r′). For example,
to find the exterior Green function of an infinitely long tube centered on the z-axis, we use the
cylindrical representation (8.84) for the point charge potential in (8.87) and a sum of solutions of
Laplace’s equations in cylindrical coordinates for �(r, r′). A choice that vanishes at infinity, respects
the reciprocal symmetry (8.58), and resembles the point charge potential as much as possible is

�(r, r′) = 1

2π2ε0

∞∑
m=−∞

∞∫
0

dk eim(φ−φ′) cos k(z − z′)BmKm(kρ)Km(kρ ′). (8.88)

The boundary condition GD(ρ = R, r′) = 0 fixes the values of the expansion coefficients as Bm =
−Im(kR)/Km(kR). Therefore, the exterior Dirichlet Green function for a cylinder with radius R is

GD(r, r′) = 1

2π2ε0

∞∑
m=−∞

∞∫
0

dk eim(φ−φ′) cos k(z − z′)
{
Im(kρ<) − Im(kR)

Km(kR)
Km(kρ<)

}
Km(kρ>).

(8.89)

The first term in the curly brackets in (8.89) isG0(r, r′) in (8.87). The second term in the curly brackets
is �(r, r′) in (8.87).

Application 8.2 A Point Charge outside a Grounded Tube

We can use the Green function (8.89) to find the attractive force between a grounded cylindrical tube
of radius R and a point charge q which lies at a point r′ = (�, 0, 0) far outside the tube. This is the
analog of the image force (8.7) exerted on a charge by a grounded plane. We choose this example
because it is difficult to obtain the answer without appeal to a Green function. Symmetry demands that
F = F ρ̂ and a direct application of (8.67) using (8.89) gives

F (�) = q2

2π2ε0R2

∞∑
m=−∞

∞∫
0

dx x
Im(x)

Km(x)
K ′
m(x�/R)Km(x�/R). (8.90)

We are interested in the asymptotic limit of this expression when � � R. The guess that F ∝ 1/�
(true for a point charge far from a uniform line of charge) is not correct because the charge density
induced on the surface of the cylinder is not uniform along its length.

To make progress, we use the asymptotic form of the modified Bessel function Km(x) quoted in
Example 8.4 to conclude that

K ′
m(x�/R)Km(x�/R) ∼ −π

2

R

x�
e−x�/R � � R. (8.91)

The corresponding asymptotic formula Im(x � 1) ∼ ex/
√

2πx implies that the integrand of (8.90)
goes exponentially to zero at the upper limit of the integral. On the other hand, Km(x) ∝ 1/xm and
Im(x) ∝ xm as x → 0 while K0(x) ∼ ln(2/x) and I0(x) ∼ 1 as x → 0. With this information, it is not
difficult to convince oneself that (8.90) is dominated by the m = 0 term in the sum near the lower limit
of the integral. Therefore, when � � R,

F ∼ q2

2π2ε0R2

πR

2�

∞∫
0

dx

ln x
e−2�x/R. (8.92)

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-08 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:43

260 POISSON’S EQUATION: THE POTENTIAL PRODUCED BY VOLUME CHARGE

The integral in (8.92) can be evaluated asymptotically10 with the result that

F (�) ∼ − q2

8πε0

1

�2 ln(2�/R)
� � R. (8.93)

As might be expected on geometric grounds, the magnitude of the asymptotic force between a point
charge and an infinite grounded cylinder is weaker than the force between a point charge and an infinite
grounded plane (F ∼ �−2) but stronger than the force between a point charge and a finite grounded
sphere (F ∼ �−3). �

8.6 The Complex Logarithm Potential

Section 7.10 outlined an approach to two-dimensional electrostatics based on the fact that the real and
imaginary parts of an analytic function both satisfy Laplace’s equation. This method generalizes to
two-dimensional Poisson problems because the potential of a line charge at the origin with uniform
charge density λ is the real part11 of the complex potential

f (w) = − λ

2πε0
lnw = − λ

2πε0
{ln r + iθ} . (8.94)

The function lnw is analytic everywhere except at w = 0. Therefore, we can superpose complex
potentials like (8.94) and synthesize virtually any two-dimensional charge distribution of interest. For
example, the potential produced by a positive line charge at w = −a and a negative line charge at
w = a is the real part of the complex function

f1(w) = − λ

2πε0
ln
w + a

w − a
. (8.95)

We can use (8.95) to derive the complex potential of a line dipole. This is the limit of f1(w) when
λ → ∞ and a → 0 while holding their product finite. Using ln(1 + δ) � δ, the result is

f2(w) = − λa

πε0w
. (8.96)

Therefore, since w = x + iy and r2 = x2 + y2, the physical potential of the line dipole can be written
in terms of the dipole moment per unit length p = −2λax̂ as

ϕ(x, y) = Ref2(w) = 1

2πε0

p · r
r2

. (8.97)

Application 8.3 A Wire Array above a Grounded Plane

In Section 7.5.1, we studied an array of parallel charged lines as a model for a Faraday cage. This
situation mimics an array of conducting wires because the equipotential surfaces are the same for
observation points close to each wire. A closely related problem with many practical applications12 is

10 See Equation (2.20) of B. Wong, Asymptotic Approximations of Integrals (Academic, Boston, 1989).
11 In the notation of Section 7.10, we choose f = ϕ + iψ .
12 An example is the wire chamber, a device used in particle physics to infer the trajectory of rapidly moving particles

of ionizing radiation.
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an an infinite planar array of parallel lines with charge density λ placed at a distance d above a flat,
grounded conductor of infinite extent (Figure 8.15). The method of images tells us that the ground
plane can be replaced by an array of lines with charge density −λ located at a distance d below the
ground plane. Therefore, the potential for y > 0 can be generated by an array of pairs of oppositely
charged lines of the sort described by (8.95).

If a is the distance between adjacent lines, a fruitful line of analysis focuses on the complex
potential

f3(w) = − λ

2πε0
ln

{
sin [(π/a)(w − id)]

sin [(π/a)(w + id)]

}
. (8.98)

da
2R

d

x

y

Figure 8.15: An array of identical line charges (solid dots) above a ground plane at y = 0. The open dots
are image line charges that can replace the ground plane to find the potential for y > 0. The dashed circles
are equipotentials very close to the line charges that can be regarded as the surfaces of an array of
conducting wires.

The complex number w = id + na + w0 is especially interesting if n is an integer and |w0| � 1.
This identifies w as a point in the immediate vicinity of wn = (na, d). Moreover,

ln sin[(π/a)(w − id)] = ln[(−1)n sin(πw0/a)] ≈ ln[(−1)n(πw0/a)]. (8.99)

Therefore, up to an inessential constant, the real part of (8.99) is ln |w0|. Comparison with (8.94)
shows that the numerator of (8.98) contributes to singularities in the potential like a collection of
positive line charges located at the points (na, d). A similar argument shows that the denominator of
(8.98) contributes to singularities in the potential like a collection of negative line charges located at
the points (na,−d). That being said, f3(w) in (8.98) is itself an analytic function of w. This leads us
to conclude that the physical potential above the ground plane is

ϕ(x, y) = Ref3(z) = λ

4πε0
ln

{
sin2 (πx/a) + sinh2[(π/a)(y + d)]

sin2 (πx/a) + sinh2[(π/a)(y − d)]

}
. (8.100)

It is not difficult to calculate the capacitance of the structure in Figure 8.15 if we interpret the
dashed equipotentials as the surfaces of conducting wires. Let R be the wire radius and assume that
R � a � d. We can compute the potential V at a typical point on the wire array using (8.100) with,
say, x = 0 and y = d + R. The result is

V ≈ λ

2πε0
ln

a

2πR
+ λd

ε0a
. (8.101)

Therefore, the capacitance per unit area between the wire array and the ground plane is

C

A
= σ

V
= λ/a

V
� 2πε0

a ln(a/2πR) + 2πd
. (8.102)

This formula correctly recovers the parallel-plate result, C/A = ε0/d , when the spacing a between
the wires is small compared to their separation 2d. �
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Example 8.5 Find the potential between two grounded plates at y = 0 and y = d with an interposed
line charge λ at (0, d/2).

Solution: A straightforward application of the method of images produces a solution to this
problem in the form of an infinite sequence of images (cf. Section 8.3.4). However, we can reduce
our labor to a single image and get a closed-form solution in the bargain if we use the method of
conformal mapping (see Section 7.10.4) to map the strip 0 ≤ y ≤ d into the upper half complex
plane. Figure 8.16 illustrates the mapping from w = x + iy to

g(w) = u(w) + i v(w) = exp(πw/d).

As indicated by the capital letters in the figure, the line y = 0 from (−∞, 0) to (∞, 0) maps to the
positive u-axis from (0, 0) to (0,∞). Similarly, the line y = d from (−∞, d) to (∞, d) maps to
the negative u-axis from (0, 0) to (0,−∞). The x = 0 line segment from (0, 0) through (0, d/2)
to (0, d) maps to the upper half of the unit circle |g| = 1 from (1, 0) through (0, 1) to (−1, 0).
Therefore, a line charge at w = id/2 maps to a line charge at g0 = i.

x

y

A

DC

C_

C+ F B

G

E

d

w = x + iy

u
A BCE F

G

D

g = u + iv
v

Figure 8.16: The conformal transformation g = exp(πw/d) maps the strip 0 ≤ y ≤ d of the w = x + iy

plane to the upper half g = u+ iv plane. The capital letters are points before and after mapping. The dark
dot labeled D is the position of the line charge.

The plane v = 0 will be at zero potential if an image line charge is placed at the point g∗
0 = −i.

Using (8.94), the complex potential of a positive line charge λ at g0 and a negative line charge −λ
at g∗

0 is

f (g(w)) = − λ

2πε0
ln

[
g(w) − g0

g(w) − g∗
0

]
= − λ

2πε0
ln

[
exp(πw/d) − i

exp(πw/d) + i

]
.

The physical electrostatic potential is the real part of f (w):

ϕ(x, y) = − λ

2πε0
ln

{
e2πx/d cos2(πx/d) + [eπx/d sin(πy/d) − 1]2

e2πx/d cos2(πx/d) + [eπx/d sin(πy/d) + 1]2

}
.

This function vanishes at y = 0 and y = d as it must.

8.7 The Poisson-Boltzmann Equation

We have focused so far on situations where the volume part of the Poisson charge density is specified
and immobile. The resulting polarization of nearby conductors and simple dielectrics leads to induced
distributions of charge on the surface of these bodies. However, it often occurs in biophysics, plasma
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z

ε

ε

Figure 8.17: A charged sheet at z = 0 immersed in a neutral dielectric. Mobile charged particles (black dots)
dispersed in the dielectric make the system overall charge-neutral.

physics, and condensed matter physics that immobile surface charges redistribute mobile volume
charge in such a way that ρ(r) �= 0 in equilibrium.

Consider the situation depicted in Figure 8.17, where a plane (z = 0) with uniform charge densityσ is
embedded in a medium with dielectric permittivity ε. This creates an electric field E0 = ẑ sgn(z)σ/2ε.
Now neutralize the system by adding to the dielectric medium a number density n0 of mobile particles,
each with charge q. Our interest is to find E(z) and the equilibrium density of mobile particles n(z).
We assume that the latter obey Boltzmann statistics.

If ϕ(z) is the electrostatic potential, the charge density of the system is

ρ(z) = σδ(z) + qn(z) = σδ(z) + qn0 exp {−qϕ(z)/kT } . (8.103)

Substituting this into (8.1) (with ε0 replaced by ε) produces a special case of the Poisson-Boltzmann
equation,

d2ϕ

dz2
+ qn0

ε
e−qϕ/kT = −σ

ε
δ(z). (8.104)

We get one boundary condition by integrating (8.104) over an infinitesimal interval around z = 0.
Since ϕ(z) = ϕ(−z), this gives

dϕ

dz

∣∣∣∣
z=0+

= − σ

2ε
. (8.105)

We will also impose the boundary condition that E(z) → 0 as z → ∞.
It is convenient to define a dimensionless potential ψ(z) = qϕ/kT and a length � = q2/εkT so

(8.104) becomes

d2ψ

dz2
+ � n0 e

−ψ = 0 (z �= 0). (8.106)

To solve (8.106), multiply the entire equation by dψ/dz, integrate over z between z1 and z2, and use
the Boltzmann expression for n(z). The result is(

dψ

dz

)2

z=z1

−
(
dψ

dz

)2

z=z2

= 2�[n(z1) − n(z2)]. (8.107)

We can integrate (8.107) again if n(z2) = 0, ∂ψ/∂z|z2 = 0, and z2 = ∞. This produces the reduced
potential

ψ(z) = 2 ln

{√
�n0

2
(z + b)

}
. (8.108)
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Bearing in mind that q and σ have opposite signs, the choice b = 4|q|/�σ ensures that ψ(z) satisfies
the z = 0 boundary condition. This solves the problem.

The charge density of the mobile particles is

qn(z) = qn0 exp(−ψ) = 2q

�

1

(z + b)2
. (8.109)

As expected, (8.109) integrates to −σ/2 on both sides of the interface. We also find that the electric
field E = −(kT /q)∇ψ in the medium is

E(z) = b

|z| + b
E0. (8.110)

This formula shows that mobile charges screen the uniform electric field of an oppositely charged
interface by a factor that varies algebraically with z. This may be compared with the situation studied
in Section 5.7 where a neutral medium composed of mobile charges of one sign and immobile charges
of opposite sign screens the Coulomb field of a point charge by a factor that varies exponentially with
distance from the point charge.

�
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1998).

A biography of the enigmatic George Green is
D.M. Cannell, George Green (Athlone Press, London, 1993).

Poisson problems with apertures lead to mixed boundary condition problems of the sort discussed in
I.N. Sneddon, Mixed Boundary Value Problems in Potential Theory (North-Holland, Amsterdam, 1966).

V.I. Fabrikant, Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering
(Kluwer, Dordrecht, 1991).

Section 8.5 Our approach to Dirichlet’s Green functions draws heavily on Barton (see Section 8.1 above).
Example 8.3 was devised by Prof. Michael Cohen of the University of Pennsylvania. Application 8.2 was drawn
from

B.E. Granger, P. Král, H.R. Sadeghpour, and M. Shapiro, “Highly extended image states around nanotubes”,
Physical Review Letters 89, 135506 (2002).

Section 8.6 Application 8.3 comes from Morse and Feshbach (see Section 8.1 above).
Section 8.7 For more information about the Poisson-Boltzmann equation, see

J.-N. Chazalviel, Coulomb Screening by Mobile Charges (Birkhäuser, Boston, 1999).

D. Andelman, “Electrostatic properties of membranes”, in Handbook of Biological Physics, edited by
R. Lipowsky and E. Sackmann (Elsevier, Amsterdam, 1995), Volume 1.

Problems
8.1 The Image Force and Its Limits The text showed that the attractive force F between an origin-centered,

grounded, conducting sphere of radius R and a point charge located at a point s > R on the positive z-
axis varies as 1/s3 when s � R. Replace the sphere by a grounded conductor of any shape. Use Green’s
reciprocity principle to show that the force between the conductor and the charge still varies as 1/s3 when
s is large compared to the characteristic size of the conductor.
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8.2 Point Charge near a Corner Two semi-infinite and grounded conducting planes meet at a right angle as
seen edge-on in the diagram. Find the charge induced on each plane when a point charge Q is introduced as
shown.

8.3 Rod and Plane The diagram below shows a rod of length L and net charge Q (distributed uniformly over
its length) oriented parallel to a grounded infinite conducting plane at the distance d from the plane.

x

y

zd

Q

L

(a) Evaluate a double integral to find the exact force exerted on the rod by the plane.
(b) Simplify your result in part (b) in the limit d � L. Give a physical argument for your result.
(c) Find the charge density σ (x, y) induced on the conducting plane.
(d) Find the total charge induced on the plane without integrating σ (x, y).

8.4 A Dielectric Slab Intervenes An infinite slab with dielectric constant κ = ε/ε0 lies between z = a and
z = b = a + c. A point charge q sits at the origin of coordinates. Let β = (κ − 1)/(κ + 1) and use solutions
of Laplace’s equation in cylindrical coordinates to show that

ϕ(z > c) = q(1 − β2)

4πε0

∞∫
0

dk
J0(kρ) exp(−kz)

1 − β2 exp(−2kc)
= q(1 − β2)

4πε0

∞∑
n=0

β2n√
(z + 2nc)2 + ρ2

.

Note: The rightmost formula is a sum over image potentials, but it is much more tedious to use images from
the start.

8.5 The Force Exerted by a Charge on a Dielectric Interface The half-plane z < 0 has dielectric constant
κL and the half-plane z > 0 has dielectric constant κR . Embed a point charge q on the z-axis at z = −d. The
text computed the force on q to be

Fq = − 1

4πεL

q2

4d2

κL − κR

κL + κR
ẑ.

(a) Use the stress tensor formalism to show that the force on the z = 0 interface is equal in magnitude but
opposite in direction to Fq .

(b) Show that the Coulomb force on the interfacial surface polarization charge density,

F =
∫

dSσP
EL + ER

2
,

does not give the correct force. Hint: See Application 6.2.
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8.6 Image Energy and Real Energy Suppose that a collection of image point charges q1, q2, . . . , qN is used
to find the force on a point charge q at position rq due to the presence of a conductor held at potential ϕC .
Let UA be the electrostatic potential energy between q and the conductor. Let UB be the electrostatic energy
of q in the presence of the image charges. Find the general relation between UA and UB and confirm that
UA = 1

2UB when ϕC = 0.

8.7 Images in Spheres I A point charge q is placed at a distance 2R from the center of an isolated, conducting
sphere of radius R. The force on q is observed to be zero at this position. Now move the charge to a
distance 3R from the center of the sphere. Show that the force on q at its new position is repulsive with
magnitude

F = 1

4πε0

173

5184

q2

R2
.

Hint: A spherical equipotential surface remains an equipotential surface if an image point charge is placed
at its center.

8.8 Images in Spheres II Positive charges Q and Q′ are placed on opposite sides of a grounded sphere of
radius R at distances of 2R and 4R, respectively, from the sphere center. Show that Q′ is repelled from the
sphere if Q′ < (25

/
144)Q.

8.9 Debye’s Model for the Work Function In 1910, Debye suggested that the work function W of a metal
could be computed as the work performed against the electrostatic image force when an electron is removed
from the interior of a finite piece of metal to a point infinitely far outside the metal. Model the metal as a
perfectly conducting sphere with a macroscopic radius R and suppose that the image force only becomes
operative at a microscopic distance d outside the surface of the metal.

(a) Show that

W = e2

8πε0

[
2

R + d
− R

(R + d)2
+ R

(R + d)2 − R2

]
.

Hint: Removing an electron from the metal leaves the metal with a net charge.
(b) Let x = d

/
R and take the limit R → ∞ to find the Debye model prediction for the work function of a

semi-infinite sample. It is understood today that the image force plays an insignificant role in the work
function.

8.10 Force between a Line Charge and a Conducting Cylinder Let b the perpendicular distance between
an infinite line with uniform charge per unit length λ and the center of an infinite conducting cylinder with
radius R = b/2.

R

b

(a) Show that the charge density induced on the surface of the cylinder is

σ (φ) = − λ

2πR

(
3

5 − 4 cosφ

)
.

(b) Find the force per unit length on the cylinder by an appropriate integration over σ (φ).
(c) Confirm your answer to (b) by computing the force per unit length on the cylinder by another

method.

Hint: Let the single image line inside the sphere fix the potential of the cylinder.
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8.11 Point Dipole in a Grounded Shell A point electric dipole with moment p sits at the center of a grounded,
conducting, spherical shell of radius R. Use the method of images to show that the electric field inside the
shell is the sum of the electric field produced by p and a constant electric field E = p/4πε0R

3.

Hint: Use the formula for the charge density induced on a grounded plane by a point charge q located a
distance z0 above the plane: σ (ρ) = −qz0/[2π(ρ2 + z2

0)3/2].

8.12 Inversion in a Cylinder

(a) Let �(ρ, φ) be a solution of Laplace’s equation in a cylindrical region ρ < R. Show that the function
�(ρ, φ) = �(R2/ρ, φ) is a solution of Laplace’s equation in the region ρ > R.

(b) Show that a suitable linear combination of the functions� and� in part (a) can be used to solve Poisson’s
equation for a line charge located anywhere inside or outside a grounded conducting cylindrical shell.

(c) Show that a linear combination of the functions � and � can be used to solve Poisson’s equation for
a line charge located inside or outside a solid cylinder of radius R and dielectric constant κ1 when the
cylinder is embedded in a space with dielectric constant κ2.

(d) Comment on the implications of this problem for the method of images.

8.13 Symmetry of the Dirichlet Green Function Use Green’s second identity to prove that GD(r, r′) =
GD(r′, r).

8.14 Green Function Inequalities The Dirichlet Green function for any finite volume V can always be written
in the form

GD(r, r′) = 1

4πε0

1

|r − r′| +�(r, r′) r, r′ ∈ V.

The function �(r, r′) satisfies ∇2�(r, r′) = 0.

(a) Use the physical meaning of the Dirichlet Green function to prove that

GD(r, r′) <
1

4πε0

1

|r − r′| .

(b) Use Earnshaw’s theorem to prove that

GD(r, r′) > 0.

8.15 The Potential of a Voltage Patch The plane z = 0 is grounded except for an finite area S0 which is held
at potential ϕ0. Show that the electrostatic potential away from the plane is

ϕ(x, y, z) = ϕ0|z|
2π

∫
S0

d 2r ′

|r − r′| .

8.16 The Charge Induced by Induced Charge Maintain the plane z = 0 at potential V and introduce a
grounded conductor somewhere into the space z > 0. Use the “magic rule” for the Dirichlet Green function
to find the charge density σ (x, y) induced on the z = 0 plane by the charge σ0(r) induced on the surface S0

of the grounded conductor.

8.17 Free-Space Green Functions by Eigenfunction Expansion Find the free-space Green functionG(d)
0 (r, r′)

in d = 1, 2, 3 space dimensions by the method of eigenfunction expansion. For d = 2, you will need (i)
an integral representation of J0(x); (ii) the regularization k−1 = limη→0 k/(k2 + η2); and (iii) an integral
representation of K0(x). For d = 1, you will need (1.111) and the fundamental definition of the Green
function.

8.18 Free-Space Green Function in Polar Coordinates The free-space Green function in two dimensions
(potential of a line charge) is G(2)

0 (r, r′) = − ln |r − r′|/2πε0. Use the method of direct integration to reduce
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the two-dimensional equation ε0∇2G(r, r′) = −δ(r − r′) to a one-dimensional equation and establish the
alternative representation

G
(2)
0 (r, r′) = − 1

2πε0
ln ρ> + 1

2πε0

∞∑
m=1

1

m

ρm<
ρm>

cosm(φ − φ′).

8.19 Using a Cube to Simulate a Point Charge

(a) Use completeness relations to represent δ(x − x ′)δ(y − y ′) and then the method of direct integration
for the inhomogeneous differential equation which remains to find the interior Dirichlet Green function
for a cubical box with side walls at x = ±a, y = ±a, and z = ±a.

(b) Use the result of part (a) to find the charge density that must be glued onto the surfaces of an insulating
box with sides walls at x = ±a, y = ±a, and z = ±a so that the electric field everywhere outside the
box is identical to the field of a (fictitious) point charge Q located at the center of the box. It is sufficient
to calculate σ (x, y) for the z = a face. Give a numerical value (accurate to 0.1%) for σ (0, 0).

(c) This problem was solved in the text by a different method. Check that both methods give the same
(numerical) answer for σ (0, 0).

8.20 Green Function for a Sphere by Direct Integration

(a) Use the completeness relation,∑
�m

Y�m(r̂)Y ∗
�m(r̂′) = 1

sin θ
δ(θ − θ ′)δ(φ − φ′),

and the method of direct integration to show that

G(r, r′) = 1

4πε0

∞∑
�=0

{
r�<
r�+1
>

− r�<r
�
>

R2�+1

}
P�(r̂ · r̂′)

is the interior Dirichlet Green function for a sphere of radius R.
(b) Show that G(r, r′) above is identical to the image solution for this problem.

8.21 The Charge Induced on a Conducting Tube

(a) Derive an integral expression for the charge density σ (φ, z) induced on the outer surface of a conducting
tube of radius R when a point charge q is placed at a perpendicular distance s > R from the symmetry
axis of the tube.

(b) Confirm that the point charge induces a total charge −q on the tube surface.
(c) Show that the angle-averaged linear charge density falls off extremely slowly with distance along the

length of the tube. Specifically, show that, as z → ∞,

λ(z) = R

∫ 2π

0
dφ σ (φ, z) ∼ − q ln(s/R)

z ln2(z/R)
.

8.22 Green Function for a Dented Beer Can An empty beer can is bounded by the surfaces z = 0, z = h, and
ρ = R. By slamming it against his forehead, a frustrated football fan dents the can into the shape shown
below. Our interest is the interior Dirichlet Green function of the dented can.

2

p
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(a) Show that suitable choices for the allowed values of γ and β in the sums makes the ansatz

GD(r, r′) =
∑
γ

∑
β

sin(γ z) sin(γ z′) sin(βφ) sin(βφ′)gγβ (ρ, ρ ′)

satisfy the boundary conditions at z = 0, z = h, φ = 0, and φ = 2π/p, and thus reduces the defining
equation for the Green function to a one-dimensional differential equation for gαβ (ρ, ρ ′).

(b) Complete the solution for GD(r, r′).

8.23 Weyl’s Formula Write δ(r − r′) = δ(r⊥ − r′⊥)δ(z − z′) and use direct integration to derive Weyl’s for-
mula for the free-space Green function in three dimensions,

G0(r, r′) = 1

2ε0

∫
d2k⊥
(2π )2

eik⊥·(r⊥−r′
⊥) 1

k⊥
e−k⊥|z−z′ |.

8.24 Electrostatics of a Cosmic String A cosmic string is a one-dimensional object with an extraordinarily
large linear mass density (μ ∼ 1022 kg/m) which (in some theories) formed during the initial cool-down of
the Universe after the Big Bang. In two-dimensional (2D) general relativity, such an object distorts flat space-
time into an extremely shallow cone with the cosmic string at its apex. Alternatively, one can regard flat 2D
space as shown below: undistorted but with a tiny wedge-shaped region removed from the physical domain.
The usual angular range 0 ≤ φ < 2π is thus reduced to 0 ≤ φ < 2π/p where p−1 = 1 − 4Gμ/c2, G is
Newton’s gravitational constant, and c is the speed of light. The two edges of the wedge are indistinguishable
so any physical quantity f (φ) satisfies f (0) = f (2π/p) .

unphysical region2 p

(a) Begin with no string. Show that the free-space Green function in 2D is

G0(ρ, ρ ′) = − 1

2πε0
ln |ρ − ρ ′|.

(b) Now add the string so p �= 1. To find the modified free-space Green functionGp
0 (ρ, ρ ′), a representation

of the delta function is required which exhibits the proper angular behavior. Show that a suitable form
is

δ(φ − φ′) = p

2π

∞∑
m=−∞

eimp(φ−φ′).

(c) Exploit the ansatz

G
p
0 (ρ, φ, ρ ′, φ′) = p

2π

∞∑
m=−∞

eimp(φ−φ′)Gm(ρ, ρ ′)

to show that

G
p
0 (ρ, φ, ρ ′, φ′) = 1

2π

∞∑
m=1

cos[mp (φ − φ′)]
1

m

(
ρ<

ρ>

)mp

− p

2π
ln ρ>.

(d) Perform the indicated sum and find a closed-form expression for Gp
0 . Check that G1

0(ρ, ρ ′) correctly
reproduces your answer in part (a).

(e) Show that a cosmic string at the origin and a line charge q at ρ are attracted with a force

F = (p − 1)
q2ρ̂

4πε0ρ
.
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8.25 Practice with Complex Potentials Show that

f (z) = − λ

2πε0
ln tan

πz

a

can be used as the complex potential for an array of equally spaced, parallel, charged lines in the y = 0
plane. Let n be an integer and let x = na and x = (n+ 1

2 )a be the positions of the positive and negatively
charged lines, respectively. Find the asymptotic behavior (|y| → ∞) of the physical potential.
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9 Steady Current

The endless circulation of the electric fluid may appear
paradoxical and even inexplicable, but it is no less true.

Alessandro Volta (1800)

9.1 Introduction

We conclude our study of electrostatics with a class of problems where the ultimate source of E(r) is
electric charge in steady motion. In Section 2.1.2, we used a current density j(r, t) to characterize the
current I through an arbitrary surface S by

I =
∫
S

dS · j. (9.1)

We applied (9.1) to a closed surface and derived a continuity equation which relates j(r, t) to variations
in the charge density ρ(r, t):

∂ρ

∂t
+ ∇ · j = 0. (9.2)

In this chapter, we focus on charge densities which do not depend explicitly on time so (9.2) reduces
to the steady-current condition,

∇ · j(r) = 0. (9.3)

Steady currents produce time-independent magnetic fields (see Chapter 10). We will see in this chapter
that they can also produce time-independent electric fields. However, because the Maxwell equations
do not mix static electric fields with static magnetic fields, the fields of interest to us here satisfy the
conventional equations of electrostatics,

∇ · E = ρ

ε0
and ∇ × E = 0. (9.4)

9.1.1 The Steady-Current Condition
The meaning of the steady-current condition (9.3) becomes clear if we adopt a field line representation
for j (r) patterned after the field line representation for E(r) (Section 3.3.4). Our experience with Gauss’
law [left equation in (9.4)] tells us that lines of steady current density are like electric field lines when
no charge is present. This means that every line which enters an infinitesimal volume must also exit
that volume. In other words, every line of j (r) either closes on itself or begins and ends at infinity.
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9.2 Current in Vacuum 273

Figure 9.1: Field lines of a current density j(r) which satisfies the steady-current condition (9.3).

Figure 9.1 shows the field line pattern for a model current density which satisfies the steady-current
condition (9.3). To the extent that this sketch reminds the reader of an eddy pool formed by two
currents of water flowing in opposite directions, Figure 9.1 illustrates the analogy between electric
current flow and ordinary fluid flow.1 Indeed, we exploited this analogy in Section 2.1.2 to write down
a formula for j (r) when a velocity field υ(r) characterizes the motion of a charge density ρ(r):

j (r) = ρ(r)υ(r). (9.5)

The term convection current density is used for (9.5) when ρ(r) moves rigidly with uniform velocity
υ(r) = υ0. A microscopic convection current density often applies to neutral systems like semicon-
ductors and astrophysical and biological plasmas where several types of particles (not all with the same
algebraic sign of charge) contribute to the current density. When M species of particles with charges
qk and spatially uniform number densities nk move with uniform velocities υk , the current density is

j =
M∑
k=1

qknkυk. (9.6)

9.2 Current in Vacuum

A stream of identical charged particles moving uniformly in vacuum is the simplest example of
an electric current. It is an interesting example because the magnitude of the current is limited by
the electric field generated by the particles themselves. To see this, we analyze a vacuum diode2—a
parallel-plate capacitor with one plate heated so it ejects electrons by thermionic emission (Figure 9.2).
For simplicity, we assume that every electron is ejected with zero speed.

When the plate temperature is low, the number of emitted electrons is very small and each particle
simply accelerates across the gap under the influence of the potential ϕ(x) = xV/L. This is the usual
solution of Laplace’s equation between the plates of a capacitor (curve 1 of Figure 9.3). From (9.1)
and (9.5), electrons in the volume AL between the plates with an average speed υ produce an average
current per electron

I = A× 1

AL
× eυ = e

L
υ. (9.7)

1 No less a notable than J.J. Thomson—the discoverer of the electron—was explicit in 1937: “The service of the electric
fluid concept to the science of electricity, by suggesting and coordinating research, can hardly be overestimated.” The
analogy breaks down for phenomenon that depend on the details of the inter-particle forces in the fluid.

2 This device has disappeared from low-power consumer electronics—a victim of semiconductor technology.
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0x Lx

V

I

Figure 9.2: Schematic of a vacuum diode. Electrons are accelerated from a hot cathode (x = 0) to a cold metal
anode (x = L).

(x)

x

2

3

1

Figure 9.3: Electrostatic potential between the plates of a vacuum diode for (1) zero current; (2) an intermediate
value of current; and (3) saturated current.

The same average current also flows through the rest of the circuit. This follows from the fact (see
Example 5.3 in Section 5.4.3) that a charge e at a point x between parallel plates induces charges
QL = −e(1 − x/L) and QR = −ex/L on the left and right plates. When e moves, the plate charges
vary in time as Q̇L = eẋ/L and Q̇R = −eẋ/L. Therefore, a current per electron I = eυ/L flows
through the circuit.3

The rate of electron emission into the vacuum gap increases as the temperature of the cathode
increases. The current increases proportionally because each electron makes a contribution like (9.7).
Eventually, a non-negligible space charge4 density ρ(r) < 0 builds up between the plates. The potential
is no longer determined by Laplace’s equation but by Poisson’s equation,

∇2ϕ = −ρ/ε0. (9.8)

This is a signal that the Coulomb repulsion between electrons cannot be ignored. Since ∇2 ≡ d2/dx2

for this problem, (9.8) says that the potential ϕ(x) develops a positive curvature everywhere between
the plates as the electric self-field of the electrons begins to retard their acceleration (curve 2 of
Figure 9.3). The charge density and current increase with temperature nevertheless (albeit more
slowly) until, finally, dϕ/dx → 0 at x = 0. The current saturates at this point because there is no
electric field at the cathode to accelerate additional electrons across the gap (curve 3 of Figure 9.3).

The steady, saturated current satisfies (9.3) so the product j = ρ(x)υ(x) is a constant everywhere.
Also, because we assume υ(0) = 0, the kinetic energy of any electron is

1
2mυ

2(x) = eϕ(x). (9.9)

3 This argument implicitly uses a quasistatic approximation. See Chapter 14 for more details.
4 The term “space charge” generically refers to a volume of uncompensated charge in an otherwise neutral volume.
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Combining these facts with (9.8) gives

d2ϕ

dx2
= |j |

ε0

√
m

2e

1√
ϕ
. (9.10)

Now, multiply both sides of (9.10) by 2dϕ/dx, integrate, and demand that ϕ(0) = 0 and dϕ/dx|x=0 =
0. The latter is the condition for saturation. The result is(

dϕ

dx

)2

= |j |
ε0

√
8m

e

√
ϕ. (9.11)

Finally, take the square root of (9.11) and integrate again. This gives the space-charge-limited current
density in a form known as the Child-Langmuir law:

|j | = 4

9

√
2e

m

ε0V
3/2

L2
. (9.12)

Since C = ε0A/L is the capacitance of the diode, we can rationalize the dimensional structure of
(9.12) using the time �t it takes for the maximum capacitor charge �Q to traverse the vacuum gap:

I ∼ �Q

�t
∼ C�ϕ

�t
∼ (Aε0/L)V

L/
√

2eV/m
. (9.13)

9.3 Current in Matter

Current flow in neutral matter is a complex phenomenon whose proper microscopic description
requires arguments from statistical physics and quantum mechanics. Nevertheless, it is well established
phenomenologically that the current density in many systems obeys Ohm’s law,

j = σE. (9.14)

Like P = ε0χE, Ohm’s law is a constitutive relation which describes the material-dependent response
of a many-particle system to a specified stimulus. Here, it is the conductivity σ which carries the
material-dependent information.

Ohm’s law describes the motion of charged particles that are accelerated by an electric field but suffer
energy and momentum degrading collisions (scattering events) with other particles in the system.5

The linear dependence of j on E in (9.14)—as opposed to the non-linear dependence exhibited by
the Child-Langmuir law (9.12)—is one consequence of these collisions. Qualitatively, this can be
seen from a classical derivation (due to Drude) which balances the electric Lorentz force on a typical
conduction electron in a metal with an effective drag force due to collisions. If τ is the average time
between collisions, this balance makes it possible for the particles to achieve a terminal velocity υ

determined by

m
dυ

dt
= −eE − mυ

τ
= 0. (9.15)

The steady solution to (9.15) is called the drift velocity,6

υd = −eτ

m
E. (9.16)

5 In neutral systems, these collisions typically involve oppositely charged particles of a different species. In a metal,
electrons suffer collisions with nearly immobile ions. In a plasma, electrons suffer collisions with much heavier, and
thus much slower-moving, ions.

6 The drift velocity for electrons in the copper wires which carry current to small household appliances is very small,
about 10−3 m/s.
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j

dS

d� I

Figure 9.4: Portion of a filamentary ohmic wire where the streamlines of j and the vector dS are everywhere
parallel to the walls of the wire.

Substituting (9.16) into (9.6) with M = 1 gives Ohm’s law (9.14) with

σ = ne2τ

m
. (9.17)

Proper quantum mechanical calculations for a metal give the same result, albeit with a somewhat
different meaning for some of the symbols.7

9.3.1 The Filamentary-Wire Limit
Very often, we will be concerned with ohmic current flow in a thin filamentary “wire” where the
streamlines d� of j are everywhere parallel to the walls of the wire (Figure 9.4). In that case, if dS ‖ j
is a vector whose magnitude is a differential element of cross sectional area,∫

j d 3r =
∫ ∫

j (dS · d�) =
∫

(j · dS)
∫

d� = I

∫
d�. (9.18)

In all that follows, we will freely use (9.18) to take the filamentary limit of any volume integral which
contains j(r) in the integrand. For example, if C(r) is an arbitrary vector field,∫

d 3r j × C → I

∫
d� × C. (9.19)

9.4 Potential Theory for Ohmic Matter

Like other constitutive equations, Ohm’s law closes the Maxwell equations because it expresses the
charges or the currents—the sources of the fields—in terms of the fields themselves. If we generalize
(9.14) to account for macroscopic spatial inhomogeneities, the defining equations for current flow in
an ohmic medium are

∇ · j (r) = 0 (9.20)

j (r) = σ (r)E(r) (9.21)

∇ × E(r) = 0. (9.22)
The first two of these combine to give

σ (r) ∇ · E(r) + E(r) · ∇σ (r) = 0. (9.23)

The case when the conductivity is a constant independent of position is very important because
the second term on the left side of (9.23) vanishes. Since ρ(r) = ε0∇ · E(r) and (9.22) implies that

7 See, for example, J.M. Ziman, Principles of the Theory of Solids (University Press, Cambridge, 1964).
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E = −∇ϕ, we conclude that the interior of an ohmic conductor with uniform conductivity is charac-
terized by

σ (r) = σ ρ(r) = 0 ∇2ϕ(r) = 0. (9.24)

This is a significant result. It shows that the powerful machinery of potential theory can be applied to
find E(r) and j(r) for steady current flow in homogeneous ohmic matter.

9.4.1 Matching Conditions for Ohmic Matter
The matching conditions at an interface between two materials with conductivities σ1 and σ2 are
derived from (9.20) and (9.22) in the usual way (see Section 2.3.3). They are

n̂2 · [j1 − j2] = 0 or σ1
∂ϕ1

∂n

∣∣∣∣
S

= σ2
∂ϕ2

∂n

∣∣∣∣
S

, (9.25)

and

n̂2 × [E1 − E2] = 0 or ϕ1|S = ϕ2|S. (9.26)

These equations are very similar to the matching conditions (6.70) and (6.71) at the interface between
two dielectrics. A significant difference is that if no current flows through a boundary surface S which
separates an ohmic medium from a non-conducting medium, (9.25) provides the natural Neumann
boundary condition,

∂ϕ

∂n

∣∣∣∣
S

= 0. (9.27)

Example 9.1 A steady current with uniform density j flows through a flat interface between a
medium with conductivity σ1 and dielectric permittivity ε1 and a medium with conductivity σ2 and
dielectric permittivity ε2. Find the free charge which accumulates on the interface.

Solution: Let n̂2 be the outward unit normal from medium 2. The free surface charge density σf
appears in the matching condition (6.31):

σf = n̂2 · (D1 − D2).

On the other hand, (9.25) says that

j = σ1E1 = σ2E2.

Therefore, since D1 = ε1E1 and D2 = ε2E2,

σf =
(
ε1

σ1
− ε2

σ2

)
n̂2 · j.

9.5 Electrical Resistance

Figure 9.5 illustrates a current flow boundary value problem where a potential differenceV = ϕA − ϕB
between two perfectly conducting electrodes drives a steady current I through an ohmic sample
embedded in an insulting material (which could be vacuum). A typical task is to compute the resistance
R of the sample, defined by

R = ϕA − ϕB

I
. (9.28)
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0
S

n

A

B

0
S

n

Figure 9.5: Two conducting electrodes attached to the ends of an ohmic conductor embedded in an insulating
medium. A potential difference ϕA − ϕB between the electrodes drives a current as indicated by the lines of j(r).

The unknown quantity in (9.28) is the current I , which we compute from the flux integral (9.1)
of the current density over any cross section of the conductor. To find j(r), we solve (9.24) using
the boundary conditions indicated in Figure 9.5: ϕ is specified on each electrode and ∂ϕ/∂n is
specified on the boundary with the insulating medium. These mixed Dirichlet/Neumann boundary
conditions are sufficient to guarantee a unique solution to the potential problem defined by (9.24) (see
Section 7.3).

Since j = −σ ∇ϕ, an alternative to fixing the voltage difference is to fix the current I through each
electrode surface S using

σ

∫
S

dS
∂ϕ

∂n
= ± I. (9.29)

The choice of the plus/minus sign depends on whether the current enters/exits the sample through the
electrode in question. In this scenario, we calculate the potential difference from the line integral of E
from one electrode to the other. Therefore, if S is any cross section of the conductor, the resistance is8

R =

B∫
A

d� · E∫
S

dS · j
= 1

σ
×

B∫
A

d� · E∫
S

dS · E
. (9.30)

In practice, one uses (9.30) and the measured resistance to extract the geometry-independent conduc-
tivity (or its reciprocal, the resistivity ρ = 1/σ ).

It is interesting to apply (9.30) to the case where two conducting electrodes are embedded in an
infinite medium with conductivity σ and S is any surface which completely encloses one of the elec-
trodes. The key is to compare (9.30) with the definition of the capacitance of two-conductor capacitor
offered in (5.56). This comparison produces a remarkable formula which relates the capacitance of
two conductors in vacuum to the resistance between the same two conductors embedded in ohmic
matter:

RC = ε0

σ
. (9.31)

Equation (9.31) has obvious practical value when one is asked to find R for a given geometry when a
simple method or clear analogy exists to find C for the same geometry. Conversely, a simple method
may exist to compute R, when what is really required is the corresponding value for C.

8 The boundary condition (9.29) produces a unique solution because it is analogous to specifying the total charge on a
perfect conductor.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-09 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:18

9.5 Electrical Resistance 279

Example 9.2 (a) A straight wire has length L, resistivity ρ, and cross sectional area A. The shape
of the cross section is arbitrary but is uniform over the length of the wire. Prove that the current
density in the wire is uniform and find the wire’s resistance. (b) Solve Laplace’s equation to find the
resistance of an ohmic “washer” with inner radius a, outer radius b, and thickness h. Assume that
a steady current flows radially from a to b. (c) Check this computation by a judicious application
of the answer to part (a).

L A
h

a

b

Figure 9.6: A straight wire and a thick washer, both with uniform resistivity ρ = 1/σ . Current flows
longitudinally through the wire and radially through the washer.

Solution: (a) Begin with a parallel-plate capacitor whose plates are separated by a distance L. The
electric field between the infinite-area plates is E = ẑ V /L. Now insert the resistive wire between
the capacitor plates so that the wire ends are flush with the plates. The electric field everywhere
(including inside the wire) remains E = ẑ V /L because the corresponding potential ϕ = −V z/L

satisfies Laplace’s equation and the boundary condition (9.27) on the side walls of the wire. E is
uniform in space, so the current density j = σE is uniform as well. Finally, inserting E into (9.30)
gives R = ρL/A.

(b) We learned in Section 7.8 that ϕ(r) = A+ B ln r is the only solution of Laplace’s equation
in cylindrical coordinates which does not depend on the Cartesian coordinate 0 ≤ z ≤ h or the
angular coordinate 0 ≤ φ < 2π . The boundary condition (9.29) applied at either r = a or r = b

fixes B and the constant A is immaterial. The associated electric field is E = r̂I/2πσhr. Inserting
this into (9.30) using any coaxial cylinder with radius a ≤ r ≤ b for S gives R = (ρ/2πh) ln(b/a).

(c) We can check this answer using the results of part (a) because radial current flow through
the washer is one-dimensional. dR = ρdr/2πrh is the contribution to the total resistance from
a cylindrical slice of thickness dr. Each slice is in series with the others, so a sum over all slice
resistances gives the desired result,

R = ρ

2πh

b∫
a

dr

r
= ρ

2πh
ln
b

a
.

Application 9.1 Contact Resistance

The intrinsic roughness of material surfaces ensures that current flow between two macroscopic
conductors occurs only at the tiny asperities where the conductors truly touch. A model for this
situation is the flow of fluid through an impermeable membrane into which many very small holes
have been drilled. To calculate the contact resistance between two such conductors, it is important to
know the resistance R produced by a single hole of radius a cut into an infinitely large planar baffle
of insulating material. The baffle divides an infinite ohmic medium into two parts. Figure 9.7 is a
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side view which shows the expected lines of current density j = σE (dashed) and the corresponding
equipotentials (solid) for this situation.

Figure 9.7: Electric field lines (dashed) and equipotentials (solid) for ohmic current flow through a
circular orifice viewed edge-on. Figure adapted from Jansen, van Gelder, and Wyder (1980).

In this Application, we find R by exploiting the relation (9.31) between resistance and capacitance.
The key step is to replace the hole with a negatively charged conducting disk, eliminate the insulating
baffle, and recognize that the pattern of E(r) produced by the disk is exactly the same as the pattern of
E(r) in Figure 9.7 with the direction of the arrows reversed on the left side of the baffle. Therefore, the
quantity of interest is the two-conductor capacitance C between the disk and a spherical conducting
shell of infinite radius which serves as the source of the electric field lines which terminate on the disk.
In light of (5.55), C = Cself = 8ε0a where Cself is the self-capacitance of a conducting disk of radius
a (see Section 5.4.1).

Actually, only half of C is relevant because negative charge accumulates on both sides of the
conducting disk while our problem has field lines both entering and leaving the hole. In other words,
(9.31) with C → C/2 gives only the contribution to the contact resistance produced by the lines of j
which enter the hole in Figure 9.7:

Rin = ε0

σ (C/2)
= 1

4σa
. (9.32)

The total contact resistance is Rin in series with an identical resistance Rout produced by the lines of j
which exit the hole. Hence,

R = Rin + Rout = 1

2σa
. (9.33)

The concept of contact resistance becomes very important when the size of electrical contacts
shrinks to the nanometer scale. At the same time, the momentum-relaxation approximation behind
Ohm’s law (Section 9.3) begins to break down and the transport of electrons becomes more nearly
ballistic. Theory and experiment reveal a crossover from ohmic to non-ohmic behavior as the size of
the contact decreases.9 �

9.6 Joule Heating

The inelastic collisions responsible for Ohm’s law rob the current-carrying charged particles of their
kinetic energy. That energy is dissipated in the rest of the sample in the form of Joule heat. To compute
the rate of heat production, we recall first that the mobile charged particles in an ohmic medium move

9 See Sharvin (1965) and Erts et al. (2000) in Sources, References, and Additional Reading.
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at the constant drift velocity (9.16) with no change in potential energy. Therefore, from the first law of
thermodynamics, the rate of Joule heating is equal to the rate at which the electric field does work on
the current-carrying charged particles:

dW

dt
= d

dt

N∑
k=1

qk E(rk) · rk(t) =
∫
V

d 3r j · E. (9.34)

Using (9.1) and (9.28), it is straightforward to express the heating rate (9.34) in terms of the total
current I which flows through a medium of resistance R between perfectly conducting electrodes A
and B (see Figure 9.5):∫

V

d 3r j · E = −
∫
V

d 3r ∇ · (jϕ) = −
∫
S

dS · j ϕ = (ϕA − ϕB )I = I 2R. (9.35)

9.6.1 The Current Density That Minimizes Joule Heating
The analogy between current flow and fluid flow provides some insight into the behavior of the current
density in an ohmic medium. We will exploit the fact that some classes of steady fluid flows correspond
to situations of minimum energy dissipation.10 Since Joule heating is itself a form of energy dissipation,
it is reasonable to suppose that the distribution of current in ohmic matter minimizes the rate of Joule
heating. To test this idea, we assume (as an empirical matter) that |j |2/σ is the local heating rate and
also that a specified, steady current I flows through the sample between two electrodes. We will not
assume the validity of Ohm’s law (9.21) or the zero-curl condition (9.22).

The physical requirements that j (r) be steady and correspond to a specified total current direct us
perform a constrained minimization using the method of Lagrange multipliers.11 To ensure that only
steady flows are considered, we introduce a Lagrange function ψ(r) to fix ∇ · j = 0. To ensure that a
specified amount of current flows out of one electrode and into the other, we introduce two Lagrange
constants λα (α = 1, 2) to fix I = ± ∫

dSα · j . Putting all this together, our task is to minimize the
functional

F [ j] = 1

2

∫
V

d 3r
|j |2
σ

−
∫
V

d 3r ψ(r) ∇ · j +
∑
α

λα

∫
Sα

dSα · j . (9.36)

The factor of 1
2 and the minus sign are inserted for convenience. Operationally, we compute δF =

F [j + δj ] − F [j ] and look for the conditions which make δF = 0 to first order in δj . This extremum
is a minimum if δF > 0 to second order in δj .

It is simplest to integrate (9.36) by parts first to get

F [ j ] = 1

2

∫
V

d 3r
|j |2
σ

+
∫
V

d 3r j · ∇ψ(r) −
∫
S

dS · j ψ +
∑
α

λα

∫
Sα

dSα · j. (9.37)

If we assume that no current flows through the non-electrode parts of the surface S (which might be
at infinity), a calculation of δF to first order in δj gives

δF =
∫
V

d 3r δj ·
[

j
σ

+ ∇ψ
]

−
∫
S

dSα · δj (ψ − λα). (9.38)

10 See, for example, G.K. Batchelor, Introduction to Fluid Dynamics (University Press, Cambridge, 1967), Section 4.8.
11 The steps followed here closely follow the constrained minimization of UE[D] performed in Section 6.7.2.
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Since the variation δj is arbitrary, we get δF = 0 if j(r) = −σ ∇ψ(r) and ψ(r) takes the constant
values λα on the electrodes. The second-order term is 1

2

∫
d 3r |δj |2/σ so these conditions indeed

correspond to minimum energy dissipation.
We conclude that ψ(r) is the electrostatic potential ϕ(r) and that Ohm’s law is indeed satisfied.

Moreover, since ∇ · j = 0 was a constraint, we recover the potential problem (9.24) with mixed
Dirichlet and Neumann boundary conditions. Therefore, among all possible j (r), the distribution of
current which flows in an ohmic medium is precisely the one which generates the least Joule heating.
Since we have minimized |j |2/σ , the lines of j will be most concentrated in those parts of V with the
highest conductivity.

Example 9.3 A spherical sample of radiusR and conductivity σ is embedded in an infinite medium
with conductivity σ0. Far away from the sphere, the current density j0 is uniform. Find the value
of σ which maximizes the rate at which energy is dissipated inside the sphere.

Solution: In light of (9.35), our goal is to maximize the integral
∫
d 3r j · E over the volume of

the sphere. To find E inside the sphere, we exploit the matching-condition isomorphism mentioned
just after (9.25) and (9.26). In Example 6.3 of Section 6.5.5, we calculated the electric field inside
a spherical vacuum cavity scooped out of an infinite medium with dielectric permittivity ε in a
uniform external field E0. The answer we found was

Ein = 3ε

2ε + ε0
E0.

This becomes the solution of the present problem if we put ε → σ0, ε0 → σ , and E0 → j0/σ0:

Ein = 3

2σ0 + σ
j0.

The rate of Joule heating inside the sphere is∫
d 3r j · E = 4

3πR
3σE2

in = 12πR3j 2
0

σ

(2σ0 + σ )2
.

This rate is largest when σ = 2σ0.

9.7 Electromotive Force

Direct (steady) current flow occurs in an ohmic medium if a source of energy is present to replenish
the energy lost to Joule heating. The electrostatic field E = j/σ inside the medium is not a candidate
because, from (9.22) and Stokes theorem, this field does zero net work when the drifting particles of
the medium execute closed circuits in order to satisfy (9.20). Therefore, somewhere in the circuit, there
must be one or more non-electrostatic sources of energy (chemical, thermal, gravitational, nuclear, or
even electromagnetic) to maintain the current. For historical reasons, we say that these sources impress
an electromotive force (EMF) on the system. Microscopically, the detailed action of any particular
source of EMF may be quite complicated to describe. Macroscopically, we can represent the effect of
any source of EMF by a fictitious electric field E′ which modifies Ohm’s law to

j (r) = σ [E(r) + E′(r)]. (9.39)
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Typically, E′(r) is non-zero only in a very localized region of space (such as between the terminals
of a battery) and is specified once and for all. An exception is the true electric field associated with
electromagnetic induction (Faraday’s law). We will study this important special case later.

9.7.1 Voltage Difference
As a matter of convention, we define the voltage difference between two points 1 and 2 along a circuit
as

V1 − V2 =
2∫

1

d� · E. (9.40)

Similarly, we define the EMF between the points 1 and 2 as

E12 =
2∫

1

d� · E′. (9.41)

Finally, because I = jA, the resistance R12 along the path length L12 is

R12 = 1

Iσ

2∫
1

d� · j = L12

Aσ
. (9.42)

Using the three previous equations, (9.39) implies that

IR12 = V1 − V2 + E12 = ϕ1 − ϕ2 + E12. (9.43)

The last equality in (9.43) reminds us that when ∇ × E = 0 (as is the case here), the integral in (9.40)
is also the electrostatic potential difference ϕ1 − ϕ2.12

For a closed circuit,
∮
d� · E = 0, and (9.43) simplifies to

E = IR, (9.44)

where R is the resistance of the entire circuit and the EMF of the entire circuit is

E =
∮

d� · E′ = 1

q

∮
d� · F. (9.45)

The last equality in (9.45) expresses the effective electric field as a force per unit charge. This is
a reasonable way to think about electromotive “force” because, by definition, every source of EMF
drives a current. We will return to this point of view in Section 14.4.1.

9.7.2 The Physical Meaning of EMF
The physical content of (9.43) is not difficult to appreciate if we locate the points 1 and 2 infinitesimally
close to the “terminals” of a source of EMF like a battery.13 In that case, R12 plays the role of an

12 The definition of voltage (9.40) and the left equality in (9.43) remain valid when the electric field varies slowly in
time (AC circuit theory). The right equality in (9.43) is not valid in that case because E �= −∇ϕ.

13 A battery is a combination of fundamental units called voltaic cells. The EMF of a voltaic cell is generated by
chemical reactions at the terminals of the device. The energy content is fixed by the amount of chemical reactant in
the cell. See Saslow (1999) in Sources, References, and Additional Reading.
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effective “internal resistance” which accounts for loss mechanisms within the source itself. Multiplying
through by the current I gives

P = IE12 = I (ϕ1 − ϕ2) + I 2R12 (9.46)

or

dU = dq E12 = dq(ϕ1 − ϕ2) + I 2R12dt. (9.47)

Equation (9.46) identifies the EMF as the non-electrostatic power P delivered to the circuit per unit
current I . Equation (9.47) identifies the EMF as the non-electrostatic energy per unit charge delivered
to the circuit. Apart from losses associated with the internal resistance, that energy goes to establish
a potential difference between the terminals. In other words, the EMF maintains a potential energy
difference dq(ϕ1 − ϕ2) between a bit of charge dq at one terminal and a bit of charge dq at the other
terminal.

Example 9.4 Find the potential difference ϕ2 − ϕ1 between the two indicated points in the circuit
sketched in Figure 9.8. Confirm that its value for an “open circuit” (R → ∞) is identical to the
EMF the battery supplies to a closed circuit. R12 is the internal resistance of the battery.

21
12R

R

12

Figure 9.8: A simple circuit to illustrate the relationship between voltage and EMF.

Solution: The expression (9.43) is valid for the path from point 1 to point 2 through the battery.
The expression I (R + R12) = E is valid for the entire circuit. However, E = E12, because the ohmic
wire supplies no EMF. From these facts, a bit of algebra gives

ϕ2 − ϕ1 = E
R

R + R12
.

We get the desired result, VT = ϕ2 − ϕ1 = E, when we cut the wire (R → ∞) to create an open
circuit. VT is often called the “terminal voltage” of a battery.

9.7.3 Kirchhoff’s Laws
Kirchhoff’s laws are a restatement of the differential laws ∇ · j = 0 and ∇ × E = 0 for filamentary-
wire circuits. Figure 9.9 shows a typical direct-current (DC) multiloop circuit with “nodes” (dark
circles) at points where the current can split into parts which follow different paths. Typically, one
assigns a current Ik to every segment of wire between two nodes and defines several closed loops as
shown in the figure. In this language, the steady-current condition ∇ · j = 0 amounts to the statement
that currents must flow into and out of each node so no accumulation of charge occurs:∑

k

Ik = 0 (Kirchhoff’s current law). (9.48)
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+− +

An internal loop

1I −
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+1

3I

I
4I
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2I

5I

2

An external loop

6I

Figure 9.9: A DC circuit. The +/− signs fix the algebraic sign of the EMF for each battery. Black dots indicate
nodes. The direction of the current flow arrow between each pair of nodes is arbitrary. Two loops which may be
used to evaluate (9.49) are sketched. Two other internal loops are not shown.

For each closed loop in Figure 9.9, ∇ × E = 0 implies that
∮
d� · E = 0. Therefore, if In is the current

which flows through resistor Rn, the generalization of (9.44) is∑
k

Ek =
∑
n

InRn (Kirchhoff’s voltage law). (9.49)

The left side of (9.49) is the algebraic sum of the EMFs for one closed loop (Ek is reckoned positive if
the loop passes through the seat of EMF from − to +). The right side of (9.49) is the sum of the voltage
drops across each resistive element (reckoned positive if the loop is traversed in the same direction as
the direction of In). If there are N unknown currents, we apply (9.48) and (9.49) repeatedly until N
linearly independent equations are obtained. If the solution produces Ik < 0, the actual direction of
current flow in the kth wire segment is opposite to the direction of the arrow (assigned arbitrarily) in
Figure 9.9.

9.7.4 The Charges That Produce E = j/σ
We have identified the EMF as the agent which maintains a steady current in a circuit. But we have not
identified the charge which maintains the static electric field E = j

/
σ. The relevant charge cannot lie

inside the wire because ρ = ε0∇ · E ∝ ∇ · j = 0. Nor can it be associated primarily with the source
of EMF. This is so because we can bend the wire at a point far from the EMF and the electric field
must rearrange to maintain Ohm’s law with the new geometry. This suggests that the charge which is
most important is quite nearby to the bend. In fact, it resides on the surface of the wire. This means
that every circuit (indeed every conductor) which carries a steady current produces a static electric
field outside of itself.

Figure 9.10 illustrates the electric field outside a DC circuit where a battery drives a current through
a two-dimensional wedge-shaped conductor. By Ohm’s law, the electric field inside the conductor
(not shown), is everywhere parallel to the conductor walls. The tangential component of the electric
field is continuous,14 so this component must be present just outside the conductor as well. There
is also a normal component to Eout(r). Otherwise, there would be no surface charge density on
the conductor surface to guide the flow of current. Figure 9.10 shows that the algebraic sign of the
surface charge changes sign in the immediate vicinity of the sharp bend. We invite the reader to make

14 See the left side of (9.26).
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Figure 9.10: Electric field near a circuit where a battery supplies current to a wedge-shaped ohmic conductor.
The conductor extends infinitely in the direction perpendicular to the page. The field lines begin and end on
charges which reside on the surface of the conductor. Figure from Jefimenko (1966).

a simple estimate of the total guiding charge Q at a 90◦ bend in a wire with conductivity σ which
carries a current I and to confirm that

Q ∼ ε0I/σ. (9.50)

Numerically, this is about one electron’s worth of charge when 1 A of current flows through a typical
copper (σ = 6 × 107 �-m) wire.

It is worth emphasizing that the surface charge density σ (rS) = ε0n̂ · Eout(rS) is a time-independent
distribution produced by a collection of charge carriers moving with the average drift velocity (9.16).
This means that the identity of the microscopic carriers which contribute to the macroscopic surface
charge at any particular point rS changes continually as time goes on. The same is true for the charges
in the bulk of the conductor where ρ(r) = 0.

Application 9.2 The Electric Field outside a Current-Carrying Wire

It is instructive to find the external electric field Eout(ρ, z) and the surface charge density σ (z) associated
with a long straight ohmic wire where a potential difference V drives a steady current from −�/2
to �/2 on the z-axis. If the circular cross section of the wire has radius R, we can calculate these
quantities approximately in the limit when R � � and ρ, z � �.

The current is steady and j = σE, so the potential satisfies ∇2ϕ = 0 both inside and outside the
wire. The finite length of the wire complicates the boundary value problem considerably. However, the
restriction ρ, z � � allows us to treat the wire as infinite as a first approximation. Ohm’s law guarantees
that ϕin = −E0z inside the wire where E0 = V/�. Outside the wire, the appropriate azimuthally
symmetric solution to Laplace’s equation problem is ϕout = Az ln(ρ/L) where A and L are constants
(see Section 7.8). There is no term in ϕout proportional to ln ρ itself because we assume the wire has
zero net charge.

The matching condition ϕin = ϕout at ρ = R fixes A so

ϕout(ρ, z) = −V z

�

ln(ρ/L)

ln(R/L)
. (9.51)

The constantL is determined by the behavior of ϕout when ρ or z is large—a domain where our solution
is no longer valid. On the other hand, the physical solution should depend only on dimensionless ratios
of the various lengths in the problem. This suggests that L = �, a guess that can be confirmed
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explicitly.15 Therefore,

ϕout(ρ, z) = −V z

�

ln(ρ/�)

ln(R/�)
ρ, z � �, (9.52)

Eout(ρ, z) = V

�

ẑ ln(ρ/�) + ρ̂(z/ρ)

ln(R/�)
ρ, z � �. (9.53)

Ein points along ẑ so the charge density on the surface of the wire is

σ (z) = ε0[Eout(R, z) − Ein(R, z)] · ρ̂ = ε0
V

�

z/R

ln(R/�)
z � �. (9.54)

σ (z) is an odd function of z, so the total charge on the wire surface is zero, as expected. The formula
above for Eout approximately describes the field lines which begin and end on the same side of the
wedge conductor in Figure 9.10. �

9.8 Current Sources

The lines of j (r) shown in Figure 9.5 begin and end at the conducting electrodes attached to the surface
of the ohmic sample. A more general situation is shown in Figure 9.11. The left panel is a sketch by
Michael Faraday of the pattern of current flow around an electric fish submerged in a tank of water.
The right panel shows modern data of the current flow equipotentials produced by a related electric
fish. The two patterns are consistent and clearly indicate that the fish acts a three-dimensional source
of biochemical electromotive force.

With this insight, we can combine (9.39) with ∇ · j = 0 and E = −∇ϕ to derive an equation for the
potential:

σ ∇2ϕ(r) = −f (r). (9.55)

The function f (r) = −σ∇ · E′(r) represents the spatial distribution of current sources and sinks which
produce j(r). When the sources/sinks are point-like, f (r) reduces to one or more delta functions. An
example is the current dipole sketched in Figure 9.12(a). This model is often used to discuss the
electrical activity of organs like the brain and the heart. Point sources can also model small spherical
electrodes embedded in a conventional ohmic medium if the insulated wires which bring the current
to and from the electrodes are thin enough that they do not disturb the current distribution in the
medium. A tiny hemisphere is used to model an electrode which is very small compared to the size of
the conductor to which it is attached [Figure 9.12(b)].

The family resemblance to Poisson’s equation points the way to solution methods for (9.55). Thus,
the potential of a single point current source f (r) = Iδ(r) at the origin of an infinite conducting
medium is

ϕ(r) = I

4πσr
. (9.56)

The hemispherical “point” source in Figure 9.12 expels its current exclusively into the semi-infinite
conductor below, so

ϕ(r) = I

2πσr
. (9.57)

Note that (9.57) satisfies the boundary condition ∂ϕ
/
∂n = 0 at the surface.

15 See Marcus (1941) and Coombes and Laue (1981) in Sources, References, and Additional Reading.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-09 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:18

288 STEADY CURRENT: THE ELECTROSTATICS OF MOVING CHARGE

100

100
250

500

500

1000

1000

2500

2500

30

30

100

100

300

300

300 100 30

100

30

250

300

17.

11.

15.

14.

4. 2.

13.

7. 5.

12.

8.9.

16. 6.

10.

Figure 9.11: Left: Sketch from Faraday’s Diary entry of 22 October 1838 showing lines of current density in
water, produced by the electric fish Gymnotus. Right: Measured equipotentials in water produced by the electric
fish Apteronotus. Data from Knudsen (1975).

(a) (b)

Figure 9.12: Lines of current density produced by (a) an embedded current dipole; and (b) a hemispherical point
electrode attached to the surface of a semi-infinite ohmic medium.

When the volume of the conducting medium is finite but has high symmetry, it is sometimes possible
to guess or compute a particular solution. To do this, we add a suitable linear combination of solutions
of the homogeneous (Laplace) equation to satisfy the boundary conditions. This is one approach to
the general Green function method discussed in Section 8.4. Indeed, using results derived there, it is
straightforward to confirm that, up to a constant, the potential for any situation (like the current dipole
in Figure 9.12) where the Neumann boundary condition (9.27) is imposed everywhere on the surface
S of the conducting volume V is

ϕ(r ∈ V ) = 1

σ

∫
V

d 3r ′ GN (r, r′)f (r′). (9.58)

The boundary condition (8.55) for the Neumann Green function GN (r, r′) sometimes complicates
matters analytically, but it poses no particular problems for numerical work.

Application 9.3 The Four-Point Resistance Probe

The resistivity ρ = 1/σ of geological, biological, and solid-state samples is often measured by con-
tacting four uniformly spaced leads to the sample surface in a straight line (Figure 9.13). Current

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-09 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:18

9.8 Current Sources 289

flows through the two outer leads and the voltage is measured between the two inner leads. As an
idealization, this Application establishes the relationship between the measured resistance and the
resistivity for a sample which has thickness h but is infinite in the two other directions. We model the
contact between each lead and the sample as an infinitesimal hemisphere, as in Figure 9.12(b).

V

I

z = 0

z = –h
s ss

Figure 9.13: Schematic diagram of a four-point probe resistivity measurement.

For a semi-infinite medium, (9.57) tells us that the potential produced by the two current leads would
be ϕ+(r+) + ϕ−(r−) where ϕ±(r) = ±ρI/2πr , r+ is the distance to the observation point from the
“positive” electrode (where the current enters the sample), and r− is the distance from the observation
point to the “negative” electrode (where the current exits the sample). This potential satisfies the
Neumann boundary condition ∂ϕ/∂z = 0 at z = 0 but not at z = −h.

Drawing on the analogy to electrostatics, we appeal to the method of images. Focus first on the
positive electrode in Figure 9.14. The potential ϕ+(r+) added to the potential from a positive image
point current located directly below the positive electrode at z = −2h produces a total potential which
satisfies the boundary condition at z = −h but not at z = 0. The latter is corrected by adding a second
positive image current directly above the original electrode at z = 2h. As in the corresponding Dirichlet
electrostatics problem (Figure 7.5), this second image has the effect of making the boundary condition
no longer valid at z = −h. An infinite number of images is needed to satisfy the boundary condition
at both surfaces.

A B
s

z = +2h

z = +h

z = –h

z = –2h

z = 0

–I

–I

–I

–I

+I

+I

+I

+I

Figure 9.14: Image current system for the four-point probe.

The potential from an infinite array of negative image point currents, added to ϕ−(r−), similarly
satisfies ∂ϕ

/
∂z = 0 at both z = 0 and z = −h. Summing the contribution from all these sources gives

the potential at one voltage probe as

ϕA = ρI

2π

[
1

2s
+ 2

∞∑
n=1

{
1√

s2 + (2nh)2
− 1√

(2s)2 + (2nh)2

}]
. (9.59)
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It is not difficult to check that ϕB = −ϕA so the resistance of the sample is

R = ϕA − ϕB

I
= ρ

2π

[
1

s
+ 2

h

∞∑
n=1

{
1√

(s/2h)2 + n2
− 1√

(s/h)2 + n2

}]
. (9.60)

The limit h/s � 1 eliminates the effect of all the images so R = ρ/2πs. When h/s � 1, the first
two terms of the Euler-Maclaurin summation formula16 give R = (ρ/πh) ln 2. As a check on this
limit, we can study a truly two-dimensional sample where we replace the point currents used above
by a positive and negative line current (with current/length ") oriented perpendicular to the film. In
that case, ϕ+(r+) = (ρ"/2π ) ln r+, and similarly for ϕ−(r−). This gives

ϕA = −ϕB = (ρ"/2π )[ln s − ln(2s)]. (9.61)

Therefore, in agreement with the limiting result, the resistance is

R = ϕA − ϕB

"h
= ρ

πh
ln 2. (9.62)

�

Example 9.5 Electrocardiography gathers information about the electrical activity of the heart
from measurements of the electric potential at various points on the surface of the heart. This
information can be used to estimate the first moment of the effective current source f (r) in (9.55).
Specifically, for a body with uniform conductivity σ whose volume V is bounded by an insulating
medium, prove that the first moment " of the source strength f (r) is

" ≡
∫
V

d 3r f (r)r = σ

∫
S

dS ϕ(r).

Thus, measurements of electric potential over the surface of the heart give an indication of the
integrated strength of the internal current source.

Solution: Begin with (9.55) and focus on one component of the desired moment. This gives∫
V

d 3r f rk = −σ
∫
V

d 3r rk ∇2ϕ = −σ
∫
V

d 3r ∇ · (rk∇ϕ) + σ

∫
V

d 3r ∇ϕ · ∇rk.

Now apply the divergence theorem to the first term on the far right to get

"k ≡
∫
V

d 3r f rk = −σ
∫
S

dS · ∇ϕ rk + σ

∫
V

d 3r ∇ϕ · ∇rk.

The insulator boundary condition ∂ϕ/∂n = 0 everywhere on S makes the first term on the right
vanish. On the other hand, because ∇2rk = 0,∫

V

d 3r ∇ϕ · ∇rk =
∫
V

d 3r ∇ · (ϕ∇rk) −
∫
V

d 3r ϕ∇2rk =
∫
S

dS·ϕ ∇rk.

This proves the stated identity because

"k = σ

∫
S

dS · ϕ ∇rk = σ

∫
S

dSk ϕ.

16 ∑∞
n=1 f (n) = ∫∞

0 dnf (n) + 1
2 [f (0) + f (∞)] + · · · .
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9.9 Diffusion Current: Fick’s Law

The Drude derivation of Ohm’s law sketched in Section 9.3 balanced the Coulomb force qE against a
drag force produced by collisions between unlike particles. However, if the density n(r) of a particle
species varies in space, it has been known for over a century that collisions of this sort induce a
particle current even when the particles are uncharged. Arguments from kinetic theory17 show that the
associated particle number current density is given by Fick’s law:

jn = −D∇n. (9.63)

The quantity D > 0 is called the diffusion constant.
For particles which carry a charge q, (9.63) generates a charge current density j = qjn which

supplements the Ohm’s law current density (9.21). The resulting phenomenological expression for the
current density is called the drift-diffusion equation:

j (r) = σE(r) − qD∇n(r). (9.64)

Some of the physics of the drift-diffusion equation is revealed when we use ε0∇ · E = ρ to eliminate
ρ(r) = qn(r) from (9.64) and use the identity ∇ × ∇ × E = ∇(∇ · E) − ∇2E. Since static fields satisfy
∇ × E = 0, the resulting current density is

j (r) = σE(r) − ε0D∇2E(r). (9.65)

No current flows in static equilibrium. Therefore, putting j = 0 in (9.65) gives an equation for the
equilibrium electric field inside the sample:

∇2E − σ

ε0D
E = 0. (9.66)

Dimensional analysis of (9.66) shows that
√
ε0D/σ is a characteristic length for this problem.

In fact, comparing (9.66) to (5.90) identifies this quantity as the screening length � defined in our
discussion (Section 5.7) of the electrostatics of real conductors:

σ

ε0D
= 1

�2
. (9.67)

This formula is called the Einstein relation. It relates the screening length—an equilibrium quantity
which is independent of the details of particle transport—to the ratio of two transport coefficients.

The Einstein relation bears directly on the relative importance of the Ohm’s law and Fick’s law
components of (9.65). Recall from Section 5.7.1 that � is the Thomas-Fermi length �TF = √

πaB/4kF in
a good metal and the Debye-Hückel length �DH =

√
ε0kT /e2n in a thermal plasma. Ohm’s law works

well for good metals because lTF is microscopically small. According to (9.67), any corrections due
to diffusion currents arise only within a microscopic distance of free surfaces or interfaces where the
electron density changes abruptly. Conversely, �DH can be macroscopically large in a thermal plasma.
This means that diffusion currents can be significant over large distances from boundary layers in the
ionosphere and from interfaces in doped semiconductors and living cells.

Application 9.4 The Resting Potential of a Cell

A potential difference of about 100 mV exists across the cell wall of nerve and muscle cells. The
interior of the cell has a lower potential than the exterior. A simple model for the origin of this resting

17 See, for example, C. Kittel and H. Kroemer, Thermal Physics, 2nd edition (W.H. Freeman, New York, 1980),
Chapter 14.
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potential difference exploits the fact that these cells have evolved over time so their cell walls separate
two compositionally different conducting plasmas. The concentration of K+ ions is relatively high in
the cytoplasm of such a cell and relatively low in the plasma which surrounds the cell (top panel of
Figure 9.15).

(x)

(x)Kn

diffusiondiffusion

(x)
conductionconduction

Cell
interior

Figure 9.15: Current flow through a cell wall. Top: concentration of K+ ions. Middle: charge density
forms a dipole layer. Bottom: electrostatic potential. Block arrows indicate the direction of diffusion
currents and conduction currents.

Fick’s law predicts that a diffusion current of K+ ions flows across the wall from just inside the
cell to just outside the cell. This motion of positive ions destroys the local charge neutrality which
existed previously and leads to a slight excess of positive (negative) charge just outside (inside) the
cell wall. As shown in the middle panel of Figure 9.15, an electric double layer (Section 4.3) forms.
Like a parallel-plate capacitor, the electric field of a double layer is only non-zero inside the double
layer itself. This field drives a conduction current of K+ ions back into the cell. In equilibrium, the
conduction current and the diffusion current balance one another and the “built-in” electric field which
remains is responsible for the change in electrostatic potential across the cell wall (lower panel of
Figure 9.15).

For applications like this one, it is usual to define a mobility μ̂ = σ/nq so the drift velocity (9.16)
is υd = μ̂ E. In that case, (9.64) is usually called the Nernst-Planck equation:

j (r) = qnμ̂E(r) − qD∇n(r). (9.68)

The total current (9.68) is zero in equilibrium. With E = −∇ϕ, this means that μ̂dϕ = −Ddn/n.
Integrating across the membrane gives the resting potential difference:

� = ϕout − ϕin = D

μ̂
ln (nin/nout) = kT

q
ln (nin/nout) . (9.69)

The last equality follows from the Einstein relation (9.67) because the Debye-Hückel screening length
quoted in the text just above applies to a biological plasma. The K+ concentrations for a quiescent
neuron membrane are nin ≈ 120 mmol/L and nout ≈ 5 mmol/L. At body temperature (T = 310 K),
the formula above gives � ≈ 86 mV, which is not far from experiment. �

�
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Sources, References, and Additional Reading

The quotation at the beginning of the chapter is taken from
A. Volta, “On the electricity excited by the mere contact of conducting substances of different kinds”,
Philosophical Magazine 7, 289 (1800).

An excellent biography of Volta is
G. Pancaldi, Volta (University Press, Princeton, 2003).

Section 9.1 Particulary good textbook treatments of the electrostatics of conducting media include
I.E. Tamm, Fundamentals of Electricity, 9th edition (Mir, Moscow, 1979).

O.D. Jefimenko, Electricity and Magnetism (Appleton Century-Crofts, New York, 1966).

M.H. Nayfeh and M.K. Brussel, Electricity and Magnetism (Wiley, New York, 1985).

The quotation in the footnote to Section 9.1.1 comes from
J.J. Thomson, Recollections and Reflections (MacMillan, New York, 1937).

Section 9.2 It is well worth reading the paper where the Child-Langmuir law was announced:
I. Langmuir, “The effect of space charge and residual gases on thermionic currents in high vacuum”, Physical
Review 2, 409 (1913).

Section 9.5 Gustav Kirchhoff was the first to propose the method of Figure 9.5 to extract intrinsic electrical
conductivity from measurements of current and potential difference for samples of specified shape and size. Two
modern contributions to the Green function method introduced by Kirchhoff are

S. Murashina, “Neumann Green functions for Laplace’s equation for a circular cylinder of finite length”,
Japanese Journal of Applied Physics 12, 1232 (1973).

H. Levine, “On the theory of Kirchhoff’s method for the determination of electrical conductivity”, Physica A
96, 60 (1979).

The source of Figure 9.7 is Jansen et al. This article summarizes the results of Application 9.1 and also those of
Sharvin. Erts et al. report contact measurements of the crossover from ohmic to ballistic transport.

A.G.M. Jansen, A.P. van Gelder, and P. Wyder, “Point-contact spectroscopy in metals”, Journal of Physics C
13, 6073 (1980).

Yu.V. Sharvin, “A possible method for studying Fermi surfaces”, Journal of Experimental and Theoretical
Physics 48, 984, (1965).

D. Erts, H. Olin, L. Ryen, E. Olsson, and A. Thölén, “Maxwell and Sharvin conductance in gold point contacts
investigated using TEM-STM”, Physical Review B 61, 12725 (2000).

Section 9.6 This section is adapted from
A. Kovetz, Electromagnetic Theory (University Press, Oxford, 2000), Section 36.

Section 9.7 The physics of voltaic cells is discussed with care in
W.M. Saslow, “Voltaic cells for physicists”, American Journal of Physics 67, 574 (1999).

Figure 9.10 comes from Jefimenko (see Section 9.1 above).
Application 9.2 was adapted from

A. Marcus, “The electric field associated with steady current in a long cylindrical conductor”, American Journal
of Physics 9, 225 (1941).

C.A. Coombes and H. Laue, “Electric fields and charge distributions associated with steady currents”, Amer-
ican Journal of Physics 49, 450 (1981).

Section 9.8 The left and right panels in Figure 9.11, respectively, come from
R.T. Cox, “Electric fish”, American Journal of Physics 11, 13 (1943).

E.I. Knudsen, “Spatial aspects of the electric fields generated by weakly electric fish”, Journal of Comparative
Physiology 99, 103 (1975).

Example 9.5 is taken from this paper by Dennis Gabor, who later won a Nobel prize for his invention of holography:
D. Gabor and C.V. Nelson, “Determination of the resultant dipole of the heart from measurements on the
body surface”, Journal of Applied Physics 25, 413 (1954).
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Application 9.3 was adapted from
L.B. Valdes, “Resistivity measurements on germanium for transistors”, Proceedings of the Institute of Radio
Engineers 42, 420 (1954).

Section 9.9 Figure 9.15 and Application 9.4 come from
M. Uehara, K.K. Sakane, H.S. Maciel, and W.I. Urruchi, “Physics and biology: Bio-plasma physics”, American
Journal of Physics 68, 450 (2000).

Problems
9.1 A Power Theorem A steady current is produced by a collection of moving charges confined to a volume

V . Prove that the rate at which work is done on these moving charges by the electric field produced by a
static charge distribution (not necessarily confined to V ) is zero.

9.2 A Salt-Water Tank A battery maintains a potential difference V between the two halves of the cover of
a tank (L× ∞ × h) filled with salty water. Find the current density j(x, y, z) induced in the water.

9.3 Radial Hall Effect An infinitely long cylindrical conductor carries a constant current with density jz(r).

(a) Despite Ohm’s law, compute the radial electric field Er (r) that ensures that the radial component of the
Lorentz force is zero for every current-carrying electron.

(b) The source of Er (r) is ρ(r) = ρ+ + ρc(r) where ρ+ comes from a uniform distribution of immo-
bile positive ions and ρc(r) = jz(r)/v comes from electrons with velocity v. Show that ρc(r) = ρc =
−ρ+/(1 − v2/c2). Do not use special relativity.

(c) Estimate the potential difference from the center to the surface of a copper wire with circular cross
section 1 cm2 that carries a current of 1 A.

9.4 Acceleration EMF

(a) A long straight rod with cross sectional area A and conductivity σ accelerates parallel to its length with
acceleration a. Write down the Drude-like equation of motion for the average velocity v of an electron
of mass m in the rod relative to the motion of the rod itself. Show that, in the absence of an external
electric field, there is a steady solution that corresponds to a current I = Aσma/e flowing in the wire.
Assume that a flexible, no-loss wire and a perfect ammeter close the circuit.

(b) Argue that this result generalizes to an EMF

E =
∮

d� · (ma/e)

for the case of electrons in an accelerated closed circuit. Ignore the Drude drag force.
(c) Use the results of part (b) to show that a circular wire ring rotated with angular acceleration �̇ carries a

current

I = 2m�̇S

eR
,

where R is the total resistance of the wire and S is the area of the wire circle. Estimate the magnitude of
this current for a copper ring of radius 1 cm and cross sectional area 1 mm2 which oscillates harmonically
around the ring axis at 500 Hz, with a maximum angular amplitude of 1◦ of arc.
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9.5 Membrane Boundary Conditions A thin membrane with conductivity σ ′ and thickness δ separates two
regions with conductivity σ .

z

0z

z
′

Assume uniform current flow in the z-direction in the figure above. When δ is small, it makes sense to seek
“across-the-membrane” matching conditions for the electrostatic potential ϕ(z) defined entirely in terms of
quantities defined outside the membrane. Find the potential in all three regions of the figure and prove that
suitable matching conditions are

ϕ(z = δ+) − ϕ(z = 0−) = δ
σ

σ ′
dϕ

dz

∣∣∣∣
z=0−

dϕ

dz

∣∣∣∣
z=δ+

− dϕ

dz

∣∣∣∣
z=0−

= 0.

9.6 Current Flow to a Bump A voltage difference V0 causes a steady current to flow from the top conductor
to the bottom conductor (in the sketch below) through an ohmic medium with conductivity σ . Find an
approximate expression for the current I that flows into the hemispherical bump (radius R) portion of the
lower conductor. Assume that d � R.

Hint: A grounded spherical conductor in an external field E0 acquires a surface charge density # =
3ε0E0 cos θ where θ is the polar angle measured from Ê.

ϕ=V0

ϕ=0

d
σ

9.7 The Charge at a Bend in a Wire A wire with conductivity σ carries a steady current I . Confirm the
statement made in the text that a charge Q ∼ ε0I/σ accumulates on the wire’s surface in the immediate
neighborhood of a 90◦ right-angle bend. Make a sketch of the wire indicating the position and sign of the
surface charges. Explain the physical origin of the algebraic sign of the charges that you draw.

9.8 Spherical Child-Langmuir Problem The electrodes of a spherical capacitor have radii a and b > a. The
inner electrode is grounded; the outer electrode is held at potential V . In vacuum diode mode, the thermionic
current which flows from the inner cathode to the outer anode increases with temperature until the electric
field due to space charge produced between the concentric electrodes compensates the voltage-induced field
and ∂ϕ/∂r|r=a = 0 on the surface of the cathode. Assume that the initial velocity of the thermally emitted
electrons is zero.

(a) Show that maximum current I between the electrodes is described by the expression

I =
√

2e

m
4πε0

[
V

y(x)

]3/2

, x = ln(b/a).

The function y(x) is the solution to a differential equation which cannot be integrated in closed form.
(b) Find the maximum current in the limit when b � a.

9.9 A Honeycomb Resistor Network An infinite, two-dimensional network has a honeycomb structure with
one hexagon edge removed. Otherwise, the resistance of every hexagon edge is r . Find the resistance of the
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network when a current I enters point A and is extracted at the point B. Hint: think about the current flow
if the edge between A and B were not missing.

9.10 Refraction of Current Density Show that the lines of current density j obey a “law of refraction” at the
flat boundary between two ohmic media with conductivities σ1 and σ2. Use the geometry shown below.

j1

j2

σ1

θ1

θ2

σ2

9.11 Resistance to Ground The diagram shows a wire connected to the Earth (conductivity σE) through a
perfectly conducting sphere of radius a which is half-buried in the Earth. The layer of earth immediately
adjacent to the sphere with thickness b − a has conductivity σ2. Find the resistance between the end of the
wire and a point deep within the Earth (taken as infinitely large).

9.12 A Separation-Independent Resistance Two highly conducting spheres with radii a1 and a2 are used to
inject and extract current from points deep inside a tank of weakly conducting fluid. Show that the resistance
between the spheres depends very weakly on their separation d when d is large compared to a1 and a2.
Confirm that the dependence on d disappears entirely if d is large enough. Assume that the electrolyte has
permittivity ε and conductivity σ .

9.13 Inhomogeneous Conductivity Steady current flows in the x-direction in an infinite, two-dimensional strip
defined by |y| < L. The current density j is constant everywhere in the strip and the conductivity varies in
space as

σ (x) = σ0

1 + a cos kx
a < 1.

The conductivity is zero outside the strip. Find the electric field E everywhere.
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9.14 A Variable Resistor A square plate of copper metal can be used as a crude variable resistor by making
suitable choices of the places to attach leads that carry current to and from the plate.

Sketch the lines of current density for the four cases described below. As far as possible, use your sketches
to order the effective resistances of the plate for the four cases from smallest to largest. Explain your logic
and ignore the contact resistances at the points where the wires enter and exit the plate.

(a) Current enters at A and exits at B.
(b) Current enters at A and exits at C.
(c) Current enters at A and exits at O.
(d) Current enters at A and exits at B and D, with the wires leaving those points joined together.

9.15 The Resistance of an Ohmic Sphere A current I flows up the z-axis and is intercepted by an origin-
centered sphere with radius R and conductivity σ . The current enters and exits the sphere through small
conducting electrodes which occupy the portion of the sphere’s surface defined by θ ≤ α and π − α ≤ θ ≤
π . Derive an expression for the resistance of the sphere to the flowing current. Assume that α � 1 and
comment on the limit α → 0. Hint:

(2�+ 1)

x2∫
x1

dx P�(x) = [P�+1(x) − P�−1(x)]x2
x1
.

9.16 Space-Charge Limited-Current in Matter Consider the vacuum diode problem treated in the text with
the space between the plates filled with a poor conductor with dielectric permittivity ε. For matter of this
kind, v = μ̃E, where the mobility μ̃ is the constant of proportionality between the drift velocity of the
electrons and the electric field in the matter. Find the replacement for the Child-Langmuir law for the
dependence of the maximum current density on the material constants, the plate separation L, and the plate
potential difference V .

9.17 van der Pauw’s Formula The diagram below shows an ohmic film with conductivity σ , thickness d,
infinite length, and semi-infinite width. A total current I enters the film at the point A through a line contact
(modeled as a half-cylinder with negligible radius) and exits the film similarly at the point B. The potential
difference VD − VC between the contact at C and the contact at D determines the resistance RAB,CD . The
contact separations are a, b, and c, as indicated.
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(a) Show that the electrostatic potential produced at point C by the current injected at point A is

ϕAC = −(I/πdσ ) ln(a + b).

(b) Prove that

exp(−πdσRAB,CD) + exp(−πdσRBC,DA) = 1.

9.18 Rayleigh-Carson reciprocity The diagram below illustrates a reciprocal principle satisfied by an ohmic
sample of any shape.

The principle asserts that if the impressed currents satisfy IA = IB , the measured voltages satisfy VA = VB .
Prove this by evaluating the integral ∫

d 3r [∇ · (ϕAjB ) − ∇ · (ϕB jA)]

in two different ways. Assume that the current enters and exits the sample at delta function sources and
sinks.

9.19 The Electric Field of an Ohmic Tube Roll up an ohmic sheet to form an infinitely long, origin-centered
cylinder of radius a. Cut a narrow slot along the length of the cylinder and insert a line source of EMF so
the electrostatic potential within the sheet (in polar coordinates) is

ϕ(a, φ) = V0

2π
φ − π < φ < π.

(a) Find a separated-variable solution to Laplace’s equation in polar coordinates for the electrostatic potential
inside and outside the cylinder.

(b) Sum the series in part (a) and show that the equipotentials inside the cylinder are straight lines drawn
from the seat of the EMF. Hint:

∞∑
k=1

bk sin kx

k
= tan−1

[
b sin x

1 − b cos x

]
.

(c) Prove that the potential outside the cylinder is dipolar and indicate the direction of the dipole moment.
Sketch several equipotentials inside and outside the cylinder.

(d) Show that the surface charge density on both sides of the cylinder wall is σ (α) = (ε0V0/2πa) tanα,
where α is a polar angle defined with respect to the seat of the EMF.

(e) Show that the electric field inside the cylinder is E = −(V0/πs)α̂, where s is the polar distance from
the seat of the EMF. Sketch several electric field lines inside and outside the cylinder. Take some care
with the angle at which the field lines approach the cylinder.

9.20 Current Density in a Curved Segment of Wire A potential difference V drives a steady current I through
an ohmic wire with conductivity σ and a constant circular cross section. One portion of the wire has the shape
of a circular arc with inner radius of curvature R1 and outer radius of curvature R2. Find the dependence of
the current density j on the local radius of curvature r defined in the diagram.
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9.21 The Annulus and the Trapezoid The annulus shown below is cut from a planar metal sheet with thickness
t and conductivity σ .

θ

b

a
r

A

B

C D

E

F O

dr

(a) Let V be the voltage between the edge CD and the edge FA. Solve Laplace’s equation to find the
electrostatic potential, current density, and resistance of the annulus.

(b) Divide the annulus in a sequence of concentric sub-annuli, each with width dr . Show how to combine
the resistances of the individual sub-annuli to reproduce the resistance computed in part (a). Use the
lines of current density predicted in each case to explain why the two calculations agree.

(c) Let V be the voltage between the edge ABC and the edge DEF of the original annulus. Repeat all the
steps of part (a) and part (b).

(d) The trapezoid shown below is cut from a planar metal sheet with thickness t and conductivity σ . Let
V be the voltage between the edge AB and the edge CD. Explain why the exact resistance computed
by solving Laplace’s equation for the entire trapezoid is not the same as the resistance computed by
summing the resistances for sub-trapezoids like the one indicated by shading in the figure below. Does
the summation calculation overestimate or underestimate the exact resistance?

A B

CD

9.22 Joule Heating of a Shell Current flows on the surface of a spherical shell with radius R and conductivity
σ . The potential is specified on two rings as ϕ(θ = α) = V cos nφ and ϕ(θ = π − α) = −V cos nφ. Show
that the rate at which Joule heat is generated between the two rings is

R = 2πnσV 2

cosα
.

Hint: The substitution y = ln[tan(θ/2)] will be useful.

9.23 The Resistance of a Shell A spherical shell with radius a has conductivity σ in the angular range
α1 < θ < π − α2. Otherwise, the shell is perfectly conducting and a potential difference V is maintained
between θ = 0 and θ = π .

(a) Solve Laplace’s equation to find the potential, surface current density, and resistance of the shell between
θ = 0 and θ = π .
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(b) Divide the shell into many thin rings. Find the resistance of each and combine them to find the resistance
and confirm the answer derived in part (a).

Hint: The substitution y = ln[tan(θ/2)] will be useful.

9.24 The Resistance of the Atmosphere The conductivity of the Earth’s atmosphere increases with height due
to ionization by solar radiation. At a height of about H = 50 km, the atmosphere can be considered practically
an ideal conductor. Experiment shows that height dependence of the conductivity of the atmosphere can be
approximated by

σ (r) = σ0 + A (r − r0)2 ,

where r0 = 6.4 × 106 m is the radius of the Earth and r is the distance from the center of the Earth to
the observation point. The conductivity at the surface of the Earth is σ0 = 3 × 10−14 S/m and the constant
A = 0.5 × 10−20 S/m3. Experiment also shows that an electric fieldE0 ≈ −100 V/m exists near the Earth’s
surface and is directed downward. Estimate the resistance of the atmosphere.

9.25 Ohmic Loss in an Infinite Circuit The diagram below shows that the resistance between the terminals
A and B is determined by a motif of three resistors R2 − R1 − R2 repeated an infinite number of times.
Determine the ratioR1/R2 such that the rate at which Joule heat is produced by all theR1 resistors combined
is a fraction α of the heat produced by the entire circuit. Find the largest value α can attain.

R1

...
A

...

R1

B

R1

R2R2 R2

R2 R2 R2
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10 Magnetostatics

At every point in space at which there is a finite
magnetic force there is . . . a magnetic field.

William Thomson (1851)

10.1 Introduction

Maxwell’s field theory tells us that every time-independent current distribution j (r) is the source of a
vector field B(r) which satisfies the differential equations

∇ · B(r) = 0 (10.1)

and

∇ × B(r) = μ0j (r). (10.2)

The magnetic field B(r) demands our attention because the force F and torque N exerted by j (r) on a
second current distribution j �(r) are

F =
∫

d 3r j �(r) × B(r) (10.3)

and

N =
∫

d 3r r × [j�(r) × B(r)]. (10.4)

If it happens that neither F nor N is of direct interest, the energy associated with B(r), j (r), and
j�(r) usually is. We will derive several equivalent expressions for magnetostatic total energy and
magnetostatic potential energy in Chapter 12.

10.1.1 The Scope of Magnetostatics
Magnetostatics is a more subtle and complex subject than electrostatics. In part, this is so because the
current density is a vector and the Lorentz force (10.3) involves a cross product. The most important
point of physics is that two quite different types of current produce magnetic fields: electric current from
moving charge and magnetization current from the quantum mechanical spin of point-like particles.1

This makes magnetizable matter much more varied than polarizable matter in both its fundamental

1 Magnetization current due to orbiting charge is a special case of electric current. See Chapter 13.
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nature and in its response to external fields. Particularly important in this regard is the ubiquity and
practical importance of permanent magnetism (ferromagnetism) due to the spontaneous alignment of
electron spins. The analogous phenomenon in dielectrics (ferroelectricity) is relatively uncommon.

A quick comparison of the magnetostatic equations in Section 10.1 with the electrostatic equations
in Section 3.1 shows that the roles of the divergence and curl operators are reversed in the static
Maxwell equations. This leads to methods and results for magnetostatics which are quite different
from the methods and results of electrostatics. In practice, it is important to appreciate, ponder, and
master these differences to build physical intuition and calculational skill. We will see later that special
relativity ascribes the distinction between E(r) and B(r) (as a matter of principle) to nothing more than
a choice of observer reference frame (Chapter 22).

10.1.2 Magnetostatic Fields Imply Steady Currents
The divergence operation applied to both sides of (10.2) shows that the current densities relevant to
magnetostatics satisfy the steady-current condition,

∇ · j (r) = 0. (10.5)

Figure 9.1 of the previous chapter shows lines of j (r) for a current density of this sort.2 The same
diagram is a possible field line pattern for B(r). In general, we mimic electrostatics (Section 3.3.4) and
use a scalar parameter λ to ensure that every differential element of magnetic field line ds is parallel
to B(r) itself:

ds = λB. (10.6)

Writing (10.6) out in components produces differential equations for the field lines like3

dy

dx
= By

Bx

and
dz

dx
= Bz

Bx

. (10.7)

Analytic solutions for the magnetic field lines defined by (10.6) are not common. Nevertheless, an
essential characteristic shared by all magnetic field patterns reveals itself when we define the magnetic
flux through a surface S as

�B =
∫
S

d S · B. (10.8)

If S encloses a volume V , the divergence theorem (Section 1.4.2) and the Maxwell equation ∇ · B = 0
give

�B =
∫
V

d 3r ∇ · B = 0. (10.9)

The zero flux condition (10.9) is a powerful constraint which cannot be satisfied unless magnetic field
lines do not begin or end inside V . Since V can be infinitesimal, we conclude that lines of B(r) do not
begin or end at isolated points in space (Figure 10.1).

10.1.3 Magnetic Monopoles Do Not Exist
The constraint (10.9) implies that magnetic charge does not exist. Magnetic field lines either close on
themselves, begin at infinity and end at infinity, or do not close at all (see Section 10.6). Put another

2 The force (10.3) and torque (10.4) are valid irrespective of the steady-current condition.
3 See Section 4.2 for an electrostatic example.
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B(r)

V

Figure 10.1: Magnetic field lines do not begin or end in any volume V of space.

way, the Maxwell equation ∇ · B = 0 summarizes the fact that no reproducible experiment has ever
detected a magnetic monopole—the magnetic analog of the electric point charge. This is significant for
many reasons, not least because it robs the Maxwell equations of perfect symmetry between electric
and magnetic phenomena.4

10.1.4 Thomson’s Theorem of Magnetostatics
Earnshaw’s theorem of electrostatics (Section 3.3.3) states that the electric scalar potential ϕ(r) has no
local maxima or minima in a charge-free volume of space. A related theorem applies to the magnitude
of a magnetostatic field.

Theorem: |B(r)| can have a local minimum, but never a local maximum, in a current-free volume of
space.

Proof: Suppose, to the contrary, that |B(r)| or, equivalently, B · B has a local maximum at a point P
where ∇ · B = 0 and ∇ × B = 0. Then, by assumption, if S is the surface of a small spherical volume
V centered at P , ∫

S

dS · ∇(B · B) < 0. (10.10)

On the other hand, using the divergence theorem,∫
S

dS · ∇(B · B) =
∫
V

d 3r ∇i∇i(BjBj ) = 2
∫
V

d 3r (∇iBj )2 + 2
∫
V

d 3r Bj∇2Bj . (10.11)

The last term in (10.11) vanishes because ∇ × B = 0 in V implies that ∇iBj = ∇jBi . Specifically,∫
V

d 3r Bj∇2Bj =
∫
V

d 3r Bj∇i∇jBi =
∫
V

d 3r Bj∇j (∇ · B) = 0. (10.12)

We conclude that ∫
S

dS · ∇(B · B) = 2
∫
V

d 3r (∇iBj )2 ≥ 0. (10.13)

This contradicts our original assumption and so proves the assertion. Application 12.2 in Section 12.4.2
explores some practical applications of Thomson’s theorem.

4 See Section 2.5.5 on the “symmetric” Maxwell equations. For the current status of magnetic monopoles in theory and
experiment, see Milton (2006) in Sources, References, and Additional Reading.
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10.2 The Law of Biot and Savart

Equations (10.1) and (10.2) specify the divergence and curl of B(r). This is precisely the information
required by the Helmholtz theorem (Section 1.9) to give an explicit expression for the unique magnetic
field produced by j (r). Since ∇ · B = 0 and ∇ × B = μ0j, the theorem gives

B(r) = ∇ × μ0

4π

∫
d 3r ′ j(r′)

|r − r′| . (10.14)

The integral in (10.14) converges for all well-behaved, spatially localized current distributions. It may
not converge for a current source of infinite extent but, even in that case, it is often possible to extract
B(r) as the limit of the field produced by a source of finite size.5

A fundamental superposition formula for B(r) follows from (10.14) when we bring the curl inside
the integral and use the fact that j (r′) is not a function of r. The result is the historically significant
law of Biot and Savart:

B(r) = μ0

4π

∫
d 3r ′ j (r′) × (r − r′)

|r − r′|3 . (10.15)

An alternate form which applies when a surface current density K(rS) is specified rather than a volume
current density is

B(r) = μ0

4π

∫
dS

K(rS) × (r − rS)

|r − rS |3 . (10.16)

When a current I flows in a filamentary (one-dimensional) wire, and � is a vector which points to a
line element d� of the wire, the substitution j d 3r → Id� (see Section 9.3.1) simplifies (10.15) to

B(r) = μ0I

4π

∫
d� × (r − �)

|r − �|3 . (10.17)

The next few sections report Biot-Savart results we will exploit in later sections.

Application 10.1 Irrotational Current Sources

Physical current densities where ∇ × j = 0 produce B(r) = 0 at every point in space. To prove this,
write the Biot-Savart integral (10.15) in the form

B(r) = μ0

4π

∫
d 3r ′ j (r′) × ∇′ 1

|r − r′| . (10.18)

Now, integrate by parts and use the integral theorem (1.78). The result is

B(r) = μ0

4π

∫
d 3r ′ ∇′ × j (r′)

|r − r′| − μ0

4π

∫
dS × j (r′)

|r − r′| . (10.19)

Physically interesting currents are localized in the sense that they vanish at infinity sufficiently fast
to ensure that the surface integral in (10.19) is zero. We conclude that localized and curl-free current
distributions (∇ × j = 0) produce no magnetic field anywhere. �

10.2.1 A Circular Current Loop
No simple analytic formula gives the magnetic field at every point in space for a circular current loop.
However, the Biot-Savart integral is not difficult to evaluate if we restrict ourselves to observation

5 See Example 10.4.
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r=zẑ

θ
dB

r−�

I

d�
R

θ

Figure 10.2: Geometry for a Biot-Savart calculation of the magnetic field on the symmetry axis of a circular
current loop.

points that lie on the symmetry axis of the loop. The vector dB in Figure 10.2 is a typical contribution
to the integrand of (10.17). The components of dB perpendicular to the symmetry (z) axis cancel
when d� traverses the entire loop. The z-components add and have the same magnitude for every d�.
Therefore,

B(z) = ẑ
μ0I

4π

cos θ

R2 + z2

∮
d� = ẑ

μ0I

2

R2

(R2 + z2)3/2
. (10.20)

The non-zero of B(z = 0) predicted by (10.20) differs from the result E(z = 0) = 0 found in
Example 3.1 for a uniformly charged ring. The difference may be traced to the cross product in
the Biot-Savart law and its absence in the corresponding electric field formula (3.8). As a result,
contributions to B(z = 0) from opposite sides of the ring add rather than subtract as the contributions
to E(z = 0) do for the charged ring. On the other hand, B(z → ∞) = 0 is similar to E(z → ∞) = 0
for the uniformly charged ring. This is consistent with the Helmholtz theorem and is a general feature
of magnetic fields produced by finite-sized sources.

10.2.2 An Infinitely Long Solenoid
Figure 10.3 shows an azimuthal current K flowing on the surface of an infinitely long solenoid. The
cross sectional shape of the solenoid is arbitrary but uniform along its length. The vector R = r − rS
in the Biot-Savart integral (10.16) is drawn for the case when the observation point P lies outside the
body of the solenoid. However, the calculation to be outlined below applies equally well when P lies
inside the body of the solenoid.

We exploit the fact that Kd� = Kd� is an azimuthal vector by factoring the surface integral in
(10.16) into a z-integral and a line integral around the solenoid’s perimeter:

B(P ) = μ0

4π

∫
dS

K × R
R3

= μ0K

4π

∞∫
−∞

dz

∮
d� × R
R3

. (10.21)

From the geometry, R + R′ = −zẑ andR2 = R′2 + z2. Using this information and d� = dR′ in (10.21)
gives

B(P ) = μ0K

4π

∮ ⎡
⎣(R′ × dR′)

∞∫
−∞

dz

(R′2 + z2)3/2
+ (ẑ × dR′)

∞∫
−∞

dz
z

(R′2 + z2)3/2

⎤
⎦ . (10.22)
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K

d�

y
z

x
R′+dR′

dθ
P

R′

dR′
R

K

α

Figure 10.3: An infinitely long solenoid with a uniform cross sectional shape. The surface current density K has
constant magnitude, but is everywhere parallel to the azimuthal vector d� = dR′ tangent to the solenoid surface.

The first integral in square brackets in (10.22) has the value 2/R′2. The second integral vanishes
because its integrand is an odd function of z. Therefore,

B(P ) = μ0K

2π

∮
R′ × dR′

R′2 . (10.23)

An important observation is that the vector R′ × dR′ points in the −ẑ-direction when P lies outside
the solenoid and points in the +ẑ-direction when P lies inside the solenoid. Moreover,

|R′ × dR′| = R′dR′ sin(π − α) = R′dR′ sinα, (10.24)

and the law of sines gives

dR′ sinα = |R′ + dR′| sin(dθ) ≈ R′dθ. (10.25)

Therefore, |R′ × dR′| ≈ R′2dθ , and the magnitude of (10.23) is

B(P ) = μ0K

2π

∮
dθ. (10.26)

When P lies outside the solenoid, the vector R′ in Figure 10.3 sweeps out zero net angle θ as its tip
traces out the closed circuit of the integral (10.26). When P lies inside the solenoid, R′ sweeps out an
angle 2π over the same closed circuit. Hence,

B(P ) =
{
μ0K ẑ P inside the solenoid,

0 P outside the solenoid.
(10.27)

The magnetic field is uniform and axial everywhere inside the solenoid and vanishes everywhere
outside the solenoid.

Example 10.1 It is convenient for some applications to construct a closed path for current flow
from a set of straight wire segments connected head-to-tail. (a) Express the Biot-Savart magnetic
field produced by the wire segment a (shown as a dotted line in Figure 10.4) in terms of its current
I and the co-planar vectors b and c which begin at the observation point P and end at the beginning
and end points of the segment, respectively. (b) Use the analysis of part (a) to find the magnetic
field produced by an infinitely long filament of current.
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P

r�−

�
a

|| ar ac= ×b
r

c

Figure 10.4: The wire segment a (dotted) carries a steady current I from the head of the vector b to the head
of the vector c. The observation point is P .

Solution: (a) Choose the origin of the vectors r and � in the Biot-Savart integral (10.17) as
the point on the line defined by the wire which lies closest to the observation point P . Since
|r − �| = √

r2 + �2 and the vectors d� × r and c × a are parallel,

d� × (r − �)

|r − �|3 = d� × r
|r − �|3 = d� r

(r2 + �2)3/2

c × a
|c × a| .

The integral on � runs from �b = a · b/a to �c = a · c/a. Therefore, since r = |c × a|/a, the
Biot-Savart magnetic field is

B = μ0I

4π

c × a
|c × a|

1

r

�√
�2 + r2

∣∣∣∣a·c/a

a·b/a
= μ0I

4π

c × a
|c × a|2

{
a · c
c

− a · b
b

}
.

The direction of c × a is perpendicular to the plane of the diagram so, by rotational symmetry, the
lines of B form closed circles coaxial with the axis of the current-carrying segment.

(b) For an infinitely long wire, the limits of the Biot-Savart integral are �b = −∞ and �c = ∞.
Moreover, c × a points along the azimuthal unit vector φ̂ if we adopt the right-hand rule (see next
section). Therefore, the magnetic field at a distance r from an infinitely long current-carrying wire
is

B = φ̂
μ0I

4π

1

r

�√
�2 + r2

∣∣∣∣∞
−∞

= μ0I

2πr
φ̂.

10.3 Ampère’s Law

The fundamental magnetostatic equation (10.2) is called Ampère’s law. Elementary discussions focus
on its integral form, which we derive by integrating both sides of (10.2) over a surface S and using
Stokes’ theorem to transform the surface integral of ∇ × B into a circuit integral of B. The desired
result follows because (2.7) defines the current IC as the integral of j · dS over S:∮

C

d� · B = μ0

∫
S

dS · j = μ0IC. (10.28)

The sign of IC is fixed by the right-hand rule: the thumb points in the direction of positive current
when the curl of the fingers follows the direction of integration around C.

Ampère’s law in the form (10.28) can sometimes be used to find the magnetic field when j (r) is highly
symmetrical. The key is to use symmetry (or other arguments) to discover (i) which components of the
magnetic field vector are non-zero and (ii) how each non-zero component depends on the components
of r. The calculation of B(r) reduces to algebra if this information reveals an integration path C where
the integrand of (10.28) is a constant which can be taken out of the integral.
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ρ

z
I

ˆB=B(ρ)φφ

Figure 10.5: The azimuthal magnetic field of a straight and infinite filament of current. The vertical radial vector
lies in the z = 0 plane.

10.3.1 An Infinite Line of Current
Every physics student learns to use Ampère’s law in integral form to find the magnetic field produced
by an infinite line of current (see Figure 10.5). One assumes that B(r) = B(ρ)φ̂ and uses circles
concentric with the line of current as Ampèrian integration paths. Since I in Figure 10.5 points along
ẑ, the resulting field,

B(ρ) = μ0I

2πρ
φ̂, (10.29)

is consistent with the right-hand rule and reproduces the formula derived at the end of Example 10.1.
It remains only to provide a convincing argument for the assumed form for the field.

The invariance of the line current to translations along, and rotations around, the z-axis implies that
B(ρ, φ, z) = B(ρ). The same symmetries, combined with ∇ · B = 0, tell us that the radial component
Bρ = 0. Otherwise, field lines would begin or end at the line of current. Finally, consider reversing
the sign of I by reflecting the line of current in the z = 0 plane of Figure 10.5. The linearity of the
Maxwell equations guarantees that this operation reverses the sign of B also. However, as we will now
show, the z-component of B does not change under mirror reflection through z = 0. Therefore, Bz = 0
and we confirm the correctness of our Ampère ansatz that B = B(ρ)φ̂.

By definition, reflection in the z = 0 plane transforms the position vector r to

r′ = x ′x̂ + y ′ŷ + z′ẑ = xx̂ + yŷ − zẑ. (10.30)

The z-component of r′ is the negative of the z-component of r. The x- and y-components of r′ and r
are the same. The Cartesian components of the gradient ∇ = ∂/∂r, and the current density j = ρv =
ρdr/dt , behave similarly because they are constructed from r and scalars which do not change under
reflection. To discover how the reflected magnetic field B′(x, y,−z) is related to the original magnetic
field B(x, y, z), it is sufficient to demand that the transformed equation, ∇′ × B′ = μ0j′, be consistent
with the original equation, ∇ × B = μ0j. Writing out the Cartesian components of each equation and
using the transformation properties of ∇ and j shows immediately that reflection through the z = 0
plane leaves the z-component of the magnetic field unaffected and changes the algebraic sign of the
x- and y-components:

B′ = B ′
x x̂ + B ′

y ŷ + B ′
zẑ = −Bx x̂ − By ŷ + Bzẑ. (10.31)

This discussion is consistent with Application 1.2 at the end of Section 1.8.1 where vectors that
transform under reflection like (10.30) were called “ordinary” or “polar” vectors and vectors that
transform like (10.31) were called “axial” or “pseudo” vectors. An independent deduction that B(r) is
an axial vector appears at the beginning of Section 2.7.
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KB
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y
z

x

Figure 10.6: An infinite sheet of current with density K = K ẑ and the Ampèrian loop (dashed) used to find B.
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π

Figure 10.7: Magnetic field of a current sheet at x = 0 (a) rotation by π around the z-axis transforms B to B̃;
(b) reflection through x = 0 transforms B to B′.

10.3.2 A Uniform Sheet of Current
Figure 10.6 shows an infinite sheet with uniform surface current density K(rS) = K ŷ confined to
the x-y plane. Two symmetry arguments facilitate a calculation of the sheet’s magnetic field using
Ampère’s law. The first uses the translational invariance of the current sheet along x and y to deduce
that B = B(z). The second exploits the fact that B(z) must transform identically under two symmetry
operations if both operations leave the current invariant and relocate every observation point identically.
The symmetries in question are 180◦ rotation around the y-axis and reflection in the z = 0 plane.
Figure 10.7(a) shows how 180◦ rotation transforms the magnetic field vector B(x, y, z) to a vector
B̃(x, y,−z).6 Analytically,

B̃ = B̃x x̂ + B̃y ŷ + B̃zẑ = −Bx x̂ − Byy + Bzẑ. (10.32)

Figure 10.7(b) shows how mirror reflection transforms B(x, y, z) to a vector B′(x, y,−z) according
to (10.31). The requirement that each Cartesian component of B̃ in (10.32) equal the corresponding
component of B′ in (10.31) shows that By = Bz = 0 and that

B = Bx(z)x̂ and Bx(−z) = −Bx(z). (10.33)

6 We use the active interpretation of this transformation. See Section 1.7.2.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-10 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:31

310 MAGNETOSTATICS: THE MAGNETIC FIELD PRODUCED BY STEADY CURRENT

2
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S

rK

1
)(rB

Figure 10.8: A surface that carries an areal current density K(rS ). The unit normal vectors n̂k points outward
from region k.

Using (10.33), the choice of the dashed rectangular loop in Figure 10.6 as the circuit C reduces the
integral in (10.28) to the factor 2By� . The enclosed current and the surface current density are related
by IC = K�, so

B(x, y, z) =
{ 1

2μ0K x̂ z > 0,

− 1
2μ0K x̂ z < 0.

(10.34)

The magnetic field is uniform, but oppositely directed, on opposite sides of an infinite sheet of uniform
current density. On each side, the field is parallel to the sheet, but perpendicular to the direction of
current flow. If ŝ is a unit normal to the current sheet which points to the observation point, a generally
valid formula is

B = 1

2
μ0K × ŝ. (10.35)

10.3.3 Matching Conditions for B(r)
We can use (10.35) to re-derive the matching conditions (2.49) for the magnetic field near an arbitrarily
shaped surface S which carries a surface current density K(rS) (Figure 10.8). Following Section 3.4.2,
let B1(rS) and B2(rS) be the magnetic fields at two points which are infinitesimally close to each other,
but on opposite sides of S at the point rS . Each of these fields can be written as a superposition of
two fields. One is the field produced by the differential element of surface which contains rS itself
(shown as a shaded disk in Figure 10.8). This is well approximated by (10.35) at the observation points
in question. The second contribution to B1(rS) and B2(rS) is the field BS produced by all the source
current except for the current which flows through the disk. The latter is continuous passing through
the hole occupied by the disk. Therefore,

B1 = BS + 1
2μ0K(rS) × n̂2 and B2 = BS − 1

2μ0K(rS) × n̂2. (10.36)

Subtracting the two equations in (10.36) gives B1 − B2 = μ0K(rS) × n̂2. Taking the dot product
and cross product of this equation with n̂2 produces the matching conditions

n̂2 · [B1 − B2] = 0 (10.37)
n̂2 × [B1 − B2] = μ0K(rS). (10.38)

The normal component of B is continuous across a current-carrying surface. The tangential component
of B can suffer a discontinuity. We note in passing that (10.38) combined with the fact that Bin = 0
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is the static field inside a perfect conductor (see Section (C)) relates the magnetic field just outside a
perfect conductor to the current flowing on its surface:

μ0K = n̂ × Bout. (10.39)

10.3.4 The Force on a Sheet of Current
The tiny disk of current shown shaded in Figure 10.8 cannot exert a force on itself. Therefore, the force
per unit area on any particular element of current-carrying surface is due to the net field BS produced
by all the other surface elements. Adding together the two equations in (10.36) shows that BS is the
simple average of B1 and B2. Hence, the force per unit area f(rS) exerted on a current-carrying surface
is K(rS) × BS :

f(rS) = 1
2 K(rS) × (B1 + B2). (10.40)

We will make use of (10.40) in Chapter 12.

Example 10.2 Figure 10.9 shows a filamentary wire which carries a steady current I up the
symmetry axis of a hollow cylindrical can of radius R and height L. The return current flows
radially outward along the upper end cap, down the cylindrical wall, and then radially inward along
the lower end cap. (a) Argue that the magnetic field everywhere has the form B(r) = B(ρ, z)φ̂ in
cylindrical coordinates. (b) Find B(ρ, z) at every point in space. (c) Show that the solution satisfies
the matching conditions (10.37) and (10.38) on the walls of the can.

R

LI

Figure 10.9: A straight filament carries a current I up the center of a hollow cylindrical can. The return
current flows radially outward along the top end cap, down the tubular wall, and radially inward along the
lower end cap.

Solution: (a) The field B = B(ρ, z) because the source current has rotational symmetry around
the z-axis. The current density has the form j (r) = jρ(ρ, z)ρ̂ + jz(ρ, z)ẑ, so the three components
of Ampère’s law in cylindrical coordinates simplify to

−∂Bφ

∂z
= μ0jρ(ρ, z),

∂Bρ

∂z
− ∂Bz

∂ρ
= 0,

1

ρ

∂

∂ρ
(ρBφ) = μ0jz(ρ, z).

All three equations are consistent with a magnetic field of the form B(r) = B(ρ, z)φ̂. The latter
also satisfies ∇ · B = 0.

(b) With the ansatz of part (a), Ampère’s law (10.28) with circular Ampèrian integration paths
coaxial with the symmetry axis gives

B(ρ, z) =
⎧⎨
⎩
μ0I

2πρ
φ̂ inside the can,

0 outside the can.
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The fact that the field inside the can is exactly the same as the field (10.29) produced by an infinitely
long wire does not imply that the field comes entirely from the vertical segment of current enclosed
by the Ampèrian loop. All the currents in and on the can contribute to the total calculated field.

(c) If n̂ is the outward normal to any wall of the can, both matching conditions are represented
by

Bout − Bin = μ0K × n̂.

The surface current densities on the upper (+) and lower (−) end caps are K± = ρ̂I/2πρ. The
surface current density on the outside wall is K0 = −ẑI/2πR. Using these values, we confirm that
the matching condition on the side wall is an identity:

0 − μ0I

2πR
φ̂ = −μ0

I

2πR
ẑ × ρ̂.

The same is true for the matching conditions on the end caps:

0 − μ0I

2πρ
φ̂ = ±μ0

I

2πρ
{ρ̂ × (±ẑ)} .

Remark: The current density used in the preceding analysis, j (r) = jρ(ρ, z)ρ̂ + jz(ρ, z)ẑ, applies
equally well to a toroidal solenoid (Figure 10.10) formed by bending a conventional linear solenoid
so its two open ends join smoothly together. Therefore, when N turns of a wire with current I are
wound to form the toroid shown in Figure 10.10, the Ampère’s law analysis just above gives the
magnetic field immediately as

B(ρ, z) =
⎧⎨
⎩
μ0NI

2πρ
φ̂ inside the toroidal volume,

0 outside the toroidal volume.

z
ρ

Figure 10.10: Cross section of a toroidal solenoid with rotational symmetry around the z-axis.

10.4 The Magnetic Scalar Potential

Ampère’s law (10.2) reads ∇ × B(r) = 0 in any volume of space V where the current density j (r) = 0.
Within that volume, the analogy with electrostatics implies that we may define a magnetic scalar
potential ψ(r) where

B(r) = −∇ψ(r) r ∈ V. (10.41)

Since ∇ · B(r) = 0 everywhere, ψ(r) satisfies Laplace’s equation at the same set of points,

∇2ψ(r) = 0 r ∈ V. (10.42)

This is an important result. It shows that the potential-theory methods of Chapter 7 apply to any
magnetostatic problem where the current is confined to surfaces which separate space into disjoint,
current-free sub-volumes. We need only solve (10.42) in each sub-volume and use the matching
conditions (10.37) and (10.38) to stitch the solutions together.
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r

x

z

y
R

I

Figure 10.11: A origin-centered ring of radius R carries a steady current I in the z = 0 plane.

10.4.1 A Uniform Ring of Current
In Section 7.6.1, we calculated the electric scalar potential of a uniform circular ring with net charge
Q. Here, we calculate the magnetic scalar potential of a circular ring which carries a current I . We
center the ring on the z-axis in the x-y plane (see Figure 10.11) so r = R and θ = π/2 define the
position of the ring in polar coordinates. The spherical matching surface r = R divides space into two
current-free sub-volumes.

The problem has azimuthal symmetry so the appropriate solutions of Laplace’s equation that are
regular in each sub-volume are

ψ(r, θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
�=1

A�

( r
R

)�
P� (cos θ ) r < R,

∞∑
�=1

B�

(
R

r

)�+1

P� (cos θ ) r > R.

(10.43)

Notice that the sums in (10.43) begin at � = 1 rather than at � = 0 as they did for the charged-ring
problem. This follows7 from the matching condition (10.37) because the continuity of r̂ · ∇ψ at r = R

gives B0 = 0 as a special case of

B� = − �

� + 1
A� . (10.44)

The tangential matching condition (10.38) determines the coefficients A� in terms of so-called
“associated” Legendre functions (Appendix C). To avoid this complication, we “go off the axis” as
discussed in Application 7.2 following Section 7.6.1. This requires an independent calculation of the
field on the axis. We did this in Section 10.2.1 with the result that

Bz(z) = μ0I

2

R2

(R2 + z2)3/2
. (10.45)

Using (10.45), we integrate the z-component of (10.41) and set the integration constant equal to zero.
This gives

ψ(z) = −μ0I

2

z√
R2 + z2

. (10.46)

The key step is to rewrite (10.46) using the generating function (4.74) for the Legendre polynomials.
When we do this for z < R, the result is

ψ(z) = −μ0I

2

∞∑
�=1

( z
R

)�
P�−1(0). (10.47)

7 A deeper explanation for this fact will be given in the next chapter.
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Figure 10.12: Representative magnetic field lines produced by a circular ring of current. The full field line
pattern shares the rotational symmetry of the ring.

The expansion (10.47) must be equivalent to the r < R expansion in (10.43) with θ = 0 and r = z.
Since P� (1) = 1, this establishes that A� = − 1

2μ0IP�−1(0). We then use (10.44) and the facts that
�P�−1(0) = −(� + 1)P�+1(0) and P� (0) = 0 when � is odd. The final result is

ψ(r, θ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−μ0I

2

∞∑
�=1,3,...

( r
R

)�
P�−1(0)P� (cos θ ) r < R,

−μ0I

2

∞∑
�=1,3,...

(
R

r

)�+1

P�+1(0)P� (cos θ ) r > R.

(10.48)

It is important to notice that (10.48) is not continuous at r = R.8 Unlike the electric scalar potential,
ϕ(r), there is no requirement that ψ(r) be continuous at a matching surface.

Figure 10.12 illustrates a few representative field lines of

B(r, θ) = −∂ψ

∂r
r̂ − 1

r

∂ψ

∂θ
θ̂ . (10.49)

Observers very near the ring see circular field loops which “link” the ring because, at these distances,
the ring looks just like a straight segment of current (see Section 10.3.1). Farther away, the circles
expand asymmetrically into elliptical loops. Finally, when r � R, we can approximate ψ(r, θ ) using
just the � = 1 term in (10.48):

ψ(r, θ ) � μ0

4π

πR2I

r2
cos θ. (10.50)

The cos θ/r2 structure of the magnetic scalar potential (10.50) is identical to the electric scalar potential
of a point electric dipole.9 Therefore, since B = −∇ψ and E = −∇ϕ, the B field line structure far
from the current ring is identical to the E field line structure of a point electric dipole (Figure 4.3).

8 This is so despite the fact that (10.46) is continuous at z = R. By construction, (10.48) reproduces (10.46) when
z < R. However, (10.48) goes to zero when r → ∞ while (10.46) approaches equal and opposite constant values
when z → ±∞. This difference has no effect on the magnetic field because B = −∇ψ .

9 We will show in the next chapter that the product of the ring area πR2 and the current I in the numerator of (10.50) is
the magnitude of the magnetic dipole moment of a current ring.
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Figure 10.13: Lines of B(r) near a Helmholtz coil. The parallel rings (radius R) of current are oriented
vertically and perpendicular to the plane of the figure. The vertical dashed line is the plane z = R/2. Figure from
Scott (1966).

10.4.2 The Helmholtz Coil
In 1853, the French scientist Gaugain pointed out that a circular coil of current with radius R in the
z = 0 plane produces a region of fairly uniform magnetic field near the point z = R/2 on the symmetry
axis. This follows from (10.45) because z = R/2 is an inflection point where the second derivative
B ′′
z (z) is zero. The great German physicist-physiologist, Hermann von Helmholtz, knew that the field

is even more uniform in the same region of space if one adds a second, identically oriented current
coil in the z = R plane (Figure 10.13).

It is not difficult to appreciate the origin of the field uniformity of the Helmholtz coil. For two coaxial
rings of radius R separated by a distance R (one at z = 0 and one at z = R), the total field on the
symmetry axis still satisfies B ′′

z (R/2) = 0 by construction. More importantly, the reflection symmetry
of the two-coil configuration with respect to the plane z = R/2 implies that every odd derivative of
the total field is also zero at z = R/2. This means that the first non-zero derivative of Bz(z) at z = R/2
is d4Bz/dz

4. This guarantees that Bz(z) near the midpoint between the two coils will be very uniform
indeed.

Helmholtz’ Lament

Writing to his friend du Bois-Raymond in May of 1853, Helmholtz sought to establish his priority:

Gaugain has constructed a [coil] according to the same principle as mine, but in any event in a very
unadvantageous form. I gave a lecture on the principle of my instrument in 1848 or 1849 at the Berlin
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Physical Society and would like to know if enough is noted in the minutes that I could refer back to
them.

du Bois-Raymond responded:

Your priority in the matter of the Gaugain [coil] is irretrievably lost. The minutes of the year 1849, to
which your communication belongs, are unfortunately lost . . . This is a shame, but it is a new warning
not to hide one’s talents. Don’t let this hold you back from describing your instrument now, however.

Helmholtz chose not to publish. Nevertheless, the name Helmholtz coil became associated with
his two-coil magnet, probably because Gustav Wiedemann attributed the design to Helmholtz in
the first edition of his encyclopedic Die Lehre von der Elektricität (1861).

Application 10.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a medical diagnostic technique which exploits nuclear magnetic
resonance to excite proton spins in the human body. Image contrast comes from variations in the
resonance signal strength due to differences in the density and spin relaxation rate of protons found
in different types of tissue (bone, muscle, fat, etc.) In 2003, the physicist Peter Mansfield won a share
of the Nobel Prize in Physiology or Medicine for the development of a “snapshot” technique which
greatly reduced the time needed for data acquisition. This, in turn, required the invention of “active
magnetic shielding” of the fields produced by current-carrying coils (used to define the image plane
and its coordinate axes) from the superconducting magnet used to align the spins. We illustrate the idea
using the concentric cylinders in Figure 10.14. Given a current density K1(φ, z) on the inner cylinder,
the goal is to choose a current density K2(φ, z) on the outer cylinder so the total magnetic field B = 0
when ρ > R2.

R2

R1

Figure 10.14: Active shielding specifies current on two cylindrical shells to make B(ρ, z) a desired field
inside the inner cylinder and B = 0 outside the outer cylinder.

A preliminary problem considers a magnetostatic scalar potential ψ(ρ, φ, z) which satisfies
Laplace’s equation inside and outside a cylindrical surface at ρ = R subject to the matching con-
ditions10

ρ̂ · (Bout − Bin) = 0 ρ̂ × (Bout − Bin) = μ0K. (10.51)

Section 7.8 discussed solutions of ∇2ψ = 0 in cylindrical coordinates. We choose the separation
constant k2 = (iκ)2 < 0 in (7.87) to get a Fourier integral in the z-variable and modified Bessel

10 For the remainder of this Application, we use the symbol K for surface current density to distinguish it from the
modified Bessel function Km(x).
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functions [see (7.88)] in the ρ-variable. The physical requirements on ψ are that it be bounded
everywhere and go to zero as ρ → ∞. It is also convenient to build in the continuity of Bρ = −∂ψ/∂ρ
at ρ = R to satisfy the matching condition on the left side of (10.51). The general solution which does
all these things is

ψ(ρ, φ, z) =
∞∑

m=−∞
eimφ

∞∫
−∞

dκAφ(κ)eiκz ×
{
K ′
m(|κ|R)Im(|κ|ρ) ρ < R,

I ′
m(|κ|R)Km(|κ|ρ) ρ > R.

(10.52)

A strategy to find the expansion functions Aφ(κ) uses the φ-component of the matching condition
for K, the Bessel function Wronskian, x[I ′(x)K(x) − I (x)K ′(x)] = 1, and the Fourier components
Km
φ (κ) defined by

φ̂ · K(φ, z) =
∞∑

m−∞
eimφ

∞∫
−∞

dκ

2π
eiκzKm

φ (κ). (10.53)

The potential which results is11

ψ(ρ, φ, z) = μ0R

2π

∞∑
m=−∞

eimφ
∞∫

−∞
dκ

|κ|
iκ

Km
φ (κ)eiκz ×

{
K ′
m(|κR|)Im(|κ|ρ) ρ < R,

I ′
m(|κ|R)Km(|κ|ρ) ρ > R.

(10.54)

To solve the original problem, we put ρ > R2 > R1 and use (10.54) twice to add the potential
produced by K1 to the potential produced by K2:

ψ(ρ, φ, z) = μ0

2π

∞∑
m=−∞

eimφ
∞∫

−∞
dκ

|κ|
iκ

eiκzKm(|κ|ρ)
[
R1Km

1φI
′
m(|κ|R1) + R2Km

2φI
′
m(|κ|R2)

]
.

(10.55)

The immediate conclusion is that ψ and B are both zero outside the outer cylinder if the Fourier
components of K2 are related to the Fourier components of K1 by

Km
1φ = −R1I

′
m(|κ|R1)

R2I ′
m(|κ|R2)

Km
2φ. (10.56)

This approach to magnetic shielding is used in virtually all commercial MRI scanners. �

10.4.3 Topological Aspects of ψ(r)
The magnetic scalar potential differs from its electrostatic counterpart because it is not a single-valued
function of its argument. To see this, let V be the vacuum space outside a filamentary current loop
(Figure 10.15). The relation B = −∇ψ is valid everywhere in V . Therefore, its integrated form is also
correct as long as the path of integration path from A to B lies entirely in V :

ψ(A) − ψ(B) =
B∫

A

d� · B. (10.57)

11 The reader can check that (10.54) satisfies the z-component of the matching condition on the right side of (10.51).
The two components of the matching condition are not independent because ∇ · K = 0.
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I
AB

C

I

Figure 10.15: The volume V is all of space except for the filamentary current loop I . The curve C “links” the
current loop and so cannot be shrunk to a point within V .

I
I I

(a)
(b)

(c)

Figure 10.16: Three open “barrier” surfaces (shaded) which bound the current loop I and make V a
simply-connected volume: (a) the surface is planar and finite; (b) the surface is planar and extends to infinity; (c)
the surface has the shape of a billowing windsock.

However, unlike the line integral of E(r) over a closed path (which is always zero), the line integral
of B(r) is not zero if the closed path encloses a current I . This is the content of Ampère’s law:∮

C

d� · B = μ0I. (10.58)

To be more precise, let A and B be infinitesimally nearby points which define the beginning and end
of a curve C which encircles the current I in Figure 10.15. In the language of (10.57), the Ampère’s
law constraint (10.58) reads

ψ(A) − ψ(B) = ±μ0I. (10.59)

The plus/minus sign applies when the encircled current flows parallel/anti-parallel to the “thumb”
when the right-hand rule is applied to C. This shows that ψ(r) is not a single-valued function of
position.

The magnetic scalar potential ψ(r) is inevitably multi-valued when V is not simply connected, that
is, when integration paths exist which encircle (or “link”) a closed loop of current as in Figure 10.15.
Fortunately, it is not difficult to makeψ(r) single-valued and thereby restore its usefulness. The trick is
to insert “barrier” surfaces into V which prevent the occurrence of linking paths. A sufficient condition
is that the barrier(s) transform V into a simply-connected domain. Figure 10.16 illustrates several
alternatives for the case of a planar current loop I . In each case, we are entitled to solve ∇2ψ = 0 in
the volume which excludes the barrier. From this point of view, (10.59) is a matching condition which
applies across the barrier.

We recall at this point that the magnetic scalar potential (10.48) for a current ring is not continuous
at r = R. This discontinuity is not a consequence of (10.59). For the ring, r = R is a closed matching
surface which partitions space into disjoint regions rather than an open barrier surface with the current
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source as its boundary. An alternative method of solution using true barriers must be adopted for the
ring problem in order to apply (10.59) to the current-ring problem.

10.4.4 Solid Angle Representation
We conclude this section by deriving a representation of the magnetic scalar potential ψ(r) for a
filamentary current loop C using the vector identity (1.85):∮

C

d� × f =
∫
S

dSk ∇fk −
∫
S

d S ∇ · f. (10.60)

The idea is to identify the left side of (10.60) with the Biot-Savart integral (10.17) for a current circuit
C. Then, if S is any surface which bounds C and we use the variable r′ in place of �, (10.60) reads

B(r) = μ0I

4π

∫
S

dSk∇′ (r − r′)k
|r − r′ |3 − μ0I

4π

∫
S

dS ∇′ · r − r′

|r − r′ |3 . (10.61)

The integrand of the second term in (10.61) is proportional to δ(r − r′). This term vanishes if we limit
ourselves to observation points r that do not lie on the surface S. Moreover, at the cost of a minus sign,
we can replace ∇′ by ∇ in the integrand of the first term in (10.61). Therefore,

B(r) = μ0I

4π
∇
∫
S

dS · r′ − r
|r − r′ |3 = μ0I

4π
∇�S(r), (10.62)

where �S(r) is the solid angle (Section 3.4.4) subtended by S at the observation point r. Comparison
with (10.41) shows that, up to an irrelevant constant, the magnetic scalar potential for a current loop is

ψ(r) = −μ0I

4π
�S(r). (10.63)

It is important to remember that the direction of the vector dS in (10.62) is fixed by the direction of
current flow and the right-hand rule. With that information, the properties of the solid angle when the
observation point passes through S provide an alternative proof of the jump condition (10.59). We will
return to this point in the next chapter when we discuss dipole layers.

Example 10.3 Use the solid angle representation (10.62) to find B(z) on the symmetry axis of a
current ring.

I
z

0r

R

0

Figure 10.17: A current ring of radius R lies in the plane z = 0. The dashed line is part of sphere centered at
the observation point r = 0.

Solution: In Figure 10.17, a sphere is centered on the observation point r = 0 such that a portion
of that sphere (dashed) forms a spherical cap for the current ring. In that case, the solid angle
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subtended by the ring is the same as the solid angle subtended by the cap. The direction of current
flow fixes dS = −a2 sin θdθdφ ŝ. Therefore, the solid angle is

�(z) = −
2π∫

0

dφ

π∫
θ0

dθ sin θ = 2π (cos θ0 − 1) = 2π

(
z√

R2 + z2
− 1

)
.

In agreement with (10.45), the magnetic field (10.62) is

B(z) = μ0I

4π

d

dz
�(z) ẑ = μ0I

2

R2

(z2 + R2)3/2
ẑ.

10.5 The Vector Potential

The magnetic scalar potential formula B = −∇ψ is not valid at points in space where j (r) �= 0. A
more general approach to B(r) exploits the zero-divergence condition ∇ · B = 0 to infer that a vector
potential A(r) exists such that

B(r) = ∇ × A(r). (10.64)

The alert reader will have appreciated this fact already from our application of the Helmholtz theorem
to get (10.14). Another proof is the following.

Assume that B(x, y, z) is given at every point in space. We construct a vector potential which
satisfies (10.64) as follows. Let A = Ax x̂ + Ay ŷ + Azẑ, where Az is an arbitrary function of z alone
and Ax and Ay are defined by

Ax =
∫

dz By and Ay = −
∫

dz Bx. (10.65)

These conditions imply that

∇ × A =
(
Bx, By,

∂Ay

∂x
− ∂Ax

∂y

)
. (10.66)

On the other hand, ∇ · B = 0, so (10.65) and (10.66) together imply that

ẑ · ∇ × A = −
∫

dz

(
∂Bx

∂x
+ ∂By

∂y

)
=
∫

dz
∂Bz

∂z
= Bz. (10.67)

Combining (10.66) with (10.67) confirms (10.64).
An immediate consequence of the existence of the vector potential is a circuit-integral representation

of the magnetic flux (10.8). Using Stokes’ theorem (Section 1.4.4),

�B =
∫
S

dS · B =
∫
S

dS · ∇ × A =
∫
C

d� · A. (10.68)

This representation has many uses, not the least being its essential role in the quantum mechanics of
particles moving in the presence of a magnetic field.12

12 See, for example, Peshkin and Tonomura (1989) in Sources, References, and Additional Reading.
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10.5.1 The Non-Uniqueness of A(r)
Like the electric scalar potential ϕ(r), the magnetic vector potential A(r) is not uniquely defined. The
arbitrariness of Az(z) in the existence proof just above makes this clear. More generally, if χ(r) is
any scalar function, (10.64) and the identity ∇ × ∇χ ≡ 0 show that the magnetic field produced by a
vector potential A is the same as the magnetic field produced by the alternative vector potential

A′(r) = A(r) + ∇χ(r). (10.69)

This suggests a powerful idea: choose the gauge function χ(r) to simplify calculations. In practice,
it is rare to specify the gauge function itself. Instead, we impose a constraint on the vector potential
which is equivalent to some choice of χ(r).

As an example, let us choose the Coulomb gauge constraint

∇ · A(r) = 0. (10.70)

If, to the contrary, an otherwise acceptable vector potential had the property that ∇ · A �= 0, we could
use (10.69) and demand that ∇ · A′ = 0. This implies that

∇2χ(r) = −∇ · A(r). (10.71)

Thus, any gauge function χ(r) which satisfies Poisson’s equation with ∇ · A(r) as its source term
leads, via (10.69), to a vector potential A′(r) which satisfies (10.70).

10.5.2 The Vector Poisson Equation
Substituting B = ∇ × A into ∇ × B = μ0j gives

∇ × (∇ × A) = μ0j . (10.72)

This is the magnetostatic equivalent of the Poisson equation, ∇ · ∇ϕ = −ρ/ε0, which we integrated in
Section 8.4 using a Green function method. A related, but somewhat awkward, Green function method
can be used to integrate the double-curl equation. Here, we shall proceed differently and note that, if
jk(r) is the kth Cartesian component of j(r), (10.72) is equivalent to13

∇k(∇ · A) − ∇2Ak = μ0jk. (10.73)

This equation is not easy to analyze because it non-trivially couples together all three Cartesian
components of A(r). However, if we demand that the vector potential satisfy the Coulomb gauge
constraint (10.70), (10.73) decouples into three independent Poisson equations, one for each Cartesian
component Ak(r). In other words, the vector A satisfies

∇2A(r) = −μ0j (r). (10.74)

Our experience with Poisson’s equation in electrostatics allows us to immediately write down the
solution of (10.74) for each Cartesian component Ak(r):

Ak(r) = μ0

4π

∫
d 3r ′ jk(r′)

|r − r′| . (10.75)

Re-assembling the components (10.75) into a single vector gives the vector potential in the Coulomb
gauge as

A(r) = μ0

4π

∫
d 3r ′ j (r′)

|r − r′| . (10.76)

13 See Section 1.2.7 for a discussion of the equivalence of (10.72) and (10.73).
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When a steady current I flows in a filamentary circuit C, the substitution j d 3r → Id� (see
Section 9.3.1) shows that (10.76) simplifies to

A(r) = μ0I

4π

∫
d�

|r − �| . (10.77)

Similarly, a current distribution confined to surface with areal density K(rS) produces a vector potential

A(r) = μ0

4π

∫
S

dS
K(rS)

|r − rS| . (10.78)

Two points are worth noting. First, comparing (10.76) with (10.14) shows that the Coulomb gauge
choice is implicit in the Helmholtz theorem. Second, (10.78) shows that each Cartesian component
of A(r) is related to each component of K(rS) in exactly the same way that the scalar potential ϕ(r)
is related to a surface charge density σ (rS). Because ϕ(r) is continuous when the observation point r
passes through a layer of charge, we may conclude that A(r) is continuous when the observation point
passes through a layer of current. In other words, the vector potential matching condition is

A1(rS) = A2(rS). (10.79)

Example 10.4 Find A(r) and then B(r) for an infinitely long filamentary wire which carries a
current I up the z-axis.

Solution: We use (10.77) with d� = dzẑ. This tells us that A(r) = Az(r)ẑ. The invariance of the
source with respect to translations along the z-axis and rotations around the z-axis implies that
Az = Az(ρ) in cylindrical coordinates. Therefore,

Az(ρ) = μ0I

4π

∫ ∞

−∞

dz′√
z2 + ρ2

.

This integral diverges. To make progress, we let the wire extend from −L to +L, compute Az to
lowest order in ρ/L, and then let L → ∞ at the end. The required integral is∫ L

−L

dz′√
z2 + ρ2

= ln

√
1 + (ρ/L)2 + 1√
1 + (ρ/L)2 − 1

� ln 4 + 2 ln(L/ρ).

Although the constant 2 lnL diverges as L → ∞, this term (and the other constant) drop out of
the magnetic field B = ∇ × A for any finite L. Therefore, in agreement with Section 10.3.1, we
conclude that

Az(ρ) = −μ0I

2π
ln ρ and B(ρ) = μ0I

2πρ
φ̂.

10.5.3 An Instructive Example
Example 10.4 exploited the result of (10.75) that a current flowing in one Cartesian direction produces
a vector potential pointed in the same Cartesian direction. By contrast, a current density j = j (r)φ̂
generally does not produce a vector potential A = Aφ̂. This is so because the curvilinear unit vector
φ̂ is not a constant vector and we must write

j (r) = j (r)φ̂ = j (r){cosφŷ − sinφx̂} (10.80)

before using (10.76) to evaluate the vector potential.
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z

r

y

x

φ′ρ

ρ′

r′

Figure 10.18: Coordinate system used to evaluate (10.76) when j(r) = j (ρ, z)φ̂.

An instructive exception is the current density j(r) = j (ρ, z)φ̂. If we choose the observation point
at r = ρx̂ + zẑ, as shown in Figure 10.18, the integral (10.76) takes the form

A(r) = μ0

4π

∫
d 3r ′ j (ρ ′, z′){cosφ′ŷ − sinφ′x̂}√

(ρ − ρ ′ cosφ′)2 + (ρ ′ sinφ′)2 + (z − z′)2
. (10.81)

The x̂-component of (10.81) is zero because the integrand is an odd function of φ′. Therefore, A points
in the ŷ-direction, which happens to be the φ̂ direction for an observation point in the x-z plane. On
the other hand, the rotational symmetry of the current density tells us that this choice of observation
point is not special. Therefore, the vector potential is

A(ρ, z) = φ̂
μ0

4π

∫
d 3r ′ j (ρ, z) cosφ′

|r − r′| , (10.82)

and we conclude that

j = j (ρ, z)φ̂ =⇒ A = A(ρ, z)φ̂. (10.83)

A similar argument in spherical coordinates shows that

j = j (r, θ )φ̂ =⇒ A = A(r, θ )φ̂. (10.84)

The filamentary current ring (Section 10.4.1) is an example where these results apply.

10.5.4 The Double-Curl Equation
Our derivation of the vector Poisson equation (10.74) and the vector potential in the Coulomb gauge
(10.76) passed quickly over the fundamental equation (10.72) satisfied by A(r) before any choice of
gauge is made. This double-curl equation bears repeating:

∇ × (∇ × A) = μ0j . (10.85)

When j (r) has sufficient symmetry that A(r) has a single vector component, (10.85) simplifies to a
single, inhomogeneous, partial differential equation. In favorable cases, this differential equation may
be easier to solve than performing the vector potential integral (10.76). Example 10.5 and Example 10.6
illustrate this approach to finding A(r).

Example 10.5 Integrate ∇ × (∇ × A) = μ0 j to find A(r) for a long, straight cylindrical wire with
radius a which carries a uniform current density j . Find B(r) from A(r) for ρ < a and ρ > a.

Solution: If j = j ẑ, (10.75) tells us that A = (0, 0, Az). By symmetry, Az = Az(ρ) in cylindrical
coordinates and (10.85) reduces to

1

ρ

∂

∂ρ

(
ρ
∂Az

∂ρ

)
= −μ0j.
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Direct integration produces a particular solution of the inhomogeneous equation and a general
solution of the homogeneous equation:

Az(ρ) = − 1
4μ0jρ

2 + C ln ρ +D.

The ln ρ term is absent for ρ < a and the ρ2 term is absent for ρ > a. If D and D′ are the constants
for ρ < a and ρ > a, the matching condition (10.79) applied at ρ = a fixes the value of D′. We
find

Az(ρ) =
{
D0 − 1

4μ0jρ
2 ρ ≤ a,

D0 − 1
4μ0ja

2 + C ln(ρ/a) ρ ≥ a.

Since B = −(dAz/dρ)φ̂, we can put D0 = 0 and the matching condition (10.37) fixes C =
− 1

2μ0ja
2. Since I = jπa2, the final vector potential and magnetic field are

Az(ρ) =

⎧⎪⎪⎨
⎪⎪⎩

−μ0I

4π

ρ2

a2
ρ ≤ a,

−μ0I

4π

[
1 + 2 ln

(ρ
a

)]
ρ ≥ a,

Bφ(ρ) =

⎧⎪⎪⎨
⎪⎪⎩
μ0I

2π

ρ

a2
ρ ≤ a,

μ0I

2πρ
, ρ ≥ a.

Example 10.6 Find A(r) in cylindrical coordinates for a filamentary current ring of radius R. The
ring is coaxial with the z-axis and centered at the origin, as in Figure 10.11.

Solution: Our strategy is to solve ∇ × ∇ × A = 0 in the space above and below z = 0 and match
the solutions together using (10.38). The surface current density K = Iδ(ρ − R)φ̂ at z = 0 is
an example of (10.83), so the double-curl equation reduces to a partial differential equation for
Aφ(ρ, z) alone. With A = A(ρ, z)φ̂, we find

∂2A

∂z2
+ ∂2A

∂ρ2
+ 1

ρ

∂A

∂ρ
− A

ρ2
= 0.

Separating variables withA(ρ, z) = R(ρ)Z(z) and a separation constant k2 givesZ(z) = exp(±kz)
and the differential equation

R′′ + R′

ρ
− R

ρ2
+ k2R = 0.

This is Bessel’s equation (7.82) of order one. Of the two linearly independent solutions (Sec-
tion 7.8.1), J1(kρ) is regular for all ρ, but N1(kρ) is not. The vector potential above (+) and below
(−) the z = 0 plane is a linear combination of elementary regular solutions with all possible values
of k:

A±(ρ, z) =
∫ ∞

0
dk a(k)J1(kρ)e∓kz.

The expansion coefficients a(k) are determined from the jump (10.38) in the tangential component
of the magnetic field at the surface of the ring,[

∂A+
∂z

− ∂A−
∂z

]
z=0

= −μ0Iδ(ρ − R),

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-10 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:31

10.6 The Topology of Magnetic Field Lines 325

and the completeness relation for the Bessel functions,∫ ∞

0
dρ kρJ1(kρ)J1(k′ρ) = δ(k − k′).

The final result for the vector potential is

A(ρ, z) = φ̂
1

2
μ0IR

∫ ∞

0
dk J1(kρ)J1(kR)e−k|z|.

10.6 The Topology of Magnetic Field Lines

The magnetic field line patterns produced by currents confined to a straight wire, a circular loop, or
a planar sheet are not truly representative of magnetic fields that satisfy ∇ · B = 0. To see this, focus
on the magnetic field B1 produced by a circular ring. As seen in Figure 10.12, the field lines very near
the ring form closed circles centered on the current. The set of all such field line circles with a given
radius forms a torus. Now add an infinite straight wire which carries a current along the symmetry axis
of the current-carrying ring (Figure 10.19). Some of the circular field lines produced by the wire field
alone, call it B2, are tangent to the torus. Therefore, some lines of the field B1 + B2 must be tangent to
the torus and spiral around it in a helical manner. Only for certain values of the ring and wire currents
does the helix close on itself. A similar argument shows that field lines spiral helically around the
straight wire as well.

10.6.1 Magnetic Reconnection
The topology of a static magnetic field pattern is fixed once and for all. However, there are many
situations where the sources of the field change so slowly that a “quasistatic” approximation can be
used at each position of the source.14 When that occurs, it is not difficult to imagine source motions
which bring magnetic field lines very close to together. They can even touch at points where B = 0.
These null points are important because they are places where the connectivity of the field lines can
change, resulting in a change in the overall topology of the magnetic field. This phenomenon is called
magnetic reconnection.

Figure 10.20 uses two horseshoe magnets to illustrate the process of reconnection. Qualitatively, at
least, the reader knows that lines of B “begin” at a north pole and “end” at a south pole.15 However,
because field lines seek the nearest pole, the leftmost and rightmost panels of the figure show two
distinct magnetic field line topologies. The transition from one topology to the other is abrupt and
occurs at a critical separation (middle panel) when field lines can disconnect and reconnect at a null
point.

As for current-driven magnetic fields, there is good experimental evidence that magnetic reconnec-
tion occurs inside tokamaks and other fusion research machines. The magnetic fields in question are
associated with currents of electrons and ions in the form of a plasma. The hydrodynamics of the
plasma complicates the description of reconnection considerably, particularly when compared to our
horseshoe magnet example. Regardless, space is the place for plasmas, and there is reason to believe
that reconnection is operative in the evolution of essentially all extraterrestrial magnetic fields. The
magnetohydrodynamics of the Sun is a good example, particularly in connection with solar flares and

14 Chapter 14 explores the quasistatic approximation in detail.
15 The field lines actually continue into the magnet and connect there. See Chapter 13.
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Figure 10.19: A line current which threads a ring current. The magnetic field lines around the ring and around
the wire generally do not close on themselves. Figure adapted from McDonald (1954). Copyright 1954,
American Association of Physics Teachers.
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Figure 10.20: Magnetic reconnection occurs at a critical separation between two horseshoe magnets. B = 0 at a
null point at the center of the middle panel where two field lines touch. Figure from Pfister and Gekelman (1991).
Reprinted with premission. Copyright 1991, American Association of Physics Teachers.

solar prominences. A particularly well-studied case is the interaction of the interplanetary magnetic
field (IMF) with the magnetic field of the Earth.

Figure 10.21 is an oversimplified cartoon of the magnetic field line pattern in the vicinity of the
Earth. The field lines of the Earth are connected to its poles, not unlike the field lines of a horseshoe
magnet. The vertical lines on the left are the IMF being “blown” toward the Earth by a plasma called
the “solar wind” (white arrows). Magnetic reconnection occurs at a point (indicated by a star) where
the IMF is anti-parallel to the field lines connected to the Earth. This transiently connects the IMF to
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Figure 10.21: Cartoon of magnetic field lines in the vicinity of the Earth. White arrows indicate the solar wind.
Dark arrows indicate the direction of magnetic field lines. Stars indicate points of magnetic reconnection. Dashed
lines indicate the magnetopause. See text for discussion. Figure courtesy of Jeffrey J. Love.

the Earth. The individual identities of the IMF field and the Earth’s field are re-established downstream
beyond additional points of reconnection. The dotted line in the diagram indicates the “magnetopause”
boundary between the interplanetary plasma and the plasma of the near-Earth environment.

Application 10.3 Chaotic Lines of B

The complexity of a large class of magnetic field line configurations can be appreciated using a field
constructed from a constant B0 and an arbitrary scalar function f (r):

B(r) = B0ẑ + ẑ × ∇f (r). (10.86)

This field satisfies ∇ · B = 0 by construction. From (10.6), the equation for the field lines is

Bx

dx
= By

dy
= Bz

dz
= λ, (10.87)

or
dx

dz
= − 1

B0

∂f

∂y
and

dy

dz
= + 1

B0

∂f

∂x
. (10.88)

Now, change variables in (10.88) so x = q, y = p, and z = t . If, in addition, we let f = −B0H , the
two equations above are exactly Hamilton’s equations of classical mechanics,

q̇ = ∂H

∂p
and ṗ = −∂H

∂x
. (10.89)

Therefore, the magnetic field lines are the “time”-dependent trajectories in (p, q) phase space of a
“particle” with Hamiltonian H = −f/B0. Since most Hamiltonians are non-integrable and produce
chaotic trajectories, the magnetic field line configuration will be very complex indeed. �

Example 10.7 The helicity h = ∫
d 3rA · B is a quantitative measure of the topological complexity

of a magnetic field configuration. It is used extensively in solar physics and other situations where
dynamo action produces very complicated field line patterns (see Figure 11.4). To illustrate the
idea, define a flux tube to be a bundle of parallel magnetic field lines where the same magnetic
flux � = ∫

dS · B passes through every cross section of the tube. Figure 10.22 shows two flux
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tubes which close on themselves. The two tubes are unlinked in Figure 10.22(a) and linked in
Figure 10.22(b).

(a) Show that h = 0 when the tubes are unlinked and h = 2�1�2 when the tubes are linked.
(b) Find the conditions required to make the definition of h gauge invariant.

(a) (b)

Figure 10.22: Two closed flux tubes made from bundles of magnetic field lines. Panels (a) and (b) show the
tubes unlinked and linked, respectively.

Solution: (a) Let A = A1 + A2. Because B1 = ∇ × A1 is confined to the volume V1 of tube 1 and
B2 = ∇ × A2 is confined to the volume of tube 2,

h =
∫

d 3r A · B =
∫
V1

d 3r A · B1 +
∫
V2

d 3r A · B2.

Inside each tube, d 3r = dS · d�, where B ‖ dS ‖ d� and dS is an element of the tube cross section.
Therefore, if C1 and C2 are the closed curves which define the tubes longitudinally,

h =
∫
C1

d� · A
∫
S1

dS · B1 +
∫
C2

d� · A
∫
S2

dS · B2 = �1

∫
C1

d� · A +�2

∫
C2

d� · A.

Now, from (10.68), the magnetic flux through the open surface S bounded by a curve C is
� = ∫

C
d� · A. When the two flux tubes are unlinked as in Figure 10.22(a), no magnetic flux

passes through either S1 or S2. However, when the two flux tubes are linked as in Figure 10.22(b),
the full flux of B1 passes through S2 and the full flux of B2 passes through S1. Therefore,

h =
{

0 tubes are unlinked,

2�1�2 tubes are linked.

(b) From (10.69), a change of gauge considers A′ → A + ∇χ . We thus compute

h′ =
∫

d 3r A′ · B = h+
∫

d 3r ∇χ · B.

Since ∇ · B = 0,

h′ = h+
∫

d 3r ∇ · (Bχ) = h+
∫

dS · Bχ.

Therefore, h′ = h if B vanishes at the boundary of the integration volume or, less restrictively,
n̂ · B = 0 everywhere on the boundary.

�
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The quotation at the beginning of the chapter is taken from the paper where William Thomson (later Lord Kelvin)
first embraces Faraday’s concept of “field” to interpret his mathematical results.
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tion 665.
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calculation in Section 10.2.2 is taken from
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53, 588 (1985).

Section 10.3 The symmetry argument used in Section 10.3.2 is adapted from Section 9.8 of Hauser (see
Section 10.1 above).

Section 10.4 The text and translation into English of the extract from the correspondence between Helmholtz
and du Bois-Raymond quoted after Section 10.4.2 was provided by Prof. Kathryn Olesko (Georgetown University).
Figure 10.13 comes from

W.T. Scott, The Physics of Electricity and Magnetism, 2nd edition (Wiley, New York, 1966).

Generalizations of the Helmholtz coil are discussed in
J.L. Kirschvink, “Uniform magnetic fields and double-wrapped coil systems”, Bioelectromagnetics 13, 401
(1992).

A very clear discussion of the use of scalar potential theory to calculate magnetic fields is contained in Part 1,
“Generation and Computation of Magnetic Fields”, of the monograph

H. Zijlstra, Experimental Methods in Magnetism (North-Holland, Amsterdam, 1967).

Application 10.2 on magnetic shielding in MRI scanners was adapted from
P. Mansfield and B. Chapman, “Multishield active magnetic screening of coil structures in NMR”, Journal of
Magnetic Resonance 72, 211 (1987).

The topological aspects of the magnetic scalar potential are discussed in more detail in
A. Vourdas and K.J. Binns, “Magnetostatics with scalar potentials in multiply connected regions”, IEE Pro-
ceedings A 136, 49 (1989).

Section 10.5 The role of the vector potential (and its gauge invariance) in quantum mechanics is discussed
authoritatively in

M. Peshkin and A. Tonomura, The Aharonov-Bohm Effect (Springer, Berlin, 1989).
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Our treatment of the vector Poisson equation and the double curl equation draws heavily on
L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960), Section 29.

Vector potential topics we do not discuss, like uniqueness and direct integration of the double curl equation, are
treated in

J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Example 10.6 is taken from the Appendix to
W.G. Hurley, “Calculation of self and mutual inductances in planar magnetic structures”, IEEE Transactions
on Magnetics 31, 2416 (1995).

Section 10.6 The stimulating article from which Figure 10.19 was taken is
K.L. McDonald, “Topology of steady current magnetic fields”, American Journal of Physics 22, 586 (1954).

Figure 10.20 and good references to the subjects of magnetic reconnection and magnetic helicity may be found in
H. Pfister and W. Gekelman, “Demonstration of helicity conservation during magnetic reconnection using
Christmas ribbons”, American Journal of Physics 59, 497 (1991).

An entry point to the literature of Hamiltonian approaches to magnetic field lines is
M. Sita Janaki and G. Ghosh, “Hamiltonian formulation of magnetic field line equations”, Journal of Physics
A 20, 3679 (1987).

Example 10.7 was taken from
H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (University Press, Cambridge, 1978).

Problems
10.1 In-Plane Field of a Current Strip A uniform surface current K = K ẑ confined to a strip of width b

carries a total current I . Find the magnetic field at a point in the plane of the strip that lies a perpendicular
distance a from the strip in the ŷ-direction.

10.2 Current Flow in a Disk The z-axis coincides with the symmetry axis of a flat disk of radius R in the x-y
plane. Sketch and justify in words the pattern of currents that must flow in the disk to produce the magnetic
field pattern shown below (as viewed edge-on with the disk). The field pattern has the rotational symmetry
of the disk.

2R

2R 3R

R

z

x

R
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10.3 Finite-length Solenoid I

(a) Consider a semi-infinite and tightly wound solenoid with a circular cross section. Prove that the magnetic
flux which passes out through the open end of the solenoid is exactly one-half the flux which passes
through a cross section deep inside the solenoid.

(b) A tightly wound solenoid has length L and a circular cross section. Let L = 5R, where R is the radius
of the cross section. Sketch the magnetic field lines associated with this solenoid. Take special care with
the lines near the open ends. Do any field lines penetrate the walls of the solenoid? If not, explain why
not. If so, discuss their behavior very near the walls.

10.4 Helmholtz and Gradient Coils

(a) Two rings of radius R, coaxial with the z-axis, are separated by a distance 2b and carry a current I in
the same direction. Make explicit use of the formula for the magnetic field of a single current ring on
its symmetry axis to derive the Helmholtz relation between b and R that makes Bz(z) most uniform in
the neighborhood of the midpoint between the rings.

(b) A gradient coil has the same geometry as part (a) except that the rings carry current in opposite directions.
Compute Bz(z) in the immediate vicinity of the midpoint between the rings for an arbitrary choice of
the ring separation.

10.5 A Step off the Symmetry Axis A circular loop with radius R and current I lies in the x-y plane centered
on the z-axis. The magnetic field on the symmetry axis is

B(z) = 1

2
μ0I

R2

(R2 + z2)3/2
ẑ.

In cylindrical coordinates, Bρ(ρ, z) = f (z)ρ when ρ � R. Use only the Maxwell equations to find f (z)
and then Bz(ρ, z) when ρ � R.

10.6 Two Approaches to the Field of a Current Sheet

(a) Use the Biot-Savart law to find B(r) everywhere for a current sheet at x = 0 with K = K ẑ.
(b) Check your answer to part (a) by superposing the magnetic field from an infinite number of straight

current-carrying wires.

10.7 The Geometry of Biot and Savart Biot and Savart derived their eponymous formula using a current-
carrying wire bent as shown below. Find B(r) in the plane of the wire at a distance d from the bend along
the axis of symmetry.

I

d

I

10.8 The Magnetic Field of Planar Circuits

(a) Let I be the current carried by a wire bent into a planar loop. Place the origin of coordinates at an
observation point P in the plane of the loop. Show that the magnitude of the magnetic field at the point
P is

B(P ) = μ0I

4π

∫ 2π

0

dφ

r(φ)
,
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where r(φ) is the distance from the origin of coordinates at P to the point on the loop located at an
angle φ from the positive x-axis.

(b) Show that the magnetic field at the center of a current-carrying wire bent into an ellipse with major and
minor axes 2a and 2b is proportional to a complete elliptic integral of the second kind. Show that you
get easily understandable answers when a = b and when a → ∞ with b fixed.

(c) An infinitesimally thin wire is wound in the form of a planar coil which can be modeled using an
effective surface current density K = Kφ̂. Find the magnetic field at a point P on the symmetry axis of
the coil. Express your answer in terms of the angle α subtended by the coil at P .

10.9 Invert the Biot-Savart Law Let B(x, z) be the magnetic field produced by a surface current density
K(y, z) = K(z)ŷ confined to the x = x0 plane.

(a) Show that the Biot-Savart law for this situation reduces to a one-dimensional convolution integral for
each component of B.

(b) Confine your attention to x < x0 and show that

μ0K(z) = 1

π

∞∫
−∞

dz′
∞∫

−∞

dk exp{ik(z − z′) + |k|(x0 − x)}Bz(x, z
′).

(c) Why does the single component Bz(x, z) evaluated at one (arbitrary) value of x < x0 provide enough
information to determine j (z)?

10.10 Symmetry and Ampère’s Law The figure below shows a current I which flows down the z-axis from
infinity and then spreads out radially and uniformly to infinity in the z = 0 plane.

x

I

y
z

(a) The given current distribution is invariant to reflection through the y-z plane. Prove that, when reflected
through this plane, the cylindrical components of the magnetic field transform from B = Bρ ρ̂ + Bφ φ̂ +
Bzẑ to

B′ = B ′
ρ ρ̂ + B ′

φφ̂ + B ′
zẑ = −Bρ ρ̂ + Bφ φ̂ − Bzẑ.

(b) Compare the results of part (a) to the transformation of B to B̃, where the latter is a π rotation around
the z-axis that also leaves the current invariant. Use this and any other symmetry argument you need to
conclude that B(r) = Bφ(ρ, z)φ̂ everywhere.

(c) Use the results of part (b) and Ampère’s law to find the magnetic field everywhere.
(d) Check explicitly that your solution satisfies the magnetic field matching conditions at the z = 0 plane.

10.11 Current Flow over a Sphere A current I starts at z = −∞ and flows up the z-axis as a linear filament
until its hits an origin-centered sphere of radius R. The current spreads out uniformly over the surface of the
sphere and flows up lines of longitude from the south pole to the north pole. The recombined current flows
thereafter as a linear filament up the z-axis to z = +∞.

(a) Find the current density on the sphere.
(b) Use explicitly stated symmetry arguments and Ampère’s law in integral form to find the magnetic field

at every point in space.
(c) Check that your solution satisfies the magnetic field matching conditions at the surface of the sphere.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-10 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:31

Problems 333

10.12 Finite-Length Solenoid II

(a) Use superposition and the magnetic field on the symmetry axis of a current ring to find the magnetic
field at the midpoint of the symmetry axis of a cylindrical solenoid. The solenoid has radius R, length
L, and is wound with n turns per unit length of a wire that carries a current I .

(b) Assume that L � R and use the results of part (a) and Ampère’s law to estimate the magnetic field Bout

just outside the solenoid walls (but far from its edges).

10.13 How the Biot-Savart Law Differs from Ampère’s Law A current I0 flows up the z-axis from z = z1 to
z = z2 as shown below.

z
2

z
1

z

(a) Use the Biot-Savart law to show that the magnetic field in the z = 0 plane is

B(ρ, φ, 0) = μ0

4π

I0

ρ
{cos θ2 − cos θ1} φ̂.

(b) Symmetry and the Coulomb gauge vector potential show that A = Az(ρ, z)ẑ and B = ∇ × A =
Bφ(ρ, z)φ̂. However, an origin-centered, circular Ampèrian loop C in the z = 0 plane gives B = 0,
rather than the answer obtained in part (a). The reason is that the current segment I0 does not satisfy
∇ · j = 0. To reconcile Biot-Savart with Ampère, supplement I0 by the current densities

j1(r) = − I0

4π

r − r1

|r − r1|3 and j 2(r) = I0

4π

r − r2

|r − r2|3 ,

where r1 = (0, 0, z1) and r2 = (0, 0, z2). Describe j1(r) and j 2(r) in words and show quantitatively that
they, together with I0, form a closed circuit.

(c) Using I0, j1, and j2 as current sources, apply Ampère’s law in integral form to recover the formula
derived in part (a).

(d) Show that the addition of j1(r) and j 2(r) does not spoil the Biot-Savart calculation of part (a).

10.14 Find Surface Current from the Field inside a Sphere Find the surface current density K(θ, φ) on
the surface of sphere of radius a which will produce a magnetic field inside the sphere of B<(x, y, z) =
(B0

/
a)(x x̂ − y ŷ). Express your answer in terms of elementary trigonometric functions.

10.15 A Spinning Spherical Shell of Charge A charge Q is uniformly distributed over the surface of a sphere
of radius R. The sphere spins at a constant angular frequency with ω = ωẑ. Use B = −∇ψ to find the
magnetic field everywhere. Hint: See Appendix C.1.1.

10.16 The Distant Field of a Helical Coil The figure below shows an infinitely long current filament wound in
the form of a circular helix with radius R and pitch �, i.e., � is the distance along the z-axis occupied by
one wind of the helix. Find the ρ dependence of the magnetic field B(ρ, φ, z) in the limit ρ � �. Does the
� → 0 limit make sense?

Hint: The magnetic scalar potential obeys ∇2ψ = 0 for ρ > R.
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R
z

�

10.17 The Distant Field of Helmholtz Coils The text describes a Helmholtz coil as two parallel, coaxial, and
circular current loops of radius R separated by a distance R. Each loop carries a current I in the same
direction.

(a) Use the magnetic scalar potential and both matching conditions at an appropriate spherical surface to
show that the each component of the Helmholtz coil magnetic field behaves asymptotically (r → ∞)
as

f (θ )

r3
+ g(θ )

r7
+ · · · .

(b) Show that a second set of Helmholtz coils arranged coaxially with the first can be used to cancel the
dipole field so that only the hexadecapole field remains at long distance.

Hint: Make use of the properties of the associated Legendre functions (Appendix C).

10.18 Solid Angles for Magnetic Fields Use the solid angle representation of the magnetic scalar potential ψ(r)
to find B(r) everywhere for an infinite, straight line of current I . State carefully the surface you have chosen
to “cut” the current-free volume to make ψ(r) single-valued.

10.19 A Matching Condition for A Show that the normal derivative of the Coulomb gauge vector potential
suffers a jump discontinuity at a surface endowed with a current density K(rS).

10.20 Magnetic Potentials The magnetic scalar potential in a volume V is ψ(x, y, z) = (C/2) ln(x2 + y2). Find
a vector potential A = Ax x̂ + Ay ŷ which produces the same magnetic field.

10.21 Consequences of Gauge Choices

(a) Show by direct calculation that the Coulomb gauge condition ∇ · A = 0 applies to

A(r) = μ0

4π

∫
d 3r ′ j(r′)

|r − r′| .

(b) Find the choice of gauge where a valid representation of the vector potential is

A(r) = 1

4π

∫
d 3r ′ B(r′) × (r − r′)

|r − r′|3 .

10.22 The Magnetic Field of Charge in Uniform Motion Consider a charge distribution ρ(r) in rigid, uniform
motion with velocity υ.

(a) Show that the magnetic field produced by this system is B(r) = (υ/c2) × E, where E(r) is the electric
field produced by ρ(r) at rest.

(b) Use this result to find B(r) for an infinite line of current and an infinite sheet of current (both uniform)
from the corresponding electrostatic problem.

10.23 A Geometry of Aharonov and Bohm

(a) Find the vector potential inside and outside a solenoid that generates a magnetic field B = B ẑ inside an
infinite cylinder of radius R. Work in the Coulomb gauge.

(b) The Aharonov-Bohm effect occurs because the magnetic flux �B = ∮
ds · A is non-zero when the

integration circuit is, say, the rim of a disk of radius ρ > R which lies perpendicular to the solenoid
axis. Show that A′ = A + ∇χ with χ = −�φ/2π (φ is the angle in cylindrical coordinates) leads to
identically zero vector potential outside the solenoid.
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(c) The result in part (b) implies that we could eliminate the Aharonov-Bohm effect by a gauge trans-
formation. Show, however, that the new magnetic field corresponds to a different physical problem,
where

B′ = B − ẑ
�

2πρ
δ(ρ).

10.24 Lamb’s Formula A quantum particle with charge q, mass m, and momentum p in a magnetic field B(r) =
∇ × A(r) has velocity υ(r) = p/m− (q/m)A(r). This means that a charge distribution ρ(r) generates a
“diamagnetic current” j (r) = −(q/m)ρ(r)A(r) when it is placed in a magnetic field.

(a) Show that A(r) = 1
2B × r is a legitimate vector potential for a uniform magnetic field B.

(b) Let ρ(r) = ρ(r) be the spherically symmetric charge distribution associated with the electrons of an
atom. Expose the atom to a uniform magnetic field B and show that the ensuing diamagnetic current
induces a vector potential

Aind(r) = μ0

4π

eB × r
6m

⎡
⎣ 1

r3

∫
r ′<r

d 3r ′ ρ(r ′)r ′2 +
∫

r ′>r

d 3r ′ ρ(r ′)
r ′

⎤
⎦ .

(c) Expand Aind(r) for small values of r and show that the diamagnetic field at the atomic nucleus can be
written in terms of ϕ(0), the electrostatic potential at the nucleus produced by ρ(r):

Bind(0) = eϕ(0)

3mc2
B.

This formula was obtained by Willis Lamb in 1941. He had been asked by I.I. Rabi to determine whether
Bind(0) could be ignored when nuclear magnetic moments were extracted from molecular beam data.

10.25 Toroidal and Poloidal Magnetic Fields It is true (but not obvious) that any vector field V(r) which
satisfies ∇ · V(r) = 0 can be written uniquely in the form

V(r) = T(r) + P(r) = Lψ(r) + ∇ × Lγ (r),

where L = −ir × ∇ is the angular momentum operator and ψ(r) and γ (r) are scalar fields. T(r) = Lψ(r)
is called a toroidal field and P(r) = ∇ × Lγ (r) is called a poloidal field. This decomposition is widely used
in laboratory plasma physics.

(a) Confirm that ∇ · V(r) = 0.
(b) Show that a poloidal current density generates a toroidal magnetic field and vice versa.
(c) Show that B(r) is toroidal for a toroidal solenoid.
(d) Suppose there is no current in a finite volume V . Show that ∇2B(r) = 0 in V .
(e) Show that A(r) in the Coulomb gauge is purely toroidal in V when ψ(r) and γ (r) are chosen so that

∇2B(r) = 0 in V .
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11 Magnetic Multipoles

We therefore have an absolute method for measuring the sign
and magnitude of the [magnetic ] moment of any system.

Isidore Rabi (1937)

11.1 Introduction

The magnetic field produced by most interesting current distributions cannot be calculated exactly.
However, when j (r) is spatially localized, our experience with electrostatics (Chapter 3) suggests a
systematic scheme of approximation based on a multipole expansion. In its most familiar form, we
calculate B = ∇ × A from an expansion of the factor |r − r′|−1 in the vector potential

A(r) = μ0

4π

∫
d 3r ′ j (r′)

|r − r′| . (11.1)

More so than in electrostatics, both exterior and interior multipole expansions occur in common
magnetic experience. Exterior expansions arise in many atomic and nuclear problems where the
observation point lies outside a finite volume which contains the source current. Interior expansions
arise in many experimental and diagnostic geometries where the observation point lies inside a finite
volume which excludes the source current. Both expansions apply to regions of space where j (r) = 0.
Analogous expansions exist for the magnetic scalar potential ψ(r) at the same set of points.

11.1.1 The Magnetic Multipole Expansion
We begin with the situation depicted in Figure 11.1 where an observation point r lies far outside a
sphere of radius R which entirely encloses a localized current distribution j (r).

Since r � R, the Taylor expansion of |r − r′|−1 in (11.1) is dominated by the first few terms:

1

|r − r′| = 1

r
+ r′ · r

r3
+ · · · . (11.2)

This gives the k th Cartesian component of the approximate vector potential as

Ak(r) = μ0

4π

[
1

r

∫
d 3r ′ jk(r′) + r

r3
·
∫

d 3r ′ jk(r′)r′ + · · ·
]
. (11.3)
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R

r′

r

j

Figure 11.1: A localized current distribution confined to the interior of a sphere of radius R. The observation
point r lies outside the sphere.

11.1.2 The Magnetic Monopole
The first term—the monopole term—in the magnetic multipole expansion (11.3) is always identically
zero. The reason for this is not the apparent absence of magnetic charge in Nature. It is rather the
constraint imposed on the three components of the current density jk(r) by the steady-current condition,

∇ · j (r) = 0. (11.4)

To see this, note first that (11.4) implies that

∇′ · (r ′
kj ) = r ′

k(∇′ · j ) + j · ∇′r ′
k = jk. (11.5)

A key point is that any localized current distribution vanishes at infinity. Therefore, integrating the far
left and far right sides of (11.5) over all space and using the divergence theorem, we confirm that∫

d 3r ′ jk(r′) =
∫

d 3r ′∇′ · (r ′
kj) =

∫
dS′ · (r ′

kj) = 0. (11.6)

The equivalent statement for a filamentary current is

I

∮
d� = 0. (11.7)

11.2 The Magnetic Dipole

We have just proved that the 1/r term vanishes in (11.3) for localized and steady current distributions.
Therefore, unless the second term vanishes also, the asymptotic (long-distance) behavior of the vector
potential is determined by the nine integrals Tk� which constitute the magnetic dipole term:

Ak(r) = μ0

4π

[∫
d 3r ′jk(r′)r ′

�

]
r�

r3
= μ0

4π
Tk�

r�

r3
. (11.8)

Two identities are needed to simplify (11.8). The first generalizes (11.5) and uses (11.4):

∇′ · (r ′
�r

′
kj ) = r ′

�r
′
k∇′ · j + r ′

�j k + r ′
kj� = r ′

�j k + r ′
kj� . (11.9)

The second,

ε�ki(r′ × j )i = r ′
�jk − r ′

kj �, (11.10)

is seen to be correct by multiplying every term in (11.10) by rk and summing over the repeated index.
The result is the � th Cartesian component of the vector identity r × (r′ × j ) = r′(r · j ) − j (r · r′).
Because ε�ki = εki� , adding (11.9) to (11.10), integrating over all space, and using the divergence
theorem as in (11.6) shows that

Tk� =
∫

d 3r ′ jkr ′
� = 1

2εki�
∫
d 3r ′ (r′ × j )i ≡ εki�mi. (11.11)
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m

Figure 11.2: Lines of B(r) produced by the dipole moment m = mẑ of a localized current distribution at the
center of the diagram. The distribution is too small to be seen on the scale of the diagram.

The last equality in (11.11) defines the magnetic dipole moment vector,

m = 1

2

∫
d 3r r × j (r). (11.12)

Substituting (11.11) into (11.8) produces the magnetic dipole approximation to the vector potential:

A(r) = μ0

4π

m × r
r3

r � R. (11.13)

The magnetic field associated with (11.13) is

B(r) = ∇ ×
{
μ0

4π

m × r
r3

}
= μ0

4π

[
m
(
∇ · r

r3

)
− (m · ∇)

r
r3

]
. (11.14)

The first term in the square brackets in (11.14) produces a delta function at the origin. The second
term produces another delta function at the origin and a piece which is non-zero when r �= 0. Only the
latter is relevant here because (11.13) was derived assuming r � R. Accordingly,

B(r) = −μ0

4π
(m · ∇)

r
r3

= μ0

4π

3r̂(r̂ · m) − m
r3

r � R. (11.15)

The dipole field (11.15) dominates the physics when r � R because all higher terms in the expansion
(11.3) generate contributions to A(r) which are smaller by additional factors of R/r . The field (11.15)
may be compared to the expression (4.10) derived in Section 4.2 for the asymptotic electric field
produced by a neutral charge distribution with a non-zero electric dipole moment p:

E(r) = 1

4πε0

3r̂(r̂ · p) − p
r3

r � R. (11.16)

The two formulae have exactly the same structure. Hence, the lines of B(r) plotted in Figure 11.2 for
a magnetic dipole are identical to the lines of E(r) plotted in Figure 4.3 for an electric dipole.

11.2.1 The Magnetic Dipole Moment
The magnetic dipole moment defined by (11.12) packages the long-distance behavior of a steady current
very efficiently. We started with nine components of Tk� in the vector potential (11.8) and ended with
three components of m in the equivalent vector potential (11.13). Moreover, since Tk� = −T�k , it is
not difficult to confirm that1

mi = 1
2εi�kT�k. (11.17)

In the language of tensor analysis, (11.17) identifies the magnetic moment as the asymmetric part of the
decomposition of an arbitrary second-rank tensor S�k into a symmetric traceless part, an asymmetric

1 The anti-symmetry of Tk� follows from the equality of the first and last terms in (11.11).
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Figure 11.3: (a) A planar loop of current I with its magnetic dipole moment m; (b) a stevedore knot.

part, and a scalar part:

S�k = 1
2 (S�k + Sk� − 2

3Skkδ�k) + 1
2 (S�k − Sk� ) + 1

3Skkδ�k. (11.18)

As a concrete example, consider a filamentary loop of arbitrary shape which carries a steady current
I around its circuit C. Using j d 3r → Id�, this idealization simplifies (11.12) to

m = 1

2
I

∮
C

r × d�. (11.19)

A corollary of Stokes’ theorem2 transforms (11.19) to

m = 1
2 I
∫
S

dS ∇ · r − 1
2 I
∫
S

dSk∇rk = I
∫
S

dS ≡ IS. (11.20)

This result for m is correct for any surface S which has C as its boundary.
For the planar loop shown in Figure 11.3(a), (11.20) predicts m = IAn̂, where A is the area

circumscribed by the loop and n̂ is the normal to the plane defined by the direction of the current
and the right-hand rule. It is not so obvious how to choose S if the current loop is non-planar like
the stevedore’s knot shown in Figure 11.3(b). A convenient choice is the minimal surface with the
smallest geometrical area. This is the surface of the film that clings to the loop when it is dipped into
a soap solution. Of course, the vector area element dS in (11.20) points in different directions as the
integration is carried out for any non-planar loop.3

Equation (11.20) gives m = IπR2ẑ for an origin-centered ring of radius R which carries a current
I around the z-axis. If our theory is consistent, this magnetic moment should emerge naturally from
the r → ∞ limit of the exact magnetic scalar potential calculation for this current source performed
in Section 10.4.1. Indeed, a glance back at (10.50) shows that

lim
r→∞ψ(r, θ ) = μ0

4π

πR2I

r2
cos θ = μ0

4π

m · r
r3

. (11.21)

Moreover, because m is a constant vector and ∂i(rk/r3) = ∂k(ri/r3), the magnetic field derived from
(11.21) agrees exactly with (11.15):

B = −∇ψ = −μ0

4π
∇
[m · r

r3

]
= −μ0

4π
(m · ∇)

r
r3
. (11.22)

The Magnetic Field of the Earth

The magnetic field outside the surface of the Earth looks very much like Figure 11.2. However,
instead of steady currents, the Earth’s field is produced by a complex pattern of time-dependent
electric currents generated by electromagnetic induction (Faraday’s law) and the flow of a con-
ducting liquid iron alloy in the Earth’s outer core driven by convection, buoyancy, and the rotation

2
∮
C

d� × A = ∫
S

dSk∇Ak − ∫
S

dS(∇ · A). See Section 1.4.4.

3 Equation (11.19) may be preferable for calculating m for some non-planar loops.
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of the Earth. A remarkable fact gleaned from volcanic rock studies is that the magnetic dipole
moment of the Earth has reversed its direction nearly a hundred times over the past 20 million
years. The current moment points 11◦ away from the South geographic pole and has magnitude
mE = 8 × 1022 A·m2.

The left panel of Figure 11.4 shows the Earth’s magnetic field obtained from a numerical solution
of the non-linear equations which result when Ohm’s law and a hydrodynamic description of the
outer core are combined with Maxwell’s equations. The field line pattern is very nearly dipolar at
the Earth’s surface (large white circle), but is extraordinarily complex in the core region (inside
the small white circle). The right panel of Figure 11.4 shows numerical results for the azimuthal
component of the electric current density on the spherical surface which separates the Earth’s
conducting core from its insulating mantle. White (black) identifies regions where jφ(θ, φ) flows
eastward (westward) in a frame of reference which rotates with the Earth. The ellipse in the right
panel is a Mollweide projection of the small white circle in the left panel.

Figure 11.4: Left panel: the magnetic field of the Earth determined from numerical simulations. The large
white circle is the surface of the Earth. The small white circle is the core-mantle boundary (CMB). Figure
from Glatzmaier and Clune (2000); Copyright 2000, IEEE. Right panel: the magnetic moment of the Earth’s
dipole field superimposed on the azimuthal component of the electric current density at the CMB. See text
for details. Figure adapted from Sakuraba and Hamano (2007).

11.2.2 Orbital and Spin Magnetic Moments
In this section, we discuss the magnetic moments of atoms and molecules. Experiments show that
these moments derive from (i) the orbital angular momentum of the electrons and (ii) the spin angular
momentum of the electrons, protons, and neutrons. Not obviously, the magnetic moment from the
orbital motion can be calculated using a classical model of N charged particles whose motions keep
them close to a fixed origin of coordinates. If the particles have charges qk , velocities vk = drk

/
dt,

and masses mk, the associated current density is

j (r) =
N∑
k=1

qkvkδ(r − rk). (11.23)

Substituting (11.23) into (11.12) gives the orbital magnetic moment mL in terms of the orbital angular
momentum, Lk = mkrk × vk , of the k th particle with respect to the origin of coordinates:

mL = 1

2

N∑
k=1

qk(rk × vk) =
N∑
k=1

qk

2mk

Lk. (11.24)
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If all the particles have the same charge-to-mass ratio, mL is proportional to the total angular
momentum L = ∑

k Lk:

mL = q

2m
L. (11.25)

It is remarkable that the classical proportionality between the magnetic moment and the angular
momentum survives the transition to quantum mechanics. In other words, (11.25) gives the correct
orbital magnetic moment of an atom when L is the total orbital angular momentum of the atomic
electrons.

Even more remarkably, experiments show that quantum particles with spin angular momentum S
also possesses an intrinsic spin magnetic moment,

mS = g
q

2m
S. (11.26)

The quantum physics of (11.26) is buried in the dimensionless “g-factor”. For the electron, g is very
slightly greater than 2 and the scale for the moment is set by the Bohr magneton,

μB = e−h
2me

= 9.3 × 10−24 A−m2. (11.27)

For more complex quantum systems with total angular momentum J, it is common to define a
gyromagnetic ratio γ so that the total magnetic moment is

m = γ J. (11.28)

Example 11.1 Let B(r) be the magnetic field produced by a current density j(r) which lies entirely
inside a spherical volume V of radius R. Show that the magnetic moment of j(r) is

m = 3

2μ0

∫
V

d 3r B(r).

This problem is the magnetic analog of Example 4.1, which expressed the electric dipole moment
of a charge distribution using a spherical average of the electric field produced by the charge.

Solution: Assume first that j(r) does not lie entirely inside V . If we place the origin of coordinates
at the center of V , the Biot-Savart law (10.15) gives

1

V

∫
V

d 3r B(r) = − μ0

4πV

∫
d 3r ′j (r′) ×

∫
V

d 3r
(r′ − r)

|r′ − r|3 .

The r integral is exactly the “electric” field E(r′) due to a uniform charge density ρ(r) = 4πε0.
From Gauss’ law or otherwise, this is

E(r′) =

⎧⎪⎪⎨
⎪⎪⎩
ρr′

3ε0
= 4π

3
r′ r ′ < R,

ρV

4πε0

r′

r ′3 = V
r′

r ′3 r ′ > R.

Therefore,

1

V

∫
V

d 3r B(r) = μ0

3V

∫
r ′≤R

d 3r ′ r′ × j (r′) − μ0

4π

∫
r ′>R

d 3r ′ j (r′) × r′

r ′3 .
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From (11.12), the first integral on the right side of this equation is proportional to min, the magnetic
moment due to the part of j which lies inside V . The second integral is the Biot-Savart magnetic
field at the origin, Bout(0), due to that part of j which lies outside V . Therefore,

1

V

∫
V

d 3r B(r) = 2

3
μ0

min

V
+ Bout(0).

This formula reduces to the advertised result if all of j(r) is contained in V . On the other hand, if
none of the current is contained in V ,

B(0) = 1

V

∫
d 3r B(r).

Example 11.2 Find j (r) for a hydrogen atom in the eigenstates�(r) = 〈r | 2 1m〉 wherem = 0,±1.
Solve ∇ × ∇ × A = μ0j using an ansatz for A(r) with the same angular dependence as j (r). Find
the orbital magnetic moment for each state from (11.13) and the asymptotic (r → ∞) form of
A(r).

Solution: The |2 1 m〉 hydrogenic wave functions are

�21m(r) = R(r) ×

⎧⎪⎪⎨
⎪⎪⎩

√
3/4π cos θ m = 0,

−√
3/8π sin θ exp(iφ) m = 1,

√
3/8π sin θ exp(−iφ) m = −1,

where R(r) = (6a3)−1/2(r/2a) exp(−r/2a) and a is the Bohr radius. If μB = e−h/2m is the Bohr
magneton, the quantum mechanical expression for the current associated with such wave functions
is

j = iμB (�∗∇� −� ∇�∗) = −2μB Im(�∗∇�).

Therefore, by direct computation, j210(r) = 0 and

j21 ±1(r) = ∓ μB

32π

r

a5
e−r/a sin θ φ̂ = ∓j0 r e

−r/a sin θ φ̂.

Now, we know from (10.84) of Section 10.5.3 that a current density j = jφ(r, θ )φ̂ generates a
vector potential of the form A = Aφ(r, θ )φ̂. This reduces ∇ × (∇ × A) = μ0j to

1

r

∂2

∂r2
(rAφ) + 1

r

∂

∂θ

{
1

r sin θ

∂

∂θ
(sin θ Aφ)

}
= −μ0jφ.

The fact that jφ ∝ sin θ motivates us to try Aφ(r, θ ) = f (r) sin θ/r2. This choice simplifies the
preceding equation to

d

dr

(
f ′

r2

)
= ±μ0j0 r e

−r/a.

After two radial integrations, we get f (r) in terms of constants K1 and K2:

f (r) = ±μ0a
2 j0e

−r/a
{
r3 + 4ar2 + 8a2r + 8a3

}+K1r
3 +K2.

Therefore,

A(r, θ) = ± μ0μB sin θ

32πa2
×
{
e−r/a

(
r

a
+ 4 + 8a

r
+ 8a2

r2

)
+K2r + K3

r2

}
φ̂.
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A must go to zero at infinity. This fixes K2 = 0. A also must not diverge as r → 0. The
expansion exp(−r/a) = 1 − r/a + 1

2 r
2
/
a2 + · · · shows that the choice K3 = −8a2 makes this

true. We conclude that the dominant term at long distance is

lim
r→∞ A(r, θ) = ∓ μ0

4π

μB sin θ

r2
φ̂.

Comparing this result with (11.13) shows that the |2 1 m〉 hydrogenic state carries an orbital
magnetic dipole moment equal to −mμB. This is precisely the standard quantum mechanical result
(because the electron charge is negative).

11.2.3 The Point Magnetic Dipole
A point magnetic dipole is a current distribution which produces a pure magnetic dipole field at every
point in space. The electron is a near-perfect realization of a point magnetic dipole because it has
both zero size and a spin magnetic moment given by (11.26).4 The significance of this fact cannot be
understated, not least because electron spin is responsible for the magnetism of permanent magnets (see
Chapter 13). Needless to say, the point magnetic dipole is also an excellent model for the macroscopic
magnetic response of microscopic but finite-sized particles like the proton and neutron.

The vector potential of a point magnetic dipole at the origin is given by (11.13) with the restriction
to large distances removed. If the dipole sits at r0,

A(r) = μ0

4π

m × (r − r0)

|r − r0|3 . (11.29)

We do not avoid the origin, so (11.14), (11.15), and ∇2|r − r0|−1 = −4πδ(r − r0) give the magnetic
field B = ∇ × A of a point magnetic dipole m at r0 as

B(r) = μ0

[
m δ(r − r0) − ∇ 1

4π

m · (r − r0)

|r − r0|3
]
. (11.30)

A virtue of (11.30) is that it leads quickly to the current density of a point magnetic dipole. Since
j = μ−1

0 ∇ × B, we find without trouble that

jD(r) = ∇ × [mδ(r − r0)] = −m × ∇δ(r − r0). (11.31)

The gradient term in (11.30) conceals a delta function at r = r0. We leave it to the reader to extract
the strength of this delta function by direct computation. Here, we find the total strength of the delta
function at the heart of a point magnetic dipole by exploiting Example 11.1 and a spherical integration
volume V centered at r0. This procedure tells us that∫

V

d 3r B(r) = 2μ0

3
m. (11.32)

By the symmetry of Figure 11.2, (11.32) vanishes when we use (11.15) for the integrand. Therefore,
if this behavior persists as V → 0, the integral will have the correct value only if the total magnetic
field for a point magnetic dipole is5

B(r) = μ0

4π

[
3n̂(n̂ · m) − m

|r − r0|3 +
8π

3
mδ(r − r0)

]
. (11.33)

4 Unlike point electric dipoles, which do not seem to exist in Nature.
5 Equation (11.33) also follows directly from (11.30) and (1.122).
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A useful way to think about the delta function in (11.33) will emerge in Chapter 13. Here, we note
only that the coefficient of the delta function in (11.33) differs from the corresponding coefficient in
the electric field formula (4.16) for a point electric dipole.

Application 11.1 The Point Magnetic Monopole

There is no experimental evidence for the existence of free magnetic monopoles. Nevertheless, we can
synthesize one from a semi-infinite solenoid (N turns/length of wire with current I ) in the limit when
the solenoid’s cross sectional area S → 0 (Figure 11.5).

The construction begins with a planar, circular loop with current I which lies in the x-y plane and
is coaxial with the z-axis. The magnetic moment of the loop is m0 = IS ẑ. If r = ρ ρ̂ + z ẑ, the vector
potential far from the loop is given by the dipole formula,

A = μ0

4π

m0 × r
r3

= μ0m0

4π

ρ

(ρ2 + z2)3/2
φ̂. (11.34)

The vector potential of the semi-infinite solenoid follows by superposing contributions of this form
from a stack of loops which extends from z0 = −∞ to z0 = 0 on the negative z-axis. If g = Nm0 is
the magnetic dipole moment per unit length, we let A → dA and m0 → Nm0dz0 = gdz0, so

A =
∫

dA = μ0g

4π

0∫
−∞

dz0
ρφ̂

[ρ2 + (z − z0)2]3/2
= μ0g

4πr

1 − cos θ

sin θ
φ̂. (11.35)

x

y

0
z

zr

z

Figure 11.5: A “monopole” at the origin simulated by a semi-infinite solenoid coincident with the
negative z-axis.

The associated magnetic field B = ∇ × A is

B(r) = 1

r sin θ

∂

∂θ

(
sin θAφ

)
r̂ − 1

r

∂

∂r

(
rAφ

)
θ̂ = μ0g

4π

r̂
r2
. (11.36)

This Coulomb-type formula is valid at all points that are sufficiently far from the solenoid that
the dipole approximation is valid. This domain expands to include all of space (except the negative
z-axis) in the limit when S → 0 (so m0 → 0) and N → ∞ in such a way that g remains constant. The
magnetic field above satisfies

∇ · B(r) = μ0g δ(r) and ∇ × B(r) = 0. (11.37)

These are the equations we expect for the field of a magnetic monopole at the origin with magnetic
charge g. �
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ΔS

C

S

I

Figure 11.6: A current I flows through a closed circuit C which is the boundary of a surface S. The surface is
“tiled” by small current loops with area �S. Adjacent small loops carry current in the same direction, so
nearest-neighbor parallel legs on adjacent loops carry current in opposite divections.

11.3 Magnetic Dipole Layers

The interesting physics of the electric dipole layer (Section 4.3) motivates us to study the analogous
problem of a magnetic dipole layer. This is a surface S which carries a continuous distribution of point
magnetic dipoles. The principal result is known as Ampère’s theorem: if S is open and the dipoles are
oriented normal to the surface,6 the magnetic field produced by S is identical to the magnetic fields
produced by a current flowing around the boundary of S.

The qualitative correctness of this result can be appreciated immediately from Figure 11.6. The
open surface S (which has C as its boundary) is tiled by small planar current loops, each of which
has area �S and carries a current I . The tiling is such that two adjacent legs carry current in opposite
directions. In the limit �S → 0, the magnetic fields from adjacent internal legs cancel pairwise and
only the field from the external legs (which constituteC) contributes to the field. In the same limit, each
infinitesimal loop is indistinguishable from a point magnetic dipole with differential dipole moment
dm = IdS = IdSn̂.

For a quantitative proof of Ampère’s theorem, we use the dipole vector potential in (11.29) and sum
the contributions to A(r) from every point on the surface. This gives

A(r) = μ0

4π

∫
S

dm × r − rS
|r − rS |3 = μ0I

4π

∫
S

dS n̂ × ∇S

1

|r − rS | . (11.38)

Now, if ξ is a constant vector, the cyclic property of the scalar triple product, and Stokes’ theorem,
imply that

ξ · A(r) = μ0I

4π

∫
S

dS · ∇S × ξ

|r − rS | = μ0I

4π

∮
C

d� · ξ

|r − rS | . (11.39)

Since ξ is completely arbitrary, we conclude from (11.39) that

A(r) = μ0I

4π

∮
C

d�

|r − rS | . (11.40)

This is indeed the vector potential of a loop C which carries a current I .
Ampère’s equivalence between a current-carrying circuit and any magnetic double layer bounded

by that circuit can also be established using the magnetic scalar potential. In that case, we ascribe
the jump discontinuity (10.59) in ψ(r) to the passage of the observation point r through a suitably
chosen magnetic double layer. This is analogous to the jump in the electric scalar potential ϕ(r) that

6 We called this a double layer in the electric case.
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occurs when r passes through an electric double layer (Section 4.3.2) and provides an alternative to
the interpretation of the jump in terms of the properties of the solid angle (Section 10.4.4).

Example 11.3 A conventional disc drive stores data using tiny magnetic elements with their dipole
moments oriented parallel to the surface of the disc. The next generation of magnetic disc drives
will use magnetic elements with their dipole moments oriented perpendicular to the disc surface.
Thus, a “virgin” sample of magnetic recording tape may be modeled as a thin film uniformly coated
with parallel point magnetic dipoles oriented perpendicular to its surface. Find the magnetic field
produced by an infinitely long and flat strip of such a tape with width d and negligible thickness
(Figure 11.7).

z

Id

ys

x
2

1
I

Figure 11.7: An infinitely long strip of magnetic recording tape with width d, negligible thickness, and a
uniform distribution of point magnetic dipoles pointed along +ẑ. The vector s = (d/2)ŷ. The observation
point is the tip of the vector ρ0.

Solution: Let I ẑ be the magnetic moment per unit area of the tape. By Ampère’s theorem, the
magnetic field of the tape is identical to the field produced by two infinitely long and straight
filamentary wires. One wire (coincident with the y = −d/2 edge of the tape) carries a current
I along +x̂. The other wire (coincident with the y = d/2 edge of the tape) carries a current I
along −x̂. The magnetic field of a single wire is B(ρ) = (μ0I/2πρ)φ̂, where ρ is the perpendicular
distance form the wire and φ̂ is the azimuthal direction determined by the direction of current flow
and the right-hand rule. Therefore, if s = (d/2)ŷ, ρ1 = ρ0 + s, and ρ2 = ρ0 − s, superposition
gives the magnetic field of the tape as

B(r) = μ0I

2π

{
x̂ × ρ̂1

ρ1
− x̂ × ρ̂2

ρ2

}
,

or

B(x, y, z) = μ0I

2π

{
(y − 1

2d)ẑ − zŷ

(y − 1
2d)2 + z2

− (y + 1
2d)ẑ − zŷ

(y + 1
2d)2 + z2

}
.

11.4 Exterior Multipoles

The dipole formula (11.13) is a good approximation to the exact vector potential when the magnetic
dipole moment m �= 0 and the observation point is much farther from a compact source than the
spatial extent of the source itself. If either of these conditions is violated, higher-order terms in
the multipole expansion are needed. This section treats the general expansion for problems with
rectangular, spherical, and azimuthal symmetry.
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11.4.1 Cartesian Expansion for A(r)
In Cartesian coordinates, the primitive structure of the complete multipole expansion for A(r) is

Ak(r) = μ0

4π

{[∫
d 3s jk(s)

]
1

r
−
[

1

1!

∫
d 3s jk(s)s�

]
∇�

1

r
(11.41)

+
[

1

2!

∫
d 3s jk(s)s� sm

]
∇�∇m

1

r
− · · ·

}
.

We learned in Section 11.1.2 that the first term in (11.41) is zero. Therefore, if

T
(n)
k�...m = 1

n!

∫
d 3s jk(s) s� · · · sm︸ ︷︷ ︸

n terms

, (11.42)

the vector potential (11.41) takes the compact form

Ak(r) = μ0

4π

∞∑
n=1

(−)nT (n)
k�...m ∇� · · · ∇m︸ ︷︷ ︸

n terms

1

r
. (11.43)

Our experience with the magnetic dipole term (Section 11.1.1) suggests that a representation of
Ak(r) more efficient than (11.43) can be derived if we exploit the steady-current condition. This is
indeed the case. Moreover, all the essential steps are already present in the third-order, magnetic
quadrupole term. To avoid confusion in what follows, we use different symbols to denote derivatives
with respect to the Cartesian components of the variables r and s, namely,

∇k ≡ ∂

∂rk
and ∂k ≡ ∂

∂sk
. (11.44)

We begin with a generalization of (11.9):

∂p(sks� smjp) = sks� sm∂pjp + j� sksm + jmsks� + jks� sm. (11.45)

The steady-current condition, ∂pjp = 0, and the identity (11.10) (used twice with different indices)
transform (11.45) into

∂p(sks� smjp) = 3jks� sm + s� εkmi(s × j)i + smεk� i(s × j)i . (11.46)

The structure of the third-order term in (11.41) motivates us to insert the operator ∇�∇m on the right
side of every term in (11.46) and sum over repeated indices. This makes the two cross product terms in
(11.46) identical. Therefore, integration over all space and the divergence theorem give, for a localized
current distribution, ∫

d 3s jk(s)(s · ∇)2 = 2

3
εki�

∫
d 3s (s × j)i(s · ∇)∇� . (11.47)

Exactly similar manipulations show that the general integral in (11.41) is∫
d 3s jk(s)(s · ∇)n = n

n+ 1
εki�

∫
d 3s (s × j)i(s · ∇)n−1∇� . (11.48)

Therefore, taking note of the factorials which appear in the denominators in (11.41), we conclude that
the exterior Cartesian multipole expansion for the vector potential can be written in the form

Ak(r) = μ0

4π
εki�

∞∑
n=1

(−1)nm(n)
ip···q ∇p · · · ∇q︸ ︷︷ ︸

n−1 terms

∇�

1

r
, (11.49)
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with Cartesian magnetic multipole moments defined by

m
(n)
ip···q = n

(n+ 1)!

∫
d 3s (s × j)i sp · · · sq︸ ︷︷ ︸

n−1 terms

. (11.50)

The transformation from (11.43) to (11.49) represents a considerable simplification because T (n)
k� ···m is

a tensor with n+ 1 indices whereas m(n)
ip···q is a tensor with only n indices.

Application 11.2 Parity Violation and the Anapole Moment

We showed in Section 4.2.1 that the electric dipole moment p = ∫
d 3r ρ(r)r vanishes for any micro-

scopic system described by a wave function with definite parity because the integrand changes sign
when r → −r. Because the current density j = ρυ = ρṙ also changes sign when r → −r, the same
statement is true for the Cartesian components of the magnetic quadrupole moment defined in (11.42),

T
(2)
k�m ≡ 1

2

∫
d 3r jk(r)r� rm. (11.51)

However, soon after the discovery of the parity-violating weak interaction, it was predicted that
parity mixing could generate a current in an atomic nucleus with the form of a toroidal solenoid (see
Example 10.2) which makes a non-zero contribution to Tk�m called the anapole moment a.7 Forty
years passed before high-precision hyperfine spectroscopy provided convincing evidence for a.8

Our task in this application is to isolate the anapole piece of the magnetic quadrupole moment. To
that end, we use (11.47) and the definition N = r × j to write

T
(2)
k�m = 1

3
εki�

∫
d 3r Nirm. (11.52)

Since Nirm = 1
2 (Nirm +Nmri) + 1

2 (Nirm −Nmri), we define �im = ∫
d 3r (Nirm +Nmri) and write

(11.52) in the form

T
(2)
k�m = 1

6
εki��im + 1

6
εki�

∫
d 3r (rmεipq − riεmpq )rpjq . (11.53)

Two identities help simplify the integral in (11.53). The first connects the product of two Levi-Cività
symbols to a determinant of Kronecker delta symbols (see Section 1.2.5):

εki� εmpq =

∣∣∣∣∣∣∣
δkm δim δ�m

δkp δip δ�p

δkq δiq δ�q .

∣∣∣∣∣∣∣ . (11.54)

The second follows from (11.45) with ∂pjp = 0 by setting � = m and integrating over all of space:∫
d 3r r(j · r) = − 1

2

∫
d 3r r2j. (11.55)

After a bit of algebra, we find that

T
(2)
k�m = 1

6
εki��im + 1

4π
(δkma� − δ�mak), (11.56)

7 Ya.B. Zeldovich, “Electromagnetic interaction with parity violation”, Soviet Physics JETP 6, 1184 (1958).
8 C.S. Wood et al., “Measurement of parity non-conservation and an anapole moment in cesium”, Science 275, 1759

(1997).
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where the anapole moment vector is defined as

a = −π
∫

d 3r r2j (r). (11.57)

Now, the quadrupole piece of the vector potential (11.43) is

Ak(r) = μ0

4π
T

(2)
k�m∇�∇m

1

r
. (11.58)

But ∇2(1/r) = −4πδ(r), so the anapole pieces of (11.56) produce a vector potential

A(r) = μ0

4π

{
aδ(r) + ∇(a · ∇)

1

4πr

}
. (11.59)

The corresponding magnetic field is zero everywhere except at r = 0 :

B(r) = ∇ × A(r) = −μ0

4π
a × ∇δ(r). (11.60)

Like every multipole moment, the (singular) current density associated with a lies exactly at the
origin. Therefore, (11.60) says that the magnetic field of an anapole moment is zero everywhere outside
of its source current density. This property is characteristic of a toroidal solenoid (see Example 10.2).
For that reason, the solenoid winding shown in Figure 10.10 is a fair (classical) model for a nuclear

current density which produces an anapole moment. �

11.4.2 Spherical Expansion for ψ(r)
In spherical coordinates, it is simplest to generate an exterior spherical multipole expansion for the
magnetic scalar potential ψ(r). Our strategy is to use B = −∇ψ and first derive an expansion for

r · B = −r ∂ψ
∂r

. (11.61)

The expansion for ψ(r) itself follows by integrating (11.61). The first step combines ∇ · B = 0 with
the curl of ∇ × B = μ0j to get (see Example 1.3)

∇2B = −μ0∇ × j. (11.62)

The next step applies the identity r · (∇2B) = ∇2(r · B) − 2∇ · B to (11.62) to get

∇2(r · B) = −μ0r · ∇ × j. (11.63)

This is a vector Poisson equation of the sort solved in Section 10.5.2 for the vector potential in the
Coulomb gauge. Transcribing the solution derived there to the present problem gives

r · B = μ0

4π

∫
d 3r ′ r′ · ∇′ × j (r′)

|r − r′| . (11.64)

An exterior spherical multipole expansion for r · B follows by substituting the inverse-distance
formula (4.83) into (11.64):

1

|r − r′| = 1

r

∞∑
�=0

�∑
m=−�

4π

2� + 1

(
r ′

r

)�

Y ∗
�m(�′)Y�m(�) r ′ < r. (11.65)

The last step is to integrate (11.64) using (11.61) and define spherical magnetic multipole moments

M�m = 1

�+ 1

∫
d 3r r� Y ∗

�m(�) r · [∇ × j (r)]. (11.66)
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The expansion of the magnetic scalar potential which results,

ψ(r) = μ0

4π

∞∑
�=1

�∑
m=−�

4π

2�+ 1
M�m

Y�m(�)

r�+1
, (11.67)

is strikingly similar to the spherical exterior multipole expansion (4.86) for the electric scalar potential
except (as noted earlier) there is no magnetic monopole term.9

11.4.3 Alternative Forms forM�m

There are several equivalent forms for the spherical magnetic multipole moments defined by (11.66).
For example, because ∇ · (r × j) = −r · (∇ × j),

M�m = 1

�+ 1

∫
d 3r r� Y ∗

�m(�) ∇ · [r × j (r)]. (11.68)

Integrating (11.68) by parts gives another formula,

M�m = 1

�+ 1

∫
d 3r [r × j (r)] · ∇ [r� Y ∗

�m(�)]. (11.69)

An immediate deduction from (11.69) is M00 = 0. This accounts for the absence of the � = 0 term in
(11.67). We can also substitute the identity

r · (∇ × j ) = εijkrj ∂kji = εjkirj ∂kji = (r × ∇) · j (11.70)

into (11.66) to get

M�m = 1

�+ 1

∫
d 3r r� Y ∗

�m(�) (r × ∇) · j (r). (11.71)

A particularly interesting expression for M�m is simplest to derive if we define

L = −ir × ∇, (11.72)

and write (11.71) in the form

M�m = i

�+ 1

∫
d 3r r� Y ∗

�m(�) L · j (r). (11.73)

The reader will recognize that −hL is the quantum mechanical operator for orbital angular momentum.
In nuclear physics, particulary, it is common to define a vector spherical harmonic,

X�m = 1√
�(�+ 1)

LY�m(�), (11.74)

and use the Hermitian property of L to transform (11.73) to

M�m = i

√
�

�+ 1

∫
d 3r r� X∗

�m(�) · j (r). (11.75)

The applications of this expression (see Section 11.4.6) exploit the fact that10∫
d�X∗

�m · X�′m′ = δ��′δmm′ . (11.76)

9 We have put the integration constant equal to zero so ψ(∞) = 0. The integration of (11.61) does not generate an
additional arbitrary function of θ and φ because ∇2ψ = 0 (Section 10.4) and (11.67) already contains all the
fundamental solutions of Laplace’s equation in spherical coordinates that are regular at infinity (Section 7.7).

10 The orthogonality relation (11.76) is true because L is Hermitian and the Y�m are orthogonal.
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11.4.4 Spherical Expansion for A(r)
It is a short step from the spherical multipole expansion (11.67) for the magnetic scalar potential to
a spherical multipole expansion for the vector potential A(r). With the definition of L in (11.72), the
key ingredient is the vector identity11

∇ × L = −ir∇2 + i∇(1 + r · ∇). (11.77)

Specifically, because ∇2[Y�m(�)/r�+1] = 0, (11.77) tells us that

(i�∇ + ∇ × L)
Y�m(�)

r�+1
= 0. (11.78)

Therefore, (11.67) and B = −∇ψ = ∇ × A imply that

A(r) = μ0

4π

∞∑
�=1

�∑
m=−�

4π

2� + 1

1

i�
M�mL

Y�m(�)

r�+1
. (11.79)

This is a conventional form of the magnetostatic multipole expansion of the vector potential.

11.4.5 Azimuthal Expansions
In spherical coordinates, the current density of a system with azimuthal symmetry takes the form
j (r) = j (r, θ ). For situations like this, the φ integration in (11.66) can be done using

1

2π

∫ 2π

0
dφ Y�m(θ, φ) =

√
2� + 1

4π
P� (cos θ )δm0. (11.80)

Then, because Y�0(θ, φ) = √
(2� + 1)/4π P� (cos θ ), our spherical multipole expansion (11.67)

reduces to an azimuthal multipole expansion,

ψ(r, θ ) = μ0

4π

∞∑
�=1

M�

P� (cos θ )

r�+1
, (11.81)

with azimuthal magnetic multipole moments

M� = 1

� + 1

∫
d 3r r�P� (cos θ ) r · (∇ × j ). (11.82)

11.4.6 Currents That Produce Pure Multipole Fields
It is instructive (and possibly useful in the laboratory) to construct current distributions which produce
a multipole field with given values of � and m. A glance at (11.75) and (11.76) shows that a current
density proportional to the vector spherical harmonic X�m [defined by (11.74) and (11.72)] has exactly
the desired properties. For simplicity, we specialize to axial symmetry and use (11.70) and (11.72) to
write the azimuthal moment (11.82) as

M� = i

�+ 1

∫
d 3r r�P�(cos θ )L · j. (11.83)

The radial dependence is not important to this argument, so we choose a model current density confined
to the surface of a sphere of radius R, with the form

jL(θ ) = I
δ(r − R)

R
(r × ∇)PL(cos θ ) = I

δ(r − R)

R
iLPL(cos θ ). (11.84)

11 See Application 1.1 at the end of Section 1.2.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-11 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:19

352 MAGNETIC MULTIPOLES: APPROXIMATE MAGNETOSTATICS FOR LOCALIZED CURRENT

L = 1 L = 2 L = 3

Figure 11.8: Lines of surface current density on a sphere which produce pure dipole (L = 1), quadrupole
(L = 2), and octupole (L = 3) magnetic fields outside the sphere. See text for discussion of the superimposed
arrows.

If we insert (11.84) into (11.83) and use L2PL = L(L+ 1)PL, the orthogonality relation (C.3) of the
Legendre polynomials guarantees that the only non-zero magnetic multipole moment generated by jL
is ML. In practice, we write out the cross product in (11.84) in spherical coordinates to get

jL(θ ) = I
δ(r − R)

R

∂PL(cos θ )

∂θ
φ̂. (11.85)

The cartoons in Figure 11.8 illustrate the surface current density (11.85) for L = 1, L = 2, and
L = 3. These currents produce purely dipole, quadrupole, and octupole magnetic fields, respectively,
at every point outside the sphere. These assignments can be understood if we use Figure 11.3(a) to
assign a magnetic dipole moment to each current loop on each sphere. Summing nearby moments
which point in the same direction leads to the partial dipole moments drawn as arrows on the spheres.
By analogy with the case of electric multipole moments (Chapter 4), we see that a magnetic quadrupole
moment derives from the juxtaposition of two oppositely oriented magnetic dipole moments and that
a magnetic octupole moment derives from the juxtaposition of two oppositely oriented magnetic
quadrupole moments.

Application 11.3 The Helmholtz Anti-Coil

Figure 11.9 shows two coaxial rings which carry current in opposite directions.12 To determine the
distant magnetic field produced by this object, we focus first on the upper ring at z = d/2. The current
density of this ring can be written as

j+(r, θ ) = φ̂
I

r
δ(r − R cscα)δ(θ − α). (11.86)

R

z

d x

Figure 11.9: A current I flows in opposite directions (arrows) through two coaxial rings (radius R)
separated by a distance d.

12 The coaxial rings of a conventional Helmholtz coil carry current in the same direction. See Section 10.4.2.
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Therefore, because (∇ × j)r = (1/ sin θ )∂θ (sin θjφ),

r · (∇ × j+) = I

r sin θ
δ(r − R cscα)[cos θδ(θ − α) + sin θδ′(θ − α)]. (11.87)

Inserting (11.87) into (11.82) and writing P ′
� (x) = (d/dx)P� (x) gives the moments (11.82) as

M+
� = 2πIR2

� + 1

(
R

sinα

)�−1

P ′
� (cosα). (11.88)

The special case α = π/2 locates the upper ring in the x-y plane. This simplifies (11.88) to

M+
� = 2πIR�+1

� + 1
P ′
� (0). (11.89)

Using the Legendre polynomial identity, P ′
� (0) = �P�−1(0), the reader can check that the multipole

moments (11.89) inserted into (11.81) exactly reproduce the r > R expansion of the current ring
magnetic scalar potential derived in Section 10.4.1.

Return now to a general value for the angle α and focus on the lower ring at z = −d/2 in Figure 11.9.
The magnetic multipole momentsM−

� for this ring are given by (11.88) with I → −I and α → π − α.
Therefore, since P� (−x) = (−1)�P� (x),

M−
� = (−1)�M+

� . (11.90)

The multipole moments for the two-ring system are M� = M+
� +M−

� This shows that all the odd-
order moments vanish. Moreover, if m = IπR2 is the magnitude of the dipole moment of either ring,
we find from (11.89) and (11.90) that the magnetic field very far away from this object has the character
of a magnetic quadrupole with magnetic quadrupole moment

M2 = 4mR cotα = 2md. (11.91)

The appearance of a magnetic quadrupole for this situation is consistent with the analysis of
Section 11.3. �

11.5 Interior Multipoles

Many practical applications demand an approximation to B(r) when currents outside a specified
volume create a magnetic field inside that volume.13 The spherical volume shown in Figure 11.10 is an
example. One approach to this problem exploits the interior analog of the exterior Cartesian multipole
expansion of Section 11.1.1. If the observation point r lies close to the center of the sphere, we can
exchange r and r′ in the expansion (11.2) and approximate the vector potential by

Ak(r) = μ0

4π

[∫
d 3r ′ jk(r

′)
r ′ + r ·

∫
d 3r ′ jk(r

′)r′

r ′3 + · · ·
]
. (11.92)

The first term in (11.92) is a constant which does not contribute to the magnetic field B = ∇ × A.
The second term is linear in r and we leave it as an exercise for the reader to show that the constant
magnetic field it produces is

B(0) = μ0

4π

∫
d 3r ′ r′ × j (r′)

r ′3 r � R. (11.93)

13 The exposure of a small experimental sample to an external magnetic field almost always requires this geometry.
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R
r

′r′)(j r

Figure 11.10: The observation point r lies inside a spherical volume of radius R which completely excludes a
distribution of source current j(r) (dark shading).

Figure 11.11: Four equally spaced wires arranged on a cylindrical surface. The dark circles are guides to the
eye. Adjacent wires carry current in opposite directions.

The notation B(0) is appropriate because (11.93) is the Biot-Savart magnetic field due to j (r′) evaluated
at the center of the sphere. It is straightforward, but not very common, to continue the Cartesian
expansion (11.92) beyond the dipole term studied above. For that reason, we pass on to the more
interesting and practically important case of effectively two-dimensional magnetic fields.

11.5.1 Interior Expansion for Two-Dimensional Fields
Two-dimensional magnetic fields of the form B(ρ, φ) are ubiquitous in many subfields of physics.
A short list of applications includes neutral and charged particle trapping, beam focusing and spec-
troscopy, plasma confinement, and magnetic resonance imaging. The goal in each case is to expose an
experimental sample to a specified magnetic field inside a cylindrical sample volume. Fields of this
type are often produced using parallel arrays of straight current-carrying wires. A four-wire example
is shown in Figure 11.11. Example 11.3 in Section 11.3 may be regarded as a two-wire example.

To compute B(r), we take the vector potential A = −ẑ(μ0I/2π ) ln ρ of a single wire,14 shift the wire
position suitably, and superpose the contributions from all the wires. More generally, if ρ = (ρ, φ)
is a two-dimensional vector, the vector potential A(ρ) = Az(ρ)ẑ associated with the two-dimensional
current density j (ρ) = jz(ρ)ẑ is

Az(ρ) = μ0

2π

∫
d 2ρ ′ jz(ρ ′) ln |ρ − ρ ′|. (11.94)

The corresponding magnetic field lies in the plane perpendicular to the z-axis:

B(ρ) = ∇ × Az(ρ) ẑ = −ẑ × ∇Az(ρ). (11.95)

14 See Example 10.4.
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We note in passing that the magnetic field lines for (11.95) are defined by the conditionAz(ρ) = const.

This is so because the equation for the field lines (10.7) is identical to

0 = dAz = ∂Az

∂x
dx + ∂Az

∂y
dy = −Bydx + Bxdy. (11.96)

To make progress with (11.94), let ρ< = min(ρ, ρ ′) and ρ> = max(ρ, ρ ′) so

|ρ − ρ′|2 = ρ2
>

[
1 − ρ<

ρ>
ei(φ−φ′)

] [
1 − ρ<

ρ>
e−i(φ−φ′)

]
. (11.97)

Combining (11.97) with the identity

log(1 − z) = −
∞∑
n=1

zn

n
|z| < 1 (11.98)

gives

ln |ρ − ρ ′| = ln ρ> −
∞∑
n=1

(
ρ<

ρ>

)n cos n(φ − φ′)
n

. (11.99)

If jz(ρ′) is non-zero only when ρ ′ ≥ R and the observation points of interest always satisfy ρ < R,
substitution of (11.99) into (11.94) leads to the interior multipole expansion

Az(ρ, φ) = μ0

2π

∞∑
n=1

ρn {Cn cos nφ + Sn sin nφ} ρ < R, (11.100)

with interior multipole moments{
Sn

Cn

}
= 1

n

2π∫
0

dφ

∞∫
0

dρ ρ1−n
{

sin nφ

cos nφ

}
jz(ρ, φ). (11.101)

We have dropped from (11.100) a non-essential constant which derives from the ln ρ> term in (11.99).

11.5.2 2N Parallel Current-Carrying Wires
Let us evaluate the multipole moments (11.101) explicitly for the situation depicted in Figure 11.11
generalized to the case of 2N equally spaced wires with alternating directions of current flow. If all the
wires lie on a cylinder of radius R, and one wire carrying current in the +z-direction passes through
the point (R, 0), a suitable current density is

jz(ρ, φ) = I

R
δ(ρ − R)

2N−1∑
p=0

(−1)pδ(φ − pπ
/
N ). (11.102)

This quantity has a periodicity in φ of 2π/N . Therefore, the only non-zero terms in (11.100) have
n = mN where m is an integer. This fact, together with the identity

2N−1∑
p=0

(−1)p exp (impπ ) =
{

2N m odd,

0 m even,
(11.103)

shows that Sn ≡ 0 in (11.101). The Cn are not zero and lead to

Az(ρ, φ) = μ0I

π

∞∑
m=1,3,5

1

m

( ρ
R

)mN
cosmNφ. (11.104)
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When ρ � R, the sum (11.104) is dominated by them = 1 term. This term is called a pure multipole
of order 2N :

Az(ρ, φ) ∝ ρN cosNφ. (11.105)

The fields derived from (11.105) with N = 1, 2, 3, 4 are called dipole, quadrupole, sextupole, and
octupole fields, which reminds us that 2N filamentary currents produce the field in question. This
may be contrasted with the three-dimensional electric multipole case where 2N point charges produce
dipole, quadrupole, octupole, and hexadecapole fields for N = 1, 2, 3, 4, respectively.

Two parallel wires which carry current in opposite directions corresponds to N = 1 in (11.105).
We calculated the exact magnetic field for this geometry in Example 11.3. Very near the origin,
Az ∝ ρ cosφ = x, so the associated magnetic field (11.95) is uniform and points in the −ŷ-direction.15

Application 11.4 Strong Focusing by Quadrupole Magnetic Fields

The discovery of strong focusing in the early 1950s had a major impact on the evolution of high-
energy particle accelerators. To illustrate the principle we note that, very near the origin, the four-wire
configuration shown in Figure 11.11 produces a pure quadrupole (N = 2) magnetic field. If a is a
length, the field has the form

B(x, y) = −(B0/a)(xŷ + yx̂) x, y � R. (11.106)

Since B = −∇ψ , a magnetic scalar potentialψ(x, y) = (B0/a)xy produces this field also. Figure 11.12
shows some typical field lines. B(x, y) deflects a particle with charge q and velocity υ = υ ẑ with a
transverse force

F = qυB0(xx̂ − yŷ). (11.107)

Figure 11.12: Two wires carrying current I toward the reader (solid dots) and two wires carrying current
I away from the reader (crosses) as shown produce a pure quadrupole field near the origin of coordinates.

The particle is deflected toward the symmetry axis (focused) in the y-direction and deflected away
from the symmetry axis (de-focused) in the x-direction. However, if the particle immediately enters
the field of a second quadrupole magnet which is rotated by 90◦ with respect to the first, the alternating
effect of focusing and de-focusing can produce overall focusing in both transverse directions. This
phenomenon—known as strong focusing—is used in particle accelerators to reduce the dimensions
and transverse velocity spread of charged particle beams.

15 This geometry played an important role in the historical development of molecular beam techniques to measure
magnetic moments. See Appendix F of N.F. Ramsey, Molecular Beams (Oxford University Press, New York, 1955).
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The physics of strong focusing becomes clearer when we recall the classical optics formula for the
effective focal length f of two thick lenses separated by a distance d,16

1

f
= 1

f1
+ 1

f2
− d

f1f2
. (11.108)

A lens focuses when f > 0 and de-focuses when f < 0. Therefore, overall focusing occurs if we
choose f2 = −f1 as in the lens arrangement in Figure 11.13. It is worth noting that a force like
(11.107) occurs when a particle with charge q encounters the electric field E ∝ xx̂ − yŷ. This field,
shown in Figure 7.14, derives from the purely quadrupole electrostatic potential ϕ(x, y) ∝ y2 − x2.
Compared to the magnetostatic strong focusing used in high-energy electron, proton, and anti-proton
accelerators, electrostatic strong focusing is better suited for low-energy atomic and molecular ion
accelerators.

Figure 11.13: Complementary converging and diverging lenses for strong focusing in the two orthogonal
directions transverse to the beam direction. Figure from Bullock (1955). Reprinted with permission.
Copyright 1955, American Association of Physics Teachers.

�

11.6 Axially Symmetric Magnetic Fields

We conclude this chapter with an analysis of magnetic fields with rotational symmetry with respect to
a fixed axis. Fields of this kind are important because they function as lenses for charged particles (see
Application 11.5 below). We limit our study to the field in the immediate vicinity of the symmetry axis.

In cylindrical coordinates, the magnetic scalar potential of a system with axial symmetry has the
property that ψ = ψ(ρ, z). When ρ is small compared to the radius of a cylinder which plays the role
of the sphere in Figure 11.10, it makes sense to study an expansion of the form

ψ(ρ, z) =
∞∑
n=0

an(z)ρn. (11.109)

Inside the cylinder, the scalar potential satisfies Laplace’s equation,

∇2ψ = 1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+ ∂2ψ

∂z2
= 0. (11.110)

Substituting (11.109) into (11.110) and rearranging so that terms with common powers of ρ can be
compared leads to the condition

∞∑
m=−2

am+2(z)(m+ 2)2ρm +
∞∑
n=0

a′′
n(z)ρn = 0. (11.111)

16 See, e.g., E. Hecht and H. Zajac, Optics (Addison-Wesley, Reading, MA, 1974).
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The m = −2 term vanishes identically. The m = −1 term forces a1(z) = 0 to avoid a divergence at
the origin. Otherwise, the coefficient of every power of ρ must vanish:

an+2 = − a′′
n(z)

(n+ 2)2
n ≥ 0. (11.112)

This shows that only even powers of ρ enter the expansion (11.109).
The magnetic field for this situation is

B(ρ, z) = −∂ψ

∂ρ
ρ̂ − ∂ψ

∂z
ẑ. (11.113)

Therefore, the z-component of the magnetic field on the symmetry axis is

Bz(z) ≡ Bz(0, z) = −a′
0(z). (11.114)

Given (11.112), we conclude that a magnetic field with azimuthal symmetry is determined everywhere
by its on-axis piece, Bz(z).17 In detail,

Bz(ρ, z) = Bz(z) − ρ2

4
B ′′
z (z) + ρ4

64
B ′′′′
z (z) + · · · (11.115)

and

Bρ(ρ, z) = −ρ

2
B ′
z(z) + ρ3

16
B ′′′
z (z) + · · · . (11.116)

Application 11.5 The Principle of the Electron Microscope

The electron microscope evolved from the 1931 discovery by Ruska and Knoll that a fast electron
beam passing through a solenoid coil focuses toward the symmetry axis of the coil. We will prove here
that every axially symmetric magnetic field produces focusing as long as the beam stays close to the
symmetry axis and the velocity components satisfy

υz � const. and υz � υρ, υφ. (11.117)

Quantitatively, we assume that ρ � |Bz(z)/B ′
z(z)|, so (11.115) and (11.116) imply that

Bρ(ρ, z) � −ρ

2
B ′
z(ρ, z). (11.118)

In cylindrical coordinates, a particle with charge q and mass m has velocity υ = (ρ̇, ρφ̇, ż) and
acceleration a = (ρ̈ − ρφ̇2, 2ρ̇φ̇ + ρρ̈, z̈). These kinematic formulae18 and the Lorentz force law
F = qυ × B give the equations of motion,

ρ̈ − ρφ̇2 = qρ

m
Bzφ̇ (11.119)

and

φ̈ − 2φ̇
ρ

ρ̇
= q

mρ

[
υzBρ − vρBz

]
. (11.120)

We regard ρ(z, t) as the trajectory of the particle so

ρ̇ = dρ

dz

dz

dt
= ρ ′ż. (11.121)

17 The same conclusion follows from the “going off the axis” calculation for the current ring in Section 10.4.1.
18 K. Rossberg, A First Course in Analytic Mechanics (Wiley, New York, 1983).
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Using (11.117),

ρ̈ = z̈ρ ′ + ż2ρ ′′ � ż2ρ ′′. (11.122)

Similarly, φ̇ = φ′ż and φ̈ � ż2φ′′. These results, together with (11.118) and the definition

K(z) = qBz/mυz, (11.123)

permit us to re-express the equations of motion entirely in terms of spatial derivatives. A few lines of
algebra show that the rewritten equations of motion are

ρ ′′ − ρ(φ′)2 = Kρφ′ (11.124)

and

d

dz

{
ρ2(φ′ +K/2)

} = 0. (11.125)

The azimuthal equation (11.125) integrates to

φ′(z) = −K(z)

2
+ C

ρ2
. (11.126)

Our main interest is a particle which enters the magnetic field from a region of zero field (so K = 0)
along a trajectory which is parallel to the symmetry axis (so φ′ = 0). These initial conditions are
consistent with (11.126) if we choose the integration constant C = 0. Therefore, when it does enter
the magnetic field, (11.126) tells us that the particle spirals as it moves along the z-axis. As for the
radial motion, substitution of (11.126) into (11.124) gives

d2ρ

dz2
= − 1

4K
2ρ. (11.127)

By assumption, ρ ′′ = 0 before the particle enters the field. Therefore, when the field begins to act,
(11.127) says that the particle bends toward the symmetry axis. The trajectory returns to a straight line
when the Lorentz force ceases. Therefore, by a judicious choice of the strength and spatial extent of
the field, one can control the point where the particle crosses the symmetry axis, i.e., the focal point of
this “magnetic lens”. Figure 11.14 shows the trajectories of three particles which approach a current
ring parallel to the symmetry axis of the ring.

I

Figure 11.14: Three charged particles with (initially) parallel trajectories are focused by a circular
current loop.

�

�

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is taken from the abstract to

I.I. Rabi, “Space quantization in a gyrating magnetic field”, Physical Review 51, 652 (1937).
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Section 11.1 Textbooks of electromagnetism with particularly good treatments of magnetic dipole physics and
the magnetic multipole expansion include

R.H. Good, Jr. and T.J. Nelson, Classical Theory of Electric and Magnetic Fields (Academic, New York, 1971)

J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981).

R.K. Wangsness, Electromagnetic Fields, 2nd edition (Wiley, New York, 1986).

V.D. Barger and M.G. Olsson, Classical Electricity and Magnetism (Allyn & Bacon, Boston, 1987).

Section 11.2 Geissman readably discusses the geomagnetic field and its reversals. The second and third refer-
ences below are the sources for the left and right panels of Figure 11.4, respectively.

J.W. Geissman, “Geomagnetic flip”, Physics World 17(4) 31 (2004).

G.A. Glatzmaier and T. Clune, “Computational aspects of geodynamo simulations”, Computing in Science
and Engineering 2(3), 61 (2000).

A. Sakuraba and Y. Hamano, “Turbulent structure of the Earth’s fluid core inferred from time series of the
geomagnetic dipole moment”, Geophysical Research Letters 34, L15308 (2007).

Example 11.1 and Example 11.2 are taken from, respectively,
A.M. Portis, Electromagnetic Fields: Sources and Media (Wiley, New York, 1978).

W. Gough, “The magnetic field produced by a hydrogen atom”, European Journal of Physics 17, 208 (1996).

Our footnote regarding the singular part of the point magnetic dipole field comes from
J. Franklin, “Comment on some novel delta function identities", American Journal of Physics 78, 1225 (2010).

Section 11.4 The Cartesian magnetic multipole and anapole moment discussions in Section 11.4.1 were drawn,
respectively, from

A. Castellanos, M. Panizo, and J. Rivas, “Magnetostatic mulitpoles in Cartesian coordinates”, American
Journal of Physics 46, 1116 (1978).

I.B. Khriplovich, Parity Non-Conservation in Atomic Phenomena (Gordon & Breach, Philadelphia, PA, 1991),
Chapter 8.

The spherical magnetic multipole discussion of Section 11.4.2 is adapted from
C.G. Gray and P.J. Stiles, “Spherical tensor approach to multiple expansions: Magnetostatic interactions”,
Canadian Journal of Physics 54, 513 (1976).

C.G. Gray, “Simplified derivation of the magnetostatic multiple expansion using the scalar potential”, Amer-
ican Journal of Physics 46, 582 (1978).

The book by Rose is a definitive treatment of multipole fields. Application 11.3 comes from Smith, which also
contains an elementary discussion of higher-order magnetic multipole moments in nuclei.

M.E. Rose, Multipole Fields (Wiley, New York, 1955).

D.G. Smith, “Magnetic multiples in theory and practice”, American Journal of Physics 48, 739 (1980).

An interesting treatment of magnetic multipoles different from the one in the text is
J.B. Bronzan, “Magnetic scalar potentials and the multipole expansion in magnetostatics”, in Electromag-
netism: Paths to Research, edited by D. Teplitz (Plenum, New York, 1982).

Figure 11.8 and Section 11.4.6 were inspired by
E. Ley-Koo and M.A. Góngora-Treviño, “Interior and exterior multipole expansions”, Revista Mexicana de
Fı́sica 34, 645 (1988).

Section 11.5 Our discussion of interior multipole expansions for two-dimensional magnetic fields is drawn from
D.E. Lobb, “Properties of some useful two-dimensional magnetic fields”, Nuclear Instruments and Methods
64, 251 (1968).

J.P. Boris and A.F. Kuckes, “Closed form expressions for the magnetic field of two-dimensional multipole
configurations”, Nuclear Fusion 8, 323 (1968).

The first reference below is the source of Figure 11.13. The second reference discusses strong focusing by magnetic
quadrupole fields.

M. L. Bullock, “Electrostatic strong-focusing lens”, American Journal of Physics 23, 264 (1955).

M. S. Livingston and J.P. Blewett, Particle Accelerators (McGraw-Hill, New York, 1962).
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Section 11.6 The following monographs discuss axial magnetic fields and charged particle motion from several
different points of view:

P.S. Farago, Free-Electron Physics (Penguin, Harmondsworth, UK, 1970).

O. Klemperer, Electron Physics, 2nd edition (Butterworths, London, 1972).

The Nobel Prize winner Ernst Ruska recounts the history of magnetic electron optics in

E. Ruska, “The development of the electron microscope and electron microscopy”, Reviews of Modern Physics
59, 627 (1987).

Problems
11.1 Magnetic Dipole Moment Practice A current distribution produces the vector potential

A(r, θ, φ) = φ̂
μ0

4π

A0 sin θ

r
exp(−λr).

What is the magnetic moment associated with this current distribution?

11.2 Origin Independence of Magnetic Multipole Moments Let j (r) be an arbitrary current distribution.

(a) Show that the components of the magnetic dipole moment m = 1
2

∫
d 3r r × j are invariant to a rigid

shift of the origin of coordinates.
(b) Show that the components of the Cartesian magnetic quadrupole moment

m
(2)
ij = 1

3

∫
d 3r (r × j)i rj

are invariant to a rigid shift of the origin only if the magnetic moment vanishes.

11.3 The Field outside a Finite Solenoid A cylindrical solenoid with length L and cross sectional area
A = πR2 is formed by wrapping n turns per unit length of a wire that carries a current I . Estimate the
magnitude of the magnetic field just outside the solenoid and far away from the ends when L � R. Do this
by integrating ∇ · B over a hemispherical volume of radius a → ∞ oriented so the disk-like portion of its
surface cuts perpendicularly through the solenoid at a point far away from both ends.

11.4 The Magnetic Moment of a Rotating Charged Disk A compact disk with radius R and uniform surface
charge density σ rotates with angular speedω. Find the magnetic dipole moment m when the axis of rotation
is

(a) the symmetry axis of the disk.
(b) any diameter of the disk.

11.5 The Field inside a Semi-Infinite Solenoid A semi-infinite solenoid (concentric with the negative z-axis)
has cross sectional area A = πR2, n turns per unit length of a wire with current I , and magnetic moment
per unit length m = nIAẑ. When A → 0 and N → ∞ with m fixed, Application 11.1 showed that the
magnetic field outside this solenoid (i.e., excluding the negative z-axis) is

Bout = μ0m

4π

r̂
r2
.

Use the field inside an infinite solenoid to approximate the field Bin inside a semi-infinite, finite-area solenoid.
Show that when A → 0, Bin is confined to the negative z-axis and ∇ · Bin = −μ0mδ(r). This guarantees
that ∇ · (Bin + Bout) = 0 as it must. Hint: Show that limA→0 �(R − ρ)/A = δ(x)δ(y).

11.6 A Spinning Spherical Shell of Charge A charge Q is uniformly distributed over the surface of a sphere
of radius R. The sphere spins at a constant angular frequency ω.
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(a) Show that the current density of this configuration can be written in the form j = ∇ × [M�(R − r)]
where M is a constant vector.

(b) Find the magnetic moment of this current distribution.
(c) Evaluate the Coulomb gauge integral to find A(r).
(d) Find B(r) everywhere.

11.7 Magnetic Moment of a Planar Spiral Find the magnetic moment of a planar spiral with inner radius a
and outer radius b composed of N turns of a filamentary wire that carries a steady current I .

a b

11.8 A Hidden Delta Function The text writes two expressions for the magnetic field of point magnetic dipole
at the origin:

B(r) = μ0mδ(r) − ∇ψ0(r)

B(r) = μ0

4π

3r̂(r̂ · m) − m
r3

+ 2

3
μ0mδ(r).

ψ0(r) is the magnetic scalar potential of a point dipole. Prove that the delta function content of these two
formulae are the same, at least when used as part of an integration over a volume integral.

11.9 Magnetic Dipole and Quadrupole Moments forψ(r) The text produced a spherical multipole expansion
for the magnetic scalar potential ψ(r) based on the identity

−r ∂ψ
∂r

= I = μ0

4π

∫
d 3r ′ r′ · ∇′ × j (r′)

|r − r′| .

A Cartesian expansion for the scalar potential can be developed from the same starting point.

(a) Expand |r − r′|−1 and confirm that

ψ(r) = μ0

4π

[
−m · ∇ 1

r
+ 1

3
m

(2)
ij ∇i∇j

1

r
+ · · ·

]
,

where

m = 1

2

∫
d 3r (r · ∇ × j)r m

(2)
ij = 1

2

∫
d 3r (r · ∇ × j)rirj .

(b) Show that the dipole moment can be written in the familiar form m = 1

2

∫
d 3r r × j .

(c) Show that the magnetic quadrupole can be written as

m
(2)
ij = 1

2

∫
d 3r (r × j) · ∇(rirj ).

(d) Prove that m(2)
ij in part (c) is traceless.

(e) Rewrite the formula in part (c) as m(2) = 1

2

∫
d 3r [(r × j)r + r(r × j)].

(f) Prove that the magnetic quadrupole moment M(2) = ∫
d 3r (r × j)r produces the same quadrupole scalar

potential as m(2) in part (c). M(2) is the moment which appears in the Cartesian multipole expansion for
the vector potential derived in the text.
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11.10 Biot-Savart at the Origin Show that the first non-zero term in an interior Cartesian multipole expansion
of the vector potential can be written in the form A(r) = (μ0/4π )G × r where G is a constant vector. Show
that the associated magnetic field is a Biot-Savart field.

11.11 Purcell’s Loop A filamentary current loop traverses eight edges of a cube with side length 2b as shown
below.

(a) Find the magnetic dipole moment m of this structure.
(b) Do you expect a negligible or a non-negligible magnetic quadrupole moment? Place the origin of

coordinates at the center of the cube as shown.

I
x

y

z

2b

11.12 Dipole field from Monopole Field If such a thing existed, the magnetic field of a point particle with
magnetic charge g at rest at the origin would be Bmono(r) = (μ0gr/(4πr3). Show that the magnetic field of
a point magnetic dipole m is B = −(m · ∇)Bmono/g at points away from the dipole.

11.13 The Spherical Magnetic Dipole Moment Show that the formula for the magnetic dipole moment derived
in Example 11.1,

m = 3

2μ0

∫
sphere

d 3r B(r),

is consistent with the spherical multipole expansion of the vector potential derived in Section 11.4,

A(r) = μ0

4π

∞∑
�=1

�∑
m=−�

4π

2� + 1

1

i�
M�mL

Y�m(�)

r�+1
.

11.14 No Magnetic Dipole Moment Show that a current density with vector potential A(r) = f (r)r has zero
magnetic dipole moment.

11.15 A Spherical Superconductor A superconductor has the property that its interior has B = 0 under all
conditions. Let a sphere (radius R) of this kind sit in a uniform magnetic field B0.

(a) Place a fictitious point magnetic dipole m at the center of the sphere. Find m from the matching condition
on the normal component of B.

(b) In reality, the dipole field in part (a) is created by a current density K which appears on the surface of
the sphere. Find K from the matching condition on the tangential component of B.

(c) Confirm your answer in part (a) by computing the magnetic dipole moment associated with K from
part (b).

11.16 Azimuthal Moments for Concentric Current Rings Compute the azimuthal multipole moments M�

(� = 1 − 8) for a Helmholtz coil. Let the rings of the coil have radius R and carry a current I .

11.17 Dipole Field from Biot-Savart Expand the integrand of the Biot-Savart formula for the magnetic field
and show that B(r) very far from a localized source of current is exactly the dipole magnetic field

B(r) = μ0

4π

3(m · r̂)r̂ − m
r3

.
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11.18 Octupoles from Dipoles Let m1, m2, and m3 be three point dipoles.

(a) Find the constraints that must be imposed on the mα and their positions rα if the asymptotic magnetic
field is octupolar.

(b) Show that one class of solutions places all the dipoles (with suitable magnitudes) on a line (separated
by suitable distances) with their moments pointing parallel or anti-parallel to one another. Sketch an
example.

(c) Show that another class of solutions has all the dipoles at the corners of a triangle and, if sα is the length
of the side opposite mα , m1 : m2 : m2 = s1 : s2 : s3.

Hint: The quadratic form xiAij xj = 0 if Aij = −Aji .

11.19 Magnetic Multipoles from Electric Multipoles Consider a static and azimuthally symmetric charge
distribution ρ(r) which produces no electric field outside itself except a single, pure, spherical electric
multipole field of order �. Show that, when rotated rigidly about its symmetry axis with frequency ω, such
a distribution generally produces a magnetic field outside of itself which is a superposition of two pure
magnetic multipole fields, one of order l + 1 and one of order �− 1.

11.20 A Seven-Wire Circuit A steady current flows through seven wires as indicated in the figure. Find the
asymptotic form of the vector potential using Cartesian coordinates and Cartesian unit vectors.

(a,a/2,0)

(–a,–a/2,0)

(–a,–a/2,0)

(–a,–a/2,0)

x
y

z

I

I
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12 Magnetic Force and Energy

I had constructed an expression for the attraction of two
infinitely small currents which was, in truth, only a hypothesis,

but the simplest one that could be adopted and, consequently, the
one that should be tried first.
André-Marie Ampère (1820)

12.1 Introduction

We stated at the beginning of Chapter 10 that a magnetic field B(r) exerts both a force F and a torque
N on a current density j (r):

F = ∫
d 3r j (r) × B(r) (12.1)

N = ∫
d 3r r × [ j (r) × B(r)]. (12.2)

In this chapter, we study F and N in detail, including the motion of charged partcles and the fact that
no current density can exert a net force or torque on itelf. We will also study the energy associated with
current densities and magnetic fields and discover that the total magnetic energy UB of an isolated
magnetic system differs from the potential energy ÛB of a magnetic system with fixed currents. UB

is most useful for the calculation of equilibrium properties; ÛB is most useful for the calculation of
mechanical forces.1

A familiar special case of (12.1) confines a current I to a filamentary wire which traces out a closed
curve C. The substitution d 3r j (r) → Id� (see Section 9.3.1) gives2

F = I

∫
C

d� × B(r). (12.3)

We showed in Section 10.3.4 that the force density at a point rS on a surface S which carries a current
density K(rS) is K(rS) × Bavg(rS), where Bavg(rS) is the average of the magnetic fields infinitesimally
close to rS but on opposite sides of S. The net force on the entire surface S is therefore

F =
∫
S

dS K(rS) × Bavg(rS). (12.4)

Finally, we can pass to the limit of individual charges qk which move with velocities υk = ṙk(t). The
current density for that situation is

j (r, t) =
N∑
k=1

qkυkδ(r − rk). (12.5)

1 The total energy of an isolated system of charged conductors is the same as its potential energy.
2 It is straightforward to write down the corresponding special case of (12.2) here and below.
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Substituting (12.5) into (12.1) recovers the familiar Lorentz force law,

F =
n∑

k=1

qkυk × B(rk). (12.6)

12.2 Charged Particle Motion

Applications 11.4 and 11.5 of the previous chapter demonstrated the ability of quadrupole and axial
magnetic fields to focus charged particles. This section examines the effect of magnetic fields on
charged particles from a more general point of view. The main conclusions will play an important role
in all our subsequent thinking about the subject.

12.2.1 The Lorentz Force Does No Work
The most important fact of life for charged particles in magnetic fields is that the Lorentz force (12.6)
performs zero mechanical work on such particles. This is so because, when υ produces a displacement
of the particle δr = υδt in time δt , the work done by (12.6) is

δW = F · δr = q(υ × B) · υδt = 0. (12.7)

The implications of this fact for charged particle trajectories will appear throughout the chapter.
Section 12.6 will focus on the implications of (12.7) for the calculation of magnetic energy.

The equation of motion for the center of mass of a particle with charge q and mass m in a magnetic
field B(r) is3

m
dυ

dt
= qυ × B(r). (12.8)

The cross-product structure of the Lorentz force suggests that we decompose the velocity vector υ

into a piece parallel to the local magnetic field and a piece perpendicular to the local magnetic field:

υ = υ‖ + υ⊥. (12.9)

The zero-work condition (12.7) tells us that the speed υ and kinetic energy T are constants of the
motion for a charged particle in a magnetic field. In the language of (12.9),

T = 1
2mυ

2 = 1
2mυ

2
‖ + 1

2mυ
2
⊥ = T‖ + T⊥ = const. (12.10)

By facilitating the exchange of kinetic energy between T‖ and T⊥, a general magnetic field can change
the direction of a particle velocity υ, but it cannot change its magnitude.

12.2.2 Helical Motion in a Uniform Magnetic Field
The equation of motion (12.8) is integrable when B(r) is a constant vector. If, say, B = B ẑ, the Lorentz
force produces no acceleration along the z-direction and

υz = const. (12.11)

Otherwise, the cyclotron frequency,

ωc = qB

m
, (12.12)

3 We are concerned here with non-relativistic (υ � c) motion only. See Chapter 22 for relativistic motion.
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appears when we write out the x- and y-components of (12.8):

ẍ = ωcẏ

ÿ = −ωcẋ.
(12.13)

Direct substitution into (12.11) and (12.13) confirms that the particle trajectory is parameterized in
terms of the constants x0, y0, R, and φ:

x(t) = x0 + R cos(ωct − φ)

y(t) = y0 − R sin(ωct − φ) (12.14)

z(t) = υzt.

The first two equations in (12.14) say that the particle executes circular motion in the x-y plane at the
cyclotron frequency ωc. They also fix the speed υ⊥ of this motion because

υ2
⊥ = ẋ2 + ẏ2 = ω2

cR
2. (12.15)

Using (12.12) and (12.15), the cyclotron radius R is

R = υ⊥
|ωc | = mυ⊥

|q |B . (12.16)

Superposing this circular motion with z(t) in (12.14) shows that the general trajectory of a charged
particle in a constant magnetic field is a helix. The motion is “guided” by the magnetic field line which
coincides with the symmetry axis of the helix.

12.2.3 Larmor’s Theorem
In many cases, the effect of a magnetic field is simply to perturb the motion of a charged particle
caused by a much larger force F. When the effect of F is to keep the particle in the vicinity of a fixed
origin, we have the setting for a theorem due to Joseph Larmor. The theorem states that the effect of a
(weak) magnetic field can be eliminated by transformation to a suitable rotating coordinate system.4

Let (r0, ṙ0, r̈0) be the position, velocity, and acceleration of the particle as viewed from a reference
frame which rotates with angular velocity ω around the fixed origin. Textbooks of mechanics5 show
that the laboratory-frame velocity υ = ṙ and acceleration υ̇ = r̈ which enter the equation of motion
(12.8) are related to the rotating-frame quantities by

ṙ = ṙ0 + ω × r0
(12.17)

r̈ = r̈0 + 2ω × ṙ0 + ω × (ω × r0).

Coriolis and centrifugal effects are responsible for the two extra terms in the acceleration formula.
Substituting (12.17) into (12.8) and rearranging gives

mr̈0 = F + ṙ0 × (qB + 2mω) + (ω × r0) × (qB +mω). (12.18)

The second term on the right side of (12.18) disappears if ω = ωL, where the classical Larmor
frequency is defined by

ωL = − q

2m
B. (12.19)

The resulting equation of motion in the rotating frame is

mr̈0 = F +mωL × (ωL × r0). (12.20)

4 Larmor had in mind a classical atom where a negative particle orbits a positive particle because of the Coulomb force
F between them.

5 See, for example, Section 4-9 of H. Goldstein, Classical Mechanics (Addison-Wesley, Cambridge, MA, 1950).
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Therefore, if the magnetic field is weak enough that the final centrifugal term in (12.20) (which is
second order in B) can be dropped, the particle motion as viewed in the rotating frame is exactly the
same as the motion in the original inertial frame without the magnetic field. This is Larmor’s theorem.

The centrifugal term in (12.20) cannot be dropped if F = 0. Indeed, if B is constant, the action of
this term in the Larmor rotating frame simply reproduces the free motion studied in Section 12.2.2
where the particle orbits in a plane perpendicular to B at the cyclotron frequency ωc = 2ωL.

Example 12.1 Find the trajectory of a particle with charge q and mass m released at rest from the
origin in the crossed fields B = B ẑ and E = Eŷ. Hint: Let υ(t) = υ0 + υ1(t) and make a suitable
choice for the constant υ0.

Solution: The equation of motion to be analyzed is

m
dυ

dt
= q (υ × B + E) .

Since υ0 is a constant, the suggested substitution gives

dυ1

dt
= q

m
υ1 × B + q

m
(υ0 × B + E) .

For the fields given, the term in square brackets vanishes if

υ0 = E

B
x̂ = E × B

B2
.

This contribution to the particle velocity is often called “E × B drift”. The equation for υ1 which
remains is exactly (12.8). Therefore, the solution we seek is (12.14) with a term υ0t added to the
expression for x(t). The initial conditions fix all the constants. The trajectory traces out a cycloid
in the x-y plane (Figure 12.1):

x(t) = E

B
t − E

Bωc
sin(ωct)

y(t) = E

Bωc
[cos(ωct) − 1].

E

B

x

Figure 12.1: The trajectory of a charge q > 0 in the crossed fields B = B ẑ and E = Eŷ. The particle begins
at rest from the origin.

12.3 The Force between Steady Currents

The magnetic force between two steady current distributions obeys a vector-variant of Coulomb’s law.
We derive it by combining the Biot-Savart magnetic field (9.11) produced by a distribution j1(r) with
the force (12.1) which acts on a distribution j2(r). This gives the force of 1 on 2 as

F2 = μ0

4π

∫
d 3r j2(r) ×

∫
d 3r ′ j1(r′) × (r − r′)

|r − r′|3 . (12.21)
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d

I

I
Fm

Figure 12.2: Two parallel wires which carry current I in the same direction attract one another.

Expanding the triple cross product temporarily complicates (12.21) to

F2 = μ0

4π

∫
d 3r

∫
d 3r ′ j1(r′) [ j2(r) · (r − r′) ] − [ j1(r′) · j2(r) ] (r − r′)

|r − r′|3 . (12.22)

We now perform a short side-calculation and note that∫
d 3r ∇ ·

{
j2(r)

|r − r′|
}

=
∫

d 3r
∇ · j2(r)

|r − r′| +
∫

d 3r j2(r) · ∇ 1

|r − r′| . (12.23)

If j2(r) → 0 faster than 1/r as r → ∞, the divergence theorem guarantees that the left side of (12.23)
is zero. The steady-current condition ∇ · j2(r) = 0 makes the first term on the right side of (12.23)
zero also. This means that the integral on the far right side of (12.23) is zero as well. The latter is one
of the integrals which appears in (12.22). Therefore, the magnetostatic force which j1 exerts on j2 is6

Fm
2 = −μ0

4π

∫
d 3r

∫
d 3r ′ j2(r) · j1(r′)

r − r′

|r − r′|3 . (12.24)

It is apparent from (12.24) that the magnetic force satisfies Newton’s third law,

Fm
1 = −Fm

2 . (12.25)

The special case of (12.25) when j2(r) = j1(r) gives Fm = 0 and thus confirms the assertion made at
the beginning of the chapter that no current distribution can exert a force on itself. Finally, as suggested
earlier, the magnetic force law (12.24) is indeed similar to the electrostatic force between two charge
densities,

Fe
2 = 1

4πε0

∫
d 3r

∫
d 3r ′ ρ2(r)ρ1(r′)

r − r′

|r − r′|3 . (12.26)

For two infinitely long and straight wires which carry current I in the same direction, j2(r) ·
j1(r′)d 3rd 3r ′ → I 2d�d�′ in (12.24). This is the geometry used to define the ampere in the SI system
of units (see Section 2.6). The corresponding electrostatic problem puts ρ2(r)ρ1(r′) → λ2d�d�′ in
(12.26) if each wire carries a linear charge density λ. With these substitutions, (12.24) and (12.26)
differ only by a numerical constant. Hence, the variation of the force with the distance d between
the wires is exactly the same in the two cases. However, as Figure 12.2 indicates, the sign difference
between (12.24) and (12.26) tells us that parallel currents attract and anti-parallel currents repel.

More generally, if the moving charges in (12.24) are related to the static charges in (12.26) by
j = ρυ, the fact that μ0ε0 = 1/c2 tells us that

|Fm| ∼ υ2

c2
|Fe|. (12.27)

For electrons which carry a current of 1 A in a copper wire with a cross sectional area of 1 mm2, the
ratio of the drift velocity (see Section 9.3) to the speed of light is υ/c ∼ 10−12. The magnetic force

6 Ampère deduced the force (12.24) with the factor j2(r) · j1(r′) replaced by
3j2(r) · (r − r′)j1(r′) · (r − r′) − 2j2(r) · j1(r′). The two force formulae turn out to be identical. See the quotation at
the beginning of the chapter.
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would be utterly negligible compared to the electric force except for the immobile nuclei of the copper
atoms which constitute the wire. These positive charges make the entire wire charge-neutral. As a
result, the only electric force which occurs between current-carrying wires comes from the charge
which develops on the surface of such wires (see Section 9.7.4).

The similarity between (12.24) and (12.26) for two parallel wires breaks down when j1 and j2

are two localized and widely separated current distributions. The factor j2 · j1 inevitably has both
positive and negative contributions which partly cancel. As a result, the asymptotic magnetic force
between two current loops (i) depends sensitively on the relative orientation of the two distributions and
(ii) falls off more rapidly with the loop separation than the inverse-square force between two distant
charge distributions (see Section 12.4 and Example 12.7). A related cancellation produces zero net
force when a compact current distribution is exposed to a uniform external field B0. This is most
apparent for a closed current loop because

∮
d� = 0 implies that the magnetic force (12.3) vanishes:

F = I

[∮
d�

]
× B0 = 0. (12.28)

The corresponding magnetic torque does not vanish (see Section 12.4.4).

Example 12.2 Figure 12.3 illustrates a set ofN � 1 identical wires wound tightly around a cylinder
of radius R with a pitch angle θ . Each wire carries a current I and winds around the cylinder once
after a distance L. Find the force per unit area f and the critical pitch angle θc at which f = 0.
Discuss the cases θ < θc and θ > θc physically.

in
B

outB

2 RL

Figure 12.3: N identical, current-carrying wires wound around a cylinder of radius R with a pitch angle θ .
The winding pattern repeats after a length L.

Solution: If θ = 0, the surface current density is K = ẑNI/2πR. The integral form of Ampère’s
law gives zero for the field inside the cylinder and Bwire = φ̂μ0NI/2πρ for the field outside
the cylinder. If θ = π/2, the solenoidal surface current density is K = φ̂NI/L. According to
Section 10.2.2, this source current produces zero field outside the cylinder and Bsol = μ0K ẑ inside
the cylinder.

The current density for a general winding is

K(θ ) = ẑ
NI

2πR
cos θ + φ̂

NI

L
sin θ.

Therefore, by superposition, the total magnetic field is

Bin = ẑ
μ0NI

L
sin θ Bout = φ̂

μ0NI

2πρ
cos θ.
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From (12.4), the force density on the surface is 1
2 K × (Bin + Bout):

f(θ ) = ρ̂
μ0

2

[(
NI sin θ

L

)2

−
(
NI cos θ

2πR

)2
]
.

The critical pitch angle θc is defined by the condition f(θc) = 0. This establishes that tan θc =
L/2πR. However, Figure (12.3) shows that the geometrical connection between the pitch angle
and the winding repeat distance is cot θ = L/2πR. Therefore, f = 0 when θ = θc = π/4 and
L = 2πR.

In light of (12.24), the outward radial contribution to f (the sin2 θ term) reflects the repulsion
between anti-parallel current elements on opposite sides of a current loop. The inward radial piece
of f (the cos2 θ term) reflects the attraction between parallel current elements. The latter (called the
pinch effect in plasma physics and beam physics) can generate quite large forces. This is illustrated
by Figure 12.4, which shows a hollow-tube lightning rod crushed by the pinch effect. For the
present problem, the repulsive solenoid-type force dominates when θ > π/4. The attractive pinch
effect force dominates when θ < π/4.

Figure 12.4: A post-strike photograph of a lightning rod fashioned from a hollow copper tube. Figure from
Pollock and Barraclough (1905). The authors estimated the current responsible for crushing the tube as
∼ 105A. This is the same order of magnitude as lightning-strike currents measured by present-day methods.

12.3.1 A Magnetic Work Paradox?
Let a current-carrying wire loopC be exposed to a spatially inhomogeneous magnetic field B(r) where
(12.28) does not apply. When the loop has accelerated to a velocity υc, the work done by the magnetic
force (12.3) in a small time interval δt is7

δW = F · υcδt. (12.29)

This raises an apparent paradox: how is the work (12.29) consistent with the fact (see Section 12.2.1)
that the Lorentz magnetic force does no work on moving charged particles? The answer lies in
Faraday’s law, ∇ × E = −∂B/∂t . The kinetic energy gained by the loop as a whole is compensated
by the kinetic energy lost by individual electrons slowed down by an electric field induced inside the
moving loop. In other words, the current in the loop decreases.

To be quantitative, we evaluate the total Lorentz force which acts on the wire loop shown in
Figure 12.5. The wire is composed of N mobile electrons (each with charge e) and a fixed arrange-
ment of N ions (each with charge −e). The ions at instantaneous positions Rk provide most of the
loop’s mass and all of its rigidity. Hence, the velocity of every ion in the conductor is υc during
the time interval δt considered just above. The total work done on all the ions by the magnetic
field is

δWion = −e
N∑
k=1

[υc × B(Rk)] · υc δt = 0. (12.30)

7 Equation (12.28) tells us that the field must be non-uniform or the net force on the loop is zero.
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I

cv

v

v

v
v

+
−

−
−+

c

− + +

d

c

Figure 12.5: A wire loop composed of N positively charged ions and N negatively charged electrons. When the
center-of-mass velocity of the loop, υc, is zero, the ions are immobile and the current-carrying electrons move
with drift velocity υd.

Each electron in the loop has instantaneous position rk , contributes to the net current I through its
drift velocity [see (9.16)] υd,k, and gains an additional velocity υc due to collisions with the ions.
Therefore, the total velocity of the kth electron in the loop is

υk = υc + υd,k. (12.31)

The net work done on all the electrons by the Lorentz force is

δWelec = e

N∑
k=1

[(υc + υd,k) × B(rk)] · (υc + υd,k)δt. (12.32)

Two of the four terms in (12.32) vanish identically. The two terms which remain sum to zero by the
cyclic property of the vector triple product:

δWelec = e

N∑
k=1

[υd,k × B(rk)] · υc δt + e

N∑
k=1

[υc × B(rk)] · υd,k δt = 0. (12.33)

This calculation confirms our expectation that the Lorentz force does zero work on a current-carrying
wire. The resolution of the “paradox” comes when we realize that the first term in (12.33) is exactly
the work (12.29) done to move the loop as a rigid whole. This is positive if the loop is accelerating.
The second term in (12.33) is the work done on the drifting electrons by the effective electric field
υc × B.8 This is negative under the present conditions, which means that the drift velocity of each
electron decreases. Quite apart from Joule heating (neglected here), the current in the wire decreases
to conserve the total kinetic energy of the electrons. A battery (or some other source of energy) is
needed to maintain the current when a force like (12.3) acts on a circuit.

12.4 The Magnetic Dipole

This section explores the magnetic dipole approximation to the force, torque, and energy of a current
distribution in an external magnetic field Bext(r). Our experience with magnetic multipoles (Chapter 11)
suggests that this approximation should be very accurate if the field does not change very much over
the size of the distribution.

8 In Section 14.4, we will use the term “motional electromotive force” in connection with this phenomenon.
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Figure 12.6: A current distribution j(r′) immersed in a magnetic field B(r′) which varies slowly in space.

12.4.1 The Dipole Force
Figure 12.6 shows a current distribution j(r′) in the presence of a magnetic field B(r′). The Lorentz
force which the field exerts on the current is

F =
∫

d 3r ′ j (r′) × B(r′). (12.34)

If the magnitude and direction of the field do not change very much over the volume of the distribution,
we can perform a Taylor expansion9 of the integration variable r′ around a reference point r and write

B(r′) = B(r) + [(r′ − r) · ∇]B(r) + · · · . (12.35)

Using (12.35) and the fact that
∫
d 3r ′ j (r′) = 0 [See (10.5)], the first non-zero contribution to the

magnetic force is

F =
∫

d 3r ′ j (r′) × (r′ · ∇)B(r). (12.36)

Two ingredients simplify the evaluation of (12.36). The first is the identity (11.11), which we repeat
here for convenience: ∫

d 3r ′ jkr ′
� = − 1

2εk� i
∫
d 3r ′ (r′ × j )i . (12.37)

The second is the definition (11.12) of the magnetic dipole moment,

m = 1

2

∫
d 3r r × j (r). (12.38)

Using (12.38) to rewrite (12.37), and substituting the latter into (12.36), the Levi-Cività identity
ε�kmε�pi = δpkδim − δikδpm gives

F = mk∇Bk − m∇ · B. (12.39)

It is always true that ∇ · B = 0. Therefore, because our result depends on the choice of the reference
point r, the force exerted on the current density in Figure 12.6 depends only on its magnetic moment:

F(r) = mk∇Bk(r). (12.40)

Stern and Gerlach famously discovered the quantization of angular momentum in atoms [as reflected
in their magnetic moments (see Section 11.2.2)] by exploiting the force (12.40) to deflect atoms in an
inhomogeneous magnetic field.

9 See Section 1.3.4.
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When m is a constant vector, an alternative form of (12.40) is

F = ∇(m · B). (12.41)

When the sources of B are far away, so ∇ × B = 0, the identity ∇(m · B) = m × (∇ × B) + B ×
(∇ × m) + (m · ∇)B + (B · ∇)m transforms (12.41) to10

F = (m · ∇)B. (12.42)

We emphasize that a magnetic field gradient is needed to generate a force. This is consistent with
(12.28) for a current loop.

A quick application of (12.41) is to study the dipole approximation to the force on a current
distribution j2 produced by a distant current distribution j1. If the latter is centered at the origin and
has magnetic dipole moment m1, the distant field it produces is well approximated by the dipole field:

B1(r) = μ0

4π

3r̂(r̂ · m1) − m1

r3
. (12.43)

This field varies slowly over the dimensions of j2 if the latter lies sufficient far from j1. In that case,
(12.41) shows that the force F2 = (m2 · ∇)B1(r) exerted by j1 on j2 is

F2 = 3μ0

4πr4
[(m1 · m2)r̂ + (m1 · r̂)m2 − (m2 · r̂)m1 − 5(m1 · r̂)(m2 · r̂)r̂] . (12.44)

The dipole-dipole force (12.44) is non-central and falls off as 1/r4. This confirms the remark preceding
(12.28) that the magnetostatic force (12.24) between two currents falls off more rapidly with separation,
and has a more complicated angular dependence, than the corresponding electrostatic Coulomb force
between two distant charge distributions.

The four terms which appear in (12.44) are not unexpected: each represents one of the four distinct
ways to combine the three vectors m1, m2, and r̂ into a single vector. The reader is urged to study
the direction of the net force (12.44) for various orientations of these three vectors. These turn out
to be consistent with the direction expected from superposition and Coulomb’s law if each dipole
moment were of electric type rather than magnetic type. The reason for this will become clear when
we introduce the concept of “fictitious magnetic charge” in Chapter 13.

Example 12.3 Show that the force exerted on a point magnetic dipole by an arbitrary magnetic
field B is (12.41).

Solution: The current density of a point magnetic dipole at r0 is jD(r) = −m × ∇δ(r − r0) (see
Section 11.2.3). Using this density, the force (12.1) becomes

F =
∫

d 3r jD × B =
∫

d 3r B × [m × ∇δ(r − r0)] .

Expanding the double cross product and integrating by parts gives, first,

F =
∫

d 3r [B · ∇δ(r − r0)m − (m · B)∇δ(r − r0)] ,

and then

F = −
∫

d 3r m δ(r − r0)∇ · B +
∫

d 3r δ(r − r0)∇(m · B).

Since ∇ · B = 0, we get the advertised result,

F = ∇0[m · B(r0)].

10 Notice that (12.41) and (12.42) differ from (12.40) by a factor of 2 for an induced magnetic moment where m ∝ B.
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This confirms our expectation (based on the electric dipole results of Section 4.2.1) that the current
density of a point magnetic dipole can always be used in place of the true density of a current
distribution when B(r) varies slowly over the spatial extent of the current.

Application 12.1 The Magnetic Mirror

The magnetic dipole force (12.41) plays an important role when we generalize the problem of cyclotron
motion (Section 12.2.2) to situations where the magnetic field is not strictly constant. Previously, we
found that a charged particle spirals in a circular helix around any straight field line of a con-
stant magnetic field. We show here that helical motion persists when the guiding field line changes
direction—provided the change occurs slowly enough. Suppose υ is the particle speed andωc = qB/m

is the cyclotron frequency (12.12). A sufficient condition for a spiraling particle to follow a field line
wherever it leads is that each Cartesian component of the field satisfies a condition of “adiabatic”
change:

|Bk/∇Bk| � υ/ωc. (12.45)

The condition (12.45) also produces a characteristic magnetic mirror effect, in which a particle spirals
into a region of increasing field, reverses direction, and then spirals back out the way it came. Figure 12.7
illustrates the first part of this motion for an axially symmetric magnetic field with Bz > 0.

Figure 12.7: The trajectory of a point charge in an axially symmetric magnetic field B(r) whose
magnitude increases as z increases (to the right).

To demonstrate these phenomena, we work in cylindrical coordinates and use (11.25) to deduce that
the spiralling charge in Figure 12.7 produces an effective orbital magnetic moment,

mL = q

2m
L = q

2m
(ρ ×mυ⊥) = −1

2
|q|υ⊥ρẑ = −T⊥

Bz

ẑ, (12.46)

where T⊥ = 1
2mυ

2
⊥ is the “perpendicular” kinetic energy [see (12.10)] and ρ = mv⊥/|q|Bz [see

(12.16)]. Since T⊥ > 0, the magnetic moment (12.46) is anti-parallel to B‖ ≡ Bzẑ regardless of the
sign of q. Equation (12.46) implies that the magnetic flux through the orbit of the particle is

� = πR2Bz = −2πm

q2
mL. (12.47)

We now show thatmL (and therefore�) is a constant of the motion when the field changes adiabatically.
This will explain why the particle trajectory in Figure 12.7 spirals along the surface of a single flux
tube: ∇ · B = 0 guarantees that the same flux passes through any two cross sections of the tube.

The adiabatic condition (12.45) permits us to assume that the derivative ∂Bz/∂z is approximately
constant. In that case, the Maxwell equation,

∇ · B = 0 = 1

ρ

∂

∂ρ

(
ρBρ

)+ ∂Bz

∂z
, (12.48)
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can be integrated and we find [cf. (11.118)]

Bρ = −1

2
ρ
∂Bz

∂z
. (12.49)

Using (12.49) and (12.46), Newton’s law in the z-direction is

m
dv‖
dt

= qv⊥Bρ ẑ = −1

2
qρv⊥

∂Bz

∂z
ẑ = mL

∂Bz

∂z
. (12.50)

Therefore, the dot product of the first and last members of (12.50) with v‖ = (dz/dt)ẑ implies that

d

dt

(
1

2
mv2

‖

)
= −mL

∂Bz

∂t
. (12.51)

Finally, because (12.10) ensures that Ṫ‖ = −Ṫ⊥, (12.51) becomes

dT⊥
dt

= mL

∂Bz

∂t
. (12.52)

Equation (12.52) establishes that the orbital magnetic moment is a time-independent constant because,
in addition, the equality of the first and last members of (12.46) tells us that

dT⊥
dt

= d

dt
(mLBz) . (12.53)

More sophisticated treatments refer to our conclusion thatmL = const. as a statement of the adiabatic
invariance of the magnetic moment.

The magnetic mirror effect emerges from an analysis of the z-component of the force (12.41) exerted
on the orbit regarded as a point dipole with moment (12.46):

Fz = (mL · ∇)Bz = −mL

∂Bz

∂z
. (12.54)

This force is always negative for the field configuration shown in Figure 12.7. Therefore, a particle
that enters from the left with υz > 0 has its longitudinal motion slowed, brought to a stop, and then
reversed. The chirality of the spiral motion does not change during the reflection. Clearly, T⊥ increases
as Tz decreases (and vice versa) so their sum remains constant. As mentioned following (12.10),
this transfer of kinetic energy between longitudinal motion and transverse motion is characteristic of
Lorentz force dynamics where no work is done.

Figure 12.8: Schematic view of the dipolar magnetic field produced by the Earth and the trajectory of a
charged particle guided by one field line. The particle spirals back and forth between two magnetic
mirrors near the North and South poles.
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A dramatic example of the mirror effect occurs when electrons and protons from the Sun are trapped
by the dipole magnetic field of the Earth.11 As the cartoon in Figure 12.8 indicates, the van Allen
radiation belts are composed of particles that spiral back and forth between the mirror points of a
“magnetic bottle” formed by the field lines of the dipole. A small fraction of these particles collide
with and excite atmospheric atoms and molecules. The de-excitation of these species contributes to
the dramatic optical phenomenon known as the aurora. �

12.4.2 Dipole Potential Energy
The dipole force F = ∇(m · B) in (12.41) manifestly has zero curl. This means that F is a conservative
force (see Section 3.3.1) that can be derived from a potential energy. Evidently, F = −∇V̂B , where
V̂B is the interaction potential energy function

V̂B (r) = −m · B(r). (12.55)

Superficially, (12.55) is similar to the potential energy of a point electric dipole in an external electric
field. From (4.26), the latter is

VE(r) = −p · E(r). (12.56)

The fact that we have written V̂B in (12.55) rather than VB is a first indication that magnetostatic
potential energy is a more subtle subject than electrostatic potential energy. We will study this issue
thoroughly in Section 12.7.

Application 12.2 Magnetic Trapping

Thomson’s magnetostatic theorem (Section 10.1.4) states that |B(r) | has no local maximum in a
current-free region of space. An example is

B(r) = (yx̂ + xŷ)B1 + ẑB0. (12.57)

This field is divergence-free, curl-free, and unbounded in magnitude. On the other hand, |B(r)| takes
its minimum value, B0, at every point on the z-axis:

|B(r)| =
√
B2

0 + B2
1 (x2 + y2). (12.58)

Because (12.58) has no local maximum, the potential energy (12.55) has no local minimum when m
is parallel to the magnetic field (12.57). The force (12.41) merely pushes such a dipole toward regions
of space where either B = const. or j (r) �= 0. On the other hand, a dipole with m anti-parallel to the
field (12.57) will be pushed to the z-axis and remain trapped there.

Magnetic traps were studied originally in connection with plasma-confinement schemes for nuclear
fusion. More recent experiments exploit Thomson’s theorem to study Bose-Einstein condensation
and related phenomena in ultra-cold atomic ensembles. For atoms with total angular momentum J
and magnetic moment m = γ J (Section 11.2.2), static field trapping occurs for atoms prepared and
maintained in quantum states where γ J is anti-parallel to the local magnetic field. Typically, trapping is
desired at a single point in space, which requires a more complicated field than (12.57). A historically
important example (for both plasma physics and cold-atom physics) is the Ioffe-Pritchard geometry
shown in Figure 12.9. Application 11.4 showed that the four straight wires in Figure 12.9 produce
the B1 magnetic quadrupole term in (12.57) near the z-axis. Near z = 0 on the z-axis, the oppositely

11 See the box at the end of Section 11.2.1.
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wound Helmholtz coils (see Application 11.3) in the figure produce a field where Bz = B0 + B2z
2.

The sum of these fields leads to an absolute minimum of |B(r)| at the origin.

x

z

Figure 12.9: The Ioffe-Pritchard configuration produces a minimum of |B(r)| at its center. Arrows
indicate the direction of current flow in each wire.

�

12.4.3 The Dipole-Dipole Interaction Potential Energy
We compute the potential energy of interaction between a point dipole m1 at r1 and a point dipole m2

at r2 using (12.55) and the full point dipole magnetic field (11.33). If n̂12 = r2 − r1/|r2 − r1|, this
energy is

V̂12 = μ0

4π

[
m1 · m2 − 3(n̂12 · m1)(n̂12 · m2)

|r2 − r1|3 − 8π

3
(m1 · m2)δ(r2 − r1)

]
. (12.59)

For a collection ofN point magnetic dipoles at non-overlapping positions ri , we sum terms like (12.59)
and insert a factor of 1

2 to avoid double-counting. If B(ri) is the magnetic field at the position of dipole
i due to all the other dipoles, the total interaction potential energy stored by the collection is

V̂B = −1

2

N∑
i=1

mi · B(ri). (12.60)

The non-singular term in (12.59) is the potential energy of any two current distributions separated
by a distance |r2 − r1| which is large compared to the spatial extent of either one. Thus, when m1,
m2, and n̂12 all point in the same direction, the force F = −∇V̂B [see (12.44)] is attractive because V̂B
is increasingly negative as the dipoles approach one another. This is the situation for two distant and
coaxial current rings which carry current in the same direction. Conversely, (12.59) is increasingly
positive when two distant and coplanar current rings approach one another with currents that flow in
the same direction. This corresponds to a repulsive force between the two.

The delta function term in (12.59) cannot play a role in classical physics because two distinct
current distributions cannot occupy the same point in space. On the other hand, the delta function
applies directly to the theory of the hyperfine interaction in atoms where, say, m1 is the magnetic
moment of the nucleus and m2 is the magnetic moment of an electron. There is a non-zero probability
|ψ2(0)|2 that the electron and nucleus coincide in space so the delta function, or Fermi contact term,
contributes to the hyperfine energy of the electron.

12.4.4 The Dipole Torque
Following Example 12.3, we use the point magnetic dipole current density jD(r) = −m × ∇δ(r − r0)
(see Section 11.2.3) to calculate the torque (12.2) exerted by a weakly inhomogeneous magnetic field
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B(r) on a localized current density j (r). After expanding the double cross product, this is

N =
∫

d 3r r × {B · ∇δ(r − r0)m − (m · B)∇δ(r − r0)} . (12.61)

Integration by parts yields

Ni =
∫

d 3r δ(r − r0)εijk {ms∇k −mk∇s} rjBs. (12.62)

The derivatives under the integral give four terms. One term vanishes because ∇ · B = 0. Another term
vanishes because εij kδkj = 0. The two non-zero terms give the desired result in terms of the magnetic
force F(r0) = mk∇Bk(r0) from (12.40):

N(r0) = m × B(r0) + r0 × F(r0). (12.63)

The second term in (12.63) vanishes if we put the origin of coordinates at r0. The intrinsic magnetic
torque which remains is

N(r) = m × B(r). (12.64)

The torque (12.64) is equal to the time rate of change of the intrinsic angular momentum, J, of
the moment-carrying system. For a macroscopic system, J is dominated by the mechanical angular
momentum Ĩ · ω, where I is the moment of inertia tensor and ω is the angular velocity vector. In other
words,

dJ
dt

= Ĩ · dω

dt
= m × B. (12.65)

As a matter of principle, (12.65) rotates m into the direction of B to minimize the interaction potential
energy (12.55). However, to solve (12.65) and learn the details, we must first refer m to the principal
axes of Ĩ. This is not difficult for a current-carrying wire ring where the ring geometry fixes the
average trajectory of the moving charges. The case of a permanently magnetized compass needle is
less straightforward because the magnetic anisotropy of the needle plays a key role.12

Application 12.3 Magnetic Bacteria in a Rotating Field

Some rod-shaped marine and freshwater bacteria contain magnetic particles which give the bacteria
a net magnetic moment parallel to their length. The torque (12.64) causes them to continuously
orient themselves parallel to the local direction of the Earth’s magnetic field. This evolutionary
strategy guides them downward toward the oxygen-poor environment they prefer. Apart from their
rotational-orientational motion, the bacteria move at a constant speed v along their length because their
self-propulsive force is balanced by the viscous drag of the water. In this Application, we show that
trajectories like those shown in Figure 12.10 occur when the bacteria move in the plane of a rotating
magnetic field.

12 Magnetic anisotropy quantifies the shape- and material-dependent energy of an object with respect to the direction of
its magnetic moment. See, e.g., K.H.J. Buschow and F.R. De Boer, Physics of Magnetism and Magnetic Materials
(Kluwer, New York, 2004).
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Figure 12.10: Swimming tracks of magnetic bacteria in a magnetic field which rotates in the plane of the
diagram. Figure from Steinberger et al. (1994).

Let B(t) be a uniform magnetic field rotating in the x-y plane at frequency ω and let θ (t) be the
angle between a bacterium’s magnetic moment m and the x-axis of that plane. Thus,

B(t) = B(cosωt x̂ + sinωt ŷ) and m = m(cos θ x̂ + sin θ ŷ). (12.66)

Our statement that the motion of the bacterium in water is non-inertial implies that its rotational
equation of motion is "θ̇ = N , where " is a drag coefficient and N is the driving torque. For our
problem,

N = m × B = mB sin(ωt − θ )ẑ. (12.67)

� = mB/" is a characteristic frequency, so the orientation of the bacterium is determined by the
equation

dθ

dt
= � sin(ωt − θ ). (12.68)

The equation of motion (12.68) has both synchronous and non-synchronous solutions. The syn-
chronous solutions have θ (t) = ωt +K , where K is a constant. Substituting this information back
into (12.68) gives

ω = dθ

dt
= � sinK, (12.69)

which shows that these solutions are valid only at low frequency, when γ = �/ω ≥ 1. When γ < 1,
the bacterium cannot keep up with the rotating field and a direct integration of (12.68) gives

θ (t) = ωt − 2 tan−1
[
γ +

√
1 − γ 2 tan

{
1
2ωt

√
1 − γ 2

}]
. (12.70)

To discover the bacterium’s trajectory, we note that v = rθ̇ θ̂ and a = −rθ̇2r̂ = −vθ̇ r̂ are the
velocity and acceleration in polar coordinates for an object moving at constant speed. On the other
hand, the centripetal acceleration is a = −(v2/R)r̂, where R is the instantaneous radius of curvature
of the trajectory. Equating these two expressions for the acceleration implies that the time-dependent
curvature satisfies

1

R
= 1

v

dθ

dt
= �

v
sin(ωt − θ ). (12.71)
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For the synchronous solutions, (12.71) tells us that the bacterium (and its magnetic moment) remains
adiabatically aligned with the magnetic field by moving in a circle of radius R = v/|ω|. Figure 12.10
contains bacterium tracks of this kind.

For the non-synchronous solutions, (12.70) says that ωt − θ is a periodic function of time. Using
(12.71), we infer that 1/R is a periodic function of time also and that this curvature changes sign every
time ωt − θ passes through integer multiples of π . We conclude that, however simple or complex the
trajectory may be, the bacterium always alternates between regions of positive and negative curvature
as it moves. Figure 12.10 exhibits tracks of this kind also. �

12.4.5 Larmor Precession for Microscopic Systems
For a microscopic system where m = γ J is valid (see Section 11.2.2), we can use (12.64) and the
classical torque equation dJ/dt = N to write an equation of motion for the magnetic moment:

dm
dt

= γ m × B. (12.72)

The scalar product of (12.72) with m and the scalar product of (12.72) with B show that

m · dm
dt

= 0 = B · dm
dt

. (12.73)

The equality on the left side of (12.73) says that 1
2 (d

/
dt)|m|2 = 0 so |m| is a constant of the motion.

The equality on the right side of (12.73) says that the component of m parallel to B is also a constant
of the motion. This means that the magnetic moment does not turn into the direction of B. Instead, it
precesses around the direction of B at the Larmor frequency �L = γB.13 If we choose B = B ẑ, this
conclusion follows from the fact that (12.72) is solved by

mz = m cos θ my = m sin θ cos�Lt mx = m sin θ sin�Lt. (12.74)

The z-component of the moment is fixed while the vector m‖ = mx x̂ +my ŷ rotates in the x-y plane
at the Larmor frequency (Figure 12.11).

Nuclear magnetic resonance (NMR) and other magnetic resonance techniques supplement the static
field B in (12.72) with a smaller, time-dependent magnetic field B1(t) = B1 cosωt which is oriented
perpendicular to B. When the tunable frequency ω approaches �L, the precession axis resonantly
switches from B̂ to B̂1 in an easily detectable manner. This phenomenon is widely exploited in many
subfields of physics, chemistry, biology, and diagnostic medicine to identify the chemical environment
of the precessing moments.

12.5 The Magnetic Stress Tensor

Following the electrostatic example of Section 3.7, the magnetic force density j × B in (12.1) can be
expressed entirely in terms of the Cartesian components of the magnetic field. For this purpose, we
assume that j is the sole source of B and restrict the volume of integration in (12.1) to a subset V of
the total volume � occupied by the current. Using ∇ × B = μ0j and the Levi-Cività identity (1.39), it
is not difficult to see that

j × B = μ−1
0 [(B · ∇)B − Bk∇Bk] = μ−1

0

[
(B · ∇)B − 1

2∇B2
]
. (12.75)

13 This conventional definition of the Larmor frequency �L generalizes the “classical” Larmor frequency ωL defined in
(12.19). The latter applies to a purely orbital magnetic moment when the leftmost equation in (12.46) is relevant.
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x

B

y

m

Figure 12.11: The magnetic moment m = γ J precesses around the magnetic field B = B ẑ at the Larmor
frequency �L = γB.

Moreover, because ∇ · B = 0, (12.75) is identical to

(j × B)k = μ−1
0 ∂i

{
BiBk − 1

2δikB
2
} ≡ ∂iTik(B). (12.76)

The last equality in (12.76) defines the Cartesian components of the Maxwell magnetic stress tensor
Tik(B).

One virtue of (12.76) is that it expresses the Lorentz force density as a total divergence. Consequently,
the total magnetic force on a volume V can be written as an integral over any surface S which
bounds V :

Fk =
∫
V

d 3r (j × B)k =
∫
V

d 3r ∂iTik(B) =
∫
S

dS n̂i Tik(B). (12.77)

For computational purposes, it often preferable to use the surface integral representation of the magnetic
force,

F = 1

μ0

∫
S

dS [(n̂ · B)B − 1
2 n̂(B · B)]. (12.78)

It is important to appreciate that the integration surface S in (12.78) need not coincide with the physical
boundary of j (r). If this is so, and S lies entirely in the vacuum, one can say that the magnetic force F
is “transmitted” through empty space from the magnetic field at S to the enclosed current density j (r).

Despite the very different appearances of the electric and magnetic force densities in the Coulomb-
Lorentz force law, F = ∫

dr [ρE + j × B], it is striking that the Cartesian components of the magnetic
stress tensor,

Tij (B) = 1

μ0
[BiBj − 1

2δijB
2], (12.79)

have exactly the same structure as the components of the electric stress tensor (3.93),

Tij (E) = ε0[EiEj − 1
2δijE

2]. (12.80)

This is no accident. The similarity of (12.79) to (12.80) reflects a deep similarity between electric and
magnetic fields which becomes most obvious when we analyze electrodynamics from the point of
view of special relativity (Chapter 22).

12.5.1 Magnetic Tension and Magnetic Pressure
The two terms on the far right side of (12.75) are often interpreted as forces due to “magnetic tension”
and “magnetic pressure”, respectively. The pressure interpretation is reasonable because −n̂B2/2μ0

is a force per unit area which pushes on every element of the enclosing surface S in (12.78). The
use of the word “tension” in this context can be understood using the self-field of a long and straight
current-carrying wire. Let the wire have a circular cross section with radius a and a uniform current
density j = j ẑ.
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The magnetic field produced by this wire has the form B = Bφ(ρ)φ̂ where (see Example 10.5)

Bφ(ρ) =
{ 1

2μ0jρ ρ < a,

1
2μ0ja

2/ρ ρ > a.
(12.81)

The first term of the force density (12.75) for the field (12.81) is14

f1 = 1

μ0
(B · ∇)B = B2

φ

μ0ρ

∂φ̂

∂φ
= − B2

φ

μ0ρ
ρ̂. (12.82)

This quantity points radially inward at every point in space. Now, if we ascribe to magnetic field lines
the ability to “transmit” force to the wire, we can reproduce (12.82) if the radii of the circular lines
which describe (12.81) tend to contract. But this is exactly what would happen if the field lines were
elastic ropes in a state of tension: each closed circle of rope shrinks to relieve the stress.

Turning now to the magnetic pressure, the second term in (12.75) for this situation is

f2 = − 1

2μ0
∇(B2) = − ∂

∂ρ

(
B2
φ

2μ0

)
ρ̂. (12.83)

Using (12.81), we see that f1 + f2 is zero outside the wire (as it must be because j × B = 0 there).
Inside the wire, the two terms add and the circular field lines exert a radially inward force. This is
again the magnetic pinch effect (see Example 12.2).

Application 12.4 The Magnetic Virial Theorem

In the 1950s, physicists interested in generating very intense magnetic fields were mindful of the
explosive consequences of passing a very large current through solenoidal coils of wire.15 For that
reason, they sought winding strategies which would produce zero magnetic force density on the
surface of the coils. This turns out to be impossible unless the current source extends to infinity, as in
Example 12.2. The proof goes as follows.

Let f̂(r) denote the volume density of external forces of constraint needed to oppose the magnetic
forces. Our aim is to show that f̂ ≡ 0 is impossible for physical current distributions. We begin with
(12.76) and write the condition of local mechanical equilibrium, f̂ + j × B = 0, in the form

f̂j + ∂iTij (B) = 0. (12.84)

Now, multiply this formula by rj and sum over the Cartesian index j . Since (12.79) gives the trace of
the magnetic stress tensor as

∑
i Tii(B) = −B2

/
2μ0, we find

rj f̂j + ∂i[rj Tij (B)] + B2
/

2μ0 = 0. (12.85)

Finally, integrate over a volume V and use the divergence theorem. The result is called the magnetic
virial theorem: ∫

V

d 3r
{
rj f̂j + B2

/
2μ0

} = −
∫
S

dS n̂i rj Tij (B). (12.86)

14 See Section 1.2.7 for the meaning of (B · ∇)B in curvilinear components.
15 See the first term in the final expression for the force density f in Example 12.2.
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For our application, we choose the surface S far outside the finite-sized coils so the asymptotic 1/r3

behavior of the dipole magnetic field they produce makes the integral on the right side of (12.86)
vanish. This gives ∫

V

d 3r rj f̂j = − 1

2μ0

∫
V

d 3r |B|2. (12.87)

The right side of this equation cannot be zero. Therefore, a non-zero external force density f̂(r) must
be present to maintain mechanical equilibrium. The best we can do is spread out the required force
over a large region. �

12.6 Magnetostatic Total Energy

By definition, the total magnetic energyUB of an isolated current distribution j (r) is the total reversible
work required to create j (r) and its associated magnetic field B(r). This quantity is important for many
reasons, not least because UB is a minimum when an isolated magnetostatic system is at equilibrium.
If we assume a functional form for j (r) which depends on one or more variational parameters,
minimizing UB with respect to these parameters produces an approximation to the equilibrium current
density.

To derive an expression for UB , we focus on a closed loop C of filamentary wire and recall that the
Lorentz force does no work on the mobile charges in the wire (Section 12.2.1). Therefore, the external
work done against the Coulomb force on the moving charges is the only plausible candidate for the
required work. In a time δt , the displacement of charge qi with velocity υ i is δri = υ iδt . Therefore,
since the current density of the moving charges is j(r) = ∑

qiυ iδ(r − ri),

δWext = −
∑
i

qiE · υ iδt = −
∫

d 3r j (r) · E(r)δt = −I
∮
C

d� · Eδt. (12.88)

An electric field arises in our problem because, no matter how slowly the current is increased, the
accompanying change in magnetic field induces an electric field according to Faraday’s law,

∇ × E = −∂B
∂t

. (12.89)

Using Stokes’ theorem (Section 1.4.4) and (12.89), the work (12.88) can be rewritten as an integral
over any surface S with C as its boundary:

δWext = −I
∫
S

dS · ∇ × E δt = I

∫
S

dS · ∂B
∂t

δt = I
d

dt

∫
S

dS · B δt. (12.90)

The transfer of the time derivative from inside to outside the integral in (12.90) is valid as long as
the boundary of S is neither moved nor distorted in time δt . The rightmost integral in (12.90) is the
magnetic flux � through the loop C (see Section 10.8). Therefore, since (d�/dt)δt = δ� is a change
in magnetic flux, we conclude that the work increment done in time δt at a moment when the current
in the loop is I is16

δWext = I δ�. (12.91)

16 This is the analog of the electrostatic work ϕδQ required to add charge δQ to an isolated conductor with potential ϕ.
See Section 5.6.1.
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By our definition, the work increment (12.91) is exactly the change in total magnetic energy,

δUB = Iδ�. (12.92)

An expression for δUB for a general current density j(r) follows from the definition of magnetic
flux; namely, because

I�B = I

∫
S

dS · B = I

∫
S

dS · ∇ × A = I

∮
C

d� · A, (12.93)

the mnemonic device Id� → j d 3r implies that

δUB =
∫

d 3r j · δA. (12.94)

12.6.1 Explicit Formulae for UB

The energy increment (12.92) is all we need to derive an explicit expression for UB . Our strategy
is to quasistatically increase the current in a filamentary loop from zero to a final value of I .17

At any intermediate stage, the current in the loop is I (λ) = λI , where 0 ≤ λ ≤ 1. The linearity of
magnetostatics guarantees that the instantaneous flux through the loop is λ� and that the change in
flux as λ increases infinitesimally is δ�(λ) = (δλ)�. Therefore, the total energy required to raise the
current in the loop from zero to I is

UB =
∫

I (λ)δ�(λ) =
1∫

0

[λI ][(δλ)�] = I�

1∫
0

δλλ = 1

2
I�. (12.95)

Generalizing to multiple loops and mimicking the steps which led from (12.92) to (12.94) shows
that

UB = 1

2

N∑
k=1

Ik�k = 1

2

∫
d 3r j · A. (12.96)

Two additional versions of the last member of (12.96) are worth knowing. The first follows from
the Coulomb gauge formula (10.76) for the vector potential:

UB = μ0

8π

∫
d 3r

∫
d 3r ′ j (r) · j (r′)

|r − r′| . (12.97)

The second follows from ∇ × B = μ0j, the vector identity A · (∇ × B) = B · (∇ × A) − ∇ · (A × B),
and the divergence theorem. The surface integral in the latter vanishes because A × B falls off faster
than 1/r2 as r → ∞ for a localized current density. Therefore,

UB = 1

2μ0

∫
d 3r |B(r)|2 ≥ 0. (12.98)

It is not apparent from (12.96) or (12.97), but (12.98) makes it clear that the total magnetic energy
UB is a positive definite quantity. This must be so or circulating currents would appear spontaneously
everywhere.

17 Compare this with the second method used in Section 3.6 to derive the total electrostatic energy UE .
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Application 12.5 The Solar Corona

Figure 12.12 is a not-to-scale cartoon which identifies the two outermost layers of the Sun: the
opaque photosphere where sunlight is emitted and the nearly transparent corona. The magnetic field
of the photosphere can be measured spectroscopically. The magnetic field of the corona is difficult to
measure, but it can be calculated approximately from the known magnetic field of the photosphere.
The calculation exploits the fact that the corona is in approximate quasistatic equilibrium. Therefore,
its properties can be determined by minimizing the total magnetic energy UB subject to two boundary
conditions: (i) specified values for n̂ · B at the boundary between the corona and the photosphere and
(ii) B = 0 at a boundary surface very far from the Sun. Under these conditions, we show below that
the coronal volume V is characterized by j (r) = 0 and that magnetostatic potential theory determines
the corona magnetic field B(r).

Photosphere

Corona

Figure 12.12: The two outermost layers of the Sun are the opaque photosphere (gray) and the nearly
transparent corona (white). The layer thicknesses are not to scale.

The equilibrium state of the corona has the property that its energy is stationary (does not change)
when the corona magnetic field changes from B to B + δB subject to the boundary condition that
n̂ · δB = 0 on S. In other words, the equilibrium state is characterized by the condition δUB = 0. To
study the consequences of this constraint, we calculate the change in the total magnetic energy to first
order in δB when B changes as indicated above. Using (12.98),

δUB = 1

μ0

∫
V

d 3r B · δB = 1

μ0

∫
V

d 3r B · (∇ × δA). (12.99)

The second equality in (12.99) expresses the variation in B in terms of a variation in the vector
potential A. This guarantees that the variation does not spoil the ∇ · B = 0 property of the magnetic
field. Now, integrate (12.99) by parts, use the divergence theorem, and apply the identity n̂ · (δA × B) =
B · (n̂ × δA) to get

δUB = 1

μ0

∫
S

dS B · (n̂ × δA) + 1

μ0

∫
V

d 3r (∇ × B) · δA. (12.100)

The boundary condition n̂ · δB|S = 0 is satisfied automatically if the variations of the vector potential
satisfy n̂ × δA|S = 0.18 Therefore, δUB = 0 implies that ∇ × B = 0 in V . Ampère’s law then gives
j (r) = 0 in V as well. The energy of this state is a minimum because (12.98) is a positive definite
functional of B(r).

We have just performed a constrained minimization of the magnetic total energy to learn that
∇ × B = 0 in the coronal volume V . Since ∇ · B = 0 everywhere, the results of Section 10.4 tell us
that the magnetic field in V is determined by B = −∇ψ with ∇2ψ = 0. Moreover, n̂ · B = −∂ψ/∂n

18 If εjikniδAk = 0 on S, then εijkniδAk = 0 on S as well. This implies, in turn, that niεijk∂j δAk = n̂ · ∇ × δA =
n̂ · δB = 0 on S.
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is specified on the boundary between the corona and the photosphere and we can let ψ → 0 on the
outer boundary of the corona at infinity. Therefore, the uniqueness theorem for Laplace’s equation
with mixed boundary conditions (Section 7.3) guarantees that ψ(r) is unique and computable in V

using the methods of potential theory. Since B = −∇ψ , we have achieved our goal of deducing the
magnetic field in the corona without direct observations of that quantity. �

12.6.2 Interaction Total Energy and Reciprocity
We derive the interaction energy between two current densities j1(r) and j2(r) by inserting j (r) =
j1(r) + j2(r) into (12.97). The result takes the form

UB [ j1 + j2] = UB [ j1] + UB [ j2] + VB [ j1, j2], (12.101)

where UB [ j1] and UB [ j2] are the total magnetic energies of j1(r) and j2(r) in isolation and VB [ j1, j2]
is the energy of interaction between the two distributions:

VB [ j1, j2] = μ0

4π

∫
d 3r

∫
d 3r ′ j1(r′) · j2(r)

|r − r′| . (12.102)

Reversing the logic that led from (12.96) to (12.97) permits us to write the interaction energy
(12.102) in two equivalent forms and set them equal. This produces a magnetostatic reciprocity
relation analogous to Green’s reciprocity relation (Section 3.5.2):

VB =
∫

d 3r j1(r) · A2(r) =
∫

d 3r j2(r) · A1(r). (12.103)

In light of (12.96), we can apply (12.103) twice to a given set of N current loops, once when the
currents and fluxes are (Ik,�k) and once again when the currents and fluxes are (I ′

k,�
′
k). The resulting

filamentary loop version of the reciprocity relation is

N∑
k=1

Ik�
′
k =

N∑
k=1

I ′
k�k. (12.104)

We leave it as an exercise for the reader to show that, if a field Bext(r) (whose source is unspecified)
produces a magnetic flux �ext

k through the kth filamentary loop, the total energy changes from (12.96)
to

UB = 1

2

N∑
k=1

Ik�k +
N∑
k=1

Ik�
ext
k . (12.105)

12.6.3 VB is Not a Potential Energy for Constant Currents
It is natural to suppose that the interaction energy VB defined in (12.102) is related to the mechanical
force (12.24) between j1(r) and j2(r). Unfortunately, VB is increasingly positive when two parallel
currents are brought closer together while experiment and (12.24) show that two parallel currents attract
one another. This means that F = −∇VB produces the wrong sign (although the correct magnitude)
for the Lorentz force between two current distributions. This is unlike the electrostatic case, where
F = −∇VE produces the correct Coulomb force between two charge distributions.

The origin of this problem is that VB was defined for an isolated system of currents while our
force scenario imagines two wires with specified currents. These wires cannot be isolated because
Section 12.3.1 showed that the current in an isolated loop of wire changes when the force (12.24) acts.
To maintain a fixed current, a battery or generator must be connected to theloop. We will see below that
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taking proper account of the energy required to maintain fixed currents has the effect of fixing the sign
problem. More precisely, the interaction potential energy V̂B needed to compute forces for problems
with fixed currents turns out to be the negative of the interaction total energy VB . The corresponding
problem did not arise in electrostatics because the total energy is also the potential energy for problems
with fixed charge.

A clear hint that UB and VB are not ideally suited to discuss situations of imposed currents is that
neither is a natural function of the currents we are interested in fixing. Instead, we show in the next
section that UB and VB are natural functions of the magnetic fluxes which pass through each loop. In
Section 12.7, we derive the potential energy function which resolves the issues raised here.

12.6.4 UB is a Natural Function of Magnetic Flux
In this section, we guess and then prove that the total magnetic energy UB is a natural function of
the vector potential A or, equivalently, of the magnetic fluxes, �1, �2, . . . , �N associated with a
collection of N filamentary current loops. We guess, in addition, that UB is a natural function of the
center-of-mass coordinate of each loop, Rk . An explicit statement which identifies the complete set of
independent variables is

UB = UB (A,R1, . . . ,RN ) or UB (�1, . . . , �N,R1, . . . ,RN ). (12.106)

Now, the expressions for UB derived earlier in this section depend only on the instantaneous config-
uration of currents and not on the details of the assembly process. In the language of thermodynamics,
this means that UB is a function of state and dUB is a perfect differential. Therefore, the ordinary rules
of calculus applied to, say, the right member of (12.106) tell us that

dUB =
N∑
k=1

(
∂UB

∂�k

)
�′,R
d�k +

N∑
k=1

(
∂UB

∂Rk

)
�,R′
· dRk. (12.107)

The primes in (12.107) indicate variables which are held constant except for the one varied to form
the derivative.

The essential step which confirms the correctness of (12.106) is that (12.107) agrees exactly with
(12.92) and with the usual mechanical connection between force and energy if

Ik =
(
∂UB

∂�k

)
�′,R′

and Fk = −
(
∂UB

∂Rk

)
�,R′

. (12.108)

It is not immediately obvious how to “hold the magnetic flux constant” as the partial derivatives
in (12.108) require. As a practical matter, this is possible only for current loops fabricated from
superconducting wires with zero electrical resistance. This follows from an application of Faraday’s
law to such a loop in the form [see (1.29)]

IR = − d

dt

∫
dS · B = d�

dt
. (12.109)

Since R = 0 for a superconductor, and the current I in the ring can be non-zero, (12.109) requires that
� = const. for the ring.

The Quantum Hall Effect

The left panel below shows a current I flowing through a thin film in the presence of a perpendicular
magnetic field B. The Lorentz force, F = qv × B pushes the current-carrying electrons in the
direction transverse to I and B. Eventually, the Lorentz force is balanced by the Coulomb force
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from the transverse electric field created by the displaced electrons. The Hall voltage VH is a
measure of that electric field.

The right panel above shows the Hall resistance, RH = VH/I , measured by Paalanen, Tsui, and
Gossard (1982) for a two-dimensional electron gas trapped at the interface between a GaAs crystal
and a GaAlAs crystal. When the magnetic field is large, the data clearly show horizontal steps
where RH (B) takes the quantized values

RH = 1

ν

h

e2
= 25.8 k�

ν
, ν = 1, 2, 3, . . .

In 1981, Laughlin presented a “thought experient” to explain the steps in the Hall resistance using
the left member of (12.108), gauge invariance, and the solutions of the Schrödinger equation for
a two-dimensional system of free electrons in a perpendicular magnetic field. Extremely briefly,
Laughlin showed that the smallest increase in magnetic flux which can be accommodated by
the current-carrying two-dimensional electron gas is �� = h/e. When this occurs, the system
experiences a change in energy �UB = νeVH due to the effective transfer of ν electrons from one
side of the film to the other. The integer ν is the number of highly degenerate quantum energy levels
which are fully occupied by electrons at the magnetic field of interest. Therefore, using (12.108),

RH = VH

I
= VH

��

�UB

= VH
h/e

νeVH
= 1

ν

h

e2
.

It is worth noting that this theoretical analysis holds VH constant and uses (12.108) to compute
I as B changes. In a typical experiment, one holds I constant and measures VH as B changes.

12.7 Magnetostatic Potential Energy

In this section, we derive an energy function ÛB whose interaction part V̂B functions as a potential
energy for magnetostatic problems with fixed currents. The ability to fix j (r) or the set {Ik} implies
that the latter will be the natural independent variables for ÛB . Having proved in the previous section
that A(r) or the set {�k} are the natural independent variables for the total magnetic energy UB , our
experience with the electrostatics (Section 5.6.2) suggests that a Legendre transformation of UB from
flux to current should produce ÛB . The proof will be to confirm that F = −∇V̂B is the correct magnetic
force between fixed currents.

12.7.1 ÛB is a Natural Function of Current
We define ÛB using the Legendre transformation,

ÛB = UB −
N∑
k=1

Ik�k. (12.110)
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By direct calculation,

dÛB = dUB −
N∑
k=1

Ikd�k −
N∑
k=1

�kdIk. (12.111)

Substituting dUB from (12.92) into (12.111) gives

dÛB = −
N∑
k=1

�kdIk −
N∑
k=1

Fk · dRk. (12.112)

We have added the second term on the right side of (12.112) to account for the fact that quasistatic
equilibrium requires that a work δWF = −F · δR be performed against the mechanical force F in
(12.3) to prevent acceleration of the center of mass R of a current loop.

Equation (12.112) tells us that the natural variables of ÛB are the currents Ik and coordinates Rk:

ÛB = ÛB (I1, . . . , IN ,R1, . . . ,RN ). (12.113)

This is so because, if (12.113) is correct, the ordinary rules of calculus tell us that

dÛB =
N∑
k=1

(
∂ÛB

∂Ik

)
I ′,R

dIk +
N∑
k=1

(
∂ÛB

∂Rk

)
I,R′
· dRk. (12.114)

Comparing (12.114) with (12.112) shows that

Fk = −
(
∂ÛB

∂Rk

)
I,R′

and �k = −
(
∂ÛB

∂Ik

)
I ′,R

. (12.115)

A similar argument shows that the work done against the magnetic torque (12.2) which tends to rotate
a loop with current Ik by an amount δαk around an axis n̂k is −Nk · n̂k δαk . Hence, the torque can be
calculated from

Nk · n̂k = −
(
∂ÛB

∂αk

)
�,R

. (12.116)

12.7.2 Explicit Formulae for ÛB

Using (12.96) to evaluate (12.110) shows that

ÛB = −1

2

N∑
k=1

Ik�k = −UB. (12.117)

The magnetostatic potential energy is (numerically) the negative of magnetostatic total energy. It is
important to be aware that if (12.117) is used for ÛB , (12.113) implies that the fluxes {�k} must
be expressed in terms of the currents {Ik} before any of the derivatives in (12.115) or (12.116) are
evaluated. We will do this explicitly in Section 12.8.2.

Alternative expressions for ÛB follow straightforwardly by mimicking the manipulations performed
in Section 12.6.1 for UB . We find

ÛB = −1

2

∫
d 3r j · A = − 1

2μ0

∫
d 3r |B(r)|2 (12.118)

and

ÛB = −μ0

8π

∫
d 3r

∫
d 3r ′ j (r) · j (r′)

|r − r′| . (12.119)
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R
Rr

r

2
j

Figure 12.13: Illustration that a rigid shift δR of the current density j2 produces a change in the current density
at a point r of δj2(r) = j2(r − δR) − j2(r).

Similarly [cf. (12.102)], the interaction potential energy between two distinct current distributions is

V̂B = −μ0

4π

∫
d 3r

∫
d 3r ′ j1(r′) · j2(r)

|r − r′| . (12.120)

12.7.3 Force from Variation of Potential Energy
We confirm in this section that the force

F = − δÛB

δR

∣∣∣∣∣
I

(12.121)

on the left side of (12.115) correctly reproduces the magnetic force (12.24) which j1(r) exerts on
j2(r) when δR is a virtual displacement of j2(r). More precisely, we replace ÛB by V̂B in (12.121) to
compute the derivative because the displacement δR produces no change in the self-energies ÛB [ j1]
and ÛB [ j2] in the analog of (12.101). Figure 12.13 shows that a rigid shift of j2(r) by δR is equivalent
to a change19

δj2(r) = j2(r − δR) − j2(r) = −(δs · ∇)j2(r). (12.122)

Inserting (12.122) into (12.120) and integrating by parts gives the change in interaction energy,

δV̂B = −μ0

4π

∫
d 3r

∫
d 3r ′ j2(r) · j1(r′) δR · ∇ 1

|r − r′| . (12.123)

Writing (12.123) in the form δV̂B = −F2 · δR gives the desired result,

F2 = −μ0

4π

∫
d 3r

∫
d 3r ′ j2(r) · j1(r′)

r − r′

|r − r′|3 . (12.124)

This confirms our expectation that the Lorentz force produces mechanical effects which tend to
reduce the magnetic potential energy of a system of fixed currents. On the other hand, (12.117) implies
that the very same forces tend to increase the magnetic total energy of such systems. This differs
from electrostatics, where the Coulomb force reduces the total energy and the potential energy (which
are equal) for a system of fixed charges. The physical reason for this difference is the subject of
the next section.

19 See the footnote to (3.65) in Section 3.5.1, where we displaced a charge distribution in a similar manner.
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Example 12.4 Use (12.120) to confirm the formula (12.55) for the interaction potential energy
between a point magnetic dipole at the origin and a current source which produces a magnetic
field B(r).

Solution: We showed in Section 11.2.3 that the fixed current density of a point magnetic dipole at
the origin is j = ∇ × [mδ(r)]. Therefore,

V̂B = −
∫

d 3r j · A = −
∫

d 3r A · ∇ × [mδ(r)] = −εk�p
∫

d 3rAk∂�[mpδ(r)].

The magnetic dipole moment component mp is a constant. Therefore, integration by parts gives

V̂B = εk�pmp

∫
d 3r δ(r)∂�Ak = −

∫
d 3r δ(r)m · ∇ × A.

Therefore, in agreement with (12.55), the potential energy of interaction is

V̂B = −m · B(0).

Example 12.5 A current-carrying wire is bent into a closed rectangle with dimensions �× d.
The current I is uniformly distributed across the wire’s cross sectional area πa2. Assume that
a � d � �. (a) Use an energy method to estimate the force between the two long sides of the
rectangle. (b) Do the same to find the force between the two short sides of the rectangle.

I

a long
F

short
F

z0

d

0

x

Figure 12.14: A current-carrying wire bent into a rectangle with a � d � �.

Solution: (a) We compute the force on the long segment from the derivative of the potential energy
V̂B with respect to the length d. For the stated geometry, we can neglect the energy associated with
the two short wire segments and approximate the energy per unit length of the two long segments
by the energy per unit length of two straight, infinite wires which carry current in opposite
directions.

Let j1 = ẑI/πa2 be the current density in the upper wire in Figure 12.14. The interaction
potential energy with j1 involves the vector potential A2 produced by the lower wire, which carries
current in the −z-direction. Since d � a, we can use ρ ≈ d in the results of Example 10.5 and
approximate A2 at points on the upper wire as

A2 ≈ μ0I

2π
ln(d/a)ẑ.

Therefore, if � = πa2� is the volume of the upper wire,

V̂B = −
∫
�

d 3r j1 · A2 ≈ − μ0I
2

2π2a2

∫
�

d 3r ln(d/a) = −μ0I
2�

2π
ln(d/a).
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This potential energy becomes more negative as d increases. Therefore, the upper wire segment is
repelled from the lower wire segment as indicated in Figure 12.14:

Flong = −∂V̂B

∂d
x̂ = μ0I

2

2π

�

d
x̂.

The reader can check that this force agrees with a calculation based on F = I
∫
d� × B and the

magnetic field produced by an infinite and straight wire.
(b) The predicted force on the right-hand short segment is more subtle. It does not result from a

direct interaction with the left-hand short segment. Rather, it emerges as an expansive “tension” in
each long segment:

Fshort = −∂V̂B

∂�
ẑ � μ0I

2

2π
ln(d/a)ẑ.

This example shows how the energy (per unit length) of an infinitely long wire can be used to find
the force at the end of a finite wire. Example 6.8 used the same approach with infinitely large plates
to find the force needed to insert a dielectric into a parallel-plate capacitor.

12.7.4 The Meaning of the Minus Sign in ÛB

The minus sign in front of V̂B in (12.120) guarantees that this expression is increasingly negative when
two parallel filaments are brought closer together. Because two parallel current attract, this confrims
our our interpretation of V̂B as a magnetic potential energy for fixed currents. The force F = −∇V̂B and
potential energy V̂B = −m · B(0) from Example 12.4 similary reproduce (12.41) because a specified
current density implies a specified magnetic moment and vice versa.

Our task is to understand why ÛB (I ) = −UB (�) in (12.117). A similar issue arose in Section 5.6.2.
There, we found that ÛE(ϕ) = −UE(Q) for a conductor where either the charge Q or the potential ϕ
could be held constant. The energy that accounted for the change of sign came from the work done by
external batteries to hold the potentials fixed. Here, it is similarly the work done by external generators
to keep the current fixed which provides the energy needed to change the algebraic sign.

Figure 12.15 shows two loops held at fixed current by generators I1 and I2. The vector F2 indicates
the mechanical force exerted on loop I2 by loop I1. When loop I2 suffers a rigid displacement δR2, the
flux through loop I1 changes from �

(0)
1 to �1 and the flux through loop I2 changes from �

(0)
2 to �2.

Our strategy is to determine the potential energy change �ÛB during this process from a computation
of the change which occurs in the total system energy, �Esys:

�Esys = F2 · δR2 +�UB +�Egen = 0. (12.125)

In (12.125), F2 · δR2 is the work done by F2, �UB is the change in the total magnetic energy
associated with the loops, and �Egen is the change in the total energy of the generators. The zero on
the far right side of (12.125) is a statement of the conservation of energy for the isolated system shown
in Figure 12.15.

The fixed current relation on the left side of (12.115) permits us to eliminate F2 · δR2 in (12.125) in
favor of �ÛB . Consequently,

�ŨB = �UB +�Egen. (12.126)

The change in magnetic energy follows directly from (12.96):

�UB = UB (�1,�2) − UB (�(0)
1 ,�

(0)
2 ) = 1

2

N∑
k=1

Ik(�k −�
(0)
k ). (12.127)
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Figure 12.15: Two loops attached to generators which keeps the current flowing in each loop fixed.

S1

S2

S3

V

Figure 12.16: If ∇ · j = 0 in the shaded region, a unique current I flows through every dashed cross section.

As for �Egen, the generators are external to the loops, so the work done by them is calculable using
(12.91). The positive work done to maintain the current in the rings reduces the total energy of the
generators, so

�Egen = −Wgen = −
N∑
k=1

�k∫
�

(0)
k

Ikd�k = −
N∑
k=1

Ik(�k −�
(0)
k ). (12.128)

Substituting (12.128) and (12.127) into (12.126) gives

�ŨB = −1

2

N∑
k=1

Ik(�k −�
(0)
k ). (12.129)

Hence, in agreement with (12.117),

ŨB = −1

2

N∑
k=1

Ik�k. (12.130)

12.8 Inductance

The magnetostatic constraint ∇ · j (r) = 0 implies that a unique current I can be defined for any current
distribution with the topology of a torus. Figure 12.16 is an example where j (rS) · n̂ = 0 everywhere
on the closed surface of the shaded region and the planes S1, S2, and S3 are generalized cross sections.
Let us check this claim for the volume V bounded by S1 and S2 and the walls of the shaded region.
Since no current flows through the latter,

0 =
∫
V

d 3r ∇ · j =
∫
S1

dS · j +
∫
S2

dS · j = I1 + I2. (12.131)
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2a

b

Figure 12.17: A cylindrical current-carrying wire (radius a) bent into a closed loop with characteristic size b.
The current density j in the wire is uniform.

We conclude that I1 and I2 are equal and opposite currents. This is correct because one enters V and
the other exits V . All other choices of cross section lead to exactly the same value of current.

The argument above permits us to uniquely define the self-inductance L of a steady current distri-
bution j (r) from its total magnetic energy as

UB = 1
2LI

2. (12.132)

Comparing (12.132) with (12.95) shows that the self-inductance relates the magnetic flux through a
loop to the magnitude of the current in the loop which produces that flux:

� = LI. (12.133)

Comparing (12.132) with (12.98) shows that

L = 1

μ0I 2

∫
d 3r|B(r)|2 = 1

I 2

∫
d 3r j (r) · A(r). (12.134)

Dimensional analysis tells us that inductance has dimensions ofμ0 × length. An elementary example
is a cylindrical solenoid of radiusR and length � tightly wound withN turns of a wire carrying a current.
When � � R, the field strength is zero outside the solenoid and is nearly uniform with magnitude
B = μ0IN/� inside the solenoid. Therefore, the self-inductance defined by the leftmost equality in
(12.134) is

L = μ0πN
2R

2

�
. (12.135)

This example notwithstanding, it is often quite challenging to calculate self-inductances analytically.

12.8.1 The Self-Inductance of a Wire Loop
Figure 12.17 shows a cylindrical wire with radius a bent into a closed loop with a characteristic size
b (Figure 12.17). Our aim is to show that

L = μ0b [k1 ln(b/a) + k2] a � b, (12.136)

where k1 and k2 are numerical constants which depend on the details of the geometry. When a � b,
the current density j = I/πa2 is uniform and it is reasonable to use the results of Example 10.5 for the
magnetic field inside and outside a straight wire. We estimate the contribution to the integral (12.134)
from the volume inside the wire as

Lin = 1

μ0I 2
2πb

∫ a

0
drrB2

in = μ0

8π
b. (12.137)

This gives the second term in the square brackets in (12.136). A similar estimate of the dominant
contribution to the field energy outside the wire uses the wire radius a and the size scale b as lower
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Figure 12.18: Two filamentary loops of current.

and upper limits of the integral, respectively:

Lout = 1

μ0I 2
2πb

∫ b

a

drrB2
out = μ0

2π
b ln(b/a). (12.138)

This gives the first term in the square brackets in (12.136).
A more accurate calculation for a circular loop20 shows that the self-inductance has the form (12.136)

with k1 = 1 and k2 ≈ 1/3 when we interpret b as the loop radius. For a long, skinny, rectangular loop
with side lengths b and c � b, we should replace the multiplicative pre-factor b in (12.136) by c

because this was our estimate of the total wire length. This change makes (12.136) consistent with
Example 12.5.

12.8.2 Mutual Inductance
Generalizing (12.132), we can use (12.97) to write the total energy of a system of N distinct current
distributions j k(r) in the form

UB = 1

2

N∑
i=1

N∑
k=1

Mik Ii Ik. (12.139)

The real numbers Mik are the elements of an inductance matrix M:

Mik = μ0

4π

1

IiIk

∫
d 3r

∫
d 3r ′ j i(r) · j k(r′)

|r − r′| . (12.140)

The self-inductances Li ≡ Mii discussed earlier are joined now by mutual inductances Mik . The
symmetry

Mik = Mki (12.141)

is manifest in (12.140) and is a restatement of the reciprocity property (12.103). Moreover, the positivity
of (12.139) for non-trivial situations [see (12.98)] tells us that M is a positive-definite matrix. Among
other things, the positive-definiteness of M ensures that

|Mik| ≤
√
LiLk and |Mik| ≤ Li + Lk

2
. (12.142)

For a pair of filamentary current loops like those in Figure 12.18, (12.140) simplifies to Neumann’s
formula,

Mik = μ0

4π

∮
Ci

∮
Ck

d�i · d�k

|ri − rk| . (12.143)

20 See, for example, W.R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1939).
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This formula makes it manifest that the inductances depend only on the geometry of the current loops,
and not on the values of the currents they carry. Indeed, comparing (12.139) to (12.96) shows that the
single-loop self-inductance formula � = LI generalizes to

�i =
N∑
k=1

Mik Ik. (12.144)

According to this formula, we find Mik by calculating the magnetic flux through the ith loop when
the kth loop carries unit current and all other loops carry zero current. In this context, it is common to
speak of the magnetic flux “linked” to the ith loop.

More generally, the representations of UB in (12.96), (12.97), and (12.98) and the magnetic reci-
procity relation (12.103) lead to various equivalent expressions for the coefficients of mutual induc-
tance. Thus,

Mik = 1

IiIk

∫
d 3r ji(r) · Ak(r) = 1

μ0IiIk

∫
d 3r Bi(r) · Bk(r). (12.145)

In light of (12.141), these formulae are equally valid when i and k are reversed in the integrands.

Example 12.6 An infinite wire carries a current up the rotational symmetry axis of a toroidal
solenoid with N tightly wound turns and a circular cross section. The inner radius of the torioid is
a and the outer radus is b. Find the mutual inductance M between the wire and the solenoid

Solution: We will use (12.144) and computeM = �/I where� is the flux of the magnetic field of
the wire through the solenoid. We center the toroid at the origin of a cylindrical coordinate system
and write the magnetic field of the wire as B = (μ0I/2πρ)φ̂. If A is the cross sectional area of the
solenoid, the flux of B through the entire solenoid is

� = N

∫
A

dS · B = μ0NI

2π

b∫
a

dρ

ρ

z0∫
−z0

dz,

where ±z0 are indicated in Figure 12.19 below.

Figure 12.19: A cross sectional view of a toroidal solenoid and a current I which flows up the z-axis.

The limits of integration for the z-integral are determined by the equation for the circle which is
the cross section of the solenoid:(

ρ − a + b

2

)2

+ z2 =
(
b − a

2

)2

.
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This gives the limits as ±z0 where z0 = √
(b − ρ)(ρ − a). Therefore,

� = μ0NI

2π

b∫
a

dρ

√
(b − ρ)(ρ − a)

ρ
= μ0NI

2π
× J.

A standard reference gives21

J =
√

(b − ρ)(ρ − a)
∣∣∣b
a
−

√
ab sin−1

[
(a + b)ρ − 2ab

ρ(b − a)

]b
a

−
[
a + b

2

]
sin−1

[
a + b − 2ρ

b − a

]b
a

,

or J = π
[
(a + b)/2 − √

ab
]
. Therefore, the mutual inductance is

M = 1

2
μ0N

(√
b − √

a
)2
.

As a quick check, we eliminate b in this formula in favor of the radius R = (b − a)/2 defined
by Figure 12.19. Then, when R � a,

M = 1

2
μ0N

[√
2R + a − √

a
]2

≈ 1

2
μ0N

R2

a
.

This is the expected result because, in this limit,

M = �

I
= BNA

I
≈ μ0N

2πa
· πR2.

12.8.3 Magnetic Force in Terms of Inductance
We are now in a position to calculate the force on any one of a collection of filamentary loops
with specified currents. Since ÛB = −UB is a natural function of the currents, (12.115) and (12.139)
combine to give

Fk = 1

2

N∑
i=1

N∑
j=1

IiIj

(
∂Mij

∂Rk

)
I,R′

. (12.146)

Alternatively, we can invert (12.144) to express the currents in terms of the fluxes and compute the
force from

Fk = −
(
∂UB

∂Rk

)
�,R′

= −1

2

N∑
i=1

N∑
j=1

�i�j

(
∂M−1

ij

∂Rk

)
�,R′

. (12.147)

The formula (12.147) does not contradict our earlier statement that it is most natural to compute
forces using ÛB . The calculation is indeed unnatural (since we are required to hold the flux constant)
but not impossible if done properly as we have indicated. This is so because magnetostatic force is
an equilibrium property that cannot know whether flux or current is held fixed. Indeed, the leftmost
equality in (12.147) follows immediately by identifying the spatial derivatives on the far right side of
(12.107) with −Fk as we have consistently done in this book. The reader should prove explicitly that
(12.146) is equal to (12.147).

21 I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980), Section 2.267.
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Example 12.7 Use the vector potential from Example 10.6 to find an integral representation of the
mutual inductance M and magnetic force between two identical and coaxial current rings (radius
R) separated by a distance h. Do the integral in the limit h � R and interpret the result.

Solution: We compute M from (12.145) in the form

M = 1

I 2

∫
d 3r j1(r) · A2(r),

where A2(r) is the vector potential of a z-axis-centered ring in the x-y plane and j1(r) = Iδ(z −
h)δ(ρ − R)φ̂ is the current density of an identical ring at a height h above z = 0. Using A2(ρ, z)
from Example 10.6, the mutual inductance is

M = μ0πR
2
∫ ∞

0
dk J 2

1 (kR) exp(−kh).

This integral is known in terms of elliptic integrals, although it is probably simpler to evaluate it
numerically. Regardless, since M appears twice in the sum (12.146), the force between the rings is

F = I 2 dM

dh
ẑ.

When h � R, the integral is dominated by the k → 0 limit. Since J1(x → 0) = x/2, it is straight-
forward to confirm that

F = μ0

4π
(πR2I )2 d 3

dh3

∫ ∞

0
dk exp(−kh)ẑ = −3μ0

2π

(πR2I )2

h4
ẑ.

The force is attractive because any current element of one ring is closest to a parallel current
element in the other ring. The force would be repulsive if the currents in the two rings circulated in
opposite directions. Note also, as indicated in (12.44), that F varies with the inverse fourth power
of the ring separation.

As a check, we can use (12.144) to write M = �/I and estimate the flux as Bz(h) × πR2 where
Bz(h) is the z � R limit of (10.20). This gives the mutual inductance as

M = μ0

2π

(πR2)2

h3
.

The corresponding force is the same as above. Since m = πR2I is the magnetic moment of each
ring,

F = I 2 dM

dh
ẑ = −3μ0

2π

m2

h4
ẑ.

This is also the force between two parallel and collinear dipoles calculated from F = −∇V̂B and
(12.59).

�

Sources, References, and Additional Reading

[Sources, References, and Additional Reading] The Ampère quotation at the beginning of the chapter is taken
from Chapter 7 of the biography

J.R. Hoffman, André-Marie Ampère (University Press, Cambridge, 1995).
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Section 12.2 Charged particle motion in spatially varying magnetic fields occurs in many subfields of physics.
Readable treatments in the contexts of electron optics, space physics, plasma physics, and accelerator physics are,
respectively,

D.A. De Wolf, Basics of Electron Optics (Wiley, New York, 1990).

J.W. Chamberlain, Motion of Charged Particles in the Earth’s Magnetic Field (Gordon & Breach, New York,
1964).

C.L. Longmire, Elementary Plasma Physics (Wiley-Interscience, New York, 1963).

S. Humphries, Principles of Charged Particle Acceleration (Wiley, New York, 1986).

Section 12.3 Example 12.2 and Section 12.3.1 were inspired, respectively, by
O.D. Jefimenko, Electricity and Magnetism (Appleton-Century-Crofts, New York, 1966).

W. Saslow, Electricity, Magnetism, and Light (Academic, Amsterdam, 2002), Section 10.8.2.

Figure 12.4 was taken from
J.A. Pollack and S. Barraclough, “Note on a hollow lightning conductor crushed by the discharge”, Proceedings
of the Royal Society of New South Wales 39, 131 (1905).

Section 12.4 Application 22.4 was adapted from
O. Klemperer, Electron Physics 2nd edition (Butterworths, London, 1972).

Figure 12.8 greatly simplifies the trajectories of charged particles trapped by the Earth’s magnetic field. For an
overview and a detailed analysis, see

M.G. Kivelson and C.T. Russell, Introduction to Space Physics (University Press, Cambridge, 1995).

S.N. Kuznetsov and B.Yu. Yushkov, “Boundary of adiabatic motion of a charged particle in a dipole magnetic
field”, Plasma Physics Reports 28, 342 (2002).

Magnetic traps for plasmas and neutral atoms are discussed in detail in
R.F. Post, “The magnetic mirror approach to fusion”, Nuclear Fusion 27, 1579 (1987).

T. Bergeman, G. Erez, and H.J. Metcalf, “Magnetostatic trapping fields for neutral atoms”, Physical Review A
35, 1535 (1987).

Application 12.3 and Figure 12.10 come, respectively, from
A. Cēbers and M. Ozols, “Dynamics of an active magnetic particle in a rotating magnetic field”, Physical
Review E 73, 21505 (2006).

B. Steinberger, N. Petersen, H. Petermann, and D.G. Weiss, “Movement of magnetic bacteria in time-varying
magnetic fields”, Journal of Fluid Mechanics 273, 189 (1994).

Section 12.5 Our discussion of the magnetic stress tensor was adapted from
R.C. Cross, “Magnetic lines of force and rubber bands”, American Journal of Physics 57, 722 (1989).

V.O. Jensen, “Magnetic stresses in ideal MHD plasmas”, Physica Scripta 51, 490 (1995).

Application 12.4 is based on
E.N. Parker, “Reaction of laboratory magnetic fields against their current coils”, Physical Review 109, 1440
(1958).

Section 12.6 The model for our “thermodynamic” approach to magnetic energy is
L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960).

Other textbooks that do a good job with magnetic energy are
R.K. Wangsness, Electromagnetic Fields, 2nd edition (Wiley, New York, 1986).

A.M. Portis, Electromagnetic Fields: Sources and Media (Wiley, New York, 1978).

Application 12.5 is a classical result from potential theory. In connection with the solar corona, it appears at the
beginning of Section III of

D.W. Longcope, “Separator current sheets: Generic features of minimum-energy magnetic fields subject to
flux constraints”, Physics of Plasmas 8, 5277 (2001).

Yoshioka gives a clear and well-organized overview of the quantum Hall effect. Our very brief introduction to the
integer quantum Hall effect reproduces data from Paalanen, Tsui, and Gossard and sketches the original argument
by Laughlin:
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D. Yoshioka, The Quantum Hall Effect (Springer, Berlin, 1998).

M.A. Paalanen, D.C. Tsui, and A.C. Gossard, “Quantized Hall effect at low temperatures”, Physical Review B
25, 5566 (1982).

R.B. Laughlin, “Quantized Hall conductivity in two dimensions”, Physical Review B 23, 5632 (1981).

Section 12.7 This section benefitted from the lucid discussion in
S. Bobbio, Electrodynamics of Materials (Academic, San Diego, CA, 2000).

Section 12.8 Analytic calculations of self and mutual inductance can be quite challenging. For that reason, it
is common to use approximate formulae which have been developed over the years for various geometries. The
classic compendium (reprinted from the original 1946 edition) is

F. Grover, Inductance Calculations (Dover, New York, 2004).

Problems
12.1 Bleakney’s Theorem A particle with mass m and charge q moves non-relativistically in static fields E(r)

and B(r). Show that a re-scaling of the magnetic field and the time is sufficient for a particle with mass M
and charge q to follow exactly the same trajectory as the original particle. Do the motions of m and M differ
at all?

12.2 A Hall Thruster An axial electric field E = Eẑ and a radial magnetic field B = Bρ̂ coexist in the volume
V between two short cylindrical shells concentric with the z-axis. Suppose V is filled with xenon gas and,
at a given moment, a discharge ionizes the gas into a plasma composed of ne electrons per unit volume
and ni = ne singly charged positive ions per unit volume. This is a model for a propulsion device used on
spacecraft.

E

B

B

(a) Show that the electrons drift at constant speed in the axial direction because they acquire a velocity
v = (E × B)/B2. This defines a Hall current density jHall = −enev.

(b) Argue that the cylindrical shells experience a net thrust (force) T = B × jHall because the ions are ejected
from V . What about the Lorentz force on the ions?

12.3 Charged Particle Motion near a Straight, Current-Carrying Wire Let a steady current I flow up the
y-axis and let the initial position and velocity of a particle with mass m and charge q be r0 = (x0, 0, 0) and
v0 = (0, v0, 0).

(a) Show that the motion of the particle is confined to the x-y plane.
(b) Prove that vy = v0 + β ln(x/x0) (where β is a constant) and use the fact that the Lorentz force does no

work to prove that the particle never leaves the interval x0 ≤ x ≤ x0 exp(−2v0/β).
(c) Use (but do not solve) the equation of motion for vx and the results obtained so far to sketch a typical

particle trajectory. Justify your sketch.
(d) Prove that the particle trajectory is given by

dy

dx
= v0 + β ln(x/x0)√−β ln(x/x0)[2v0 + β ln(x/x0)]

.
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12.4 Anti-Parallel Currents Do Not Always Repel Two long, parallel wires of length L, separation d, and
cross sectional radius a are connected by a U-turn at each end to form a closed circuit. Insert a battery with
potential difference V at one U-turn and a shunt resistor R at the other U-term. Assume that R is much
larger than the ohmic resistance of the wires and the internal resistance of the battery. Show that the wires
repel (attract) if R is smaller (greater) than

R0 =
√
μ0

ε0

1

π
ln(d/a).

12.5 The Mechanical Stability of Concentric Solenoids Two finite-length, concentric, cylindrical solenoids
carry current in the same direction. The outer solenoid is very slightly longer and has a very slightly larger
radius than the inner solenoid, but their mid-planes are coincident. Determine if the inner solenoid is stable
or unstable against a small displacement of its position in the axial direction. Repeat for the case of a small
displacement in the transverse direction.

12.6 The Torque between Nested Current Rings Two origin-centered circular rings have radii a and b � a

and carry currents Ia and Ib. A narrow insulating rod coincident with their common diameter permits the
smaller ring to rotate freely inside the larger ring. Show that the torque which must be applied to hold the
planes of the rings at a right angle has magnitude

N = π

2
μ0IaIb

b2

a

[
1 −

(
3b

4a

)2
]
.

12.7 Force and Torque Two identical, current-carrying rectangular loops are oriented at right angles, one in
the vertical x-y plane, one in the horizontal x-z plane. The horizontal loop moves infinitesimally slowly
from z = −∞, through z = 0 (where the centers of the two loops coincide), to z = +∞.

(a) Graph (qualitatively) the non-zero component of the force exerted on the vertical loop by the horizontal
loop as a function of the position of the latter.

(b) Repeat part (a) for the torque exerted on the vertical loop by the horizontal loop.

I

I

xy
z

12.8 A General Formula for Magnetostatic Torque Show that the torque exerted on current distribution j(r)
by a distinct current distribution j′(r′) is

N = μ0

4π

∫
d 3r

∫
d 3r ′

[
j(r) × j(r′)

|r − r′| + r × r′

|r − r′|3 j(r) · j′(r′)
]
.

12.9 Force-Free Magnetic Fields Let α(r) be an arbitrary scalar function. A magnetic field which satisfies
∇ × B = αB is called force-free because the Lorentz force density j (r) × B(r) vanishes everywhere. There
is some evidence that fields of this sort exist in the Sun’s magnetic environment.

(a) Under what conditions is the sum of two force-free fields itself force-free?
(b) Let α(r) = α. Find and sketch the force-free magnetic field where B(z) = Bx(z)x̂ + By(z)ŷ and B(0) =

B0ŷ.
(c) Let α(r) = α. Find and sketch the force-free magnetic field where B(ρ) = Bφ(ρ)φ̂ + Bz(ρ)ẑ and B(0)

is finite.
(d) Suppose that Bz(R) = 0 in part (c). Find a simple magnetic field Bout(ρ) in the current-free volume

ρ > R which matches onto the force-free magnetic field in the ρ < R volume without any current
induced on the matching cylinder.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-12 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:32

Problems 403

12.10 Nuclear Magnetic Resonance
The chemical diagnostic tool of nuclear magnetic resonance uses a static magnetic field B0 = B0ẑ and a
small-amplitude radio-frequency magnetic field B1(t) to orient and manipulate nuclear spins in solids and
liquids. To get a flavor for the manipulation, let B1(t) = B1(x̂ cosωt − ŷ sinωt) and let ṁ = γm × (B0 + B1)
be the equation of motion for a nuclear magnetic moment m. Also let Mx(t) and My(t) be the transverse
components of m in a coordinate system where B1 is stationary. If �L = γB0 is the Larmor frequency, show
that Ṁx = (�L − ω)My and Ṁy = −(�L − ω)Mx + γB1mz and discuss the trajectory of the moment in
the rotating and laboratory frames when ω = �L.

12.11 Two Dipoles in a Uniform Field Two point dipoles m1 and m2 on the x-axis are separated by a
distance R and misaligned from the positive x-axis by small angles α and β as shown below. A uni-
form magnetic field B points along the negative x-axis. Show that α = β = 0 corresponds to stable
equilibrium if

B <
μ0

4πR3

[
m1 +m2 −

√
m2

1 +m2
2 −m1m2

]
.

R

B

1m
2m

12.12 Three Point Dipoles The diagram shows three small magnetic dipoles at the vertices of an equilateral
triangle. Moments mB and mC point permanently along the internal angle bisectors. Moment mA is free
to rotate in the plane of the triangle. Find the stable equilibrium orientation of the latter and the period of
small oscillations around that orientation. Let all the moments have magnitude m and let mA have moment
of inertia I about its center of mass.

Am

a

Bm
Cm

12.13 A Dipole in the Field of Two Dipoles Two identical point dipoles m = mẑ sit rigidly at (±a, 0, 0). A third
point dipole M is free to rotate at its fixed position (0, y, z). Find the Cartesian components of M which
correspond to stable mechanical equilibrium. Hint: No explicit minimization is required.

12.14 Superconductor Meets Solenoid A superconducting sphere (radius R) placed in a uniform magnetic
field B spontaneously generates currents on its surface which produce a dipole magnetic field. The field
is equivalent to that produced by a point dipole at the center of the sphere with magnetic moment m =
−(2π/μ0)R3B. Suppose such a sphere (mass M) begins at infinity with speed v0 and moves toward a
solenoid along the symmetry axis of the latter. The field deep inside the solenoid has magnitude BS . What
is the minimum value of v0 such that the sphere will pass through the solenoid (as opposed to reflecting
back)? Assume that R � |B|/|∇B| so the sphere can be treated as a point dipole.

V2R solenoid

12.15 The Levitron The LevitronTM is a toy in which a spinning magnetic top floats stably in air above a
magnetized base. The potential energy of this system is E(r) = Mgz − m · B(r) if we model the top as a
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point magnetic dipole with moment m and mass M moving in the magnetic field of the base. A precession-
averaged, adiabatic approximation is valid if the top spins much faster than it precesses and it precesses much
faster than the rate of change of the magnetic field experienced by the precessing top. In this approximation,
E(r) ≈ Mgz −mBB(r), where B(r) = |B(r)| and mB is the (constant) projection of m on the instantaneous
direction of B.

(a) Suppose that B(r) = −∇ψ(r) is axially symmetric. Show that the magnetic scalar potential above the
base and near the z-axis has the form

ψ(ρ, z) = ψ0(z) − 1

4
ψ2(z)ρ2 + · · · where ψn(z) = dnψ(0, z)

dzn
.

(b) Work to second order in ρ for ψ(ρ, z) and show that mB < 0 is a necessary condition for a point of
equilibrium to exist on the z-axis that is stable with respect to both vertical and horizontal perturbations.
In other words, stable levitation occurs only when the magnetic moment of the top is anti-parallel to the
local magnetic field.

(c) If mB < 0, show that the equilibrium and stability conditions require that (i) ψ1 and ψ2 have opposite
signs; (ii) ψ1 and ψ3 have the same signs; and (iii) ψ2

2 > 2ψ3ψ1.

12.16 Magnetic Trap I Two infinite, straight, parallel wires, each carrying current I in the same direction,
are coincident with the lines (1, 0, z) and (−1, 0, z). In addition, there is a large external field B0 = B0ẑ.
An atom (mass M) whose magnetic dipole moment m0 is always anti-parallel to the local magnetic field
direction can be trapped at the origin. What is the approximate frequency of small oscillations in the vicinity
of the origin?

12.17 Magnetic Trap II A filamentary wire carries a current along the positive z-axis in the presence of a
constant magnetic field B = B0x̂ + B ′ẑ.

(a) Find the straight line in space along which the magnitude of the total magnetic field has an absolute
minimum.

(b) Find the frequency of small oscillations in the vicinity of the line found above for an atom (mass M)
trapped near the line found in part (a) by the virtue of the fact that its magnetic dipole moment m
remains anti-parallel to the local magnetic field direction at all times.

(c) How does the situation change if B′ = 0?

12.18 Roget’s Spiral A tightly wound, N -turn helical coil (radius R) has unstretched length L.

(a) Use an energy method to determine how much current must be passed through the coil if it is to remain
unstretched when a mass m is hung from its bottom end. Neglect stray fields at the ends of the coil and
purely mechanical forces which might produce a “spring constant”.

(b) Give a simple explanation of the forces at work. Why does this problem not contradict the fact that no
system can exert a net magnetic force on itself?

m

I

I

L
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12.19 Equivalence of Force Formulae Consider a collection of current loops where

UB = 1

2

N∑
k=1

Ik�k.

Using the notation of the text for variables that are to be held constant in partial derivatives, prove that the
magnetic force exerted on the ith loop satisfies

Fi = − ∂UB

∂Ri

∣∣∣∣
�′

= − ∂ÛB

∂Ri

∣∣∣∣∣
I ′
.

12.20 The Force between a Current Loop and a Wire A circular loop of radius R carries a current I1. A
straight wire with a current I2 in the plane of the loop passes a distance d from the loop center.

(a) Use an energy method to show that the force on the loop is

F = μ0I1I2

[
d√

d2 − R2
− 1

]
ẑ.

(b) Interpret your force formula in the limit d � R in the language of magnetic moments.

R

d

2
I

1
I

z

12.21 Toroidal Inductance A straight wire carries a current I1 down the symmetry axis of a toroidal solenoid
with a rectangular cross section of area ab. The solenoid has inner radius R and is composed of N turns of
a wire that carries a current I2.

(a) Find the mutual inductance of the coil with respect to the wire.
(b) Find the mutual inductance of the wire with respect to the coil.

1I

2I

R b

a

12.22 Force between Square Current Loops The figure shows two square, current-carrying loops with side
length a and center-to-center separation c. The currents I1 and I2 circulate in the same direction.
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c

1
x

2
x

1
I

2
I

a

z

a

(a) Evaluate Neumann’s integral and show that the mutual inductance between the loops is

M = 2μ0

π

[
a sinh−1

(a
c

)
− a sinh−1

(
a√

a2 + c2

)
− 2

√
a2 + c2 +

√
2a2 + c2 + c

]
.

(b) Show that the force of attraction between the loops is

F = 2μ0I1I2

π

[
c
√

2a2 + c2

a2 + c2
+ 1 − a2 + 2c2

c
√
a2 + c2

]
.

(b) Evaluate the force calculated in part (a) in the limit c � a and interpret the formula which results.

12.23 The History of Mutual Inductance The correct form of the interaction energy between two current-
carrying circuits was much debated in the 1870s by Maxwell and the German theoretical physicists Carl
Neumann, Wilhelm Weber, and Hermann Helmholtz. If ds1 is a line element of circuit 1 and ds2 is a line
element of circuit 2, all of their proposals can be described as different choices for a constant k in an
expression for the mutual inductance of the two line elements:

d2M12 = μ0

4π

{(
1 + k

2

)
ds1 · ds2

|r1 − r2| +
(

1 − k

2

)
ds1 · (r1 − r2)(r1 − r2) · ds2

|r1 − r2|3
}
.

Not obviously, the value of k cannot be determined by force measurements on real circuits because the
integration of d2M12 over two closed loops produces a formula which does not depend on k. Show this is
true by applying Stokes’ theorem (twice) to the second term in the curly brackets.

12.24 An Inductance Inequality Consider a two-loop circuit where the total magnetic energy is UB =
1
2

(
L1I

2
1 + 2MI1I2 + L2I

2
2

)
. Prove that M2 ≤ L1L2. Do not simply quote a theorem from the theory of

matrices.

12.25 The Self-Inductance of a Spherical Coil
Find the self-inductance of a coil produced by winding a wire N � 1 times around the surface of sphere of
radius R such that the density of turns is uniform along the z-axis perpendicular to the plane of each turn.
The wire carries a current I .
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13 Magnetic Matter

Plato holds the magnetic virtue to be divine.
William Gilbert (1600)

13.1 Introduction

All matter responds to a static, external magnetic field Bext(r) by producing a magnetic field of its
own, Bself (r). The total magnetic field, both inside and outside the matter, is the sum of the external
and induced fields,

Btot(r) = Bext(r) + Bself (r). (13.1)

Far outside the matter, Bself is dipolar and thus may be characterized by a macroscopic magnetic dipole
moment m. The origin of this moment is fundamentally quantum mechanical and a long-standing
classification scheme reflects characteristic differences in the behavior of m and Bself for different
types of matter. As Figure 13.1 indicates, the magnetic moment of a paramagnet points parallel to Bext

while the magnetic moment of a diamagnet points anti-parallel to Bext. For most magnets, the induced
moment vanishes when the external field is removed. The exception to this rule is a ferromagnet, which
is a special case of a paramagnet where m remains non-zero when Bext → 0. A superconductor is a
special case of a diamagnet where Btot = 0 inside the volume of the superconductor; it is the magnetic
analog of a perfect conductor.

The formal theory of magnetized matter has much in common with the formal theory of polarized
matter developed in Chapter 6. However, even as we pursue this commonality, two factors lead to
inevitable differences in emphasis and presentation. The first is mathematical and arises from the
difference between the curl in B = ∇ × A and the gradient in E = −∇ϕ. The second is physical and
arises from the technological importance of permanently magnetized matter compared to the relative
unimportance of permanently polarized matter.1 The reader should bear these differences in mind as
our story proceeds.

13.2 Magnetization

The word magnetization is used in two ways in the theory of magnetic matter. First, magnetization
refers to the rearrangement of internal currents that occurs when matter is exposed to an external

1 Permanent magnets are made from alloys and compounds of the ferromagnetic elements Fe, Co, and Ni. Three
common examples are NdFeB, SmCo, and AlNiCo.
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Paramagnet DiamagnetSuper-
conductor

m0BextB extBm

Figure 13.1: The response of a paramagnet, superconductor, and a diamagnet to an external magnetic field. The
vector m is the induced magnetic dipole moment.

magnetic field Bext(r). Second, magnetization is the word given to a function M(r) used to characterize
the details of the rearrangement. We begin with the external field which initiates the magnetization
process and identify its source as a current density jf (r) which is wholly extraneous to the magnetizable
matter. A long tradition refers to this as free current. The most familiar example is a current-carrying
wire, perhaps wound into a coil or solenoid.2

The source of Bself (r) in (13.1) is often called bound current. A more descriptive term is magneti-
zation current and we will use the symbol jM(r) for its density. The total current density that enters
Maxwell’s theory is the sum of the “free” and “bound” current densities:

j(r) = jf (r) + jM(r). (13.2)

Experiments show that there are two distinct sources of magnetization current density. At the level
of atoms and molecules, we identified these in Section 11.2.2 as (i) the orbital angular momentum of
circulating electrons and (ii) the spin angular momentum of electrons, protons, and neutrons. Orbital
magnetism is the rule for diamagnets and superconductors. Electron spin is responsible for most of
the magnetism in paramagnets and ferromagnets.

Classical electrodynamics treats spin magnetism and orbital magnetism on the same footing by
defining a magnetization M(r) and a magnetization current density jM(r) for each. The identification
of these functions is the first task of this chapter. The magnetic field BM(r) produced by a specified
jM(r) is our next concern. Thereafter, we add the effect of free current and write the full Maxwell
equations for magnetic matter. Subsequent sections treat simple (linear and isotropic) magnets, energy
and force in magnetic systems, and, finally, magnetic domains and hysteresis in permanent magnets.

13.2.1 Spin Magnetization
The magnetic fields produced by refrigerator magnets, loudspeaker magnets, and disk drives all arise
from the cooperative alignment of electron spins in ferromagnetic matter.3 This is significant because,
without approximation, electrons are known to behave magnetically exactly like point-like magnetic
dipoles (Section 11.2.3). Therefore, despite the fact that spin is a non-classical concept, a collection
of N electrons with spin magnetic moments mk (all with the same magnitude) located at positions rk
can be characterized by a spin magnetic moment per unit volume, or spin magnetization,

MS(r) =
N∑
k=1

mk δ(r − rk). (13.3)

It is a routine matter to calculate MS(r) for ferromagnetic materials using first-principles quantum
mechanical methods of the sort used to produce Figure 2.5 and Figure 6.2.

2 There is no need to specify a source current when a permanent magnet is used to create Bext. See Section 13.6.3.
3 The contribution to the total magnetic moment from the protons and neutrons in matter can be neglected because their

magnetic moments are smaller by a factor of the electron/proton mass ratio.
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13.2 Magnetization 409

We know from Section 11.2.3 that the magnetic field produced by a point magnetic moment m at
the origin is identical to the magnetic field produced by the singular current density j = ∇ × [mδ(r)].
Therefore, the magnetic field produced by the spin magnetization (13.3) is exactly the same as the
magnetic field produced by the spin magnetization current density,

jS(r) = ∇ × MS(r). (13.4)

Typically, the spins of a magnetic sample are confined to a closed volume bounded by a sharp surface.
The corresponding spin magnetization drops abruptly to zero and one finds that a surface magnetization
current density appears. To see this, let a collection of spins occupy the z ≤ 0 half-space. Using (13.4),

jS = ∇ × [MS�(−z)] = [∇ × MS]�(−z) + [MS × ẑ]δ(z). (13.5)

The first term on the far right-hand side of (13.5) is the spin magnetization current density of the bulk.
The second term generates a spin magnetization current density at the z = 0 surface because

KS(x, y) =
∫

dz jS = MS(x, y) × ẑ. (13.6)

The generalization of (13.6) for spins confined to a volume with local outward normal n̂(rS) is

KS(rS) = MS(rS) × n̂(rS). (13.7)

13.2.2 Orbital Magnetization
Ampère was the first to suggest that microscopic “molecular currents” are responsible for the magnetic
fields produced by matter. Today, we understand this to be true for systems where an external field
is needed to bias the direction of microscopic or macroscopic circulating currents to produce a non-
zero net magnetic moment. In quantum mechanics, every electron in an eigenstate with orbital wave
function �k(r) contributes a steady, dissipationless current density

j k(r) = iμB (�∗
k∇�k −�k ∇�∗

k ). (13.8)

Each j k(r) describes a closed loop of current and thus a magnetic moment. These moments are
randomly oriented in paramagnetic and diamagnetic materials until an external field favors one axis
of circulation and thereby induces a non-zero macroscopic magnetic dipole moment.4

The foregoing, combined with the general discussion following (13.2), motivates us to avoid classical
models of atoms and molecules and use only the existence of closed internal current loops to define an
orbital magnetization current density jO(r) and an orbital magnetization MO(r). The key observation
is that no internal magnetization current loop, or any superposition of such loops, can produce a net
current I through any cross sectional surface S ′ of a finite sample. This is so because a loop that carries
magnetization current in one direction through S ′ inevitably carries the same amount of magnetization
current through S ′ in the opposite direction before it closes on itself.

To make this idea precise, Figure 13.2 shows a bar-shaped magnet with volume V and surface S
(dashed lines). The planar cross sectional surface S ′ is bounded by a perimeter curve C. A prospective
volume current density jO(r) carries orbital magnetization current through S ′ and a prospective surface
density KO(r) carries orbital magnetization current through C. Therefore, our requirement that zero
net current flows through any cross section takes the form5

I =
∫
S ′

dS · jO(r) +
∮
C

d� · KO(r) × n̂(rS) = 0. (13.9)

4 The complete story of orbital magnetism lies far outside the scope of this book. A readable introduction is K.H.J.
Buschow and F.R. DeBoer, Physics of Magnetism and Magnetic Materials (Kluwer, New York, 2004).

5 Section 2.1.2 discusses the two terms that appear in (13.9).
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Figure 13.2: The vector dS is normal to a cross sectional surface S ′ (shaded) of a bar-shaped magnet that carries
an orbital magnetization volume current density jO and an orbital magnetization surface current density KO. The
unit vector n̂ is normal to the surface S of the magnet (dashed lines). The line element d� is everywhere tangent
to the curve C on the sample surface that bounds S ′.

Our model-independent strategy is to ask what functions jO(r) and KO(rS) satisfy (13.9) for all
choices of sample volume V and all choices of cross section S. Using the hint provided by the spin
magnetization current densities (13.4) and (13.7), we write the general answer in terms of an an orbital
magnetization function, MO(r); namely,

jO(r) = ∇ × MO(r) r ∈ V, (13.10)

KO(rS) = MO(rS) × n̂(rS) rS ∈ S, (13.11)

MO(r) = 0 r /∈ V. (13.12)

It is straightforward to check that (13.10) and (13.11) alone make (13.9) an identity. This is so because∫
S ′

dS · jO =
∫
S ′

dS · ∇ × MO =
∮
C

d� · MO, (13.13)

and (because d� · n̂ = 0)∮
C

d� · KO(rS) × n̂(rS) =
∮
C

d� · (MO × n̂) × n̂ = −
∮
C

d� · MO. (13.14)

Two points are worth noting. First, we set MO(r) = 0 outside the sample in (13.12) because
magnetization is associated with matter and there is no matter outside V .6 Second, the equations
(13.10), (13.11), and (13.12) do not determine MO(r) uniquely. This follows from Helmholtz’ theorem
(Section 1.9) and the fact that we did not specify ∇ · MO(r) inside the sample volume V .

13.2.3 Total Magnetization
The total magnetization is the sum of the spin and orbital magnetization current densities:

M(r) = MS(r) + MO(r). (13.15)

With this definition, a summary of our results so far is that the macroscopic magnetic field of a
magnetized sample is produced by macroscopic magnetization current densities

jM(r) = ∇ × M(r) and KM(rS) = M(rS) × n̂(rS). (13.16)

6 Some authors build (13.12) into their definition of MO(r). This generates the surface density (13.11) as a singular
piece of the volume density (13.10). The argument is identical to the one made at the end of Section 13.2.1 for spin
magnetization.
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The total magnetization M(r) is fundamental to the theory and our attention must now focus on its
physical meaning and methods that can be used to calculate it.

13.2.4 The Volume Integral of M(r)
An immediate consequence of (13.3) is that the volume integral of the spin magnetization MS(r) is the
spin part of the total magnetic dipole moment of a sample. In this section, we prove an analogous result
for the total magnetization. Taken together, these two results give an important clue to the physical
meaning of the orbital magnetization; namely, the volume integral of MO(r) is the orbital part of the
total magnetic dipole moment.

The definition of the magnetic moment (11.12) implicitly includes both volume and surface contri-
butions. Therefore, the magnetic moment produced by magnetization current is

m = 1

2

∫
V

d 3r [r × jM] + 1

2

∫
S

dS [r × KM] . (13.17)

Substituting the two formulae in (13.16) into (13.17), and using the Levi-Cività representation of the
cross product in the integrands to write out the kth Cartesian component of m, gives

mk = 1

2

∫
V

d 3r [r�∂kM� − r�∂�Mk] + 1

2

∫
S

dS [n̂�Mkr� − n̂kr�M�] . (13.18)

Equation (13.18) can be rewritten in the form

mk = 1

2

∫
V

d 3r [∂k(r�M�) −M�∂kr�] − 1

2

∫
V

d 3r [∂�(r�Mk) −Mk∂�r�]

+ 1

2

∫
S

dS [n̂�Mkr� − n̂kr�M�] . (13.19)

The integral of the total derivative in the first term of each volume integral in (13.19) produces a surface
integral [see (1.77)]. These surface integrals exactly cancel the explicit surface integrals in (13.19).
Therefore, using ∂kr� = δk� and ∂�r� = 3, we conclude that the integral of the total magnetization
M over the volume of a magnetized object is indeed equal to the magnetic dipole moment of the
object:7

m =
∫
V

d 3r M. (13.20)

13.2.5 The Lorentz Model
Following Lorentz (1902), many authors use a microscopic version of (13.20) to identify M(r) as
a “magnetic dipole moment per unit volume”. The physical idea is to regard a magnetized sample
as a collection of atomic or molecular magnetic dipoles. The mathematical prescription defines the
magnetization at a macroscopic point r as the magnetic dipole moment of a microscopic cell with

7 In Section 6.2.1, we showed that the integral of the polarization P over the volume of a polarized object is equal to the
electric dipole moment of the object.
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volume � labeled by r:8

M(r) = 1

2�

∫
�

d 3s s × jM,micro(s) = m(r)

�
. (13.21)

For finite �, (13.21) replaces the current density in each averaging cell by a point magnetic dipole m.
In the limit � → 0, the Lorentz approximation replaces the entire magnet by a continuous distribution
of point magnetic dipoles with a density M(r) computed from (13.21). This is rigorously true for the
spin part of M(r) and may be approximately true for the orbital part of M(r). The issue is whether the
physical current density in the magnetized sample can be partitioned into a sum of “atomic” current
densities which are well localized near the center of each averaging cell. This may be true for a
magnet that is an electrical insulator; it may not be true for a conducting magnet if there is significant
microscopic magnetization current flow between averaging cells.

Equation (13.21) and its interpretation are very similar to the Lorentz definition of electric polar-
ization P(r) and its interpretation presented in Section 6.2.2. For the electric problem, we pointed out
the shortcomings of Lorentz’ model and described its modern replacement: define P(r) as the Lorentz
average over a cell centered at r of the time-integral of the microscopically calculable polarization
current density jP,micro. Unfortunately, no similar scheme works in the magnetic case because the
orbital part of M(r) is not uniquely defined. This is the subject of the next section.

13.2.6 The Non-Uniqueness of M(r)
Practitioners who apply first-principles quantum mechanics to magnetic matter use (13.3) to calculate
the spin magnetization MS and (13.8) to calculate the orbital part of the microscopic magnetization
current density jO,micro. The latter may be Lorentz averaged to get a macroscopic orbital current
density, but it is impossible to uniquely invert either the microscopic or the macroscopic versions of
jO = ∇ × MO to get MO(r). Just as there is gauge freedom to choose the vector potential A(r), the
magnetization MO(r) and the magnetization MO(r) + ∇�(r) correspond to exactly the same orbital
magnetization volume current density.9 For that reason, no observable quantity depends on M(r)
alone. As a prescription to fix M(r), the physically well-motivated Lorentz approximation (13.21) is
one choice among many.10

13.3 The Field Produced by Magnetized Matter

This section focuses on the vector potential AM and the magnetic field BM produced by magnetized
matter. We suppose that the magnetization M(r) is specified in a volumeV and do not concern ourselves
with how the magnetization was produced. Conventional magnetostatics (Section 10.5.2) tells us that
the volume and surface magnetization current densities in (13.16) are the sources of a vector potential

AM(r) = μ0

4π

∫
V

d 3r ′ ∇′ × M(r′)
|r − r′| + μ0

4π

∫
S

dS ′ M(r′) × n̂′

|r − r′| . (13.22)

8 In this chapter, r is a macroscopic variable and s is a microscopic variable. In Section 2.3.1 on Lorentz averaging, the
macroscopic variable was called R and the microscopic variable was called r.

9 �(r) must be constant on S to get the same orbital magnetization surface current density.
10 See Hirst (1997) in Sources, References, and Additional Reading.
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The corresponding Biot-Savart formula with jM(r) and KM(r) as sources is

BM(r) = μ0

4π

∫
V

d 3r ′ [∇′ × M(r′)] × (r − r′)
|r − r′|3 + μ0

4π

∫
S

dS ′ [M(r′) × n̂′] × (r − r′)
|r − r′|3 . (13.23)

Equations (13.22) and (13.23) give AM(r) and BM(r) correctly at every point in space. On the other
hand, it may not be necessary to evaluate (13.22) or (13.23) explicitly if we can deduce the field by
some other means (say, from an Ampère’s law calculation). Example 13.1 is typical of the latter.

Example 13.1 Find the magnetic field BM(r) produced by an infinite slab of matter with uniform
magnetization as indicated in Figure 13.3.

d
z

x
Mθ

Figure 13.3: Side view of an infinite slab (0 ≤ z ≤ d) of matter with uniform magnetization M. Circles with
dots (crosses) indicate magnetization current flowing out of (into) the paper.

Solution: The volume current density (13.10) is zero for uniform magnetization. The surface
current density K = M × n̂ flows uniformly out of (into) the page along the upper (lower) surface
of the slab with magnitude KM = M sin θ . Therefore, the results of Section 10.3.2 tell us that the
magnetic field produced by the top sheet of current is BM = 1

2μ0KMx̂ below the sheet and the
negative of this above the sheet. Superposing the fields from both sheets gives

BM(r) =
⎧⎨
⎩
μ0M sin θ x̂ inside the slab,

0 outside the slab.
(13.24)

13.3.1 Magnetized Matter as a Superposition of Point Dipoles
The physical meanings of AM(r) and BM(r) reveal themselves when we use Stokes’ theorem to write
the surface integral in (13.22) as a volume integral:∫

S

dS ′ M(r′) × n̂′

|r − r′| = −
∫
V

d 3r ′ ∇′ × M(r′)
|r − r′| . (13.25)

Writing out the curl on the right side of (13.25) and substituting back into (13.22) gives

AM(r) = μ0

4π

∫
V

d 3r ′ M(r′) × ∇′ 1

|r − r′| . (13.26)

Because ∇′|r − r′|−1 = −∇|r − r′|−1, comparison of (13.26) with the vector potential (11.13) of a
magnetic dipole shows that AM(r) is the vector potential of a collection of point magnetic dipoles with
moments dm(r) = M(r)d 3r . In other words, (13.26) is the vector potential produced by a volume
distribution of point magnetic dipoles with density M(r).

We saw in the previous section that a point dipole description is exact for the spin part of the
magnetization but not even uniquely defined for the orbital part of the magnetization. Nevertheless,
(13.26) shows that the vector potential of magnetic matter is indistinguishable from the potential
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Figure 13.4: Magnetic dipole (big arrows) representation of a point in space (the center of the square loop C)
where jM = ∇ × M �= 0. The equivalent Ampèrian loops shows that a net current (small arrows) flows in the
same direction.

produced by a continuous distribution of fictitious point magnetic dipoles with a dipole moment per
unit volume equal to M(r). Therefore, to the extent that an expression for M(r) is available (perhaps
only for model purposes), Lorentz’ idea to represent a magnetized solid by a volume distribution of
point dipoles is perfectly valid.

The point dipole representation of the magnetization qualitatively rationalizes the form of the
polarization volume current density jM = ∇ × M. To see this, we recall the geometrical definition of
the curl.11 If C is the boundary of an infinitesimal area element dS = dSn̂,

(∇ × M) · n̂ = lim
dS→0

1

dS

∮
C

d� · M. (13.27)

With this definition, the directions of the four point magnetic dipoles drawn on the perimeter C of the
square area element in Figure 13.4 guarantee that ∇ × M �= 0 at the center of the square. Moreover,
we can associate an infinitesimal Ampèrian loop with each of the point dipoles. From the right-hand
rule, all four loops contribute to an electric current which flows through the square in the direction
of ∇ × M. This is the volume magnetization current, jM. We leave it as an exercise for the reader to
rationalize the polarization surface current density, KM = M × n̂, in a similar way.

The superposition point of view offered in this section makes it possible to construct an alternative
to the Biot-Savart expression for the magnetic field (13.23) by superposing point dipole magnetic
fields suitably weighted by M(r). Caution is required because, in Section 6.3.1, we superposed dipole
electric fields and were led to a field E†

P(r) that was ill-defined at observation points inside the polarized

body. A field B†
M(r) constructed in the same way is similarly ill-defined at interior points. Happily, the

mathematics plays out differently if we use the representation (11.30) derived in Section 11.2.3 for the
magnetic field of a point dipole m located at r′:

B(r) = μ0

[
m δ(r − r′) − ∇ 1

4π

m · (r − r′)
|r − r′|3

]
. (13.28)

As noted above, we assign a point dipole moment dm(r′) = M(r′)d 3r ′ to every element of the
sample volume V . Summing the contribution from every volume element gives

BM(r) = μ0

∫
V

d 3r ′ M(r′)δ(r − r′) − ∇ μ0

4π

∫
V

d 3r ′ M(r′) · r − r′

|r − r′|3 . (13.29)

11 See, for example, H.M. Schey, Div, Grad, Curl and All That, 3rd edition (W.W. Norton, New York, 1997).
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13.4 Fictitious Magnetic Charge 415

The first term in (13.29) contributes only if r ∈ V . Therefore, the definition

ψM(r) = 1

4π

∫
V

d 3r ′ M(r′) · ∇′ 1

|r − r′| (13.30)

permits us to write the field (13.29) in the form

BM(r) =
⎧⎨
⎩
μ0M(r) − μ0∇ψM(r) r ∈ V,

−μ0∇ψM(r) r /∈ V.
(13.31)

The integral (13.30) converges to a unique value everywhere and thus guarantees that (13.31) repro-
duces the Biot-Savart field (13.23) both inside and outside V . The reader will appreciate that it is not
an accident that a comparison of (13.30) with (11.21) shows that ψM(r) is the magnetic scalar potential
of a volume distribution of point magnetic dipoles with density M(r).

Finally, a glance at (13.31) shows that it makes sense to define an auxiliary field HM(r) from

HM(r) = −∇ψM(r). (13.32)

Since M = 0 outside the magnetized volume, this definition collapses the pair of equations (13.31)
into the fundamental relation of magnetic matter,

BM(r) = μ0[M(r) + HM(r)]. (13.33)

Using (13.30) and (13.32), it is straightforward to check that the gauge freedom of M(r) discussed in
Section 13.2.6 does not affect BM(r) in (13.33). This must be so because BM(r) is an observable via
the Lorentz force.

13.4 Fictitious Magnetic Charge

A very useful way to think about the functions ψM(r) and HM(r) defined in the previous section
appears when we rewrite (13.30) in the form

ψM(r) = 1

4π

∫
V

d 3r ′ ∇′ ·
[

M(r′)
|r − r′|

]
− 1

4π

∫
V

d 3r ′ ∇′ · M(r′)
|r − r′| . (13.34)

Using the divergence theorem and exchanging the order of the two terms gives

ψM(r) = 1

4π

∫
V

d 3r ′ ρ∗(r′)
|r − r′| + 1

4π

∫
S

dS
σ ∗(rS)

|r − rS | , (13.35)

where

ρ∗(r) = −∇ · M(r) and σ ∗(rS) = M(rS) · n̂(rS). (13.36)

The charge density notation used in (13.36) is appropriate because, if M(r) → P(r)/ε0 in (13.36),
the magnetostatic potential (13.35) transforms to the electrostatic potential (6.12) for a sample of
polarized dielectric matter. Since E = −∇ϕ(r) is a field produced by volume and surface densities
of true electric charge, it is natural to interpret HM(r) = −∇ψM as an “electric-like” field produced
by fictitious magnetic charge with a volume density ρ∗(r) and a surface density σ ∗(r).12 The direct

12 The magnetic-charge approach to magnetic matter began with Poisson in the early 19th century and dominated
textbook treatments of the subject until the middle of the 20th century. The fact that true magnetic charge does not
exist does not negate the usefulness of fictitious magnetic charge as a tool for computation and building intuition.
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dM
z

x

+ + ++++ +++ ++ +

Figure 13.5: Side view of an infinite slab (0 ≤ z ≤ d) of matter with uniform magnetization M. Plus and minus
signs indicate surface distributions of fictitious magnetic charge σ ∗.

analogy with Coulomb’s law allows us to write down a formula for HM(r) that is valid at every point
in space:

HM(r) = 1

4π

∫
V

d 3r ′ ρ∗(r′)
r − r′

|r − r′|3 + 1

4π

∫
S

dS σ ∗(rS)
r − rS

|r − rS|3 . (13.37)

Fictitious magnetic charge (or magnetic “poles”) is a powerful idea that makes it possible to exploit
electrostatic knowledge to solve problems with magnetized matter. Example 13.1 is a case in point. The
magnetization of the slab is uniform, so the volume magnetic charge density ρ∗ = −∇ · M = 0. The
top surface of the slab carries a magnetic surface charge density σ ∗ = M · ẑ = M cos θ . The bottom
surface carries a magnetic charge density M · (−ẑ) = −M cos θ . Both distributions are indicated in
Figure 13.5, which makes it clear that the slab is isomorphic to a parallel-plate capacitor.

For a capacitor whose plates carry surface charge densities ±σ as shown, we know that Ein =
−(σ/ε0)ẑ between the plates and Eout = 0 otherwise. Therefore, the analogy between E and HM implies
that HM = −σ ∗ẑ inside the slab and HM = 0 outside the slab. Because Min = M cos θ ẑ +M sin θ x̂
and Mout = 0, we exactly reproduce the results of the effective current calculation in Example 13.1:

BM(r) = μ0(HM + M) =
⎧⎨
⎩
μ0M sin θ x̂ inside the slab,

0 outside the slab.
(13.38)

We will see in Section 13.8.1 that the magnetic charge concept can be reliably extended to calculate
forces on magnetic bodies.

Finally, the magnetic scalar potential ψM(r) in (13.35) admits a multipole expansion identical in
form to the one developed in Chapter 4 for the electrostatic scalar potential ϕ(r). One simply replaces
the true electric charge density in the latter by the fictitious magnetic charge density for the former.
Then, because M = 0 outside the matter (where the expansion is valid), the multipole expansion for
BM = −μ0∇ψM is identical in form to the multipole expansion for E = −∇ϕ.

13.4.1 Potential Theory for HM(r)
The Coulomb-like formula (13.37) suggests that we can construct a potential theory for magnetic
matter based on the analogy with electrostatics. Specifically, (13.32), (13.33), and the left side of
(13.36) show that

∇ × HM = 0 (13.39)

and

∇ · HM = −∇ · M = ρ∗. (13.40)

The magnetic scalar potential itself satisfies

∇2ψM = ∇ · M = −ρ∗. (13.41)
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The Poisson equation (13.41) reduces to Laplace’s equation in regions of space where M is uniform
(constant):

∇2ψM(r) = 0. (13.42)

We conclude from these equations that all the techniques developed in previous chapters for elec-
trostatic problems become available to solve problems with specified magnetization. The matching
conditions for ψM(r) are exactly the same as those for ϕ(r) (see Section 3.3.2), namely,

ψ1(rS) = ψ2(rS) (13.43)

and [
∂ψ1

∂n1
− ∂ψ2

∂n1

]
S

= [M1 − M2]S · n̂1. (13.44)

The right side of (13.44) is σ ∗
1 + σ ∗

2 because both sides of the interface may contribute to the fictitious
surface charge density defined in (13.36).13 We leave it as an exercise for the reader to prove that any
function that satisfies Equations (13.41) through (13.44) uniquely determines HM(r) and BM(r).

Application 13.1 A Uniformly Magnetized Sphere

Figure 13.6 shows a sphere with uniform magnetization M = M ẑ. The volume densities of both
magnetization current jM = ∇ × M and fictitious magnetic charge ρ∗ = −∇ · M are zero for this
system. Therefore, we may regard the magnetic field inside and outside the sphere as produced either
by a surface density of fictitious magnetic surface σ ∗ = M · n̂ (plus and minus signs drawn onto the
left-hand sphere) or by a surface density of magnetization current KM = M × n̂ (solid lines drawn onto
the right-hand sphere). We will use σ ∗ to find the magnetostatic potential ψM and thus the magnetic
field BM everywhere.

M z

MK

Figure 13.6: A uniformly magnetized sphere. Plus and minus signs on the left indicate the distribution of
surface magnetic charge with density σ ∗ = M · n̂. Solid lines with arrows on the right indicate the
distribution of magnetization surface current with density K = M × n̂.

By symmetry, ψ(r) = ψ(r, θ ). This potential satisfies (13.42) inside and outside the sphere subject
to the matching condition (13.44), which here reads[

∂ψin

∂r
− ∂ψout

∂r

]
r=R

= σ ∗ = M · r̂ = M cos θ. (13.45)

From the set of all regular, azimuthally symmetric solutions of Laplace’s equation (see Section 7.6),
the matching condition can be satisfied only if ψin = Ar cos θ and ψout = B cos θ/r2. Combining

13 A direct derivation of (13.44) exploits (13.33) and the continuity of the normal component of BM implied by
∇ · BM = 0
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(13.45) with (13.43) gives

ψM(r, θ ) =

⎧⎪⎨
⎪⎩

1
3Mz r < R,

1
3MR3 cos θ

r2
r > R.

(13.46)

Using (13.32) and (13.33), we find without difficulty that:

HM(r) =

⎧⎪⎪⎨
⎪⎪⎩

−1

3
M nr < R,

R3

3

{
3(r̂ · M)r̂ − M

r3

}
r > R,

(13.47)

and

BM(r) =
⎧⎨
⎩

2

3
μ0M r < R,

μ0HM(r) r > R.

(13.48)

�

Figure 13.7 shows field lines for both BM(r) and HM(r). Outside the volume V of the sphere,
BM = μ0HM is identical to the magnetic field produced by a point magnetic dipole at the center of the
sphere with dipole moment m = VM. From (13.20), this is the dipole moment of the entire sphere.
Inside the sphere, BM and HM are uniform and anti-parallel. This is so because the lines of BM(r)
must form closed loops while the lines of HM(r) must point away (or toward) the surface depending
on the sign of the magnetic charge shown in Figure 13.6. A glance back at (11.33) shows that the
constant value for BM inside the sphere is identical to the singular (delta function) part of the magnetic
field of a point magnetic dipole. This shows that a point magnetic dipole may sensibly be regarded
as the R → 0 limit of a uniformly magnetized sphere. Otherwise, comparison with Application 6.1 in
Section 6.3 shows that the field HM for a uniformly magnetized sphere is essentially identical to the
field EP for a uniformly polarized sphere.

13.4.2 The Demagnetization Field
The field HM inside the volume V of a magnetized sample is often called the demagnetization field
because it tends to point in the opposite direction to the magnetization M. Perusal of Figures 13.5
to 13.7 shows that this happens because the surface charge density σ ∗ = M · n̂ is the source of the
“electric-like” field HM. In general, HM(r) and BM(r) vary from point to point inside the volume V of
an arbitrary magnetized body. The sole exception is an ellipsoidal-shaped body where HM is a constant
vector not necessarily parallel to M.14 This leads us to define a 3 × 3 demagnetization tensor N and
write

BM(r ∈ V ) = μ0[M + HM] = μ0[M − N · M]. (13.49)

The obvious virtues of exposing the entire volume of an experimental sample to a uniform field
motivates experimenters to exploit (13.49) by fashioning samples in the shape of ellipsoids, particularly
limiting cases like thin rods and flat disks. The sphere is a limiting case where we can compute HM

immediately using the fact that the trace of N is unity in the diagonal principal axis system, i.e.,
Nxx +Nyy +Nzz = 1.15 Therefore, the symmetry of a sphere demandsthat Nxx = Nyy = Nzz = 1/3.

14 See Brownstein (1987) in Sources, References, and Additional Reading.
15 We leave the proof of this statement as an exercise for the reader.
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Figure 13.7: BM(r) (left) and HM(r) (right) for a sphere with uniform magnetization M that points from left to
right.

Using this information in (13.49) confirms the result from (13.47) that

HM = −1

3
M (inside a sphere). (13.50)

Magnetic Charge or Circulating Current inside a Proton?

How do we know that the magnetic dipole moment of the proton (and the field it produces) is due
to circulating (quark) currents and not due to a suitable distribution of real magnetic charge? The
two panels of Figure 13.7 serve as a models for these two situations if we choose the sphere radii
equal to the proton radius (R ∼ 10−15 m). If real magnetic charge existed, we would label the field
on the right side of Figure 13.7 Bcharge

p (r) to distinguish it from the field Bcurrent
p (r) on left side of the

figure. The two are identical outside the proton radius so a probe of the internal magnetic structure
of the proton is needed to make a choice between them.

One approach studies the hyperfine splitting of the hydrogen spectrum that occurs when the
magnetic moment of its electron me interacts with the dipole magnetic field of the proton Bp. The
piece of the potential energy V̂B = −me · Bp (see Section 12.4.2) that comes from the exterior
field of the proton averages to zero due to the spherical symmetry of the 1s electron wave function.
However, this wave function has non-zero amplitude at the position r0 of the proton. Therefore, if
circulating currents are responsible for the proton’s magnetic moment, the relevant magnetic field
is the singular part of (11.33):

Bcurrent
p (r) = 2

3
μ0mpδ(r − r0).

If instead the proton is essentially a point magnetic charge dipole, the electrostatic analogy says
that the relevant magnetic field is the singular part of the point electric dipole field (4.16) with p/ε0

replaced by μ0m:

Bcharge
p (r) = −1

3
μ0mp δ(r − r0).

It is straightforward to compare the hyperfine shift predicted by these two fields with high-precision
measurements. This comparison unequivocally favors the circulating current model.

13.5 The Total Magnetic Field

Section 13.2 focused on the magnetization current density jM = ∇ × M and the magnetic field BM

produced by magnetized matter. No account was taken of any other sources of magnetic field, which
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were collectively called “free” current with density jf . In this section, we study the total magnetic field
B produced by the total current density j = jM + jf . These are the quantities which enter Ampère’s
law, which we now write in the form

∇ × B = μ0j = μ0(jM + jf ) = μ0
[∇ × M + jf

]
. (13.51)

Moving the ∇ × M term to the left side of (13.51) motivates us to define the auxiliary vector field
H(r) using

B(r) = μ0[H(r) + M(r)]. (13.52)

The field H in (13.52) is the natural generalization of the field HM in (13.33) when all sources of
magnetic field are taken into account.

It is traditional to use H to rewrite Ampère’s law in (13.51) and the other magnetostatic Maxwell
equation,

∇ · B = 0. (13.53)

The two equations which result are the magnetostatic Maxwell equations in matter:

∇ × H = jf (13.54)

and

∇ · H = −∇ · M = ρ∗. (13.55)

Equations (13.54) and (13.55) make it clear that both free current and fictitious magnetic charge are
sources of H(r). Indeed, a direct application of the Helmholtz theorem (Section 1.9) generates the
magnetic scalar potential as defined by (13.35) in a very natural way:16

H(r) = 1

4π

∫
d 3r ′ jf (r′) × (r − r′)

|r − r′|3 − ∇ψM(r). (13.56)

13.5.1 Matching Conditions
Referring to Figure 13.8, the matching conditions for H(r) that derive from (13.54) and (13.55) are

n̂2 × [H1 − H2] = Kf (13.57)

and

n̂2 · [H1 − H2] = [M2 − M1] · n̂2. (13.58)

Using (13.52), the latter is equivalent to

n̂2 · [B1 − B2] = 0. (13.59)

These results reduce to those of Section 13.4.1 when there is no free current.
Finally, since it always possible to write B = ∇ × A, we remind the reader that the vector potential

is always continuous at interfaces where material properties change discontinuously [see (10.79)]:

A1(rS) = A2(rS). (13.60)

The tangential component of (13.60) is equivalent to (13.59).

16 The surface integral piece of (13.35) is implicit from this point of view.
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ˆ
H1(r), M1(r)

K f (rs)

n2

n̂1

H2(r), M2(r)

Figure 13.8: A free current density Kf flows on the boundary surface S between two (possibly magnetized)
regions of space. The unit normal n̂1 points outward from region 1; the unit normal n̂2 points outward from
region 2.

13.5.2 Constitutive Relations
The equations (13.52), (13.53), and (13.54) cannot be solved simultaneously unless (i) we specify
M(r) once and for all or (ii) we invoke a constitutive relation which relates M to H.17 This is the
point where we distinguish real magnetic matter from a collection of magnetic dipole moments by
using experiment, theory, or phenomenology to inject quantum mechanical and statistical mechanical
information into classical electrodynamics. For example, a large class of systems have no magnetic
moment in the absence of a magnetic field, but acquire a uniform, macroscopic magnetization in
the presence of a uniform external magnetic field. The general rule revealed by experiment for these
systems is

Mi = χijHj + χ
(2)
ijkHjHk . . . . (13.61)

The tensor character of the constants χij and χ (2)
ijk in (13.61) allows for the possibility that M is not

parallel to H. This is realized in spatially anisotropic matter. The last term in (13.61) allows for the
possibility that the magnetization depends non-linearly on the field. This is realized if the magnetic
field strength is large enough. For simplicity, we focus most of our attention on a special case of
(13.61) which is the magnetic analog of the simple dielectric matter studied in Section 6.5. A brief
discussion of permanent magnetism is the subject of Section 13.9 at the end of the chapter.

13.6 Simple Magnetic Matter

The first term on the right-hand side of (13.61) is sufficient to describe the magnetization of a linear
magnet. In this book, a magnet that is both linear and spatially isotropic will be called simple. A simple
magnet obeys the constitutive relation

M = χmH. (13.62)

The constant χm is called the magnetic susceptibility. Using (13.52), it is traditional to define a
corresponding magnetic permeability μ and relative permeability κm = μ/μ0 from

B = μ0(H + M) = μH = κmμ0H = μ0(1 + χm)H. (13.63)

17 For historical reasons, it is traditional in magnetism to relate M to the auxiliary field H rather than to the magnetic
field B.
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Experiments show that (13.62) and (13.63) apply equally well to macroscopic fields that vary with
position in a simple medium.

As stated in the Introduction to this chapter, materials where the field induces a magnetization parallel
to H, and thus to B, are called paramagnetic (χm > 0). Spin moments make the dominant contribution
to M in paramagnets. Materials where the field induces a magnetization anti-parallel to H are called
diamagnetic (χm < 0). Orbital moments make the dominant contribution to M in diamagnets. At room
temperature, the elements of the left half of the periodic table are mostly paramagnetic. The elements
of the right half of the periodic table are mostly diamagnetic. One can prove18 thatμ > 0 and measured
magnetic susceptibilities are typically quite small, |χm| ∼ 10−4 − 10−6. The elements Fe, Ni, and Co
in the middle of the periodic table are not simple magnets, but some alloys of these elements (including
soft iron and silicon steel) behave effectively as simple magnets with relative permeabilities that are
extremely large (κm ∼ 104).

Example 13.2 A uniform external field B0 induces a uniform magnetization inside a simple
magnetic sphere of radius a and permeability μ.19 Find the magnetic moment m of the sphere.

Solution: The magnetic moment is m = MV where V = (4/3)πa3 is the sphere volume. More-
over, Application 13.1 showed that a sphere with uniform magnetization M produces the fields

HM(r < a) = −1

3
M and BM(r < a) = 2

3
μ0M.

Here, M is induced by the external field B0. Therefore, the total fields inside the sphere are

Bin = B0 + BM(r < a) = B0 + 2

3
μ0M

and

Hin = H0 + HM(r < a) = H0 − 1

3
M.

Inserting these two equations into Bin = μHin permits us to solve for M. Because B0 = μ0H0, the
result is

M = 3

μ0

(
μ− μ0

μ+ 2μ0

)
B0.

The corresponding magnetic moment of the sphere is

m = MV = 4πa3

(
μ− μ0

μ+ 2μ0

)
H0.

13.6.1 Fields and Sources in Simple Magnetic Matter
We begin our study of simple magnets by inserting (13.63) into the Maxwell equation (13.54) to get

1

μ
∇ × B + B · ∇

(
1

μ

)
= jf . (13.64)

The general problem posed by (13.64) is difficult, particularly when the permeability varies smoothly
with position. In this book, we restrict ourselves to situations no more complicated than Figure 13.10

18 See, for example, O.V. Dolgov, D.A. Kirzhnitz, and V.V. Losyakov, “On the admissible values of the static magnetic
permeability”, Solid State Communications 46, 147 (1983).

19 See Section 13.6.4 for the closely related problem of a magnetizable rod in a transverse external field.
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in Section 13.6.2 below, where the permeability takes (different) constant values in distinct regions
of space separated by sharp boundaries. Taking account of the second Maxwell equation (13.53), the
defining equations in each region,

∇ × B = μjf and ∇ · B = 0, (13.65)

have the same structure as the magnetostatic Maxwell equations in vacuum with μ0 → μ and j → jf .
The global magnetic field is constructed from the fields calculated in each region by enforcing the
matching conditions in Section 13.5.1.

We have learned that magnetization current and fictitious magnetic charge are equivalent ways to
source the field produced by a magnetization M = χmH. Using (13.62) and (13.63), the volume and
surface densities of magnetization current for a simple magnet are

jM = ∇ × M = ∇ × (χmH) = χmjf (13.66)

and

KM = M × n̂ = χmH × n. (13.67)

The volume and surface densities of fictitious magnetic charge for a simple magnet are

ρ∗ = −∇ · M = −χm∇ · H = 0 (13.68)

and

σ ∗ = M · n̂ = χmH · n̂. (13.69)

Typically, there are contributions to (13.67) and (13.69) from both sides of an interface between two
simple magnets.

Substituting (13.68) into (13.55) shows that ρ∗ = ∇ · H = 0 in volumes bounded by surfaces or
interfaces where σ ∗ may or may not be zero. If there is no free current in the same volumes, (13.54)
shows that ∇ × H = 0. In these circumstances, H is derivable from a magnetic scalar potential,
H = −∇ψ , which satisfies Laplace’s equation,

∇2ψ(r) = 0 for r in V where ρ∗ = 0 and jf = 0. (13.70)

Section 13.6.4 explores the potential theory approach to simple magnetic matter implied by (13.70).
If ρ∗ = 0 and jf �= 0, the expression (13.56) is still available for H(r) except that the −∇ψM term
now derives entirely from the fictitious surface magnetic charge density σ ∗. In light of (13.69), this
has the effect of changing an explicit formula for H(r) into an integral equation for H(r). For simple
geometries, the integral equation becomes an algebraic equation.

13.6.2 Simple Magnetic Response to Free Current
The canonical example of the magnetizing power of a free current is an electromagnet composed of
a solenoidal coil wrapped around a cylindrical rod of soft iron (Figure 13.9). We ignore end effects
and suppose that n turns per unit length of wire with current I are wrapped around the rod. For a rod
coaxial with the z-axis, we can use (13.65) and the infinite-length vacuum (μ = μ0) solenoid solution
derived in Section 10.2.2 to write down the answer immediately:

B = μnI ẑ. (13.71)

This is a very large field compared to the vacuum solenoid because soft iron has a very large effective
relative permeability κm = μ/μ0.
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Figure 13.9: Cartoon of an iron-core electromagnet and its magnetic field.

1

IfR

2

Figure 13.10: A long straight wire embedded in a coaxial cylinder with permeability μ1 carries a current If .
The cylinder is itself embedded in a medium with permeability μ2.

Despite (or perhaps because of) the ease of this solution, it is important to appreciate that it is the
contribution of M = χmH to B = μ0(H + M) that one exploits by using an iron core.20 Here, the only
source of H is the free current supplied by the coil. Complications arise when the rod is finite and a
fictitious magnetic charge per unit area σ ∗ = M · n̂ at each end of the rod introduces a demagnetization
field.21

The magnetization charge density jM(r) in (13.66) is spatially coincident with the free current density
jf (r) which induces it. This macroscopic statement is a consequence of Lorentz averaging (Section 2.3).
In microscopic reality, the current density merely magnetizes matter in its immediate neighborhood.
Nevertheless, the strength of the effective current felt far from the source is altered. This underscores
the fact that linear magnetic response is intrinsically local. The entire scenario is very reminiscent of the
analogous situation when free charge polarizes a simple dielectric (see Section 6.5.2), and the example
immediately below is correspondingly similar to the dielectric problem solved in Section 6.5.3.

Figure 13.10 shows a cylinder of radius R filled with matter with permeability μ1 embedded in
an infinite medium with permeability μ2. A filamentary wire carries a free current If up the z-axis
of the cylinder. In vacuum, the wire produces a magnetic field B(ρ) = φ̂μ0If /2πρ at every point
in space. However, according to (13.66) and (13.63), the embedded wire carries an effective current
I ′ = IM + If = (μ1/μ0)If . This source produces a magnetic field at every point in space equal to

B1(ρ) = μ1If

2πρ
φ̂. (13.72)

20 |M| cannot exceed the “saturation value” achieved when all the spins in the ferromagnet are aligned with H.
21 Demagnetization effects reduce the field enhancement predicted by (13.71). The latter is valid for a solenoid of

length L and radius R only if L � μR.
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On the other hand, the integral form of Ampère’s law in (13.64) is∮
d� · H = If . (13.73)

Using B = μ2H, (13.73) says that the magnetic field in the r > R region is

B(ρ) = μ2If

2πρ
φ̂. (13.74)

There is no contradiction between (13.72) and (13.74) because B1(ρ) is not the whole story. To get
the Ampère’s law result, we must add to (13.72) the magnetic field produced by the induced surface
current density K = (M1 − M2) × r̂ that flows on the cylinder which separates the two regions in
Figure 13.10. We leave the details as an exercise for the reader.

13.6.3 Simple Magnetic Response to a Fixed Field
In the absence of free current, external magnetic fields (produced by unspecified sources) must be
present to produce magnetization. The field H(r) is determined by

∇ × H = 0 and ∇ · B = 0. (13.75)

In the usual way (see Section 2.3.3), the two equations in (13.75) imply that the tangential component
of H and the normal component of B are continuous at an interface between media with different
magnetic permeability. Ohmic matter is a good example because the (singular) current carried at the
surface of a perfect conductor spreads out over the entire sample when the conductivity is finite.

Example 13.3 Show that lines of B “refract” at the interface as shown in Figure 13.11. Specifically,
if αk is the angle between Bk and the interface normal in a medium with permeability μk , show
that

μ1 tanα2 = μ2 tanα1.

2

1

B1

B2

2

1

Figure 13.11: Refraction of magnetic field lines near an interface between two magnetizable media.

Solution: The equation on the left side of (13.75) says that the tangential component of H = B/μ
is continuous. Therefore,

B1 sinα1

μ1
= B2 sinα2

μ2
.

The equation on the right side of (13.75) says that the normal component of B is continuous:

B1 cosα1 = B2 cosα2.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-13 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 11:33

426 MAGNETIC MATTER: PERMANENT AND INDUCED DIPOLES

Dividing the first of these equations by the second gives the proposed law of field line refrac-
tion. The case μ2 � μ1 is interesting because both α1 ≈ 0 and α2 ≈ π/2 satisfy this law. The
detailed geometry of the problem (including the locations of free currents away from the interface)
determines which solution is adopted by Nature.

13.6.4 Potential Theory for a Simple Magnet
Potential theory applies to simple magnetic matter problems when the free current in (13.64) is confined
to two-dimensional surfaces with surface density Kf . Away from those surfaces, ∇ × H = 0 and the
representation H = −∇ψ in terms of magnetic scalar potential ψ is valid. Moreover, combining
(13.68) with (13.55) shows that ∇ · H = 0 also. Therefore,

∇2ψ(r) = 0. (13.76)

The matching condition implied by (13.64) comes over unchanged from Section 13.5.1:

n̂2 × [H1 − H2] = Kf . (13.77)

When Kf = 0, the analogy with electrostatics shows that (13.77) simplifies to

ψ1(rS) = ψ2(rS). (13.78)

Using B = μH, the complementary matching condition that the normal component of B is continuous
is

μ1
∂ψ1

∂n

∣∣∣∣
S

= μ2
∂ψ2

∂n

∣∣∣∣
S

. (13.79)

A Magnetizable Rod in a Transverse External Field
A historically significant application of potential theory to simple magnetic matter asks for the total
magnetic field produced when a solid magnetizable rod coaxial with the z-axis is immersed in a uniform
transverse external magnetic field B0 = B0x̂ (Figure 13.12). Faraday discovered paramagnetism and
diamagnetism using a geometry of this kind. To see how, we begin with the magnetic scalar potential
ψ0 = −(B0/μ0)x = −H0ρ cosφ for the external field. The most general solution of Laplace’s equation
in polar coordinates (Section 7.9) consistent with both the external field and the matching conditions
(13.78) and (13.79) is

ψ(r, θ ) =
⎧⎨
⎩
Aρ cosφ r < R,

(C/ρ −H0ρ) cosφ r > R.
(13.80)

Applying the matching conditions fixes the values of the coefficients as

A = − 2μ0

μ+ μ0
H0 and C = μ− μ0

μ+ μ0
R2H0. (13.81)

Outside the sphere, the B(r) = −μ0∇ψ(r) is the sum of a uniform field and a dipole field. Inside
the sphere, the field is uniform. In terms of the relative permeability κm = μ/μ0,

Bin = 2κm
κm + 1

B0. (13.82)
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00 ˆB xB

R φ
ρ

Figure 13.12: View down the z-axis of a rod with magnetic permeability μ immersed in a uniform transverse
magnetic field. Only the external field B0 is shown.

Figure 13.13: A diagram of lines of B(r) published by Faraday for a uniform field perturbed by magnetizable
rods that point out of the plane of the paper. Bin > B0 for the paramagnetic (P) rod on the left. Bin < B0 for the
diamagnetic (D) rod on the right. Faraday did not know that the field inside both rods is uniform [see (13.82)].
The numerical labeling was used by him in his discussion. The diagram appears in an 1851 entry of his
Experimental Researches in Electricity.

Equation (13.82) shows that Bin > B0 when κm > 1 and Bin < B0 when κm < 1. In other words, the
density of magnetic field lines inside the rod is larger (smaller) than the external field line density
for paramagnetic (diamagnetic) matter. This point was appreciated by Faraday when he published
Figure 13.13. Without the benefit of mathematics, he correctly understood that paramagnetic matter
“attracts” field lines to its interior while diamagnetic matter “expels” magnetic field lines from its
interior. The origin of this behavior will become clear in Section 13.7.2.

Faraday created the situation studied above by inserting one end of a magnetizable rod into the
inhomogeneous field B(z) between the poles of a strong magnet. The magnetic dipole moment induced
in each volume element dV of the rod is dm = dVM = dV χmH. Therefore, ifA is the cross sectional
area of the rod and B0 is the field strength at the end of the rod, (12.40) gives the net force on the rod
in the z-direction along its length as

Fz =
∫

dmk

∂

∂z
Bk = 1

2

χm

1 + χm

A

μ0
B2

0 . (13.83)

Because χm is positive for a paramagnet and negative for a diamagnet, Faraday could distinguish a
paramagnetic rod from a diamagnetic rod by the direction of the force (13.83).

An alternative derivation of (13.82) exploits the fact that H0 = H0x̂ induces a magnetization M =
χm(H0 + Hind), and thus a fictitious magnetic surface charge density σ ∗ = M · ρ̂ = M cosφ on the
cylinder surface. Using the analogy between H and E, any one of several electrostatic methods shows
that a cosφ surface charge distribution produces a uniform field Hind = − 1

2 M inside the cylinder.
Therefore,

Hind = −1

2
χm(H0 + Hind) ⇒ Hind = − χm

χm + 2
H0. (13.84)

Equation (13.82) follows because μ = μ0(1 + χm) and B = μ(H0 + Hind).

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-13 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 11:33

428 MAGNETIC MATTER: PERMANENT AND INDUCED DIPOLES

Application 13.2 Magnetic Shielding

The fact that B(r) tends to concentrate in regions of high permeability is often used to shield isolated
regions of space from the unwanted effects of an external field. The potential-theory method of the
previous section is well suited to demonstrating this for the case of a cylindrical magnetic shell exposed
to a uniform external field Bext oriented perpendicular to the cylinder axis. The lines of B one finds for
this problem are sketched in Figure 13.14.

a

b

Figure 13.14: Side view of a cylindrical shell of magnetic matter which captures the flux of an external
magnetic field. The field inside the shell is so small that only three magnetic field line are visible on the
scale used to draw the lines.

If the shell has relative permeability κ = μ/μ0, inner radius a, and outer radius b, the reader can
confirm that the magnetic field inside the cylinder is constant:

Bin(ρ < a) = 4κb2

(κ + 1)2b2 − (κ − 1)2a2
Bext. (13.85)

This formula properly reduces to Bext when κ = 1. More interesting is the limit κ � 1 where

Bin(ρ < a) ≈ 4b2

b2 − a2

Bext

κ
κ � 1. (13.86)

This shows that the interior field goes to zero as 1/κ and that the shielding is most efficient when the
thickness of the tube is not very small compared to its radius. �

13.6.5 The Method of Images for Magnetic Matter
A distribution of magnetization M(r) or current density jf (r) embedded near an interface between two
magnetizable media creates fields that can be determined using a magnetic analog of the method of
images. Figure 13.15 shows the example of a current loop I embedded in a medium with permeability
μL. To analyze this situation, we recall from Figure 11.6 that any finite current loop can be decomposed
into a sum of infinitesimal current loops. This invites us to treat the loop shown as infinitesimal and
thus representable by a point magnetic dipole with moment m (indicated by the arrow embedded in
medium L).

To this information we add the insight gained from the problem of the uniformly magnetized sphere
solved in Application 13.1, namely, that the external field of a point magnetic dipole may be regarded
as produced by either circulating charge or fictitious magnetic charge (indicated by the plus and
minus signs embedded in medium L). This suggests the following strategy: calculate the magnetic
scalar potential ψ(r) produced by a single magnetic point charge g embedded in medium L and use
superposition to treat the cases of embedded M(r) or embedded jf .
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RL

m
R

m
I

R
I

0z

Figure 13.15: A current ring I in magnetic medium L (solid curve) and an image current ring IR (dotted) in a
medium R where μR > μL. The associated dipole moment vector in medium L (R) points slightly into (out of)
the plane of the paper. Plus and minus signs indicate magnetic charges which produce the same dipole moments.
The image moment mR reverses direction if μR < μL.

From (13.41), the potential of a point magnetic charge with density ρ∗(r) = gδ(r − r0) is

ψ(r) = g

4π

1

|r − r0| . (13.87)

Moreover, the magnetic-potential matching conditions (13.78) and (13.79) are exactly the same as the
electrostatic-potential matching conditions for the corresponding dielectric problem (Section 8.3.3)
with the permittivity ε replaced by the permeability μ. Therefore, motivated by the image solution to
the dielectric problem, we find that a magnetic charge g embedded at (ρ, z) = (0,−d) in region L

generates potentials (in cylindrical coordinates)

ψL(ρ, z) = 1

4πμL

[
g√

ρ2 + (z + d)2
+ gR√

ρ2 + (z − d)2

]
(13.88)

and

ψR(ρ, z) = 1

4πμR

gL√
ρ2 + (z + d)2

, (13.89)

where

gR = μL − μR

μL + μR

g and gL = 2μL

μL + μR

g. (13.90)

The magnetic charge g and its image gR have opposite signs when μR > μL.22 Focusing on this
case, the right side of Figure 13.15 shows the image magnetic charges generated in medium R by the
two magnetic charges in medium L. The arrow in medium R shows the orientation of the associated
image dipole moment mR . Notice that the component of mR perpendicular (parallel) to interface
is parallel (anti-parallel) to the corresponding component of m. The image moment mL is strictly
parallel to m. The right side of Figure 13.15 also shows the image current loop associated with mR .
By extrapolation, if μR > μL, we conclude that a current density j(x, y, z) in medium L generates a
magnetic field in L derivable from j itself and an image current density in medium R:

jR(x, y, z) = μL − μR

μL + μR

[−jx(x, y,−z),−jy(x, y,−z), jz(x, y,−z)
]
. (13.91)

The magnetic field in medium R is obtained from the image current density in medium L:

jL(x, y, z) = 2μL

μL + μR

j(x, y, z). (13.92)

We will use this result in Application 13.4 to estimate the sticking force of a refrigerator magnet.

22 This is one way to understand why magnets stick to magnetizable surfaces.
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M

Figure 13.16: A disk-shaped ferromagnet with M = Mφ̂.

13.6.6 Limiting Cases for the Permeability μ
We showed in Section 6.6.4 that a dielectric with permittivity ε → ∞ behaves in many ways like
a perfect conductor. It is interesting and useful to study similar limiting cases for the magnetic
permeability μ.

(A) The Perfect Ferromagnet (μ → ∞)
The effective permeability of a ferromagnet is very large (see Section 13.9). This leads us to define
a perfect ferromagnet as a material described by B = μH in the limit when μ → ∞. Since B =
μ0(M + H), the magnetic state of such a system is characterized by

H(r) = 0 and B(r) = μ0M(r) (perfect ferromagnet). (13.93)

Figure 13.16 shows an infinitesimally thin disk with magnetization M = Mφ̂. A perfect ferromagnet
with this special shape creates no magnetic charge because ρ∗ = −∇ · M = 0 and σ ∗ = M · n̂ = 0.
Since the density of free current is also zero, (13.56) gives H(r) = 0 as advertised.23

The ferromagnetic limit can be applied to the refraction of field lines near the interface between
two magnetic materials (see Figure 13.11). If medium 2 is a ferromagnet so μ2 → ∞, the law of
refraction in Example 13.3 is satisfied if the field lines in medium 1 are normal (α1 → 0) to the
surface of the ferromagnet. This is similar to the behavior of electric field lines at the surface of a
perfect conductor. Indeed, ferromagnetic pole pieces are machined to match the curvature of desired
magnetic equipotential surfaces in the same way that conducting electrodes are machined to match
the curvature of desired electric equipotential surfaces. This is illustrated for a magnetic quadrupole
field by Figure 13.17, which should be compared with the corresponding electric quadrupole case in
Figure 7.13.

The limit μR → ∞ in (13.90) gives an image magnetic charge gL = 0 while gR = −g. This
is similar to the behavior of a point charge outside a conducting surface. Combining these two
observations leads to the conclusion that a thin sheet of ferromagnetic material screens an external
magnetic field in the same way that a thin sheet of conducting material screens an external field. A
caveat is that the refraction law in Example 13.3 is also satisfied if the field lines in the ferromagnet are
parallel to the interface (α2 → 90◦). This solution places no particular restriction on α1. In practice,
one finds that the overall geometry of the problem determines whether α1 → 0 or α2 → 90◦.24

(B) The Superconductor (μ → 0)
A superconductor is a “perfect diamagnet” where B(r) = 0 at every point inside its volume V . In the
presence of an applied magnetic field Bapp(r), a superconductor spontaneously produces dissipation-
free, circulating currents on its surface that produce a field Bind(r) that cancels the applied field at
every interior point:

B(r) = Bapp(r) + Bind(r) = 0 r ∈ V. (13.94)

23 In a real ferromagnet, this type of structure rarely occurs because not all directions of M are energetically degenerate
as assumed here. See Section 13.9.1.

24 See Van Bladel (1961) in Sources, References, and Additional Reading.
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N

N

S

S

Figure 13.17: Lines of constant magnetic potential ψ for a quadrupole field produced by properly shaped
ferromagnetic pole pieces. Figure adapted from Klemperer (1972).

Although perfect diamagnetism is fundamentally a quantum mechanical phenomenon, classical
Maxwell theory provides a correct description of the B(r) = 0 state if a suitable constitutive rela-
tion is used for the superconductor.

For limited purposes, a superconductor may be considered a simple magnetic material (B = μH)
if μ = 0 is used to enforce (13.94). Combining this with the (always true) continuity of the normal
component of the magnetic field produces a boundary condition at the surface of a superconductor for
magnetostatics problems. We may write this as a condition on Bout, or as a condition on the magnetic
potential ψout with μin = 0 in the matching condition (13.79):

Bout · n̂|S = 0 or
∂ψout

∂n

∣∣∣∣
S

= 0. (13.95)

This boundary condition is consistent with the refraction law in Section 13.3 that tells us that Bout is
always tangential to the surface of a superconductor. The limit μR → 0 applied to the magnetic image
discussion of Section 13.6.5 shows that a point magnetic charge g placed outside the flat surface of a
superconductor induces an identical image charge g inside the superconductor. It is possible to levitate
a magnet (or current loop) above a superconductor because the repulsion of the magnet (or current
loop) by its image can be balanced by its weight (see Section 13.8.1). Of course, the true source of the
force is the magnetic field produced by currents induced on the surface of the superconductor.

(C) The Perfect Conductor
The limit μ → 0 can often be used to model the behavior of a perfect conductor. To understand
this, we anticipate that some time evolution results from Section 14.11 where we show that an
external magnetic field penetrates into the bulk of an ohmic conductor at a rate which decreases as
the conductivity σ increases. Figure 13.18(a) shows that the penetration is complete in the long-time
(t → ∞) limit. Classically, the only exception is the perfect conductor shown in Figure 13.18(b)
because σ → ∞ and the penetration rate goes to zero. Therefore, for magnetostatic purposes, it is
correct to set B = 0 in the interior of a perfect conductor. It is in this sense that the μ → 0 limit is
used and, invoking the continuity of the normal component of B, we get (13.95) as a magnetostatic
boundary for a perfect conductor. A classical surface current provides the field Bind needed to annul the
external field.

These results apply immediately to the image current formula (13.91) derived in connection with
Figure 13.15. We put μR = 0 to make the right half-space a perfect conductor and conclude that a

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-13 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 11:33

432 MAGNETIC MATTER: PERMANENT AND INDUCED DIPOLES

Ohmic
conductor

(a) (b) (c) (d)

Perfect
conductor

Superconductor
T > TC T < TC

Figure 13.18: Asymptotic (t → ∞) situation after t = 0 exposure to a uniform magnetic field: (a) field
penetrates an ohmic conductor; (b) field does not penetrate a perfect conductor; (c) field penetrates a
superconductor when T > TC ; field does not penetrate a superconductor when T < TC .

current flowing in the plane z = −d induces an image current flowing in the opposite direction in the
plane z = d. Thus, a parallel plane current loop is repelled by a perfect conductor, just as it was by the
superconductor in the previous section.

The foregoing suggests that a superconductor and a perfect conductor differ little from the point of
view of magnetostatics. To gain a deeper understanding, Figure 13.18(c) shows that field penetration
occurs for a superconductor when the temperature T is greater than the superconducting transition
temperature TC . This is so because, when T > TC , a superconductor is just an ordinary ohmic medium.
However, when T < TC , quantum mechanical effects induce surface currents which oppose the pene-
tration of an external field into the bulk of a superconductor. The final result, shown in Figure 13.18(d),
is B = 0 as discussed above. The difference between a perfect conductor and a superconductor appears
when we study Figure 13.18(a) as σ → ∞ and Figure 13.18(c) as T drops below TC . In the first case,
nothing happens and the existing magnetic flux remains trapped inside the (now perfectly conducting)
sample. In the second case, superconducting surface currents appear and create a field Bind which
annuls the penetrated flux. In the colorful language of superconductivity, one says that the magnetic
flux is “expelled” from the bulk and we return to Figure 13.18(d).

Example 13.4 Find the magnetic dipole moment of a perfectly conducting sphere with radius a.

Solution: We assume a uniform external field B0. By symmetry, the presumptive magnetic moment
m sits at the center of the sphere and produces a dipole magnetic field Bind which, outside the sphere,
is identical to the magnetic field produced by the surface current induced on the sphere by B0.
Using the point dipole field (11.33), the boundary condition (13.95) can be written

−r̂ · B0 = r̂ · Bind(r = a) = μ0

2π

r̂ · m
a3

.

Therefore, with B = μ0H0, the magnetic moment of the sphere is

m = −2πa3H0.

Alternatively, we showed in Example 13.2 that a sphere with permeability μ placed in an external
magnetic field B0 = μ0H0 develops a magnetic moment

m = 4πa3

(
μ− μ0

μ+ 2μ0

)
H0.

The μ → 0 limit of this expression, m = −2πa3H0, confirms the result above.
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13.7 The Energy of Magnetic Matter

The total energy of magnetic matter contributes essentially to its thermodynamic properties. The
potential energy of magnetic matter facilitates the calculation of forces that act in and on the matter.
We discuss both in this section, beginning with a general magnetized body and then specializing to
the special case of a simple magnet.

13.7.1 The Total Energy UB

We showed in Section 12.2.1 that the Lorentz force does no work on a moving charged particle.
Therefore, the internal energy of an element of matter with velocity υ(r) changes only because the
Coulomb electric force density ρ(r)E(r) does quasistatic work at a rate

ρ(r)E(r) · υ(r) = j(r) · E(r). (13.96)

The relevant portion of j (r) for magnetic matter is the magnetization current density jM(r) = ∇ ×
M(r). This means that the internal energy of magnetic matter increases at a rate per unit volume

∂uint

∂t
= (∇ × M) · E = (∇ × E) · M + ∇ · (M × E). (13.97)

The last term vanishes when we integrate over all space. Therefore, using ∇ × E = −∂B/∂t ,

∂uint

∂t
= −∂B

∂t
· M. (13.98)

To this, we add the change in field energy density. Using (12.98) and (13.52), the change in the total
internal energy density is then

duB = dufield + duint = d
{
B2/2μ0

}− M · dB = H · dB. (13.99)

The total energy is the net work required to establish the field B. This leads us to a fundamental
expression for the total energy of magnetized matter:

UB =
∫

d 3r

B∫
0

H · δB. (13.100)

We infer from (13.99) that UB is a natural function of the field B. Therefore, if R labels the center of
mass of the magnet, UB = UB (B,R), and the analog of (12.108) is

H = 1

V

(
∂UB

∂B

)
R

and F = −
(
∂UB

∂R

)
B
. (13.101)

13.7.2 UB for a Simple Magnet
The integral (13.100) cannot be done analytically for, say, a ferromagnet where B depends on H in a
complicated way (see Section 13.9). By contrast, the integration is straightforward for a simple magnet
where B = μH. The result is

UB [B] = 1

2

∫
d 3r

B∫
0

B · δB
μ

= 1

2

∫
d 3r μ|H|2 = 1

2

∫
d 3r B · H. (13.102)
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An equivalent expression for the magnetic energy follows if we insert B = ∇ × A into the rightmost
member of (13.102), integrate by parts, and use ∇ × H = jf :

UB [B] = 1

2

∫
d 3r A · jf . (13.103)

Equation (13.102) predicts that free current is attracted to regions where μ is large. This is so because
the H field produced by a free current is largest near itself and the volume integral ofμ|H|2 in (13.102)
is maximized when μ is large where |H| is large.25 This explains the attractive force between the
current loop and the interface in Figure (13.15) when μR > μL.

If we except situations constrained by symmetry, it is generally true that paramagnetic matter
“attracts” lines of B and diamagnetic matter “repels” lines of B. This occurs because the magnetization
created by B in a simple medium amounts to a collection of point magnetic dipoles aligned (anti-
aligned) with B for paramagnetic (diamagnetic) matter. Moreover, the magnitudes of the induced
dipoles are proportional to |χm|. Therefore, the potential energy −m · B [see (12.55)] gained by each
dipole in paramagnetic matter is largest when B is large in regions where |χm| is large. Similarly, the
potential energy lost by each dipole in diamagnetic matter is smallest when B is small in regions where
|χm| is large. This provides a natural energetic explanation for the field line patterns in Figure 13.12
and Figure 13.14.

13.7.3 The Energy to Magnetize Simple Matter
Let B0 be a magnetic field in vacuum. It is instructive to calculate the change in energy that occurs
when a sample of simple magnetic matter is inserted into the field, holding the currents which created
B0 fixed. Because the sample magnetizes, the magnetic field B0(r) changes to B(r) and the auxiliary
field H0(r) = B0(r)/μ0 changes to H(r). Using (13.102), the change in energy is

�UB [H] = 1

2

∫
d 3r (H · B − H0 · B0). (13.104)

By adding and subtracting 1
2 (H · B0 − H0 · B), we temporarily complicate (13.104) to

�UB = 1

2

∫
d 3r [B · (H − H0) + (H − H0) · B0 + B · H0 − H · B0]. (13.105)

The key step uses the equality of (13.102) and (13.103) to transform (13.105) to

�UB = 1

2

∫
d 3r [A · (jf − jf 0) + (jf − jf 0) · A0 + (B − μ0H) · H0]. (13.106)

The final result follows from B = μ0(H + M) and our assumption that jf = jf 0:

�UB = 1

2

∫
d 3r M · B0. (13.107)

As discussed in Section 12.7.4 and in the two subsections to follow,�UB is positive because it includes
the energy required to maintain the currents. The negative of (13.107) is the potential energy gained
by the matter during the process of magnetization.

13.7.4 The Potential Energy ÛB

Most magnetic systems operate under conditions of fixed current. In the present context, this makes
the free current jf the desirable independent variable. Since ∇ × H = jf , the field H is an equally

25 Recall from the end of Section 12.7.3 that magnetic forces tend to maximize UB .
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good choice for the independent control parameter. Using (13.102) and the method of Legendre
transformation (cf. Section 6.7.5), it is straightforward to define a potential energy function that is a
natural function of H rather than B. The function of interest is

ÛB = UB −
∫

d 3r B · H. (13.108)

To confirm that ÛB = ÛB [H], it is enough to combine (13.100) with the total differential dÛB computed
from (13.108). The result is

dÛB = −
∫

d 3r B · δH. (13.109)

This shows that the analog of (13.101) is

B = − 1

V

(
∂ÛB

∂H

)
R

and F = −
(
∂ÛB

∂R

)
H

. (13.110)

The notation is consistent with that used in Section 12.7.

13.7.5 The Potential Energy of a Simple Magnet
For simple matter, we can use (13.102) for UB in (13.108). Since B = μH,

ÛB = −1

2

∫
d 3r B · H = −1

2

∫
d 3r μ|H|2 = −UB. (13.111)

An equivalent formula follows from (13.103) and the equality of the first and last terms in (13.111):

ÛB = −1

2

∫
d 3r A · jf . (13.112)

As noted earlier, (13.111) explains the attraction between the loop of free current and the magnetic
interface in Figure 13.15 when μR > μL. The potential energy ÛB is reduced by a force which tends
to increase the magnitude of H in the medium with the largest permeability. We will make further use
of these results in Section 13.8.3.

13.8 Forces on Magnetic Matter

13.8.1 Coulomb’s Law for Magnetism
A remarkable and non-obvious feature of the fictitious magnetic charge densities defined in Section 13.4
is that the force between two isolated magnetized objects can be calculated using these densities and a
Coulomb-like inverse-square law of force. We demonstrate this here for the case of two very long and
very thin magnetized rods of the kind used by Coulomb in his original magnetism experiments. The
next section gives a general proof for arbitrary distributions of magnetic matter.

Figure 13.19 shows two magnetic rods in a collinear arrangement separated by a distance d. The force
between them is given by Ampère’s formula (12.24) evaluated using their respective magnetization
currents. The volume current density jM = ∇ × M is zero because M is uniform. The surface current
density KM = M × n̂ is solenoidal and circulates in opposite directions around the circumference of
the two rods. There is no surface current density on the end cap surfaces of either rod. Our strategy to
calculate the net force between the rods is to add up the forces between a dense set of current rings
(representing one rod) and a dense set of coaxial and counter-circulating current rings (representing
the other rod).
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1M2M
d

0x

++

Figure 13.19: Two collinear rods separated by a distance d. The uniform magnetizations of the rods point toward
one another as shown. Plus and minus signs indicate fictitious magnetic point charges at the ends of the rods.

In Example 12.7, we calculated the force between two coaxial and counter-circulating current rings
with radius R separated by a distance h. The thin rods of interest here correspond to the limit h � R

where the repulsive force between the rings involves only the magnetic moment of each ring:

F = 3μ0

2π

m1m2

h4
. (13.113)

This shows that our calculation effectively models each rod as a linear array of parallel, point magnetic
dipoles. For a rod with magnetization Mk , length Lk , and cross sectional area Ak , the dipole moment
per unit length of rod is

mk

Lk

= MkAk ≡ gk. (13.114)

By superposing forces like (13.113) between every dipole of one rod and every dipole of the other rod,
we represent the net repulsive force between the rods in the form

F = 3μ0

2π

−d∫
−L2−d

dx ′
L1∫

0

dx
g1g2

(x − x ′)4
. (13.115)

Straightforward integration gives the final result,

F = μ0

4π

g1g2

d2

[
1 − d2

(L1 + d)2
− d2

(L2 + d)2
+ d2

(L1 + L2 + d)2

]
. (13.116)

To interpret (13.116), we compute the fictitious magnetic charge density σ ∗ = M · n̂ associated with
each rod. As shown in Figure 13.19, there are two positive point charges at the rod ends nearest to
each other and two negative point charges at the rod ends farthest from each other. The magnitudes q∗

k

of these charges satisfy

q∗
k

Ak

= σ ∗
k = Mk. (13.117)

Comparing (13.117) with (13.114) shows that q∗
k = gk . Now, from (10.29) or from (13.37) with

ρ∗ = gδ(r), the magnetic field produced by a point magnetic charge g at the origin is

B(r) = μ0g

4π

r̂
r2
. (13.118)

This shows that, if F = g0B(r0) is the force exerted on g0 by g, (13.116) is reproduced exactly when
we sum this force over four pairs of fictitious magnetic charges at the ends of the rods. We will prove in
the next section that this tremendous labor-saving device extends to arbitrary distributions of magnetic
charge. The force (13.116) reduces to the net inverse-square law observed by Coulomb in the long-rod
limit when L1, L2 � d.

13.8.2 An Isolated Magnetic Body
Figure 13.20 shows an isolated sample of magnetic matter with magnetization M(r) in an external
electric field B0(r). It is immaterial whether M is due to B0 or not. Several formulae are available
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M(r)

B0(r)

Figure 13.20: An isolated sample of magnetized matter in the presence of an external magnetic field B0(r). The
field lines represent B0(r) only.

to calculate the electromagnetic force exerted by B0(r) on this object. The first is the total Lorentz
force evaluated using (i) the volume and surface magnetization current densities jM = ∇ × M and
KM = M × n̂ and (ii) whatever free current density jf happens to be present inside the magnet. Thus,

F =
∫
V

d 3r [jf (r) + ∇ × M(r)] × B0(r) +
∫
S

dS [M(rS) × n̂(rS)] × B0(rS). (13.119)

A second point of view recalls from Section 13.3.1 that M(r) behaves exactly like a volume
distribution of point magnetic dipoles. Therefore, a generalization of the point dipole result (12.42)
suggests that the force on the sample volume is

F =
∫
V

d 3r jf (r) × B0(r) +
∫
V

d 3r [M(r) · ∇]B0(r). (13.120)

The force formulae (13.119) and (13.120) are equal by virtue of the identity∫
V

d 3r [(M · ∇)B0 − M(∇ · B0) + M × (∇ × B0) + B0 × (∇ × M)] =
∫
S

dS (M × n̂) × B0,

(13.121)
and because ∇ · B0 = 0 (always true) and ∇ × B0 = 0 (the sources of B0 are far away).

Finally, Coulomb’s law for magnetism (Section 13.8.1) emerges if we rewrite (13.120) using the
identity ∫

S

dS(n̂ · M)B0 =
∫
V

(∇ · M)B0 +
∫
V

(M · ∇)B0. (13.122)

Since ρ∗ = ∇ · M and σ ∗ = M · n̂,

F =
∫
V

d 3r jf (r) × B0(r) +
∫
V

d 3r ρ∗(r)B0(r) +
∫
S

dS σ ∗(rS)B0(rS). (13.123)

In other words, the magnetic force on an isolated body due to its own magnetization can be computed
with no approximation using the idea of fictitious magnetic charge.

The total magnetic field, B(r) = B0(r) + Bself (r), is the sum of the external field and the field
produced by the magnet. However, because a magnetic body cannot exert a force on itself, it should
be possible to replace the external field B0(r) by the total field B(r) in all the foregoing. This is true
for the volume integrals in (13.119) and (13.123). For the corresponding surface integrals, we replace
B0(rS) by Bavg(rS) = 1

2 [Bin(rS) + Bout(rS)] because the tangential component of B is generally not
continuous at a material interface (see Section 10.3.4). Therefore, if j(r) and K(rS) are the total volume
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and surface current densities, valid formulae for the net force are

F =
∫
V

d 3r j(r) × B(r) +
∫
S

dS K(rS) × Bavg(rS) (13.124)

and

F =
∫
V

d 3r jf (r) × B(r) +
∫
V

d 3r ρ∗(r)B(r) +
∫
S

dS σ ∗(rS)Bavg(rS). (13.125)

The presence of the gradient generates a surface term when we replace B0(r) by B(r) in (13.120). We
leave it to the reader to confirm that

F =
∫
V

d 3r jf (r) × B(r) +
∫
V

d 3r [M(r) · ∇]B(r) + μ0

2

∫
S

dS [n̂(rS) · M(rS)]2 . (13.126)

The bilinear character of the integrands in this section raises the same questions about the macro-
scopic validity of our force formulae as arose in the Lorentz averaging discussion of Section 2.3.1.
Therefore, as we did in Section 6.8.1 for dielectric matter, it is necessary to treat the validity of for-
mulae like (13.124), (13.125), and (13.126) as logically independent assumptions of the macroscopic
theory, subject to verification by experiment. On the other hand, it is straightforward to check that the
gauge freedom of M(r) (see Section 13.2.5) has no effect on the net force and torque.

13.8.3 A Simple Magnetic Sub-Volume
Section 13.8.2 was devoted to the net force that an external magnetic field exerts on an isolated
magnetized body. In this section, we calculate the force on a simple magnetic sub-volume. This class
of problems includes the force on a free current distribution embedded in a permeable medium and
the force on the interface between two simple magnetic materials. As in the corresponding dielectric
problem (Section 6.8.3), this cannot be done without a proper accounting of the short-range, quantum
mechanical forces responsible for cohesion and elasticity in the magnet. It is necessary to do this
(albeit indirectly through the permeability) because these internal forces depend on the magnetization
state of the sample. On the other hand, all internal forces cancel out in pairs when we sum over all
sub-volumes to find the net force on an an isolated magnetic body.

13.8.4 Force from Variation of Energy for a Simple Magnet
Following the dielectric example of Section 6.8.4, we calculate force density in simple magnetic matter
from the variation

δÛB = −F · δr (13.127)

of the magnetic potential energy induced by a rigid displacement δr. Given (13.111), the total variation
is

δÛB = −
∫

d 3r B · δH − 1

2

∫
d 3r δμ|H|2. (13.128)

Without any calculation, the second term on the right side of (13.128) permits us to reiterate a point
made slightly differently in Section 13.7.2, namely, that the magnetic potential energy decreases
(increases) if a paramagnetic (diamagnetic) material is inserted into a region of empty space where
a field is present. This is so because the induced magnetic moment of a paramagnet (diamagnet) is
parallel (anti-parallel) to the existing field and the energy of a magnetic dipole moment is lowered
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(raised) when it is aligned (anti-aligned) with a magnetic field. Hence, a paramagnet is attracted to
regions of strong field from regions of weak field. A diamagnet is repelled from regions of strong field
toward regions of weak field.

Our strategy is to use (13.103) to rewrite (13.128) in the form

δÛB = −
∫

d 3r A · δjf − 1

2

∫
d 3r δμ|H|2. (13.129)

From the analog of Figure 3.13, the variation of free current density is [see (3.65)]

δjf (r) = jf (r − δr) − jf (r) = −(δr · ∇)jf . (13.130)

A similar formula holds for δμ(r). Substituting both into (13.129), we can exploit the steady-current
condition ∇ · jf = 0 and the fact that δr is a constant vector to rewrite the jf term using

∇ × (δr × jf ) = [(∇ · jf ) + (jf · ∇)]δr − [(∇ · δr) + (δr · ∇)]jf = −(δr · ∇)jf . (13.131)

From here, an integration by parts and (13.127) give the desired result for the force:

F = −δÛB

δr
=
∫

d 3r jf (r) × B(r) − 1

2

∫
d 3r H 2(r)∇μ(r). (13.132)

The parallelism between (13.132) and the corresponding formula (6.130) for the force on a dielectric
is striking. We draw particular attention to the second term, which shows that there is a force density
associated with spatial variations in μ(r). Example 13.5 below shows that special care is required if
μ(r) changes abruptly from one constant value to another.

13.8.5 The Magnetic Stress Tensor for a Simple Magnet
The analogy with dielectric matter motivates us to manipulate (13.132) into a form that is usually more
convenient for calculations. To do this, begin with the identity 1

2H
2∂jμ = 1

2∂j (BkHk) − Bk∂jHk and
use the Levi-Cività machinery to simplify jf × B = (∇ × H) × B. Some cancellation occurs and we
find

F =
∫

d 3r (B · ∇)H − 1

2

∫
d 3r ∇(B · H). (13.133)

Now convert the last term in (13.133) to a surface integral and use the identity (13.122) with a = B
and b = H to do the same with the first term. The result is very reminiscent of the formula (12.78) for
the force on a distribution of current in vacuum:

F =
∫
S

dS
{
(n̂ · B)H − 1

2 n̂(B · H)
}
. (13.134)

Indeed, if the analogy with its vacuum counterpart holds up, (13.134) is the expression we seek for the
force on a sub-volume � of magnetic matter enclosed by a surface S.

It is conventional at this point to define the magnetic stress tensor for simple magnetic matter as

Tij (H) = BiHj − 1
2δijB · H. (13.135)
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This object is symmetric because BiHj = μHiHj . Combining (13.135) with the divergence theorem,
we can write the j th component of the force (13.134) on � in the form26

Fj =
∫
�

d 3r ∂iTij (H). (13.136)

Application 13.3 The Magnetic Force on an Embedded Volume

Figure 6.17 shows a simple magnet with permeability μ = κmμ0. Embedded in this magnet is a free
line current I and a second magnet with permeability μ′ = κ ′

mμ0. A line current I ′ is embedded in
the second magnet. Our goal is to find the force exerted on the embedded magnet and I ′. In principle,
this force can be computed using the Helmholtz formula (13.132). The stress tensor method turns out
to be simpler.

Figure 13.21: The dashed line is the boundary S of a volume � which is infinitesimally larger than the
volume of a magnet with permeability κ ′

m. The latter is embedded in a larger magnet with permeability κm.

Our strategy is to evaluate (13.134) using a surface S (dashed in Figure 13.21) which bounds a
volume � which is infinitesimally larger than the physical volume of the embedded magnet. Because
H = B/μ everywhere on S, we can pull 1/μ outside the integral and then transform the surface integral
into a volume integral as we did to get (13.136). The result is

Fj = 1

μ

∫
�

d 3r ∂i(BiBj − 1
2δijB · B). (13.137)

With μ = κmμ0, the algebra in Section 12.5 shows that (13.137) reduces to

F = 1

κm

∫
�

d 3r j (r) × B(r). (13.138)

Let us apply (13.138) to find the force exerted by a uniform external field B0 on a filamentary
current I that flows up the z-axis of an infinite medium with permeability μ. From (13.66), the only
magnetization current in the problem is jM = χmjf , so we can choose � as any cylindrical volume
coaxial with the z-axis. The total field B is the sum of B0 and the field produced by j = jf + jM = κmjf .
But the latter cannot exert a force on � itself. Therefore, (13.138) reduces to

F =
∫
�

d 3r jf (r) × B0. (13.139)

The force is exactly the same as if the magnetic matter were absent.

26 See Brown (1951) and Landau and Lifshitz (1960) in Sources, References, and Additional Reading. These authors
use entirely different arguments to derive (13.136) for an arbitrary sub-volume. Both consider the possibility of
elastic deformation of the sub-volume and the variation of the permeability with density.
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A similar argument applies if we replace the wire in the previous example with a current-carrying
wire with finite radius and permeability μ′. In this case, j(r) includes a magnetization current density
KM induced on the surface of the wire. Nevertheless, the field produced by j(r) does not exert a force
on itself. The field B0 does not exert any force on the magnetic matter (or the equivalent magnetization
currents) because only a non-uniform field produces a net force on one or many point magnetic dipoles.
This implies that the force is still given by (13.139). A brute-force calculation using (13.138) confirms
this result. �

Example 13.5 Calculate the force per unit area exerted on the μ1-μ2 interface at z = 0 in
Figure 13.11 in Section 13.6.3.

, 22 BH

1

2

, 11 BH

z

Figure 13.22: The interface z = 0 separates permeable medium μ1 from permeable medium μ2. Dashed
lines indicate the integration surface S in (13.134).

Method I: We apply (13.134) to a closed surface S that fits snugly over the z = 0 plane (dashed
lines in Figure 13.22). B = μH in each region and it is convenient to decompose all fields into
components perpendicular and normal to the interface, e.g., H = H⊥ +Hzẑ. Since n̂ = +ẑ and
n̂ = −ẑ for the z > 0 and z < 0 portions of S, respectively, the force per unit area is

f = μ2H2z(H2⊥ +H2zẑ) − 1
2 ẑμ2(H 2

2⊥ +H 2
2z)

−μ1H1z(H1⊥ +H1zẑ) + 1
2 ẑμ1(H 2

1⊥ +H 2
1z).

From Section 13.5.1, the matching conditions at the interface are

H1⊥ = H2⊥

and

B1z = μ1H1z = μ2H2z = B2z.

This information simplifies the force-density expression to

f =
[

1

2
(μ1 − μ2)H 2

⊥ + 1

2
B2
z

(
1

μ2
− 1

μ1

)]
ẑ.

Both terms tend to expand the volume of the medium with large μ and shrink the volume of the
medium with small μ.

Method II: We apply (13.132) where the force comes entirely from the second term. This gives
the force per unit area in the form f = f ẑ where

f = −1

2

0+∫
0−

[
H 2

⊥ +H 2
z

] dμ
dz

dz.

Formally, μ(z) = μ1�(−z) + μ2�(z) so dμ/dz = (μ2 − μ1)δ(z). This makes the integral ill-
defined because Hz is not continuous at z = 0. However, Bz is continuous so we rewrite the

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-13 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 11:33

442 MAGNETIC MATTER: PERMANENT AND INDUCED DIPOLES

integral as

f = −1

2

0+∫
0−

H 2
⊥(μ2 − μ1)δ(z)dz + 1

2

0+∫
0−

B2
z

d

dz

(
1

μ

)
dz.

Therefore, in agreement with Method I,

f = 1

2
(μ1 − μ2)H 2

⊥ + 1

2
B2
z

(
1

μ2
− 1

μ1

)
.

Example 13.6 Calculate the force that pulls a close-fitting cylindrical rod with permeability μ into
a long solenoid. The solenoid in Figure 13.23 has a circular cross sectional area A and is tightly
wound with N turns of a wire which carries a current I .

L

μ

x = 0 x = s

Figure 13.23: Side view of a solenoid winding with a solid, cylindrical rod of magnetizable matter partially
inserted. A hole cut into the solenoid reveals how far the rod has been inserted.

Method I: We can compute the force from F = −(∂ÛB/∂s)x̂ if the rod is inserted by an amount
s along the x-axis. Since χ � 1, the field H inside the solenoid is very nearly equal to the field
H0 = NI/Lx̂ produced by the solenoid alone. Therefore, ignoring fringing effects, the energy
from (13.108) is

ÛB = −1

2

∫
d 3r B · H0 = −1

2
A[sμ+ (L− s)μ0]H 2

0 .

This gives the force as

F = −∂ÛB

∂s
x̂ = (μ− μ0)

N2I 2A

2L2
x̂.

Method II: We use the stress tensor integral (13.134). The simplest choice for S is the surface of
a hollow cylinder (closed at both ends) which barely encloses the entire rod. This is inconvenient
because it requires us to estimate H on those portions of S that lie outside the solenoid. It is better
to choose a surface which lies everywhere inside the solenoid, where B and H ≈ H0 both point
along the x-axis. Only the second term in (13.134) contributes if we do this and choose S as
the surface of a cylinder of infinitesimal length (closed at both ends) which barely encloses the
end of the rod which lies inside the solenoid. Only the two disk-shaped surfaces which cap the
cylinder contribute and these have unit normals which point in opposite directions. Therefore, we
find without difficulty that

F = −1

2

∫
S

dS n̂ (B · H0) = 1

2
A(μ− μ0)H 2

0 x̂ = (μ− μ0)
N2I 2A

2L2
x̂.
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Remark: Both methods presented here unfortunately obscure the physical origin of the force.
Since the rod lies in vacuum, the force on its volume V can be calculated from (13.120):

F = μ0

∫
V

d 3r (M · ∇)H0.

The force must originate from the fringe field at the end of the solenoid because only this part of
H0 is not spatially uniform.

13.9 Permanent Magnetic Matter

The class of materials known as ferromagnets have been known since antiquity. A soft ferromagnet
in a small external field is a simple paramagnet with an effective value of μ that can exceed 104. A
hard ferromagnet—the subject of this section—does not obey the linear constitutive relation (13.61)
at all. Instead, a graph of M versus Hext (the latter produced by free currents flowing in nearby coils)
typically exhibits the non-reversible and non-single-valued behavior shown in Figure 13.24. This is
called magnetic hysteresis.

Beginning at Hext = M = 0, M(Hext) first traces out a highly non-linear “initial magnetization
curve”.27 The maximum or saturation value of M occurs when all the magnetic moments in the
sample point in the same direction. However, when Hext is decreased back to zero, the system does not
retrace the initial magnetization curve back to M = 0. A macroscopic remanent magnetization M �= 0
remains when Hext = 0. This is the property that defines a permanent magnet. The magnetization can
be driven to zero and ultimately saturated in the opposite direction by applying Hext in the opposite
direction. The net result is that M(Hext) traces out the closed hysteresis curve shown in Figure 13.24.

Why does the curve in Figure 13.24 have the particular shape it does? Why does the magnetization
not return to zero when the external field is removed? The details of the answer go far beyond the scope
of this book. Nevertheless, for at least some ferromagnets, the most important contributing factor to
hysteresis is the creation and motion of magnetic domains. This topic merits discussion here because
the relevant physics is almost entirely magnetostatics.

13.9.1 Magnetic Domains
For quantum mechanical reasons, every microscopic magnetic moment in a ferromagnet sponta-
neously aligns itself with the magnetic moments in its neighborhood.28 This would produce a uni-
formly magnetized sample except that ferromagnets invariably break up into a collection of macro-
scopic regions called magnetic domains. All the moments are aligned within any given domain, but
the direction of M is not the same in every domain. As we will show, a ferromagnet minimizes
its magnetostatic energy by creating magnetic domains and arranging them to produce the small-
est amount of fictitious magnetic charge. By this rule, the four-domain arrangement shown in Fig-
ure 13.25(a) is energetically preferable to the single-domain state of uniform magnetization shown in
Figure 13.25(b).

We consider an isolated ferromagnet in the absence of free currents or other sources of external
fields. We also assume that |M(r)| takes its saturation maximum valueMS at every point in the sample.
This means that the internal energy required to create a bit of magnetization is not at issue. The energy

27 The effective permeability is usually defined as the maximum value of the ratio M/Hext evaluated along the initial
magnetization curve.

28 This cooperative phenomenon disappears above a material-dependent critical temperature.
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Figure 13.24: A typical hysteresis curve for a ferromagnet like iron. Beginning at O, the arrows indicate the
non-reversible variations in M as Hext varies.

+ ++ +
+

+
+

+

(a) (b)

Figure 13.25: Two possible domain patterns for a rectangular sample. Plus and minus signs denote fictitious
magnetic charge. The charge distribution is shown for only one of the five internal interfaces of the four-domain
configuration.

of interest is the potential energy of each magnetic moment in the field produced by all the other
magnetic moments in the sample. This is the magnetostatic analog of the electrostatic self-energy
(6.107). Therefore for the present case of zero external field, the energy to be minimized is29

Û self = −1

2

∫
d 3r M(r) · B(r). (13.140)

Our first step is to use B = μ0(H + M) to eliminate B from (13.140):

Ûself = −1

2
μ0

∫
d 3r |M|2 − 1

2

∫
d 3r M · H. (13.141)

The same equation can be used to eliminate M from the last term in (13.141). This gives

Ûself = −1

2
μ0

∫
d 3r |M|2 − 1

2

∫
d 3r B · H + 1

2
μ0

∫
d 3r |H|2. (13.142)

By assumption, |M(r)| = MS , so the first term on the right hand-side of (13.142) is a constant that can
be dropped. The second term in (13.142) is zero because (13.102) and (13.103) are equal and jf = 0.
This leaves the self-energy as

Ûself = 1

2
μ0

∫
d 3r |H|2. (13.143)

29 The reader should resist the temptation to minimize (13.111). The latter is valid for simple, linear matter only.
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We can now understand why the domain pattern in Figure 13.25(a) is preferred to the single-domain
state of Figure 13.25(b). Ûself in (13.143) takes its minimum value when the auxiliary field H(r) is
identically zero. From Section 13.5, we know that the sources of H(r) are free current and fictitious
magnetic charge. Here, jf = 0 and the volume charge ρ∗ = −∇ · M is zero inside every magnetic
domain. All that remains is the magnetic charge density σ ∗ = M · n̂ at the surfaces of the domains. In
Figure 13.25(a), no magnetic charge is created at any of the exterior sample surfaces and the charge
created by adjacent domains at their common interface is equal and opposite because each interface
makes an angle of 45◦ with respect to the sample edges. Therefore, H(r) ≡ 0 for this arrangement of
domains. This is not the case for Figure 13.25(b).
Ûself cannot be reduced to zero for samples of arbitrary shape. First, quantum mechanical

effects make some directions of magnetization energetically preferred to others.30 This prevents
the creation of smooth and closed “circles of M” like those sketched in Figure 13.16. In addi-
tion, there is an energy to be paid at every boundary where dissimilar domains meet. This is
because spins on opposite sides of the boundary are not aligned as the ferromagnetic state prefers.
Observed domain patterns minimize the sum of (13.143) and these other contributions to the total
energy.

Application 13.4 Refrigerator Magnets

A refrigerator magnet is a thin, wafer-like object of ferromagnetic material engineered to have a pattern
of magnetic domains like the one shown in Figure 13.26. Such magnets have two important properties:
(i) the magnetic field outside the wafer is nearly zero; and (ii) the attraction of the wafer to permeable
matter is very strong. The origin of both lies in the behavior of the field H = −∇ψ produced by the
wafer.

Figure 13.26: Edge view of a thin (t � L) wafer magnet in vacuum adjacent to a permeable material
(refrigerator) with μ > μ0. Plus and minus signs are the magnetic charges produced by the domains of the
wafer magnet and image charges in the refrigerator.

From Section 13.6.3, we know that the magnetic potential ψ(r) satisfies Laplace’s equation outside
the wafer. Moreover, the wafer’s source magnetic charge alternates in sign with a spatial periodicity L.
We may then apply the electrostatic experience gained in Section 7.5.2 and Section 8.3.4 to conclude
that the potential produced by such a source falls off as exp(−z/L) in the direction z perpendicular
to the direction of periodicity. The magnetic field has a similarly short range. Therefore, a wafer
magnet has essentially no magnetic effect on its environment until it is in intimate contact with another
object.

Each domain of the wafer magnet produces a strip of surface magnetic charge with density σ ∗ = MS .
The sign of the magnetic charge alternates from one strip to the next. According to Section 13.6.5,
each strip creates an image strip in the permeable refrigerator with opposite magnetic surface charge

30 This is the phenomenon of magnet anisotropy mentioned in a footnote to Section 12.4.4.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-13 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 11:33

446 MAGNETIC MATTER: PERMANENT AND INDUCED DIPOLES

M

Hext

Figure 13.27: Evolution of magnetic domains during the initial magnetization of a ferromagnet. The arrows
give the local direction of M in each domain.

density. If μ � μ0, the surface charge densities are equal and opposite for each strip and its image.
Therefore, Coulomb’s law of magnetism (Section 13.8.1) tells us that the force between the wafer
magnet and the refrigerator is approximately the wafer area A times the attractive force per unit area
between the plates of an infinite parallel-plate capacitor with surface charge density σ ∗. The field
produced by one plate is B = 1

2μ0σ
∗ so

F ≈ 1

2
μ0M

2
SA. (13.144)

The force per unit area predicted by (13.144) is about six times atmospheric pressure for a typical
refrigerator magnet. �

13.9.2 Magnetic Hysteresis
The shape of the M versus Hext curve in Figure 13.24 is determined largely by the field-induced
mobility of the boundaries between adjacent magnetic domains. Consider the initial magnetiza-
tion curve shown in Figure 13.27. The cartoon on the bottom left side of Figure 13.27 shows the
Hext = 0 domain pattern for a disk-shaped sample where only two directions of magnetization
are allowed due to quantum mechanical magnetic anisotropy. The net magnetization of this state
is M = 0.

When a field Hext > 0 is turned on, the magnetization curve rises from the origin in Figure 13.24
because the domain boundaries in Figure 13.27 move. Consider the boundary between two domains,
M1 and M2, where M2 happens to be more nearly parallel to Hext than M1. The magnetic potential
energy31 becomes more negative if individual magnetic moments in M1 right next to the boundary
rotate into the direction of M2, thereby moving the boundary. By this mechanism, the size of M1

shrinks and the size of M2 grows. The cartoons in Figure 13.27 show how domain motion driven by
Hext ultimately leads to a state of uniform magnetization. Hysteresis and remanent magnetization occur
because, for a variety of material-dependent reasons, the scenario sketched above does not exactly
retrace itself when the field is lowered. For a hard ferromagnet, the saturated state remains (nearly)
intact all way down to H = 0.

31 The relevant potential energy, ÛB = − ∫
d 3r M · B0, is the magnetic analog of the electrostatic potential energy

(6.101).

�
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Sources, References, and Additional Reading

The quotation at the beginning of the chapter is taken from the Chapter 1 of de Magnete, which was published in
Latin in 1600. An English-language edition is

W. Gilbert, On the Magnet (Dover, Mineola, New York, 1958).

Section 13.1 Three excellent treatments of the classical aspects of the magnetism of matter are

L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960).

W.F. Brown Jr., Magnetostatic Principles in Ferromagnetism (North-Holland, Amsterdam, 1962).

R.K. Wangsness, Electromagnetic Fields, 2nd edition (Wiley, New York, 1986).

Section 13.2 Our approach to volume and surface magnetization current density follows Landau and Lifshitz
(see Section 13.1 above). The magnetization function MO was introduced in Lorentz. Hirst discusses the gauge
freedom associated with this quantity.

H.A. Lorentz, “The fundamental equations for electromagnetic phenomena in ponderable bodies deduced
from the theory of electrons”, Proceedings of the Royal Academy of Amsterdam 5, 254 (1902).

L.L. Hirst, “The microscopic magnetization: Concept and application”, Reviews of Modern Physics 69, 607
(1997).

Section 13.4 These books illustrate the widespread use of fictitious magnetic charge in applied physics and in
older textbooks of electromagnetism.

M.G. Abele, Structures of Permanent Magnets (Wiley, New York, 1993).

H.M. Bertram, Theory of Magnetic Recording (University Press, Cambridge, 1994).

V.C.A. Ferraro, Electromagnetic Theory (Athlone Press, London, 1954).

A paper which proves that the demagnetization field is a constant for ellipsoids only is

K.R. Brownstein, “Unique shape of uniformly polarized dielectrics”, Journal of Mathematical Physics 28, 978
(1987).

The boxed discussion of circulating currents vs. true magnetic charge as the source of the magnetic dipole moment
of the proton was adapted from

W.A. Nierenberg, “The measurement of the nuclear spins and static moments of radioactive isotopes”, Annual
Reviews of Nuclear Science 7, 349 (1957).

G.I. Opat, “Limits placed on the existence of magnetic charge in the proton by the ground state hyperfine
splitting of hydrogen”, Physics Letters B 60, 205 (1976).

Section 13.6 Magnetic susceptibility is an intrinsically quantum mechanical phenomenon. Semi-classical models
exist, but none has predictive value. See

R.M. White, Quantum Theory of Magnetism, 2nd edition (Springer, New York, 1982).

Figure 13.13 comes from this short but excellent biography:

J.M. Thomas, Michael Faraday and the Royal Institution (Adam Hilger, Bristol, 1991).

An entry point to the literature of magnetic shielding is

T.J. Sumner, J.M. Pendlebury, and K.F. Smith, “Conventional magnetic shielding”, Journal of Physics D: Applied
Physics 20, 1095 (1987).

We do not discuss “magnetic circuit theory”. The reader should consult Wangsness (see Section 13.1 above) for
an introduction. This method is used to solve the problem posed by Figure 13.14 in

E. Paperno and I. Sasada, “Magnetic circuit approach to magnetic shielding”, Journal of the Magnetics Society
of Japan 24, 40 (2000).

Potential theory with ferromagnetic matter is the subject of

S.P. Thompson and M. Walker, “Mirrors of magnetism”, Proceedings of the Physical Society of London 13,
310 (1894).

J. Van Bladel, “Magnetostatic fields at an iron-air boundary”, American Journal of Physics 29, 732 (1961).
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Figure 13.17 was taken from

O. Klemperer, Electron Physics, 2nd edition (Butterworths, London, 1972).

The magnetic properties of superconductors are expertly discussed in the book by Landau and Lifshitz (see
Section 13.1 above). Another good reference is

T.P. Orlando and K.A. Delin, Foundations of Applied Superconductivity (Addison-Wesley, Reading, MA, 1991).

Section 13.7 Our treatment of energy in magnetic matter derives from Brown and Landau and Lifshitz (see
Section 13.1 above). Two discussions which make contact with the statistical mechanical (Hamiltonian) point of
view are

R. Balian, From Microphysics to Macrophysics (Springer, Berlin, 2007), Volume I, Section 6.6.5.

O. Narayan and A.P. Young, “Free energies in the presence of electric and magnetic fields”, American Journal
of Physics 73, 293 (2005).

Section 13.8 Forces on and in magnetic matter are a subtle subject. See Landau and Lifshitz (see Section 13.1)
for a careful discussion. Application 13.3 comes from a polemical article which eschews the use of energy methods
to calculate electromagnetic forces:

W.F. Brown, Jr., “Electric and magnetic forces: a direct calculation”, American Journal of Physics 19, 290
(1951).

Example 13.5 was familiar to Maxwell. Our method of solution follows

J. Schwinger, L.L. DeRaad, Jr., K.A. Milton, and W-Y. Tsai, Classical Electrodynamics (Perseus, Reading, MA,
1998).

Section 13.9 Besides Brown (see Section 13.1 above), two books which provide a modern view of ferromag-
netism and magnetic hysteresis are

G. Bertotti, Hysteresis in Magnetism (Academic, San Diego, 1998).

É. du Trémolet de Lacheisserie, D. Gignoux, and M. Schlenker, Magnetism (Springer, New York, 2005).

Application 13.4 was inspired by an introductory textbook which fully exploits the magnetic pole concept:

W. Saslow, Electricity, Magnetism, and Light (Academic, New York, 2002).

Problems
13.1 The Magnetic Field of an Ideal Solenoid Section 10.2.2 of the text evaluated a Biot-Savart integral to

show that a surface current K flowing azimuthally around on the surface of an infinitely long solenoid with
an arbitrary cross sectional shape produces a magnetic field B = μ0K ẑ inside the solenoid and B = 0
outside the solenoid. Use an equivalent magnetization argument to deduce the same result.

13.2 Equal and Opposite Magnetization The half-space z > 0 has uniform magnetization M = −M ẑ. The
half-space z < 0 has uniform magnetization M = +M ẑ. Find the magnetic field B at every point in space
using (a) the method of magnetization current and (b) the method of effective magnetization charge.

13.3 Equivalent Currents An insulating sphere with radius R rotates with angular velocity ω = ωẑ. The total
charge Q of the sphere is uniformly distributed over its surface.

(a) Show that the magnetic field outside the insulating sphere is identical to the magnetic field outside a
uniformly magnetized sphere of radius R when the magnetization M = M ẑ and M are suitably chosen.

(b) Use the result of part (a) to find the magnetic moment of the insulating sphere.

13.4 The Helmholtz Theorem for M

(a) Show that the Helmholtz theorem representation of the magnetization M(r) is equivalent to the equation
BM = μ0(HM + M).
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(b) The figure shows a thin film (infinite in the x and y directions) in which alternating strips have constant
magnetization M = ±M ŷ. Find B(r) and H(r) everywhere and discuss the behavior of the effective
magnetization current density.

z
y

x

13.5 The Virtues of Magnetic Charge

(a) Show that the magnetic dipole moment of a magnetized body can be written

m =
∫

d 3r rρ∗(r),

where ρ∗(r) = −∇ · M(r) is the density of fictitious magnetic charge.
(b) Let B1 and B2 be the magnetic fields produced by bodies with magnetizations M1 and M2, respectively.

Use the fact that magnetization current density is as “real” as electric current density to show that the
potential energy of interaction between the two bodies satisfies the reciprocity relation

V̂B = −
∫

d 3r M1 · B2 = −
∫

d 3r M2 · B1.

(c) If the two bodies in part (b) are solid and cannot overlap in space, show that

V̂B = μ0

4π

∫
d 3r

∫
d 3r ′ ρ

∗(r)ρ∗
2 (r′)

|r − r′| .

13.6 Atom Optics with Magnetic Recording Tape A very long piece of magnetic recording tape has a length
L, a width w � L, and a thickness t � w. The tape has a magnetization M(x) = x̂ M cos kx.

w
x

y

z
t

L

(a) Solve Laplace’s equation for the magnetic scalar potential and calculate B(x, y, z) just above the surface
of the tape. For this purpose, it is legitimate to treat the tape as both infinitely wide and infinitely long.

(b) Plot the field lines of B(r).
(c) Sketch the trajectory of a neutral atom which approaches the tape from above (but not exactly straight

down). Assume that the atom’s magnetic moment m remains permanently aligned anti-parallel to B.
Hint: Consider the interaction potential energy between the atom and the tape.

13.7 Bitter’s Iron Magnet What magnetization M(r) imposed on an infinite piece of iron produces the largest
magnetic field at a given point? Francis Bitter (a pioneer in the design of high-field magnets) posed this
problem in 1936. Since the magnetization of a ferromagnet is produced by electron spins, we need first to
find the direction of a point magnetic dipole with moment m located at r = (r, θ, φ) that maximizes the
z-component of its magnetic field at the origin.
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(a) Show that the maximum of Bz(0) occurs when 2 tanα = tan θ , where r̂ · m̂ = cosα and r lies between
m and ẑ in the plane ϕ = 0.

(b) Show that maximal condition can be written 1
2 tan θ = rdθ

/
dr . Use this to establish that the locus of

desired spin directions in the ferromagnet is indistinguishable from the field lines of a suitably oriented
point magnetic dipole at the origin.

(c) Show that

Bz(0) = μ0mN

4π

∫
d 3r

√
1 + 3 cos2 2θ

r3
,

where N is the number of spins/volume. Perform the integral for the case of a spherical shell of iron
with inner radius r1 and outer radius r2.

13.8 Einstein Errs! Einstein published the following argument in 1910. The solid lines with arrows in the
figure below show the directions of current flow for a “can-of-current”. A constant current I flows up the
central z-axis of a hollow cylindrical can of radius R, flows radially outward on the top end-cap with surface
density K+, flows down the can side wall with surface density KW , and then flows radially inward on the
bottom end-cap with surface density K−. In Example 9.3, we used Ampère’s law to show that the magnetic
field outside the can is zero while the field inside the can is Bin = φ̂μ0I/2πρ.

I W
K

K

K

W
K

(a) Let the top end-cap carry a magnetization M = Mφ̂ as indicated by the gray shading and the dashed
lines with arrows. According to the text, this magnetization produces H = 0 everywhere so BM = μ0M
everywhere. Show that BM exerts a Lorentz force on the end cap which tends to levitate the can. Since
the can cannot exert a force on itself, Einstein argued that the Lorentz force density j × B was incorrect
and should be replaced by j × H.

(b) Let the magnetized end-cap have a tiny thickness. Calculate and sketch the closed lines of magnetization
current density.

(c) Use the sketch from part (b) to identify the part of the end-cap magnetization current which feels a force
due to Bin in the zero-thickness limit. Show that this force cancels the levitation force calculated in
part (a).

13.9 A Hole Drilled through a Permanent Magnet The diagram shows a cylindrical hole of radius R drilled
through a permanent magnet which is infinite in the two directions transverse to its thickness t . Find the
magnetic field everywhere when R � t .

13.10 The Demagnetization Factor for an Ellipsoid Let N be the demagnetization tensor in the principal axis
system of a prolate (a > b) ellipsoid of revolution uniformly magnetized along its symmetry axis.
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2a

2b M

d�
dz

ds

n̂

n̂

(1) (a) Explain why only Nzz need be calculated.
(b) Cut the ellipsoid into circular slices with thickness dz and radius ρ as shown in the figure. The bevelled

edge of each slice is perpendicular to the ellipsoid normal n̂ and has edge length d� = dz/ sin θ . On the
other hand, if d� points along the circumference on any slice,

M × n̂dS = M sin θ d�ds = Mdzds.

Let ε = √
1 − b2/a2 be the eccentricity of the ellipsoid. Use Ampère’s theorem (Section 11.3) and the

Biot-Savart result for the on-axis magnetic field of a current ring to show that

Nzz = 1 − ε2

ε2

[
1

2ε
ln

(
1 + ε

1 − ε

)
− 1

]
(ε < 1).

(2) (a) Check the spherical limit.

13.11 Lunar Magnetism The Moon has no magnetic field outside of itself, despite the observed permanent
magnetization of rocks collected by lunar missions. One explanation supposes that the Moon once had
a geodynamo (like the Earth) confined to a core region (r < b) that produced a dipole field everywhere
outside the core. As a result, the lunar crust (b ≤ r ≤ a) became permanently magnetized proportional to
(and parallel to) the local dipole field. Later, the geodynamo ceased, along with its dipole field. Show that
the still-present magnetization of the crust produces zero magnetic field outside the surface of the Moon
(r > a). Sketch the lines of B(r) inside the Moon.

13.12 A Dipole in a Magnetizable Sphere A point magnetic dipole is located at the center of a magnetizable
sphere with radius R and permeability μ. Find H(r) everywhere.

13.13 Magnetic Shielding A uniform external field Bext = Bextx̂ is applied to an infinitely long cylindrical shell
with inside radius a, outside radius b, and relative permeability κ = μ/μ0. The rest of space is vacuum.
Show that the field inside the shell is screened to the value

Bin = 4κb2

(κ + 1)2b2 − (κ − 1)2a2
Bext.

a

b

BextBext

13.14 The Force on a Current-Carrying Magnetizable Wire A straight wire with radius a and magnetic
permeability μ carries a conduction current density j0 = j0 ẑ = ẑI0

/
πa2.
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(a) Find the induced magnetization M and the volume and surface magnetization current densities when
the wire is exposed to a uniform external field B0 = B0 x̂.

(b) Show that the Lorentz force F = ∫
d 3r j × B = I0B0ŷ, where j is the total current density and B is the

total magnetic field. Hint: Do not forget the surface contribution to this integral.

13.15 Active Magnetic Shielding An infinitely long and straight wire carries a steady current I in the +z-
direction at a distance d from the surface of a perfect conductor that occupies the half-space x > 0.

(a) Find the current density induced on the surface of the conductor.
(b) Remove the perfect conductor. Explain how one should locate a collection of N infinitely long and

straight wires, and choose the current flowing in each wire, to effectively shield the vacuum space x > 0
from the effect of the magnetic field produced by the current-carrying wire at x = −d.

13.16 The Role of Interface Magnetization Current An infinite cylinder of radius R filled with matter with
permeability μ1 is embedded in an infinite medium with permeability μ2. A wire carries a current If up the
z-axis of the cylinder. Show by explicit calculation that the sum of the fields produced by the free currents
and the magnetization currents is equal to the field at every point in space as calculated using Ampère’s law
directly.

1

If
R

2

13.17 Magnetic Film and Magnetic Disk

(a) An infinitely large film of insulating magnetic material has permeability μ and thickness h. A uniform
external magnetic field B0 is oriented perpendicular to the plane of the film. Find the magnetic field B
at any point inside the film.

(b) Create a magnetic disk by removing from the film in part (a) all the matter that lies outside a region
of radius R � h (see diagram below). Find B at the center of the disk which remains (to first order in
h/R) by subtracting, from the answer to part (a), the magnetic field produced at the center of the disk
by the matter outside the disk.

R

0B

h

Hint: The field of a point magnetic dipole with moment m is B(r) = μ0

4π

3(m · r)r − r2m
r5

.
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13.18 A Current Loop Levitated by a Bar Magnet The diagram shows a filamentary loop with radius a, steady
current I , and mass per unit length ρ. The loop is levitated against its weight at a height h above the north
pole of a very long cylindrical bar magnet with radius r . Find the magnetization of the permanent magnet.
Assume that r � a and r � h.

a
y

z

x

,I

N

h

2r

13.19 A Real Electromagnet

(a) A cylindrical solenoid occupies the interval −L/2 ≤ z ≤ L/2, has radius R, and is wound tightly with
N turns of a wire which carries current I . Use superposition and derive an expression for the magnetic
field on the symmetry axis in the form B0(z) = (μ0NI/L)f (z)ẑ. Compute the ratio B0(±L/2)/B0(0)
in the limit when L � R.

(b) Fill the solenoid with a close-fitting rod of soft iron with effective susceptibility χm. Make the approx-
imation that M(r) = M(z)ẑ, take account of the demagnetization field produced by the (magnetically)
charged disks at either end of the rod, but ignore the effect of volume magnetic charge. Show that, inside
the solenoid,

B(z) ≈ (1 + χm) {B0(z) + μ0σ
∗[f (z) − 1]} ẑ,

where (when L � R)

σ ∗ ≈ NI

L

χm

χm + 2
.

(c) Calculate the amplification of the magnetic field produced by the soft iron at z = 0 and at z = ±L/2.
Comment on the result when χm � 1.

13.20 Vector Potential Approach to Image Currents The space x > 0 (x < 0) is occupied by a medium with
magnetic permeability μ1 (μ2). A line current I points out of the paper in medium 1 at a distance a from
the interface with medium 2.

a

2
μ

1
μ

x

y

I

(a) Use the matching conditions for the vector potential A and the magnetic auxiliary field H to find the
image currents needed to find the magnetic field at every point in space.

(b) Find the force per unit length exerted on I by the x < 0 half-space.

13.21 The London Equations for a Superconductor In 1935, the brothers Fritz and Heinz London described
superconductivity using a phenomenological constitutive equation where a length δ > 0 relates the current
density to the Coulomb vector potential:

j = − 1

μ0δ2
A.
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(a) Use the London constitutive equation to derive a differential equation for B(r).
(b) The London theory predicts that B is not strictly zero at every point inside a superconductor. To see this,

consider a slab of superconductor which is infinite in the x- and y-directions and lies between z = −d
and z = d . Compute B(z) inside the superconductor when the slab is placed in a static and uniform
magnetic field B0 = B0x̂.

(c) Find the current density inside the superconductor.

13.22 Supercurrent on a Sphere A superconducting sphere of radiusR is placed in an external magnetic field B0.
Show that the current which develops on the surface of the superconductor has density μ0K = (3/2)r̂ × B0.

13.23 A Cylindrical Refrigerator Magnet A long cylinder has a cross sectional area A of arbitrary shape that
is constant over its length L � √

A. The cylinder is longitudinally magnetized with uniform a magnetic
moment per unit volume M. Show that the cylinder adheres to a flat, highly permeable surface with a force

F = 1

2
μ0M

2A− 7

16π
μ0M

2 A
2

L2
.

13.24 Magnetic Total Energy The diagram shows two ways to periodically arrange N identical permanent
bar magnets. The magnetic moments of the magnets are all parallel in configuration 1. The moments are
alternately parallel and anti-parallel in configuration 2.

NS NS NS NS

NS N S N SNS

1

2

Choose a finite volume V that encloses almost all the magnetic flux produced by either configuration. Which
configuration has the larger total magnetic energy in V and why?

13.25 Inductance in a Magnetic Medium Let L0 be the self-inductance of a free current loop in vacuum. Show
that the self-inductance changes to L = κmL0 when the vacuum is replaced by a magnetic medium with
permeability μ = κmμ0.
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14 Dynamic and Quasistatic Fields

The fields change but little during the time required for light to
travel a distance equal to the maximum dimension of the body.

Wolfgang Pauli (1949)

14.1 Introduction

The remainder of this book is devoted to electric and magnetic fields which vary in time. Unlike
their static counterparts, a time-dependent electric field is the source of a magnetic field and a time-
dependent magnetic field is the source of an electric field. The coupling between the two in vacuum is
dictated by the Maxwell equations,

∇ · E = ρ

ε0
∇ · B = 0 (14.1)

∇ × E = −∂B
∂t

∇ × B = μ0j + 1

c2

∂E
∂t

. (14.2)

In Chapter 6, we wrote ρ = ρf − ∇ · P to distinguish free charge from polarization charge. In Chap-
ter 13, we wrote j = jf + ∇ × M to distinguish free current from magnetization current. In this
chapter, we introduce the polarization current density jP = ∂P/∂t and amend the total current density
to j = jf + ∇ × M + ∂P/∂t . Substituting these decompositions of ρ and j into (14.1) and (14.2) and
defining the auxiliary fields D = ε0E + P and H = B/μ0 − M generates the Maxwell equations in
matter:

∇ · D = ρf ∇ · B = 0 (14.3)

∇ × E = −∂B
∂t

∇ × H = jf + ∂D
∂t

. (14.4)

Compared to our previous work, the new terms to be reckoned with are ∂E/∂t (or ∂D/∂t) in the
Ampère-Maxwell law and ∂B/∂t in Faraday’s law. This motivates us to begin our discussion with the
new physics brought to these laws by their time derivatives, most notably the effects of displacement
current and the phenomenon of electromagnetic induction. We then turn to the quasistatic limit where
the sources change slowly enough in time to justify dropping one or the other of the time derivatives
from the Maxwell equations. When the source is a slowly varying charge density ρ(r, t), we neglect
∂B/∂t to get a quasi-electrostatic approximation. When the source is a slowly varying current density
j (r, t), we neglect ∂E/∂t to get a quasi-magnetostatic approximation. Later chapters will focus on
the characteristically high-frequency phenomena of radiation and waves where these time derivatives
contribute equally to the physics.
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A slowly moving point charge in vacuum is a typical quasi-electrostatics problem. The moving
charge produces a Coulomb-like electric field and a magnetic field from the time variations of the
electric field. A solenoid with a slowly time-varying current is a typical quasi-magnetostatics problem.
The solenoid produces a Biot-Savart-like magnetic field and an electric field from the time variations
of the magnetic field. AC circuit theory exploits both approximations simultaneously, albeit in different
parts of space.

New physics appears when we consider slowly time-varying charge and current in or near polar-
izable, magnetizable, and conducting matter. Ohmic matter is particularly interesting because the
phenomenon of charge relaxation eliminates free charge from the interior of a conductor. Quasi-
electrostatics applies to poor conductors where charge relaxation is slow. Quasi-magnetostatics applies
to good conductors where charge relaxation is fast. Mechanical effects come from the force exerted
on distributions of charge and current by fields. It is not obvious, but experiments confirm that the
Coulomb-Lorentz force law remains valid when the sources and fields vary in time:

F(t) =
∫

d 3r [ρ(r, t)E(r, t) + j (r, t) × B(r, t)] . (14.5)

14.2 The Ampère-Maxwell Law

The right side of the Ampère-Maxwell law,

∇ × B = μ0j + 1

c2

∂E
∂t

, (14.6)

identifies two sources capable of producing a magnetic field. The electric current density j(r, t)
is familiar from magnetostatics. The magnetic field produced by a time-varying electric field was
completely unknown until Maxwell postulated its existence. In vacuum, the displacement current
density jD = ε0∂E/∂t produces magnetic effects indistinguishable from moving charge. The closely
related polarization current density, jP = ∂P/∂t , accounts for the magnetic field produced by time-
dependent charge separation in matter.

14.2.1 Displacement Current
The mechanical model which led Maxwell to introduce the displacement current is no longer a part of
physics.1 From a contemporary perspective, jD is best understood as the guarantor that the Maxwell
equations respect conservation of charge as dictated by the continuity equation,

∇ · j + ∂ρ

∂t
= 0. (14.7)

Specifically, the time derivative of Gauss’ law in (14.1) is

∇ · ε0
∂E
∂t

− ∂ρ

∂t
= 0. (14.8)

Adding (14.7) to (14.8) gives

∇ ·
[

j + ε0
∂E
∂t

]
= 0. (14.9)

Comparing (14.9) with the divergence of the Ampère-Maxwell equation shows that jD must be present
in the latter.

1 See Chapter 2 for a brief historical sketch.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-14 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:48

14.2 The Ampère-Maxwell Law 457

C

1S

Q

(a)

r

C

2S

Q

(b)

r

II

z
θθ

Figure 14.1: A straight-line current I terminates at the origin. Panels (a) and (b) show two choices for an
integration surface to evaluate the Ampère-Maxwell equation in integral form.

The displacement current plays a prominent role in situations like the one shown in Figure 14.1,
where the steady current I carried by a long and straight wire abruptly terminates at a point of
charge accumulation. Subject to later confirmation, we suppose that the sole source of E(r, t) is the
time-varying charge Q(t) = I t at the origin of coordinates. The integral form of Gauss’ law then gives

E(r, t) = Q(t)

4πε0r2
r̂. (14.10)

Our strategy to find B(r, t) exploits the integral form of the Ampère-Maxwell law,∮
C

d� · B = μ0

∫
S

dS · j + 1

c2

∫
S

dS · ∂E
∂t

. (14.11)

B = B(r, θ) by symmetry, so we need only the direction of B to guide our choice for the Ampèrian
circuit C. For this purpose, we consider the problem from the Biot-Savart point of view, where the
source current is j from the wire plus jD = ε0∂E/∂t .2 The latter has zero curl and thus contributes
nothing to the Biot-Savart integral (see Section 10.1). Previous work (see Chapter 10) showed that the
magnetic field produced by a straight wire of any length has the form B = Bφ(r, θ )φ̂.

The just-deduced form of B suggests we choose C as a circle of radius r sin θ concentric with the
z-axis. Figure 14.1 shows two possible choices for the capping surface S for an observation point with
θ < π/2. Each is a portion of a sphere of radius r centered on Q. The current in the wire contributes to
(14.11) when we use S2, but not when we use S1. The displacement current contributes in both cases,
but unequally. Carrying out the line integral over C and the two surface integrals over both S1 and S2

gives

Bφ2πr sin θ =

⎧⎪⎪⎨
⎪⎪⎩

0 + μ0
I (1 − cos θ )

2
S = S1,

μ0I − μ0
I (1 + cos θ )

2
S = S2.

(14.12)

The total magnetic field is static (so Faraday’s law does not alter our calculation of E) and independent
of the choice of S, as it must be:

B(r, θ) = μ0I (1 − cos θ )

4πr sin θ
φ̂. (14.13)

A brief calculation shows that (14.13) applies also when θ > π/2 and thus correctly reproduces the
magnetic field of an infinite wire when θ → π . Figure 14.2 shows representative field lines for both E
and B. The electric field lines emerge radially from the accumulation point. The magnetic field lines

2 The Biot-Savart integral is a consequence of the Helmholtz theorem, and thus remains valid whether ∇ × B = μ0j or
∇ × B = μ0(j + jD). However, it is unusual to know jD explicitly, as we do here.
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B BBB

E

I

Figure 14.2: A straight-line current I terminates at a point. Closed circles labeled B are typical magnetic field
lines. Dashed lines labeled E are typical electric field lines.

are circles concentric with the symmetry axis of the line current. The latter is true even for points
beyond the accumulation point where the circles of B do not enclose the conduction current I .

14.2.2 Polarization Current
Polarization current arises whenever bound polarization charge is displaced. We can be quantitative
because the polarization current density jP is related to the polarization charge density ρP by a
conservation law no less stringent than (14.7):

∂ρP

∂t
+ ∇ · jP = 0. (14.14)

Substituting the explicit form of the polarization charge density, ρP = −∇ · P, into (14.14) gives

∇ · jP = ∇ · ∂P
∂t

. (14.15)

A particular solution of (14.15) is

jP = ∂P
∂t

. (14.16)

This most common form of polarization current density occurs only when P(r, t) is an explicit function
of time. An example is the charge separation current which accompanies the creation of polarized
matter from unpolarized matter (see Section 6.2.3). The boxed material which follows this section and
Application 14.1 provide two other examples. In every case, there is an associated magnetic moment,

m = 1

2

∫
d 3r r × ∂P

∂t
. (14.17)

The general solution of (14.15) supplements (14.16) with a contribution which depends on an
arbitrary vector field MP:

jP = ∂P
∂t

+ ∇ × MP. (14.18)

The notation used for the second term in (14.18) suggests that certain types of polarization produce an
effective magnetization. The simplest case is a body with time-independent polarization P(r) which
moves uniformly with velocity υ. In that case

jP = ρPυ = −υ∇ · P. (14.19)

On the other hand, the definition of the convective derivative in Section 1.3.3, and the fact that an
observer moving with the body sees no change in polarization at all, means that

dP
dt

= ∂P
∂t

+ (υ · ∇)P = 0. (14.20)
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14.2 The Ampère-Maxwell Law 459

Substituting (14.19) and (14.20) into the left and right sides of (14.18), respectively, gives

∇ × MP = (υ · ∇)P − υ∇ · P. (14.21)

The general solution of (14.21) is

MP = P × υ, (14.22)

plus the gradient of a scalar function. We can choose the latter to vanish3 and conclude that a polarized
body in uniform motion with velocity υ creates the magnetization (14.22). The physical effects of this
magnetization are indistinguishable from those produced by orbital or spin magnetic moments.

Polarization Current in Ice

Solid ice conducts electricity by the transport of protons. To understand this, panel (a) below
models an ice crystal as a linear chain of water molecules. A proton enters at the left and forms a
bond with the O atom of the leftmost water molecule by breaking that oxygen atom’s bond with
the H atom on the far side of the molecule. The proton released by the broken bond forms a bond
with the O atom next in line and this sequence of bond forming/breaking propagates to the end of
the chain.

The net result, shown in panel (b), is that the electric dipole moment p rotates for every water
molecule of the chain and the proton exits to the right. Another proton cannot enter from the left
until, as panel (c) shows, a random thermal excitation rotates the entire leftmost water molecule.
This induces the neighboring molecule to rotate and so on down the chain until the original
configuration (a) has been restored. The entire sequence transports one proton from one end of the
ice crystal to other with no other change in the system.

In steady state, this process combines a proton conduction current with a proton polarization
current ∂P/∂t . The former comes from protons hopping from molecule to molecule down the
chain. The latter comes from the rotating back and forth of the direction of p for each individual
molecule.

(a)

(b)

(c)

H

H
O

p

Figure 14.3: Figure adapted from Petrenko and Whitworth (1999).

Application 14.1 The Dielectric Constant of a Plasma

The concept of polarization current leads naturally to a definition for the dielectric constant of a plasma.
Example 12.1 analyzed the motion of a particle with mass m and charge q moving in constant fields
E and B oriented perpendicular to each other. The result was uniform circular motion at the cyclotron

3 This can be checked using special relativity.
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frequency ωc = qB/m superimposed on uniform translational motion with velocity υ0 = E × B/B2.
This “drift” velocity does not produce a net current in a neutral plasma (with oppositely charged
constituents) because υ0 does not depend on charge or mass. However, when E changes with time,
we will see below that a second drift velocity υP = (m/qB2)Ė develops because the inertia of the
particles prohibits them from adiabatically following the variations of the field. A net current—carried
primarily by the most massive particles—arises because oppositely charged particles drift in opposite
directions. The resulting separation of charge produces a polarization from which a dielectric constant
of the plasma may be defined. In this Application, we offer an energy argument to deduce these facts.

Let a uniform magnetic field B and a time-varying electric field E(t) (oriented at right angles to B)
act on particle species with mass m, charge q, and number density n. The change in kinetic energy of
one particle produced by the changing field is

δ

(
1

2
mυ2

0

)
= δ

(
1

2
m
E2

B2

)
= mE · δE

B2
= qE · δr. (14.23)

The last equality in (14.23) equates the change in kinetic energy to the work done on the particle by
the field during a displacement δr. In a time interval δt , the particle acquires a velocity

υP = δr
δt

= m

qB2

∂E
∂t

. (14.24)

Therefore, if the plasma contains n particles per unit volume, there is an induced current density

jP = nqυP = nm

B2

∂E
∂t

= ∂P
∂t

. (14.25)

With ρ = mn, the separation of the light particles from the massive particles of opposite charge
produces a polarization P = (ρ/B2)E of the plasma.4 Because

D = ε0E + P = εE, (14.26)

we conclude that the plasma behaves like a medium with dielectric constant

ε = ε0 + ρ

B2
. (14.27)

This result will be relevant later when we study wave propagation in a magnetized plasma (Applica-
tion 17.1). The propagating wave is the source of the time-varying electric field in that case. �

14.3 Faraday’s Law

The right side of Faraday’s law,

∇ × E = −∂B
∂t

, (14.28)

shows that a time-dependent magnetic field is generally the source of an electric field. When the latter
varies in time also, the displacement current (see Section 14.2.1) provides a feedback mechanism to
create the self-sustaining electric and magnetic fields we call electromagnetic waves. We will have
much more to say about these waves in later chapters. Here, we focus narrowly on the effect of
Faraday-induced electric fields on charged particles. These effects look rather different if the charged

4 In a plasma, the kinetic energy of the particles is the beneficiary of the work done to produce charge separation. In
conventional dielectric matter, the work to separate charges is done against the potential energy of the cohesive forces
of the material.
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q

v

B(r, t)

R

Figure 14.4: The betatron. A particle with charge q > 0 moves in a circular orbit of time-independent radius R
(dashed line) at velocity v. Heavy solid arrows indicate the magnetic field B(r, t).

particles move freely in vacuum or if they are confined to wires or extended samples of condensed
matter. Both merit our attention.

14.3.1 The Betatron
A device called the betatron exploits a Faraday electric field to accelerate electrons in circular orbits.
Betatrons played an important role in the early days of particle physics and radiation oncology.5 The
technical challenge is to choose the space- and time-varying magnetic field so the radius of each
particle’s orbit remains fixed in time as its speed increases. Figure 14.4 is a cartoon view where the
solid arrows denote a magnetic field which points strictly perpendicular to the orbit plane and varies
only with the radial distance from the center of the orbit.

The symmetry of the magnetic field guarantees that the tangential electric field is constant at every
point on the orbit. Therefore, we evaluate Faraday’s law in integral form using the orbit as the circuit
C in the line integral in (14.29). Recalling the definition �B = ∫

S
dS · B of magnetic flux, this gives

2πREφ(R) =
∮
C

d� · E =
∫
S

dS · ∇ × E = −
∫
S

dS · ∂B
∂t

= −d�B

dt
. (14.29)

On the other hand, the radial and tangential components of Newton’s second law for circular motion
are

mv2

R
= qvB(R) and

d

dt
mv = qEφ(R). (14.30)

Using (14.29) and (14.30) to eliminate v and Eφ(R) gives

d�B

dt
= −2πR2 dB(R)

dt
. (14.31)

This equation integrates to the betatron condition—a constraint which relates the total magnetic flux
through the orbit to the magnitude of the magnetic field on the orbit:

|�B | = 2πR2B(R). (14.32)

The factor of 2 in (14.32) shows that the magnetic field cannot be uniform over the area enclosed by
the orbit. The field must be stronger inside the orbit than on the orbit. In detail, B(r) is chosen to ensure
the stability of the orbit against transverse displacements of the particle.

5 Physicians used the X-rays produced when high-energy electrons from a betatron were directed at a metal target.
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14.4 Electromagnetic Induction

In principle, electromagnetic induction occurs any time the electric field induced by Faraday’s law
has a demonstrable effect. In practice, the term is often reserved for situations where the induced
electric field drives a current in an ohmic conductor. In this section, we explore this “circuit theory”
aspect of Faraday’s law and pay special attention to the point in the standard analysis when an explicit
low-velocity approximation is made which destroys the exactness (and Lorentz covariance) of the
theory.

We begin with the integral form of Faraday’s law used already in (14.29). Formally, one integrates
(14.28) over an open surface S and uses Stokes’ theorem to convert the surface integral of ∇ × E into
a line integral of E over the closed curve C which bounds S:∮

C

d� · E = −
∫
S

dS · ∂B
∂t

. (14.33)

The key step is to permit the surface S (and hence the boundary C) to move and distort arbitrarily by
assigning a velocity υc(r, t) to every differential element of S. We can now use the “flux theorem”
(See Section 1.4.5),

d

dt

∫
S(t)

dS · B =
∫
S(t)

dS ·
{
∂B
∂t

+ υc(∇ · B) − ∇ × (υc × B)

}
, (14.34)

to replace the integral on the right side of (14.33). Using ∇ · B = 0 and Stokes’ theorem to rewrite the
last term in (14.34) as a line integral shows that (14.33) is equivalent to∮

C

d� · (E + υc × B) = − d

dt

∫
S

dS · B. (14.35)

This equation is exact and one could exploit special relativity (Chapter 22) to transform its left side to
the rest frame of C for (possibly) easier numerical evaluation.6

14.4.1 Faraday Electromotive Force
The choice of C in (14.35) is arbitrary and dictated entirely by convenience. However, for circuit
theory and electromechanical applications, C is invariably chosen as a closed path through conducting
matter. A loop of wire is the simplest example, but any path through a conducting body which begins
and ends at the same point can serve just as well. In both cases, it is important to recognize that
υc(r, t) in (14.35) is the local velocity of the massive ions which give the matter its mass and rigidity.
Current-carrying electrons move with respect to these ions at their drift velocities υd(r, t).7 Therefore,
in the practically important case when the electrons move much more slowly than the speed of light,
the Galilean velocity addition rule tells us that the total velocity of an electron at point r and time t is

υe(r, t) = υc(r, t) + υd(r, t). (14.36)

6 See, for example, H. Gelman, “Faraday’s law for relativistic and deformed motion of a circuit”, European Journal of
Physics 12, 230 (1991).

7 The drift velocity is the terminal velocity reached by charged carriers in an ohmic medium due to collisions with other
particles. See Section 9.3.
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B

+ +

+

−

−

−

Figure 14.5: The blades of a fan rotate in a uniform magnetic field. Plus and minus signs indicate charge
separation in each blade.

Equation (14.36) is not relativistically exact. Therefore, substituting (14.36) into (14.35) gives a
low-velocity approximation to the latter which is in general use:∮

C

d� · (E + υe × B) = − d

dt

∫
S

dS · B +
∮
C

d� · (υd × B). (14.37)

Recall now that FL = q(E + υe × B) is the Coulomb-Lorentz force on an electron with charge q.
Therefore, the integral on the left side of (14.37) is a special case of the electromotive force (EMF)
expression8

E12 = 1

q

2∫
1

d� · F, (14.38)

where the points 1 and 2 are coincident and F = FL. An example where F = FL and 1 and 2 are not
coincident is provided by the fan in Figure 14.5. The metal blades of this fan rotate through a uniform
magnetic field. Initially, E = 0 and the Lorentz force on the mobile electrons of the metal drives a
separation of charge. The latter causes an electric field to build up until, in steady state, the Coulomb
force exactly balances the Lorentz force. The electric part of the line integral (14.38) is the voltage
difference between the center of the fan and the tips of the blades.

We have seen that the left side of (14.37) defines a “Faraday” electromotive force,

EF =
∮
C

d� · (E + υe × B). (14.39)

In a circuit context, Ohm’s law in the form EF = IR relates the Faraday EMF to the current flowing
in the circuit. This motivates a search for alternative expressions for EF which might be simpler to
evaluate for particular situations. One of these follows by substituting (14.39) into (14.37) to get

EF = − d

dt

∫
S

dS · B +
∮
C

d� · (υd × B). (14.40)

Substituting (14.36) into (14.40) and using (14.34) produces a third equivalent form,

EF = −
∫
S

dS · ∂B
∂t

+
∮
C

d� · (υe × B). (14.41)

8 In Section 9.7, the symbol F in (14.38) stood for the real or effective force associated with any energy source capable
of driving a current between points 1 and 2.
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Older physics and engineering textbooks use the names “transformer EMF” for the surface integral in
(14.41) and “motional EMF” for the circuit integral in (14.41).

Let us return to (14.40). The special case when C is everywhere coincident with a filamentary
ohmic wire simplifies this expression because υd is parallel to the integration path element d� and
d� · (υd × B) = 0. This reduces (14.40) to a formula which is often called the “flux rule”:

EF = −d�B

dt
= − d

dt

∫
S

dS · B. (14.42)

The minus sign in (14.42) reflects Lenz’ law: the direction of the current driven by EF produces a
magnetic field which tends to oppose the change in magnetic flux which produced it.9 Most of the
qualitative effects of electromagnetic induction can be understood by systematically applying this law.

We conclude by noting that the drift velocity υd is numerically very small. For that reason, many
authors neglect the υd × B term in (14.40) altogether. Such a “derivation” of the flux rule must
be viewed with caution because situations exist where the two terms in (14.40) have comparable
magnitudes. The Hall effect is an example where the drift term alone generates the entire EMF.10

Example 14.1 A small circular loop of N turns of wire is oriented so the loop axis is parallel to the
local direction of a magnetic field B. A galvanometer (or other current integrating device) measures
the total amount of charge Q which flows through the circuit of total resistance R (Figure 14.6)
when the coil is flipped so its loop axis reverses direction. Find the relationship between Q and
|B| assuming that EF = IR remains valid. This device, known as a flip coil, is used for quick
measurements of magnetic field strength.

aR

Q

z

d�

y
θ

φ

υc

B

B

n

Figure 14.6: A flip coil measurement begins with the normal to the plane of the loop, n̂, pointed along +y
and ends with n̂ pointed along −y. The induced current flows in the direction of d�.

Method I: Since EF /R = I = dQ/dt relates the induced current to the total charge, we can
integrate (14.42) directly to get

Q =
∫

dtI = − 1

R

∫
d�B = − (−Nπa2B) − (Nπa2B)

R
= 2Nπa2B

R
.

9 The phrase “back EMF” is used to describe this phenomenon in electric-circuit parlance.
10 See the first paragraph of the "Quantum Hall Effect” box at the end of Section 12.6.4.
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Method II: We compute the EMF using (14.41) and (14.36). The magnetic field does not change
in time and there is no contribution from υd for a filamentary wire. Therefore,

EF = N

∮
d� · υc × B.

From Figure 14.6, the velocity of a differential element of the loop (radius a) is υc = a sin θφ̇ n̂.
Then, because B = Bŷ and d� = −adθ θ̂ ,

EF = Na2B sinφ
dφ

dt

∫ 2π

0
dθ sin2 θ = Nπa2B sinφ

dφ

dt
.

Integrating I = EF /R over time (as the coil flips) gives the desired result,

Q = Nπa2B

R

∫ π

0
dφ sinφ = 2Nπa2B

R
.

Example 14.2 One way to measure a time-varying magnetization M(t) exploits the EMF EF (t)
induced by the magnetization in a nearby “pickup” coil of wire (Figure 14.7). Assume that a steady
current Icoil in the coil produces a magnetic field Bcoil(r) and show that

EF (t) = − 1

Icoil

d

dt

∫
d 3r Bcoil · M(t).

Pickup
coil 

Dynamic
magnetization

M(t)

Figure 14.7: A time-dependent magnetization M(t) and a nearby coil of wire.

Solution: A dynamic magnetization produces an EMF in the pickup coil because the mag-
netic field BM(r, t) produced by M(t) produces a time-dependent magnetic flux through the
coil:

� =
∫

dS · BM =
∮

d� · AM.

The substitution Id� → jd 3r , ∇ × Bcoil = μ0jcoil, and an integration by parts permits us to
write

Icoil� =
∫

d 3r jcoil · AM = 1

μ0

∫
d 3r ∇ × Bcoil · AM = 1

μ0

∫
d 3r Bcoil · BM(t).

Now, BM = μ0(M + HM), so

Icoil� =
∫

d 3r Bcoil · (M + HM) =
∫

d 3r Bcoil · M.
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The volume integral of Bcoil · HM vanishes in the preceding equation because HM is not produced
by free current.11. Applying the flux rule (14.42), we conclude that

EF (t) = − 1

Icoil

d

dt

∫
d 3r Bcoil · M(t).

This formula is used to extract M(t) from magnetic recording tape (where the coil is scanned over
the tape) and from nuclear magnetic resonance data (where the source spins precess in an external
field) using a coil with an easily calculable Bcoil(r).

Application 14.2 Faraday’s Disk Generator

In 1831, Faraday constructed the device shown in Figure 14.8. A conducting disk of radius a rotates
with angular velocity ω in a static and uniform magnetic field B oriented perpendicular to the plane
of the disk. A wire frame GMFA with resistance R makes fixed contact with the center of the disk
at point A and sliding contact with the rim of the disk at point G.12 Our task is to confirm Faraday’s
experimental result that rotation of the disk generates a current I in the wire frame. For simplicity, we
assume that the resistance of the disk is negligible.

M
R

F

ω

E

GA

D

a

B

Figure 14.8: The Faraday disk generator. A uniform magnetic field fills the space occupied by the metal
disk and the wire frame GMFA. Stick arrowheads indicate various choices for the circuit C discussed in
the text.

Method I: We use (14.41) and note that only the motional EMF term contributes because B does not
depend on time. The actual path taken by current-carrying electrons through the disk is not obvious. On
the other hand, the velocity component υ‖ which is locally parallel to the integration path is irrelevant
because d� · (υ‖ × B) = 0 for any choice of C. Moreover, if C is the fixed rectangle AGMFA in
Figure 14.8, the entire electromotive force comes from the perpendicular velocity component υ⊥
along the path segment AG. We now assume that υ⊥(r) = rω, i.e., we assume that the electrons are
dragged along rigidly with the ions as the disk rotates. This leads to the steady current I = EF /R with

EF =
G∫

A

d� · (υ × B) =
a∫

0

dr rωB = 1
2ωa

2B. (14.43)

11 This follows because (13.102) is equal to (13.103).
12 The plane of the wire frame is perpendicular to the plane of the disk.
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14.5 Slowly Time-Varying Charge in Vacuum 467

Method II: We use (14.40) and an integration path which, in part, rotates with the disk. This generates
a time-dependent area in the flux integral. A suitable choice for C is ADGMFA. This path moves to
AGMFA and then to AEGMFA as the disk turns. With the same assumptions as above regarding υ, this
choice yields no contribution from the υd × B motional EMF term anywhere along the path. However,
since dS is anti-parallel to B (for the assumed direction of current flow) during the time t when AG
rotates through an angle ωt to AE, we again find I = EF /R where

EF = − d

dt

∫
AEBA

dS · B = d

dt

(
1
2ωta

2B
) = 1

2ωa
2B. (14.44)

It is interesting to consider how the Faraday disk problem changes if the external magnetic field
changes in time. If, say,B(t) = B cos�t , either method used above generates an additional contribution
to the EMF, E ′ = πa2B� sin�t . However, the current driven by this EMF is entirely circumferential
and confined to the disk itself. Therefore, the current in the external circuit is unchanged from the
value computed using just EF . �

14.5 Slowly Time-Varying Charge in Vacuum

We turn now to a general discussion of the fields produced by a slowly time-varying charge density
ρ(r, t). Figure 14.9 shows a source of this type in vacuum. We use a length � to characterize its size
and a time T to characterize the time needed for ρ(r, t) to undergo a typical variation of its magnitude.
Thus, T ∼ 1/ω for a time-harmonic source which oscillates at frequency ω. These quantities will
help us define the meaning of “slowly time-varying” based on the dimensional estimates ∇ ∼ 1/� and
∂/∂t ∼ 1/T ∼ ω.

We apply this scheme first to the continuity equation (14.7). Ignoring the vector character (here and
below),

∇ · j + ∂ρ

∂t
= 0 ⇒ j

�
+ ωρ = 0 ⇒ j ∼ ω�ρ. (14.45)

To analyze the Maxwell equations similarly, we use Helmholtz’ theorem (Section 1.9) and decompose
the electric field as E = EC + EF where the “Coulomb” and “Faraday” pieces satisfy ∇ × EC = 0
and ∇ · EF = 0. Consequently,

∇ · EC = ρ

ε0
⇒ EC

�
∼ ρ

ε0
⇒ EC ∼ �

ε0
ρ (14.46)

and

∇ × EF = ∂B
∂t

⇒ EF

�
∼ ωB ⇒ EF ∼ ωB�. (14.47)

We next use (14.45) and (14.46) to compute the ratio of the charge current density j to the displace-
ment current density jD = ε0∂EC/∂t produced by the Coulomb field:

j

jD
∼ ω�ρ

ε0ωEC

∼ 1. (14.48)

This result shows we can use either current density in the Ampère-Maxwell law to make an order-of-
magnitude estimate of the magnetic field. Using (14.45),

∇ × B = μ0(j + jD) ⇒ B

�
∼ μ0j ⇒ B ∼ μ0ωρ�

2. (14.49)
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Source
T ~1/ω

�

Figure 14.9: A source distribution of size � with maximal time variations that occur over a characteristic
time T ∼ 1/ω.

Finally, substituting (14.49) into (14.47) gives

EF

EC

∼ ωB�

�ρ/ε0
∼ ω2

c2
�2. (14.50)

Equation (14.50) shows that a sufficiently slowly time-varying charge density produces a negligibly
small Faraday electric field compared to its Coulomb electric field. This leads us to characterize a
charge distribution as “slowly time-varying” whenever

ω2 � c2

�2
. (14.51)

The inequality (14.51) can be read as a condition on ω for fixed system size or as a condition on � for
a fixed time variation of the fields. Later, we will see that it is not a coincidence that �/c in (14.51) is
the time required for light to travel a distance � .

14.5.1 Quasi-Electrostatic Fields in Vacuum
The estimates of the previous section apply to a source which produces a static electric field in the
limit of no time variation. When (14.51) is satisfied, the Faraday electric field is negligible and we
may drop the ∂B/∂t term in the Maxwell equations to get

∇ · E = ρ

ε0
∇ · B = 0 (14.52)

∇ × E = 0 ∇ × B = μ0j + 1

c2

∂E
∂t

. (14.53)

This is a quasi-electrostatic limit because E(r, t) satisfies the electrostatic Maxwell equations.
Helmholtz’ theorem (Section 1.9) and the left members of (14.52) and (14.53) provide an explicit
formula for the electric field,

E(r, t) = −∇ϕ(r, t) = −∇ 1

4πε0

∫
d 3r ′ ρ(r′, t)

|r − r′| . (14.54)

It is not obvious, but the magnetic field that satisfies (14.52) and (14.53) is given by the simplest
time-dependent generalization of the Biot-Savart law:

B(r, t) = ∇ × A(r, t) = ∇ × μ0

4π

∫
d 3r ′ j(r′, t)

|r − r′| . (14.55)

The electric field (14.54) is the static Coulomb field produced by the instantaneous value of the
charge density. The magnetic field (14.55) is the static Biot-Savart field produced by the instantaneous
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value of the current density. The two sources are not independent because the continuity condition
(14.7) relates the instantaneous value of j(r, t) to the instantaneous value of ρ(r, t).

Application 14.3 The Quadrupole Mass Spectrometer

A quadrupole mass spectrometer is a device which exploits the quasi-electrostatic approximation to
separate particles with a specified charge-to-mass ratio from a beam composed of many different mass
and charge species. In a typical realization, four metal rods are arranged symmetrically (Figure 14.10)
and a time-dependent potential is applied to one pair of non-adjacent rods:

ϕ(t) = ϕ0 + V0 cosωt. (14.56)

A potential – ϕ(t) is applied to the other pair of rods. Our interest is the trajectories of particles
with different charges and masses which enter the spectrometer along the z-axis with velocities
υ = υzẑ + υ⊥. We assume that υ⊥ � υz. By symmetry, Ez = 0, and the particles do not accelerate
along the symmetry axis.

Suppose first that V0 = 0 in (14.56) so the problem is strictly electrostatic. The potential ϕ(x, y)
in the volume between the rods satisfies Laplace’s equation. The symmetry of the rods ensures that
ϕ(−x, y) = ϕ(x, y) and ϕ(x,−y) = ϕ(x, y).Therefore, since ∇2ϕ = 0, the potential in the immediate
vicinity of the z-axis must have the form

ϕ(x, y) = ϕ0

R2
(x2 − y2) + · · · . (14.57)

The length R is present for dimensional reasons. The ellipsis indicates that we have written only the
lowest-order (quadrupole) term of an interior multipole expansion of the potential. The higher-order
terms are needed to satisfy the boundary conditions at the surface of the rods (see Figure 7.13).

In the region of space where (14.57) is valid, Newton’s equations of motion for a particle with
charge q and mass m are

mẍ + 2qϕ0

R2
x = 0 mÿ − 2qϕ0

R2
y = 0 mz̈ = 0. (14.58)

x
ϕ(t)

−ϕ(t)

ϕ(t)

−ϕ(t)

ϕ(t)

−ϕ(t)

ϕ(t)

−ϕ(t)

y

Figure 14.10: Cross section of a quadrupole mass spectrometer. This view looks down the symmetry
axis of four perfectly conducting cylindrical rods oriented perpendicular to the page.

There is a restoring force in the x-direction and a repelling force in the y-direction because x = y = 0
is a saddle point for the potential energy q ϕ(x, y). When υ⊥ �= 0, these equations predict uniform
motion in the z-direction accompanied by simple harmonic motion in the x-direction and exponential
runaway motion in the y-direction. No particle successfully traverses the entire length of the instrument.
It either hits one of the rods or escapes sideways.
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Now let V0 in (14.56) be non-zero. If the driving frequency ω satisfies the quasistatic condition
(14.51) (with � ∼ R), the equations of motion (14.58) remain valid with ϕ0 replaced by ϕ(t).13

Modulating the potential in this way, we periodically exchange the roles of the x-direction and y-
direction as far as restoring and repelling forces are concerned. Thus, with a suitable choice of the
parameters ω, ϕ0, and V0, a particle with a given value of q/m that is headed away from the z-axis
for one half-cycle of oscillation can be brought back to the axis again in the next half-cycle. This
particle enjoys bounded, stable motion in the transverse direction and thus is able to pass completely
through the length of the device for collection at the far end.14 In practice, ω is a radio frequency and
one sweeps the values of ϕ0 and V0 (typically in the kV range) to operate the instrument as a mass
spectrometer for ions of fixed charge. �

Example 14.3 Find the electric and magnetic fields produced by a point charge in vacuum which
moves with a constant speed υ � c. Use the latter condition to justify a quasi-electrostatic approx-
imation.

Solution: A point charge has no characteristic size. Therefore, the length � must be the distance
from the charge to the observation point. With ω = υ/� , the condition υ � c is then identical
to the quasistatic condition ω�/c � 1. This tells us we can use (14.54) and (14.55) to compute
the fields. The charge and current densities are ρ(r, t) = qδ(r − υt) and j(r, t) = q υδ(r − υt),
respectively. Therefore,

E(r, t) = −∇ 1

4πε0

∫
d 3r ′ q δ(r′ − υt)

|r − r′| = q

4πε0

r − υt

|r − υt |3

B(r, t) = ∇ × μ0

4π

∫
d 3r ′ q υδ(r′ − υt)

|r − r′| = ∇ × υ

c2

1

4πε0

q

|r − υt | = υ

c2
× E(r, t).

The electric field is the static Coulomb field of the charge rigidly “dragged along” by its motion.
The magnetic field reflects the two vectors of the problem (E and υ) combined in the simplest way
that yields a vector.

14.6 Slowly Time-Varying Current in Vacuum

The decision as to whether a current density j(r, t) in vacuum is “slowly time-varying” or not requires
an order-of-magnitude analysis somewhat different from the one performed in Section 14.5 for a
time-varying charge density. Rather than starting with Gauss’ law to estimate the electric field, we
temporarily ignore the displacement current in (14.2) and let BA be the magnetic field produced by
Ampère’s law of magnetostatics. Writing ∇ ∼ 1/� and ∂/∂t ∼ 1/T as described in connection with
Figure 14.9 gives

∇ × BA = μ0j ⇒ BA ∼ μ0j�. (14.59)

This magnetic field induces a Faraday electric field

∇ × EF = ∂BA

∂t
⇒ EF ∼ �ωBA ∼ μ0ω�

2j. (14.60)

13 The estimate υB/E ∼ (υ/c)(R/cT ) � 1 shows that the magnetic Lorentz force is negligible in the quasi-electrostatic
limit.

14 The same physics underlies the principle of strong focusing with quadrupole magnets used in particle accelerators
(see Application 11.4 at the end of Section 11.5.2).
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The corresponding displacement current density jD = ε0∂EF/∂t has magnitude

jD ∼ ε0ωEF ∼ ε0ω × μ0ω�
2j. (14.61)

Therefore, the ratio of the displacement current density to the charge current density is

jD

j
∼ ω2

c2
�2. (14.62)

Equation (14.62) implies that the Ampère magnetic field produced by a sufficiently slowly varying
current density is much greater than the magnetic field produced by the displacement current. Therefore,
we characterize a current distribution as “slowly time-varying” whenever

ω2 � c2

�2
. (14.63)

Not accidentally, the quasi-magnetostatic condition (14.63) is exactly the same as the quasi-electrostatic
condition (14.51). We will see later that this condition ensures that the phenomena of retardation and
radiation do not occur.

14.6.1 Quasi-Magnetostatic Fields in Vacuum
The estimates of the previous section apply to a source which produces a static magnetic field in the
limit of no time variation. When (14.63) is satisfied, the displacement current is negligible and we can
drop the ∂E/∂t term in the Maxwell equations to get

∇ · E = ρ/ε0 ∇ · B = 0 (14.64)

∇ × E = −∂B
∂t

∇ × B = μ0j. (14.65)

This is a quasi-magnetostatic approximation because B(r, t) satisfies the magnetostatic Maxwell
equations. Since ∇ · ∇ × B ≡ 0, the neglect of jD also requires that

∇ · j = 0. (14.66)

Comparing (14.66) to the continuity equation (14.7) shows that ρ(r, t) = ρ(r). The presence of a static
charge density—with its associated static electric field—is not precluded by (14.64) and (14.65), but it
is not consistent with our premise that the static limit of the source is a steady current. For that reason,
there is no loss of generality if we choose

ρ(r, t) = 0. (14.67)

The Helmholtz theorem (Section 1.9) and the right members of (14.64) and (14.65) give an
explicit formula for B(r, t) which is identical to the formula (14.55) for the magnetic field of quasi-
electrostatics:

B(r, t) = ∇ × A(r, t) = ∇ × μ0

4π

∫
d 3r ′ j(r′, t)

|r − r′| . (14.68)

The corresponding quasi-electrostatic electric field is

E(r, t) = −μ0

4π

∫
d 3r ′ ∂j(r′, t)/∂t

|r − r′| . (14.69)

The reader can check that (14.68) and (14.69) are connected by Faraday’s law and that (14.69) has
zero divergence when the steady-current condition (14.66) is valid.
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Application 14.4 A Solenoid with a Time-Harmonic Current

A familiar magnetostatics problem asks for the magnetic field produced by an infinitely long solenoid
formed by tightly wrapping n turns per unit length of wire around a tube of radius a. The wire carries a
steady current I . A quasi-magnetostatic generalization seeks the electric and magnetic fields when the
current in the wire is I (t) = I cosωt . If the tube is coaxial with the z-axis, the solution of the original
magnetostatic problem (Section 10.2.2) and (14.68) give the quasistatic magnetic field as

B(t) =
⎧⎨
⎩
μ0nI (t)ẑ ρ < a,

0 ρ > a.
(14.70)

By symmetry, the electric field everywhere satisfies E = E(ρ, t)φ̂. This suggests we use a circle of
radius ρ coaxial with the z-axis for the curve C in the integral form of Faraday’s law,∮

C

d� · E = − d

dt

∫
S

dS · B. (14.71)

Using B(t) from (14.71) gives the electric field everywhere as

Eφ(ρ, t) =

⎧⎪⎪⎨
⎪⎪⎩

−μ0n
ρ

2
İ (t) ρ < a,

−μ0n
a2

2ρ
İ (t) ρ > a.

(14.72)

The formal solution to the quasi-magnetostatic problem ends here. However, by re-introducing the
displacement current density, we can find a first approximation to the (small) magnetic field Bout =
Bout(ρ, t)ẑ which appears outside the solenoid. Using (14.72) to write out ∇ × Bout = c−2∂Eout/∂t

gives

∂Bout

∂ρ
= −ω2

c2

μ0na
2

2ρ
I (t). (14.73)

Therefore, up to a time-dependent “constant” which does not depend on ρ, the magnetic field which
appears outside the solenoid due to the time variation of the current is

Bout(ρ, t) =
ρ∫

c/ω

dρ ′ ∂Bout

∂ρ ′ = −1

2
μ0nI (t)

ω2a2

c2
ln(ωρ/c). (14.74)

The lower limit of the integral in (14.74) has been “cut off” at a distance c/ω, which is the natural
length scale associated with the time variations of the source and field. The need for such a cutoff
is signalled by the fact that the ρ ′ integral diverges if the usual value of the lower limit (infinity) is
retained. The approximate solution (14.74) is not valid at distances greater than c/ω from the solenoid.
We will revisit this problem in Chapter 20 when we study propagating fields. �

14.7 Quasistatic Fields in Matter

When non-conducting dielectric or magnetic matter is present, it makes sense to speak of slowly time-
varying distributions of free charge and current. When D = εE and B = μH, the order-of-magnitude
estimates made in Sections 14.5 and 14.6 can be repeated using the in-matter Maxwell equations
(Section 2.4.1). Nothing changes except that ε0 → ε and μ0 → μ everywhere and the condition for
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slow variation (14.51) is replaced by

ω2 � 1

�2με
. (14.75)

14.7.1 Charge Relaxation
Quasistatic behavior in metals and plasmas is dominated by the fact that free electric charge abhors a
conducting medium. As a result, the process of charge relaxation removes charge from the volume of
any system where the current density obeys Ohm’s law,

jf = σE. (14.76)

To see why, substitute (14.76) and then ε∇ · E = ρf into the continuity equation

∇ · jf + ∂ρf

∂t
= 0. (14.77)

The result is a partial differential equation for the time evolution of the charge density,

∂ρf

∂t
+ σ

ε
ρf = 0. (14.78)

If the conductivity σ is strictly constant, the solution to (14.78) is15

ρf (r, t) = ρf (r, 0) exp(−t/τE) where τE ≡ ε/σ. (14.79)

This formula shows that volume charge disappears from the interior of a conductor on a time scale
set by an electric time constant τE . The greater the conductivity, the faster this process occurs. Since
charge is conserved, the disappearance of bulk charge is accompanied by the appearance of charge on
the surface of the conductor.

14.8 Poor Conductors: Quasi-Electrostatics

Quasi-electrostatics in conducting matter makes sense when charge relaxation is slow enough to
permit a free charge density ρf (r, t) to exert its Coulombic influence before it disappears as dictated
by (14.79). For a time-harmonic source which oscillates at frequency ω, this means that the order-
of-magnitude estimates made in Section 14.5 remain true when ωτE � 1. Switching to dielectric
language and making use of (14.75), we conclude that the regime of quasi-electrostatics for poorly
conducting simple matter is defined by

σ

ε
� ω � 1

�
√
με

. (14.80)

As a practical matter, this regime exists only for very low-conductivity materials (σ < 10 �−1m−1)
which are more naturally classified as lossy dielectrics.

In a poor conductor, the quasi-electrostatic approximation to the Maxwell equations neglects electro-
magnetic induction and treats the current density as purely ohmic. Therefore, the fields are determined
by

∇ · E = ρf

ε
∇ · B = 0 (14.81)

∇ × E = 0 ∇ × B = μσE + με
∂E
∂t

. (14.82)

15 See, however, the first paragraph of Section 14.9.
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Usually, we solve the electrostatic part of these equations to find j = σE. If needed, the magnetic field
follows as in the vacuum case.

Application 14.5 The Power Dissipated in a Metal by a Passing Point Charge

A point charge q in vacuum travels horizontally with speed υ at a height d over the surface of a flat
metal surface with conductivity σ and permittivity ε. In the following, we estimate the rate at which
power is dissipated in the metal in the limit when c � υ � dσ/ε.

R

d
q

σ

v

Figure 14.11: A point charge moving parallel to a flat metal surface.

In the υ → 0 limit, the charge polarizes the metal and creates an image electric field which can-
cels the point charge electric field E = q r̂/4πεr2 everywhere inside the metal. When the charge
is moving, the metal cannot respond quickly enough to screen out the quasi-electrostatic Coulomb
field of q (see Example 14.3) in the immediate vicinity of the charge itself. In other words, E
persists in the metal out to a radius R (see Figure 14.11). Qualitatively, R should increase as the
conductivity decreases and go to zero in the static limit. A dimensionally correct guess with this
behavior is

R ∼ υε

σ
� d. (14.83)

The inequality in (14.83) reiterates the limit assumed in the statement of the problem.
From Section 9.6.1, the rate at which a metal with volume V dissipates energy by Joule heating is

P = ∫
V
d 3r σE2. Since E = −∇ϕ in quasi-electrostatics, a bit of vector calculus shows that

P =
∫
V

d 3r σE2 = −σ
∫
V

d 3rE · ∇ϕ = σ

∫
d 3r [ϕ∇ · E − ∇ · (Eϕ)] . (14.84)

There is no charge density in the metal, so ρ = ∇ · E = 0 in (14.84). Therefore, using the divergence
theorem,

P = −σ
∫
S

dS · Eϕ. (14.85)

The only portion of the metal surface where the field is not zero is an area of radius πR2 just
below the moving charge. The surface normal and E are roughly anti-parallel so, using R from
(14.83) and a simple estimate of the field and potential at the surface in the integrand, we conclude
that

P ∼ σ (πR2)
( q

4πεd2

) ( q

4πεd

)
∼ 1

16π

υ2q2

σd3
. (14.86)

�
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Example 14.4 A battery maintains a voltage V0 between the parallel plates (separation d) of
a capacitor filled with a leaky dielectric with conductivity σ and permittivity ε. Find the time
evolution of the plate surface charge densities16 #±(t) if the battery is abruptly disconnected at
t = 0.

Solution: Since the usual results of electrostatics apply, E(t) = V (t)/d is the magnitude of the
instantaneous electric field between the plates and #±(t) = ±εE(t). Current j flows from the
positive plate to the negative plate with no accumulation of charge within the dielectric. Therefore,

d#+
dt

= −j = −σE = −σ

ε
#+ = − 1

τE
#+.

The appearance of the electric time constant (14.78) generalized to dielectric matter is expected.
The solution of this differential equation which satisfies the initial conditions gives the surface
charge density of the positive plate as the capacitor discharges as

#+(t) = εV0

d
exp(−t/τE).

14.9 Good Conductors: Quasi-Magnetostatics

The exponential charge-relaxation formula derived in Section 14.7.1 is not strictly valid when the
conductivity σ is large. A more careful analysis (Application 18.1) shows that charge relaxation in a
good metal (σ ∼ 108 �−1m−1) occurs less rapidly than (14.79) predicts.17 Nevertheless, it remains
true that charge disappears from the bulk of a good conductor much more rapidly than for a poor
conductor—so quickly, in fact, that no long-range Coulomb effects are discernible. This means that,
to a very good approximation, we may set

ρf (r, t) = 0 and ∇ · jf = 0. (14.87)

The steady-current condition on the right side of (14.87) follows from ρf = 0 and the continuity
equation (14.77).

To find the quasistatic approximation appropriate to a good conductor, we note first that the current
density jf = σE in an ohmic system is always driven by some sort of external source. Sometimes,
the latter is an explicit and spatially distinct current density jext(r, t). At other times, an unspecified
current source is presumed to impose a specified electric or magnetic field. This leads us to write the
Ampère-Maxwell equation in the form

∇ × B = μjext + μσE + με
∂E
∂t

. (14.88)

In (14.88), the ratio of the displacement current density jD = ε∂E/∂t to the external current density
jext can be estimated exactly as we did in Section 14.6. This gives

jD

jext
∼ μεω2�2 � 1. (14.89)

16 This example retains σ for the conductivity and uses # for surface charge density to avoid confusion.
17 The absurdly small value for τE predicted by (14.79) for a good conductor is an indicator that the theory is

inadequate for this case.
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1/� με

1/� με

1/τE 1/τM0

1/τE1/τM0

QMS

QES
ω

ω

Figure 14.12: Ranges of validity for quasistatic approximations when conducting matter is present. Top:
quasi-electrostatics (QES) when τE � τM . Bottom: quasi-magnetostatics (QMS) when τM � τE . The horizontal
scale is logarithmic in frequency. Figure adapted from Orlando and Devlin (1991).

The imposed inequality in (14.89) is our usual definition of a quasistatic limit. It is valid up to
short-wave frequencies (107 Hz) for meter-sized objects and up to infrared frequencies (1013 Hz) for
micron-sized structures.

Since τE = ε/σ , an order-of-magnitude estimate of the ratio of jD to the conduction current density
jf = σE in (14.88) is

jD

jf
∼ εωE

σE
= ωτE � 1. (14.90)

The imposed inequality in (14.90) is the opposite of the quasi-electrostatic condition (14.80) and
reflects the fact that we are interested in good conductors where (14.87) is true. As a practical
matter, (14.90) is satisfied up to ultraviolet frequencies (1017 Hz) for high-conductivity materials like
metals.

The displacement current may be neglected in (14.88) when both (14.89) and (14.90) are satisfied.
This defines the regime of quasi-magnetostatics for good conductors. On the other hand, the physics
in this regime depends strongly on the relative importance of “external” versus “induced” fields.
For example, following Section 14.6, the field Bext produced by jext creates a Faraday electric field
EF ∼ ω�Bext. The corresponding conduction current density jF = σEF produces its own Ampère’s
law magnetic field BF ∼ μσ�EF . Therefore,

BF

Bext
∼ μσω�2 = ωτM where τM ≡ μσ�2. (14.91)

The importance of the magnetic time constant τM becomes clear when we realize that the electromag-
netic transit time

√
με� is the geometric mean of τE and τM . This means that the quasistatic condition

(14.89) can be written in the form

μεω2�2 = (ωτE)(ωτM ) � 1. (14.92)

Given the extraordinary smallness of ωτE when (14.89) is satisfied, we learn from (14.92) that quasi-
magnetostatics makes sense both when ωτM � 1 (where electromagnetic induction is negligible) and
when ωτM � 1 (where electromagnetic induction dominates). This is indicated in the lower scale in
Figure 14.12. For comparison, the upper scale of Figure 14.12 shows the more limited range of validity
of quasi-electrostatics for poorly conducting matter.

Good conductors exhibit a surprisingly diverse range of quasi-magnetostatic behavior. Section 14.10
and Section 14.11 treat examples where the driving force for current flow is an imposed electric or
magnetic field. Section 14.12 treats eddy-current phenomena for situations where a specified j ext(r, t)
drives currents in a nearby conductor.
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When j ext(r, t) = 0, the quasi-magnetostatic approximation to the Maxwell equations is

∇ · E = 0 ∇ · B = 0 (14.93)

∇ × E = −∂B
∂t

∇ × B = μσE. (14.94)

A straightforward approach to (14.93) and (14.94) substitutes the curl equation on the left side of
(14.94) into the curl of the equation on the right side of (14.94). Using ∇ · B = 0 and the vector
identity ∇ × (∇ × B) = ∇(∇ · B) − ∇2B, these operations give

D∇2B = ∂B
∂t

with D = 1/μσ. (14.95)

Exchanging the role of the two curl equations in (14.94) and repeating the same sequence of steps
yields

D∇2E = ∂E
∂t

with D = 1/μσ. (14.96)

This analysis shows that E(r, t) and B(r, t) inside conducting matter satisfy exactly the same
equation in the quasi-magnetostatic regime. The two fields differ only in the boundary and/or matching
conditions they satisfy. In the frequency domain, we will find the skin effect. In the time domain, we
will find the phenomenon of magnetic diffusion.

14.10 The Skin Effect

The current density is uniform across the cross section of a long straight wire which carries a direct
current (see Example 9.2). This is no longer true when the wire carries an alternating current. To
see this, let a straight, cylindrical wire with radius R, conductivity σ , and permeability μ carry a
time-harmonic current I (t) = I0 exp(−iωt). Choose the wire parallel to the z-axis so, by symmetry,
E(r, t) = ẑE(ρ) exp(−iωt). For this situation, (14.96) in cylindrical coordinates simplifies to

ρ
d

dρ

(
ρ
dE

dρ

)
+ κ2ρ2E = 0, (14.97)

where κ = √
iμσω = (1 + i)/δ and

δ(ω) =
√

2

μσω
. (14.98)

The frequency-dependent quantity δ(ω) in (14.98) is called the skin depth. It is a characteristic length
scale for time-harmonic quasi-magnetostatic problems. Indeed, comparing (14.98) to (14.91) shows
that18

1
2ωτM = R2

δ2
. (14.99)

The linearly independent solutions of (14.97) are the Bessel functions J0(κρ) andN0(κρ) appropriate
to problems with rotational symmetry around the z-axis (Section 7.8.1). The second of these diverges
at the center of the wire (ρ = 0) so the electric field inside the wire is

E(ρ, t) = ẑAJ0(κρ) exp(−iωt). (14.100)

18 The wire radius is the characteristic length scale for this problem, so � = R.
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| j( ρ)|
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Figure 14.13: The magnitude of the current density |j (ρ)| normalized to its value at the surface of the wire for
different values of κR. The thickness of the skin layer for κR = 25 is indicated by δ. Figure adapted from King
(1945).

The Bessel functions satisfy J ′
0(x) = −J1(x), so Faraday’s law in the form ∇ × E = iωB gives the

accompanying magnetic field,

B(ρ, t) = φ̂
κA

iω
J1(κρ) exp(−iωt). (14.101)

The constant A in (14.100) and (14.101) is determined by the continuity of the tangential component
of B at the surface of the wire and the Ampère’s law magnetic field B(R) = φ̂μI0/2πR.

The interesting feature of this problem appears when we study the ratio E(ρ)/E(R). Since j = σE,
the graphs of the normalized current density |j (ρ)|/|j (R)| in Figure 14.13 tell the magnitude part of
the story. As the magnitude of κ = (1 + i)/δ increases, the current becomes increasing confined to a
narrow “skin layer” near the wire’s surface. This has a dramatic effect on the resistance of the wire
because the effective cross sectional area through which the current flows decreases drastically as the
driving frequency increases.

From a mathematical point of view, the dashed curves in Figure 14.13 are understandable using
(14.100) and the limiting forms of the zero-order Bessel function,

J0(κρ) = 1 − 1
4κ

2ρ2 + · · · (κρ � 1) (14.102)

and

J0(κρ) ∼
√

1

2πκρ
cos(κρ − π/4) (κρ � 1). (14.103)

The keys to the computation are to write the cosine in (14.103) as a sum of complex exponentials,
recall that κ is complex, and retain only the dominant terms when computing the electric field ratio of
interest. The result is

E(ρ)

E(R)
≈
⎧⎨
⎩

1 δ � R,

exp {(i − 1)(R − ρ)/δ} ρ ≈ R, δ � R.
(14.104)

The top line of (14.104) confirms that the electric field and current density are uniform throughout the
wire’s cross section in the low-frequency limit when δ � R. In the high-frequency limit, when δ � R,
the second line in (14.104) shows that the skin depth δ(ω) sets the scale for the (initially) exponential
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Table 14.1. Skin depth δ(ω) for copper metal at several
frequencies.

δ(ω) ω (Hz) Band

10 nm 1015 Visible
1µm 1012 Microwave
0.1 mm 106 AM radio
1 cm 10 House current

+ + + +
Ij(0)

R

�

j( ρ)

Figure 14.14: A wire carries a uniformly distributed current I cosωt . Self-induction induces currents around
loops (dashed) which lead to the skin effect. See text for discussion.

decrease of the current density as one moves into the wire from the surface. This exponential behavior
is not surprising because, when ρ ≈ R, Bessel’s equation (14.97) simplifies to

d2E

dρ2
+ κ2E = 0. (14.105)

The second line in (14.104) also shows that the current density is an oscillatory function of ρ when
δ � R. The instantaneous current density in the skin layer thus resembles a set of nested tubes, with
adjacent tubes carrying current in opposite directions. Table 14.1 gives a few values for the skin depth
of copper.

14.10.1 The Physical Origin of the Skin Effect
The skin effect arises from an interplay between Faraday’s law and Ohm’s law which is not very
obvious from (14.97) or even (14.105). To correct this, we perform an approximate calculation of the
induced current density j(ρ, t) in a wire beginning with a uniformly distributed current I (t) = I cosωt .
The latter creates an azimuthal magnetic field, B(ρ, t) = μI (t)ρ/2πR2 (see Example 10.5), which,
in turn, induces an electric field E = j/σ . We use the latter to integrate Faraday’s law,∮

C

d� · E = −
∫
S

dS · ∂B
∂t

, (14.106)

using a rectangular circuit C (dashed lines in Figure 14.14) where one long leg coincides with the
symmetry axis of the wire and one long leg lies at a radial distance ρ from the symmetry axis. The
short legs do not contribute, so (14.106) reads

[j (ρ) + j (0)]
L

σ
= L

ρ∫
0

dρ ′ ∂
∂t

[
μIρ ′ cosωt

2πR2

]
= −ωLμI

4π

ρ2

R2
sinωt. (14.107)
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The net induced current which flows through any cross section of wire must be zero:

2π

R∫
0

dρρj (ρ) = 0. (14.108)

Combining (14.107) with (14.108) determines the current density j (0) induced on the symmetry axis
of the wire. Given j (0), (14.98) and (14.107) show that our approximation to j (ρ) changes sign at
ρ = R/

√
2 and oscillates 90◦ out of phase with the driving current:

j (ρ) = − I

2πδ2

(
ρ2

R2
− 1

2

)
sinωt. (14.109)

This spatially varying correction to the assumed uniform current density (I/πR2) cosωt may be
compared to the first correction to uniformity predicted by (14.100) and (14.102).

Young Rutherford

In 1893, the 23-year-old Ernest Rutherford was curious “whether [soft] iron was magnetic in very
rapidly oscillating fields or not”. To find out, he used a spark gap method to pass alternating
currents (up to 109 Hz) through iron needles and measured the magnetism of the needles using
a torsion balance magnetometer. The experiments were performed in the cellar of Canterbury
College, Christchurch, New Zealand. Rutherford was aware of the skin effect (predicted in 1886
by Heaviside and Rayleigh) and confirmed that the magnetization was proportional to the radius,
rather than to the cross sectional area, of his needles. To examine their internal state, he exposed
similarly magnetized needles to nitric acid for varying amounts of time. The acid dissolved the
needles from the outside in, so Rutherford was able to determine the radial variation of the
magnetization. Figure 14.15 reproduces the relevant figure from his paper, “Magnetization of iron
by high-frequency discharges” [Transactions of the New Zealand Institute 27, 481 (1894)]. The
damped oscillatory behavior is consistent with the current density (14.103).

Figure 14.15: Reproduction of a figure from Ernest Rutherford’s first research paper.

Application 14.6 Shielding of an AC Magnetic Field by a Cylindrical Shell

A long cylindrical shell coaxial with the z-axis has inner radiusR, outer radiusR + d, and conductivity
σ . Unspecified sources generate an external field B0(t) = ẑB0 exp(−iωt) at every point in space;
Figure 14.16. Our task is to show that the magnetic field in the cylindrical hollow is negligibly
small when d � δ � R but d � δ2/R. By symmetry, the magnetic field everywhere has the form
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ẑ

R

d

B0(t)

Figure 14.16: Shielding of an AC magnetic field by a cylindrical ohmic shell.

B(r, t) = ẑB(ρ) exp(−iωt). The fields Bin = B(ρ < R) and Bout = B0(ρ > R + d) are both uniform
in the quasi-magnetostatic limit because both satisfy ∇ · B = 0 and ∇ × B = 0. The longitudinal and
time-varying magnetic field induces an azimuthal electric field by Faraday’s law,∮

C

d� · E = − d

dt

∫
S

dS · B. (14.110)

Choosing C as a circular circuit with radius R simplifies (14.110) to

2πRE(R) = iωπR2Bin. (14.111)

The limit d � δ implies that the electric field and current density j = σE are uniform throughout
the ohmic matter of the shell. Indeed, for a sufficiently thin shell, the quasi-magnetostatic matching
condition n̂2 × [B1 − B2] = μKf reads

Bout − Bin = −μKf = μjd = μσE(R)d. (14.112)

Since δ2 = 2/μσω, substituting (14.111) into (14.112) yields

Bin

Bout
= 1

1 − i
dR

δ2

. (14.113)

The inside field is out of phase with the external field but has a very small amplitude when d � δ2/R

because ∣∣∣∣ Bin

Bout

∣∣∣∣ = 1√
1 +

(
Rd

δ2

)2
. (14.114)

�

14.11 Magnetic Diffusion

We showed in Section 14.9 that the quasistatic magnetic field in a good conductor satisfies

D∇2B = ∂B
∂t

with D = 1/μσ. (14.115)

If we replace B(r, t) by a density of particles n(r, t), this equation—called the diffusion equation—
describes how a small whiff of perfume spreads out to fill an entire room (see boxed material following
Section 7.9.1). The diffusion constantD determines the rate of spreading. To discover the corresponding
behavior of B(r, t) in a good conductor, imagine a conducting half-space x > 0 which is free of all
fields for t < 0. At t = 0, turn on a magnetic field B0ẑ just at the surface (x = 0) and maintain it for
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t1

t1

t2

t2

t3

t3

x

x

B(x, t)
B0

E(x, t)
cB0

1

0

Figure 14.17: Normalized magnetic field B(x, t) (top panel) and electric field E(x, t) (bottom panel) at three
different times (t1 < t2 < t3) during magnetic diffusion. See text for discussion.

all t > 0. We will use the method of similarity to solve (14.115) for B(x, t) = B(x, t)ẑ for all t > 0
and then compute E(x, t) from Ampère’s law.

The first step is to check (by direct substitution) that the diffusion equation itself, the boundary
condition B(0, t) = B0, and the initial condition B(x, 0) = 0 are all invariant under the transformation
x → x/� and t → t/�2 for � > 0. This implies that B(x/�, t/�2) = B(x, t). If we choose the
length � to have the specific value19

� =
√

4Dt, (14.116)

this equation reads B(x, t) = B(x/�, 1/4D). Notice that the second argument does not depend on x
or t . This means that the magnetic field which solves (14.115) for a fixed value of D is a function of
the single variable s = x/�:

B(x, t) = B0f (x/�) = B0f (s). (14.117)

Changing variables to g(s) = f ′(s) simplifies (14.115) to the ordinary differential equation

g′ + 2sg = 0. (14.118)

It is straightforward to integrate (14.118) once to get g(s) and then again to get f (s). Applying
the initial and boundary conditions in the form f (0) = 1 and f (∞) = 0 produces an integral which
defines the complementary error function of mathematical physics, erfc(x). In detail, the magnetic
field in the conductor is

B(x, t) = ẑ
2B0√
π

∞∫
x/�

ds exp(−s2) = ẑB0erfc

(
x√
4Dt

)
. (14.119)

This solution satisfies B(0, t) = ẑB0 because erfc(0) = 1. Otherwise, the top panel of Figure 14.17
plots the magnitude of (14.119) as a function of position at three different times. The intersection of
each curve with the horizontal dashed line occurs at x = 2

√
Dt . This shows that the time-dependent

length (14.116) measures the depth to which the magnetic field penetrates into the ohmic material
after a time t .

19 The factor of 4 in (14.116) simplifies the final multiplicative pre-factor in (14.119).
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jind

jextV ~ �3

Ω ~ �3
S

Figure 14.18: By Faraday induction, the closed loops of a time-varying external current density jext induce
closed loops of eddy current with density j ind in a nearby ohmic medium.

Using the definition of D in (14.115), we gain the important insight that large conductivity impedes
the diffusion of a magnetic field into a conductor. For a perfect conductor, there is no penetration
at all. This is the origin of the magnetostatic boundary condition used for perfect conductors (see
Section 13.6.6). Note also that (14.116) provides an interpretation of the magnetic time constant τM
defined on the right side of (14.91). It is the time needed for a magnetic field to diffuse a distance �
into a material with conductivity σ and magnetic permeability μ.

The electric field which accompanies (14.119) follows immediately from Ampère’s law on the right
side of (14.94) and the fact that (d/dz)erfc(z) = −(2/

√
π ) exp(−z2):

E(x, t) = ŷB0

√
D
πt

exp(−x2/4Dt). (14.120)

This field (bottom panel of Figure 14.17) is zero at t = 0 except at x = 0 where it is singular. The
singularity is a consequence of the abrupt turn-on of the magnetic field at t = 0. Thereafter, E(x, t)
first increases exponentially and then decreases as t−1/2 as B(x, t) penetrates into the conductor. The
crossover occurs at later times for points in the sample which are farther from x = 0. In the limit
t → ∞, the magnetic field B0ẑ fills the conductor and the electric field is zero everywhere.

14.12 Eddy-Current Phenomena

Closed loops of current which form in conducting matter due to electromagnetic induction are gener-
ically called eddy currents. Figure 14.18 shows an external current density j ext(r, t) which produces a
magnetic field Bext(r, t). When this field penetrates a nearby conducting body, Ohm’s law guarantees
that the electric field induced by Faraday’s law, Eind(r, t), creates closed loops of eddy current in the
body with density j ind(r, t).

Eddy currents generate magnetic forces and torques. They also dissipate energy by Joule heating.
The forces and torques make possible induction motors, eddy-current braking, and electromagnetic
levitation. The energy losses are responsible for the substantial amount of electricity consumed by
commercial power transformers and other large electrical machines. Our goal here is to discover the
qualitative characteristics of both phenomena.

When all sources and fields oscillate at frequency ω, it is convenient to use the complex exponential
f (r, t) = f (r) exp(−iωt) for calculations. Hence, if we choose j ext(r) to be a real function, the physical
external current density is

Re [j ext(r, t)] = Re
[
j ext(r) exp(−iωt)] = j ext(r) cosωt. (14.121)

A similar formula applies to Bext(r, t). The presence of a complex-valued spatial function f (r) is the
signal that f (r, t) has a component which oscillates out of phase with the driving source.
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The quasi-magnetostatic force F exerted by jext on the resistive medium in Figure 14.18 is equal
and opposite to the force exerted on j ext by the induced magnetic field. Therefore, if � = �3

S is the
volume occupied by the source current, the force averaged over one period T = 2π/ω of the current
oscillation is

〈F〉 = −
∫
�

d 3r
1

T

T∫
0

dt Re [j ext(r, t)] × Re [Bind(r, t)] . (14.122)

Similarly, the time-averaged rate of Joule heating in the conducting body with volume V = �3 is
(Section 9.6)

〈R〉 =
∫
V

d 3r
1

T

T∫
0

dt Re [j ind(r, t)] · Re [Eind(r, t)] . (14.123)

14.12.1 Qualitative Estimates for Forces and Losses
We evaluate (14.122) and (14.123) using j ind = σEind, the decomposition Bind(r) = B′

ind(r) + iB′′
ind(r),

and the time-averaging theorem proved in Section 1.6.3. The results are

〈F〉 = − 1
2

∫
�

d 3r jext(r) × B′
ind(r) (14.124)

and

〈R〉 = 1
2σ

∫
V

d 3r |Eind(r)|2. (14.125)

To make further progress, we specialize the Maxwell curl equations (14.94) to time-harmonic fields:

∇ × E = iωB ∇ × B = μσE. (14.126)

A first estimate of Eind comes from substituting Bext into the left side of (14.126). Using this field in the
right side of (14.126) gives a first estimate of Bind. Following our skin-effect discussion (Section 14.10),
we distinguish high-frequency behavior (δ � �) where the estimate ∇ ∼ 1/δ is appropriate from low-
frequency behavior (δ � �) where our original estimate ∇ ∼ 1/� is still valid. Since δ2 = 2/μσω,
this gives

E
(1)
ind ∼

{
iωδBext δ � �,

iω�Bext δ � �,
(14.127)

and

B
(1)
ind ∼

⎧⎪⎨
⎪⎩
iBext δ � �,

i
�2

δ2
Bext δ � �,

(14.128)

We can use E(1)
ind directly in (14.125), but B(1)

ind is purely imaginary, while (14.124) requires the real
part of Bind. This calls for a second estimate obtained by substituting (14.128) into the left side of
(14.126) and substituting the resulting second estimate of Eind into the right side of (14.126). The
result is

B
(2)
ind ∼

⎧⎪⎨
⎪⎩

−Bext δ � �,

−�4

δ4
Bext δ � �.

(14.129)
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Equations (14.128) and (14.129) show that the real and imaginary parts of Bind are as large as Bext

itself when the skin depth is small. This is the fundamental origin of the phenomenon of magnetic
shielding seen already in Application 14.6 at the end of Section 14.10.

Here, we use (14.127) to estimate the damping rate (14.125) and (14.129) to estimate the force
(14.124). When δ � L, current only flows through a tiny volume of the conducting body near its
surface. This means that V should be replaced by �2δ when we estimate the integral in (14.125). We
will also assume that � � V so Bind is nearly constant over the volume of the source current. Since
jext ∼ Bext/μ�S , these approximations give

F ∼

⎧⎪⎨
⎪⎩

�3

μ�S
B2

ext δ � �,

μ�2
S�

4σ 2ω2B2
ext δ � �,

(14.130)

and

R ∼

⎧⎪⎨
⎪⎩
√

ω

μσ

�2

μ
B2

ext δ � �,

σω2�5B2
ext δ � �.

(14.131)

Experiments in theω → 0 limit confirm that both F and R are proportional toω2 and that both increase
as σ increases. A frequency-independent force and a damping rate R ∝ √

ω are similarly characteristic
of the high-frequency, small-skin-depth regime. Application 14.7 at the end of the chapter confirms
some of these results in a circuit-theory context.

Example 14.5 A popular lecture demonstration uses a pendulum mechanism to swing a disk of
metal between the pole faces of a magnet. Estimate the damping force on the metal at a moment
when the pendulum speed is v. What happens when a parallel array of long and narrow slots are
cut out of the disk?

N

S

B

v

Figure 14.19: An eddy-current pendulum where a conducting disk swings betweens the poles of a magnet.

Solution: Eddy currents appear in the metal as soon as the downward swing brings the leading edge
of the metal into the space occupied by the magnetic field B. Let the metal disk in Figure 14.19
have conductivity σ , radius R, and thickness t . At a moment when the disk speed is v, it is
simplest to estimate the damping force directly from an integral over the volume πR2t of the
disk:

F =
∫

d 3r j × B.
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Ohm’s law does not seem immediately relevant because there is no source of electric field. However,
(14.35) makes clear that a sensible generalization for a conductor in motion with velocity v is

j = σ (E + v × B).

The vectors v and B are perpendicular in Figure 14.19. Therefore, when the entire disk is immersed
in the field, a good estimate is

F ∼ πR2tσvB2.

The direction of this force is such that a sufficiently strong magnet halts the pendulum in mid-swing.
This is an effective way to prevent the introduction of magnetic flux into the metal, as Lenz’ law
dictates. The force disappears if long thin slots are cut out of the metal because closed loops of
eddy current cannot form.

14.13 AC Circuit Theory

The quasistatic approximation underlies the most common approach to practical electromagnetic
problems—alternating-current (AC) circuit theory. This theory generalizes to time-dependent situa-
tions the familiar linear relationship between an electromotive force and a time-independent current,

I = E
R
. (14.132)

Experiment shows that the relation is still linear, but that I (t) cannot respond instantaneously to E(t).
The inevitability of this time delay leads us to write

I (t) =
t∫

−∞
dt ′ f (t − t ′)E(t ′). (14.133)

The fact that t ′ < t in (14.133) expresses the principle of causality: only past values of the EMF
influence the present value of the current.

The practical consequences of (14.133) emerge when both E(t) and I (t) are expressed in terms of
their Fourier frequency components Ê(ω) and Î (ω):

E(t) = 1

2π

∞∫
−∞

dω Ê(ω) exp(−iωt) (14.134)

and

I (t) = 1

2π

∞∫
−∞

dω Î (ω) exp(−iωt). (14.135)

A similar formula with f (t) and f̂ (ω) always makes sense if we demand that

f (t < 0) = 0. (14.136)

In other words, when (14.136) is valid, we have the Fourier transform partners

f̂ (ω) =
∞∫

−∞
dt f (t) exp(iωt) =

∞∫
0

dt f (t) exp(iωt) (14.137)
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L
R

C

ε

Figure 14.20: A circuit with an ideal capacitor, an ideal inductor, an ideal resistor, and a source of electromotive
force.

and

f (t) = 1

2π

∞∫
−∞

dω f̂ (ω) exp(−iωt). (14.138)

14.13.1 The Complex Impedance Ẑ(ω)
The restriction (14.136) guarantees that the integral (14.133) does not violate causality if we extend
its upper limit to +∞:

I (t) =
∞∫

−∞
dt ′ f (t − t ′)E(t ′). (14.139)

We are now in a position to Fourier transform (14.139) and exploit the convolution theorem
(Section 1.6.2). Given (14.134), (14.135), and (14.137), the key result is

Î (ω) = f̂ (ω)Ê(ω). (14.140)

The definition Ẑ(ω) ≡ f̂ −1(ω) then produces the natural generalization of (14.132) for time-dependent
circuits:

Ê(ω) = Ẑ(ω) Î (ω). (14.141)

The complex-valued function Ẑ(ω) is called the impedance. The fact that f (t) in (14.133) is real
implies that

ReẐ(ω) = ReẐ(−ω) and ImẐ(ω) = −ImẐ(−ω). (14.142)

Therefore, a low-frequency expansion of the impedance has the form

ReẐ(ω) = R + a1ω
2 + a2ω

4 + · · ·
(14.143)

ImẐ(ω) = b1ω + b2ω
3 + · · · .

14.13.2 The RLC Circuit: A Damped Oscillator
An important special case of (14.141) emerges from Maxwell theory if we apply quasistatic principles
to an RLC circuit. In Figure 14.20, a sinusoidal EMF drives an alternating current through a resistor and
an inductor (solenoid) and induces time-varying accumulations of charge on the plates of a capacitor.
A quasi-electrostatic approximation applies to the capacitor and a quasi-magnetostatic approximation
applies to the inductor. This permits us to exploit conservation of power, static expressions for R, L,
and C, and static formulae for the electric energy, magnetic energy, and rate of Joule heating.

The rate at which energy is supplied by a source of EMF is equal to the rate of Joule heating plus the
rate of change of the stored electric and magnetic field energy. For the circuit shown in Figure 14.20,
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this power balance reads

EI = RI 2 + d

dt

{
1

2
LI 2 + Q2

2C

}
= RI 2 + LI

dI

dt
+ Q

C

dQ

dt
. (14.144)

Dividing (14.144) by I = dQ/dt gives

E = L
d2Q

dt2
+ R

dQ

dt
+ Q

C
. (14.145)

The reader may recognize (14.145) as an application of Kirchhoff’s voltage law generalized to time-
varying currents when it is written in the form20

E − L
dI

dt
− IR − Q

C
= 0. (14.146)

The inductive term, in particular, follows from Faraday’s flux rule (14.42) and the time derivative of
� = LI in (12.133).

We solve the linear equation (14.145) using a Fourier representation of Q(t) and the fact that
Î (ω) = −iωQ̂(ω). The result is exactly (14.141) with

Ẑ(ω) = R − 1

iωC
− iωL. (14.147)

If Ẑ = |Ẑ| exp(iφ), the physical current driven by a real electromotive force Ê(ω) cosωt is

I (t) = Re
[
Î (ω) exp(−iωt)] = Ê(ω)√

R2 + (1/ωC − ωL)2
cos(ωt + φ), (14.148)

where

tanφ =
(

1

ωC
− ωL

)
1

R
. (14.149)

The current lags the driving EMF (φ < 0) when the inductance dominates the circuit. This is so
because, by Lenz’ law, the circuit opposes instantaneous changes in its magnetic state. Conversely,
the current leads the driving EMF (φ > 0) when the capacitance dominates. An equivalent (and more
physical) statement is that the voltage dropQ/C in (14.145) lags the current because the instantaneous
charge Q(t) = ∫ t

dt ′I (t ′) depends on the current at previous times.
The most striking feature of any RLC circuit is its capacity for unforced self-oscillation. According

to (14.141) there is a solution to (14.145) with E = 0 when Z(ω) = 0. Using (14.147), this occurs at
the frequency

ω = −i R
2L

±
√

1

LC
− R2

4L2
. (14.150)

The oscillations are over-damped when R > 2
√
L/C and under-damped when R < 2

√
L/C. When

R = 0, undamped oscillations occur at the resonance frequency

ωT = 1√
LC

. (14.151)

20 See (14.156) for the complete generalization.
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This is called Thomson’s formula.21 A glance back at (14.148) shows that ωT is also the frequency
at which a driven RLC circuit responds resonantly. That is, the amplitude of the current is maximal
when the EMF is driven at frequency ω = ωT .

Since the current and the charge are 90◦ out of phase, the two terms in the brackets in (14.144)
conjure up the image of the total energy of the system (less that lost to ohmic dissipation) sloshing
back and forth between the electric energy stored in the capacitor and the magnetic energy stored in the
inductor. The under-damped oscillation frequency is the real part of (14.150). The imaginary part of
(14.150) gives an estimate of the number of radians of oscillation which occur during the exponential
decay time L/R. This is the quality factor Q of the circuit:

Q = ωL

R
≈ ωT L

R
= 1

R

√
L

C
. (14.152)

The resistance and inductance which enter the frequency ωM = R/L tell us that the oscillator
damping is a quasi-magnetostatic effect. To confirm this, it is enough to show that ωM = 2π/τM ,
where τM = μσ�2 is the magnetic time constant defined on the right side of (14.91). In Figure 14.20,
the wire radius a plays the role of � and the inductance of a wire loop of length b is L ∼ μb/2π
(Section 12.8). Therefore,

ωM = 2π

μσa2
= b/σa2

μb/2π
∼ R

L
. (14.153)

Example 14.6 Find the complex impedance Ẑ(ω) of the long straight wire studied in Section 14.10
using the surface values of its quasistatic electric and magnetic fields. Use Ẑ(ω) to estimate the
low-frequency inductance of the wire.

Solution: If V is the voltage drop along a linear distance � of the wire surface and I is the total
current carried by the wire calculated using Ampère’s law, the impedance of the wire is sensibly
Ẑ = V/I . Therefore, using E(R) from (14.100) and B(R) from (14.101),

Ẑ(ω) = V

I
= μ

∫
d� · E(R)∮
d� · B(R)

= iωμ�J0(κR)

2πRκJ1(κR)
.

Small-argument expansions of the Bessel functions give

J0(x)

J1(x)
=

1 − x2

4
+ · · ·

x

2
− x3

16
+ · · ·

≈ 2

x

(
1 − x2

8

)
.

Therefore, since κ2 = iμσω = 2i/δ2 and the DC resistance of the wire is RDC = �/σπR2,

Ẑ(ω) ≈ �

σπR2

(
1 − i

8
μσωR2

)
= RDC

(
1 − iR2

4δ2

)
.

We get an estimate of the low-frequency inductance of a length � of wire by comparing this formula
for Ẑ(ω) to (14.147). The result is

L ≈ μ�

8π
.

This agrees with the static result (12.137) calculated in Section 12.8.

21 Electromagnetism abounds with unrelated scientists named Thomson. The formula (14.151) was derived by William
Thomson (Lord Kelvin). The “jumping ring" described at the end of the chapter was invented by Elihu Thomson,
co-founder of the General Electric Corporation. Neither should be confused with J.J. Thomson, discoverer of the
electron and Nobel laureate.
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Z1

(a) (b)

Z1

Z3

I1 I2

Z3

Z2

Z2

I3

Z4

Z6Z5

Figure 14.21: Two complex circuits. The small circles with an inscribed sine curve denote a source of
time-harmonic EMF.

14.13.3 Network Circuits
The relation Ê(ω) = Ẑ(ω) Î (ω) also applies to a circuit like the one shown in Figure 14.21(a). This is
so because (like resistance in the direct-current case)

Ẑ(ω) =
∑
α

Ẑα(ω) (14.154)

and

Ẑ−1(ω) =
∑
α

Ẑ−1
α (ω) (14.155)

define Ẑ(ω) for a collection of impedances in series and in parallel, respectively.
To analyze a network circuit like the one shown in Figure 14.21(b), we assign a “loop current”

Îk(ω) to every internal closed loop of the circuit. The total current through any point in the circuit is
the algebraic sum of the loop currents which pass through that point. Then, if Êk(ω) is the algebraic
sum of the amplitudes of a time-harmonic EMFs associated with the kth loop, the generalization of
(14.141) implied by Kirchhoff’s voltage law22 is

N∑
k=1

Ẑjk(ω)Îk(ω) = Êj (ω). (14.156)

The elements of the symmetric impedance matrix Z are

Ẑjk(ω) = Rjk − (iωCjk)
−1 − iωLjk, (14.157)

where Rkk , Ckk , and Lkk are the resistance, capacitance, and inductance of the kth loop. An off-
diagonal element is generated whenever a resistive, capacitive, or inductive element is shared by two
loop currents. For example, when only these effects are included, the circuit of Figure 14.21(b) yields

Ẑ =

⎡
⎢⎣
Ẑ2 + Ẑ4 + Ẑ5 −Ẑ4 −Ẑ2

−Ẑ4 Ẑ3 + Ẑ4 + Ẑ6 −Ẑ3

−Ẑ2 −Ẑ3 Ẑ1 + Ẑ2 + Ẑ3

⎤
⎥⎦ (14.158)

22 The physical currents and EMFs are the real part of their complex counterparts so Kirchhoff’s laws are valid for the
complex-valued functions Îk(ω) and Êj (ω).
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with Ê1 = Ê and Ê2 = Ê3 = 0. The off-diagonal elements are negative because two loop currents in a
shared branch flow in opposite directions when we choose every loop current to flow clockwise.

Additional contributions to the off-diagonal elementsLjk andCjk arise when we generalize (14.144)
using expressions for the total electrostatic and magnetostatic energy of a current-carrying network.
The magnetic energy yields Neumann’s formula (11.101) for the mutual inductance between loop
currents j and k:

Ljk = μ0

4π

∮
Cj

∮
Ck

d�j · d�′
k

|xj − x′
k| . (14.159)

This formula applies even when the two loop currents j and k are completely distinct.
There is no volume charge ρ(r, t) inside a current-carrying wire, so the electrostatic energy generates

contributions to C−1
jk entirely from the Coulomb interaction between surface charge distributions

#j (r, t) and #k(r, t) associated with different current loops. One source of such stray or parasitic
capacitance is the charge on the surface of distinct capacitors. Another is the interaction between
current-induced charges on the surfaces of the wires themselves (see Section 9.7.4). These contributions
can be important for wires in very close proximity at the highest frequencies where circuit theory is
valid.

A familiar example is a tightly wound inductor coil like the one sketched in Figure 14.20. The stray
capacitance is not easy to calculate analytically because the induced charge varies over the length of
the circuit.23 In principle, the dominant contribution comes from the Coulomb interaction between
charges on adjacent turns of the inductor. In practice, the net effect is often modeled as an effective
capacitor in parallel with the coil inductance.

Example 14.7 Find the free-oscillation frequencies of an LC circuit coupled to an L̂Ĉ circuit
by a mutual inductance M . Specialize to the case LC = L̂Ĉ and show that beating occurs at the
frequency

ω = ωT√
1 − κ

− ωT√
1 + κ

when κ = M/
√
LL̂ � 1. Show that one normal-mode frequency is always very large when LC �=

L̂Ĉ and κ ≈ 1.

Solution: Unforced oscillation frequencies are determined from (14.156) with Êj (ω) = 0. That is,
when |Ẑ(ω)| = 0 or ∣∣∣∣∣ 1/(ω2C) − L M

M 1/(ω2C) − L̂

∣∣∣∣∣ = 0.

Since ωT = 1/
√
LC and ω̂T = 1/

√
L̂Ĉ, this gives the mode frequencies

ω2 = ±
ω2
T + ω̂2

T ±
√

(ω2
T + ω̂2

T )2 − 4ω2
T ω̂

2
T (1 − κ2)

2(1 − κ2)
.

When ωT = ω̂T , ω2 = ω2
T (1 ± κ)/(1 − κ2) or ω = ωT /

√
1 ± κ. If κ � 1, the general solution

is a linear combination of sinusoids oscillating at two nearby frequencies. This means that beating

23 The first reliable calculation of the capacitance of a solenoid was reported in the Ph.D. thesis of the distinguished
theoretical physicist Gregory Breit. The published paper, “The distributed capacity of inductance coils”, Physical
Review 17, 649 (1921), is a tour-de-force of applied mathematics.
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occurs at the difference frequency stated above. When ωT �= ω̂T and κ ≈ 1, we use
√

1 − ε ≈
1 − 1

2ε with ε = 1 − κ2 in the general formula for ω2 above. The two frequencies which result are

ω2 = ω2
T + ω̂2

T

1 − κ
and

1

ω2
= 1

ω2
T

+ 1

ω̂2
T

.

The first of these is always much greater than the second when κ ≈ 1.

Application 14.7 Thomson’s Jumping Ring

Elihu Thomson’s “jumping ring", shown in Figure 14.22, consists of a cylindrical solenoid and a
coaxial metal ring with a slightly larger radius a. If the ring rests on a support mounted just above
the top end of the solenoid and a current IS(t) = I0 exp(−iωt) is applied to the solenoid, the force
(14.122) can be sufficient to launch the ring into the air. We will calculate the time-averaged force by
treating the ring and solenoid as circuits coupled by a mutual inductance M . An order-of-magnitude
estimate should agree with the predictions in (14.130).

IS(t)

BS

IR(t)

�

a

Figure 14.22: Cartoon of Thomson’s jumping ring.

The fringing magnetic field BS near the top of the solenoid exerts a force on the current IR(t) induced
in the ring by the time variations of IS(t). If Bρ(t) is the radial component of BS , the instantaneous
force exerted on the ring in the z-direction is

Fz(t) = ẑ ·
∮

Re[IR]d� × Re[BS] = Re[IR]2πaRe[Bρ]. (14.160)

If the ring has resistance R and self-inductance L, the linear equation in (14.156) which contains the
EMF in the ring (which is zero) is

− iωMIS + (R − iωL)IR = ER = 0. (14.161)

Solving this for the current in the ring gives

Re[IR(t)] = ωMI0

R2 + ω2L2
(R sinωt − ωL cosωt). (14.162)

Now, Re[Bρ(t)] ≈ μ0nκRe[IS(t)], where n = N/L is the number of turns/length of wire wound
around the solenoid and κ is a geometrical factor which accounts for the fringing of the field at the
position of the ring. Therefore,

Fz(t) = μ0nκ(2πa)
ωMI 2

0

R2 + ω2L2
(ωL cos2 ωt − R sinω cosωt). (14.163)

Carrying out the time average of this force over one period of the current oscillation explicitly gives

〈Fz 〉 = 1

2
Nκμ0ω

2I 2
0 × a

L
× ML

R2 + ω2L2
. (14.164)
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We know from (14.92) and (14.153) that this quasi-magnetostatic analysis makes sense both when
ω � R/L and when ω � R/L. As in (14.153), we estimate the self-inductance of the ring as L ∼
μ0a/2π . If �R = Bπa2 is the magnetic flux through the ring, magnetostatic theory (Section 12.8.2)
tells us that the mutual inductance satisfies �R = MI0. Finally, R = 2πa/σA if the ring has cross
sectional area A. Substituting this information into the formula just above gives the limiting behaviors

〈Fz 〉 =

⎧⎪⎪⎨
⎪⎪⎩
μ0

I 2
0M

L

a

L
∼ a2

μ0
B2 ω � R/L,

μ0ω
2I 2

0
a

L

ML

R2
∼ μ0ω

2a2A2σ 2B2 ω � R/L.

(14.165)

These results agree with (14.130) in detail when we recognize that a measures both the solenoid size
�S and the ring size � in the high-frequency limit. In the low-frequency limit, � is the radius of the
wire which constitutes the ring. �

�

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is taken from the Chapter 3 of
W. Pauli, Lectures on Physics: Volume 1. Electrodynamics, edited by C.P. Enz (MIT Press, Cambridge, 1973).

Section 14.1 Textbooks by Russian authors tend to treat quasistatics particularly thoroughly. Some good treat-
ments are

L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960).

I.E. Tamm, Fundamentals of the Theory of Electricity (Mir, Moscow, 1979).

B.G. Levich, Theoretical Physics (North-Holland, Amsterdam, 1970).

The effect of quasistatic fields on the human body is a topic of increasing interest. An entry point to the
literature is

R.W.P. King, “Fields and currents in the organs of the human body when exposed to power lines and VLF
transmitters”, IEEE Transactions on Biomedical Engineering 45, 520 (1998).

Section 14.2 This section benefitted from
E.W. Cowan, Basic Electromagnetism (Academic, New York 1968).

A.M. Portis, Electromagnetic Fields: Sources and Media (Wiley, New York, 1978).

The sources for Figure 14.3 and Application 14.1 were
V.F. Petrenko and R.W. Whitworth, The Physics of Ice (University Press, Oxford, 1999).

C.L. Longmire, Elementary Plasma Physics (Wiley-Interscience, New York, 1963).

Section 14.4 This section was adapted from Tamm (see Section 14.1 above) and
P.J. Scanlon, R.N. Hendriksen, and J.R. Allen, “Approaches to electromagnetic induction”, American Journal
of Physics 37, 701 (1969).

G. Giuliani, “A general law for electromagnetic induction”, Europhysics Letters 81, 6002 (2008).

Example 14.2 is based on a more general analysis in
N. Smith, “Reciprocity principles for magnetic recording theory”, IEEE Transactions on Magnetics 23, 1995
(1987).

Section 14.5 The distinction we make between quasi-electrostatics and quasi-magnetostatics reflects the point
of view advocated in

H.A. Haus and J.R. Melcher, Electromagnetic Fields and Energy (Prentice-Hall, Englewood Cliffs, NJ, 1989).

T.P. Orlando and K.A. Devin, Foundations of Applied Superconductivity (Addison-Wesley, Reading, MA, 1991).
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The quadrupole mass spectrometer is discussed in detail in
P.H. Dawson, Quadrupole Mass Spectrometry and Its Applications (Elsevier, Amsterdam, 1976).

Section 14.7 For a detailed discussion of charge relaxation, see
H.C. Ohanian, “On the approach to electro- and magneto-static equilibrium”, American Journal of Physics
51, 1020 (1983).

Section 14.8 The problem of a point charge moving parallel to an ohmic surface (Application 14.5) has generated
a substantial literature since it was posed by Joseph Larmor in 1909. A good entry point is

W.L. Schaich, “Surface response of a conductor: Static and dynamic, electric and magnetic", American Journal
of Physics 69, 1267-1276 (2001).

Section 14.9 Complementary discussions of quasi-magnetostatics can be found in
W.R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1939).

H.E. Knoefel, Magnetic Fields (Wiley, New York, 2000).

Figure 14.12 was adapted from Orlando and Devlin (see Section 14.5 above).

Section 14.10 A master theoretical physicist discusses the skin effect in normal conductors and in superconduc-
tors in these three not-quite-consecutive articles:

H.B.G. Casimir and J. Ubbink, Philips Technical Review 28, 271; 300; 366 (1967).

Our treatments of the skin effect, magnetic shielding, magnetic diffusion, and eddy currents were drawn from
Landau and Lifshitz (see Section 14.1 above) and

E.B. Moullin, The Principles of Electromagnetism (Clarendon Oxford, 1950).

S. Fahy, C. Kittel, and S.G. Louie, “Electromagnetic screening by metals”, American Journal of Physics 56,
989 (1988).

Richard Ghez, A Primer of Diffusion Problems (Wiley, New York, 1988).

Figure 14.13 was adapted from
R.W.P. King, Electromagnetic Engineering (McGraw-Hill, New York, 1945).

Section 14.12 An engaging discussion of quasistatic forces may be found in
L. Page and N.I. Adams, Principles of Electricity, 2nd edition (Van Nostrand, Toronto, 1949).

Section 14.13 Two derivations of AC circuit theory from Maxwell’s equations which differ both from each other
and from the one given in the text are

R.W.P. King, “Quasistationary and non-stationary currents”, in Encyclopedia of Physics, edited by S. Flügge,
(Springer, Berlin, 1958), vol. XVI, pp. 165-284.

J. Van Bladel, “Circuit parameters from Maxwell’s equations”, Applied Scientific Research 28, 381 (1973).

Example 14.7 comes from Landau and Lifshitz (see Section 14.1 above). For theory and experiment on Thomson’s
jumping ring (Application 14.7), see

W.M. Saslow, “Electromechanical implications of Faraday’s law: A problem collection”, American Journal of
Physics 55, 986 (1987).

P.J.H. Tjossem and V. Cornejo, “Measurements and mechanisms of Thomson’s jumping ring”, American
Journal of Physics 68, 238 (2000).

Problems
14.1 A Polarized Slab in Motion The text shows that a body with uniform polarization P and uniform velocity

υ generates a magnetization M = P × υ. Confirm this by comparing the convection surface current density
to the presumed magnetization surface current density when a slab of matter with polarization P = P ẑ
occupies the volume between the planes z = 0 and z = d and the slab moves with velocity υ = υx̂.

14.2 Broken Wire? An infinite straight wire with a cross sectional area πa2 carries a low frequency current
I (t) = I0 cosωt . Without close inspection, it is impossible to tell if the wire is broken into two pieces with
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a tiny gap of width b � a separating the two because the displacement current flowing in the gap is exactly
equal to I (t). Confirm this by calculating the displacement current Id (t) from the electric field in the gap.

14.3 Charge Accumulation at a Line A surface current density K = −K x̂ flows in the half-plane (x > 0,
z = 0). The current accumulates on the line x = 0 which bounds the half-plane.

(a) Find E(r, t) and B(r, t) in the quasi-electrostatic approximation. Hint: Use symmetry and the Ampère-
Maxwell law in integral form to find the magnetic field.

(b) Confirm that your solution satisfies the full set of Maxwell equations without approximation.

14.4 Charge Accumulation in a Plane A time-independent surface current with density K flows in the x-y
plane from infinity to the point r = 0 in a radially symmetric manner. As a result, charge accumulates at
r = 0 at the rate dq/dt = I .

(a) Find the displacement current.
(b) Find the total magnetic field everywhere.

z

K

14.5 Rogowski Coil A tightly wound solenoid with n turns per unit length and cross sectional area A is bent
into a flexible torus. Two external leads let the current flow in and out. Find the EMF that appears across
the leads when a slowly varying, time-dependent current I (t) flows through the hole in the torus as shown
below. Conversely, show that no EMF arises from a time-dependent current that does not flow through the
hole.

I(t)

14.6 Magnetic Field of an AC Capacitor A voltage V (t) = V0 sinωt is applied between the plates of a circular
capacitor filled with ohmic matter of conductivity σ . The radius R of the plates is very large compared to
the plate separation d. Find the magnetic field between the plates in the quasi-electrostatic approximation.

14.7 A Resistive Ring Comes to Rest An ohmic ring with radius a, mass M , and total resistance R lies in the
x-y plane. At t = 0, the center of the ring passes by the origin with velocity v = v0x̂. How far does the ring
travel before stopping if all space is filled with a magnetic field B = B0(x/x0)ẑ? Hint: Assume that a � x0

and use conservation of energy.

14.8 A Discharging Capacitor A distance d separates the infinitesimally thin and circular plates of a capacitor.
The plates have radiusR � d and instantaneous charges ±Q(t) as they are slowly discharged by connection
to a large resistor (not shown below). Use the non-uniform surface charge distribution of a perfectly
conducting circular plate and model the actual current distribution on the right (left) plate using a single
surface current density KR (KL).
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(a) Integrate the continuity equation to find KL(ρ, t) and KR(ρ, t).
(b) Use the Ampère-Maxwell law to find the magnetic field on both sides of both plates when ρ < R. Ignore

fringe fields.
(c) Show that the fields in (b) satisfy the matching conditions with the current densities in (a).

II

LK

Q−Q

KR R

d

14.9 What Do the Voltmeters Read? The diagram below shows a planar circuit composed of zero-resistance
wires, two resistors R1 and R2, and two voltmeters V1 and V2. A tightly wound solenoid with radius r
produces a magnetic field inside itself that points into the paper with a time-increasing magnitude B(t).
The voltmeters display the value of the line integral of E along an integration path that passes through the
meter from its plus (+) terminal to its minus (−) terminal. What voltage is displayed by voltmeter V1? What
voltage is displayed by voltmeter V2? Assume that each voltmeter draws negligible current.

solenoidR1 R2 V2V1

+

–

+

–

r

14.10 A Sliding Circuit The side view below shows an iron magnet with two exposed pole faces moving slowly
to the right at speed υ. A stationary conducting wire bent into a U-shape (P′Q′QP) is placed at an angle in
the gap between the pole faces such that the wire makes electrical contact with the moving magnet at P and
P′. Calculate the EMF induced in the wire, both before and after the top edge of the loop Q′Q enters the field
B of the magnet. Make a reasonable assumption about the drift velocity of the electrons in the wire and in
the moving magnet.

P E

Q

B

N

S

Q

P

Q′

P′

E

h

v

v

14.11 Townsend-Donaldson Effect A tightly wound solenoid with radius R and length � � R is composed of
N turns of conducting wire. The solenoid carries a slowly varying current I (t) and experiences a voltage
drop V (t) over its length. Show that

Eθ

Ez

= �/N

2πR
,

where Ez is the average electric field along the solenoid axis and Eθ is the tangential electric field at the
surface of the solenoid.
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14.12 A Magnetic Monopole Detector An ohmic wire with resistance R is bent into a closed ring. Suppose a
monopole with magnetic charge g approaches Earth from a distant galaxy, passes through the ring, and then
continues on its way to another distant galaxy. How much charge flows through a fixed cross section of the
wire?

14.13 Corbino Disk An annular disk has thickness t, inner radius R1, outer radius R2, and conductivity σ . Let
a radial current I0 flow from the inner periphery to the outer periphery of the disk.

(a) If n is the conduction electron density, use Faraday’s law to show that a circular current

I = σB

2πne
I0 ln

R2

R1

flows when a constant magnetic field B is applied perpendicular to the annular plane.
(b) Show that every origin-centered circle in the disk is an equipotential.

14.14 A Falling Ring and the Lorentz Force
A charge Q is distributed uniformly on a non-conducting ring of radius R and mass M . The ring is dropped
from rest from a height h and falls to the ground through a non-uniform magnetic field B(r). The plane of
the ring remains horizontal during its fall.

(a) Explain qualitatively why the ring rotates as it falls.
(b) Use Faraday’s flux rule to show that the velocity of the center of mass of the ring when it hits the ground

is

vCM =
√

2gh− Q2R2

4M2
[Bz(0) − Bz(h)]2.

(c) The magnetic Lorentz force in this problem plays the role of static friction when a massive cylinder rolls
down a rough incline. Both facilitate the transfer of translational kinetic energy into rotational kinetic
energy without performing net work themselves. Thus the rotation in part (a) may be ascribed to the
work done by an azimuthal Lorentz force associated with the vertical component of the ring velocity
and the horizontal components of the magnetic field. If so, an equal and opposite magnetic work must
be done by a vertical Lorentz force which opposes the force of gravity. Confirm that this is the case by
an explicit calculation of this force and the net work it performs on the ring. Assume that the magnetic
field changes slowly over the area of the ring at any time during its fall.

14.15 Ohmic Dissipation by a Moving Charge A positive point charge q moves with velocity v straight toward
an infinitely large, grounded, ohmic plane.

x

y

z

q

V
0

r

σ(r)

(a) Find the charge density σ (r) induced on the plane at the moment when the distance between the point
charge and the plane is z.
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(b) In the ohmic plane, let the resistance of a ring of radius a and thickness da to a radial current be
dR = RS(da/2πa), where RS is a constant measured in ohms. Show that the rate at which Joule heat
is generated in the plane by the moving charge is

P = q2v2RS

8πz2
.

14.16 An Unusual Attractive Force The diagram shows a metal sphere (radius a) moving with speed v parallel
to a straight wire which carries a current I . The distance between the wire and the center of the sphere is
d � a.

2a
d

υ

I

(a) Explain qualitatively why there is an attractive force between the wire and the sphere.

(b) Show that the the dependence of the force on dimensional quantities is F ∝ v2

c2

a3

d3
μ0I

2.

Hint: A conducting sphere with radius a develops a dipole moment p = 4πε0a
3E in a field E.

14.17 Quasi-Electrostatic Fields Confirm that the formulae below satisfy the four Maxwell equations in the
quasi-electrostatic approximation.

E(r, t) = −∇ 1

4πε0

∫
d 3r ′ ρ(r′, t)

|r − r′| B(r, t) = ∇ × μ0

4π

∫
d 3r ′ j (r′, t)

|r − r′| .

14.18 Casimir’s Circuit The three parallel, ohmic wires shown below are driven at frequency ω by a common
source of EMF. The wires have length L, separation b, and radius a where a � b � L. If δ is the skin depth
of the wire material, use Faraday’s flux rule to show that

I2

I1
= I2

I3
= 1 − ln 2

ln(b/a) + i(δ2/a2)
.

Assume that I1 is real and plot the locus of points traced out by I2 in the complex I2 plane as ω varies from
0 to ∞. Use the high-frequency results to rationalize the skin effect for time-harmonic current flow in a thin
metal slab with dimensions L× 2b.

I1 I1 I1
L

b b

2a

ε(ω) I2 I3

14.19 Inductive Impulse A conducting wire frame with side lengths a and b lies at rest on a frictionless
horizontal surface at a distance l from a long straight wire carrying a current I0 (see figure below). The mass
of the frame is m, and its total resistance is R. Use an impulse approximation to find the magnitude and the
direction of the velocity of the frame after the current in the long straight wire has been abruptly switched
off.
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I0

a

b

l

14.20 AC Resistance of an Ohmic Wire Consider an ohmic wire with length L, radius a, and conductivity σ

in the high-frequency limit of quasi-magnetostatics. Use a simple physical argument to show that (up to a
dimensionless constant) the AC resistance R(ω) of the wire is

R(ω) ∝ L

a

√
μ0ω

σ
.

14.21 A Rotating Magnet The equation of motion for a magnetic dipole moment m which rotates about its
center with an angular velocity � is dm/dt = � × m. Find the electric and magnetic fields associated with
this object. Neglect the displacement current in the Maxwell equations.

14.22 Magnetic Metal Slab A slab of material with conductivity σ , electric permittivity ε, and magnetic
permeability μ occupies the infinite volume between the planes y = ±d.

(a) Find the steady-state magnetic field inside the slab if a magnetic field B0 = ẑB0 exp(−iωt) is present
everywhere outside the slab. Assume that the frequency is low enough that the quasi-magnetostatic limit
is valid.

(b) Sketch the t = 0 field in the limit when the skin depth δ � d and also when δ � d.

14.23 Azimuthal Eddy Currents in a Wire A longitudinal AC magnetic field B(t) = ẑB0 cosωt is driven
through the interior of an ohmic tube with length L and radius R � L.

B(t)
σ

(a) Find the low-frequency eddy-current density inside the tube, neglecting the effects of self-inductance.
(b) Find the correction to the eddy-current density produced by self-inductance (to next order in ω).
(c) Derive the condition under which the correction in part (b) can be ignored.

14.24 Eddy-Current Levitation
A wire loop with radius b in the x-y plane carries a time-harmonic current I0 cosωt .

(a) Find the value of I0 needed to levitate a small sphere with mass m, radius a, and conductivity σ at a
height z above the center of the loop. Assume that a � b and that δ � a, where δ is the skin depth of
the sphere.

(b) Compare the time-averaged levitation force you calculate with the qualitative estimate made in the text.
Comment if they do not agree.

14.25 Dipole down the Tube A small magnet (weightw) falls under gravity down the center of an infinitely long,
vertical, conducting tube of radius a, wall thickness t � R, and conductivity σ . Let the tube be concentric
with the z-axis and model the magnet as a point dipole with moment m = mẑ. We can find the terminal
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velocity of the magnet by balancing its weight against the magnetic drag force associated with ohmic loss
in the walls of the tube.

(a) At the moment it passes through z = z0, show that the magnetic flux produced by m through a ring of
radius a at height z′ is

�B = μ0m

2

a2

r3
0

where r2
0 = a2 + (z0 − z′)2.

(b) When the speed v of the dipole is small, argue that the Faraday EMF induced in the ring is

E = −∂�B

∂t
= v

∂�B

∂z′ .

(c) Show that the current induced in the thin slice of tube which includes the ring is

dI = 3μ0mavσ t

4π

(z0 − z′)
r5

0

dz′.

(d) Compute the magnetic drag force F on m by equating the rate at which the force does work to the power
dissipated in the walls of the tube by Joule heating,

F · v =
∫

EdI.

(e) Find the terminal velocity of the magnet.
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15 General Electromagnetic Fields

When we turn our attention to the general case of
electrodynamics . . . our first impression is surprise at the

enormous complexity of the problems to be solved.
Max Planck (1932)

15.1 Introduction

The most general electromagnetic fields vary in space and time with no restrictions beyond those
imposed by the Maxwell equations. The enormity of this subject, and its many different points of entry,
motivate us to seek and exploit general principles which help organize and simplify the discussion.
Symmetry is one such principle because it connects old solutions of the Maxwell equations to new
solutions. A second principle (learned first in electrostatics and magnetostatics) is to exploit suitably
defined potential functions to simplify the path to finding these solutions. Finally, using both symmetry
and potential functions as tools, we explore the consequences of conservation laws which relate the
time variation of a physical quantity at a point to the transport of that quantity from point to point.

The most familiar conservation law in electromagnetism is the continuity equation,

∇ · j + ∂ρ

∂t
= 0. (15.1)

We showed in Section 2.1.3 that (15.1) is an expression of the conservation of electric charge. In
this chapter, we derive conservation laws which relate the time variation and transport of energy,
linear momentum, and angular momentum. A natural interpretation of these laws assigns each of
these mechanical properties to the electromagnetic field itself. This is a profound and liberating idea
which has many consequences. Not least, the mechanical effects produced by various configurations
of electromagnetic fields become easy to understand when we contemplate the transfer of their energy,
linear momentum, and angular momentum to and from nearby distributions of charged particles
or matter. The discussion in this chapter is based entirely on manipulating the Maxwell equations.
Chapter 22 and Chapter 24 revisit the conservation laws from the points of view of special relativity
and invariance principles, respectively.

15.2 Symmetry

Symmetry plays many roles in electromagnetism. In Chapters 3 and 10, we used the spatial symmetries
of charge and current distributions to help evaluate Coulomb and Biot-Savart integrals. The same
symmetries transformed the integral forms of Gauss’ law and Ampère’s law into useful tools for
computation. In Chapters 7 and 8, we used symmetry extensively to choose coordinate systems to
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Table 15.1. Behavior of
electromagnetic quantities under the
discrete operations of space inversion
(left column) and time inversion
(right column).

r → −r t → −t
ρ → ρ ρ → ρ

j → −j j → −j
υ → −υ υ → −υ

F → −F F → F
E → −E E → E
B → B B → −B
ϕ → ϕ ϕ → ϕ

A → −A A → −A

separate variables for the Laplace and Poisson equations and to fix values for the separation constants.
The last section of Chapter 2 exploited symmetry somewhat differently. There, we postulated the
invariance of the Maxwell equations to the symmetry operations of spatial translation, rotation, and
inversion as part of a heuristic “derivation” of these equations.

15.2.1 Discrete Symmetries
A discrete symmetry transformation produces a discontinuous change in a transformed quantity. The
discrete symmetries important to electromagnetism are space inversion (or parity), mirror reflection,
and time reversal.1 The operation of space inversion takes the position vector to its opposite: r → −r.
Other quantities are said to have definite parity under inversion if they either change sign like r or
remain unchanged. Polar vectors and axial vectors are examples of quantities that behave oppositely
under inversion (see Application 1.2 at the end of Section 1.8.1).

Following (2.85), we used Newton’s second law to establish the polar nature of any force vector and
then the Coulomb-Lorentz force F = q(E + υ × B) to fix the parity of the particle velocity υ = dr/dt ,
the charge density ρ, the current density j, the electric field E, and the magnetic field B. The left column
of Table 15.1 summarizes the results of that discussion, together with results for the potentials derived
from E = −∇ϕ, B = ∇ × A, and the rules summarized in (1.162). Reflection through a mirror is
similar to inversion in the sense that the relative minus sign between the transformed r and B in
Table 15.1 applies on a component-by-component basis [compare (10.30) to (10.31)].

The time-reversal operation t → −t has no effect on r or the charge density ρ. On the other hand,
υ = dr/dt and hence the linear momentum p = mυ and current density j = ρυ change sign. From
this, we conclude that F = dp/dt does not change sign under time reversal. Specializing this result
to the Coulomb-Lorentz force shows that E → E under time-reversal while B → −B.2 The magnetic
field result may be confirmed from the change in magnetic field which occurs when the direction of
current flow reverses in any simple configuration of filamentary wires. The behavior of the potentials
follows immediately from the behavior of the fields. The right column of Table 15.1 summarizes these
results for time reversal.

1 The discrete symmetry of charge conjugation (where the electric charge q → −q) is important in quantum mechanics.
2 This argument assumes that electric charge is unchanged when t → −t .
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15.2.2 Dual Symmetry
The name dual symmetry is given to the invariance of the source-free (ρ = j = 0) Maxwell equations
to the discrete transformation3

E → cB and B → − E/c. (15.2)

In words (and as the reader can check), if E and B are solutions to the source-free Maxwell equations,
dual symmetry implies that B′ = E/c and E′ = −cB are solutions as well. We will use this symmetry
in later sections to create new solutions from old solutions.

15.2.3 Continuous Symmetries
A continuous symmetry transformation produces a smooth change in a transformed quantity. Finite
changes are regarded as the cumulative effect of a succession of infinitesimal transformations, each of
which produces only an infinitesimal change. Familiar continuous symmetries that leave the Maxwell
equations invariant include translations in space, rotations in space, and translations in time. Continuous
gauge transformations of the electromagnetic potentials will occupy our attention in the next section
and the continuous Lorentz transformations of special relativity are the subject of Chapter 22. For the
present, we note only that a homogeneous Lorentz transformation generalizes continuous rotations in
three-dimensional space to continuous rotations in four-dimensional space-time.

Continuous symmetries have special interest in theoretical physics because a powerful theorem due
to Noether guarantees that each continuous symmetry of a theory generates a conservation law. In
the present case, Noether’s theorem relates the invariance of the Maxwell equations to translations
in space, rotations in space, and translations in time to the conservation laws for linear momentum,
angular momentum, and energy, respectively. We delay our discussion of this profound approach to
the conservation laws until Chapter 24 when we apply the action principle of Lagrangian mechanics
to electrodynamics.

15.3 Electromagnetic Potentials

The scalar potential ϕ(r) and vector potential A(r) played prominent simplifying roles in electrostatics
and magnetostatics. Their time-dependent counterparts do the same for time-varying fields. The starting
point, as always, is the Maxwell equations in vacuum,

∇ · B = 0 ∇ · E = ρ/ε0 (15.3)

∇ × E + ∂B
∂t

= 0 ∇ × B − 1

c2

∂E
∂t

= μ0j. (15.4)

The divergence equations carry over without change from statics. In particular, ∇ · B = 0 is a property
of all magnetic fields. Therefore, the arguments used in Section 10.5 show that

B(r, t) = ∇ × A(r, t). (15.5)

Further progress comes from inserting (15.5) into Faraday’s law on the left side of (15.4). This gives

0 = ∇ ×
(

E + ∂A
∂t

)
. (15.6)

Recall now that ∇ × ∇f = 0 is an identity for any f (r, t). This means we are justified in setting the
parenthetical quantity in (15.6) equal to the (negative) gradient of a scalar potential ϕ(r, t). In other

3 Equation (15.2) is a physically realizable special case of the transformation (2.70).
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words,

E(r, t) = −∇ϕ(r, t) − ∂

∂t
A(r, t). (15.7)

The electromagnetic potentials A(r, t) and ϕ(r, t) serve two immediate purposes. First, the fields
(15.5) and (15.7) automatically satisfy the homogeneous (no source) Maxwell equations on the left
sides of (15.3) and (15.4). Second, the potentials reduce the number of functions to be determined
from six (the scalar components of E and B) to four (ϕ and the scalar components of A). The reader
may have anticipated this possibility because only four independent functions can result when eight
(scalar Maxwell) equations constrain six functions.

Equations of motion for the potentials follow by substituting (15.5) and (15.7) into the inhomoge-
neous Maxwell equations. These are the equations on the right sides of (15.3) and (15.4) where the
charge density and current density appear. Making use of ∇ × ∇ × A = ∇(∇ · A) − ∇2A, we find

∇2ϕ + ∂

∂t
(∇ · A) = −ρ/ε0 (15.8)

∇2A − 1

c2

∂2A
∂t2

− ∇
(

∇ · A + 1

c2

∂ϕ

∂t

)
= −μ0j. (15.9)

The coupled equations (15.8) and (15.9) are not easy to solve. Luckily (as the next section shows), it
is never necessary to do so.

15.3.1 Gauge Invariance
Like their static counterparts, ϕ(r, t) and A(r, t) are not uniquely defined. This has no observable
consequences because the non-uniqueness does not affect the electric and magnetic fields that enter
the Coulomb-Lorentz law.4 To confirm this, let �(r, t) be an arbitrary gauge function of space and
time and define a new vector potential A′ and a new scalar potential ϕ′ using

A′ = A + ∇� (15.10)

and

ϕ′ = ϕ − ∂�

∂t
. (15.11)

The corresponding electric and magnetic fields E′ and B′ follow by substitution of (15.10) and (15.11)
into (15.5) and (15.7). Direct calculation shows that all the terms that contain �(r, t) cancel out.
Therefore,

E′ = −∇ϕ′ − ∂A′

∂t
= −∇ϕ − ∂A

∂t
= E (15.12)

and

B′ = ∇ × A′ = ∇ × A = B. (15.13)

By definition, the Maxwell equations are gauge invariant because (15.12) and (15.13) show that the
physical electric and magnetic fields are independent of the gauge function �.

4 Subtleties arise when quantum mechanics is taken into account. See Sources, References, and Additional Reading.
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Wigner’s Argument

We will prove in Chapter 24 that the continuity equation (15.1) is a consequence of the gauge
invariance of electromagnetism. For the present, the following argument due to Wigner (1949)
makes it plausible that the non-uniqueness of ϕ(r, t) plays an important role in the conservation of
electric charge.

Suppose that charge is not conserved and that a charge Q can be created by doing work W . The
scale used to measure the electrostatic potential ϕ is arbitrary, so W cannot depend on the absolute
value of ϕ at the point of creation. Now move Q to a point where the potential on the chosen scale
is ϕ′. Destruction of the charge at this point recovers the work W exactly. The world is now exactly
the same as it was before the original creation event except that an energy Q(ϕ′ − ϕ) has been
gained. This is impossible by conservation of energy. Therefore, as long as no physical process
can depend on the scale used to measure electrostatic potential, the assumption that charge is not
conserved cannot be true.

From a practical point of view, gauge invariance provides the key to solving (15.8) and (15.9). The
idea is to choose a gauge function �(r, t) so (15.8) and (15.9) become simple and easy to solve when
written in the primed variables. In practice, this “choice of gauge” is rarely made explicitly. An implicit
choice is made by imposing a constraint on the potential functions. We need only show that the implied
�(r, t) is calculable in principle (see Example 15.1). With rare exceptions, only two choices of gauge
are ever made in classical electromagnetism:

∇ · A = 0 (Coulomb gauge) (15.14)

∇ · A + 1

c2

∂ϕ

∂t
= 0 (Lorenz gauge). (15.15)

15.3.2 The Coulomb Gauge
The Coulomb gauge choice (15.14) reduces (15.8) and (15.9) to

∇2ϕC = −ρ/ε0 (15.16)

and

∇2AC − 1

c2

∂2AC

∂t2
= −μ0j + 1

c2
∇ ∂ϕC

∂t
. (15.17)

The scalar potential obeys Poisson’s equation. Therefore, if we specify that ϕC(r, t) → 0 as |r| → ∞,
we know from electrostatics that

ϕC(r, t) = 1

4πε0

∫
d 3r ′ ρ(r′, t)

|r − r′| . (15.18)

This shows that at least a part of the electric field (15.7) is the familiar, instantaneous Coulomb electric
field. The Coulomb gauge is widely used in atomic, molecular, and condensed matter physics precisely
because the potential (15.18) binds oppositely charged particles into stable orbits.

Equation (15.18) expresses the scalar potential in the Coulomb gauge as an integral over the charge
density alone. It is not obvious from (15.17), but the Coulomb gauge vector potential AC(r, t) can be
written similarly as an integral over the current density alone.5 Unfortunately, the expression for AC is
awkward, which motivates us to look for the physics in another way. Our strategy is to use (15.18) and

5 See Jackson (2002) in Sources, References, and Additional Reading.
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the continuity equation (15.1) to evaluate the term on the far right side of (15.17). These operations
transform (15.17) to

∇2AC − 1

c2

∂2AC

∂t2
= −μ0j − μ0∇

∫
d 3r ′

4π

∇′ · j(r′, t)
|r − r′| . (15.19)

The right-hand side of (15.19) simplifies because the Helmholtz theorem (Section 1.9) decomposes the
current density into a longitudinal piece that satisfies ∇ × j‖ = 0 and a transverse piece that satisfies
∇ · j⊥ = 0.6 Specifically,

j(r, t) = j‖(r, t) + j⊥(r, t) = −∇
∫

d 3r ′

4π

∇′ · j(r′, t)
|r − r′| + ∇ ×

∫
d 3r ′

4π

∇′ × j(r′, t)
|r − r′| . (15.20)

Comparing (15.20) to (15.19) shows that the complicated, non-local function of position on the right
side of the latter is simply the transverse piece of the current density:

∇2AC − 1

c2

∂2AC

∂t2
= −μ0j⊥. (15.21)

One consequence of (15.21) is that a current density with zero curl produces zero magnetic field. This
generalizes a previous magnetostatic result [see (10.19)] to arbitrary, time-dependent current densities.
The proof proceeds in two steps. First, use ∇ × j = 0 and ∇ × j‖ = 0 to deduce that ∇ × j⊥ = 0.
Second, use ∇ · j⊥ = 0 and the fact that j⊥ → 0 at infinity for any localized current distribution to
deduce (from the Helmholtz theorem) that j⊥ = 0. Returning to (15.21), we conclude that AC = 0 and
B = ∇ × AC = 0.

Example 15.1 Discuss the gauge functions that transform an arbitrary set of electrodynamic
potentials (ϕ,A) to Coulomb gauge potentials (ϕ′,A′).

Solution: ∇ · A �= 0 for an arbitrarily chosen vector potential. We seek ∇ · A′ = 0 where (15.10)
defines A′(r, t). Therefore,

∇ · A′ = ∇ · (A + ∇�) = ∇ · A + ∇2� = 0.

This shows that the gauge function �(r, t) is determined by

∇2� = −∇ · A.

We know from Section 7.3 that the solution to this Poisson-like equation is not unique (so some
gauge freedom remains) until we choose suitable boundary conditions for �(r, t). For example, if
we insist that � → 0 as r → ∞ (and ∇ · A goes to zero at infinity faster than 1/r), the unique
solution is

�(r, t) = 1

4π

∫
d 3r ′ ∇ · A(r′, t)

|r − r′| .

6 The names longitudinal and transverse refer to the behavior of the spatial Fourier transforms of j‖(r, t) and j⊥(r, t),
namely, k · ĵ⊥(k, t) = 0 and k × ĵ‖(k, t) = 0.
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15.3.3 The Lorenz Gauge
The Lorenz7 gauge choice (15.15) uncouples (15.8) and (15.9) to give

∇2ϕL − 1

c2

∂2ϕL

∂t2
= −ρ/ε0 (15.22)

∇2AL − 1

c2

∂2AL

∂t2
= −μ0j. (15.23)

These equations have the same structure as (15.17), except that the source terms on the right-hand
sides are much simpler. Moreover, the charge density determines ϕL in exactly the same way that
the Cartesian components of the current density determine the Cartesian components of AL. This
characteristic makes the Lorenz gauge very popular for problems where the Coulomb potential (15.18)
does not simplify the physics. Radiation is a case in point and Chapter 20 is largely devoted to
the solution and analysis of (15.22) and (15.23). The Lorenz gauge is also preferred for relativistic
calculations because the gauge condition itself is preserved under a Lorentz transformation of the
potentials (see Chapter 22).

15.4 Conservation of Energy

Several times in previous chapters we have considered the work done by static electric and magnetic
fields on one or more charged particles.8 The magnetic Lorentz force does no work (Section 12.2.1),
so all the work is done by the electric Coulomb force. Specifically, the rate at which E(r, t) and
B(r, t) do mechanical work on a collection of particles with charge density ρ(r, t) and current density
j(r, t) = ρ(r, t)υ(r, t) confined to a volume V is

dWmech

dt
=
∫
V

d 3r (ρE + j × B) · υ =
∫
V

d 3r j · E. (15.24)

Our goal is to rewrite (15.24) in the form of a conservation law. The first step eliminates the current
density j on the far right side of (15.24) using the Ampère-Maxwell equation [right side of (15.4)].
This gives

dWmech

dt
=
∫
V

d 3r

[
1

μ0
∇ × B − ε0

∂E
∂t

]
· E. (15.25)

Next, use Faraday’s law [left side of (15.4)] to eliminate the first term in the integrand of (15.25). The
specific identity needed is

∇ · (E × B) = B · (∇ × E) − E · (∇ × B) = −B · ∂B
∂t

− E · (∇ × B). (15.26)

Combining the result of this substitution with the original equation (15.24) gives the desired law in a
form known as Poynting’s theorem:∫

V

d 3r
∂

∂t

1

2
ε0
[
E · E + c2B · B

] = −
∫
V

d 3r j · E −
∫
V

d 3r
1

μ0
∇ · (E × B). (15.27)

7 The Danish physicist Ludvig Lorenz introduced the constraint (15.15) in 1867. It is often misattributed to the
homonymic Dutch physicist Hendrik Lorentz.

8 See Section 3.3.1 and Section 12.6.
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15.4.1 The Poynting Vector and Field Energy Density
We interpret (15.27) as a power-balance equation based on the physical meaning of (15.24) as the
rate at which work is done to change the mechanical energy of the particles, Umech. The key step is to
identify the left side of (15.27) as the time rate of change of the total energy of the electromagnetic
field,

UEM = 1
2ε0

∫
V

d 3r [E · E + c2B · B]. (15.28)

This is very plausible. In the static limit, UEM reduces to the sum of the electrostatic total energy
UE defined in Section 3.6 and the magnetostatic total energy UB defined in Section 12.6. We note
in passing that a (presumptive) term in the integrand of (15.28) proportional to E · B vanishes when
integrated over all space because it changes sign when r → −r (see Table 15.1).

We now define the Poynting vector,

S = 1

μ0
E × B, (15.29)

and use the divergence theorem to convert the last term in (15.27) to an integral over the surface S that
bounds V . This gives

dUtot

dt
= d

dt
(Umech + UEM) = −

∫
S

dAS · n̂. (15.30)

The Poynting vector S has dimensions of (energy/volume) × velocity. This invites us to interpret
S as an energy current density by analogy with the usual charge current density j = ρυ which has
dimensions of (charge/volume) × velocity. In light of our assumption that no charged particles enter
or leave the volume V , it is quite reasonable to read (15.30) as a global statement of conservation of
energy. The total energy Umech + UEM in a volume changes only if electromagnetic energy flows in or
out of V through its surface S. The normal n̂ points outward, so energy flows out of (into) V when S
is parallel (anti-parallel) to n̂.

For unbounded space (modeled as a spherical volume with radius R → ∞), the absolute conserva-
tion law

Umech + UEM = const. (15.31)

is true only if the integral on the right-hand side of (15.30) vanishes as S → ∞. In other words, the
magnitude |S| must decrease more rapidly that 1/r2. This is true for all the electric and magnetic fields
we have studied so far. It will not be true of the fields associated with radiation that we will study in
Chapter 20.

A spatially local statement of energy conservation follows from (15.27) if we use (15.28) to define
an electromagnetic energy density,

uEM = 1
2ε0(E · E + c2B · B). (15.32)

Then, because the enclosing volume V in (15.27) is arbitrary,

∂uEM

∂t
+ ∇ · S = −j · E. (15.33)

The analogy between this equation and the continuity equation ∂ρ/∂t + ∇ · j = 0 reinforces the
interpretation of the Poynting vector S as a current density of electromagnetic energy. From this
point of view, −j · E is a sink (source) term that transfers energy from (to) the electromagnetic field
to (from) the charged particles that interact with the field. The mechanical energy of the particles
increases (decreases) accordingly.
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Application 15.1 Uniqueness of Solutions and Boundary Conditions

We can use Poynting’s theorem to find boundary conditions which guarantee the uniqueness of
solutions to Maxwell’s equations in a volume V . For this purpose, let (E1,B1) and (E2,B2) be two
distinct solutions that derive from the same charge and current distributions. By assumption, the
two solutions satisfy the same boundary conditions and initial conditions. Because identical sources
are involved, the difference fields E = E1 − E2 and B = B1 − B2 satisfy the source-free Maxwell
equations. Therefore, E and B satisfy Poynting’s theorem (15.27) without the source term:

d

dt

∫
V

d 3r
(
E · E + c2B · B

) = −2c2
∫
S

dA n̂ · E × B. (15.34)

Now, dA n̂ · (E × B) = dAE · (B × n̂) = dAB · (n̂ × E). Therefore, if we specify, say, n̂ × E1 on
the surface S that bounds V , we will have n̂ × (E1 − E2) = n̂ × E = 0 on S. Similarly, if we specify
n̂ × B1 on S, we will have n̂ × (B1 − B2) = n̂ × B = 0 on S. In either case, the integral on the right-
hand side above vanishes. Using (15.28), we see that U̇EM(t) = 0 as well. The total electromagnetic
energy associated with E and B is a constant.

On the other hand, the initial conditions E1(r, 0) = E2(r, 0) and B1(r, 0) = B2(r, 0) imply that
E(r, 0) = B(r, 0) = 0. This fixes the value of the constant at UEM(0) = 0. But UEM(t) = 0 is possible
only if E ≡ 0 and B ≡ 0, which means that E1(r, t) = E2(r, t) and B1(r, t) = B2(r, t). We conclude
that a solution of the Maxwell equations in V is unique if either n̂ × E or n̂ × B is specified on the
boundary S. When V → ∞, uniqueness is guaranteed if the fields go to zero fast enough as r → ∞
that the integral on the right side of (15.34) vanishes. �

Example 15.2 Compare the “rest mass” of a uniform spherical shell with radius a and charge q
computed from UE = m0c

2 with the “kinetic mass” computed from UB = 1
2mυ

2. Assume that the
sphere moves with constant speed υ � c. Describe the flow of energy predicted by the associated
Poynting vector.

Solution: By Gauss’ law, the electric field is zero inside the shell and E = r̂q/4πε0r
2 outside the

shell. This gives

UE = 1
2ε0

∫
d 3r|E|2 = q2

8πε0a
= m0c

2.

When υ � c, the quasi-electrostatic approximation used in Example 14.3 is valid. Therefore, at
t = 0 when the sphere passes through the origin of coordinates, the electric field is the same as
above and the magnetic field is B = (υ/c2) × E. If υ = υ ẑ, so |υ × E| = υE sin θ , the rest energy
UE is supplemented by

UB = 1

2μ0

∫
d 3r|B|2 = UE

υ2

2c2

1∫
−1

d(cos θ ) sin2 θ = 1

2

(
4

3
m0

)
υ2 = 1

2mυ
2.

The implied mass in this case is a factor of 4/3 larger than the rest mass.
Since r̂ = sin θρ + cos θ ẑ relates unit vectors in spherical and cylindrical coordinates, the Poynt-

ing vector is

S = 1

μ0
E × B = ε0E × (υ × E) = −ε0υE

2 sin θ θ̂ .

This formula suggests a unidirectional flow of energy along spherical surfaces from points on the
negative z-axis to corresponding points on the positive z-axis. This peculiarity and the factor of
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j E 2a

L

S

S

Figure 15.1: The lines of the Poynting vector S point radially inward at the surface of a current-carrying ohmic
wire.

the 4/3 difference between the rest and kinetic mass found above were of great concern to Abraham,
Lorentz, and other physicists who built classical models for the electron immediately after its
discovery.

The issue was resolved by Poincaré, who pointed out that a purely electromagnetic electron is
not mechanically stable against its own repulsive Coulomb forces unless some internal cohesive
forces hold it together. Although mooted by quantum electrodynamics, this aspect of the classical
electron problem is solved by adding the contribution to the mass and flow of energy provided by
such “Poincaré stresses”.

15.4.2 Energy Flow in Resistive Wires
A long, straight, current-carrying wire with radius a and conductivity σ provides a nice illustration
of Poynting’s theorem (see Figure 15.1). Let the current I flow in the positive z-direction and let
the wire volume be the integration volume V in (15.27 ). By Ohm’s law, j = σE, and Ampère’s
law, ∇ × B = μ0j, the electric and magnetic fields at the wire surface are E = ẑI/πa2σ and B =
φ̂μ0I/2πa. The Poynting vector (15.29) points radially in toward the center of the wire. Moreover,
because R = L/πa2σ is the resistance of the wire, the integral on the right side of (15.30) is

−
∫
S

dAS · n̂ = I 2 L

πa2σ
= I 2R. (15.35)

This confirms the conservation of energy statement (15.30) because U̇EM = 0 for steady currents and
U̇mech = I 2R for an ohmic circuit (Section 9.6). It also shows that a constant flow of electromagnetic
energy into the wire through its side walls is required to maintain the kinetic energy of the current-
carrying particles against the energy they lose to ohmic heating.

The energy delivered to the wire in Figure 15.1 originates from a battery or some other source of
electromotive force (see Section 9.7). Figure 15.2 illustrates the global flow of energy for a planar,
current-carrying wire loop where the streamlines of the Poynting vector can be calculated exactly. The
ohmic loop is drawn as a heavy solid line. White arrows indicate the direction of the current. We model
the EMF as a vertically oriented point electric dipole located at the position of the upward-pointing
white arrow. The light solid lines of S intersect the wire at right angles and deliver energy as indicated
by the black solid arrows. An exact calculation of S is possible because we endow the ohmic loop
with two special characteristics: (i) a shape exactly coincident with one of the electric field lines of the
point dipole; and (ii) a conductivity that varies in such a way that j = σ (r)E(r) is constant everywhere
in the wire. With these choices, the presence of the wire does not disturb the electric field pattern of
the dipole.

Infinitesimally close to the wire surface, the magnetic field produced by the current forms perfect
closed circles concentric with the wire. Therefore, the Poynting vector (15.27) evaluated at the wire
surface is everywhere perpendicular to the surface and points toward the wire. A moment’s reflection
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S

S

Figure 15.2: Field lines of the Poynting vector S (light solid lines with black arrows) for an ohmic wire circuit
(heavy solid line with white arrows) with special properties (see text). The magnetic field produced by the loop is
not shown.

shows that the lines of S(r) are exactly coincident with the equipotential curves of the point dipole. It
is clear from the diagram that energy flows out of the point dipole source, into the vacuum, and into
the wire at every point along its length.

The situation is less simple for an ohmic loop with uniform conductivity and an arbitrary shape.
The total electric field is now the sum of the point dipole field and the field produced by charges that
appear on the surface of the loop (Section 9.7.4). This implies that some electric field lines intersect
the surface of the wire. The normal component of E at the surface of the wire is proportional to the
density of surface electric charge at that point. The tangential component of E is continuous at the
wire surface and contributes to the Poynting vector (which still points locally into the wire).

15.4.3 Non-Uniqueness of the Poynting Vector
It may seem odd that the Poynting vector for a wire circuit does not predict energy flow parallel to
the wire itself. This and other unanticipated features of some Poynting flows prompt some authors
to define a Poynting vector using

S = 1

μ0
(E × B) + ∇ × X. (15.36)

The vector field X is chosen to make (15.36) point in more “natural” directions. The definition
(15.36) does not disrupt Poynting’s theorem (15.33) because the latter contains only ∇ · S. Relativistic
considerations constrain, but do not completely eliminate, this arbitrariness in the definition of S.9

There is no real problem in any event because the Poynting vector is not an observable.

15.5 Conservation of Linear Momentum

Nothing in our previous work prepares us for the surprising fact that most electromagnetic field
configurations carry linear momentum. To make this plausible, we consider two identical particles with
charge q released from rest. Figure 15.3(a) shows the motion of the pair (labeled 1 and 2 for clarity) in
the center-of-mass frame of reference. By symmetry, the force F1 = q1[E2(r1) + υ1 × B2(r1)] exerted

9 See U. Backhaus and K. Schäfer, “On the uniqueness of the vector for energy flow density in electromagnetic fields”,
American Journal of Physics 54, 279 (1986).
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q1 q1q2 q2

R(t)

(a) (b)

Figure 15.3: Two identical charges (q1 = q2 = q) repel one another. The motion as viewed in (a) the center of
mass frame; (b) the frame where q1 is instantaneously at rest. The distance R(t) = |r1 − r2(t)|.

on q1 by q2 must be equal and opposite to the force F2 = q2[E1(r2) + υ2 × B1(r2)] exerted on q2 by
q1. Newton’s third law is satisfied.

We now analyze the same problem in a frame of reference where particle 1 is instantaneously at rest
[Figure 15.3(b)]. Neither particle feels a Lorentz magnetic force in this frame. The Coulomb electric
force felt by the moving charge due to the field produced by the static charge is

F2(t) = −q2∇ϕ1(r2, t). (15.37)

The electric force felt by the static charge due to the field produced by the moving charge is

F1(t) = −q1∇ϕ2(r1, t) − q1
∂A2(r1, t)

∂t
. (15.38)

In the Coulomb gauge, (15.18) shows that the scalar potentials are

ϕ1(r2, t) = 1

4πε0

q1

|r1 − r2(t)| and ϕ2(r1, t) = 1

4πε0

q2

|r1 − r2(t)| . (15.39)

The electric fields derived from (15.39) that appear in (15.37) and (15.38) have equal magnitude but
point in opposite directions.

Newton’s second law states that the net force on a system of particles is equal to the time derivative
of the system’s total mechanical linear momentum, Pmech. Writing this out and using the sum of (15.37)
and (15.38) as the net force shows that

dPmech

dt
= F1 + F2 = −q1

∂A2(r1, t)

∂t
. (15.40)

Apparently, the total mechanical linear momentum is not a constant of the motion. This is an untenable
conclusion for a closed system not acted on by external forces. To save the principle of the conservation
of total linear momentum, we are forced to hypothesize that the electromagnetic field possesses an
intrinsic linear momentum PEM and write

d

dt
(Pmech + PEM) = F1 + F2 + dPEM

dt
= 0. (15.41)

This equation is consistent with (15.40) if PEM = q1A2(r1, t) in the considered frame of reference (see
Section 15.5.3).

15.5.1 The Mechanical Force on a Volume
Our strategy to confirm that electromagnetic fields possess an intrinsic linear momentum PEM begins
with the total Coulomb-Lorentz force that acts on the charge and current densities in a volume V :

Fmech =
∫
V

d 3r (ρE + j × B). (15.42)
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The first step is to eliminate ρ and j from (15.42) using the Maxwell equations (15.3) and (15.4). Next,
add (∇ · B)B = 0 to the integrand and use

∂

∂t
(E × B) = E × ∂B

∂t
+ ∂E

∂t
× B. (15.43)

The result is

Fmech =
∫
V

d 3r

{
−ε0

∂

∂t
(E × B) + ε0 [(∇ · E)E − E × (∇ × E)]

+ 1

μ0
[(∇ · B)B − B × (∇ × B)]

}
. (15.44)

The first term on the right side of (15.44) is proportional to the Poynting vector (15.29). Therefore,
writing out the curl operations and rearranging gives

Fmech =
∫
V

d 3r

{
− 1

c2

∂S
∂t

+ ε0

[
(∇ · E)E + (E · ∇)E − 1

2
∇(E · E)

]

+ 1

μ0

[
(∇ · B)B + (B · ∇)B − 1

2
∇(B · B)

]}
. (15.45)

The appearance of (15.45) simplifies considerably if we define the Maxwell (electromagnetic) stress
tensor as the dyadic10

T = ε0
[
EE + c2BB − 1

2 I(E2 + c2B2)
]
. (15.46)

The components of this symmetric object are precisely the sum of the corresponding components of the
electrostatic stress tensor Tij (E) (Section 3.7) and the magnetostatic stress tensor Tij (B) (Section 12.5)

Tij = Tij (E) + Tij (B) = ε0
[
EiEj + c2BiBj − 1

2δij (E2 + c2B2)
]
. (15.47)

The divergence of the stress tensor, ∇ · T, is a vector with components

(∇ · T)j =
∑
i

∂

∂xi
Tij . (15.48)

Therefore, (15.45) takes the compact form

Fmech = dPmech

dt
=
∫
V

d 3r

{
− 1

c2

∂S
∂t

+ ∇ · T
}
. (15.49)

We note in passing that the ∂S/∂t term in (15.49) precludes writing the total mechanical force as a
surface integral as we did in electrostatics and magnetostatics. Time-harmonic fields are an important
exception where the Poynting vector term disappears after averaging over one period of oscillation.

15.5.2 Momentum Density and Momentum Current Density
It is straightforward to interpret (15.49) as a conservation law because a quantity with the dimensions
of an electromagnetic momentum density is

g = S
c2

= ε0(E × B). (15.50)

10 A dyadic is two vectors juxtaposed or a sum of such terms. The unit dyadic is I = x̂x̂ + ŷŷ + ẑẑ. See Section 1.8.
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The corresponding formula for the total linear momentum of a configuration of electric and magnetic
fields is11

PEM =
∫

d 3r g = ε0

∫
d 3r E × B. (15.51)

Combining (15.50) and (15.51) with the divergence theorem and (n̂ · T)j = n̂iTij permits us to write
(15.49) in the appealing form

dPtot

dt
= d

dt
(Pmech + PEM) =

∫
S

dA n̂ · T. (15.52)

Equation (15.52) is the linear momentum analog of the energy conservation law (15.30).
The fact that T has dimensions of (momentum/volume) × velocity invites us to interpret the stress

tensor as a momentum current density. One index of T labels the direction of flow; the other labels
the components of the momentum. Thus, Tij is the rate at which the j th component of momentum
flows through an area element dA n̂i . Not obviously, Tij is also the rate at which the ith component of
momentum flows through an area element dA n̂j . This is a consequence of the symmetry Tij = Tji of
(15.47). For unbounded space, the absolute conservation law

Pmech + PEM = const. (15.53)

is true only if the integral on the right-hand side of (15.52) vanishes as S → ∞. This is true for all the
static and quasistatic fields we have studied so far and makes (15.53) a useful tool for problem-solving
provided all the contributions to the linear momentum can be identified. This is not usually a great
challenge, except when certain “hidden” contributions to Pmech occur (see Application 15.3 at the end
of Section 15.7).

A spatially local statement of linear momentum conservation follows from the foregoing if we
glance back at (15.42) and remind ourselves that Fmech is the volume integral of the Coulomb-Lorentz
force density fmech = ρE + j × B. Then, because the integration volume V is arbitrary, substitution of
(15.50) into (15.49) produces a local conservation law that is the momentum analog of (15.33):

∂g
∂t

+ ∇ · (−T) = −fmech. (15.54)

15.5.3 The Physical Significance of the Vector Potential
We can now calculate PEM for the two charged particles shown in Figure 15.3(b). The reference frame
there has particle 1 instantaneously at rest and particle 2 in motion. The integral (15.51) involves
the total electric field E(r, t) and the total magnetic field B(r, t). However, if (E1,B1) and (E2,B2)
are the fields produced by q1 and q2, only the “interaction" momentum carried by the cross terms
E1 × B2 + E2 × B1 can be relevant to the force between the particles.

B1 = 0 because particle 1 is at rest. Therefore,

PEM = ε0

∫
d 3r E1 × B2. (15.55)

Using (E1 × B2)k = εk�mE1�B2m and B2m = εmst ∂sA2t , we find

PEM,k = ε0

∫
d 3r (E1� ∂kA2� − E1� ∂�A2k). (15.56)

11 This formula appeared for the first time in J.J. Thomson, Notes on Recent Research in Electricity and Magnetism
(Clarendon Press, Oxford, 1893). Not long after, the future Nobel laureate turned his attention to cathode rays and
the experiments which led him to discover the electron.
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Integrating both terms in (15.56) by parts and assuming that the surface terms vanish gives

PEM,k = ε0

∫
d 3r (A2k∇ · E1 − A2� ∂kE1� ). (15.57)

Now, ∇ × E1 = 0, so ∂kE1� = ∂�E1k and another integration by parts yields

PEM = ε0

∫
d 3r A2(∇ · E1) + E1(∇ · A2). (15.58)

Finally, Gauss’ law, ε0∇ · E = ρ, and the Coulomb gauge constraint, ∇ · A2 = 0, reduce (15.58) to

PEM =
∫

d 3r ρ1(r)A2(r). (15.59)

Equation (15.59) is valid whenever a static or quasistatic charge distribution coexists with a static
or quasistatic magnetic field. For the specific problem at hand, ρ1(r) = q1δ(r − r1) and we conclude
that

PEM = q1A2(r1, t). (15.60)

This confirms the guess we made at the beginning of this section.12 It also explains why Maxwell
referred to the vector potential A(r, t) as “electro-kinetic momentum”. However, because qϕ(r, t)
is the potential energy of a point charge q in the quasistatic limit, it may be more apt to refer to
qA(r, t) in the Coulomb gauge as the “‘potential momentum” in the same limit. In other words, the
Coulomb gauge expression qA(r, t) may be consistently interpreted as the field momentum available
for conversion into particle momentum. The fact that this identification is not gauge invariant does not
diminish the usefulness of the Coulomb gauge vector potential to rationalize the non-intuitive ability
of quasistatic electric and magnetic fields to store and release linear momentum. This point is not
arcane because (15.51) makes clear that PEM is non-zero for nearly every situation where electrostatic
and magnetostatic fields overlap in space.

Application 15.2 PEM for a Capacitor in a Uniform Magnetic Field

Consider a parallel-plate capacitor whose plates have charges ±Q, area A, and separation d. In the
presence of a uniform magnetic field B0, it is common to write E0 = (Q/Aε0)ẑ for the magnitude
of the electric field between the plates and estimate the linear momentum stored by the fields of this
system as

PEM = ε0

∫
d 3r E × B ≈ ε0Ad(E0 × B0). (15.61)

In this Application, we show that (15.61) is twice the correct value due to neglect of the fringing
electric field at the edge of the plates. Surprising, this result does not change in the limit d � √

A

when the infinite-area approximation is normally valid. Our strategy is to first compute PEM for B0

in the presence of a finite electric dipole (two equal and opposite point charges separated by d) with
moment p0 = −qd ẑ. We then exploit the fact that PEM is linear in E and use superposition to deduce
the field momentum for the capacitor modeled as a dense set of these dipoles distributed uniformly in
the x-y plane over an area A.

12 We will see in Chapter 24 that (15.60) is intimately connected to the fact that mυ + qA is the canonical momentum
of a particle with mass m and charge q that moves with velocity υ in a magnetic field.
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Equation (15.59) is available to compute PEM because the fields are static. Nominally, this requires
the charge density of the dipole and a vector potential for B0 = ∇ × A. However, using only

A(r) = 1

2
B0 × r (15.62)

and the definition of the electric dipole moment, we conclude that

PEM =
∫

d 3r ρA = 1

2
B0 ×

∫
d 3r ρ r = 1

2
B0 × p0. (15.63)

Now, as indicated above, we construct a capacitor by densely arranging parallel dipoles like the fibers
of a plush carpet. The dipole moment of this capacitor is p = −Qd ẑ = −ε0dAE0. Using (15.63), the
stored electromagnetic linear momentum is indeed one-half of (15.61):

PEM = −1

2
p × B0 = 1

2
ε0Ad(E0 × B0). (15.64)

Remark: The failure of (15.61) is another consequence of the linear dependence of gEM = E × B on
E. Small errors in the field produce non-negligible errors in PEM compared to the force calculation in
Example 6.8 where the quadratic dependence of the electrostatic field energy on E made it possible
to ignore the effect of fringe fields and use the infinite-area approximation to the electric field of a
finite-area capacitor. �

Example 15.3 A charge q moving slowly through an external magnetic field B(r, t) makes a
displacement δr0 in a time δt . Derive the force on q from the change in electromagnetic momentum
which accompanies the displacement.

Solution: If the particle moves quasi-electrostatically from r0 to r0 + δr0, we can compute the
change in the electromagnetic momentum (15.51) using E = −∇ϕ:

δPEM = − q

4π

∫
d 3r ∇

[
1

|r − r0 − δr0| − 1

|r − r0|
]

× B.

But δr0 is an infinitesimal constant vector, so

δPEM = q

4π

∫
d 3r ∇

[
δr0 · ∇ 1

|r − r0|
]

× B = q

4π

∫
d 3r

[
∇2 1

|r − r0|
]
δr0 × B.

Using ∇2|r − r0|−1 = −4πδ(r − r0) gives

δPEM = −qδr0 × B.

Finally, let Pmech be the translational momentum of q and observe that quasistatic fields fall off
quickly enough at infinity that (15.52) reads Pmech + PEM = const. In that case, δPmech = −δPEM

and the force on the particle is

F = δPmech

δt
= q

δr0

δt
× B = qυ × B.

This is the familiar Lorentz force.

15.6 Conservation of Angular Momentum

Most configurations of electric and magnetic fields carry angular momentum. Since L = r × p is the
angular momentum of a particle at point r with linear momentum p, it is natural to suppose that an
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electromagnetic field with linear momentum density g = ε0E × B also possesses an electromagnetic
angular momentum density r × g. To check this guess, we begin with the mechanical torque and
angular momentum exerted on any distribution of charge and current by an electromagnetic field:

Nmech = dLmech

dt
=
∫

d 3r r × fmech =
∫

d 3r r × (ρE + j × B). (15.65)

The presence of the force density fmech in (15.65) reminds us of the conservation of linear momentum
as expressed by (15.54):

∂g
∂t

− ∇ · T = −fmech. (15.66)

The family resemblance becomes stronger when we form the cross product of (15.66) with a
time-independent position vector r. This gives

∂

∂t
(r × g) − r × ∇ · T = −r × fmech, (15.67)

where

− (r × ∇ · T)i = −εijkrj ∂mTmk. (15.68)

However, because

∂m(Tmkrj ) = rj ∂mTmk + Tmkδmj = rj ∂mTmk + Tjk, (15.69)

we may write

− (r × ∇ · T)i = −εijk[∂m(Tmkrj ) − Tjk]. (15.70)

On the other hand, the symmetry (Tij = Tji) of the electromagnetic stress tensor in (15.47) implies
that εijkTjk = 0. Therefore,

− (r × ∇ · T)i = ∂mεikj Tmkrj = {∇ · (T × r)}i . (15.71)

The final step combines (15.67) and (15.71) to get the continuity-like equation

∂

∂t
(r × g) + ∇ · (T × r) = −r × fmech. (15.72)

On dimensional grounds alone, we may conclude that this is a differential expression for conservation
of angular momentum analogous to the conservation of linear momentum statement (15.54).

15.6.1 Angular Momentum Current Density
It is conventional at this point to define the dyadic

M = T × r (Mij = Tik r� εjk�). (15.73)

M has dimensions of (angular momentum/volume) × velocity and thus may be consistently interpreted
as an angular momentum current density. Substituting (15.73) into (15.72) and integrating over an
arbitrary volume V gives an equation for the mechanical torque that is the analog of (15.49) for the
mechanical force:

Nmech = dLmech

dt
= −

∫
d 3r

{
∂

∂t
(r × g) + ∇ · M

}
. (15.74)

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-15 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:53

518 GENERAL ELECTROMAGNETIC FIELDS: SYMMETRY, POTENTIALS, AND CONSERVATION LAWS

Equation (15.74) shows that we guessed correctly that r × g is properly interpreted as the angular
momentum density of an electromagnetic field. The total field angular momentum in a volume V is

LEM = ε0

∫
d 3r r × (E × B). (15.75)

Combining (15.74) with (15.75) gives the angular momentum analog of the linear momentum conser-
vation law (15.52) and the energy conservation law (15.30):

dLtot

dt
= d

dt
(LEM + Lmech) = −

∫
V

d 3r ∇ · M = −
∫
S

dS· M. (15.76)

It is worth repeating and emphasizing the role of the symmetry Tij = Tji of the stress-energy tensor in
the derivation of local conservation of angular momentum [see (15.71)]. The same connection occurs
in continuum mechanics, general relativity, and other field theories.

Equation (15.76) becomes somewhat less abstract when we construct Mij from the components of
T defined in (15.47) and write out the flux integral. The result is

dLtotal

dt
= ε0

∫
S

dS · {E(r × E) + c2B(r × B)
}+ 1

2ε0

∫
S

dS × r(E2 + c2B2). (15.77)

The right-hand side of (15.77) goes to zero for static and quasistatic fields when the enclosing surface
S → ∞. In that case, we get a strict law of conservation of angular momentum:

d

dt
(LEM + Lmech) = 0. (15.78)

This is not necessarily the case when radiation fields are present (see Chapter 20).
Generalizing from Section 15.5.3, we may think of LEM as angular momentum that is potentially

available for transfer to matter. Any loss of field angular momentum must be compensated by a gain
in mechanical angular momentum with respect to the same origin. For static fields, this idea underlies
a famous paradox presented by Feynman in his Lectures on Physics.13 Example 15.4 is a variation of
this problem.

Example 15.4 (a) Find LEM for the ferromagnetic metal sphere shown in Figure 15.4(a) which has
radius R, charge Q, and uniform magnetization M = M ẑ; (b) Compare this with the mechanical
angular momentum acquired by the sphere when the magnetization is removed [Figure 15.4(b)].
The latter may be accomplished by heating the sphere above the Curie temperature, where ferro-
magnetism disappears.

Lmech

M M=0

(a) (b)

Q Q

Figure 15.4: A sphere with charge Q begins (a) at rest with uniform magnetization M and ends (b)
demagnetized with a net angular momentum Lmech.

13 See Section 17.4 of R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, Volume II
(Addison-Wesley, Reading, MA, 1964).
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Solution: (a) From Gauss’ law, E is zero inside the sphere and E = r̂Q/4πε0r
2 for r > R. We

found the magnetic field of a uniformly magnetized sphere in Section 13.4.1. For r < R, it is
Bin = (2/3)μ0M. For r > R it is the field of a point dipole at the origin with magnetic moment
m = ẑ4πR3M/3:

Bout = μ0

4π

m

r3
[2 cos θ r̂ + sin θ θ̂ ].

From (15.75), the electromagnetic angular momentum of the sphere is

LEM = ε0

∫
d 3r r × (E × B) = ε0

∫
d 3r [(r · B)E − (r · E)B].

By symmetry, only the z-component of the angular momentum is non-zero. Therefore, since
r̂ · ẑ = cos θ and θ̂ · ẑ = − sin θ ,

LEM = ẑ
μ0

4π

Qm

4π

2π∫
0

dφ

1∫
−1

d(cos θ )sin2 θ

∞∫
R

dr

r2
= 2

9
μ0QR2M.

(b) A decrease in M is accompanied by a decease in B. This change induces an electric field that
exerts a torque on the surface charge density σ = Q/4πR2 of the sphere. By applying Faraday’s
law to a circular path on the surface of the sphere concentric with the z-axis, we find the electric
field:

E(r, θ) = −1

2
r sin θḂzφ̂.

Bz is discontinuous at r = R, but the magnetic flux integral in Faraday’s law (and thus the induced
electric field) is not. Therefore, the torque on the sphere is

N =
∫
S

dS r × σE = ẑ
∫
S

dS r sin θ σEφ = −1

3
QR2Ḃin.

Since N = dLmech/dt and
∫

Ḃdt = −Bin, we conclude that

Lmech = 1

3
QR2Bin = 2

9
μ0QR2M.

This is equal to LEM calculated in part (a), as expected from conservation of angular momentum.

15.7 The Center of Energy

Newton’s laws predict that the center of mass of an isolated system is stationary when its total linear
momentum is zero. In this section, we generalize this idea to include electromagnetic fields. By
ignoring two surface integrals, we limit the discussion to (i) quasistatic situations and (ii) source-free
electromagnetic wave packets confined to a finite volume of space.

The first step is to multiply the differential statement of energy conservation (15.33) by r to get

[
∂uEM

∂t
+ ∇ · S

]
r = −j · (E + v × B)r. (15.79)
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The second step is to multiply the differential statement of linear momentum conservation (15.54) by
c2t . This gives [

∂g
∂t

+ ∇ · T
]
c2t = −(ρE + j × B)c2t. (15.80)

Bearing in mind (15.48), the third step is to add (15.79) to (15.80) and exploit the dyadic identity14

∇ · (Sr) = ∂k(Skr) = (∇ · S)r + S. (15.81)

These manipulations produce

∂

∂t

(
ruEM − c2t g

)+ ∇ · (Sr + c2tT
) = −j · (E + v × B)r + (ρE + j × B)c2t. (15.82)

Equation (15.82) simplifies when we specialize to point charges where ρ = ∑
qiδ(r − ri) and

j = ∑
qiviδ(r − ri), let Fi = qi(E + vi × B), and integrate over all space. We assume, in addition,

that the surface integral produced by the divergence term vanishes. Consequently,

d

dt

∫
d 3r [ruEM − c2t g] +

∑
i

[
ri
dri
dt

· Fi − c2tFi

]
= 0. (15.83)

The usual laws of mechanics tell us that Fi = dpi/dt and Fi · dri = dE i where pi and Ei are the
mechanical momentum and total mechanical energy of the ith particle. Therefore,

d

dt

∫
d 3r ruEM +

∑
i

ri
dEi
dt

= c2
∫

d 3r g + c2t
d

dt

[∫
d 3r g +

∑
i

pi

]
. (15.84)

The quantity in square brackets in (15.84) is the total linear momentum PEM + Pmech. The time
derivative of this quantity vanishes by conservation of linear momentum because we assume the
surface integral vanishes in (15.52). Therefore,

d

dt

[∫
d 3r ruEM +

∑
i

riEi

]
= c2PEM +

∑
i

viEi . (15.85)

Now, by exact analogy with the definition of the center of mass, we define the center of energy RE

and the total energy Utot from[∫
d 3r ruEM +

∑
i

riEi

]
= RE

[∫
d 3r uEM +

∑
i

Ei

]
= REUtot. (15.86)

Conservation of energy tells us that (d/dt)Utot = 0. Therefore, we can combine the time derivative of
(15.86) with (15.85) to get

Utot
dRE

dt
= c2

[
PEM +

∑
i

vi
c2

Ei

]
. (15.87)

Finally, we anticipate special relativity (Section 22.5.2) and recognize that pi = (vi/c2)Ei . This iden-
tifies the quantity in square brackets as the total linear momentum of the system and puts (15.87) in a
form known as the center-of-energy theorem:

vE = dRE

dt
= c2Ptot

Utot
. (15.88)

14 See Section 1.8.
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Equation (15.88) guarantees that the center of energy of an isolated system remains at rest when its
total linear momentum vanishes.

Application 15.3 The Hidden Momentum of a Static System

Figure 15.5 shows a point charge q and a current loop I , both at rest. In this Application, we use the
center-of-energy theorem to reveal a “hidden” source of linear momentum in this static system. We
begin with the electromagnetic field momentum, and derive a general expression for static fields which
exploits E = −∇ϕ, ∇ × B = μ0j, and an integration by parts where the surface integral vanishes for
a localized distribution of charge and current. Specifically,

PEM = ε0

∫
d 3r E × B = −ε0

∫
d 3r ∇ϕ × B = ε0

∫
d 3r ϕ(∇ × B) = 1

c2

∫
d 3r ϕ j. (15.89)

I

q

Figure 15.5: A current loop and a point charge at rest.

If the electric field is nearly constant over the area of the loop, it is a good approximation to insert

ϕ(r) = ϕ(r0) − (r − r0) · E0 + · · · (15.90)

into the rightmost member of (15.89). We then use (11.6) and (11.11) in the form∫
d 3r jk = 0 and

∫
d 3r jkr� = εki�mi, (15.91)

where mi is the ith Cartesian component of the magnetic moment of the current distribution. The final
result is

PEM = E0 × m
c2

. (15.92)

The expressions (15.89) and (15.92) are generally non-zero. This is disquieting because our intuition
[and the center-of-energy theorem (15.88)] tells us that the total linear momentum (electromagnetic
+ mechanical) of a static situation like Figure 15.5 should vanish. A sensible place to look for the
momentum needed to cancel PEM is the moving particles that constitute the current. However, if all
the particles have the same charge and mass, the left equation in (15.91) implies that the total particle
momentum is also zero: ∫

d 3r j =
∑
k

qvk = 0 =
∑
k

mvk = PNR
mech. (15.93)

The superscript in PNR
mech is a reminder that the momentum calculated in (15.93) is non-relativistic.

The source of the “missing” or “hidden momentum” in Figure 15.5 emerges when we recognize that

the exact, relativistic momentum expression multiplies mvk by the factor γk = 1/
√

1 − v2
k/c

2 (see
Section 22.5.2). The effect of this change is dramatic, even when all the velocities satisfy vk � c.
To see this, we focus on one particle in the current loop and break its trajectory into infinitesimal
segments, each with velocity vα = δ�α/δt , where T = Nδt is the total time needed to traverse the
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loop. The current contributed by this particle is I = q/T , so the total linear momentum associated
with its motion is not zero but

Pmech =
N∑
α=1

γαmvα = N

T

N∑
α=1

γαmδ�α = I

q

∮
d� γm. (15.94)

Now, at any point on its trajectory, conservation of energy fixes the sum of the kinetic and (electro-
static) potential energy as indicated by

γmc2 + qϕ = Etot. (15.95)

Hence, using
∮
d� = 0 to add zero to the last term in (15.94) gives

Pmech = − I

c2

∮
d�

Etot − γmc2

q
= − I

c2

∮
d�ϕ. (15.96)

Every particle in the current loop contributes similarly and we deduce that (15.96) is the filamentary-
current version of this general expression for the (hidden) mechanical momentum, Phid, of a stationary
current distribution:

Pmech = − 1

c2

∫
d 3r ϕ j = Phid. (15.97)

Comparing (15.97) with (15.89) proves that the total linear momentum in Figure 15.5 vanishes in
accord with the center-of-energy theorem:

PEM + Pmech = 0 = PEM + Phid. (15.98)

If the current loop in Figure 15.5 moves with non-relativistic center-of-mass velocity vCM, Phid is
still the negative of the electromagnetic momentum computed when vCM = 0, but (15.98) generalizes
to

Pmech = mvCM + Phid. (15.99)

The corresponding force responsible for the motion of the center of mass is

FCM = mv̇CM = dPmech

dt
− dPhid

dt
= Fmech − dPhid

dt
, (15.100)

where Fmech = dPmech/dt is the Coulomb-Lorentz force (15.42). Hence, if the current loop in Fig-
ure 15.5 experiences an inhomogeneous magnetic field B(r), (12.41), (15.92), and the rightmost
equation in (15.98) show that the loop accelerates due to the quasistatic force

FCM = ∇(m · B) − 1

c2

d

dt
(m × E) . (15.101)

In this way, the “covert” momentum of the current loop influences its “overt” momentum.15 �

15.8 Conservation Laws in Matter

It is a mixed bag to derive conservation laws for arbitrary, time-varying electromagnetic fields in
matter. On the one hand, formal manipulations of the in-matter Maxwell equations produce a sensible
statement of the conservation of energy in matter and well-accepted expressions for the Poynting

15 This perspective comes from the very valuable paper by W.H. Furry, “Examples of momentum distributions in the
electromagnetic field and in matter”, American Journal of Physics 37, 621 (1969).
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15.8 Conservation Laws in Matter 523

vector and the electromagnetic energy density in matter. On the other hand, similar manipulations
lead to only an apparent statement of conservation of linear momentum in matter and there is no
single, well-accepted expression for either the momentum of an electromagnetic field in matter or
for the time-dependent electromagnetic force density in matter. Part of the problem is familiar from
our analysis of static forces in sub-volumes of polarizable and magnetizable matter (Chapter 6 and
Chapter 13). The Coulomb-Lorentz force coexists with short-range quantum mechanical forces at the
microscopic scale and the latter influences the former at the macroscopic scale in a manner we are
obliged to discuss using only the dielectric permittivity ε and the magnetic permeability μ.

Another problem is the difficulty in distinguishing time-dependent forces in matter from contribu-
tions to the transport of electromagnetic field momentum in matter. Decades of theory and experiment
addressed to this “Abraham-Minkowksi controversy” have not solved what Nobel laureate Vitaly
Ginzburg calls one of the “perpetual problems” of physics.16 In this chapter, we mimic our discussion
of static forces in matter and distinguish carefully between the force exerted by time-dependent fields
on an isolated sample of matter and the corresponding force exerted on a sub-volume of matter. The
latter lies at the heart of the controversy, which we describe in brief, along with a summary of some
recent suggestions for its resolution.

15.8.1 Conservation of Energy in Simple Matter
In Section 15.4, we derived a conservation law for mechanical energy and field energy by straight-
forward manipulation of the Maxwell equations in vacuum. Here, we apply the same approach to the
Maxwell equations in matter:

∇ · D = ρf ∇ · B = 0 (15.102)

and

∇ × E = −∂B
∂t

∇ × H = jf + ∂D
∂t

. (15.103)

The required algebraic steps are literally the same as for the vacuum case. Therefore, we simply state
the analog of Poynting’s theorem when matter is present:∫

V

d 3r

[
E · ∂D

∂t
+ H · ∂B

∂t

]
= −

∫
V

d 3r jf · E −
∫
V

d 3r ∇ · (E × H). (15.104)

The first term on the right side of (15.104) is unambiguously the mechanical work done by the field on
free charges. Therefore, we are entitled to interpret the integral on the left side of (15.104) as the rate
of change of electric and magnetic energy. There is similarly no ambiguity if we use the divergence
theorem to interpret the last term in (15.104) as the flux of energy through the surface that encloses V .
This leads us to generalize the definition of the Poynting vector (15.29) to

S = E × H. (15.105)

Simple linear media are defined by D = εE and B = μH. When these formulae are valid, (15.104)
implies that the total electromagnetic energy stored in a volume V is

UEM =
∫
V

d 3r uEM =
∫
V

d 3r 1
2

[
ε |E|2 + μ|H|2] . (15.106)

16 See the first paragraph of Chapter 3 of V.L. Ginzburg, Theoretical Physics and Astrophysics (Pergamon, Oxford,
1979).
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This expression, valid for arbitrary time-dependent fields, is exactly the sum of the electric and magnetic
energies we deduced for static fields in linear matter in Section 6.7 and Section 13.7.1, respectively.
Then, because the work done on the free charge increases their mechanical energy, we can apply the
divergence theorem to the Poynting vector term and combine (15.104), (15.105), and (15.106) to write
a global statement for conservation of energy in matter, namely,

d

dt
(Umech + UEM) = −

∫
S

dAS · n̂. (15.107)

A differential statement of energy conservation in matter follows because (15.104) and (15.107) apply
to every possible volume of integration V :

∂uEM

∂t
+ ∇ · S = −j · E. (15.108)

This is the same as (15.33) except that the definition of each symbol is slightly different when matter
is present.

Example 15.5 The AC Stark shift is the change in the energy of an atom produced by an oscillating
electric field. Let E(t) = E cosωt and compute the Stark shift from the change in the energy of the
electric field due to the presence of a gas of atoms.

Solution: Using (15.106), the change in the electric field energy density is

�uE = 1

2
(ε − ε0)|E(t)|2.

The average of cos2(ωt) over one period is 1/2, so the time-averaged change in the energy density
is

〈�uE 〉 = 1

4
(ε − ε0)E2.

From (6.79) of Section 6.6.2, the dielectric constant of a gas of atoms is

κ = ε

ε0
= 1 + n0α,

where n0 is the number density of atoms and α is the polarizability of an atom. Therefore,

〈�uE 〉 = 1

4
n0αε0E2.

By conservation of energy, the change in electric field energy is compensated by a change in the
energy of each atom in the gas. Therefore, the expected AC Stark shift per atom is

�EStark = −1

4
αε0E2.

Quantum mechanics predicts the same result.

15.8.2 Conservation of Momentum in Simple Matter
The logic used in Section 15.5.1 to derive a conservation law for linear momentum can be extended
to fields in matter by using (15.102) and (15.103) to eliminate ρf and jf from the Coulomb-Lorentz
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expression for the force on the free charge and current in any sub-volume V of a sample of matter:

Ffree =
∫
V

d 3r [ρf E + (jf × B)] =
∫
V

d 3r (∇ · D)E +
(

∇ × H − ∂D
∂t

)
× B. (15.109)

The key trick is to add (∇ · B)H = 0 and (using Faraday’s law) D × (∇ × E) + D × ∂B/∂t = 0 to the
far right side of (15.109) to get

Ffree =
∫
V

d 3r

[
(∇ · D)E + (∇ · B)H − B × (∇ × H) − D × (∇ × E) − ∂

∂t
(D × B)

]
. (15.110)

The Levi-Cività symbol (1.2.5) facilitates the evaluation of curl terms and we find that

Ffree,j = −
∫
V

d 3r
∂

∂t
(D × B)j (15.111)

+
∫
V

d 3r
[
(∇ · D)Ej + (D · ∇)Ej −Dk∂jEk

]

+
∫
V

d 3r
[
(∇ · B)Hj + (B · ∇)Hj − Bk∂jHk

]
.

We now define the Minkowski force density,

fM = ρf E + jf × B − 1
2E

2∇ε − 1
2H

2∇μ, (15.112)

and an electromagnetic stress tensor in matter T with components

Tij = DiEj + BiHj − 1

2
δij (D · E + B · H). (15.113)

We also restrict ourselves to D = εE and B = μH, so Dk∂jEk = 1
2

[
∂j (DkEk) − E2∂j ε

]
and

Bk∂jHk = 1
2

[
∂j (BkHk) −H 2∂jμ

]
. This information, together with the identity∫

V

d 3r ∇k(akb) =
∫
V

d 3r (∇ · a) b +
∫
V

d 3r (a · ∇) b, (15.114)

permits us to rewrite (15.111) in the form∫
V

d 3r fM =
∫
V

d 3r ∇ · T −
∫
V

d 3r
∂

∂t
(D × B) . (15.115)

In 1908, Minkowski interpreted (15.115) as a statement of conservation of linear momentum by
asserting that the momentum density associated with an electromagnetic field in matter is

gM = D × B = εμE × H = εμS. (15.116)

Specifically, because V can be chosen arbitrarily small, (15.115) reduces to a continuity equation for
the flow of linear momentum:

∂gM
∂t

+ ∇ · (−T ) = −fM. (15.117)

The force density fM is the sum of the electrostatic and magnetostatic force densities deduced in
Section 6.8.4 and Section 13.8.4. Similarly, the stress tensor T is the sum of the electrostatic and
magnetostatic stress tensors defined in Section 6.8.5 and Section 13.8.5. Hence, the static limit of
(15.117) reproduces our previous results. Everything seems to be in order, but, as the next section
shows, appearances can be deceiving.
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15.8.3 The Abraham-Minkowski Controversy
Soon after Minkowski proposed (15.116) as the electromagnetic linear momentum density in matter,
Max Abraham suggested that the relationship g = S/c2 between the momentum density and the
Poynting vector in vacuum [see (15.50)] should remain valid in matter. If this is true, (15.105) implies
that the correct expression for the electromagnetic momentum density in matter is

gA = E × H
c2

. (15.118)

To incorporate (15.118) into a conservation law, we need only add and subtract the time derivative
of gA on both sides of (15.117) and rearrange the terms slightly. The result is an alternative statement
of linear momentum conservation in matter,

∂gA
∂t

+ ∇ · (−T ) = −fA, (15.119)

where

fA = fM + ∂

∂t

(
D × B − E × H

c2

)
= fM +

(
εμ− 1

c2

)
∂S
∂t

(15.120)

is an alternative to (15.112) as the electromagnetic force density in matter. The “correction” to the
Minkowski force density (15.112) on the far right side of (15.120) vanishes for static fields and also
for (time-averaged) harmonic fields because it is a total time derivative.

For more than a century, disputants in the “Abraham-Minkowski controversy” have argued whether
(15.116) or (15.118) (or some other expression) is the correct linear momentum density for elec-
tromagnetic fields in matter.17 The controversy lives on because research papers continue to appear
(including experiments) which claim to establish the correctness of one particular expression for the
momentum density gEM and the force density f. The truth of the matter is that neither (15.117) nor
(15.119) is complete as it stands. To the momentum density, force density, and stress tensor in each,
one must add a momentum density, force density, and stress tensor associated solely with the matter.
The added terms are not the same in the two cases, but the resulting statement of linear momentum
conservation for the total system of field plus matter is the same for the two cases.

The controversies in the literature arise mainly from attempts to isolate various pieces of the total
conservation law without taking account of the pieces left behind. On the other hand, there is an
emerging consensus that both momentum densities are physically meaningful, but that one or the
other provides the simplest description of a particular experimental situation. Thus, the transfer of
Minkowski momentum (15.116) correctly describes the force exerted by an electromagnetic wave on
an object embedded in a dielectric medium while the Abraham momentum (15.118) naturally describes
the kinetic momentum of a wave propagating freely through a dielectric medium.18

15.9 The Force on Isolated Matter

We derive an expression for the electromagnetic force F exerted on an isolated sample of matter
characterized by a polarization P, a magnetization M, and free charge and current densities ρf and
jf by integrating the Coulomb-Lorentz force density ρE0 + j × B0 over the volume V of the sample

17 A list of the distinguished contributors to this debate includes Einstein, von Laue, Planck, Pauli, Casimir, Peierls,
Shockley, and Ginzburg.

18 See Sources, References, and Additional Reading at the end of the chapter.
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Figure 15.6: A collection of moving point particles with charges qα that never stray far from their center of
mass R. The vector rα points from the center of mass to the position of the αth particle.

using ρ = ρf − ∇ · P and j = jf + ∇ × M + ∂P/∂t . In other words,

F =
∫
V

d 3r
[
ρf E0 + jf × B0

]+
∫
V

d 3r

{
−(∇ · P)E0 +

[
∇ × M + ∂P

∂t

]
× B0

}
. (15.121)

The ∇ · P and ∇ × M terms in (15.121) can be transformed using the vector identities

(P · ∇)E0 = ∂k(PkE0) − (∇ · P)E0 (15.122)[
(M × ∇) × B0

]
i
= ∂i(M · B0) − B0,k∂iMk (15.123)[

(∇ × M) × B0
]
i
= ∂k(BkMi) − (∇ · B0)Mi − B0,k∂iMk. (15.124)

The volume integrals of the total derivative terms (the first term on the right-hand side of each of
the three preceding equations) vanish because we can expand the volume of integration so its surface
lies everywhere in the vacuum (where P = M = 0) and transform these volume integrals to surface
integrals. Therefore, because ∇ · B0 = 0, the force (15.121) on an isolated sample of matter takes the
form

F =
∫
V

d 3r
[
ρf E0 + jf × B0

]+
∫
V

d 3r

[
(P · ∇)E0 + ∂P

∂t
× B0 + (M × ∇) × B0

]
. (15.125)

The (P · ∇)E0 term in (15.125) is familiar from (6.116) as the force on polarized matter regarded as a
continuous distribution of point electric dipoles. However, the (M × ∇) × B0 term does not resemble
the force (13.120) on magnetized matter regarded a distribution of point magnetic dipoles. The reason
for this, and the origin of the force on the polarization current density, can be appreciated from the
calculation presented in the next section.

15.9.1 The Force on a Classical Atom
A single atom or molecule is a special case of an isolated sample of matter. In this section, we gain
insight into (15.125) by using a low-order multipole expansion to compute the net force on a “classical
atom” regarded as an electrically neutral collection of N moving point particles. We assume that none
of the particles strays very far from the center of mass R which moves with velocity v = Ṙ (see
Figure 15.6). Each particle has charge qα , position Rα = R + rα , and velocity Ṙα = v + ṙα .

The Coulomb-Lorentz force on the atom due to external fields E0(r, t) and B0(r, t) is

F =
∑
α

qα
[
E0(Rα) + Ṙα × B0(Rα)

]
. (15.126)
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By assumption, |rα| � |R|, so it reasonable to perform a Taylor expansion of the external fields
E0(Rα) and B0(Rα) around Rα = R and keep only the first two terms in each expansion:

E0(Rα) = E0(R) + (rα · ∇R)E0(R) and B0(Rα) = B0(R) + (rα · ∇R)B0(R). (15.127)

Substituting (15.127) into (15.126) and writing E0, B0, and ∇ for E0(r), B0(R), and ∇R gives

F =
∑
α

qα (E0 + v × B0) +
∑
α

qα(rα · ∇)E0 +
∑
α

qα(rα · ∇)(v × B0)

+
∑
α

qα ṙα × B0 +
∑
α

qα(rα · ∇)(ṙα × B0). (15.128)

This expression simplifies if we recall the definitions of total charge q and electric dipole moment
vector p from Section 4.1.1:

q =
∫

d 3r ρ =
∑
α

qα p =
∫

d 3r rρ =
∑
α

qαrα. (15.129)

We have assumed that q = 0, so (15.129) reduces (15.128) to

F = (p · ∇)E0 + ṗ × B0 + (p · ∇)(v × B0) +
∑
α

qα(rα · ∇)(ṙα × B0). (15.130)

To simplify the last term in (15.130), add

(rα × ṙα) × ∇ = ṙα(rα · ∇) − rα(ṙα · ∇) (15.131)

to
d

dt
(rαrα) · ∇ = ṙα(rα · ∇) + rα(ṙα · ∇) (15.132)

to get

ṙα(rα · ∇) = 1

2

d

dt
(rαrα) · ∇ + 1

2
(rα × ṙα) × ∇ = (rα · ∇)ṙα. (15.133)

In addition, recall the definitions of the electric quadrupole moment tensor (Section 4.4) and the
magnetic dipole moment vector (Section 11.2),

Q = 1

2

∫
d 3r rρ r = 1

2

∑
α

qαrαrα m = 1

2

∫
d 3r r × j = 1

2

∑
α

qαrα × ṙα. (15.134)

Combining (15.133) and (15.134) with [Q · ∇]i = Qik∂k shows that (15.130) is

F = (p · ∇)E0 + ṗ × B0 + (p · ∇)(v × B0) + (m × ∇) × B0 +
[
dQ
dt

· ∇
]

× B0. (15.135)

When the center-of-mass velocity v = 0, the electric dipole terms in (15.135) reproduce the electric
polarization terms in (15.125) and the magnetic dipole term in (15.135) reproduces the magnetization
term in (15.125). We will analyze the electric force in more detail when we discuss the phenomenon
of “optical tweezers” in Section 16.10.3. Otherwise, (15.135) is often rewritten using the fact that the
dipole moments p and m of an atom are functions of time but not space. Moreover, the “atom” in
Figure 15.6 moves through the electric and magnetic fields at velocity v. Therefore (see Section 1.3.3),

dB0

dt
= ∂B0

∂t
+ (v · ∇)B0. (15.136)

With this information, the reader can use a few vector identities and Faraday’s law to rewrite the dipole
terms in (15.135) in the form

Fatom = ∇(p · E0) + ∇(m · B0) + d

dt
(p × B0) + ∇[p · (v × B0)]. (15.137)
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The first two terms of (15.137) are familiar as the negative gradients of the potential energies of
an electric/magnetic dipole in an external electric/magnetic field. The third term is not new either.
As a macroscopic density, it appears as the first term in the “Abraham force” in (15.120) because
D = ε0E + P and B = μ0(H + M) show that

D × B − E × H
c2

= P × B + E × M
c2

. (15.138)

The rightmost term in (15.138) does not occur in (15.137). However, it would have if we had manip-
ulated the relativistic equation of motion for our classical atom as we did for the current loop to get
(15.101).

The final term in (15.137) contributes only when the atom is in motion. As written, it is similar to
the first term in (15.137) with a “motional electric field” v × B0. Atomic physicists speak of this as a
“Röntgen term” and rewrite it as ∇[(p × v) · B0] to emphasize that a moving electric dipole moment
behaves like a magnetic moment.19 The name honors the 19th-century discoverer of X-rays who
(earlier in his career) sought to detect the Maxwell displacement current by detecting the magnetic
field produced by a rapidly rotating disk of polarized matter.

�

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is taken from Section 74 of
M. Planck, The Theory of Electricity and Magnetism 2nd edition (Macmillan, London, 1932).

Section 15.1 Three textbooks and a monograph which discuss conservation laws without the use of Lagrangian
methods are

R.H. Good, Jr. and T.J. Nelson, Classical Theory of Electric and Magnetic Fields (Academic, New York, 1971).

L. Eyges, The Classical Electromagnetic Field (Dover, New York, 1972).

D.J. Griffiths, Introduction to Electrodynamics, 3rd edition (Prentice-Hall, Upper Saddle River, NJ, 1999).

W.G.V. Rosser, Interpretation of Classical Electromagnetism (Kluwer, Dordrecht, 1997).

Section 15.2 The importance of symmetry in physics can hardly be understated. An annotated bibliography
which provides an entry point to the vast literature on this subject is

J. Rosen, “Symmetry and group theory in physics”, American Journal of Physics 49, 304 (1981).

For more (and then much more) on symmetry in electrodynamics, see
J.D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1999).

W.I. Fushchich and A.G. Nitikin, Symmetries of Maxwell’s Equations (Reidel, Dordrecht, 1987).

An exotic symmetry of the Maxwell equations which generalizes the idea of conformal mapping to three space
dimensions is discussed in

C. Codirla and H. Osborn, “Conformal invariance and electrodynamics”, Annals of Physics 260, 91 (1997).

Section 15.3 These two papers are a review of the concept of gauge invariance and a detailed examination of
electromagnetic gauge transformations:

J.D. Jackson and L.B. Okun, “Historical roots of gauge invariance”, Reviews of Modern Physics, 73, 663
(2001).

J.D. Jackson, “From Lorenz to Coulomb and other explicit gauge transformations”, American Journal of
Physics 70, 917 (2002).

Wigner’s argument in Section 15.3.1 comes from
E. Wigner, “Invariance in physical theory”, Proceedings of the American Philosophical Society 93, 521 (1949).

19 We shall return to this point when we study special relativity.
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The significance of the electromagnetic potentials in quantum mechanics is reviewed in
S. Olariu and I.I. Popescu, “The quantum effects of electromagnetic fluxes”, Reviews of Modern Physics 57,
339 (1985).

Section 15.4 Application 15.1 was adapted from Section 9.2 of
J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

The discussion of Poynting’s theorem for resistive wires in Section 15.4.2 was inspired by the original paper on the
subject:

J.H. Poynting, “On the transfer of energy in the electromagnetic field”, Philosophical Transactions of the
Royal Society of London 175, 343 (1884).

The suggestion that the Poynting vector is something other than S = E × B/μ0 appears periodically in the litera-
ture. See, for example,

U. Backhaus and K. Schäfer, “On the uniqueness of the vector for energy flow density in electromagnetic
fields”, American Journal of Physics 54, 279 (1986).

Section 15.5 The force and momentum analysis of the situation depicted in Figure 15.3 was adapted from
Labarthe. Application 15.2 and Example 15.3 come from McDonald and Müller-Kirsten, respectively:

J.-J. Labarthe, “The vector potential of a moving charge in the Coulomb gauge”, European Journal of Physics
20, L31 (1999).

K.T. McDonald, “Electromagnetic momentum of a capacitor in a uniform magnetic field”,
http://cosmology.princeton.edu/∼mcdonald/examples/cap momentum.pdf

H.J.W. Müller-Kirsten, Electrodynamics: An Introduction Including Quantum Effects (World Scientific, Hack-
ensack, NJ, 2004).

Section 15.6 Example 15.4 comes from Sharma. Einstein and de Haas famously measured the gyromagnetic
ratio of the electron by measuring the angular momentum acquired by an iron cylinder when a current was used
to magnetize it. Galison engagingly tells the story of how and why they got the wrong answer!

N.L. Sharma, “Field versus action-at-a-distance in a static situation”, American Journal of Physics 56, 420
(1988).

P. Galison, How Experiments End (University Press, Chicago, 1987).

Section 15.7 This section follows the treatment in
J. Schwinger, L.L. DeRaad, K.A. Milton, and W.-Y. Tsai, Classical Electrodynamics (Perseus, Reading, MA,
1998).

Application 15.5 was adapted from Calkin. With a clarity characteristic of his many “hidden momentum” papers,
Hnizdo discusses the recovery of the action-reaction law for quasistatic systems and the general absence of “hidden
angular momentum”:

M.G. Calkin, “Linear momentum of the source of a static electromagnetic field”, American Journal of Physics
39, 513 (1971).

V. Hnizdo, “Conservation of linear momentum and angular momentum and the interaction of a moving
charge with a magnetic dipole”, American Journal of Physics 60, 242 (1992).

For more about the center-of-energy theorem and its uses see
T.T. Taylor, “Electrodynamics paradox and the center-of-mass principle”, Physical Review 137, B467 (1965).

T.H. Boyer, “Illustrations of the relativistic conservation law for the center of energy”, American Journal of
Physics 73, 953 (2005).

Section 15.8 Example 15.5 comes from
B.J. Sussman, “Five ways to the non-resonant dynamic Stark effect”, American Journal of Physics 79, 477
(2011).

Synge is a light-hearted reflection on the Abraham-Minkowski controversy. The other two articles bring the
discussion up to date.

J.L. Synge, “On the present status of the electromagnetic energy tensor”, Hermathena 117, 80 (1974).

R.N.C. Pfeiffer, T.A. Nieminen, N.R. Heckenberg, and H. Rubinsztein-Dunlop, “Momentum of an electromag-
netic wave in dielectric media”, Reviews of Modern Physics 79, 1197 (2007).
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S.M. Barnett and R. Loudon, “The enigma of optical momentum in a medium”, Philosophical Transactions of
the Royal Society of London A 368, 927 (2010).

Section 15.9 The multipole treatment of forces on atoms and matter in Section 15.9.1 was inspired by a similar
discussion in Schwinger et al. (see Section 15.7 above) and in

S.R. DeGroot and L.G. Suttorp, Foundations of Electrodynamics (North-Holland, Amsterdam, 1972).

A short and readable account of the role of Wilhelm Röntgen in the history of electromagnetism is

P. Dawson, “Röntgen’s other experiment”, The British Journal of Radiology 70, 809 (1997).

Problems
15.1 Continuous Creation An early competitor of the Big Bang theory postulates the “continuous creation”

of charged matter at a (very small) constant rate R at every point in space. In such a theory, the continuity
equation is replaced by

∇ · j + ∂ρ

∂t
= R.

(a) For this to be true, it is necessary to alter the source terms in the Maxwell equations. Show that it is
sufficient to modify Gauss’ law to

∇ · E = ρ
/
ε0 − λϕ

and the Ampère-Maxwell law to

∇ × B = μ0j + 1

c2

∂E
∂t

− λA.

Here, λ is a constant and ϕ and A are the usual scalar and vector potentials. Is this theory gauge invariant?
(b) Confirm that a spherically symmetric solution of the new equations exists with

A(r, t) = rf (r, t) and ϕ(r, t) = ϕ0

where f (r, t) is a scalar function and ϕ0 is a constant.
(c) Show that the only non-singular solution to the partial differential equation satisfied by f (r, t) is a

constant.
(d) Show that the velocity of the charge created by this theory, v = j/ρ, is a linear function of r . This agrees

with Hubble’s famous observations.

15.2 Lorenz Gauge Forever

(a) Suppose ϕL and AL satisfy the Lorenz gauge constraint. What equation must � satisfy to ensure that
A′ = AL − ∇� and ϕ′ = ϕL + �̇ are Lorenz gauge potentials also?

(b) What equation must � satisfy to ensure that ϕ′ satisfies the same inhomogeneous wave equation as
ϕL? Show that the same equation for �′ also ensures that A′ satisfies the same inhomogeneous wave
equations as AL.

15.3 Gauge Invariant Vector Potential The Helmholtz theorem guarantees that the vector potential can be
decomposed in the form A = A⊥ + A‖ where ∇ · A⊥ = 0 and ∇ × A‖ = 0. Show that a gauge invariant
physical observable can be expressed in terms of A⊥, but not A‖.

15.4 Transverse Current Density in the Coulomb Gauge Show that the Cartesian components of the trans-
verse current density j⊥(r, t) used to define the Coulomb gauge vector potential can be written in terms of
the total current density j(r, t) as

j⊥,k(r, t) =
∫

d 3r ′ δ⊥
k�(r − r′)j�(r′, t),

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-15 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:53

532 GENERAL ELECTROMAGNETIC FIELDS: SYMMETRY, POTENTIALS, AND CONSERVATION LAWS

where the transverse delta function is

δ⊥
k�(r − r′) = − 1

4π

(
δk�∇2 − ∇k∇�

) 1

|r − r′| .

15.5 Poincaré Gauge

(a) Confirm that ϕ(r) = −r · E and A = − 1
2 r × B are acceptable scalar and vector potentials, respectively,

for a constant electric field E and a constant magnetic field B.
(b) By direct computation of B = ∇ × A and E = −∇ϕ − ∂A/∂t , prove that the generalizations of the

formulae in part (a) to arbitrary time-dependent fields are

ϕ(r, t) = −r ·
1∫

0

dλE(λr, t) A(r, t) = −
1∫

0

dλ λr × B(λr, t).

Hint: Prove first that
d

dλ
G(λr) = 1

λ
(r · ∇) G(λr) for any vector field G.

15.6 First-Order Equations for Numerical Electrodynamics Second derivatives are difficult to calculate
numerically with high accuracy. Therefore, if both the fields and the potentials (Lorenz gauge) are of
interest, a convenient equation to integrate is

∂A
∂t

= −E − ∇ϕ.

(a) Let C(r, t) = ∇ · E − ρ/ε and let the initial conditions satisfy C(r, t = 0) = 0. If this Gauss’ law
condition is maintained, show that the equation above combined with the two equations below produces
fields that satisfy all four Maxwell equations and properly defined potentials:

1

c2

∂E
∂t

= ∇ × (∇ × A) − μ0j and
∂ϕ

∂t
= −c2∇ · A.

(b) Show that the three equations above imply that ∂C/∂t = 0. Hence, any initial differences from zero
(due to numerical noise) are frozen onto the computational grid (which is not a good thing).

(c) Show that the two equations in (a) can be replaced by ϕ̇ = −c2" with

1

c2

∂E
∂t

= −∇2A + ∇" − μ0j and
∂"

∂t
= −ρ/ε0 − ∇2ϕ.

(d) Show that Ȧ = −E − ∇ϕ and the three equations in part (c) imply that ∂2C/∂t2 = c2∇2C. Hence, any
initial differences from zero propagate out of the computational grid at the speed of light. For this
reason, set (c) is preferred to set (a) for numerical work.

15.7 Elementary Energy Conservation An ohmic bar with mass m slides without friction on two parallel,
perfectly conducting rails. A uniform magnetic field B points out of the page as shown. Let R be the
resistance of the bar over the length �. Prove that the initial kinetic energy of the bar, 1

2mv
2
0 , is completely

dissipated into Joule heat as t → ∞.

15.8 The Poynting Vector Field A point charge q sits at (a, 0, 0), a point charge −q sits at (−a, 0, 0), and
a uniform magnetic field B = B ẑ fills all of space. (a) Prove that the streamlines of the Poynting vector
either close on themselves or begin and end at infinity. (b) Sketch several representative streamlines of the
Poynting vector, including the one which passes through the origin of coordinates.
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15.9 Poynting Vector Matching Condition How do the normal and tangential components of the Poynting
vector in matter behave at an interface between two simple media where no free current flows? Comment
on the physical meaning of your result.

15.10 A Poynting Theorem Check A flat and infinitely large sheet with uniform charge density σ moves with
constant speed υ in a direction parallel to its surface. Confirm the differential form of Poynting’s theorem
at every point not on the sheet.

15.11 A Charged Particle in a Static Electromagnetic Field A particle with charge q and mass m moves in
static external fields E0(r) and B0(r). If ϕ0(rq ) is the electrostatic potential at the position of the particle,
and there is negligible radiation, the usual statement of conservation of energy for this system is

1

2
mv2 + qϕ0(rq ) = const.

Show that this equation agrees with the power balance represented by Poynting’s theorem only if one adds
to the latter the power supplied by an external energy source to maintain E0 and B0 against the work done
on their sources by the fields produced by the particle. Why is the latter work non-zero?

15.12 Energy Flow in a Coaxial Cable A cable is made from two coaxial cylindrical shells. The outer shell
has radius b and charge per unit length λ, and carries a longitudinal current I . The inner cylinder has radius
a < b and charge per unit length −λ, and carries the current I back in the opposite direction.

(a) Integrate the Poynting vector to find the rate at which energy flows through a cross section of the cable.
(b) Show that a resistor R connected between the cylinders dissipates the power calculated in (a).

I

-I

b

a

λ

−λ

R

Z

15.13 Energy Conservation for Quasi-Magnetostatic Fields A magnetic field B(z, t) = ŷB0 cosωt is applied
just outside the lower (z = 0) surface of a semi-infinite slab of ohmic material which extends to z = ∞.

x
y

z

(a) Find the quasi-magnetostatic electric and magnetic fields inside the conductor.
(b) Show by explicit calculation that these fields satisfy the Poynting theorem,∫

V

d 3r

[
∂uEM

∂t
+ j · E

]
= −

∫
S

dAn̂ · S,

when averaged over one period of the field oscillation.

15.14 Energy to Spin Up a Charged Cylinder The angular velocity ω(t)ẑ of the cylindrical shell shown below
increases from zero and smoothly approaches the steady value ω0. The shell has infinitesimal thickness and
carries a uniform charge per unit length λ = 2πRσ , where σ is a uniform charge per unit area. Assume that
the shell radius R � L and that the spin-up is very slow so the displacement current may be neglected.

2 R

L

R
( ) ˆt z
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(a) Find the static electric field and steady magnetic field when ω = ω0.
(b) Find B(r, t) everywhere during the spin-up and use it to find the time-dependent part of the electric

field.
(c) The spin-up is performed by an external agent, who supplies power at a rate −j · E per unit volume to

create the magnetic field. Confirm this by evaluating Poynting’s theorem over all of space. Comment
on the role of the Poynting vector and the electric field in this calculation.

(d) Evaluate Poynting’s theorem using a cylindrical volume with a radius slightly smaller than the shell to
study the flow of energy into the interior from the surface of the shell.

15.15 A Momentum Flux Theorem The source of a magnetic field B0 is a steady current produced by a
collection of moving charges confined to a volume V . These particles are exposed to an external electric
field E0 produced by a static charge distribution which is not necessarily confined to V . Prove that the net
flux of electromagnetic momentum gEM = ε0(E0 × B0) through the surface of V is zero.

15.16 An Electromagnetic Inequality Show that the inequality UEM ≥ c |PEM| is a general property of electric
and magnetic fields. Under what conditions are the two quantities equal?

15.17 Potential Momentum An infinite cylindrical solenoid of radius R is wound tightly with n turns per unit
length of a wire that carries a current I . A bead of mass m and charge q slides freely on a non-conducting
circular wire of radius r > R that is concentric with the solenoid. Let the bead be at rest (ignore gravity)
and then reduce the current in the solenoid winding to zero. The bead begins to slide around the wire.

(a) Use Faraday’s law to find the speed v of the bead after the magnetic field in the solenoid has disappeared.
(b) Show that an application of conservation of linear momentum leads to the same answer.
(c) Explain why the electric and magnetic fields produced by the moving charge do not contribute to the

momentum balance in part (b).

15.18 PEM for an Electric Dipole in a Uniform Magnetic Field Compute PEM for a point electric dipole with
moment p located at the center of a hollow spherical shell (radius R) with uniform surface charge density
σ which rotates at frequency ω. Do not assume that the rotation axis is aligned with p. Hint: There are
contributions from both inside and outside the sphere.

15.19 PEM for Electric and Magnetic Dipoles

(a) Show that the electromagnetic linear momentum PEM for static fields in all of space can be rewritten in
terms of the current density j(r) and the electrostatic potential ϕ(r).

(b) Point charges q and −q sit at points (0, 0, d) and (0, 0,−d), respectively. A point magnetic dipole with
moment m sits at the origin. Show that PEM = E(0) × m/c2, where E(0) is the electric field of the
charges evaluated at the origin.

(c) A point electric dipole with moment p sits not far from a steady distribution of current. Express PEM in
terms of p and the Coulomb gauge vector potential.

15.20 PEM in the Coulomb Gauge The Helmholtz theorem guarantees that any vector can be decomposed in
the form v = v⊥ + v‖ where ∇ · v⊥ = 0 and ∇ × v‖ = 0. Use this fact, the identity∫

d 3r (u · ∇)w =
∫

(dS · u)w −
∫

d 3r (∇ · u)w,

and the Coulomb gauge constraint to prove that the electromagnetic momentum of a charge distribution
ρ(r, t) in the presence of a magnetic field B(r, t) can be written in the form

PEM =
∫

d 3r ρA⊥ + ε0

∫
d 3rE⊥ × B.

15.21 Hidden Momentum in a Bar Magnet? A point charge at rest sits in the magnetostatic field of a stationary
permanent magnet with spin magnetization M(r).
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(a) Show that the field momentum is

PEM = 1

c2

∫
d 3r E × M.

(b) Is there “hidden momentum” associated with this situation? If so, can you suggest its origin classically
or quantum mechanically?

15.22 LEM for a Charge in a Two-Dimensional Magnetic Field A point charge q sits at the origin. A magnetic
field B(r) = B(x, y)ẑ fills all of space. Show that the field angular momentum is LEM = −(q

/
2π )�B ẑ,

where �B is the flux of B through the plane z = 0.

15.23 Transformation of Angular Momentum The figure below shows a cutaway view of an infinite cylindrical
solenoid with radius R that creates a magnetic field B = B ẑ inside itself. An infinitely long cylinder of
insulating material with radius a < R, permeability μ0, and permittivity ε0 sits inside (and coaxial with)
the solenoid. The cylinder is filled uniformly with charge with density ρ̃ > 0. A uniform surface charge σ
makes the cylinder electrically neutral.

B

R
a

ρσ

B

(a) Find the total electromagnetic angular momentum (per unit length) of this system.
(b) Compute the instantaneous torque (per unit length) which acts on the cylinder as the magnetic field is

reduced to zero with a time dependence B(t).
(c) Show that the final mechanical angular momentum of the cylinder is equal to the initial angular

momentum calculated in part (a).

15.24 LEM for Static Fields

(a) Show that the electromagnetic angular momentum for static fields in the Coulomb gauge is

LEM =
∫

d 3r ρ(r)r × A(r).

(b) Evaluate LEM when a point electric dipole p sits at the origin in the presence of a static magnetic field
B(r).

(c) An axially symmetric charge distribution rotates around its symmetry axis with frequency ω. Prove that
the magnetic total energy can be expressed as

UB = 1

2
ω · LEM.

15.25 The Dipole Force on Atoms and Molecules The text showed that the Coulomb-Lorentz force on a classical
atom or molecule (a bounded collection of net neutral moving charges) moving with center-of-mass velocity
v due to its electric dipole moment p(t) and magnetic dipole moment m(t) is

F = (p · ∇)E + ṗ × B + (p · ∇)(v × B) + (m × ∇) × B.

Use the fact that the atom is moving through the fields E(r, t) and B(r, t) with velocity v to show that

F = d

dt
(p × B) + ∇ {p · (E + v × B)} + ∇(m · B).
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16 Waves in Vacuum

The theoretical discovery of an electromagnetic wave spreading
with the speed of light is one of the greatest achievements in the

history of science.
Albert Einstein and Leopold Infeld (1938)

16.1 Introduction

This chapter begins our exploration of the single most important fact of electromagnetic life. The
Maxwell equations have wave-like solutions which propagate from point to point through space car-
rying energy, linear momentum, and angular momentum. Electromagnetic fields of this kind transport
life-giving heat from the Sun, reveal the internal structure of the human body, and facilitate communi-
cation by radio, television, satellite, and cell phone. The propagating solutions we will study are often
called “free fields” because they are not “attached” to distributions of charge or current. Their electric
field lines do not terminate on charge and their magnetic field lines do not encircle current. For that
reason, electromagnetic waves bear very little relationship (both physically and mathematically) to the
electrostatic, magnetostatic, and quasistatic fields we have studied to this point. This chapter focuses
on the basic structure and surprising variety of propagating waves in vacuum. Chapter 20 takes up the
question of how one produces them.

Electromagnetic waves are solutions of the Maxwell equations in the absence of sources. Such
waves are also solutions of a vector wave equation which appears repeatedly through the course of
the chapter. We analyze plane wave solutions first because they are simple, important, and provide a
convenient setting for discussing polarization. We then superpose plane waves to form wave packets and
demonstrate their fundamental properties of complementarity and free-space diffraction. Scalar wave
packets occupy most of our attention because (i) it is difficult to superpose vector waves and (ii) scalar
waves appear naturally when free fields are derived from electromagnetic potentials. We then turn,
successively, to beam-like waves, spherical waves, and the Hertz vector approach to electromagnetic
waves. The chapter concludes with a few examples of the behavior of charged and/or polarizable
particles in free fields.

The Maxwell equations in vacuum without source terms are

∇ · E = 0 ∇ · B = 0 (16.1)

∇ × E = −∂B
∂t

∇ × B = 1

c2

∂E
∂t

. (16.2)

When read from right to left, the two curl equations are coupled partial differential equations for the
time evolution of E(r, t) and B(r, t). The two divergence equations provide the initial conditions. This
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follows from the divergence of each curl equation:

∂

∂t
{∇ · E} = 0 and

∂

∂t
{∇ · B} = 0. (16.3)

Equation (16.3) keeps the fields divergence-free for all time if (16.1) makes them divergence-free at
t = 0.

16.2 The Wave Equation

The electric and magnetic fields independently satisfy a vector version of the classical wave equation
of mathematical physics. To see this, substitute the left equation in (16.2) into the curl of the right
equation in (16.2) (and vice versa). The result is

∇ × (∇ × E) = − 1

c2

∂2E
∂t2

and ∇ × (∇ × B) = − 1

c2

∂2B
∂t2

. (16.4)

The vector identity

∇ × (∇ × c) = ∇(∇ · c) − ∇2c (16.5)

and (16.1) reduce (16.4) to the advertised vector wave equations,

∇2E − 1

c2

∂2E
∂t2

= 0 and ∇2B − 1

c2

∂2B
∂t2

= 0. (16.6)

Equation (16.6) shows that each Cartesian component of E(r, t) and B(r, t) satisfies the scalar wave
equation. The same statement does not apply when these vectors are expressed in spherical or cylindri-
cal components (see Section 1.2.7). It is important to keep in mind that vector functions that happen to
satisfy (16.6) do not automatically satisfy the Maxwell equations. Rather, they are candidate solutions
which qualify as bona fide electric and magnetic fields only if they can be made divergence-free to
satisfy (16.1) and coupled together to satisfy (16.2). These steps are not difficult to carry out for plane
wave solutions of (16.6). The constraints dictated by the Maxwell equations are less easy to arrange
for beam-like and spherical wave solutions of (16.6). For these (and related) solutions, it is simpler to
exploit a set of wave equations based on electromagnetic potentials. The next two subsections show
how.

16.2.1 Lorenz Gauge Potentials
In Section 15.3, we wrote the electric and magnetic fields in terms of potential functions:

B = ∇ × A and E = −∇ϕ − ∂A
∂t

. (16.7)

The Lorenz gauge condition (Section 15.3.3),

∇ · AL + 1

c2

∂ϕL

∂t
= 0, (16.8)

led us to wave equations for their time evolution:

∇2ϕL − 1

c2

∂2ϕL

∂t2
= 0 and ∇2AL − 1

c2

∂2AL

∂t2
= 0. (16.9)

Potentials that satisfy (16.8) and (16.9) produce fields (16.7) that satisfy all four Maxwell equations
in free space. A key to this approach is that very simple choices for the vector potential generate entire
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classes of electromagnetic waves. For example, let s be a constant (but otherwise arbitrary) vector and
write

AL(r, t) = u(r, t)s. (16.10)

Substituting (16.10) into (16.9) gives [
∇2u− 1

c2

∂2u

∂t2

]
s = 0. (16.11)

This shows that every solution of the scalar wave equation

∇2u− 1

c2

∂2u

∂t2
= 0 (16.12)

produces a Lorenz gauge vector potential (16.10) that satisfies the right side of (16.9). The linearity of
the wave equation ensures that the scalar potential derived from (16.8) and (16.10),

ϕL(r, t) = −c2s ·
t∫

−∞
dt ′ ∇u(r, t ′), (16.13)

satisfies the left side of (16.9). Thus, every solution of the scalar wave equation generates a set of
electromagnetic waves (16.7) parameterized by the vector s in (16.10).

16.2.2 Coulomb Gauge Potentials
An alternative to (16.8) is the Coulomb gauge constraint (Section 15.3.2),

∇ · AC = 0. (16.14)

This choice simplifies the equation of motion for the potentials to

∇2ϕC = 0

∇2AC − 1

c2

∂2AC

∂t2
= 1

c2
∇ ∂ϕC

∂t
.

(16.15)

In infinite, empty space, we may set ϕC(r, t) = 0 without loss of generality because, in that case, the
solution of Laplace’s equation in (16.15) is at most a constant. Therefore, as long as (16.14) holds, the
vector potential satisfies a vector wave equation,

∇2AC − 1

c2

∂2AC

∂t2
= 0, (16.16)

and all four Maxwell equations are satisfied by

B = ∇ × AC and E = −∂AC

∂t
. (16.17)

The decision to use the Coulomb gauge amounts to weighing the virtues of eliminating the scalar
potential against the burden of imposing the Coulomb gauge constraint explicitly on the vector
potential.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-16 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 17:36

16.3 Plane Waves 539

Whittaker’s Theorem

Only two solutions of the scalar wave equation are needed to represent an arbitrary electromagnetic
field in empty space.

Proof: The results of this section show that (16.17) describes an arbitrary field if each Cartesian
component of AC(r, t) satisfies the scalar wave equation and ∇ · AC = 0. However, the latter state-
ment implies that only two of the three Cartesian components of AC are independent. Therefore,
only two solutions of the wave equation are needed. This observation, due to Whittaker (1904),
helps rationalize several results we will derive in later sections and chapters.

16.3 Plane Waves

The most important class of solutions to the wave equation are called plane waves. To find them, we
write a generic vector wave equation,

∇2w − 1

c2

∂2w
∂t2

= 0, (16.18)

and look for solutions that depend on a single spatial variable. For example, the guess w = w(z, t)
simplifies (16.18) to

∂2w
∂z2

− 1

c2

∂2w
∂t2

=
(
∂

∂z
+ 1

c

∂

∂t

)(
∂

∂z
− 1

c

∂

∂t

)
w = 0. (16.19)

A method of solution due to d’Alembert changes variables to ξ = z + ct and η = z − ct and uses the
chain rule to compute the derivatives

∂

∂ξ
= 1

2

[
∂

∂z
+ 1

c

∂

∂t

]
and

∂

∂η
= 1

2

[
∂

∂z
− 1

c

∂

∂t

]
. (16.20)

Comparing (16.19) with (16.20) shows that w satisfies

∂2w
∂η∂ξ

= 0. (16.21)

The variables ξ and η are linearly independent. Therefore, if f and g are arbitrary vector functions
of one scalar variable, direct integration of (16.21) shows that w(ξ ) = f(z + ct) and w(η) = g(z − ct)
are linearly independent solutions. We call these propagating plane waves because g(z − ct) takes
constant values on planes z − ct = const. which propagate with speed c in the postive z-direction
and f(z + ct) takes constant values on planes z + ct = const. which propagate with speed c in the
negative z-direction: The general solution of (16.18) is a linear combination of plane waves propagating
in opposite directions:

w(z, t) = g(z − ct) + f(z + ct). (16.22)

This function typically has standing-wave character.

16.3.1 Transverse Electromagnetic Waves
The remarks following (16.6) tell us that plane waves for E = E(z, t) and B = B(z, t) are candidate
constituents of an electromagnetic wave. Our strategy is to construct a valid electric field, and then use
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(16.2) to derive the associated magnetic field. The first observation is that E(z, t) lies entirely in the
x-y plane. This follows from (16.1) and (16.2), which give

∂Ez

∂z
= 0 (16.23)

and

∂Ez

∂t
= c2ẑ · ∇ × B = 0. (16.24)

Equations (16.23) and (16.24) show that Ez is at most a constant, which we may safely set to zero.
Therefore, using the subscript ⊥ to denote a vector that is perpendicular to ẑ, two linearly independent,
propagating plane wave solutions for the electric field are

E+(z, t) = f⊥(z + ct) and E−(z, t) = g⊥(z − ct). (16.25)

The magnetic fields B±(z, t) which accompany the electric fields E±(z, t) in (16.25) follow from
∇ × E = −∂B/∂t . Because Ez = 0,

∂

∂t

{
B+(z, t)
B−(z, t)

}
= −ẑ × ∂

∂z

{
f⊥(z + ct)
g⊥(z − ct)

}
= −ẑ × 1

c

∂

∂t

{
f⊥(z + ct)

−g⊥(z − ct)

}
. (16.26)

Integration of the first and last terms in (16.26) gives the magnetic field up to a function of z alone.
The latter may be dropped because we are only interested in time-varying fields. Therefore,

cB+(z, t) = −ẑ × f⊥(z + ct) and cB−(z, t) = ẑ × g⊥(z − ct). (16.27)

The propagating plane waves (E+,B+) and (E−,B−) are called transverse electromagnetic (TEM)
because both E and B are perpendicular to ẑ. A quick calculation shows that the electric field is
orthogonal to the magnetic field for both:

E+ · B+ = 0 and E− · B− = 0. (16.28)

On the other hand, E · B �= 0 for a general linear combination of waves propagating in opposite
directions like (E+ + E−,B+ + B−). Fields of this kind always have at least some standing-wave
character (see Example 16.2).

Finally, there is nothing special about the positive or negative z-direction in the foregoing. A plane,
transverse, electromagnetic wave that propagates in the k̂ direction can be constructed from an an
arbitrary vector function of one scalar variable, E⊥(φ), which lies entirely in a plane perpendicular to
a constant wave vector k = kk̂:

E(r, t) = E⊥(k · r − ckt) cB(r, t) = k̂ × E(r, t). (16.29)

The vectors (E,B,k) form a right-handed orthogonal triad and, by direct calculation using (16.29),

|E| = c |B|. (16.30)

Figure 16.1 shows two representations of the plane wave (16.29) for a choice of E⊥(φ) that is
non-zero over only a limited range of its argument. The upper panel graphs the electric and magnetic
field amplitudes (on orthogonal axes) as a function of position at a fixed time. The lower panel show
the corresponding field line pattern, which extends to ±∞ in the transverse direction. The plane wave
shown in Figure 16.1 is unphysical (as is any true plane wave) because no wave with infinite extent in
any direction can exist in Nature. This defect does does not deter us from studying plane waves further
because (i) many real electromagnetic fields resemble a plane wave locally over a limited region of
space and (ii) we will later superpose plane waves to synthesize real waves with finite extent.

The infinitely long and straight field lines in Figure 16.1 are correct for a plane wave, but obscure
the fundamental propagation mechanism for real waves with finite transverse extent. The fields of
these waves are not strictly transverse and their field lines form closed loops to satisfy the divergence
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c

E

B
E

B

Figure 16.1: Two views of a TEM plane wave in vacuum that propagates at speed c in the k direction. Upper
panel: field amplitudes graphed on orthogonal axes. Lower panel: field lines.

B

EEE

BB

Figure 16.2: Cartoon of some linked electric and magnetic field lines for an electromagnetic wave which
propagates to the right. Figure from Born (1924).

equations in (16.2). Moreover, the loops of E and loops of B interconnect like the links of a chain
(see as Figure 16.2). This topology, which Maxwell called the “mutual embrace” of the electric and
magnetic fields, ensures that Faraday’s law in (16.3) dynamically generates new loops of E and the
Ampère-Maxwell law in (16.3) dynamically generates new loops of B.1 We will revisit this point when
we study beam-like waves in Section 16.7.

16.3.2 Phase Velocity
The phase of the wave (16.29) is the scalar function

φ(r, t) = k · r − ckt. (16.31)

This definition shows that φ(r, t) is constant (at fixed time) everywhere on the plane perpendicular to
k that contains the point r (Figure 16.3). The amplitudes of E and B are correspondingly constant on
the same planes. Writing (16.31) as φ = k · [r − ck̂t] and setting the quantity in brackets equal to r0

shows that the phase is constant along the trajectory r(t) = r0 + ck̂t . This shows that every plane of
constant phase moves perpendicular to itself at the phase velocity

υp = dr
dt

= ck̂. (16.32)

The fact that the speed of light c = 1/
√
ε0μ0 is the phase velocity for propagating plane waves in

vacuum was the key to Maxwell’s realization that light is an electromagnetic phenomenon.
We will see later (Application 19.1) that the phase velocity plays an important role in determining

the efficiency of energy transfer between an electromagnetic wave and a charged particle. In that

1 This is best appreciated using the integral form of these laws.
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Figure 16.3: The phase (16.31) takes constant values on planes perpendicular to the wave vector k.

context, it is common to write the condition for phase constancy in the form

0 = dφ(r, t)
dt

= ∂φ

∂t
+ ∂φ

∂r
· dr
dt

= ∂φ

∂t
+ ∇φ · υp. (16.33)

The phase velocity (16.32) satisfies (16.33) when the phase takes its plane wave value (16.31). Other
solutions of the Maxwell equations in free space have more complicated expressions for φ(r, t). In
that case, (16.33) remains true if we use the real part of φ(r, t) and υp generally varies as a function
of position.

Example 16.1 Confirm by direct calculation that the plane wave fields E(r, t) = E⊥(k · r − ckt)
and cB(r, t) = k̂ × E(r, t) satisfy all four Maxwell equations in vacuum.

Solution: Let f ′(φ) = df/dφ where the phase φ is given by (16.31). By construction, k · E⊥ = 0.
Therefore, the chain rule gives

∇ · E = E′
⊥(φ) · ∇φ = k · E′

⊥(φ) = 0.

Similarly, ∇ × E = k × E′
⊥. Therefore, because k̂ is a constant vector,

∇ · cB = ∇ · (k̂ × E) = −k̂ · (∇ × E) = −k̂ · (k × E′
⊥) = 0.

We confirm Faraday’s law using the expression for ∇ × E derived just above,

cḂ = k̂ × Ė = k̂ × E′
⊥φ̇ = −ck × E′

⊥ = −c∇ × E.

Finally, Ė = −ckE′
⊥ and k̂ is a constant vector, so

∇ × cB = ∇ × (k̂ × E) = −(k̂ · ∇)E + k̂(∇ · E) = −(k̂ · ∇)E = −k̂iE′
⊥∂iφ = −kE′

⊥.

This shows that ∇ × B = c−2∂E/∂t , which is the final Maxwell equation in free space.

16.3.3 Mechanical Properties
The energy density (15.32) associated with the plane wave (16.29) is

uEM = 1

2
ε0
(
E · E + c2B · B

) = 1

2
ε0
[|E⊥|2 + (k̂ × E⊥) · (k̂ × E⊥)

]
. (16.34)
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Because E⊥ is transverse to k, (16.34) simplifies to

uEM(r, t) = ε0|E⊥(k · r − ckt)|2. (16.35)

The energy current density S and linear momentum density g defined in (15.29) and (15.50), respec-
tively, vary in space and time according to

g(r, t) = ε0(E × B) = S
c2

= ε0

c
|E⊥(k · r − ckt)|2 k̂. (16.36)

These formulae establish that a plane wave in vacuum carries energy and linear momentum at the
speed of light in the direction of propagation of the wave. Specifically,

g = uEM

c
k̂ and S = uEMc k̂. (16.37)

Finally, we showed in Section 15.6.1 that r × g may be interpreted as the angular momentum per unit
volume associated with an electromagnetic field. Using (16.37), we see that the electromagnetic plane
wave (16.29) carries zero angular momentum along the direction of propagation.2

It cannot be stressed too much that the plane electromagnetic waves discussed here possess their
full complement of mechanical properties in the complete absence of sources of charge or current.
Moreover, the conservation laws discussed in Chapter 15 show that field energy, field linear momentum,
and field angular momentum can be exchanged with the energy and momentum of a collection of
particles. This leads to the view that E(r, t) and B(r, t) constitute a mechanical system that is every
bit as “real” as any collection of particles.3

16.3.4 Monochromatic Plane Waves
A monochromatic plane wave with angular frequency ω is a special case of (16.29) where

E⊥(φ) = E⊥ exp(iφ) and ω = c |k|. (16.38)

The vector E⊥ is generally complex. Therefore, if we define cB⊥ = k̂ × E⊥, the physical fields of a
monochromatic plane wave are the real parts of the complex vector functions:

E(r, t) = E⊥ exp[i(k · r − ωt)] and B(r, t) = B⊥ exp[i(k · r − ωt)]. (16.39)

The monochromatic plane wave in (16.39) is called uniform because the wave amplitude takes constant
values on the same planes where the phase is constant. Figure 16.4 shows a typical wave of this kind. It
extends infinitely in all three spatial directions with electric and magnetic fields that vary sinusoidally
in space and time with wavelength λ = 2π/k and oscillation period T = 2π/ω. The phase difference
between two planes in Figure 16.3 separated by a distance λ is exactly 2π for such a wave. These
features may be contrasted with the non-monochromatic plane wave shown in the top panel of
Fig. 16.1. The latter extends infinitely in any transverse direction, but is spatially localized in the ±k
directions.

Some care is needed to express the mechanical properties of (16.39) in terms of the complex
amplitude E⊥. For example, the leftmost equation in (16.34) must be written in the form

uEM = 1
2ε0

{|Re E|2 + c2|Re B|2} . (16.40)

2 This is related to the infinite extent of a plane wave. Section 16.7.5 discusses LEM for more realistic electromagnetic
waves.

3 See Mermin (2009) on the “reality” of classical and quantum fields.
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Re E

Re B

k

c

Figure 16.4: A uniform and monochromatic plane wave in vacuum with wavelength λ propagates with phase
velocity υ = ck̂. This wave has linear polarization

Writing Re E = 1
2 (E + E∗) and Re B = 1

2 (B + B∗) and using (16.39) gives

uEM(r, t) = 1
4ε0

[
E⊥ · E∗

⊥ + c2B⊥ · B∗
⊥
]

(16.41)

+ 1
4ε0Re

[(
E⊥ · E⊥ + c2 B⊥ · B⊥

)
exp(2i{k · r − ωt})] .

The two static terms in (16.41) contribute equally [see (16.34)]. The time-varying terms vanish when
time-averaged over one period of oscillation. Therefore, the time-averaged energy density of the
monochromatic wave (16.39) is4

〈uEM 〉 = 1
2ε0|E⊥|2. (16.42)

Integration of the constant (16.42) over all space gives a divergent total energy. This is an artifact of
the (unphysical) infinite extent of a plane wave.

The time-averaged linear momentum density and energy current density (Poynting vector) of a
monochromatic plane wave are similarly

〈g〉 = 1

2

ε0

c
|E⊥|2 k̂ = 〈uEM〉

c
k̂ (16.43)

and

〈S〉 = c2〈g〉 = 〈uEM 〉c k̂. (16.44)

Rearrangement of (16.44) defines a quantity called the energy velocity,

vE = 〈S 〉
〈uEM 〉 = c k̂. (16.45)

The energy velocity and the phase velocity (16.32) are identical for a plane wave in vacuum. We will
encounter situations in later chapters when this is no longer true.

16.3.5 Wave Intensity
The position-dependent intensity of a general electromagnetic wave is defined as the magnitude of the
time average of the Poynting vector over a time T that is much larger than any characteristic time scale

4 The passage from (16.40) to (16.42) recapitulates the theorem proved in Section 1.6.3, namely, that when
A(t) = Ae−iωt and B(t) = Be−iωt , the time average 〈[ReA(t)] [ReB(t)]〉 = 1

2A
∗B.
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Figure 16.5: Polarization of the cosmic microwave background (galactic coordinates) as measured by the
Wilkinson Microwave Anisotropy Probe (WMAP). The white lines indicate the average direction of the electric
field which propagates to the Earth from the indicated part of the sky. Courtesy of NASA and the WMAP Science
Team.

associated with the wave:

I (r) =
∣∣∣∣∣∣

1

T

T∫
0

dt S(r, t)

∣∣∣∣∣∣ . (16.46)

For a monochromatic plane wave, it is sufficient to choose T as the period of the wave and the intensity
reduces to the cycle-average. Using (16.43) and (16.44), the resulting position-independent intensity
is

I = |〈S〉| = 1

2
ε0c |E⊥|2. (16.47)

16.4 Polarization

The polarization of an electromagnetic wave characterizes the direction of its field vectors in space
and time. This information is important for many reasons, not least because it provides clues to the
origin of the wave. A dramatic example is the observed polarization of thermal microwaves which
propagate to the Earth from throughout the cosmos (Figure 16.5). Data of this kind provide detailed
support for the Big Bang model of the origin of the Universe.5

Polarization also provides information about the interactions an electromagnetic wave may have
suffered with matter between the time of its creation and time of its detection. A common example is the
polarization of skylight due to scattering from particles in the atmosphere. Practical applications that
exploit the polarization of electromagnetic waves are ubiquitous, ranging from terrestrial broadcasting
and satellite communications to sunglasses and liquid crystal displays. The human eye turns out to be
(weakly) sensitive to polarization and many insects, particularly bees, use the polarization of skylight
as a navigational aid.6

16.4.1 The Polarization Ellipse
The polarization of a general electromagnetic wave varies as a function of position and may not be
the same for the electric and magnetic fields. For simplicity, we restrict ourselves to a monochromatic
plane wave propagating in vacuum and set ourselves the task of proveing that, as the phase of the wave
advances by 2π , the tip of the electric field vector E traces out an ellipse in the plane perpendicular to

5 See Application 21.1 for an explanation of the polarization of the cosmic microwave background radiation.
6 See Sources, References, and Additional Reading.
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Figure 16.6: The polarization ellipse (heavy solid line) traced out by the tip of the E vector for a general
monochromatic plane wave.

the propagation direction k. For that purpose, we define real unit vectors ê1 and ê2 so (ê1, ê2, k̂) is a
right-handed orthogonal triad of unit vectors:

ê1 · ê2 = 0 and ê1 × ê2 = k̂. (16.48)

The vectors ê1 and ê2 are a basis for E⊥ in (16.39), so the electric field may be written

E(r, t) = [E1ê1 + E2 ê2] exp{i(k · r − ωt)}. (16.49)

The complex scalars E1 and E2 in (16.49) are conveniently parameterized using the real numbers A,
B, δ1, and δ2:

E1 = A exp(iδ1) and E2 = B exp(iδ2). (16.50)

Using (16.50) and φ = k · r − ωt , the real (physical) part of (16.49) takes the form7

ReE = A cos(φ + δ1)ê1 + B cos(φ + δ2)e2 = E1ê1 + E2ê2. (16.51)

The key step is to equate the coefficients of ê1 and e2 in the second equality of (16.51) and manipulate
the two equations that result to get

E1

A
sin δ2 − E2

B
sin δ1 = sin(δ2 − δ1) cosφ

E1

A
cos δ2 − E2

B
cos δ1 = sin(δ2 − δ1) sinφ. (16.52)

Squaring and adding the two terms in (16.52) gives(
E1

A

)2

+
(
E2

B

)2

− 2

(
E1

A

)(
E2

B

)
cos δ = sin2 δ, (16.53)

where

δ = δ2 − δ1. (16.54)

Equation (16.53) describes an ellipse in the e1 - e2 plane (Figure 16.6). Accordingly, one says that
the general monochromatic plane wave (16.49) exhibits elliptical polarization. The eccentricity and
orientation of the ellipse depend on the phase difference δ and the amplitude ratio B/A.

16.4.2 Linear Polarization
The polarization ellipse in Figure 16.6 degenerates to a straight line when the orthogonal electric field
components are either in phase or 180◦ out of phase:

δ = δ2 − δ1 = mπ (m = 0, 1, . . .). (16.55)

7 The wave vector k is real. Later, situations will arise where k is complex.
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ê

k

+E

1
ê
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Figure 16.7: When viewed as the wave approaches, the tip of the electric vector of a monochromatic plane wave
traces out a clockwise circle for right circular polarization (RCP) and a counterclockwise circle for left circular
polarization (LCP).

These situations correspond to linear polarization because, up to a sign, E(r, t) points in the same
fixed direction for all values of r and t . Specifically, substituting (16.55) into (16.51) gives

Re {E(r, t)} = (Aê1 ± B ê2) cos(k · r − ωt + δ1), (16.56)

where the plus (minus) sign applies when m is even (odd). The monochromatic plane wave sketched
in Figure 16.4 is linearly polarized. So are the fields indicated in Figure 16.5.

16.4.3 Circular Polarization
The polarization ellipse in Figure 16.6 simplifies to a circle when the orthogonal electric field compo-
nents have equal amplitude but are 90◦ out of phase:

A = B = A/
√

2 δ = δ2 − δ1 = mπ/2 (m = ±1,±3, . . .). (16.57)

These situations correspond to circular polarization because the tip of the electric vector traces out a
circle in every fixed plane perpendicular to k. It remains only to determine the direction that the circle
is traced out. To that end, specialize to the plane that contains r = 0 and write (16.51) with δ1 = 0 in
the form8

Re {E(0, t)} = A√
2

[ê1 cosωt + ê2 cos(ωt − δ)] . (16.58)

The condition (16.57) implies that cos δ = 0 and sin δ = ±1. The choice of sign produces two distinct
fields from (16.58):

Re {E±(0, t)} = A√
2

[ê1 cosωt ± ê2 sinωt] . (16.59)

Figure 16.7 illustrates the behavior of (16.59) as viewed from the direction into which the wave is
progressing. The tip motion for E+ is counterclockwise and we speak of a wave with left circular
polarization (LCP). The tip motion for E− is clockwise and we speak of a wave with right circular
polarization (RCP).9 Figure 16.8 shows the disposition of E(r) for a monochromatic LCP plane wave
at the fixed time t = 0. The tips of the electric field vectors trace a circular spiral. An RCP wave looks
similar except that the sense of twist is opposite.

8 We may set δ1 = 0 because the polarization depends only on the phase difference (16.54).
9 At this late date, there is nothing to be done about the fact that some subfields of physics use our convention for

LCP/RCP and other subfields use exactly the reverse. The reader must always check carefully which convention is
being used.
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E

k

Figure 16.8: A snapshot of E(r, 0) for a monochromatic LCP plane wave.

For many applications, it is convenient to replace the Cartesian basis vectors ê1 and ê2 by two vectors
which are complex conjugate pairs:

ê+ = 1√
2

(ê1 + i ê2) ê− = 1√
2

(ê1 − i ê2). (16.60)

Direct calculation confirms that these vectors satisfy

ê∗
± · ê± = 1 and ê∗

± · ê∓ = 0. (16.61)

The usefulness of (16.60) becomes clear when we recognize that (16.59) is the real part of the following
complex electric field (evaluated at r = 0):

E±(r, t) = A ê± exp[i(k · r − ωt)] = A
[

ê1 ± iê2√
2

]
exp[i(k · r − ωt)]. (16.62)

This shows that ê+ represents a pure LCP wave and ê− represents a pure RCP wave. The vectors
(16.60) form a basis in the plane transverse to k. Therefore, a representation fully equivalent to (16.49)
is

E(r, t) = [E+ê+ + E− ê−] exp{i(k · r − ωt)}. (16.63)

Every monochromatic plane wave can be decomposed into components of right circular polarization
and left circular polarization as readily as it can be decomposed into components of orthogonal linear
polarization.

Complex Vectors

Complex vectors like ê+ and ê− in (16.61) do not obey all the usual rules for real vectors. For
example, w · v = 0 and w × v = 0 do not imply that w = 0 or v = 0 as they do for real vectors.
Rather, the magnitude of a complex vector is |v|2 = v · v∗ and two complex vectors v and w are
orthogonal if and only if

v · w∗ = v∗ · w = 0.

The decomposition of a complex vector v in a complex orthonormal basis (s1, s2),

v = v1s1 + v2s2 = (v · s∗
1)s1 + (v · s∗

2)s2,

may look more familiar to students of quantum mechanics if we use Dirac notation:

|v〉 = |s1〉〈s1|v〉 + |s2〉〈s2|v〉.
The connection between orthogonality and geometric perpendicularity for real vectors is lost for
complex vectors. Thus, the vectors E and B in (16.38) are not generally orthogonal, despite the
fact that the corresponding real electric vector and real magnetic vector are perpendicular.
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16.4.4 Elliptical Polarization
The conclusions of Section 16.4.3 for circular polarization generalize to elliptical polarization when
the phase difference δ and the amplitude ratio A/B in (16.54) take arbitrary values. When sin δ > 0,
the tip of E traverses the ellipse in Figure 16.6 in the counterclockwise direction and we speak of left
elliptical polarization. When sin δ < 0, the tip of E traverse the ellipse in the clockwise direction and
we speak of right elliptical polarization. In both cases, the magnitude of the electric field changes as a
function of time as the tip of E traces out an elliptical helix in three-dimensional space.

Example 16.2 Find and describe the electromagnetic field produced by a superposition of two
equal-amplitude, monochromatic, plane waves that propagate in opposite directions. (a) Let the
wave propagating along +z have left circular polarization and the wave propagating along −z have
right circular polarization. (b) Repeat when both waves have LCP.

Solution: (a) A possible electric field for an LCP wave propagating along +z and an RCP wave
propagating along −z is

E1 = Re
{
(x̂ − iŷ)

[
ei(kz+ωt) + ei(kz−ωt)

]} = (x̂ cos kz + ŷ sin kz) cosωt.

This field is the sum of electric fields like those in (16.25). The associated magnetic fields from
(16.27) are

cB1 = ẑ × Re
{
(x̂ − iŷ)

[
ei(kz+ωt) − ei(kz−ωt)

]} = −(x̂ cos kz + ŷ sin kz) sinωt.

This is a standing wave with E ‖ B. Since Ey/Ex = By/Bx = tan z, the tips of both field vectors
at a fixed time trace out a helix centered on the z-axis.

(b) An electric field where the two counter-propagating waves are both LCP is

E2 = Re
{
(x̂ − iŷ)ei(kz+ωt) + (x̂ + iŷ)ei(kz−ωt)

} = (x̂ cosωt + ŷ sinωt) cos kz.

The corresponding magnetic field is

cB2 = ẑ × Re
[
(x̂ − iŷ)ei(kz+ωt) − (x̂ + iŷ)ei(kz−ωt)

] = (x̂ cosωt + ŷ sinωt) sin kz.

This is also a standing wave where E ‖ B. Since Ey/Ex = By/Bx = tanωt , the entire field pattern
lies in a single plane that rotates around the z-axis at frequency ω.

16.4.5 Stokes Parameters and the Poincaré Sphere
The ellipse in Figure 16.6 provides a complete characterization of the polarization of a propagating
plane wave. At low frequencies (up to microwave), the electric field vector traces out the polarization
ellipse slowly enough to permit the parameters A, B, and δ in (16.53) to be measured more or less
directly. At optical and higher frequencies, it is usual to extract A, B, and δ from knowledge of the
Stokes parameters:

s0 = A2 + B2

s1 = A2 − B2

(16.64)
s2 = 2AB cos δ

s3 = 2AB sin δ.

Only three of the four are needed because

s2
0 = s2

1 + s2
2 + s2

3 . (16.65)

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-16 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 17:36

550 WAVES IN VACUUM: PROPAGATION, POLARIZATION, AND DIFFRACTION

1s
2α

2γ

3s

2s

LCP

RCP

Linear

Linear

0s

Figure 16.9: A Poincaré sphere with radius s0. The Cartesian coordinates of the tip of the indicated vector are
(s1, s2, s3).

The key to the method is that each Stokes parameter is directly related to wave intensities measured
in different orthogonal bases. Specifically, let I0 and I90 be the intensities measured by detectors
sensitive to horizontal and vertical linear polarization with respect to the e1-e2 coordinate system used
in (16.51). Similarly, let I+45 and I−45 be the intensities measured by detectors sensitive to linear
polarizations at angles +45◦ and −45◦ with respect to the same axes. Finally, let IRCP and ILCP be the
intensities measured by detectors sensitive to right circular and left circular polarization, respectively.
With these definitions, we show in Example 16.3 below that

s0 = I0 + I90

s1 = I0 − I90
(16.66)

s2 = I+45 − I−45

s3 = IRCP − ILCP.

Equation (16.66) establishes that six intensity measurements are sufficient to determine the amplitudes
and the relative phase of the two complex electric field components E1 and E2 in (16.51).

A notable feature of the Stokes parameters (s1, s2, s3) is that they define a one-to-one correspondence
between every state of polarization and a unique point on the surface of sphere of radius s0 called the
Poincaré sphere (see Figure 16.9). To see this, note first that the angle α in Figure 16.6 rotates the
e1 - e2 coordinate system into the principal axis system e′

1 - e′
2 of the polarization ellipse. The tangent

of the angle γ in Figure 16.6 is the ratio of the minor axis to the major axis of the ellipse. By carrying
out the rotation explicitly, and writing the field components in the principal axis system as10

E′
1 = a cos(k · r − ωt + τ ) and E′

2 = ±b sin(k · r − ωt + τ ),

the reader can use (16.53) and show that

tan 2α = 2AB

A2 − B2
cos δ. (16.67)

sin 2γ = 2AB

A2 + B2
sin δ. (16.68)

Comparison with (16.64) shows that (16.67) is the ratio s2/s1 and that (16.68) is the ratio s3/s0.
Substituting both of these into (16.65) gives an explicit formula for s1. Substituting the latter back into

10 The ± sign in (16.67) distinguishes right and left elliptical polarization. The common phase angle is τ .
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(16.67) gives an explicit formula for s2. The final results are

s1 = s0 cos 2γ cos 2α

s2 = s0 cos 2γ sin 2α (16.69)

s3 = s0 sin 2γ.

Equation (16.69) shows that a vector with Cartesian coordinates (s1, s2, s3) is identical to the
vector shown in Figure 16.9 with polar coordinates (s0, π/2 − 2γ, 2α). This confirms that the Stokes
parameters map the original polarization ellipse parameters A, B, and δ onto a unique point on the
surface of a sphere. All states of linear polarization (horizontal, vertical, etc.) lie on the sphere’s
equator, LCP occupies the north pole, and RCP occupies the south pole. All other points on the sphere
describe elliptical polarization. For practical work, the Poincaré sphere is a wonderful visualization tool
because changes in polarization (produced naturally or by man-made optical elements) are recorded
graphically as trajectories on the surface of the sphere.

16.4.6 Partially Polarized and Unpolarized Waves
An electromagnetic field produced by superposing a large number of monochromatic plane waves, all
of which have the same propagation vector k, is said to be unpolarized if the polarization states of
the constituent waves are a random mixture of two orthogonal states of polarization. In such a case,
the polarization parameters A, B, and δ in (16.53) are not fixed constants (as they are for a single
monochromatic plane wave), but vary randomly as a function of time. The Sun, flames, and man-made
incandescent and fluorescent sources all produce electromagnetic waves of this sort. Superpositions of
waves where the polarization parameters change in time, but not completely randomly, are said to be
partially polarized. A virtue of the Stokes parameter formalism is that it applies equally well to these
more general situations, provided we perform a suitable time average of the parameters defined in
(16.66). An unpolarized wave has average values 〈s0〉 �= 0 and 〈s1〉 = 〈s2〉 = 〈s3〉 = 0. The last three
parameters take values between zero and s0 for partially polarized fields.

Example 16.3 Confirm the four formulae quoted in (16.66).

Solution: The exponential factor in (16.49) does not play a role so we write a general state of
polarization as

E = E1ê1 + E2e2.

I0 and I90 are the intensities in the ê1 and ê2 components, respectively. Therefore, using (16.50),
we get immediate agreement with (16.64) that

s0 = I0 + I90 = |E1|2 + |E2|2 = A2 + B2

and

s1 = I0 − I90 = |E1|2 − |E2|2 = A2 − B2.

To compute s2, we rotate the e1-e2 coordinate system by θ = −45◦ and follow the prescription of
Section 1.7. This gives the components in the new basis as[

E−45

E+45

]
=
[

cos θ sin θ
−sin θ cos θ.

] [
E1

E2

]
= 1√

2

[
E1 − E2

E1 + E2

]
.
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The intensity difference of interest is

s2 = I+45 − I−45 = |E+45|2 − |E−45|2 = 1

2

[
(E1 + E2)(E1 + E2)∗ − (E1 − E2)(E1 − E2)∗

]
.

Therefore, in agreement with (16.64),

s2 = E∗
1E2 + E1E∗

2 = 2Re [E∗
1E2] = 2AB cos δ.

Finally, we compute s3 by rewriting (16.49) in the circular polarization form (16.63). This shows
that

E+ = E1 − iE2√
2

and E− = E1 + iE2√
2

.

Therefore,

s3 = IRCP − ILCP = |E+|2 − |E−|2 = 1

2
[(E1 − iE2)(E∗

1 + iE∗
2 ) − (E1 + iE2)(E∗

1 − iE∗
2 )].

This also agrees with (16.64) because

s3 = −i[E∗
1E2 − E1E∗

2 ] = 2Im [E∗
1E2] = 2AB sin δ.

16.5 Wave Packets

A monochromatic plane wave like (16.49) fills all of space and therefore cannot exist in Nature.
However, by superposing plane waves with different wave vectors, one can synthesize solutions of
the source-free Maxwell equations that do not extend to infinity in any direction. These physically
realizable wave packets are, in fact, the only kinds of waves that can be produced by real sources.
Using the monochromatic plane wave fields (16.39) as basis functions, the physical fields associated
with a general electromagnetic wave packet are11

E(r, t) = Re
1

(2π )3

∫
d 3k E⊥(k) exp{i(k · r − ckt)} (16.70)

and

cB(r, t) = Re
1

(2π )3

∫
d 3k

[
k̂ × E⊥(k)

]
exp{i(k · r − ckt)}. (16.71)

The vector amplitude function E⊥(k) in (16.70) satisfies k · E⊥(k) = 0 but is otherwise arbitrary as
long as the integrals converge.

16.5.1 The Total Energy
The total energy UEM of an electromagnetic wave packet is finite and time-independent. This differs
fundamentally from the infinite and time-varying total energy computed in Section 16.3.4 for any of
its plane wave constituents. To show this, we begin by substituting (16.70) and (16.71) into the energy
density formula,

uEM(r, t) = uE(r, t) + uB (r, t) = 1
2ε0(|ReE(r, t)|2 + c2|ReB(r, t)|2). (16.72)

11 The factors of (2π )−3 are inserted for consistency with the Fourier transform convention in Section 1.6.
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The total energy follows by integrating over all space:

dUEM(t) = UE(t) + UB (t) =
∫

d 3r uEM(r, t). (16.73)

Using ω = ck, straightforward algebra shows that the electric energy density uE(r, t) contains terms
proportional to

E⊥(k) · E∗
⊥(k′)ei(k−k′)·re−i(ω−ω′)t and E⊥(k) · E⊥(k′)ei(k+k′)·re−i(ω+ω′)t (16.74)

and the complex conjugates of these terms. The reader can confirm that integrating the sum of all these
terms over space as indicated in (16.73) and using the delta function identity∫

d 3r eip·r = (2π )3δ(p) (16.75)

gives12

UE(t) = ε0

8

1

(2π )3

∫
d 3k

{|E⊥(k)|2 + E⊥(k) · E⊥(−k)e−2iωt
}+ c.c. (16.76)

The corresponding total magnetic energy UB (t) is identical to (16.76) except that the time-dependent
term has the opposite sign. Therefore, the total electromagnetic energy of the wave packet is

UEM = ε0

2

1

(2π )3

∫
d 3k |E⊥(k)|2. (16.77)

Comparing (16.77) to (16.42) shows that the UEM is the sum of the (time-averaged) total energies of
the monochromatic plane waves that constitute the packet. The important difference is thatUEM for the
wave packet is strictly time-independent without any need for time-averaging. This is a consequence
of conservation of energy. The total energy of a physically realizable wave packet must be finite and
strictly constant in time. If two (or more) wave packets launched from different parts of space propagate
and “collide” with one another in free space, the total energy must remain the sum of their individual
energies, even as their individual electromagnetic fields superpose during the time they overlap in
space. A similar result holds for the total linear momentum of a wave packet, namely,

cPEM = ε0

2

1

(2π )3

∫
d 3k k̂ |E⊥(k)|2 . (16.78)

The foregoing may be contrasted with a superposition of electrostatic fields like E = E1 + E2 +
· · · or magnetostatic fields B = B1 + B2 + · · · . In these cases, the cross terms in the total energy
proportional to the space integrals of Ej · Ek and Bj · Bk are non-zero and represent the work done
to bring the source of field j into the field produced by source k. These terms are zero for free fields
because, by definition, they have no sources.

16.5.2 Scalar Wave Packets
Sections 16.2.1 and 16.2.2 taught us to use electromagnetic potentials to generate solutions of the free-
space Maxwell equations from solutions of the scalar wave equation. We know also, from experience,
that it is easier to add scalars than to add vectors. Therefore, our analysis becomes simpler, with no
loss of generality, if we abandon the vector wave packets (16.70) and (16.71) in favor of scalar wave
packets formed by summing solutions of the scalar wave equation

∇2u− 1

c2

∂2u

∂t2
= 0. (16.79)

12 The abbreviation “c.c.” in (16.76) stands for complex conjugate.
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A packet composed of monochromatic plane waves with frequency ω(k) = c|k| is

u(r, t) = 1

(2π )3

∫
d 3k û(k) exp{i[k · r − ω(k)t]}. (16.80)

The amplitude weighting factor û(k) in (16.80) is determined by the shape of the wave packet at t = 0.
Indeed, û(k) and u(r, 0) are precisely Fourier transform partners:13

u(r, 0) = 1

(2π )3

∫
d 3k û(k) exp(ik · r) (16.81)

û(k) =
∫

d 3r u(r, 0) exp(−ik · r). (16.82)

The implications of (16.81) and (16.82) are clearest when we choose û(k) to be non-zero only
for wave vectors that point along the x-axis. Dropping the pre-factor, this reduces (16.81) to the
one-dimensional integral

u(x, 0) =
∞∫

−∞
dkx û(kx) exp(ikxx). (16.83)

To illustrate (16.83), it is convenient to choose û(kx) as a normalized Gaussian with half-width �kx
centered on k0x :

û(kx) = 1√
π�kx

exp[−(kx − k0x)2/�k2
x]. (16.84)

Inserting (16.84) into (16.83) and using

∞∫
−∞

ds exp(as − bs2) =
√
π

b
exp(a2/4b) (16.85)

produces another Gaussian, this time with half-width �x = 2/�kx :

u(x, 0) = exp(ik0xx) exp[−x2/(�x)2]. (16.86)

The real part of (16.86) plotted in Figure 16.10 shows a stationary wave packet composed of a sinusoid
with wavelength 2π/k0x and an amplitude modulated by a Gaussian exponential factor. The Gaussian
narrows to a delta function in the limit when û(kx) = const . Conversely, the wave packet expands to
a single plane wave with infinite width when û(kx) is a delta function.

16.5.3 Complementarity
The inverse relation between �x and �kx quoted following (16.85) is not a special feature of the
Gaussian weight function. To see this, consider a packet that extends from x to x +�x composed of
plane waves with propagation vectors in the interval [k, k +�k]. The wave exp(ikx) suffers a phase
change k�x from one end of the packet to the other. The wave exp[i(k +�k)x] similarly suffers a
phase change (k +�k)�x across the packet. Now, u(x, 0) goes to zero on the left side of the packet
in Figure 16.10 because complete destructive interference occurs there. The next point of complete
destructive interference is the right side of the packet where u(x, 0) is again zero. Hence, when we add
together the two extremal waves considered above,

(k +�k)�x − k�x ∼ 2π ⇒ �k�x ∼ 2π. (16.87)

13 This may be confirmed by substituting one into the other and using (1.119).
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0x/k2

x

x

Figure 16.10: A one-dimensional wave packet. An envelope function (dashed lines) of width �x modulates the
amplitude of a carrier wave with wave vector k0x (solid lines).

Equation (16.87) reflects a complementarity between �x and �k that is fundamental to the super-
position of plane waves (and to Fourier analysis in general). A more careful treatment shows that the
variances of the distributions û(k) and u(x) satisfy

�x�kx ≥ 1
2 . (16.88)

For the general scalar wave packet in (16.81), the inequality (16.88) applies together with14

�y�ky ≥ 1
2 and �z�kz ≥ 1

2 . (16.89)

These results imply that u(r, 0) can be localized to an arbitrarily small volume of space by including
sufficiently many wave vectors k in the superposition integral (16.81). However, as we shall soon
see, the three-dimensional localization of such a wave packet cannot be maintained as the packet
propagates.

16.5.4 Group Velocity
The time evolution of (16.80) determines the motion of u(r, t) through space. The analysis is straight-
forward when the amplitude function û(k) is negligible for all k except for a small set of wave vectors
that do not differ much from a fixed wave vector k0 in either magnitude or direction. This invites us to
keep only the linear term in the Taylor expansion of the dispersion relation ω(k),15

ω(k) = ω(k0) + ∂ω

∂ki

∣∣∣∣
k=k0

(k − k0)i + · · · . (16.90)

Now let ω0 = ω(k0) and define the group velocity as

υg = ∇kω(k)|k=k0
= ∂ω

∂k

∣∣∣∣
k=k0

. (16.91)

14 These inequalities, combined with the quantum mechanical relation p = −hk between particle momentum and wave
vector, produces the Heisenberg uncertainty relation for momentum and position.

15 The term “dispersion relation” has its historical origin in optics. A useful mnemonic is that the frequency ω disperses
(“changes”) as the wave vector k changes.
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In terms of these quantities, substitution of (16.90) into (16.80) gives

u(r, t) = ei(k0·r−ω0t)
1

(2π )3

∫
d 3k û(k) exp{i[(k − k0) · (r − υgt)]}. (16.92)

The meaning of this expression emerges when we define the function

ψ(p) = 1

(2π )3

∫
d 3k û(k)ei(k−k0)·p (16.93)

and write (16.92) in the form

u(r, t) = exp{i(k0 · r − ω0t)}ψ(r − υgt). (16.94)

The wave packet (16.94) generalizes (16.86) to a monochromatic carrier wave with wave vector k0

and frequency ω0 modulated by the envelope function ψ(r − υgt). The argument of ψ shows that the
envelope moves without distortion at the group velocity υg. For our vacuum problem, ω = c|k|, and
the group velocity (16.91) happens to equal the phase velocity in (16.32):

υg = c
∂

∂k

√
k2
x + k2

y + k2
z = c k̂ = υp. (16.95)

Later, we will encounter situations (in matter) where υg �= υp. In those cases, the carrier wave train
appears to move through the envelope with relative velocity υp − υg.

16.5.5 Free-Space Diffraction
Real wave packets in vacuum do not propagate in the undistorted manner predicted by (16.94). Instead,
the quadratic and higher-order terms in (16.90) cause such packets to spread out in the directions
transverse to the propagation direction.16 This phenomenon—called free-space diffraction—arises
from the presence of plane waves in the packet (16.80) with non-zero k-vector components transverse
to the average propagation direction. The very same plane wave components permit a wave to “bend
around” the edge of an opaque obstruction in the context most usually associated with the word
“diffraction” (Chapter 21).

The rate at which u(r, t) spreads in the transverse direction is large when the spatial extent of u(r, 0)
in the transverse direction is small. This is so because (16.88) and (16.89) imply that such a packet can
be formed only if (16.80) includes wave vectors whose magnitude and direction differ considerably
from a specified vector k0. This contradicts the assumption made in (16.90) that all terms beyond
the first two are negligible. To be more quantitative, we first quote (but do not prove) two general
results for scalar wave packet propagation that bear on the question at hand. Then, in Section 16.7, we
demonstrate free-space diffraction explicitly for a beam-like wave of the kind produced by a laser or
a flashlight in vacuum. The reader may wish to look ahead to Figure 16.11 for an illustration of the
spreading phenomenon.

Following Bradford,17 we consider the time evolution of a scalar wave packet like (16.80) without
making any specific choice for either û(k) or ω(k). For any function of position f (r), we define an
“expectation value”

〈f 〉r =
∫

d 3r u∗(r, t)f (r)u(r, t). (16.96)

16 The exception that proves the rule is a one-dimensional packet composed of vacuum plane waves that all propagate in
the same direction. This packet does not distort along the x-direction of propagation because ω(k) = ckx and all the
higher-order terms in (16.90) are zero. On the other hand, the packet extends to infinity in every transverse direction.

17 H.M. Bradford, “Propagation and spreading of a pulse or wave packet”, American Journal of Physics 44, 1058
(1976).
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16.6 The Helmholtz Equation 557

For simplicity, we assume that û(k) in (16.80) is real so all the plane waves that contribute to the
integral are in phase at r = 0 when t = 0. In that case, the reader can confirm by direct calculation
that the “centroid” of the wave packet satisfies

〈r〉r = 〈υg 〉k t, (16.97)

where

〈υg 〉k =
∫

d 3k |û(k)|2υg(k) =
∫

d 3k |û(k)|2∇kω(k). (16.98)

Equation (16.97) says that the centroid of the wave packet moves at a constant velocity equal to the
weighted average of the group velocities that contribute to the packet. For waves in vacuum, this
amounts to an average over directions because (16.95) shows that every wave in the packet travels at
the speed of light.

More interesting is the second moment of u(r, t) with respect to the position of the centroid. This
gives the time evolution of the wave packet width as propagation proceeds. The specific quantity to
calculate is the variance,

σ 2 = 〈(r − 〈r〉r )2 〉r = 〈(x − 〈x 〉r )2 〉r + 〈(y − 〈y 〉r )2 〉r + 〈(z − 〈z〉r )2 〉r. (16.99)

Under the same conditions where (16.97) is valid, one finds that

σ 2(t) = σ 2(0) + 〈(υg − 〈υg 〉k)2 〉k t
2. (16.100)

In words, the width of the packet increases as time goes on by an amount that depends on the variance
of the group velocities that contribute to the packet. Since all vacuum plane waves travel at the same
speed, this means that the rate of spreading is largest for packets composed of plane waves with the
widest range of directions.

16.6 The Helmholtz Equation

The harmonic time dependence of the monochromatic plane waves used in the last several sections
is the basis for a general approach to time-dependent fields based on Fourier’s theorem. Following
(1.128), we Fourier analyze an arbitrary function of space and time u(r, t) and write

u(r, t) = 1

2π

∞∫
−∞

dω û(r, ω)e−iωt , where û(r, ω) =
∞∫

−∞
dt u(r, t)eiωt . (16.101)

The Fourier method exploits the linearity of the Maxwell equations to focus on a single frequency
component like û(r, ω) exp(−iωt). Once the behavior of this quantity is known, the integral on the
left side of (16.101) determines the behavior of u(r, t). The method is limited only by our ability to
analyze the final Fourier synthesis integral.

The Fourier philosophy applied to the scalar wave equation directs us to substitute û(r, ω) exp(−iωt)
into (16.79). The result is a partial differential equation for û(r, ω) called the Helmholtz equation,(

∇2 + ω2

c2

)
û(r, ω) = 0. (16.102)

A general solution of (16.102) produces a general solution of the wave equation when û(r, ω) is
substituted back into (16.101). In Section 16.8, we use separation of variables (see Chapter 7) to solve
the Helmholtz equation. Another method is the subject of the next section.
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16.6.1 The Angular Spectrum of Plane Waves
Many scattering, diffraction, and beam problems seek a solution of the Helmholtz equation in the
half-space z > 0 when information about the solution is supplied on the z = 0 plane. The angular
spectrum of plane waves is very well suited for this task. This superposition method is based on the
fact that exp(ik · r) is a solution of (16.102) if its wave vector components kx , ky , and kz satisfy

k2
x + k2

y + k2
z = ω2

c2
. (16.103)

Therefore, if f (k) is a weight function, a general solution of the Helmholtz equation is

û(r, ω) = 1

(2π )3

∫
d 3k f (k) exp(ik · r)δ(ω − ck). (16.104)

Our strategy is to eliminate the delta function by integrating over kz and write the result in a manner
which manifestly converges when z ≥ 0. If ω = ck0, and g(kx, ky) is another weight function, the
integral that remains is

û(x, y, z, ω) = 1

(2π )2

∞∫
−∞

dkx

∞∫
−∞

dkyg(kx, ky)ei(kxx+kyy) ×
⎧⎨
⎩
ei

√
k2

0−k2
x−k2

yz k2
x + k2

y ≤ k2
0,

e−
√

k2
x+k2

y−k2
0z k2

x + k2
y > k2

0 .

(16.105)

This weighted sum differs from the plane wave packet (16.80) in Section 16.5.2 because, as the brace
in (16.105) indicates, (16.103) forces some values of kz to be imaginary. Waves of this kind vary
exponentially (rather than sinusoidally) as a function of z. Including only the decaying exponentials
guarantees that (16.105) converges for z ≥ 0.

Plane waves with complex wave vectors are called evanescent. They occur naturally in the theory of
total internal reflection from a dielectric interface.18 The need to include evanescent waves in (16.105)
becomes clear when we suppose that û(r, ω) is known or specified on the plane z = 0. In that case,
setting z = 0 on both sides of (16.105) shows that g(kx, ky) is determined from û(x, y, z = 0, ω)
by a two-dimensional inverse Fourier transform. In general, all values of kx and ky , including those
where (16.103) makes kz imaginary, are needed to represent an arbitrary choice for û(x, y, z = 0, ω).
Substituting g(kx, ky) back into (16.105) generates a solution to the Helmholtz equation in the space
z ≥ 0 which reduces to the specified boundary values on the z = 0 plane. We will exploit the angular
spectrum of plane waves when we study the field diffracted by an aperture in a conducting plane (see
Chapter 21).

16.7 Beam-Like Waves

Flashlights and lasers produce narrow pencils of illumination called beams. All beams have the
property that their intensity profile falls off very rapidly in the direction transverse to the direction of
propagation. Beams also exhibit free-space diffraction (Section 16.5.5) in the sense that the intensity
profile spreads out transversely as propagation proceeds. In this section, we construct and analyze the
diffractive properties of approximate, beam-like solutions to the scalar wave equation. Using these
beam-like scalar waves, it is straightforward to construct approximate, beam-like solutions of the
Maxwell equations using the potential functions discussed in Section 16.2.2. An outstanding feature
of beam-like Maxwell fields is that they are not transverse. In other words, E(r, t) and B(r, t) generally
have non-zero components parallel to the propagation direction.

18 We will have more to say about evanescent waves in Section 17.3.7.
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16.7 Beam-Like Waves 559

16.7.1 The Paraxial Approximation
Let the z-axis be the axis of propagation. With r⊥ = xx̂ + yŷ, we choose a trial solution for the scalar
wave equation in the form of a monochromatic plane wave with a spatially modulated amplitude:

u(r, t) = �(r⊥, z)ei(kz−ωt) ω = ck. (16.106)

This is an ansatz of the form (16.101) with û(r, ω) = �(r) exp(ikz). Using this and the definition

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
≡ ∇2

⊥ + ∂2

∂z2
(16.107)

simplifies the Helmholtz equation (16.102) to an equation for the modulation function �(r⊥, z) alone:

∇2
⊥� + 2ik

∂�

∂z
+ ∂2�

∂z2
= 0. (16.108)

We now suppose that �(r⊥, z) changes very little in the z-direction over the wavelength λ = 2π/k of
the carrier plane wave. This assumption amounts to what is called the paraxial approximation:

k
∂�

∂z
� ∂2�

∂z2
. (16.109)

The inequality (16.109) permits us to drop the last term in (16.108) to get the paraxial wave equation:

− 1

2k
∇2

⊥� = i
∂�

∂z
. (16.110)

It is not difficult to find solutions to (16.110). One quick method notes that, when z → t , (16.110)
becomes the time-dependent Schrödinger equation for a free particle in two dimensions with mass
m = −hk. A familiar solution to the latter is a plane wave with two-dimensional wave vector q⊥ and
energy E = −h2

q2
⊥/2m. Hence, an elementary solution of (16.110) is

�(r⊥, z) = exp[i(q⊥ · r⊥ − q2
⊥z/2k)]. (16.111)

The general solution is a sum of such waves:

�(r⊥, z) =
∫

d2q⊥ �̂(q⊥)ei(q⊥·r⊥−q2
⊥z/2k). (16.112)

Therefore, (16.106) takes the form

u(r, t) =
∫

d2q⊥ �̂(q⊥) exp

[
i

(
q⊥ · r⊥ +

{
k − q2

⊥
2k

}
z − ωt

)]
. (16.113)

To get beam-like solutions to (16.110), we need only choose �̂(q⊥) in (16.113) so �(r⊥, z) falls to
zero rapidly as |r⊥| increases from zero. On the other hand, because ω = ck was assumed by our
derivation, (16.113) is not a sum of plane waves that satisfy the scalar wave equation. Section 16.7.3
explores in more detail the physical meaning of the paraxial approximation made here.

16.7.2 The Gaussian Beam
The most important beam-like wave derived from (16.113) exploits the Gaussian weight function

�̂(q⊥) = w2
0 exp[− 1

4w
2
0q

2
⊥]. (16.114)

This choice factors (16.112) into two one-dimensional integrals of the form (16.85). The resulting
modulation function �(r⊥, z), substituted into (16.106), produces an exact, cylindrically symmetric
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2w(z) 0z

Rz

Figure 16.11: A Gaussian beam. The two heavy solid curves indicate the width 2w(z). The two dashed lines
indicate the asymptotic divergence of the width. The curvature of the surfaces of constant phase (light solid lines)
is smallest at a distance zR from the beam waist at z = 0 in the center of the drawing.

solution to (16.110) known as the fundamental Gaussian beam. In terms of the transverse variable
ρ2 = x2 + y2, this approximate solution to the original scalar wave equation (16.79) is

u(ρ, z, t) = 4πw2
0

w2
0 + i2z/k

exp

[
− ρ2

w2
0 + i2z/k

]
exp[i(kz − ωt)]. (16.115)

The characteristics of the Gaussian beam are best understood if we define

zR = 1

2
kw2

0 (16.116)

R(z) = z + z2
R

z
(16.117)

w(z) = w0

√
1 + (z/zR)2 (16.118)

α(z) = − tan−1

[
z

zR

]
. (16.119)

Some straightforward (but tedious) algebra shows that (16.115) is identical to

u(ρ, z, t) = 4π

[
w0

w(z)

]
exp

[
− ρ2

w2(z)

]
exp

{
i

[
kρ2

2R(z)
+ α(z) + kz − ωt

]}
. (16.120)

Equation (16.120) has beam-like properties because the Gaussian factor exp[−ρ2/w2(z)] causes its
amplitude to decrease rapidly in the radial direction transverse to the direction of propagation. On the
other hand, (16.118) shows that the cross sectional area of the beam, πw2(z), increases fromw0 to 2w0

when z increases from z = 0 (the “beam waist”) to z = zR (the “Rayleigh distance”). This diffractive
spreading of the beam comes entirely from the q⊥ �= 0 terms in (16.113) that propagate in directions
other than z.

The heavy solid curves in Figure 16.11 are the locus of points traced out by the width function w(z).
These curves define a hyperboloid of revolution around the propagation axis. The asymptotic behavior
of w(z) is shown by dashed straight lines inclined at angles θ from the z-axis, where

w(z → ±∞) = w0

zR
z = θz. (16.121)

The angle θ = λ/πw0 is called the beam divergence. The inverse relation between θ and w0 is another
example of the complementary nature of free-space diffraction (See Section 16.5.3). The smaller we
try to make the beam waist, the more rapidly the beam spreads out as it propagates.

The function R(z) in (16.120) gives the radius of curvature of the surfaces of constant phase at
points near the propagation axis (see Example 16.4). The latter are indicated as light solid lines in
Fig. 16.11. R(z) is smallest at z = zR and largest (infinite) at the beam waist and at z = ±∞. This
means that the field of the Gaussian beam approaches a plane wave as z → ±∞. A glance at (16.117)
shows that R(z) changes sign as z passes through zero. The associated change of sign in (16.120) is
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16.7 Beam-Like Waves 561

responsible for the converging versus diverging effects of diffraction seen in Fig. 16.11 as the beam
propagates from left to right through z = 0.

The phase α(z) defined in (16.119) is called the Gouy phase and arises entirely from the transverse
confinement of the beam. The monotonic decrease of this quantity as z goes from −∞ to +∞ can
be interpreted simply because the surfaces of constant phase are perpendicular to the curve of w(z).
In brief, the beam progressively suffers a phase lag (compared to a plane wave focused to a point at
the waist) because the curved “wave optics” path traced by w(z) in Figure 16.11 is shorter than the
straight “geometrical optics” path traced by the dashed lines in the figure.

Example 16.4 Produce an argument which supports the interpretation of R(z) in (16.117) as the
radius of curvature for a surface of constant phase which passes through the point (ρ, z) near the
propagation axis. Neglect the Gouy phase α(z).

Solution: Let the vertical dashed line in Figure 16.12 be a surface of constant phase for the plane
wave exp[ikz]. If, instead, the circular arc in the figure were a surface of constant phase, the wave
in question would have the form exp[ikR] with the origin at the point O. Let us try to express this
factor, near the z-axis, in cylindrical coordinates (ρ, z).

The Pythagorean theorem applied to either right triangle in Figure 16.12 gives

R2 = (R −�z)2 + ρ2 ≈ R2 − 2R�z + (�z)2 + ρ2.

Near the z-axis, we may neglect the (�z)2 term to get �z = ρ2/2R. Therefore, at points on the
arc not far from the axis,

R

zO z

Figure 16.12: A portion of a circle of radius R centered at the point O.

exp{ikR} = exp{ik(z +�z)} = exp

{
ik

[
z + ρ2

2R

]}
.

The last member of this equation is the complex exponential factor in the Gaussian beam (16.115)
when we neglect the Guoy phase α(z). Therefore, at a point (ρ, z) near the propagation axis, the
surfaces of constant phase for this beam are portions of spheres of radius R(z).

16.7.3 The Meaning of the Paraxial Approximation
The Rayleigh range zR in (16.116) is the characteristic longitudinal dimension of the beam. Therefore,
we can express the paraxial condition (16.109) used to pass from (16.108) to (16.110) as

k

zR
� 1

z2
R

or k2w2
0 � 1. (16.122)

The physical meaning of (16.122) becomes clear when we regard our beam-like solution as a wave
packet like (16.80). Consider, for example, a packet formed by superposing monochromatic plane
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Figure 16.13: Cartoon of the field lines of (16.125) near the waist and in the y = 0 plane for a fundamental
Gaussian beam propagating in the z-direction. Figure adapted from Davis and Patsakos (1981).

waves with wave vectors k = q⊥ + kzẑ. Since ω = c|k|, the phase of each wave enters as

exp[i(k · r − ω(k)t] = exp(iq · r⊥) exp(ikzz) exp

(
−ict

√
q2

⊥ + k2
z

)
. (16.123)

Equation (16.113) does not contain pieces like (16.123). Rather, it assumes that q2
⊥ � k2 so the second

and third exponential factors on the right side of (16.123) can be approximated, respectively, by

kz =
√
k2 − q2

⊥ ≈ k − q2
⊥

2k
and

√
q2

⊥ + k2
z ≈ kz ≈ k. (16.124)

Equation (16.124) shows that only plane waves with wave vectors that deviate very slightly from the
propagation axis are included in a beam-like wave packet. Moreover, every wave is taken to propagate
with the common frequency ω = ckz. To connect this physical conclusion with the analytic paraxial
approximation made above, it is enough to recall that the waist w0 is the characteristic transverse
dimension of the beam. In light of (16.114), we write q⊥ ∼ 1/w0 and thereby confirm that k2 � q2

⊥
reproduces the right side of (16.122). An equivalent statement is that the beam divergence satisfies
θ2 � 1.

16.7.4 Paraxial Electromagnetic Waves
Section 16.2.1 described how to use Lorenz gauge potentials and solutions to the scalar wave equation
to generate electric and magnetic fields that satisfy the Maxwell equations. The same prescription
applied to the scalar Gaussian beam (16.115) generates a beam-like electromagnetic wave which
satisfies the Maxwell equations in the paraxial approximation. We leave it as an exercise for the reader
to confirm that the fields for a beam propagating in the z-direction can be chosen as

E = ux̂ + i

k

∂u

∂x
ẑ and B = − i

ω
∇ × E. (16.125)

Figure 16.13 is a sketch of the field lines predicted by (16.125) near the waist of the fundamental
Gaussian beam in the y = 0 plane. This is a more realistic depiction of the “mutual embrace” of E
and B than Figure 16.2. The closed loops are consistent with ∇ · E = 0 (up to terms that may be
neglected in the paraxial approximation) and make it clear why (16.125) is explicitly not transverse to
the z-direction of propagation.
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16.7.5 The Angular Momentum of a Paraxial Beam
As early as 1909, Poynting argued that circularly polarized light carries angular momentum, but that
linearly polarized light does not.19 His prediction was confirmed by Beth in 1936, who studied the
mechanical torque exerted by polarized light on suspended quartz plates.20 The source of the torque is
the transfer of angular momentum from the field to the matter. This motivates us to analyze the angular
momentum stored in a beam-like monochromatic wave that propagates along the z-axis. Thus, with
r⊥ = (x, y), we write

E(x, y, z, t) = E0(r⊥, z) exp[i(kz − ωt)]. (16.126)

Using the paraxial approximation (16.109), we will (i) confirm the just-stated experimental phe-
nomenology and (ii) identify the spin and orbital contributions to the total angular momentum per unit
area of the beam.

Our strategy is to compute the ratio of Lz (the z-component of the angular momentum per unit
length of beam) to U (the total energy per unit length of beam). More precisely, we compute the ratio
of the time average21 of each quantity because the integrals of ẑ · gEM and uEM over a beam cross
section are not time-independent for a monochromatic wave. Therefore, integrating the time averages
of the integrands of (15.31) and (15.75) over d 2r = dxdy, the ratio in question is

〈Lz〉
〈U 〉 = Re

∫
d 2r [r × (E∗ × B)] · ẑ

1
2 Re

∫
d 2r [E∗ · E + c2B∗ · B]

. (16.127)

Faraday’s law, ∇ × E = iωB, and the free-field relation ω = ck transform (16.127) to

〈Lz〉
〈U 〉 = Re

∫
d 2r {r × [E∗ × (−i∇ × E)]} · ẑ

1
2ωRe

∫
d 2r [E∗ · E + k−2(∇ × E∗) · (∇ × E)]

. (16.128)

In the paraxial approximation (Section 16.7.3), the z-variations of the electric field in (16.126) are
carried primarily by the exponential factor rather than by the pre-factor. In other words, ∂E0/∂z � kE0.
One consequence of this approximation is that

∂E
∂z

≈ ikE. (16.129)

Another consequence follows from (16.129) and ∇ · E = 0 if we write E = (E⊥, Ez) and use the
paraxial estimate k−1∇⊥ ∼ (kw0)−1 � 1 appropriate for the Gaussian beam:

Ez ≈ i

k
∇ · E⊥ ≈ i

kw0
E⊥. (16.130)

Comparing (16.130) with the right side of (16.122) shows that, in the paraxial limit, quantities that are
quadratic in Ez may be neglected compared to quantities that are quadratic in E⊥.

We are now in a position to express (16.128) entirely in terms of the vector E⊥. First, the remark
made just above tells us that the first term in the denominator of (16.128) satisfies

E∗ · E ≈ E∗
⊥ · E⊥. (16.131)

Similarly, by writing out all the components and using both (16.129) and (16.130), we find the same
approximate value for the second term in the denominator of (16.128):

k−2(∇ × E∗) · (∇ × E) ≈ E∗
⊥ · E⊥. (16.132)

19 See Allen, Barnett and Padgett (2003) in Sources, References, and Additional Reading.
20 R, Beth, “Mechanical detection and measurement of the angular momentum of light”, Physical Review 50, 115

(1936).
21 See the time-averaging theorem in Section 1.6.3.
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For the numerator of (16.128), we begin with the fact that

r × [E∗ × (∇ × E)] = r × (E∗
k∇Ek) − r × (E∗ · ∇)E. (16.133)

The remark following (16.130) ensures that the substitution E → E⊥ is valid for the r × (E∗
k∇Ek)

term in (16.133). On the other hand, the r × (E∗ · ∇)E term in (16.133) simplifies in the numerator
of (16.128) only after an integration by parts. The reader can confirm that the final result is the gauge
invariant expression

〈Lz〉
〈U 〉 = Re

∫
d 2r {E∗

⊥ · [r × (−i∇)]zE⊥ − i[E∗
⊥ × E⊥]z}

ω
∫
d 2r |E⊥|2 . (16.134)

All the integrals in (16.134) converge because the intensity of a beam-like wave goes to zero quickly
as r⊥ increases from zero.

16.7.6 Orbital and Spin Angular Momentum
To interpret (16.134), we follow part (c) of Example 16.3 at the end of Section 16.4.5 and use the
circular polarization vectors ê+ and ê− defined in (16.60) as basis vectors to express the general state
of polarization (16.63) as the column vector

|ψ〉 =
(
ψ+
ψ−

)
= 1√

2

(
Ex − iEy

Ex + iEy

)
. (16.135)

In this basis,ψ− = 0 for a left circularly polarized (LCP) wave whereEy/Ex = +i. Similarly,ψ+ = 0
for a right circularly polarized (RCP) wave whereEy/Ex = −i (see Section 16.4.3). We also normalize
the electric field intensity so

〈ψ |ψ〉 =
∫

d 2r |E⊥|2 = 1. (16.136)

The next step writes the z-components of quantum mechanical orbital and spin-1 angular momentum
operators as

�z = [r × (−i−h∇)]z = −i−h ∂

∂φ
(16.137)

and

sz = −h
(

1 0
0 −1

)
. (16.138)

Using the four preceding equations, (16.134) takes the highly suggestive form22

〈Lz〉
〈U 〉 = 〈ψ |�z|ψ〉 + 〈ψ |sz|ψ〉

−hω
. (16.139)

The spin angular momentum in (16.139) is determined entirely by the polarization of the beam.
From (16.135) and (16.138),

〈ψ |sz|ψ〉 = −h
∫

d 2r (|ψ+|2 − |ψ−|2). (16.140)

22 We insert −h into the numerator and denominator of (16.139) to facilitate comparison with familiar quantum
mechanical formulae. See Berry (1998) in Sources, References, and Additional Reading for discussion of the spin
representation (16.138).
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Figure 16.14: Cross sectional intensity profiles of a few (p, �) Laguerre-Gauss beam-like waves defined by
(16.141) with non-zero orbital angular momentum per unit length of beam.

The term helicity refers to the projection of the spin angular momentum onto the direction of linear
momentum (which is +z here). Therefore, an LCP wave has sz = +−h and positive helicity while an
RCP wave has sz = −−h and negative helicity. A linearly polarized beam has ψ+ = ψ−. For that case,
sz = 0 and no spin angular momentum is available for transfer to matter.

The derivative on the far right side of (16.137) tells us that the orbital angular momentum in
(16.139) is determined by the φ dependence of E⊥(ρ, φ, z, t). An immediate consequence is that the
fundamental Gaussian beam analyzed in Section 16.7.2 carries zero orbital angular momentum. On
the other hand, an important class of solutions of the paraxial wave equation (16.110) do possess
orbital angular momentum with respect to the beam axis. These solutions—which generalize the
fundamental Gaussian solution—are indexed by integers p and � because they involve the associated
Laguerre polynomials, L�

p [x].23 Our notation for these Laguerre-Gauss waves is up�(r, t), where the
fundamental solution (16.115) corresponds to u00(r, t). The higher-order waves are

up �(ρ, φ, z, t) =
[√

2ρ

w(z)

]�
L�
p

[
2ρ2

w2(z)

]
ei(2p+�)α(z)ei�φu00(ρ, z, t). (16.141)

Figure 16.14 plots the intensity of the real part of (16.141) for p = 0 and � = 1, 2, and 3. Such
beams have an azimuthal component to their linear momentum density and carry an orbital angular
momentum (with respect to the beam axis) proportional to �. They are also “hollow” in the sense that
up�(0, φ, z, t) = 0.

We close this section by noting that the elegant separation of the total angular momentum per unit
area along the beam direction into orbital and spin components in (16.139) is a special feature of the
paraxial approximation. It does not carry over to exact, beam-like solutions of the free-space Maxwell
equations. On the other hand, a gauge invariant separation into orbital and spin components does occur
for true, beam-like electromagnetic waves if one examines the fully longitudinal component, Mzz, of
the angular momentum current density M defined in (15.73).24

16.8 Spherical Waves

Spherical electromagnetic waves are solutions to the empty-space Maxwell equations where the
surfaces of constant phase are spheres rather than planes. Waves of this kind arise naturally in certain
guided, wave problems (Chapter 19) and are essential to the theory of radiation (Chapter 20). We
introduce these waves with an ansatz for the vector potential:

AC(r, t) = ∇ × [u(r, t)r]. (16.142)

23 The associated Laguerre polynomials arise in the Schrödinger problem for the hydrogen atom.
24 See S.M. Barnett, “‘Optical angular momentum flux”, Journal of Optics and Semi-Classical Optics 4, S7 (2002).
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The subscript indicates that (16.142) satisfies the Coulomb gauge condition, ∇ · AC = 0. As discussed
in Section 16.2.2, we may choose ϕC = 0 in empty space and AC satisfies a vector wave equation.
Therefore, our task is to find solutions of[

∇2 − 1

c2

∂2

∂t2

]
[∇ × (ur)] = 0. (16.143)

Happily, the curl operator commutes with the Laplacian operator,25 so (16.143) is equivalent to

∇ ×
[
∇2 − 1

c2

∂2

∂t2

]
(ur) = 0. (16.144)

On the other hand,

∇ × [∇2(ur)] = ∇ × {
r∇2u+ 2∇u} = ∇ × (r∇2u). (16.145)

Therefore, (16.144) simplifies to

∇ × r
{
∇2u− 1

c2

∂2u

∂t2

}
= 0. (16.146)

We conclude from (16.146) that any solution u(r, t) of the scalar wave equation can be used to construct
a Coulomb gauge vector potential using (16.142).

16.8.1 TE and TM Vector Waves
The spherical electromagnetic wave fields associated with the vector potential (16.142) are B =
∇ × AC and E = −∂AC/∂t . Since ∇ × r = 0, we find transverse electric (TE) waves,

ETE = r × ∇u̇ and BTE = −∇ × [r × ∇u]. (16.147)

The name is appropriate because the electric field in (16.147) satisfies

r · ETE = 0. (16.148)

It is not obvious, but the fields in (16.147) are perpendicular:

ETE · BTE = 0. (16.149)

To see this, we define the vector operator L = −ir × ∇ and write (16.147) as26

ETE = iLu̇ and BTE = −i∇ × Lu. (16.150)

The key to the argument is the operator identity27

∇ × L = (r̂ × L)

(
1

r

∂

∂r
r

)
+ r̂

i

r
L2. (16.151)

Equation (16.151) shows that BTE has a component along r̂ and a component along r̂ × Lu. The latter
is perpendicular to r̂, and also to Lu̇, because u and u̇ have the same angular dependence. This proves
(16.149).

To make further progress, we exploit the dual symmetry (Section 15.2.2) of the source-free Maxwell
equations (16.1) and (16.2) with respect to the transformation

E → cB and B → − E/c. (16.152)

25 A quick proof exploits the Levi-Cività representation of the curl in (1.39).
26 The operator L appeared previously in Section 11.4.4.
27 See Application 1.1 at the end of Section 1.2.
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Specifically, an application of (16.152) to the TE solution (16.147) generates a linearly independent,
free-field solution of the Maxwell equations. To avoid confusion, we do this using w(r, t) as the
solution to the scalar wave equation in (16.146) and define transverse magnetic (TM) waves,

cBTM = r × ∇ẇ and ETM = c∇ × [r × ∇w]. (16.153)

The same arguments used just above for the TE fields show that the fields in (16.153) satisfy

r · BTM = 0 (16.154)

and

ETM · BTM = 0. (16.155)

Finally, we state (but do not prove) an important theorem: every solution of the source-free Maxwell
equations can be represented uniquely by a sum of TE and TM fields of the form (16.147) and
(16.153).28 The scalar functions u(r, t) and w(r, t) are known as Debye potentials in this context and
constitute the two functions anticipated by Whittaker’s theorem (see Section 16.2.2).

16.8.2 Scalar Waves
With (16.147) and (16.153) in hand, it remains only to find solutions of the scalar wave equa-
tion in (16.146) with spherical symmetry. We specialize to time-harmonic waves where u(r, t) =
û(r, θ, φ, ω) exp(−iωt) and learn from Section 16.6 that our task is to solve the Helmholtz equation
(16.102) in spherical coordinates:

1

r2

∂

∂r

(
r2 ∂û

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂û

∂θ

)
+ 1

r2 sin2 θ

∂2û

∂φ2
+ ω2

c2
û = 0. (16.156)

Separation of variables suggests we try a solution to (16.156) of the form

û(r, θ, φ |ω) = R(r)Y (θ, φ). (16.157)

Mimicking our treatment of Laplace’s equation (Section 7.7), we choose �(�+ 1) as a separation
constant and set ω = ck. This leads to the ordinary differential equations

− 1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
− 1

sin2 θ

∂2Y

∂φ2
= �(�+ 1)Y (16.158)

and

d2R

dr2
+ 2

r

dR

dr
+
[
k2 − �(�+ 1)

r2

]
R = 0. (16.159)

Equation (16.158) is identical to (7.70), which identifies the angular functions as the spherical
harmonics Y�m(θ, φ) discussed in Section 4.5.2. The radial equation (16.159) is closely related to
Bessel’s equation of order �+ 1

2 . We omit the details (see Section C.3.2) and simply state that the

solutions to (16.159) of most interest to us here are the spherical Hankel functions h(1)
� (kr). The first

few of these are

h
(1)
0 (kr) = −i e

ikr

kr

h
(1)
1 (kr) = −

[
1 + i

kr

]
eikr

kr
(16.160)

h
(1)
2 (kr) = i

[
1 + 3i

kr
− 3

(kr)2

]
eikr

kr
.

28 See Gray and Nickel (1978) in Sources, References, and Additional Reading for a proof and discussion.
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When multiplied by exp(−iωt), each h(1)
� (kr) represents an outgoing spherical wave where the surfaces

of constant phase φ = kr − ωt expand radially outward from the origin as time goes on. A linearly
independent solution is its complex conjugate, h(2)

� (kr). When multiplied by exp(−iωt), this represents
an incoming spherical wave where the surfaces of constant phase φ = kr + ωt collapse radially inward
toward the origin as time goes on. A general solution of the Helmholtz equation (16.159) is a linear
combination of the two:

û(r|ω) =
∞∑
�=0

�∑
m=−�

[A�(k)h(1)
� (kr) + B�(k)h(2)

� (kr)]Y�m(θ, φ). (16.161)

Substituting (16.161) into (16.147) generates a complete set of transverse electric (TE) spherical
electromagnetic waves. Substituting (16.161) into (16.153) generates a complete set of transverse
magnetic (TM) spherical electromagnetic waves. Chapter 20 uses both sets of waves to discuss
multipole radiation.

Application 16.1 The Importance of Being Angular

All spherical electromagnetic waves are intrinsically anisotropic, with electric and magnetic fields that
depend on at least one angular variable. To prove this, it is sufficient to write out (16.147) and (16.153)
using solutions of the scalar wave equation u(r, t) and w(r, t) that depend only on the radial variable
r rather than on r = (r, θ, φ). The result is

ETE(r, t) = r × ∇u̇(r, t) = r ×
(
∂2u

∂r∂t

)
r = 0

(16.162)

BTM(r, t) = 1

c
r × ∇ẇ(r, t) = 1

c
r ×

(
∂2w

∂r∂t

)
r = 0.

The absence of purely radial (and thus isotropic) electromagnetic waves is a consequence of (16.148)
and (16.154), namely, ETE(r, t) and BTM(r, t) are vector waves that must be transverse to r at every
point in space. The formulae (16.147) and (16.153) define continuous vector fields that are everywhere
tangent to any origin-centered spherical surface. However, a celebrated theorem of algebraic topology
guarantees that this is impossible! More colloquially, this hairy ball theorem states that it is impossible
to comb a hairy ball so every one of its hairs lays flat.29 As indicated in Figure 16.15, a cowlick
(a point where a hair stands up) or a bald spot must be present somewhere. The transversality
conditions (16.148) and (16.154) rule out a cowlick for ETE and BTM (which play the role of the hairs).
But, neither can ETE and BTM have isolated zeroes on any origin-centered sphere (bald spots) when u
and w depend only on the radial variable r . Hence, both fields must vanish identically.

Figure 16.15: A hairy ball must have a bald spot or a cowlick if its hair lays flat at every other point on
the surface of the ball.

�
29 See Milnor (1978) in Sources, References, and Additional Reading for a proof and discussion.
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16.9 Hertz Vectors

A very general approach to electromagnetic fields in vacuum generalizes the “spherical” vector
potential (16.142) to define a pair of potential functions known as Hertz vectors. In this section, we use
Hertz vectors to generalize the idea of transverse electric (TE) and transverse magnetic (TM) waves
introduced in Section 16.8.1. Their true value will appear later when we re-introduce the source terms
in the Maxwell equations to study radiation and scattering.30

16.9.1 The Magnetic Hertz Vector
The magnetic Hertz vector πm(r, t) is a potential function defined so the usual vector potential of
electromagnetism automatically satisfies the Coulomb gauge constraint ∇ · AC = 0.31 This will be the
case if

AC = ∇ × πm. (16.163)

Exactly as in the beginning of Section 16.8, we use the facts that (i) AC satisfies the vector wave
equation (16.16) and (ii) the curl operator commutes with the Laplacian operator to conclude that

∇ ×
{
∇2πm − 1

c2

∂2πm

∂t2

}
= 0. (16.164)

In light of our freedom to set the scalar potential ϕC = 0 when no sources are present (see Sec-
tion 16.2.2), (16.164) and substitution of (16.163) into (16.17) show that, if

∇2πm − 1

c2

∂2πm

∂t2
= 0, (16.165)

a valid electromagnetic field in empty space is

E = −∇ × ∂πm

∂t
with B = ∇ × ∇ × πm. (16.166)

Recycling the trick we have used throughout this chapter, choices for πm that reduce the vector
wave equation (16.165) to a scalar wave equation turn out to generate practically important electro-
magnetic fields. Thus, the transverse electric (TE) spherical waves found in Section 16.8 come from
the choice πm = u r̂. For other purposes, it is sufficient to choose a constant vector s and form the trial
solution

πm(r, t) = u(r, t)s. (16.167)

Substituting (16.167) into (16.165) shows that the latter will be satisfied if u(r, t) is a solution of the
scalar wave equation. Then, making use of

∇ × ∇ × πm = ∇(∇ · πm) − ∇2πm (16.168)

and the three equations that precede it, we find that

ETE = s × ∇ ∂u

∂t
and BTE = (s · ∇)∇u− 1

c2

∂2u

∂t2
s. (16.169)

The fields (16.169) are transverse electric (TE) because the electric field is always transverse to s.

30 As the name implies, Hertz vectors have been used with profit in electromagnetic theory for over a century. Some
authors do not exploit them because their virtues do not carry over into quantum theory.

31 The “magnetic” nature of πm will emerge when we introduce sources in Chapter 20.
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16.9.2 The Electric Hertz Vector
The electric Hertz vector π e is a potential function defined so the usual scalar and vector potentials of
electromagnetism automatically satisfy the Lorenz gauge constraint.32 The latter is

∇ · AL + 1

c2

∂ϕL

∂t
= 0. (16.170)

Hence, an appropriate defintion of π e is

AL = 1

c2

∂π e

∂t
and ϕL = −∇ · π e. (16.171)

Equation (16.8) reminds us that AL and ϕL satisfy a vector and a scalar wave equation, respectively.
Substituting the potentials (16.171) into these wave equations, it is straightforward to confirm that
both are satisfied if the electric Hertz vector itself satisfies

∇2π e − 1

c2

∂2π e

∂t2
= 0. (16.172)

The associated electromagnetic field follows by inserting (16.171) into (16.7) and making use of
(16.168):

E = ∇ × ∇ × π e and B = 1

c2
∇ × ∂π e

∂t
. (16.173)

Like πm in (16.166), there is no restriction or constraint on π e in (16.173) except that both must be
solutions of the vector wave equation. Indeed, the two sets of fields, (16.166) and (16.173), are dual
symmetry partners in the sense that the transformation (16.152) relates one to the other with the choice
π e = −cπm.

We now mimic (16.167) and use a constant vector s to write

π e(r, t) = w(r, t)s. (16.174)

In the (by now) familiar way, this ansatz transforms the problem of seeking solutions to the vector
wave equation (16.172) into the problem of seeking solutions w(r, t) to the scalar wave equation. The
fields that result when (16.174) is substituted into (16.173) are

ETM = (s · ∇)∇w − 1

c2

∂2w

∂t2
s and BTM = −s × ∇ 1

c2

∂w

∂t
. (16.175)

The fields (16.175) are transverse magnetic (TM) because the magnetic field is always transverse to
s. The paraxial beam-like fields (16.125) are an example which may be regarded as derived from the
electric Hertz vector π e = wx̂ with w = u/k2.

Application 16.2 Whittaker’s Theorem Revisited

Whittaker’s theorem (see Section 16.2.2) states that two solutions of the scalar wave equation are
sufficient to represent an arbitrary electromagnetic field in vacuum. Since (16.167) defines a one-
component πm and (16.174) defines a one-component π e, it is reasonable to suspect that a linear
combination of (16.169) and (16.175) will do the job.

To demonstrate this, we write the electric field in the form

E(r, t) = 1

2π

∫
dωE(r|ω)e−iωt , (16.176)

32 The “electric” nature of π e will emerge when we introduce sources in Chapter 20.
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where

E(r|ω) = 1

(2π )3

∫
d 3k E⊥(k)eik·rδ(k − ω/c). (16.177)

Comparison with Section 16.6.1 shows that (formally) we are using a plane wave spectrum rep-
resentation where (see Section 16.3.4) the amplitude function E⊥(k) is strictly perpendicular to
k. This motivates us to choose a fixed unit vector ŝ and write E⊥(k) = E1(k)ê1 + E2(k)ê2, where
ê1 = k̂ × ŝ and ê2 = k̂ × (k̂ × ŝ) are unit vectors that are perpendicular both to k and to each other.
Accordingly,

E(r|ω) = 1

(2π )3

∫
d 3k

[
(k̂ × ŝ)E1(k) + k̂ × (k̂ × ŝ)E2(k)

]
eik·rδ(k − ω/c). (16.178)

When the gradient operator acts on a plane wave, ∇ ≡ ik. Therefore, we can let k̂ → −(i/k)∇ in
(16.178), pull the gradient operators out of the integral, and use the delta function to write

E(r|ω) = iω∇ × (uŝ) + ∇ × ∇ × (wŝ), (16.179)

where

u(r|ω) = − c

ω2

∫
d 3k

(2π )3
E1(k)eik·rδ(k − ω/c) (16.180)

and

w(r|ω) = − c2

ω2

∫
d 3k

(2π )3
E2(k)eik·rδ(k − ω/c). (16.181)

Now, substitute (16.179) into (16.176) and let

u(r, t) = u(r|ω)e−iωt and w(r, t) = w(r|ω)e−iωt . (16.182)

The result is an expression for E(r, t) that is the sum of the electric field in (16.166) with the magnetic
Hertz vector (16.167) and the electric field in (16.173) with the electric Hertz vector (16.174):

E(r, t) = − ∂

∂t
∇ × [u(r, t)ŝ] + ∇ × ∇ × [w(r, t)ŝ]. (16.183)

By construction, the magnetic field associated with (16.183) can only be the sum of the magnetic fields
in (16.166) and (16.173):

B(r, t) = ∇ × ∇ × [u(r, t) ŝ] + 1

c2

∂

∂t
∇ × [w(r, t) ŝ]. (16.184)

The fields (16.183) and (16.184) satisfy the conditions of Whittaker’s theorem because the two scalar
functions defined by (16.182) are plainly solutions of the scalar wave equation. �

16.10 Forces on Particles in Free Fields

The behavior of particles in time-varying electromagnetic fields is a central issue in accelerator physics,
plasma physics, atomic physics, and space physics. In this section, we focus on time-harmonic fields
in vacuum and analyze three situations where analytic results are possible: (a) the motion of a charged
particle in a monochromatic plane wave; (b) the force that a monochromatic field exerts on a charged
particle; and (c) the force that a monochromatic field exerts on an electrically polarizable particle.
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16.10.1 Charged Particle Motion in a Plane Wave
Consider a point particle with charge q and mass m in the field of a monochromatic, linearly polarized
plane wave with electric field E = x̂E0 cos(kz − ωt). The electric Coulomb force qE drives the particle
along E. The magnetic Lorentz force drives the particle along v × B, where cB = ŷE0 cos(kz − ωt).
Therefore, if v is in phase with E, this is a scheme for particle acceleration along the z-axis of wave
propagation. However, as we will now show, the particle velocity is not in phase with the electric field
and there is zero net acceleration in any direction.

Our strategy is to treat the electric force qE as primary and add the effect of the magnetic force
qυ × B as a perturbation. We choose initial conditions, x(0) = z(0) = ẋ(0) = ż(0) = 0. The non-
relativistic equation of motion for the Coulomb force alone is33

mẍ = qE0 cos(kz − ωt) ≈ qE0 cos(ωt). (16.185)

The last term in (16.185) is an approximation which is valid if the particle remains close to the origin.
Integrating twice and imposing the initial conditions gives

x(t) = qE0

mω2
[1 − cos(ωt)] ≡ d [1 − cos(ωt)] . (16.186)

The characteristic length scale d = qE/mω2 defined in (16.186) measures the field strength of the
plane wave.

The Lorentz force may be treated as a perturbation if the particle speed is non-relativistic:

vx |B|
|E| = vx

c
∼ ωd

c
= kd � 1. (16.187)

Accordingly, the equation of motion for the z-motion is

z̈ = (q/m)ẋBy = 1
2kd

2ω2 sin(2ωt). (16.188)

The time averages 〈ẍ〉 = 〈z̈〉 = 0 from (16.185) and (16.188) confirm that the particle experiences zero
net acceleration. Nevertheless, integrating (16.188) twice and applying the initial conditions shows
interesting behavior: oscillatory motion in the z-direction at twice the wave frequency superimposed
on a steady drift in the same direction,

z(t) = 1
8kd

2 [2ωt − sin(2ωt)] . (16.189)

If the drift coordinate is z0 = c(kd)2t/4, we can eliminate the sinusoidal functions from (16.186) and
(16.189) to get

16(z − z0)2 = k2x2(d 2 − x2). (16.190)

Figure 16.16 plots the trajectory (16.190) as a function of d in a (moving) frame of reference
centered on z0. The trajectories are figure-eight Lissajous figures with their lobes on the x-axis. As the
field strength parameter d → 0, the motion shrinks to one-dimensional harmonic motion along the x
(electric field) axis at frequency ω. The second harmonic 2ω appears in the z-motion because of the
non-linear nature of the Lorentz force law: υ ∝ E from (16.186) and c|B| = |E| for a plane wave so
F = qυ × B ∝ |E|2. This non-linearity implies that we cannot use the results of this section to deduce
the behavior of a particle in a high-intensity field composed of a superposition of plane waves (see the
following section).

33 See Section 22.5.2 for an exact, relativistic solution of this problem.
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z

x

Figure 16.16: Figure-eight trajectories (16.190) (centered on z0) for a particle with mass m and charge q set into
motion by a plane wave propagating in the z-direction with frequency ω and electric field strength E0. The lobe
area increases as d = qE0/mω

2 increases.

16.10.2 The Pondermotive Force on a Charged Particle
Unlike the single plane wave studied just above, many time-harmonic electromagnetic waves are able
to exert a net force on a charged particle. To see this, we again treat the Lorentz magnetic force as a
perturbation to the Coulomb electric force. From (16.186), the electric displacement of a particle with
charge q away from a suitably chosen origin is

r = − q

mω2
E. (16.191)

For small r , we may write E(r, t) ≈ E0 + (r · ∇)E0 and B(r, t) ≈ B0 where E0 = E(0)e−iωt and
B0 = B(0)e−iωt . Using these approximations and (16.191) to evaluate the Coulomb-Lorentz force
gives

F = q(E + ṙ × B) ≈ qE0 − q2

mω2

[
(E0 · ∇)E0 + ∂E0

∂t
× B0

]
. (16.192)

The identity (E · ∇)E = 1
2∇(E · E) − E × (∇ × E) and ∇ × E = −∂B/∂t transforms (16.192) to

F = qE0 − q2

mω2

[
1
2∇(E0 · E0) + ∂

∂t
(E0 × B0)

]
. (16.193)

All the fields (and hence the force) in (16.193) are complex, time-harmonic quantities. To find
the physical force, we first let E0 → Re E0 and B0 → Re B0 and then average over one period of
oscillation. When this is done, the qE0 and total time derivative terms in (16.193) vanish. For the
gradient term, we apply the time-averaging theorem for harmonic fields (Section 1.6.3).

The final result applies to any choice of origin, so the net time-averaged force is

〈F(r)〉 = − q2

4mω2
∇|E(r)|2 = −∇VP(r). (16.194)
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The name pondermotive force is often applied to (16.194) and to any other time-averaged, non-linear
force that results from the interaction of matter with an oscillating electromagnetic field.

Equation (16.194) confirms the result of the previous section that a propagating plane wave with
E(r) = exp(ik · r) exerts zero net force on a charged particle. The pondermotive potentialVP(r) defined
by (16.194) is manifestly positive, so we expect charged particles (of either sign) to be repelled from
regions of space with high field intensity toward regions of space with low field intensity. For example,
a low-energy electron incident on the Gaussian beam (16.115) from the side is back-scattered by the
beam because the field intensity decreases rapidly in the radial direction from its maximum on the
propagation axis. On the other hand, numerical trajectory calculations show that the same electron,
given an initial kinetic energy larger than the maximum of VP(r), can be trapped near the focus of the
beam and subsequently accelerated by the beam’s longitudinal electric field.34

16.10.3 Optical Tweezers: the Force on a Polarizable Particle
Example 6.5 demonstrated that a static electric field exerts an attractive force on a polarizable atom
or a molecule. The generalization of this phenomenon to time-dependent fields makes it possible to
move and trap tiny polarizable particles with remarkable precision. This phenomenon—called optical
tweezers—can be analyzed using ray optics when the object size is large compared to the wavelength
of the field. In this section, we work in the opposite limit, when the object size is small compared to
the wavelength of the field, and replace the object by a point electric dipole p(t).

The time average of the force (15.135) exerted on a point electric dipole by a field which oscillates
at frequency ω is

〈F〉 = 1
2 Re

{
(p∗ · ∇)E + dp∗

dt
× B

}
. (16.195)

Using ∇ × E = −∂B/∂t = iωB and a complex polarizability α = α′ + iα′′ defined by p = αE,
(16.195) takes the form

〈F〉 = 1
2 Re

{
α∗(E∗ · ∇)E + α∗E∗ × (∇ × E)

}
. (16.196)

To simplify (16.196), we assume a real and spatially varying amplitude E(r) and phase φ(r) so

E(r) = E(r) exp[iφ(r)]. (16.197)

The Maxwell equation ∇ · E = 0 implies that ∇ · E = 0 and E · ∇φ = 0. Substituting (16.197) into
(16.196) and using these constraints yields

〈F〉 = 1
2 Re

{
α∗(E · ∇)E + α∗[E × (∇ × E) + i|E |2∇φ]

}
. (16.198)

Therefore, because ∇(E · E) = 2(E · ∇)E + 2E × (∇ × E),

〈F〉 = F1 + F2 = 1
4α

′∇|E |2 + 1
2α

′′|E |2∇φ. (16.199)

The F1 term in (16.199) is similar to the pondermotive force (16.194) on a free charged particle
except that the polarizability α is generally a frequency-dependent function whose real part can be
positive or negative.35 When α′ > 0, this “gradient force” pushes a polarizable particle away from
field intensity minima and toward field intensity maxima. As a result, F1 alone is capable of trapping

34 Y.I. Salamin and C.H. Keitel, “Electron acceleration by a tightly focused laser”, Physical Review Letters 88, 095005
(2002).

35 The frequency response of the “Lorentz atom” studied in Section 18.5.4 implies that α′ > 0 for frequencies just
below the transition frequency of a long-lived atomic resonance and α′ < 0 for frequencies just above the resonant
frequency.
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atoms and molecules near the focus of a laser beam. The pondermotive potential associated with F1

is the time average of the energy �UE = − 1
2 p · E computed in Section 6.7.4 for a polarizable point

object where p = αE and α′′ = 0. In detail,

F1 = −∇〈�UE 〉 = 1

2
α′∇〈|E|2 〉 = 1

4
α′∇|E |2. (16.200)

The F2 term in (16.199) is present when the complex polarizability has an imaginary part and the
particle can absorb energy from the field (see Example 17.2.2 and Section 18.3). It is often called
the “scattering force” because scattering is synonymous with absorption and re-radiation in classical
physics. The scattering force points in the direction of the local wave vector k(r) = ∇φ(r).

�

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is taken from Chapter 3 of
A. Einstein and L. Infeld, The Evolution of Physics (Simon and Schuster, New York, 1938).

Section 16.1 Textbooks with the title “Electromagnetic Waves” are common in the “electromagnetics” sub-
discipline of electrical engineering. Three examples of this genre in increasing order of sophistication are

U.S. Inan and A.S. Inan, Electromagnetic Waves (Prentice-Hall, Upper Saddle River, NJ, 2000).

D.H. Staelin, A.W. Morgenthaler, and J.A. Kong, Electromagnetic Waves (Prentice-Hall, Englewood Cliffs, NJ,
1994).

C.G. Someda, Electromagnetic Waves (CRC Press, Boca Raton, FL, 2006).

Section 16.2 Jones and Schelkunoff prove the theorem of Whittaker using arguments different from each other
and from the one given in the text.

E.T. Whittaker, “On an expression of the electromagnetic field due to electrons by means of two scalar
potential functions”, Proceedings of the London Mathematical Society, Series 2, 1, 367 (1904).

D.S. Jones, The Theory of Electromagnetism (Macmillan, New York, 1964), Section 1.10.

S.A. Schelkunoff, Electromagnetic Waves (Van Nostrand, Princeton, NJ, 1943), Section 10.3.

Section 16.3 Textbooks of electromagnetism where plane waves are treated particularly clearly include
J. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

E.J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981).

Figure 16.2 comes from Born. Wise provides a historical perspective.
M. Born, Einstein’s Theory of Relativity (Metheun, London, 1924), Chapter V.

M.N. Wise, “The mutual embrace of electricity and magnetism”, Science 203, 1310 (1979).

An entertaining discussion of the “reality” of the classical electromagnetic field is
N.D. Mermin, “What’s bad about this habit?”, Physics Today, May 2009, pp. 8-9.

Section 16.4 Our discussion of wave polarization benefitted from
M.L. Kales, “Elliptically polarized waves and antennas”, Proceedings of the IRE. 39, 544 (1951).

D. Goldstein, Polarized Light, 2nd edition (Marcel Dekker, New York, 2003).

G.S. Smith, “The polarization of skylight: An example from nature”, American Journal of Physics 75, 25
(2007).

Section 16.5 The material of this section was drawn from Konopinski (see Section 16.3 above) and
B. Podolsky and K. Kunz, Fundamentals of Electrodynamics (Marcel Dekker, New York, 1969).

B.G. Levich, Theoretical Physics (North-Holland, Amsterdam, 1970), Volume 1.

Section 16.6 The angular spectrum of plane waves is discussed clearly in
G.S. Smith, Classical Electromagnetic Radiation (University Press, Cambridge, 1997).
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Section 16.7 Beam-like solutions of the Maxwell equations (Section 16.7) are discussed extensively in the
literature of lasers. Two points of entry are

A.E. Siegmann, Lasers (University Science Books, Sausalito, CA, 1986).

E.J. Galvez, “Gaussian beams in the optics course”, American Journal of Physics 74, 355 (2006).

Figure 16.13 was adapted from
L.W. Davis and G. Patsakos, “TE and TM electromagnetic beams in free space”, Optics Letters 6, 22
(1981).

The angular momentum calculations in Section 16.7.5 and Section 16.7.6 come from
M. Berry, “Paraxial beams of spinning light”, in Singular Optics, edited by M.S. Soskin and M.V. Vasnetsov
(SPIE, Bellingham, WA, 1998), pp. 6-11.

The preceding paper, as well as the articles by Poynting and Beth cited in the text, are reproduced in the reprint
volume,

L. Allen, S.M. Barnett, and M.J. Padgett, Optical Angular Momentum (Institute of Physics, Bristol, 2003).

Section 16.8 Two intermediate-level textbooks with brief discussions of spherical electromagnetic waves are
J.R. Reitz and F.J. Milford, Foundations of Electromagnetic Theory (Addison-Wesley, Reading, MA, 1960).

M.H. Nayfeh and M.K. Brussel, Electricity and Magnetism (Wiley, New York, 1985).

Stratton and Konopinski (see Section 16.3 above) discuss spherical electromagnetic waves in detail. The first uses
Hertz vectors and also treats cylindrical waves. The use of Debye potentials for free fields is discussed in

C.G. Gray and B.G. Nickel, “Debye potential representation of vector fields”, American Journal of Physics 46,
735 (1978).

The “hairy ball theorem” (Application 16.1) is discussed in strictly mathematical terms and then in an electromag-
netic context in

J. Milnor, “Analytic proofs of the ‘hairy ball theorem’ and the Brouwer fixed point theorem”, American
Mathematical Monthly 85, 521 (1978).

H. Mott, Polarization in Antennas and Radar (Wiley, New York, 1986), Appendix B.

Section 16.9 A short and precise description of the use of Hertz vectors in empty space is
F. Kottler, “Diffraction at a black screen, part II: Electromagnetic theory”, in Progress in Optics, Volume 6,
edited by E. Wolf (North-Holland, Amsterdam, 1967), Appendix B.

A Hertz vector study of the fundamental Gaussian beam and its approximants is
P. Varga and P. Torok, “The Gaussian wave solution of Maxwell’s equations and the validity of the scalar wave
approximation”, Optics Communications 152, 108 (1998).

Application 16.2 was adapted from
D.N. Pattanayak and G.P. Agrawal, “Representation of vector electromagnetic beams”, Physical Review A 22,
1159 (1980).

Section 16.10 There have been many calculations of the trajectory of a charged point particle in the field of a
plane wave. Our treatment simplifies the analysis of

E.S. Sarachik and G.T. Schappert, “Classical theory of the scattering of intense laser radiation by free elec-
trons”, Physical Review D 1, 2738 (1970).

An early and very clear treatment of the pondermotive force exerted on a charged particle is
H.A.H. Boot, S.A. Self, and R.B. Robertson-Shersby-Harvie, “Containment of a fully ionized plasma by radio
frequency fields”, Journal of Electronics and Control 4, 434 (1958).

The paper by Shimizu and Sasada is the source of our discussion of forces on polarizable particles. The wave optics
approach to optical tweezers (and much else) can be found in the reprint volume of original papers edited by
Padgett et al.

Y. Shimizu and H. Sasada, “Mechanical force in laser cooling and trapping”, American Journal of Physics 66,
960 (1998).

M.J. Padgett, J.E. Molloy, and D. McGloin, Optical Tweezers: Methods and Applications (CRC Press, Boca
Raton, FL, 2010).
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Problems
16.1 Wave Equation vs. Maxwell Equations Let E(r, t) be a vector field that satisfies

∇ · E = 0 and ∇2E − 1

c2

∂2E
∂t2

= 0.

Use the Helmholtz theorem to write a formula for B(r, t) in terms of E(r, t). Confirm that B(r, t) and E(r, t)
satisfy all four Maxwell equations in free space.

16.2 No Electromagnetic Bullets Let f (ξ ) be an arbitrary scalar function of the scalar variable ξ . We have
learned that f (z − ct) is a traveling-wave solution of the one-dimensional wave equation. In other words,[

∂2

∂z2
− 1

c2

∂2

∂t2

]
f (z − ct) = 0.

We have also learned that solutions of this equation can be localized, i.e, f (ξ ) can go to zero outside a
finite interval of ξ . Now let ψ(x, y, z − ct) be a solution of the three-dimensional wave equation. Use the

)f (

information just given (and your knowledge of electrostatics) to prove that ψ cannot be localized in the x,
y, and z directions simultaneously.

16.3 An Evanescent Wave in Vacuum The electric field of a wave propagating in vacuum is E =
ŷE0 exp[i(hz − ωt) − κx].

(a) How are the real parameters h, κ , and ω related to one another?
(b) Find the associated magnetic field B.
(c) Under what conditions is the polarization of the magnetic field close to circular?
(d) Compute the time-averaged Poynting vector.

16.4 Plane Waves from Potentials

(a) Let A(x) be a vector function of a scalar argument. Find the conditions that make A(k · r − ckt) a
legitimate Coulomb gauge vector potential in empty space. Compute E(r, t) and B(r, t) explicitly and
show that both are transverse.

(b) Consider a Coulomb gauge vector potential AC(r, t) = u(r, t)a where u is a scalar function and a is a
constant vector. What restrictions must be imposed on u(r, t) and a, if any? Find the associated electric
and magnetic fields.

(c) Specialize (b) to the case when u(r, t) = u(k · r − ckt). Show that cB = k̂ × E.
(d) Consider a Lorenz gauge potential AL(r, t) = u(r, t)s where u is a scalar function and s is a constant

vector. What restrictions must be imposed on u(r, t) and a, if any? Find the associated electric and
magnetic fields.

(e) Specialize (d) to the case when u(r, t) is the same plane wave as in part (c). Show that the electric and
magnetic fields are exactly the same as those computed in part (c).

16.5 Two Counter-Propagating Plane Waves

(a) Let E = E0 cos(kz − ωt)x̂ + E0 cos(kz + ωt)x̂. Write E(z, t) in simpler form and find the associated
magnetic field B(z, t).

(b) For the fields in part (a), find the instantaneous and time-averaged electric and magnetic field energy
densities. Find also the instantaneous and time-averaged energy current density.
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(c) Let E = E0 cos(kz − ωt)x̂ + E0 sin(kz + ωt)ŷ. Determine the polarization of this field at z = 0, z =
λ/8, z = λ/4, z = 3λ/8, and z = λ/2.

(d) Show that the field in part (c) can be written as a superposition of an LHC standing wave and an RHC
standing wave.

(e) Find the time-averaged Poynting vector as a function of z for the field in part (c).

16.6 Transverse Plane Waves with E ‖ B Consider transverse plane waves in free space where E = E(z, t)
and B = B(z, t).

(a) Demand that the Poynting vector S = 0 and show that all such solutions must satisfy

∂uEM

∂t
= ∂uEM

∂z
= 0.

(b) The constancy of uEM implies that the fields can be parameterized as

Ex = cosα cosβ cBx = sinα cos γ
Ey = cosα sinβ cBy = sinα sin γ ,

where α, β, and γ are functions of z and t. In particular, show that S = 0 implies that

α(z, t) = F (z + ct) +G(z − ct)
β(z, t) = F (z + ct) −G(z − ct)
γ (z, t) = β(z, t),

where F (x) and G(x) are arbitrary scalar functions.
(c) Let F = 1

2k(z + ct) and G = ± 1
2k(z − ct) where ω = ck . For both choices of sign, sketch a snapshot

of the fields as a function of z which clearly shows their behavior. Explain why one of these cases
corresponds to the superposition of two counter-propagating, circularly polarized waves.

(d) Sketch the fields as above for F = 1
2k(z + ct) and G = 0.

16.7 Photon Spin for Plane Waves

(a) Show that the angular momentum of an electromagnetic field in empty space (no sources) can be written
in the form

LEM = ε0

∫
d 3r r × (E × B) = ε0

∫
d 3r Ek(r × ∇)Ak + ε0

∫
d 3r E × A = Lorbital + Lspin.

Note any requirements that the fields must satisfy at infinity. The last term is assigned to Lspin because
it is a contribution to the angular momentum that does not depend on the “lever arm” r.

(b) Show that the proposed decomposition is not gauge invariant and therefore not physically meaningful.
(c) Despite the foregoing, work in the Coulomb gauge and apply these formulae to a circularly polarized

plane wave with electric field

E± = E0
x̂ ± iŷ√

2
exp[i(kz − ωt)].

Show that the time averages obey ±ω ẑ · 〈Lspin 〉 = 〈UEM 〉. Interpret this formula if 〈UEM 〉 = −hω.

16.8 When Interference Behaves Like Reflection The diagram shows two electromagnetic beams intersecting
at right angles. (EH,BH) propagates in the +x-direction. (EV,BV) propagates in the +y-direction. For
simplicity, each beam is taken as a pure plane wave (with ω = ck = 2πc/λ) cut off transversely so its cross
section is a perfect square of area λ2:

EH = −E0 exp[i(kx − ωt)]ẑ |y| ≤ λ/2, |z| ≤ λ/2,
cBH = +E0 exp[i(kx − ωt)]ŷ |y| ≤ λ/2, |z| ≤ λ/2,
EV = E0 exp[i(ky − ωt)]ẑ |x| ≤ λ/2, |z| ≤ λ/2,
cBV = E0 exp[i(ky − ωt)]x̂ |x| ≤ λ/2, |z| ≤ λ/2.
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The beams overlap in a cube (volume λ3) centered at the origin where the total fields are E = EH + EV and
B = BH + BV.

HE

HB
k

VE

VB

k

x

y

(a) Calculate the time-averaged energy density 〈uEM(r)〉 for the horizontal (H) beam alone, for the vertical
(V) beam alone, and for the total field in the overlap region. Show that the last of these takes its minimum
value on the plane x = y shown dashed in the diagram. Compute E and B on this plane.

(b) Calculate the time-averaged Poynting vector 〈S(r)〉 for the H beam, the V beam, and the total field as in
part (a). Make a careful sketch of 〈S(x, y)〉 everywhere the fields are defined.

(c) Explain why the behavior of both E and B in the vicinity of the x = y plane is exactly what you would
expect if that plane were a perfect conductor. This shows that the interfering beams behave as if they
had specularly reflected from each other.

16.9 Zeroes of the Transverse Field It is difficult to visualize time-dependent electromagnetic fields in three-
dimensional space. However, for fields that propagate in the z-direction, it is interesting to focus on the locus
of points where the transverse (x and y) components of the fields vanish simultaneously. For E(r, t), this
is the one-dimensional curve where the surface Ex(x, y, z, t) = 0 intersects the surface Ey(x, y, z, t) = 0.
The same condition with B(r, t) gives the curve of magnetic zeroes.

(a) Show that the scalar functionψ(r, t) = k
{
gx + kx2 sin δ + iy ′} exp i(kz − ωt) solves the wave equation

where g and δ are parameters and y ′ = y cos δ + z sin δ.
(b) Let E = x̂ψ + iŷψ + ẑEz. Use Gauss’ law and Faraday’s law to deduce Ez(r, t) and B(r, t) so that E

and B solve the Maxwell equations in free space.
(c) If the parameter g � 1, there is a large region of space where the x2 piece of the fields can be dropped

with very little loss of accuracy. Do this and show that the curve of electric zeroes is the line y = −z tan δ
in the x = 0 plane.

(d) In the same g � 1 limit, show that the locus of zeroes for the transverse magnetic field is an elliptic
helix that rotates in time around its axis of symmetry. The latter (which we will call the z′ axis) is the
line of electric zeroes found in part (c). Notice that y ′ and z′ are orthogonal and use polar coordinates
(r, θ) defined by gx = r cos θ and y ′ = r sin θ. Make a sketch that shows where both sets of zeroes
occur.

16.10 Superposition and Wave Intensity Let E = E1 + E2 be the electric field of the sum of two monochromatic
plane waves propagating in the z-direction. One wave has frequency ω1 and is elliptically polarized. The
other wave has frequency ω2 and is elliptically polarized in a different way than the first wave. Derive
precise, quantitative conditions which relate the averaging time T to ω1 and ω2 so the wave intensities
satisfy I = I1 + I2.

16.11 Antipodes of the Poincaré Sphere Prove that any two antipodes on the Poincaré sphere correspond to
orthogonal states of polarization.

16.12 Kepler’s Law for Plane Wave Polarization Let E(t) = Re E(0, t) = a1 cos(ωt − δ1)ê1 + a2 cos(ωt −
δ2)ê2. Except for the case of linear polarization, this vector sweeps out an ellipse as a function of time. Show
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that the rate at which E sweeps out area within the ellipse is

dA

dt
= 1

2
ωa1a2 sin(δ2 − δ1).

This shows that E (t) sweeps out equal areas in equal time. This is similar to Kepler’s second law except that
the origin of E(t) is the center of the polarization ellipse while the origin of the radius vector in Kepler’s
law is the focus of an orbital ellipse.

16.13 Elliptical Polarization The electric field of a plane wave is E(z, t) = x̂A cos(kz − ωt + δ1) +
ŷB cos(kz − ωt + δ2). Show that the principal axes of the polarization ellipse for this field are rotated
from the x- and y-axes by an angle α where

tan 2α = 2AB

A2 − B2
cos(δ2 − δ1).

16.14 A Vector Potential Wave Packet A(r, t) = (ax̂ + ibŷ)A0(ζ ) exp(iζ ) where ζ = k(z + ct) is a vector
potential wave packet.

(a) Find the (real) electric and magnetic fields in the approximation that the envelope function A(ζ ) varies
slowly over one wavelength of the wave.

(b) Find the linear momentum density carried by the wave in part (a). What does the overall algebraic sign
of this quantity tell you?

16.15 Fourier Uncertainty Let f (x) and f̂ (k) be Fourier transforms pairs so

f (x) =
∞∫

−∞

dk

2π
f̂ (k)eikx and f̂ (k) =

∞∫
−∞

dxf (x)e−ikx .

The averages of the operator O with respect to the distributions f (x) and f̂ (k) are

〈O 〉x =
∫∞

−∞ dx f ∗(x)Of (x)∫∞
−∞ dx |f (x)|2 and 〈O 〉k =

∫∞
−∞ dk f̂ ∗(k)O f̂ (k)∫∞

−∞ dk |f̂ (k)|2 .

(a) Show that ĥ(k) = ikf̂ (k) if h(x) = df
/
dx.

(b) Prove Parseval’s theorem,

1

2π

∞∫
−∞

dk f̂ ∗(k)ĝ(k) =
∞∫

−∞

dx f ∗(x)g(x).

(c) Show that 〈k 〉k = −i〈 d

dx
〉x and 〈k2 〉k = −〈 d2

dx2
〉x .

(d) Let �O = √〈O2 〉x − 〈O 〉2
x and reproduce a proof of the (Hermitian) operator identity

�A�B ≥ 1

2
|〈2i[A,B]〉x |

from any (quantum mechanics) text in enough detail to demonstrate that you understand it.
(e) Let �k =

√
〈k2 〉k − 〈k 〉2

k and use all of the above to prove that

�x �k ≥ 1

2
.

This shows that the width of a wave packet in real space increases as the wave vector content of the
packet decreases.

16.16 Plane Wave Packet from the Helmholtz Equation The scalar wave equation is c2∇2u = ∂2u

∂t2
.
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(a) Find a general solution to this equation by separating variables in the form u(r)T (t).
(b) Continue by using Cartesian variables to separate the equation satisfied by u(r). Write the general

solution again.
(c) How does your final general solution for u(r, t) differ from the expression derived in the text for a wave

packet composed of monochromatic plane waves? Show that this difference disappears for Reu(r, t).

16.17 PEM for a Wave Packet Use a normalization slightly different from the text and write the complex electric
field of an electromagnetic wave packet as

E(r, t) = 1

(2π )3/2

∫
d 3k E⊥(k) exp[i(k · r − ckt)].

(a) Show that the total linear momentum of the wave packet satisfies

cPEM = 1
2 ε0

∫
d 3k k̂ |E⊥(k)|2 .

(b) Produce an argument which shows that

UEM ≥ c |PEM|.
(c) When does the equal sign apply in Part (b)?

16.18 A Transverse Magnetic Beam Let A(ρ, z, t) = U (ρ, z, t)ẑ be a Lorenz gauge vector potential where
U (ρ, z, t) = u(ρ, z) exp(−iωt) is an azimuthally symmetric, beam-like solution of the scalar wave equation
which propagates in the z-direction. Show that the magnetic field B(ρ, z, t) and electric field E(ρ, z, t) are
both linearly polarized, but that the latter is not transverse.

16.19 Paraxial Fields of the Gaussian Beam Let u(x, y, z, t) be a monochromatic, Gaussian beam solution
of the scalar wave equation in the paraxial approximation. The beam propagates in the z-direction. Use a
suitably chosen Lorenz gauge vector potential to confirm the statement made in the text that the electric and
magnetic fields of this beam in the same approximation can be written

E = ux̂ + i

k

∂u

∂x
ẑ and B = − i

ω
∇ × E.

Confirm also that ∇ · E = 0 and ∇ · B = 0 within the paraxial approximation.

16.20 Physical Origin of the Gouy Phase The function

φ(ρ, z) = f (x, y) exp
[
i
(
kz − ωt + k0ρ

2/2R + α
)]

is a beam-like solution to the scalar wave equation (in the paraxial approximation) where

ω = ck zR = 1

2
k0w

2
0 w(z) = w0

√
1 + z2/z2

R R(z) = z + z2
R/z α(z) = − tan−1(z/zR)

and

f (x, y) =
√

2

π

1

w
exp

[−(x2 + y2)/w2
]
.

The Gouy phase, α(z), arises from the fact that the beam has a finite size in the transverse direction. To see
this, use the fact that k2 = k2

x + k2
y + k2

z to motivate the definition of an effective propagation “constant”

k̄z(z) = 〈k2
z 〉
k

= k − 〈k2
x 〉
k

− 〈k2
y 〉
k

.

In this formula, the averages are defined over the distribution of transverse wave vectors that make up the
beam. That is,

〈g 〉 =
∫ ∞

−∞
dkx

∫ ∞

−∞
dky g(kx, ky)|F (kx, ky)|2
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where

F (kx, ky) = 1

2π

∫ ∞

−∞
dx

∫ ∞

−∞
dy f (x, y) exp[−i(kxx + kyy)].

Show that kz + α(z) = ∫ z

0 dz k̄z . Confirm that α(z) = 0 if there is no localization in the transverse direction.

16.21 D’Alembert Solutions in Two and Three Dimensions If f is a scalar function of one scalar variable, we
know that f (z ± ct) are solutions of the one-dimensional wave equation.

(a) Show that f (r ± ct)/r are solutions of the three-dimensional wave equation in spherical coordinates.
(b) Show that f (ρ ± ct)/

√
ρ are solutions of the two-dimensional wave equation in cylindrical coordinates

when ρ is sufficiently large. Make a precise definition of “sufficiently large”.

16.22 Wave Interference

(a) Superpose two scalar waves: a plane wave u1 exp(ikx) and a spherical wave (u2/r) exp(ik · r + δ).
Show that the locus of points where constructive interference occurs defines a family of parabolas.

(b) Superpose two equal-amplitude, time-harmonic, y-polarized plane waves. Their wave vectors satisfy
|k1| = k2| and lie in the x-z plane as shown below. Is the sum of these two plane waves itself a plane
wave? Is it transverse?

(c) Plot the time-averaged Poynting vector for the wave in part (b) as a function of position for θ = 0,
θ = π/4, and θ = π/2.

x

z

1k

2k

16.23 Phase Velocity of Spherical Waves Consider the outgoing spherical wave solutions of the three-
dimensional scalar wave equation in vacuum. Show that the phase velocity of the � = 0 wave is c but
that the phase velocity of the � = 1 wave is position-dependent and greater than c. What happens as r → 0
and r → ∞? What about the � > 1 waves?

16.24 Bessel Waves

(a) Separate variables in cylindrical coordinates and find a general time-harmonic solution ψ(ρ, φ, z, t) of
the scalar wave equation which propagates in the z-direction and remains finite on the z-axis.

(b) Find the TE and TM electric and magnetic fields associated with the magnetic Hertz vector πm = ψ0ẑ
where ψ0 is the cylindrically symmetric solution found in part (a).

(c) Interpretψ0(r, t) as a sum of plane waves exp[i(q · r − ωt)] where the q vectors have the same magnitude
and are distributed uniformly on the surfaced of a cone. Hint: An integral representation of the zero-order
Bessel function is

J0(x) = 1

2π

∫ 2π

0
dθ exp(ix cos θ ).

16.25 Charged Particle Motion in a Circularly Polarized Plane Wave A particle with charge q and mass
m interacts with a circularly polarized plane wave in vacuum. The electric field of the wave is E(z, t) =
Re {(x̂ + iŷ)E0 exp[i(kz − ωt)]}.
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(a) Let v± = vx ± ivy and � = 2qE0/mc. Show that the equations of motion for the components of the
particle’s velocity v can be written

dvz

dt
= 1

2
�
{
v+e+i(kz−ωt) + v−e−i(kz−ωt)}

dv±
dt

= �(c − vz)e
∓i(kz−ωt).

(b) Let �± = v±e±i(kz−ωt) ± ic�ω and show that

dvz

dt
= 1

2
�(�+ + �−) = i

�

2ω

d

dt
(�+ − �−).

(c) Let K be the constant of the motion defined by the two v̇z equations above. Differentiate the equations
in part (a) and establish that

d2vz

dt2
+ [

�2 + ω2
]
vz = ω2K.

Use the initial conditions v(0) = 0 and v′
z(0) = 0 to evaluate K and solve for vz(t). Describe the nature

of the particle acceleration in the z-direction.
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17 Waves in Simple Matter

It appears that the square of the index of refraction is equal to
the product of the specific dielectric capacity and the specific

magnetic capacity.
James Clerk Maxwell (1865)

17.1 Introduction

This chapter explores the propagation of monochromatic plane waves in simple matter where the
electric permittivity ε, magnetic permeability μ, and ohmic conductivity σ are all constants. When
σ = 0 this model for matter is non-dispersive in the sense that plane waves with different frequencies
all have the same phase velocity. This contrasts with real matter, which is frequency-dispersive because
ε = ε(ω) is a function of frequency and plane waves with different frequencies propagate with different
phase velocities.1 Nevertheless, by focusing on one frequency at a time—and by not superposing
waves with different frequencies—many important effects of wave propagation in real matter can be
captured using a non-dispersive model. We will be particularly interested in the reflection, refraction,
and interference that occur when waves interact with planar boundaries which separate regions of
dissimilar simple matter.

The mathematics of wave propagation in linear and isotropic non-dispersive matter is nearly identical
to the mathematics of wave propagation in vacuum. This has the virtue of generating results very
quickly (by analogy) and the vice of masking some important physics associated with the matter. In
this chapter, we can do little more than name this “hidden” physics; a proper discussion must wait
until the reader has acquired an appreciation of retardation and radiation (Chapter 20).

Section 17.6 treats wave propagation in conducting matter where Ohm’s law (j = σE) holds with
a constant conductivity σ . Technically, this system is frequency-dispersive and discussion of it could
logically be delayed until the next chapter. However, by limiting ourselves to low frequencies, there is
pedagogic value in comparing the non-uniform waves in a simple conductor to the non-uniform waves
at a dielectric interface. We will also make contact with our previous discussion of quasi-magnetostatics
(Section 14.9).

17.2 Plane Waves

The Maxwell equations in matter are

∇ · D = ρf ∇ · B = 0 (17.1)

1 The origins and consequences of frequency dispersion are the subject of Chapter 18.
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and

∇ × E = −∂B
∂t

∇ × H = jf + ∂D
∂t

. (17.2)

In this section, we set ρf = jf = 0 and seek plane wave solutions to (17.1) and (17.2) for non-
dispersive, simple matter where the constitutive relations are

D = εE, and B = μH. (17.3)

The product and the ratio of the constants ε and μ appear so frequently that it is traditional to define
the index of refraction n and the intrinsic impedance Z of a medium as

n = c
√
με and Z =

√
μ/ε. (17.4)

The index of refraction is dimensionless and takes the value n = 1 in vacuum. The intrinsic impedance
has dimensions of resistance and takes the value Z0 = √

μ0/ε0 ≈ 377 � in vacuum.
The constitutive relations reduce the number of fields in the Maxwell equations from four to two. We

choose E and H as the independent fields because the polarization and magnetization of the medium
are

P = (ε − ε0)E and M = (μ/μ0 − 1)H, (17.5)

the matching conditions at an interface are the same for E and H, and the Poynting vector in matter is
(see Section 15.8.1)

S = E × H. (17.6)

Thus, for an infinite and spatially homogeneous medium defined by (17.3), the source-free Maxwell
equations of interest are

∇ · E = 0 ∇ · H = 0 (17.7)

and

∇ × E = −μ∂H
∂t

∇ × H = ε
∂E
∂t

. (17.8)

17.2.1 Monochromatic Plane Waves
We are interested in uniform and monochromatic plane waves (Section 16.3.4) where2

E(r, t) = E exp[i(k · r − ωt)] and H(r, t) = H exp[i(k · r − ωt)]. (17.9)

Substituting (17.9) into (17.7) and (17.8) generates four constraints:

k · E = 0 k · H = 0 (17.10)

and

k × E = ωμH k × H = −ωεE. (17.11)

An immediate consequence of (17.10) and (17.11) is that the vectors (E,H,k) form a right-handed
orthogonal triad (Figure 17.1). Therefore, (17.9) is a transverse electromagnetic wave (TEM) to
which our discussion of polarization (Section 16.4) applies without change. It follows immediately

2 It should always be clear from context whether the symbols E and H refer to the vector functions in (17.9) or to their
vector amplitudes.
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k

E

H

Figure 17.1: E, H, and k for a TEM plane wave in simple matter.

from (17.11) that the ratio of the field amplitudes—a scalar quantity called the wave impedance—is
numerically equal to the intrinsic impedance of the medium defined in (17.4):

Zwave = E

H
=
√
μ

ε
= Z. (17.12)

A dispersion relation relates the wave frequency ω to the wave vector k. To find it, we form the
cross product of k with the leftmost equation in (17.11) and substitute in from the rightmost equation
in (17.11). This gives

k × (k × E) = −ω2μεE. (17.13)

Expanding the triple cross product and using k · E = 0 from (17.10) gives

k · k = μεω2 or ω(k) = c

n
k. (17.14)

Collecting results, an infinite medium defined by (17.3) supports transverse and monochromatic plane
waves of the form (17.9) if

k = n
ω

c
k̂, k · E = 0, and ZH = k̂ × E. (17.15)

The phase velocity of these waves is

vp = ω

k
k̂ = c

n
k̂. (17.16)

The physical origin of the variation of the phase velocity with the index of refraction is neither obvious
nor trivial (see below). On the other hand, using (17.3) to eliminate D and H in the original Maxwell
equations (17.1) and (17.2), it is not difficult to see that every formula for a vacuum wave derived in
Chapter 16—including those for beam-like waves and spherical waves—has a counterpart in matter,
obtained by replacing cwith c/n everywhere. The phase velocity is just one example. Another example
is the energy velocity [see (16.45)],

vE = 〈S〉
〈uEM 〉 , (17.17)

which we check using (17.15) to evaluate the ratio of S = E × H to uEM = 1
2ε |E|2 + 1

2μ|H|2. In light
of the time-averaging theorem,3

vE =
1
2 Re {E × H∗}

1
2 Re

{
1
2εE · E∗ + 1

2μH · H∗} = 2|E|2k̂
Z(ε |E|2 + μ|H|2)

= k̂√
με

= c

n
k̂. (17.18)

The similarity of an electromagnetic wave inside matter to an electromagnetic wave outside matter
was unsurprising to Maxwell and his contemporaries because wave motion in both cases was thought
to occur in an all-pervasive medium called the “luminiferous aether”. All that happened when passing
from vacuum to ordinary matter was a change in constitutive parameters from ε0 and μ0 to ε and μ.
This point of view became untenable after Einstein4 and we have little choice but to conclude that

3 See Section 1.6.3.
4 Einstein’s special theory of relativity made the aether a superfluous concept. See Chapter 22.
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the wave-like variations of the polarization and magnetization implied by (17.5) produce electric and
magnetic fields which propagate exactly as they do in vacuum, albeit at a different phase velocity.
We prove this explicitly in Chapter 21 in connection with a celebrated result known as the extinction
theorem.

Application 17.1 Alfvén Waves

A magnetized plasma supports a class of low-frequency electromagnetic waves called Alfvén waves.
Their behavior is dictated by the dielectric constant ε = ε0 + ρ/B2

0 computed in Application 14.1 for
a plasma with mass density ρ in the presence of a static magnetic field B0 and a slowly varying electric
field E1 oriented perpendicular to B0. Here, we associate E1 with a propagating wave (E1x̂, B1ŷ) and
choose the magnitude of B0 = B0ẑ large enough that we can neglect the effect of the wave field on the
motion of the plasma particles.

Consider the case when B0 ‖ k in Figure 17.1. Typically, ρ/B2
0 � 1, so the phase velocity (17.14)

is

vA = 1√
μ0ε

≈
√

B2
0

μ0ρ
. (17.19)

It is not an accident that (17.19) is reminiscent of the speed, v = √
T/ρ, of a transverse wave on a string

with tension T and mass density ρ. As shown in Section 12.5.1, B2/μ0 is a tension which opposes any
attempt to bend a magnetic field line. It is crucial that k ‖ B0 so the magnetic field B1 of the Alfvén
wave adds only a sinusoidal ripple to the otherwise straight field lines of B0 (see Figure 17.2). In other
words, the presence of the wave bends the pre-existing field lines of B0 (against their tension), but
does not compress them. These are called shear type Alfvén waves.

0 1
B B

Figure 17.2: Lines of the total magnetic field in a magnetized plasma with a shear Alfvén wave present.

�

Example 17.1 Turpentine is a simple dielectric liquid except that the magnetization is related to
the time derivative of the polarization by M = s∂P/∂t , where s is a constant. Prove that E · Ė = 0
and thereby deduce that only left and right circularly polarized plane waves can propagate in this
liquid without the polarization changing.

Solution: In a simple liquid, D = εE, B = μH, and the vectors (E,B,k) form a right-handed
orthogonal triad. This means that B · D = 0 and H · E = 0. Combining this with B = μ0(H + M)
and D = ε0E + P shows that M · P = 0 also. On the other hand, M = sṖ for this specific material.
Hence, P · Ṗ = 0 and (because the medium is linear) E · Ė = 0. The latter is a characteristic of
circularly polarized waves only (recall that the velocity vector v = ṙ is always perpendicular to the
position vector r when the tail of the latter is fixed and its head uniformly traces out a circle). We
will see in Section 17.7 that turpentine is an example of an anisotropic medium where not all plane
waves travel with the same phase velocity.
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17.2.2 Energy Balance in Simple Matter
Monochromatic fields in matter irreversibly lose energy if the permittivity or permeability of the host
matter has an imaginary part. Here, we quantify this statement for the simplest case of a non-magnetic
medium with a constant, but complex, permittivity ε = ε ′ + iε′′. There is no free current, so the
Poynting theorem (15.104) reads∫

V

d 3r

[
E · ∂D

∂t
+ H · ∂B

∂t

]
= −

∫
S

dS · (E × H). (17.20)

The fields of interest are

E = Re[E0 exp(−iωt)] = E0 cos(ωt)

D = Re[εE0 exp(−iωt)] = ε′E + ε′′E0 sin(ωt)
(17.21)

and their magnetic counterparts, with B = μ0H. Using these, (17.20) becomes∫
S

dS · (E × H) + d

dt

∫
V

d 3r

[
ε′

2
|E|2 + μ0

2
|H|2

]
= −

∫
V

d 3r ωε′′|E|2. (17.22)

The first term on the left side of (17.22) is the rate at which energy flows out of the volume V of the
medium. The second term on the left is the rate of change of the stored energy in the medium. Therefore,
by conservation of energy, ωε ′′|E|2 must be the rate at which the medium absorbs electric field energy
per unit volume. Indeed, it can be useful to regard a unit volume of matter with a monochromatic wave
present as a damped oscillator with a quality factor

Q = ω × maximum energy stored

average power loss
. (17.23)

Using (1.137) to compute the time average in the denominator of (17.23) gives

Q = ω ×
1
2ε

′|E0|2
1
2ωε

′′|E0|2
= ε′

ε′′ . (17.24)

We will return to this question in the next chapter when we study waves in frequency-dispersive
media.

17.3 Reflection and Refraction

A plane wave incident on a sharp boundary between two dissimilar materials produces a solution to
the Maxwell equations in the form of a reflected plane wave and a refracted plane wave when the
wavelength is small compared to the curvature of the boundary. In this section, we give a selective
introduction to this subject (familiar from optics) with an emphasis on the use of electromagnetic
methods to derive the main results.

In Figure 17.3, z = 0 is the boundary between two semi-infinite half-spaces, one characterized by
material parameters (ε1, μ1), the other by material parameters (ε2, μ2). Everyday experience tells us
that an incident plane wave which approaches medium 2 from medium 1 “splits” into a reflected wave
confined to medium 1 and a refracted wave confined to medium 2. Thus, the electric field in medium 2
is E2(r, t) = ET exp[i(kT · r − ωTt)] and, in medium 1,

E1(r, t) = EI exp[i(kI · r − ωI t)] + ER exp[i(kR · r − ωRt)]. (17.25)
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Figure 17.3: Wave vectors for incident (I), reflected (R), and transmitted (T) (or refracted) plane waves at a
straight material boundary.

Equation (17.15) completes the specification of these waves, including the magnetic fields with
amplitudes HI , HR , and HT . At the interface, the total fields must satisfy the matching conditions
which derive from (17.1) and (17.2) when no charge or current is present (see Section 2.3.3):

n̂ · [D1 − D2] = 0 n̂ · [B1 − B2] = 0 (17.26)

n̂ × [E1 − E2] = 0 n̂ × [H1 − H2] = 0. (17.27)

17.3.1 Specular Reflection and Snell’s Law
The matching conditions (17.27) and (17.26) cannot be satisfied for all time and for all points on the
z = 0 plane unless the phases of the incident, reflected, and refracted waves are all exactly the same.
Hence, ωI = ωR = ωT ≡ ω and kI · r|z=0 = kR · r|z=0 = kT · r|z=0. The last set of equalities implies
that

kIx = kRx = kT x and kIy = kRy = kTy. (17.28)

The three wave vectors kI , kR , and kT are all coplanar. To see this, orient the Cartesian axes so the
plane of incidence (the plane which contains both kI and the unit normal to the interface n̂) is the x-z
plane as shown in Figure 17.3. Then, because kIy = 0, we deduce from the right member of (17.28)
that kRy = kTy = 0 also. The left member of (17.28) generates the laws of reflection and refraction.
The incident and reflected waves both lie in medium 1, so the leftmost equation in (17.15) gives

kI = kR = n1
ω

c
≡ k1. (17.29)

Hence, kIx = kRx implies that sin θI = sin θR , which is the law of reflection:

θI = θR ≡ θ1. (17.30)

Similarly, in medium 2 we write kT = k2 and θT = θ2 so

kT x = k2 sin θT ≡ n2
ω

c
sin θ2. (17.31)

Snell’s law of refraction comes from kIx = kT x in (17.28):

n1 sin θ1 = n2 sin θ2. (17.32)

This relation says that the refracted wave vector kR inclines closer to the interface normal than the
incident wave vector kI when a wave passes from a “fast” medium to a “slow” medium [as reckoned
by magnitude of the phase velocity (17.16)], i.e., when n1 < n2. We note in passing that the laws of
reflection and refraction are often said to be “kinematic” because they follow from the wave nature of
the fields only. The dynamical laws for the fields (the Maxwell equations) play no role.
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Negative-Index Matter

In the late 1990s, it became possible to fabricate artificial materials in which the electric permittivity
and magnetic permeability are both negative in a limited frequency band (see Section 18.5.6).
Although n = c

√
εμ = c

√
(−ε)(−μ) suggests that the index of refraction is unaffected, Veselago

had pointed out 30 years earlier that the Maxwell equations require that we write n = −c√|ε||μ|.
To see this, define a unit vector k̂ so (E,H, k̂) form a right-handed orthogonal triad. Substituting
the left member of (17.15) into (17.11) gives

n

c
k̂ × E = μH and

n

c
k̂ × H = −εE.

For both equations to hold simultaneously, we must choose n < 0 if ε < 0 andμ < 0. On the other
hand,ZH = k̂ × E tells us that the wave impedanceZ = √

μ/ε > 0. The fact that k = −|n|(ω/c)k̂
led Veselago to coin the phrase “left-handed materials” because (E,H,k) form a left-handed
orthogonal triad for wave propagation in these systems.

Negative-index materials have many counter-intuitive properties. One is that the Poynting vector
and the phase velocity point in opposite directions. This follows from (17.6) and (17.16) because
both n and μ are negative:

S = n

cμ
|E|2k̂ and vp = c

n
k̂.

A particularly striking feature is the phenomenon of “negative refraction”, which we illustrate by
writing Snell’s law for wave propagation from vacuum, n1 = 1, into a material with index n2 < 0,
namely, sin θ1 = −|n2 | sin θ2. This shows that θ2 < 0, which means that the refracted wave vector
kT does not point up and to the right in Figure 17.3, but rather up and to the left. This has been
confirmed experimentally.

The special case of n = −1 has captured special attention because it holds open the possibility of
creating a “perfect lens” which is aberration-free and images objects with arbitrarily fine resolution.
This may be contrasted with a conventional lens, whose resolution is limited to feature sizes of the
order of the wavelength. The main obstacle to realizing such a lens in the laboratory is reducing
the dissipative losses which occur when electromagnetic waves pass through matter of any kind,
including negative-index material.

17.3.2 The Fresnel Equations
In 1823, Fresnel used a molecular model of the aether and heuristic arguments to predict the intensities
of light rays reflected and refracted at a flat interface between two transparent media. Seventy years
later, Hertz reproduced Fresnel’s results by applying the matching conditions (17.27) and (17.26) to
the electric fields E1 and E2 (and their magnetic counterparts) defined in (17.25) and the text preceding
it. The calculation exploits the fact that an arbitrarily polarized plane wave can be decomposed into
the sum of two plane waves with orthogonal polarization.

Figure 17.4 shows the standard choice for these orthogonal waves: a p-polarized wave where E is
strictly parallel to the plane of incidence (which contains kI and n̂): and an s-polarized wave where
E is strictly perpendicular to the plane of incidence.5 The general case follows by superposing the

5 The label “s” comes from the German word for perpendicular, senkrecht. Some authors use ‖ in place of “p” and ⊥ in
place of “s”. We avoid this notation because ‖ and ⊥ are used consistently in this book for quantities, e.g., field
components, that lie parallel or perpendicular to a surface or interface. Other authors use TM (transverse magnetic) in
place of “p” and TE (transverse electric) in place of “s” because H is strictly perpendicular to the interface normal for
a TM wave and E is strictly perpendicular to the interface normal for a TE wave. We avoid this notation also because,
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"s"  or  TE  or    polarization"p" or  TM  or polarization
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kR kR
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θI θR θI θR

θT θT
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1
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Figure 17.4: Wave vectors and field vectors for incident, reflected, and refracted plane waves at an abrupt
interface for two orthogonal polarizations of the incident wave. Circles with crosses (dots) indicate vectors which
point into (out of) the plane of the diagram. The plane of the diagrams is the plane of incidence.

field amplitudes obtained by applying the matching conditions to the two component polarizations
separately.

The left panel of Figure 17.4, combined with (17.15), shows that the matching conditions (17.27)
applied to a p-wave give

EI cos θ1 − ER cos θ1 = ET cos θ2 and HI +HR = HT . (17.33)

Using (17.15), the second equation in (17.33) becomes Z2(EI + ER) = Z1ET . It follows immediately
that the reflection and transmission amplitudes are

rp ≡
[
ER

EI

]
p

= Z1 cos θ1 − Z2 cos θ2

Z1 cos θ1 + Z2 cos θ2
and tp ≡

[
ET

EI

]
p

= 2Z2 cos θ1

Z1 cos θ1 + Z2 cos θ2
. (17.34)

The same matching conditions applied to an s-wave give

EI + ER = ET and HI cos θ1 −HR cos θ1 = HT cos θ2. (17.35)

Using (17.15), the second equation in (17.35) becomesZ2(EI − ER) cos θ1 = Z1ET cos θ2. Therefore,

rs ≡
[
ER

EI

]
s

= Z2 cos θ1 − Z1 cos θ2

Z2 cos θ1 + Z1 cos θ2
and ts ≡

[
ET

EI

]
s

= 2Z2 cos θ1

Z2 cos θ1 + Z1 cos θ2
. (17.36)

The amplitude formulae in (17.34) and (17.36) are the Fresnel equations.

17.3.3 Remarks
1. The matching conditions (17.26) for the normal components of D and B were not used to derive
(17.34) and (17.36) because the information they provide is redundant for this problem.

2. The Fresnel amplitudes (17.34) and (17.36) are not explicit because Snell’s law (17.32) is needed
to compute the refracted angle θ2 for a given angle of incidence θ1.

3. An s-wave cannot be distinguished from a p-wave at normal incidence. Therefore, (17.34) and
(17.36) must be identical in that limit. The apparent sign difference between the reflected amplitudes
when cos θ1 = cos θ2 = 1 occurs because, when θI = θR = 0 in Figure 17.4, EI and ER point in
opposite directions for p-polarization but point in the same direction for s-polarization.6 The latter is

in Section 16.8.1 and in later sections, TE (TM) refers to a wave whose electric (magnetic) field vector, alone, is
strictly transverse to the direction of wave propagation.

6 Some authors avoid this problem by using the ratio HR/HI to define rp. Others choose the directions of the field
vectors differently than in Figure 17.4.
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most natural, so, at normal incidence,

r = Z2 − Z1

Z1 + Z2
and t = 2Z2

Z1 + Z2
. (17.37)

When both media have the same magnetic properties, Z = √
μ/ε reduces (17.37) to

r = n1 − n2

n1 + n2
and t = 2n1

n1 + n2
. (17.38)

To check (17.38), let ε2 → ∞ to mimic a perfect conductor (see Section 6.6.4).Z2 → 0 in this limit, so
(17.37) predicts ER/EI = −1 and ET /EI = 0. The reflected wave suffers a phase shift of π because
the entirely tangential field E1 = EI + ER must vanish at z = 0 when medium 2 is a perfect conductor.

4. The incident wave propagates through the interface as if it were absent when the reflection
amplitudes in (17.34) and (17.36) vanish. This impedance matching phenomenon is fundamental to
wave propagation in many different contexts.7 The name itself is self-explanatory when we specialize
to normal incidence so (17.37) is applicable. The no-reflection condition is then precisely a condition
that the impedances of the two media be equal:

Z1 = Z2 ⇒
√
μ1

ε1
=
√
μ2

ε2
. (17.39)

5. Z1 and Z2 are both real for simple transparent matter because ε and μ are both real and positive.
This means that reflection and refraction do not alter the linear polarization of a pure s-wave or a pure
p-wave. On the other hand, the Fresnel equations imply that a wave with arbitrary linear polarization
reflects as a linearly polarized wave with relatively more “s” content than the incident wave and refracts
as a linear polarized wave with relatively more “p” content than the incident wave. In other words,
the direction of E turns away from the plane of incidence when reflected and turns toward the plane
of incidence when refracted. We discuss the behavior of incident waves with circular and elliptical
polarization below.

Example 17.2 (a) Write out the reflection amplitudes rs and rp in terms of the permeability μ and
the index of refraction n for each half-space. (b) Specialize to non-magnetic matter and derive
Fresnel’s famous “sine” and “tangent” reflection formulae:

rs = − sin(θ1 − θ2)

sin(θ1 + θ2)
and rp = tan(θ1 − θ2)

tan(θ1 + θ2)
.

Solution: (a) We note first that

Z1

Z2
= μ1n2

μ2n1
= ε2n1

ε1n2
.

Using the first equality above, the reflection formulae in (17.34) and (17.36) become

rs = μ2n1 cos θ1 − μ1n2 cos θ2

μ2n1 cos θ1 + μ1n2 cos θ2
and rp = μ1n2 cos θ1 − μ2n1 cos θ2

μ1n2 cos θ1 + μ2n1 cos θ2
.

(b) The permeability drops out of the reflection formulae when we set μ1 = μ2 = μ0 for non-
magnetic matter. Begin with the “s” expression and multiply the first and second terms in the
numerator and denominator by the left and right sides, respectively, of Snell’s law, n2 sin θ2 =
n1 sin θ1. This gives

rs = n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
= n1n2

n1n2
× cos θ1 sin θ2 − cos θ2 sin θ1

cos θ1 sin θ2 + cos θ2 sin θ1
= − sin(θ1 − θ2)

sin(θ1 + θ2)
.

7 See, for example, F.S. Crawford, Jr., Waves, (McGraw-Hill, New York, 1968).
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Proceeding similarly with the “p” expression, we find

rp = n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
= n1n2

n1n2
× cos θ1 sin θ1 − cos θ2 sin θ2

cos θ1 sin θ1 + cos θ2 sin θ2
.

Now multiply the cos θ1 sin θ1 terms by sin2 θ2 + cos2 θ2 and multiply the cos θ2 sin θ2 terms by
sin2 θ1 + cos2 θ1. This produces four terms in the numerator and four terms in the denominator.
Factoring both gives

rp = sin θ1 cos θ2 − sin θ2 cos θ1

sin θ1 cos θ2 + sin θ2 cos θ1
× cos θ1 cos θ2 − sin θ1 sin θ2

cos θ1 cos θ2 + sin θ1 sin θ2
.

Hence,

rp = sin(θ1 − θ2)

sin(θ1 + θ2)

cos(θ1 + θ2)

cos(θ1 − θ2)
= tan(θ1 − θ2)

tan(θ1 + θ2)
.

17.3.4 Energy Transport
Conservation of energy requires that the reflected and refracted waves carry off the energy transported
to a flat interface by an incident electromagnetic wave. We confirm this using the Poynting vector
(17.6), which measures the energy current density or flow of power in matter. The specific quantity of
interest is the energy reflection coefficient,

R =
∣∣∣∣ 〈SR 〉 · n̂
〈SI 〉 · n̂

∣∣∣∣ . (17.40)

The time average of the Poynting vector for a wave characterized by (17.9) and (17.15) is

〈S〉 = 1

2
Re(E × H∗) = 1

2Z
|E|2k̂. (17.41)

The factors k̂I · n̂ and k̂R · n̂ which appear when we evaluate (17.40) are equal and opposite for the
incident and reflected waves, both of which lie entirely in medium 1 of Figure 17.3. Therefore, the
reflection coefficient is simply the square of the Fresnel reflection amplitude:

R =
∣∣∣∣ER

EI

∣∣∣∣2 = |r |2 . (17.42)

Using (17.34) and (17.36), the reflection coefficients for p-waves and s-waves are

Rp =
(
Z1 cos θ1 − Z2 cos θ2

Z1 cos θ1 + Z2 cos θ2

)2

and Rs =
(
Z2 cos θ1 − Z1 cos θ2

Z2 cos θ1 + Z1 cos θ2

)2

. (17.43)

The special case of normal incidence reduces both formulae in (17.43) to

R =
(
Z2 − Z1

Z2 + Z1

)2

=⇒
(
n2 − n1

n2 + n1

)2

. (17.44)

The rightmost expression in (17.44) applies to non-magnetic matter.
The energy transmission coefficient is defined similarly except that kT · n̂ differs from kI · n̂ and

Z1 differs from Z2. Therefore,

T =
∣∣∣∣ 〈ST 〉 · n̂
〈SI 〉 · n̂

∣∣∣∣ = Z1 cos θ2

Z2 cos θ1

∣∣∣∣ET

EI

∣∣∣∣2 . (17.45)
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For pure p-waves and pure s-waves, (17.45) reduces to

Tp = 4Z1Z2 cos θ1 cos θ1

(Z1 cos θ1 + Z2 cos θ2)2 and Ts = 4Z1Z2 cos θ1 cos θ2

(Z2 cos θ1 + Z1 cos θ2)2
. (17.46)

At normal incidence,

T = 4Z1Z2

(Z1 + Z2)2
=⇒ 4n1n2

(n1 + n2)2
. (17.47)

All these reflection and transmission coefficients are consistent with conservation of energy because,
as the reader can check,

R + T = 1. (17.48)

17.3.5 Polarization by Reflection
An unpolarized electromagnetic wave can be polarized by reflection. This occurs because the Fresnel
reflection amplitudes for its “s” and “p” components vanish at different angles of incidence. To find
the angle where a p-wave does not reflect, we square the p-wave impedance matching condition
Z1 cos θ1 = Z2 cos θ2 derived from (17.34) and add this to the square of Snell’s law (17.32). This gives(

Z1

Z2

)2

cos2 θ1 +
(
n1

n2

)2

sin2 θ1 = cos2 θ2 + sin2 θ2 = 1. (17.49)

The “s” case produces the same equation—withZ1 andZ2 interchanged—when we use the impedance
matching condition Z1 cos θ2 = Z2 cos θ1 derived from (17.36). Therefore, if we replace θ1 by θE for
the “s” case and θB for the “p” case, these equations imply that

s : tan2 θE = (Z2/Z1)2 − 1
1 − (n1/n2)2 = μ2

μ1
· ε1μ2 − ε2μ1
ε2μ2 − ε1μ1

p : tan2 θB = (Z1/Z2)2 − 1
1 − (n1/n2)2 = ε2

ε1
· ε2μ1 − ε1μ2
ε2μ2 − ε1μ1

.

(17.50)

The derivation of (17.50) shows that θE = θB only when Z1 = Z2, in which case both angles are
zero. An arbitrary set of constitutive parameters predicts different values for θE and θB . Consequently,
an unpolarized wave incident at θB reflects only its “s”-component and an unpolarized wave incident
at θE reflects only its “p”-component. This is what is meant by “polarization by reflection”. When the
two media in question are non-magnetic, μ1 = μ2 = μ0 and (17.50) reduces to

tan2 θE = −1 and tan2 θB = ε2

ε1
. (17.51)

The left equation has no solution. Since n = c
√
μ0ε, the right equation shows we can produce a pure

s-wave by reflecting an unpolarized wave from the interface at Brewster’s angle of incidence:

θB = tan−1

(
n2

n1

)
. (17.52)

Combining (17.52) with Snell’s law (17.32) shows that

sin θ2 = n1

n2
sin θB = cot θB sin θB = cos θB ⇒ θB + θ2 = π

2
. (17.53)

Brewster’s angle occurs when the transmitted wave vector and the putative reflected wave vector are
perpendicular.
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Figure 17.5: Relative polarization by reflection, %(θ1).

It is not necessary to operate exactly at the Brewster angle to achieve a significant degree of
polarization by reflection. This may be seen from Figure 17.5, which plots the relative polarization,

% =
∣∣∣∣Rs − Rp

Rs + Rp

∣∣∣∣ , (17.54)

as a function of the angle of incidence for visible light in air (n1 = 1) reflected from a glass slide
(n2 = 1.5). Complete s-polarization occurs at the Brewster angle, θB ≈ 56◦.

It is worth noting that the “p” reflection coefficient in (17.34) changes sign when the incident
angle passes through the Brewster angle. The corresponding “s” reflection coefficient in (17.36) does
not.8 Therefore, because the z-components of kI and kR have opposite signs, an incident wave with
right circular polarization reflects with left elliptical polarization when θI < θB and reflects with right
elliptical polarization when θI > θB . The refracted wave is also generally elliptical, but retains the
rotational sense of the incident wave for all angles of incidence.

Finally, there is the question of the physical origin of the disappearance of the reflected p-wave at
the Brewster angle(s). The same question may be asked of the origin of the reflected in the paragraph
and refracted waves in the first place. As mentioned following (17.18), the only possibility is that the
polarization P(r, t) and magnetization M(r, t) in both media produce electric fields which (i) interfere
destructively with the incident wave in medium 2 and (ii) produce the reflected and refracted waves in
medium 1 and medium 2, respectively.9

17.3.6 Total Internal Reflection
Snell’s law (17.32) predicts that a refracted wave bends away from the interface normal (θ2 > θ1)
when a monochromatic plane wave propagates from a high-index material to a low-index material
(n1 > n2). However, when the angle of incidence θ1 reaches a critical angle θC defined by

sin θC = n2/n1, (17.55)

the angle of refraction θ2 reaches π/2 and the refracted wave propagates parallel to the interface. The
simple geometric meaning of Snell’s law breaks down when θ1 > θC and a consistent interpretation
demands a generalization of our previous analysis. The key is to write out the “p” electric field which

8 See the lower left panel of Figure 17.6.
9 See Doyle (1985) cited in Sources, References, and Additional Reading.
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refracts into medium 2 in the left panel in Figure 17.4:

E2(x, z) = ET exp[i(k2 · r − ωt)] = ET exp[i(k2xx + k2zz − ωt)]. (17.56)

From (17.28) and (17.31), the component of k2 parallel to the interface is

k2x = k1x = k1 sin θ1 = ω

c
n1 sin θ1. (17.57)

Snell’s law gives the component of k2 normal to the interface as

k2
2z = k2

2 cos2 θ2 =
(ω
c

)2
n2

2 cos2 θ2 =
(ω
c

)2
n2

2(1 − sin2 θ2) =
(ω
c

)2
n2

2 − n2
1 sin2 θ1. (17.58)

The last term in (17.58) is negative when n1 > n2 and θ1 > θC . This motivates us to write n2 cos θ2 =
i

√
n2

1 sin2 θ1 − n2
2 and use (17.55) and (17.58) to define a positive real number κ so

k2z ≡ iκ = i
ω

c
n1

√
sin2 θ1 − sin2 θC. (17.59)

The positive square root in (17.59) ensures that the electric field decays (rather than grows) exponen-
tially in medium 2:

E2(x, z, t) = ET e
−κz exp(ik1x sin θ1 − ωt). (17.60)

It is appropriate to call (17.60) an interfacial wave because it is non-zero only within a mean distance
κ−1 of the z = 0 plane in medium 2. The wave propagates in the x-direction (along the interface) with
a phase speed

vp = ω

k1x
= c

n1 sin θ1
>

c

n1
= vp1. (17.61)

However, since θ1 > θC ,

vp = c

n1 sin θ1
= c/n2

(n1/n2) sin θ1
=
(

sin θC
sin θ1

)
vp2 < vp2. (17.62)

This shows that the refracted wave (17.60) propagates along the interface with a phase speed which
lies between the phase speeds characteristic of either of the two bounding media:

vp1 < vp < vp2. (17.63)

The amplitude ET in (17.60) is constrained by the Maxwell law ∇ · E2 = 0. Using (17.56), (17.59),
and the leftmost equation in (17.57), this constraint reads

k2 · E2 = 0 = k2xET x + k2zET z = k1xET x + iκET z, (17.64)

or

ET z

ET x

= − iκ

k1 sin θ1
. (17.65)

The important conclusion from (17.60) and (17.65) is that the refracted plane wave field (17.60) is not
uniform because its amplitude is not constant on planes perpendicular to the x-direction of propagation
and it is not transverse because it has a non-zero component along the x-direction of propagation.
Both features are a consequence of the interface breaking the translational invariance of an infinite
medium. The fact that (17.65) is pure imaginary implies that the physical electrical field vector (the
real part of ET ) rotates in the x-z plane—a longitudinal version of a conventional transverse plane
wave with elliptical polarization.
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Figure 17.6: Magnitude and phase of the Fresnel reflection amplitude r = ER/EI as a function of angle
of incidence for n1 < n2 (left side) and n1 > n2 (right side). Figure adapted from Zhang and Li (1998).

The phenomenon discussed in this section is called total internal reflection because the magnitude
of the reflected wave is equal to the magnitude of the incident wave. To see this, set μ1 = μ2 = μ0 in
the “p” reflection amplitude in part (a) of Example 17.2 and use (17.58) to eliminate cos θ2 in favor of
k2z. Then use (17.59) to eliminate k2z in favor of κ . Because k2 = n2ω/c, the result is

rp = n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
= n2k2 cos θ1 − iκ

n2k2 cos θ1 + iκ
. (17.66)

The far right side of (17.66) is a complex number of the form (a − ib)/(a + ib), which has magnitude
one. In fact,

rp = e−iδ, (17.67)

where tan(δ/2) = b/a characterizes the phase of the reflected wave with respect to the incident wave.
The latter is shown in the lower right panel of Figure 17.6, which summarizes the behavior of the
reflection amplitudes at optical frequencies for air/glass interfaces as a function of angle of incidence.
Particularly noteworthy is the non-zero difference in the phase acquired by s- and p-waves when each
suffers total internal reflection. This means that a totally reflected wave is elliptically polarized. Fresnel
exploited this fact himself to convert linearly polarized light into circularly polarized light.
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17.3.7 Non-Uniform and Evanescent Plane Waves
The refracted wave (17.60) is an example of an inhomogeneous or non-uniform plane wave. This is
a plane wave-like solution of the source-free Maxwell equations where the amplitude of the wave
is not constant on planes perpendicular to the direction of propagation. Indeed, an ordinary uniform
plane wave propagating along k may be regarded as a non-uniform plane wave propagating along, say,
p = kzẑ:

E(r, t) = Eei(k·r−ωt) = Eei(kxx+kyy)ei(kzz−ωt) = E′(x, y)ei(p·r−ωt). (17.68)

The refracted wave (17.60) is also an example of an evanescent plane wave. The name (from a Latin
word meaning “to vanish”) is appropriate because the amplitude of an evanescent wave decreases
exponentially along some direction in space. A general approach to evanescent waves recognizes that
the fields in (17.9) solve the vector wave equation even when k is a complex vector with real and
imaginary parts defined by k = q + iκ . The electric field for such a wave is

E(r, t) = E exp[i(q · r − ωt)] exp(−κ · r). (17.69)

We compute the corresponding magnetic field using (17.11) because ZH = k̂ × E in (17.15) is no
longer valid when k is complex and q and κ are not parallel. Accordingly,

H(r, t) = 1

ωμ
k × E exp[i(q · r − ωt)] exp(−κ · r). (17.70)

For non-dissipative media, the real and imaginary parts of k · k = μεω2 from (17.14) give

q2 − κ2 = μεω2 and q · κ = 0. (17.71)

The real part of (17.69) diverges as κ · r → −∞. This unphysical behavior disqualifies it as a possible
electric field in an infinite medium. However, as shown by (17.60), (17.69) with κ = κ ẑ and κ > 0
is perfectly well behaved in a medium which occupies only the half-space z > 0. We leave it as an
exercise for the reader to prove that the phase velocity of an evanescent wave is always less than the
uniform plane wave value c/n.

Several familiar ideas need revision when k is a complex vector. Not least, the planes of constant
phase in (17.69) are perpendicular to the real vector q, while planes of constant amplitude are perpen-
dicular to the real vector κ . The right member of (17.71) constrains these planes to lie at right angles
to each other.10 The same planes are parallel to one another for an ordinary, uniform plane wave.
Equally important, the two Maxwell equations in (17.10) no longer have the meaning of geometrical
orthogonality when E, H, and k are all complex vectors.11 Similarly, the Maxwell equation E · k = 0
[see (17.15)] does not imply that E∗ · k = 0. Example 17.3 illustrates this explicitly.

Example 17.3 Show that Rp = 1 and Tp = 0 when a p-polarized wave suffers total internal reflec-
tion.

Solution: Rp = 1 follows immediately from (17.67) and the formula (17.42) for the reflection
coefficient. Tp = 0 is more subtle because the Poynting vector formula (17.41) used to evaluate
(17.45) assumes a real wave vector. Instead, (17.57) and (17.59) show that total reflection produces
a refracted wave E2 with a complex wave vector k2 = k2x x̂ + iκ ẑ. Under these conditions, (17.70)

10 This constraint changes to q · κ > 0 in conducting matter. See Section 17.6.
11 See the box labeled “Complex Vectors” following (16.62).
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gives the time averaged Poynting vector as

〈S2 〉 = 1

2
Re

(
E∗

2 × H2
) = 1

2ωμ2
Re

[
E∗

2 × (k2 × E2)
] = 1

2ωμ2
Re

[|E2|2k2 − (E∗
2 · k2)E

]
.

The unfamiliar factor here is

E∗
2 · k2 = E∗

2xk2x + iκE∗
2z.

We eliminate E∗
2xk2x from the preceding equation by using ∇ · E2 = 0 in the form

(k2 · E2)∗ = 0 = E∗
2xk2x − iκE∗

2z.

Therefore,

〈S2 〉 · ẑ = 1

2ωμ2|Re
{
iκ|E2|2 − 2iκ|E2z|2

} = 0.

The corresponding transmission coefficient (17.45) vanishes also.

17.4 Radiation Pressure

The force per unit area exerted on a body when it reflects or absorbs an electromagnetic wave is
called radiation pressure. The ultimate source of this force is a transfer of linear momentum from the
wave to the body. Therefore, calculations of radiation pressure exploit the conservation law derived in
Section 15.8.2 which relates the mechanical force density f to the field momentum density, gEM, and
the electromagnetic stress tensor, T :

f = −∂gEM

∂t
+ ∇ · T . (17.72)

Integrating (17.72) over a volume V bounded by a surface S and using the divergence theorem, the
force which acts on V is

F = −
∫
V

d 3r
∂gEM

∂t
+
∫
S

dS n̂ · T . (17.73)

If the incident field is confined to a wave packet, the pressure can be computed entirely from the time
rate of change of gEM because S can be extended to infinity where the fields of the packet vanish. If the
incident field is time-harmonic (and thus extends over all of space), the time-averaged pressure can be
computed entirely from T because the time-average of ∂gEM/∂t is zero at every point in V .

17.4.1 An Incident Time-Harmonic Plane Wave
In this section, we calculate the radiation pressure for the situation shown in Figure 17.7 where a
normal-incidence time-harmonic plane wave is partially reflected and partially transmitted by a semi-
infinite, non-magnetic dielectric. The “volume” of integration is the plane z = 0, so the j th component
of the time-averaged force is

〈Fj 〉 =
∫
S

dAnk〈Tkj 〉, (17.74)
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Figure 17.7: The incident, reflected, and transmitted plane waves which produce radiation pressure at the
surface of a simple, semi-infinite dielectric.

where the planes z = 0− and z = 0+ comprise S and the stress tensor is [see (15.113)]

Tij = DiEj + BiHj − 1

2
δij (D · E + B · H). (17.75)

For the geometry shown in Figure 17.7, the stress tensor is diagonal and its time average is

〈T 〉 = 1

4

⎡
⎢⎢⎢⎣
ε|E|2 − μ|H|2 0 0

0 μ|H|2 − ε|E|2 0

0 0 −ε|E|2 − μ|H|2

⎤
⎥⎥⎥⎦ . (17.76)

In light of this diagonal structure, (17.74) gives the time-averaged radiation pressure on an area A of
the z = 0 plane of Figure 17.7 as12

〈Prad 〉 = 〈Fz 〉
A

= 〈Tzz(z = 0+) − Tzz(z = 0−)〉. (17.77)

Figure 17.7 and (17.15) give the fields needed to evaluate (17.77) as

E =
⎧⎨
⎩

(EI + ER)x̂ z = 0−

ET x̂ z = 0+
and H =

⎧⎪⎪⎨
⎪⎪⎩
EI − ER

Z0
ŷ z = 0−

ET

Z
ŷ z = 0+.

(17.78)

Using Z = √
μ/ε, we find without difficulty that

〈Prad 〉 = 1

2
ε0E

2
I

[
1 +

(
ER

EI

)2

− ε

ε0

(
ET

EI

)2
]
. (17.79)

A quick check confirms that 〈Fx 〉 = 〈Fy 〉 = 0, as expected for normal incidence.
Equation (17.79) is often written in terms of the incident wave intensity I0 = |〈SI 〉|, the energy

reflection coefficient R, and the energy transmission coefficient T . These quantities are defined by
(17.41), (17.42), and (17.45), respectively. Hence, because εZ = nε0Z0 for our problem, the radiation
pressure becomes

〈Prad 〉 = I0

c
[1 + R − nT ] . (17.80)

Inserting the explicit expressions for R and T from (17.44) and (17.47) into (17.80) with n1 = 1 and
n2 = n gives an expression for the radiation pressure on the dielectric surface in Figure 17.7 that was

12 Notice that 〈Tzz 〉 = 〈uEM 〉 for this problem.
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first deduced by Poynting in 1905:

〈Prad 〉 = −2I0

c

n− 1

n+ 1
. (17.81)

From the first equality in (17.77), the negative sign in (17.81) means that the radiation force points
away from a dielectric with n > 1. Using (17.79), we conclude that the contribution to the radiation
pressure from the transmitted wave exceeds the contributions from the incident and reflected waves.

The analysis of radiation pressure simplifies if the substance which occupies z > 0 in Figure 17.7
absorbs all the energy transmitted through its surface. There is no propagating transmitted wave in that
case and we can set T = 0 in (17.80) to get

〈Prad 〉 = I0

c
[1 + R] . (17.82)

For a totally absorbing sample, R = 0 and 〈Prad 〉 = I0/c. For a totally reflecting sample, R = 1 and
〈Prad 〉 = 2I0/c. The factor of 2 is explicable qualitatively because twice the momentum must be
supplied by the sample to “turn around” the incident beam than is needed to absorb it.

Example 17.4 Use the left side of (17.72) to derive the time-averaged radiation pressure (17.81).

Solution: The Minkowski force density (15.112) is

fM = ρf E + jf × B − 1
2E

2∇ε − 1
2H

2∇μ.
This quantity produces the same time-averaged force as the Abraham force density (15.120) derived
in Section 15.8.3 because the two differ by a total time derivative. It is also possible to use the
Lorentz force density recorded in (15.121) of Section 15.9.13 Using fM, the force on an area A of
the free surface at z = 0 is

〈F 〉 =
〈∫

V

d 3r fM

〉
= −ẑ

A

4

z=0+∫
z=0−

E2 dε

dz
dz.

The electric field lies in the x-y plane and thus is continuous passing through z = 0. Hence, E2

comes out of the integral and is equal to the square of the transmitted field [see (17.38],

ET = 2

n+ 1
EI .

Because n2 = c2εμ0, we find

〈Fz 〉 = −A

4
E2
T (ε − ε0) = −A

4
ε0

[
2

n+ 1
EI

]2

(n2 − 1).

The incident wave intensity is the magnitude of the incident Poynting vector,

I0 = |〈SI 〉| = 1

2
ε0c

2E2
I .

Therefore, we reproduce (17.81),

〈Prad 〉 = 〈Fz〉
A

= −2I0

c

n− 1

n+ 1
.

13 See, e.g., C.F. Bohren, “Radiation forces and torques without stress tensors”, European Journal of Physics 32, 1515
(2011).
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Figure 17.8: A plane wave incident on an embedded layer is imagined to reflect back and forth inside the layer
any number of times before it exits.

17.5 Layered Matter

This section generalizes the single-interface problem studied in the previous two sections to the case
of layered media characterized by two or more parallel interfaces bounded by regions with uniform
dielectric properties. New phenomena occur because reflection and refraction from the interfaces
produce wave interference in the matter bounded by the interfaces. This geometry occurs in many
natural and man-made settings, and interference phenomena in layered dielectrics have been observed
in every spectral range between X-rays and radio waves. Our discussion begins with a two-interface
problem, proceeds to a general multilayer structure, and concludes with a practically important structure
called the Bragg mirror.

17.5.1 The Fabry-Perot Geometry
A glass microscope slide in air both reflects and transmits light. The net transmission coefficient T is
very sensitive to the interference inside the glass between the forward-going wave transmitted through
the front surface of the glass and the backward-going wave reflected from the back surface of the
glass. Long before light was identified as an electromagnetic phenomenon, George Airy took account
of interference and calculated T by summing the amplitudes of propagating waves that reflect back
and forth any number of times inside the slab before they exit. Matching conditions play no role
because each wave (represented by a directed line segment in Figure 17.8) is imagined to propagate
interference-free until it suffers reflection or transmission at one of the two interfaces. The calculation
requires only the Fresnel amplitudes r and t for a wave incident from the air side of the air/glass
interface and the corresponding quantities r ′ and t ′ for a wave incident from the glass side of the same
interface.

If�φ is the phase difference between two successive waves that exit the slab at the top of Figure 17.8,
the total transmitted electric field takes the form of a geometric series:

ET = EI

[
t t ′ + tr ′r ′t ′ei�φ + t(r ′r ′)2t ′ei2�φ + · · ·] = t t ′

1 − rr ′ei�φ
EI . (17.83)

To simplify (17.83), we pause to examine the single-interface refraction event in panel (a) of Figure 17.9
and the time-reversed version of the same event in panel (b). The latter simply reverses the directions
of the propagation wave vectors because (E,B) → (E,−B) under time reversal (see Table 15.1). Both
events occur with the same relative amplitudes if there is no absorption of electromagnetic energy. On
the other hand, it is easier to understand the event in panel (b) (which produces one outgoing wave
from two incoming waves) if we decompose it into the two events shown in panel (c) and panel (d).
The requirement that this decomposition preserve the relative amplitudes of the waves produces the
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(a) (b) (c) (d)

Figure 17.9: Wave-vector diagrams used to prove (17.84). Panel (b) is time-reversed with respect to panel (a).
See text for discussion.
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Figure 17.10: The thin-film transmission function (17.85) plotted for several values of the single-interface
reflectivity R.

Stokes relations

r2 + t t ′ = 1 and tr ′ + rt = 0. (17.84)

Two consequences of (17.84) are r = −r ′ and t t ′ = 1 − r2 = 1 − R. Substituting these into (17.83)
generates Airy’s formula for the fraction of energy transmitted through the film:

|T |2 =
∣∣∣∣ET

EI

∣∣∣∣2 =
[

1 + 4R

(1 − R)2 sin2(�φ/2)

]−1

. (17.85)

Figure 17.8 shows that the phase difference �φ = 2k�− k0a, where k = nω/c and k0 = n0ω/c.
Also, � = d/ cos θ and a = s sin θ0, where s = 2d sin θ/ cos θ . Combining these facts with Snell’s
law, n0 sin θ0 = n sin θ , gives the argument of the oscillatory factor in (17.85) as

�φ/2 = n
ω

c
d cos θ. (17.86)

Figure 17.10 plots (17.85) as a function of �φ/2 for several values of R.
A remarkable feature is that 100% transmission occurs whenever �φ/2 is an integer multiple of

π , independent of the value of R. At normal incidence, this resonance condition reads d = m 1
2 (λ/n),

which shows that complete transmission occurs when the dielectric film supports standing waves with
an integer number of half-wavelengths between its surfaces. Even when the transmission amplitude
is essentially zero for each individual interface, perfect transmission through the film occurs when all
the waves which exit the layer from the top in Figure 17.8 interfere constructively while all the waves
which exit from the bottom interfere destructively. Conversely, there is essentially zero transmission
at values of φ other than mπ when R → 1. In 1897, Charles Fabry and Alfred Perot realized that this
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Figure 17.11: Left panel: a cartoon of a multilayer. Right panel: the electric field amplitudes of forward-going
and backward-going plane waves in layer j at its boundaries.

interference-induced contrast could be exploited for interferometry. Today, the Fabry-Perot geometry
is widely used in the design of laser cavities and for high-resolution spectroscopy.

17.5.2 Waves in a Multilayer
The repeated-reflection method used in the previous section does not generalize easily to the study of
the interplay between reflection, refraction, and interference when a plane wave strikes a multilayered
medium like the one shown in the left panel of Figure 17.11. On the other hand, it is straightforward
to treat this geometry if we mimic our derivation of the Fresnel equations (Section 17.3.2) and
use electromagnetic matching conditions to relate the amplitudes of a minimal set of plane waves.
For simplicity, we specialize to normal incidence and calculate the net reflection and transmission
amplitudes R and T indicated in the diagram.

We treat the multilayer as a collection of N + 1 layers where layer j has index of refraction nj ,
wave impedance Zj , and thickness dj . Layer 0 is semi-infinite and extends to z = −∞. Layer N is
also semi-infinite and extends to z = +∞. The right panel of Figure 17.11 shows that we decompose
the total electric field in layer j , Ej (z) = Ej (z)x̂, into the sum of a right-going wave E+

j (z) and a
left-going wave E−

j (z). If E+
j and E−

j are the field amplitudes for the right-going and left-going waves
at the rightmost boundary of layer j , the right panel of Figure 17.11 also shows that propagation across
layer j causes each wave to accumulate a phase

φj = njdjω/c. (17.87)

The fields Ej and Hj are tangential and thus continuous everywhere. Imposing this continuity
condition at the left boundary of layer j gives

Ej−1 = E+
j−1 + E−

j−1 = E+
j exp(−iφj ) + E−

j exp(iφj )

Hj−1 = H+
j−1 +H−

j−1 = H+
j exp(−iφj ) +H−

j exp(iφj ).
(17.88)

Moreover, Hj = (E+
j − E−

j )/Zj because ZjH
+
j = E+

j , ZjH
−
j = −E−

j , and Ej = E+
j + E−

j . Invert-

ing this to get E+
j = 1

2 (ZjHj + Ej ) and E−
j = 1

2 (Ej − ZjHj ) permits us to write (17.88) in matrix
form as ⎛

⎝Ej−1

Hj−1

⎞
⎠ =

⎛
⎝ cosφj −iZj sinφj

−iZ −1
j sinφj cosφj

⎞
⎠
⎛
⎝Ej

Hj

⎞
⎠ . (17.89)

This equation relates the wave amplitudes in one layer to those in an adjacent layer. Therefore, repeated
application of the transfer matrix defined by (17.89) permits us to propagate waves from one side of
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the multilayer to the other:⎛
⎝E0

H0

⎞
⎠ =

N−1∏
j=1

⎛
⎝ cosφj −iZj sinφj

−iZ −1
j sinφj cosφj

⎞
⎠
⎛
⎝EN

HN

⎞
⎠ . (17.90)

For our problem, we set E+
0 = 1 and note that there is no left-moving wave in layer N . This

information permits us to use Hj = (E+
j − E−

j )/Zj and

E−
0 = R Z0H

+
0 = 1 Z0H

−
0 = −E−

0 E+
N = T E−

N = 0 (17.91)

to transform (17.90) to⎛
⎝ 1 + R

(1 − R)Z −1
0

⎞
⎠ =

N−1∏
j=1

⎛
⎝ cosφj −iZj sinφj

−iZ −1
j sinφj cosφj

⎞
⎠
⎛
⎝ T

T Z −1
N

⎞
⎠ . (17.92)

This completes the normal incidence problem because (17.92) generates two equations in the two
unknowns R and T .14

Application 17.2 Bragg Mirrors

The multiple interface structures shown in Figure 17.12 are called Bragg mirrors. The multilayer in the
left panel, composed of Pt metal and amorphous carbon, is used in space telescopes to reflect X-rays.
The semiconductor micropillar shown in the middle panel contains two GaAs/AlAs multilayers which
reflect near-infrared waves back and forth to form a resonant cavity for a laser. The right panel is a cross
section micrograph of alternating layers of high and low-density chitin in the wing of a Japanese jewel
beetle. This reflecting structure, rather than any natural pigmentation, is responsible for the brilliant
metallic color of this insect.

Pt

C

Pt

C
2 m

cavity

mirror

mirror

cacavitity

mirrrroror

mirrrroror

cavity

mirror

mirror

0.5 m

Figure 17.12: Left panel: a multilayer which reflects hard X-rays. Transmission electron micrograph
from Ohnishi et al. (2004). Middle panel: multilayer mirrors define a near-infrared laser cavity. Scanning
electron micrograph from Sanvitto et al. (2005). Copyright 2005, American Institute of Physics. Right
panel: cross section of the wing of a Japanese jewel beetle which reflects very strongly in the visible.
Transmission electron micrograph from Kinoshita and Yoshioka (2005).

The physics of a Bragg mirror becomes clear when we glance back at (17.38) and observe that
the normal-incidence Fresnel reflection amplitude r = (n1 − n2)/(n1 + n2) changes sign (but not
magnitude) at the successive interfaces of a multilayer composed of alternating layers of two dissimilar

14 The generalization of (17.92) to an arbitrary angle of incidence requires very little additional work. See, e.g., Lipson,
Lipson, and Tannhauser (1995) in Sources, References, and Additional Reading.
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materials. Therefore, a net reflective structure will result if we choose the layer thicknesses and indices
of refraction so waves advance in phase by the same amount through every layer and all partially
reflected waves add constructively. To be more quantitative, we treat the multilayer in Figure 17.11 as
a stack of M bilayers where each bilayer consists of a non-magnetic slab with thickness dA and index
of refraction nA joined to a non-magnetic slab with thickness dB and index of refraction nB . Using
2π/λ = ω/c in (17.87), the physical situation imagined above will be achieved if

φ = 2πnAdA/λ = 2πnBdB/λ = π/2, 3π/2, . . . (17.93)

For a sufficiently large number M of A/B bilayers, such a multilayer should behave like a highly
reflective and wavelength-specific mirror.

The repeated bilayer structure of a Bragg mirror reduces the matrix product in (17.92) to a product
of two matrices repeated M times, namely,⎡

⎣
⎛
⎝ cosφ −iZA sinφ

−iZ −1
A sinφ cosφ

⎞
⎠
⎛
⎝ cosφ −iZB sinφ

−iZ −1
B sinφ cosφ

⎞
⎠
⎤
⎦M

(17.94)

or ⎛
⎜⎜⎝

cos2 φ − ZA

ZB

sin2 φ −i(ZA + ZB ) sinφ cosφ

−i(Z−1
A + Z−1

B ) sinφ cosφ cos2 φ − ZB

ZA

sin2 φ

⎞
⎟⎟⎠

M

. (17.95)

Our choice of φ = π/2, 3π/2, . . . diagonalizes (17.95), so (17.92) becomes

1 + R =
(

−ZA

ZB

)M

T

1 − R =
(

−ZB

ZA

)M
Z0

ZN

T .
(17.96)

For simplicity, set ZN/Z0 = 1 and recall that ZA/ZB = nB/nA for non-magnetic materials. In that
case, solving (17.96) for R gives

R =

(
−nB

nA

)M

−
(

−nB

nA

)−M

(
−nB

nA

)M

+
(

−nB

nA

)−M . (17.97)

Whether nA/nB > 1 or nA/nB < 1, one term dominates the other in both the numerator and
denominator of (17.97) whenM � 1. The result is R → ±1, as anticipated. A numerical example is a
GaAs/AlAs multilayer mirror with M = 25, nGaAs = 3.5, and nAlAs = 3.0. For these choices, (17.97)
gives |R| = 0.999. The name “Bragg mirror” is used for these structures because the condition (17.93)
written as nAdA + nBdB = λ/2 is reminiscent of the “Bragg condition” for constructive interference
when X-rays scatter from parallel planes of atoms in a crystal. �

Example 17.5 Let a thin layer of a non-magnetic dielectric with index n and thickness d completely
cover a substrate material with index of refraction ns . Find n and d such that a normal incidence
electromagnetic plane wave does not reflect from the layer. This kind of anti-reflective coating is
the most common use of a dielectric multilayer.
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Solution: We use (17.92) for a single layer and set R = 0. UsingZi/Zj = nj/ni and n0 = 1 gives

1 = (cosφ − i
ns

n
sinφ)T

1 = (−in sinφ + ns cosφ)T .

Eliminating T gives cosφ − i(ns/n) sinφ = ns cosφ − in sinφ. The index ns �= 1, so we must
have cosφ = 0. Therefore, using (17.87) and ω/c = 2π/λ, we conclude that

n = √
ns and nd = odd integer × π

4
λ.

With this choice for n, the air, coating, and substrate have indices of refraction 1,
√
ns , and ns .

This implies that the normal-incidence Fresnel reflection amplitude in (17.38) is the same for the
air/coating and coating/substrate interfaces. Hence, with our choice for d, waves reflected from
these interfaces will always interfere destructively.

17.6 Simple Conducting Matter

Simple conducting matter is defined by the constitutive relations D = εE, B = μH, and jf = σE
(Ohm’s law) with constant values for ε, μ, and σ . We assume no sources of free charge (ρf = 0) so
the Maxwell equations (17.1) and (17.2) reduce to

∇ · E = 0 ∇ · H = 0 (17.98)

and

∇ × E = −μ∂H
∂t

and ∇ × H = σE + ε
∂E
∂t

. (17.99)

Two observations are germane. First, although the conductivity σ does not appear in both equations
in (17.99), the familiar trick of taking the curl of one equation and substituting into it from the other
equation shows that E and H satisfy the same generalized wave equation:(

∇2 − μσ
∂

∂t
− με

∂2

∂t2

){
E
H

}
= 0. (17.100)

A second observation is that a conducting system continuously drains energy from resident electro-
magnetic fields. This follows from Poynting’s theorem for matter (Section 15.8.1), where the rate at
which the fields lose energy by doing work on the current carriers in simple conducting matter is

dW

dt
=
∫
V

d 3r jf · E = σ

∫
V

d 3r |E|2. (17.101)

The irreversible dissipation of field energy predicted by (17.101) appears as Joule heat.

17.6.1 Monochromatic Plane Waves
We seek a solution to (17.98) and (17.99) in the form of a monochromatic plane wave,

E(r, t) = E exp[i(k · r − ωt)] and H(r, t) = H exp[i(k · r − ωt)]. (17.102)

The two divergence equations give

k · E = 0 and k · H = 0. (17.103)
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The two curl equations give

k × E = ωμH and k × H = −ω(ε + iσ/ω)E. (17.104)

Comparing (17.103) and (17.104) with (17.10) with (17.11) shows that the field equations for con-
ducting matter are identical to the field equations for transparent matter (Section 17.2) except that ε is
replaced by a complex and frequency-dependent permittivity,15

ε̂(ω) = ε + i
σ

ω
= ε′ + iε′′. (17.105)

Consequently, we mimic (17.4) to define a complex and frequency-dependent index of refraction,
n̂(ω), and mimic (17.14) to find the dispersion relation:

k · k = k̂2 = ε̂(ω)μω2 = μεω2 + iμσω ≡ n̂2(ω)
ω2

c2
. (17.106)

The frequency dependence of ε̂(ω) means that even a “simple” conductor is a dispersive medium in
the sense of the first paragraph of this chapter.

The dispersion relation (17.106) requires k to be a complex vector. Following Section 17.3.7, we
substitute k = q + iκ into (17.106) to get a generalization of (17.14) for conducting matter:

q2 − κ2 = μεω2 and q · κ = σμε. (17.107)

The vectors q and κ may or may not be parallel. Here, we assume parallelism and use a real unit vector
k̂ to write

k = k̂k̂ = n̂
ω

c
k̂ = (n′ + in′′)

ω

c
k̂. (17.108)

When combined with (17.103), this choice for k makes the plane waves in (17.102) transverse, as they
are in vacuum and in transparent matter. They also satisfy the analog of (17.15),

k = n̂
ω

c
k̂, k̂ · E = 0, and ẐH = k̂ × E, (17.109)

with the complex and frequency-dependent wave impedance,16

Ẑ(ω) =
√

μ

ε̂(ω)
. (17.110)

The complex nature of Ẑ guarantees that H in (17.109) is not in phase with E. This is an inductive
effect associated with the Faraday’s law magnetic field produced by the time-varying current density
j = σE in the conducting matter.

Substituting k from (17.108) into the left member of (17.102) gives the electric field in the conductor
as

E(r, t) = Ee−(ω/c)n′′ k̂ · r exp
[
i
(ω
c
n′ k̂ · r − ωt

)]
. (17.111)

The real exponential damps the amplitude of (17.111) as it propagates. Indeed, it is common to
define an absorption coefficient α,

α = 2n′′ω
c
, (17.112)

15 This chapter uses a circumflex over a non-boldface variable to denote a complex scalar. A circumflex over a boldface
variable continues to denote a real unit vector.

16 The connection between this quantity and the complex impedance defined in Section 14.13.1 will become clear later.
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17.6 Simple Conducting Matter 609

to characterize the exponential decay of the wave intensity (the square of the electric field) as prop-
agation proceeds. This is consistent with the irreversible absorption of field energy predicted by
(17.101).17

The detailed behavior of the field emerges when we use (17.106) and (17.108) to compute the real
and imaginary parts of the complex index of refraction. Specifically, n′ and n′′ have the same sign
because

n′2 − n′′2 = μεc2 and 2n′n′′ = μσω. (17.113)

We choose that sign as positive so (17.111) damps in the direction of propagation. Hence,

n′ = c

√
με

2

[√
1 +

( σ

ωε

)2
+ 1

]1/2

(17.114)

n′′ = c

√
με

2

[√
1 +

( σ

ωε

)2
− 1

]1/2

.

These expressions correctly reduce to n′ = c
√
με and n′′ = 0 in the limit of zero conductivity. Other-

wise, the factor σ/ωε should be familiar from our discussion of quasi-magnetostatics (Section 14.9).
It is large for a “good” conductor and small for a “poor” conductor.18 For the remainder of this chapter,
we confine ourselves to the low-frequency, “good” conductor limit because only in that case is the
relation jf = σE valid with σ equal to a constant (see Section 18.5.1).

17.6.2 The Skin Depth and Refraction into a Good Conductor
Equation (17.111) diverges as k̂ · r → −∞ and thus cannot be a solution of the Maxwell equations
in an infinite conducting medium. On the other hand, (17.111) could well be the wave refracted into
a semi-infinite conductor (z > 0) when a plane wave impinges upon it from a semi-infinite vacuum to
its left (z < 0). For a good conductor, the inner square root in (17.114) approaches σ/ωε � 1, and

n′ ≈ n′′ ≈ c

√
μσ

2ω
=
√
μσω

2

c

ω
= c/ω

δ(ω)
� 1. (17.115)

The last equality in (17.115) re-introduces the skin depth,

δ(ω) =
√

2

μσω
, (17.116)

which we defined in Section 14.10 as the characteristic length scale for quasistatic field penetration
into a conductor. The real and imaginary parts of the wave impedance for a good conductor also have
the same magnitude because

Ẑ =
√

μ

ε + iσ/ω
≈
√
μω

iσ
=
√
μω

σ
e−iπ/4 = 1 − i

σ δ
. (17.117)

Snell’s law, combined with the large value of n′ implied by (17.115), suggests that the wave refracted
into the conductor propagates essentially normal to the interface, independent of the angle of incidence.
We leave it as an exercise for the reader to prove that this guess is correct. The corresponding fields

17 The reader should contrast this with the damped exponential factor in (17.60), where no loss of field energy occurs.
See also Section 17.3.7.

18 In the context of low-loss dielectrics, σ/ωε is called the “loss tangent” because if ε̂ = |ε̂| exp(iθ ), (17.105) shows
that tan θ = ε′′/ε = σ/ωε.
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Figure 17.13: The physical electric field propagating into a sample of high conductivity matter confined to
z > 0. The field outside the sample is not shown.

are tangential to the interface, so (17.109), (17.111), and (17.117) give the fields inside the conductor
as

E(z, t) = E‖(0) exp(−z/δ) exp[i(z/δ − ωt)] (17.118)

and

H(z, t) = σδ

1 − i
ẑ × E(z, t). (17.119)

The phase velocity c/n′ of this wave is typically several orders of magnitude smaller than c/n. More
importantly, the equality of n′ and n′′ in (17.115) ensures that the main effect of a large conductivity
is to damp the fields very rapidly. The graph of Re E(z) in Figure 17.13 shows that the field (and thus
the induced ohmic current) is confined to a distance of order δ from the conductor surface at z = 0.
This agrees completely with the skin-depth behavior shown in Figure 14.13 for quasi-magnetostatic
AC current flow in an ohmic wire.

The magnetic field (17.119) behaves similarly except that it lags the electric field by π/4 [see
(17.117)] and its overall amplitude is very much larger. Actually, since the magnitude of H‖(0) is
approximately twice the magnitude of the tangential piece of the incident field at the surface,19 the
physics is better described if we read (17.118) and (17.119) to say that the electric field is very much
smaller than the magnetic field inside a good conductor. This dominance of the magnetic field over the
electric field is consistent with the fact that the electric field must disappear completely in the σ → ∞
limit of a perfect conductor.

17.6.3 Joule Heating in a Good Conductor
The damping in Figure 17.13 occurs because the conductor irreversibly dissipates field energy into
Joule heat. The rate at which this occurs is equal to the rate at which the electric field does work on the
mobile charges in conductor. Recalling (17.101), the time-averaged dissipation rate per unit volume is

d〈P 〉
dV

= 1

2
Re(E · j) = 1

2
σ |E|2. (17.120)

19 At the surface of a perfect conductor, the tangential components of HI and HR at the surface are parallel and equal in
magnitude while the tangential components of EI and ER at the surface are anti-parallel and equal in magnitude.
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Combining (17.120) with (17.118) and (17.119), the loss rate per unit area of conductor surface is

d〈P 〉
dA

=
∞∫

0

dz
d〈P 〉
dV

= 1

2
σ |E‖(0)|2

∞∫
0

dze−2z/δ = σδ

4
|E‖(0)|2 = 1

2σδ
|H‖(0)|2. (17.121)

The wave frequency and constitutive constants enter (17.121) through a quantity called the surface
resistance, RS . This is the ohmic resistance to the induced current density j offered by a rectangular
slab adjacent to the conductor surface with area A = L× L and thickness δ. The induced current
flows parallel to the surface. Therefore,

RS = L

Lδσ
= 1

δσ
=
√
μω

2σ
. (17.122)

Equation (17.121) will prove useful in Chapter 19 when we estimate ohmic losses in conducting
waveguides and resonant cavities.

17.6.4 Reflection from a Good Conductor
The Fresnel equations (Section 17.3.2) remain valid for complex impedances. Since Ẑ = μc/n̂, the
reflection amplitudes in (17.34) and (17.36) generalize to

r̂p = Ẑ1 cos θ1 − Ẑ2 cos θ2

Ẑ1 cos θ1 + Ẑ2 cos θ2
= μ1n̂2 cos θ1 − μ2n̂1 cos θ2

μ1n̂2 cos θ1 + μ2n̂1 cos θ2
(17.123)

and

r̂s = Ẑ2 cos θ1 − Ẑ1 cos θ2

Ẑ2 cos θ1 + Ẑ1 cos θ2
= μ2n̂1 cos θ1 − μ1n̂2 cos θ2

μ2n̂1 cos θ1 + μ1n̂2 cos θ2
. (17.124)

The fact that r̂s and r̂p generally differ in phase implies that a linearly polarized wave reflects from
a conductor with elliptical polarization.20 Otherwise, “The complexity of what appears at first to be
simplest of problems—the reflection of a plane wave from an absorbing surface—is truly amazing”.21

Thus chastened, we limit ourselves to the case when medium 1 is a non-absorbing dielectric with
n̂1 = n1 and medium 2 is a good conductor.

A good conductor is very reflective at the low frequencies where our model is valid. To understand
why, use n′

2 ≈ n′′
2 � n1 from (17.115) and μ1 = μ2 to evaluate (17.123) or (17.124) at normal

incidence to get

R(ω) = |r̂(ω)|2 =
∣∣∣∣ n̂2 − n1

n̂2 + n1

∣∣∣∣2 ≈ 1 − n1/n
′
2

1 + n1/n
′
2

≈ 1 −
√

8ε1ω

σ2
. (17.125)

This is the Hagen-Rubens relation, which describes the high reflectivity (and thus the shiny appearance)
of metals and semiconductors at visible wavelengths. Figure 17.14 shows that (17.125) provides a
very good fit to low-frequency experimental reflectivity data for a typical metal.

Using θ2 = 0,22 Figure 17.15 plots the θ1 dependence of Rs = |r̂s|2 and Rp = |r̂p|2 calculated
from (17.123) and (17.124) for a typical good conductor—seawater at a frequency used for satellite
communication. Rp dips to a minimum value at a “pseudo-Brewster” angle of incidence, but it never
goes completely to zero when σ/ωε � 1. The absence of a true Brewster angle can be understood

20 This also happens under conditions of total reflection (see Section 17.3.6).
21 This remark appears on page 507 of Stratton (1941). See Section 17.1 of Sources, References, and Additional

Reading.
22 See the remarks following (17.117).
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Figure 17.14: Reflectivity data for a metallic alloy. The dashed line fit to the Hagen-Rubens relation (17.125) is
very good below 3 eV. Figure from Connell (1990).
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Figure 17.15: Calculated reflectivity of seawater (0◦ C and 3.5% salinity) at 20 GHz where ε̂/ε0 ≈ 22 + i32.

qualitatively from (17.118) and (17.119). The key point is that a π/4 phase shift exists between the
electric and magnetic fields just inside a good conductor. The incident wave field exhibits no such
shift. Therefore, a reflected wave must be generated to make up the phase difference (at all angles
of incidence) to ensure that the tangential component of the total electric field is continuous at the
conductor surface.

Example 17.6 Medium 1 is a transparent dielectric and medium 2 is a good conductor. Show
that the value of the p-wave reflection coefficient at the pseudo-Brewster angle (assumed to be a
near-grazing angle α) can be written in terms of Ẑ2 alone.

Solution: (a) A good conductor has cos θ2 ≈ 1 and, at grazing incidence, cos θ1 = cos(π/2 − α) ≈
α. Therefore, (17.123) simplifies to

rp ≈ αZ1 − Ẑ2

αZ1 + Ẑ2
.

Since Rp = rpr
∗
p , the pseudo-Brewster angle is determined by the extremal condition

∂Rp

∂α
= ∂

∂α

[
αZ1 − Ẑ2

αZ1 + Ẑ2
× αZ1 − Ẑ∗

2

αZ1 + Ẑ∗
2

]
= 0.
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Carrying out the derivatives, we find

[
α2Z2

1 − |Ẑ2|2
]

(Ẑ2 + Ẑ∗
2 ) = 0 ⇒ α = |Ẑ2|

Z1
.

Using this value of α to evaluate Rp gives the desired formula,

Rp = |Ẑ2| − Ẑ2

|Ẑ2| + Ẑ2
× |Ẑ2| − Ẑ∗

2

|Ẑ2| + Ẑ∗
2

= |Ẑ2| − ReẐ2

|Ẑ2| + ReẐ2
.

17.7 Anisotropic Matter

We conclude with an introduction to electromagnetic wave propagation in anisotropic matter. This
subject is often called crystal optics to identify the class of materials where the scalar constitutive
relation D = εE is inadequate and a matrix constitutive relation D = ε · E is required instead. For
the case of plane wave propagation in crystals, we will find that (i) the index of refraction varies
with the direction of propagation; (ii) the electric field vector E is not perpendicular to the prop-
agation vector k; and (iii) the Poynting vector S is not parallel to k. These results lead to optical
phenomena like birefringence and practical applications like polarizing prisms and retarder wave
plates.

For simplicity, we focus on lossless, non-magnetic crystals where the elements εij of the dielectric
matrix are real and the diagonal elements are positive in the principal axis system. Figure 17.16
shows the three possibilities. In a cubic crystal, all the diagonal elements are equal and the sys-
tem responds to an electromagnetic wave exactly like an isotropic material. In a uniaxial crys-
tal, one direction is distinguished and the two directions perpendicular to this special optic axis
are equivalent. The dielectric properties are different in all three principal directions for a biaxial
crystal.

17.7.1 Fresnel’s Equation
Let all the field variables vary as exp[i(k · r − ωt)] and have real amplitudes (linear polarization).
Substituting this dependence into (17.1) and (17.2) with ρf = jf = 0 gives

k · D = 0 k · B = 0 (17.126)

and

k × E = ωB k × H = −ωD. (17.127)

These relations show that k, D, and B are mutually perpendicular. Moreover, because E ⊥ B, the
three vectors k, D, and E are coplanar, as shown in Figure 17.17. The fact that E · k �= 0 has many
consequences. Not least, the Fresnel equations for the reflection and refraction amplitudes at a material
interface (Section 17.3.2) are not valid if one or both materials are anisotropic.

It is conventional to define the wave normal vector n from

k = ω

c
n (17.128)

and write

cB = n × E and cD = −n × H. (17.129)
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Cubic Uniaxial Biaxial

Figure 17.16: The dielectric matrices for crystals in their principal axis systems.

Figure 17.17: The field vectors for an anisotropic material.

Surprisingly, B = μ0H and the cross product of E with the left member of (17.127) show that the
Poynting vector is not parallel to n. Rather, as shown in Figure 17.17, S is coplanar with n, E, and D:

S = E × H =
√
μ0

ε

[
E2n − (n · E)E

]
. (17.130)

Unlike waves in vacuum or in simple isotropic matter, the direction of wave energy flow in an
anisotropic crystal is not necessarily the same as the direction of wave propagation.

The magnitude n = |n| of the wave normal is the index of refraction. To find it, substitute H =√
ε0/μ0n × E into the right member of (17.129) and expand the triple cross product. The result,

D = ε0
[
n2E − (n · E)n

] = ε · E, (17.131)

implies that

(n2δij − ninj − εij /ε0)Ej = 0. (17.132)

The set of linear equations (17.132) has a solution if the determinant of the coefficients vanishes. This
is one form of Fresnel’s equation: ∣∣n2δij − ninj − εij /ε0

∣∣ = 0. (17.133)

Using (17.128) to rewrite (17.133) makes it clear that Fresnel’s equation determines the dispersion
relation, k(ω) or ω(k): ∣∣k2δij − kikj − μ0ω

2εij
∣∣ = 0. (17.134)

In practice, one evaluates (17.133) in the principal axis system where ε is diagonal. For the general
biaxial case (see Figure 17.16), the reader can show that the sixth-order terms in this 3 × 3 determinant
cancel and (17.133) reduces to

n2ε2
0 (ε1n

2
1 + ε2n

2
2 + ε3n

2
3) − ε0

[
n2

1ε1(ε2 + ε3) + n2
2ε2(ε1 + ε3) + n2

3ε3(ε1 + ε2)
]+ ε1ε2ε3 = 0.

(17.135)

Equations (17.135) and (17.128) show that the value of the index of refraction varies as a function of
the wave propagation direction. Indeed, substituting

n = n(sin θ cosφ ê1 + sin θ sinφ ê2 + cos θ ê3) (17.136)
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Figure 17.18: A plane wave refracts from an isotropic medium into a birefringent medium.

into (17.135) produces a quadratic equation for n2 with real coefficients. We conclude that two
waves with different indices of refraction can propagate in every direction (θ, φ). The two waves have
orthogonal states of linear polarization and propagate at different phase speeds. This is the phenomenon
of birefringence.

Figure 17.18 illustrates how birefringence manifests itself in the laboratory: a single optical ray
incident on a transparent anisotropic dielectric appears to split into two rays inside the crystal. This
happens because the anisotropy of the crystal does not change the kinematic condition that the
component of the wave vector parallel to the interface must be continuous (see Section 17.3.1). From
(17.128), kx = k′

x implies that nx = n′
x and, for a given incident polarization, this condition can be

satisfied by two waves, each with a different perpendicular component n′
z. One ray is ordinary in the

sense that its angle of refraction obeys Snell’s law. The other ray is extraordinary and its angle of
refraction does not obey this law. On the other hand, the observed direction of each ray follows the
path of its energy flow, which is determined by the direction of the Poynting vector (17.130) rather
than by the direction of n itself.

Application 17.3 Plane Wave Propagation in a Uniaxial Crystal

We specialize here to the uniaxial case illustrated in Figure 17.16 where ε1 = ε2 = ε⊥ and ε3 = ε‖. The
last of these corresponds to the “optic axis” of the crystal. Bearing in mind that n2 = n2

1 + n2
2 + n2

3,
the Fresnel equation (17.135) factors into

(ε0n
2 − ε⊥)

[
ε0ε‖n2

3 + ε0ε⊥(n2
1 + n2

2) − ε‖ε⊥
] = 0. (17.137)

By inspection, the two indices of refraction which satisfy (17.137) are

n2 = ε⊥
ε0

and
n2

3

ε⊥
+ n2

1 + n2
2

ε‖
= 1

ε0
. (17.138)

The solution on the left side of (17.138) is the ordinary wave and its phase speed is c/n = 1/
√
μ0ε⊥

for every direction of propagation. The solution on the right side of (17.138) is the extraordinary
wave. The parameterization (17.136) gives the angle-dependent phase speed of the extraordinary ray
as c/n(θ ), where

cos2 θ

ε⊥
+ sin2 θ

ε‖
= 1

n2ε0
. (17.139)

The two waves propagate at the same speed along the optic axis (θ = 0). �

�

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-17 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 17:49

616 WAVES IN SIMPLE MATTER: PROPAGATION, REFLECTION, AND REFRACTION

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is taken from the Introduction to

James Clerk Maxwell, “A dynamical theory of the electromagnetic field”, Philosophical Transactions of the
Royal Society of London 155, 459 (1865).

Section 17.1 Representative treatments of the material discussed in this chapter written for students of physics,
optics, and electric engineering are, respectively,

J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

M. Born and E. Wolf, Principles of Optics, 6th edition (University Press, Cambridge, 1980).

C.A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989).

Section 17.2 Example 17.1 and Section 17.2.2 come, respectively, from

V.D. Barger and M.G. Olsson, Classical Electricity and Magnetism (Allyn & Bacon, Newton, MA, 1987).

R.H. Good, Jr. and T.J. Nelson, Classical Theory of Electric and Magnetic Fields (Academic, New York, 1971).

Section 17.3 Hertz did it first, but broad acceptance of Maxwell’s theory was hastened by the matching-condition
derivation of the Fresnel equations in

Paul Drude, Optics (Longmans, Green and Co., London, 1902).

A good treatment of reflection and refraction at the undergraduate level and two useful papers on this subject
from the pedagogical literature are

M.H. Nayfeh and M.K. Brussel, Electricity and Magnetism (Wiley, New York, 1985).

William T. Doyle, “Scattering approach to Fresnel’s equations and Brewster’s law”, American Journal of Physics
53, 463 (1985).

J.E. Vitela, “Electromagnetic waves in dissipative media revisited”, American Journal of Physics 72, 393 (2004).

The first paper on negative refraction and a non-technical review of the subject are

V.G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ”, Soviet
Physics Uspekhi 10, 509 (1968).

J.B. Pendry, ”Negative refraction”, Contemporary Physics 45, 191 (2004).

Figure 17.6 was adapted from

K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, Berlin, 1998).

Section 17.5 Born and Wolf (see Section 17.1 above) is the standard reference for electromagnetic wave
propagation in layered media. Our discussion draws heavily on

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

S.G. Lipson, H. Lipson, and D.S. Tannhauser, Optical Physics, 3rd edition (University Press, Cambridge, 1995).

Airy’s calculation of the transmission amplitude for the Fabry-Perot geometry (and much else) is discussed in the
delightful

P. Connes, “From Newtonian fits to Wellsian heat rays: The history of multiple-beam interference”, Journal
of Optics (Paris) 17, 5 (1986).

The contributions of two prominent physicists to the subject of radio wave propagation in layered media are on
display in

A. Sommerfeld, Partial Differential Equations in Physics (Academic, New York, 1949), Chapter VI.

V.A. Fock, Electromagnetic Diffraction and Propagation Problems (Pergamon, Oxford, 1965).

The sources for the TEM and SEM micrographs in Figure 17.12 are

N. Ohnishi, Y. Nonumura, Y. Ogasaka, et al. “HRTEM analysis of Pt/C multilayers”, Optics for EUV, X-ray and
Gamma-ray Astronomy, edited by O. Citterio and S.L. O’Dell (SPIE, Bellingham, WA, 2004), pp. 508–517.

D. Sanvitto, A. Daraei, A. Tahraoui, et al. “Observation of ultrahigh quality factor in a semiconductor micro-
cavity”, Applied Physics Letters 86, 191109 (2005).

S. Kinoshita and S. Yoshioka, “Structural colors in nature: The role of regularity and irregularity”,
ChemPhysChem 6, 1442 (2005).
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Section 17.6 Figure 17.14 was adapted from

G.A.N. Connell, “Optical properties of amorphous metals using a ratio reflectance method”, Applied Optics
29, 4560 (1990).

Example 17.6 comes from Nayfeh and Brussel (see Section 17.3 above). The footnote in Section 17.6.4 about the
complexity of metallic reflection comes from Stratton (see Section 17.1 above).

Section 17.7 Our discussion follows Chapter XI of

L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960).

Problems
17.1 Waves in Matter in the ϕ = 0 Gauge

(a) Find a gauge function that makes ϕ(r, t) = 0 a valid choice of gauge.
(b) Derive the (generalized) inhomogeneous wave equation in matter (μ, ε) satisfied by the vector potential

in the ϕ = 0 gauge. There is no free charge or free current anywhere.
(c) Find the dispersion relation for plane-wave solutions for the equation in part (b). Do waves with k ⊥ A

differ from waves with k ‖ A?

17.2 Faraday Rotation During Propagation For propagation along the z-axis, a medium supports left circular
polarization with index of refraction nL and right circular polarization with index of refraction nR . If a plane
wave propagating through this medium has E(z = 0, t) = x̂E exp(−iωt), find the values of z where the
wave is linearly polarized along the y-axis.

17.3 Optically Active Matter In the absence of free charge or free current, the Maxwell equations in optically
active matter are

ε0∇ · E = ρind(r, t) ∇ · B = 0 ∇ × E = −∂B
∂t

∇ × B = μ0j ind(r, t) + 1

c2

∂E
∂t

= 0,

where ρind(r, t) = −∇ · P and j ind(r, t) = ∂P/∂t + ∇ × M.

(a) Let P = (ε − ε0)E and M = (μ−1
0 − μ−1)B, but do not introduce D or H. Assume plane wave behav-

ior for all relevant quantities, e.g., E(r, t) = E(k, ω) exp[i(k · r − ωt)]. Find j ind(k, ω) and ρind(k, ω).
Explain why your expression for ρind(k, ω) is the most general scalar that can be constructed from k,
E, and B that is linear in the fields. Explain why your expression for j ind(k, ω) is not the most general
vector than can be constructed from the same ingredients.

(b) Let ξ be a real constitutive constant. Explain why a term ξωB added to j ind in part (a) produces a
completely general current density vector and show that εωE + μ−1k × B + iξωB = 0.

(c) Show that the propagating waves in the medium of part (b) are determined by an equation of the form[
a −ib
ib a

] [
k̂ × E

E

]
= 0.

(d) Show that the solutions in part (c) are right and left circularly polarized waves that obey different
dispersion relations. Find the range of allowed values of ξ . Matter that behaves this way is called
optically active.

(e) Show that the constitutive relations D = εE + βB and B = μH + γE give an equivalent description of
optical activity. How are the two constants β and γ related to ξ?

17.4 Matching Conditions

(a) Explain why the matching conditions for the normal components of D and B are not needed to derive
the Fresnel equations.

(b) Derive the matching conditions for the components of the Poynting vector at a flat interface between
two transparent media.
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17.5 Escape from a Dielectric A point source of light is embedded near the flat surface of a dielectric with
index of refraction n. Treat the emitted light as a collection of plane waves (light rays) that propagate
isotropically away from the source. Find the fraction of light rays that can refract out of the dielectric into
the vacuum space above.

n

17.6 Almost Total External Reflection A plane wave in vacuum with wave vector kI reflects from a non-
magnetic sample into a plane wave with wave vector kR . At X-ray wavelengths, the index of refraction
of essentially all matter is very slightly less than 1. Typically, n ≈ 1 − δ with δ ∼ 10−5. This makes the
phenomenon of total external reflection of X-rays possible. Let q = kR − kI and show that the Fresnel
reflection coefficients for s- and p-polarization, Rs and Rp, both vary as q−4 when the angle α1 � 1 but not
quite small enough for total external reflection to occur.

1
1

Ik Rk

1
1

q

1n

17.7 Alternate Derivation of the Fresnel Equations Let k1 = (k1x, 0, k1z) be the wave vector of a plane wave
incident on the x-y plane which separates simple medium 1 from simple medium 2.

(a) Use (i) the Maxwell matching conditions for each component of the electric field and (ii) the fact that
plane waves in a simple medium are transverse to prove that

ER
z

EI
z

= k1zε2 − k2zε1

k1zε2 + k2zε1

ET
z

EI
z

= 2k1zε1

k1zε2 + k2zε1
.

Show that these are the Fresnel equations for p-polarization.
(b) Use a similar method and derive similar equations for HR

z /H
I
z and HT

z /H
I
z . Show that these are the

Fresnel equations for s-polarization.

17.8 Fresnel Transmission Amplitudes Derive the Fresnel transmission amplitude formulae for non-magnetic
matter: [

ET

EI

]
TE

= 2 cos θ1 sin θ2

sin(θ1 + θ2)
and

[
ET

EI

]
TM

= 2 cos θ1 sin θ2

sin(θ1 + θ2) cos(θ1 − θ2)
.

17.9 Guidance by Total Internal Reflection An optical fiber consist of a solid rod of material with index of
refraction nf cladded by a cylindrical shell of material with index nc < nf . Find the largest angle θ so that
a wave incident from a medium with index na remains in the solid rod by repeated total internal reflection
from the cladding layer.

cn

cn
f

n
an

17.10 Reflection from a Metal-Coated Dielectric Slab A plane wave E = ŷA exp[i(kz + ωt)] propagating in
vacuum in the −z-direction impinges at normal incidence on the front face of a (transversely infinite) slab
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with thickness d, index of refraction n, and magnetic permeability μ0. The back face of the slab (z = 0) is
coated with a very thin perfect conductor.

(a) Without appealing to the Fresnel equations, show that the amplitudes of the incident wave and wave
reflected back into the vacuum from the slab are equal. Show also that, when both are evaluated at the
front face of the slab, the phase of this reflected wave exceeds that of the incident wave by

α = π − 2 tan−1

[
tan(nkd)

n

]
.

(b) Calculate the pressure exerted on the metal coating due to surface currents induced in it by the wave.
Express your answer in term of the amplitude A of the wave incident on the slab from the vacuum.

17.11 Fresnel’s Problem for a Topological Insulator The optical properties of a remarkable class of materials
called topological insulators (TI) are captured by constitutive relations which involve the fine structure
constant, α = (e2/−hc)/(4πε0). With α0 = α

√
ε0/μ0, the relations are

D = εE − α0B H = B
μ

+ α0E.

(a) Begin with the Maxwell equations in matter with no free charge or current. Show that a monochromatic
plane wave of (E,B) is a solution of these equations for a TI and find the wave speed.

(b) A plane wave with linear polarization impinges at normal incidence on the flat surface of a TI. Show
that the transmitted wave remains linearly polarized with its electric field rotated by an angle θF . This
is called Faraday rotation of the plane of polarization.

(b) Show that the reflected wave remains linearly polarized with its electric field rotated by an angle θK .
This is called Kerr rotation of the plane of polarization.

17.12 Polarization Rotation by Reflection and Refraction A plane wave is incident on a flat interface between
two transparent, non-magnetic media. Let γI be the angle between the incident electric field vector and the
plane of incidence. The corresponding angles for the reflected and refracted field vectors are γR and γT .

(a) Use the Fresnel equations to deduce that

tan γR = −cos(θ1 − θ2)

cos(θ1 + θ2)
tan γI and tan γT = cos(θ1 − θ2) tan γI .

(b) Use these formulae to confirm the statement made in the text that, compared to the incident wave, the
reflected wave is more TE and the refracted wave is more TM.

17.13 The Fresnel Rhomb A piece of glass in the shape of a rhombic prism can be used to convert linearly
polarized light into circularly polarized light and vice versa. The effect is based on the phase change of
totally internally reflected light. For simplicity, let EI = EI‖ + EI⊥ with EI‖ = EI⊥.

(a) At each internal interface, show that the Fresnel equations give

ER

EI

]
⊥

=
cosα − i

√
sin2 α − 1

/
n2

cosα + i
√

sin2 α − 1
/
n2

= exp(−iδ⊥).
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(b) Show similarly that

ER

EI

]
‖
= −cosα − in2

√
sin2 α − 1/n2

cosα + in2
√

sin2 α − 1/n2
= exp(−iδ‖).

(c) Show that the polarization of the reflected wave is determined by δ⊥ − δ‖ and that

tan

[
1

2
(δ⊥ − δ‖)

]
= −

cosα
√

sin2 α − 1
/
n2

sin2 α
.

(d) If the index of refraction of non-magnetic glass is n = 1.5, show that the rhomb behaves as advertised
in air if the rhombic angle is � = 50.2◦ or � = 53.3◦.

17.14 Energy Transfer to an Ohmic Medium Show that the time-averaged rate at which power flows through
a unit surface area of an ohmic conductor is exactly equal to the time-averaged rate of Joule heating (per
unit surface area) in the bulk of the conductor.

17.15 Refraction into a Good Conductor Consider plane wave refraction from a non-conducting medium (ε, μ)
into a conducting medium (ε, μ, σ ). Ohmic loss requires that the refracted wave vector k2 be complex. The
figure below shows a proposed refraction geometry where k2 = q + iκ .

z

x

Ik Rk

1

2

2

1 1

q
, ,

,

(a) Explain why κ points in the +z-direction and why the angle of incidence still equals the angle of
reflection. Derive the generalization of Snell’s law for this problem.

(b) Use the dispersion relation in the conductor to prove that θ2 ≤ θ1.
(c) Derive a quadratic equation for the variable κ2. If δ(ω) is the skin depth, find �(ω) such that

κ = δ(ω)−1 exp

[
−1

2
�(ω)

]
.

(d) Show that θ2 � 1 for a good conductor, independent of the angle of incidence. Neglect the displacement
current for wave propagation inside a good conductor.

17.16 Phase Change for Waves Reflected from a Good Conductor Consider a TE (s-polarized) plane wave
incident at angle θ1 onto a good conductor with skin depth δ(ω) from a transparent dielectric with index of
refraction n1. Both materials are non-magnetic. Show that the phase of the reflected wave with respect to
the incident wave is approximately

π + tan−1[(ω/c)n1δ(ω) cos θ1].

17.17 Airy’s Problem Revisited Airy’s problem is the transmission of a monochromatic plane wave through
a transparent film (ε, μ) of thickness d. The text solved this problem by summing an infinite number of
single-interface Fresnel reflections and transmissions. Here, we specialize to normal incidence and use the
matching conditions and a five-wave analysis (a forward-going wave in the z > d vacuum, a forward-going
wave and a backward-going wave in the z < 0 vacuum, and a forward-going wave and a backward-going
wave in the film) to solve the same problem.
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(a) IfZ0 andZ are the wave impedances in the vacuum and in the film, show that the fraction of the incident
power transmitted into the vacuum through the z = d surface of the film is

|T |2 =
∣∣∣∣ 4ZZ0

(Z + Z0)2 − (Z − Z0)2 exp(2ikd)

∣∣∣∣2 .
(b) Show that the formula in part (a) agrees with Airy’s formula (derived in the text) for the same

quantity.

17.18 Radiation Pressure on a Perfect Conductor A plane wave with electric field Einc(x, z) =
ŷE0 exp[ik(z sin θ − x cos θ ) − iωt] is incident on a perfect conductor which occupies the half-space x < 0.
Find the pressure exerted on the conductor by (a) evaluating the Lorentz force on the currents generated on
the surface of the conductor and by (b) evaluating the linear momentum change between the incident and
reflected waves.

17.19 Phase Velocity of Evanescent Waves An electromagnetic wave with wave vector k = q + iκ propagates
in simple matter with index of refraction n. Prove that the phase velocity of this wave is always less than
c/n.

17.20 A Corner Reflector A corner reflector has two semi-infinite, perfect-conductor surfaces joined at a
common edge with a right angle between the two surfaces. Prove that a right (left) circularly polarized plane
wave incident on the reflector as indicated in the diagram reflects back toward the source as a right (left)
circularly polarized plane wave.

k

17.21 Bumpy Reflection A vacuum wave E0(r, t) = x̂E0 exp[i(kyy + kzz − ωt)] strikes a perfectly conducting
surface.

(a) Write down the total electric field E which exists above the surface when the latter is defined by z = 0.
(b) To the field E found in part (a), add a linear combination of plane waves E′ such that E + E′ satisfies

the boundary conditions at a corrugated surface z = a sin(2πx/d) for the case when ωa/c � 1.
(c) Show that, if the incident angle is sufficiently close to grazing, E′ decreases exponentially from the

surface into the vacuum.

17.22 Photonic Band Gap Material

(a) Derive the generalized wave equation satisfied by E(r, t) in non-magnetic matter when the permittivity is
a function of position, ε(r). Specialize the equation to the case when ε(r) = ε(z) and E(r, t) = x̂E(z, t).

(b) Let E(z, t) = E(z) exp(−iωt) and let ε(z) = ε0[1 + α cos(2k0z)]. Show that the Fourier components
Ê(k) of the electric field satisfy the coupled set of linear equations(

k2 − ω2

c2

)
Ê(k) = ω2α

2c2

{
Ê(k − 2k0) + Ê(k + 2k0)

}
.

(c) Suppose α � 1 and focus on values of k in the immediate vicinity of k0, i.e., k = k0 + q where |q| � k0.
Show that the Fourier components Ê(q + k0) and Ê(q − k0) are larger than all others and, therefore,
that a 2 × 2 eigenvalue problem determines the dispersion relation. Hint: The wave frequency cannot
differ greatly from its α = 0 value in the limit considered.

(d) Solve the eigenvalue problem to find ω(k0, q). Study its behavior analytically at q = 0. Sketch the
complete dispersion curve and show that there is a range of frequencies—called a photonic band
gap—where no waves occur.
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17.23 Plane Wave Amplifier A plane electromagnetic wave EI cos(kI z + ωI t) is incident on a perfectly
reflecting mirror (solid line) that moves with constant velocity v = v ẑ. The reflected plane wave is
ER cos(kRz − ωRt).

I

R

L

(a) Use conservation of momentum to show that the force exerted on an area A of the mirror is

F = −A
{
SI + SR

c
+ v

c2
(SI − SR)

}
ẑ,

where S is the magnitude of the Poynting vector. Hint: When v �= 0, the electromagnetic momentum in
the volume between the mirror and any fixed reference plane (dashed line) changes in time.

(b) Use conservation of energy to show that

F · υ = A(SI − SR) + A(SI + SR)v/c.

(c) From (a) and (b), deduce that the reflected energy/time PR that flows through a fixed reference plane
(dashed line) exceeds the incident energy/time PI that flows through the same plane by the ratio

PR

PI

=
(

1 + v/c

1 − v/c

)2

.

(d) Relate the phase of the incident and reflected waves at the surface of the mirror (z = υt). Use this
relation to deduce that PR/PI = (ωR/ωI )2.

17.24 Laser Beam Bent by a Magnetic Field An external magnetic field B0 can cause the straight-line path
of a laser beam to deflect inside a non-simple material where the constitutive relations are B = μH and
D = εE − iγB × E. To see this, let a linearly polarized, monochromatic plane wave with electric field
strength E enter the material at normal incidence. Assume that B0 lies in a plane perpendicular to the
propagation vector k and makes an angle ϕ with D.

(a) Use explicit numerical estimates to show that the typical value of B0 produced by a laboratory electro-
magnet is much larger than the magnetic field associated with, e.g., a continuous-wave argon-ion laser
beam.

(b) To lowest order in B0, show that the time-averaged Poynting vector inside the material is

〈S〉 ≈ 1

2

kE2

μω

{
k̂ − Imγ

ε
sinϕ[cosϕB0 − sinϕk̂ × B0]

}
.

(c) What angle of ϕ produces maximum deflection?

17.25 An Anisotropic Magnetic Crystal Let the half-space z ≥ 0 be filled with a magnetic crystal where
H = μ−1 · B. The inverse permeability matrix μ−1 is (rows and columns labeled by x, y, z)

μ−1 = 1

μ0

⎡
⎣m 0 0

0 m m′

0 m′ m

⎤
⎦ .

Assume that ε = ε0 inside the crystal and that the real, dimensionless matrix elements satisfy m > m′ > 0.

(a) Show that ω(k, θ ) = ck
√
m−m′ sin 2θ for a wave E = x̂E0 exp[i(k · r − ωt)] inside the crystal when

k = k(ŷ sin θ + ẑ cos θ ).
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Problems 623

(b) A plane wave E = x̂E0 exp[i(kz − ωt)] is incident on this crystal from the vacuum (z < 0). Write out
an explicit formula for the electric field on both sides of the refraction interface.

17.26 A Complex Dielectric Matrix The region y < 0 is vacuum. The region y > 0 is filled with material where
μ = μ0 and Dij = εijEj . Let α, β, and γ be real numbers and take the dielectric matrix as

ε = ε0

⎡
⎣ α iβ 0

−iβ α 0
0 0 γ

⎤
⎦ .

(a) Write out the electric field everywhere if a wave incident from the vacuum is E = E0x̂ exp[iω(y/c − t)].

(b) Repeat part (a) if the incident field is E = E0
x̂ + ẑ√

2
exp[iω(y/c − t)].
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18 Waves in Dispersive Matter

If we accept the electromagnetic theory of light, there is nothing
left but to look for the cause of dispersion in the molecules of the

medium itself.
Hendrik Lorentz (1878)

18.1 Introduction

The colored bands of a rainbow are well separated in space (dispersed) because water droplets in the
atmosphere refract light with different wavelengths through different angles. Snell’s law predicts this
behavior because the index of refraction of water is a function of frequency. The simple conducting
matter studied in Section 17.6.1 had a frequency-dependent index of refraction also. In this chapter, we
argue that all real matter has this property of frequency dispersion and we discuss both its origins and
consequences. Among the latter, we show that a deep connection exists between frequency dispersion
and the dissipation of energy in matter. We also show that no electromagnetic information can be
communicated faster than the speed of light. Otherwise, we follow tradition and use simple classical
models to develop archetypes of frequency dispersion. This is perfectly adequate for a classical
thermal plasma, but it is manifestly inadequate for quantum mechanical condensed matter systems.
Nevertheless, with suitable caution there is much to learn from these models, even when applied to
solids, liquids, and gases.

18.2 Frequency Dispersion

The frequency dispersion of the index of refraction (and other constitutive parameters) occurs because
matter cannot respond instantaneously to an external perturbation. This is not a new idea. We encoun-
tered it in Section 14.13, when the inevitable time delay between voltage stimulus and current response
in AC circuit theory led us to define a complex, frequency-dependent impedance, Ẑ(ω), as the gen-
eralization of DC resistance. For convenience, we repeat the key steps in the argument here using a
time-dependent conductivity function σ (τ ). The time-delay aspect appears when we insist that the
response of the matter be causal. This means that the current density j(r, t) may depend on the electric
field at any time earlier than t but it cannot depend on the electric field at any time later than t . If, in
addition, we confine ourselves to the linear response of the matter to the electric field,

j(r, t) =
t∫

−∞
dt ′σ (t − t ′)E(r, t ′). (18.1)

In practice, σ (τ ) → 0 as τ → ∞ because the electric field in the distant past has a negligible effect
on the present-time current density. It is most convenient to extend the upper limit of integration in
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18.2 Frequency Dispersion 625

(18.1) to infinity and build causality directly into the conductivity. In other words, we constrain the
conductivity so

σ (τ < 0) = 0, (18.2)

and write

j(r, t) =
∞∫

−∞
dt ′σ (t − t ′)E(r, t ′). (18.3)

The right side of (18.1) is a convolution integral. This motivates us to define the Fourier transform
pairs

σ̂ (ω) =
∞∫

−∞
dt σ (t)eiωt and σ (t) = 1

2π

∞∫
−∞

dω σ̂ (ω)e−iωt (18.4)

and write Fourier representations for the current density and electric field:

j(r, t) = 1

2π

∞∫
−∞

dω ĵ(r, ω)e−iωt and E(r, t) = 1

2π

∞∫
−∞

dω Ê(r, ω)e−iωt . (18.5)

These definitions permit us to apply the convolution theorem (Section 1.6.2) to the Fourier transform
of (18.3) to conclude that

ĵ(r, ω) = σ̂ (ω)Ê(r, ω). (18.6)

Like Ẑ(ω), the conductivity σ̂ (ω) is a complex, linear response function.
An important property of σ̂ (ω) = σ ′(ω) + iσ ′′(ω) follows from the fact that j(r, t) and E(r, t) in

(18.3) are both real. This implies that σ (t) in the right member of (18.4) is also real. Therefore, equating
the latter equation to its complex conjugate and changing integration variables from ω to −ω shows
that

σ̂ (−ω) = σ̂ ∗(ω) ⇒ σ ′(ω) = σ ′(−ω) and σ ′′(ω) = −σ ′′(−ω). (18.7)

Generalizing this result to any equation similar to (18.3) leads us to conclude that the real (imaginary)
part of any causal response function is an even (odd) function of frequency.

18.2.1 The Equivalence of Alternative Descriptions
The frequency-dependent electric and magnetic susceptibility, dielectric permittivity, and magnetic
permeability are all defined like (18.6):

P̂(r, ω) = ε0χ̂e(ω)Ê(r, ω) and M̂(r, ω) = χ̂m(ω)Ĥ(r, ω) (18.8)

and

D̂(r, ω) = ε̂(ω)Ê(r, ω) and B̂(r, ω) = μ̂(ω)Ĥ(r, ω). (18.9)

The response functions in (18.8) and (18.9) are not all independent. For static fields, it is easy to
distinguish the long-distance displacement of “free” charge from the short-distance displacement
of “polarization” charge. This distinction becomes blurred when E(r, t) is time-harmonic because
charge oscillates back and forth in both cases. At high frequency, particularly, there is simply no
way to distinguish a time-harmonic conduction current with density j = σE from a time-harmonic
polarization current with density j = ∂P/∂t . For that reason, we use the left equation in (18.8) to equate
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the conduction current density (18.6) to the corresponding Fourier component of the polarization
current density:

ĵ(r, ω) = −iωP̂(r, ω) = −iωε0χ̂e(ω)Ê(r, ω). (18.10)

This relates σ̂ (ω) to χ̂e(ω). Then, because

D̂(r, ω) = ε0Ê(r, ω) + P̂(r, ω) = ε̂(ω)Ê(r, ω), (18.11)

we discover that1

ε̂(ω) = ε0 + i
σ̂ (ω)

ω
. (18.12)

It is a matter of taste whether one uses a dielectric function description or a conductivity description
for time-dependent electromagnetic problems in matter.

The distinction between polarization current density and magnetization current density (for linear
magnets) is similarly ambiguous. This follows from the constitutive relations, the identities ε =
ε0(1 + χe) and μ = μ0(1 + χm), and the current density formula,

j = ∂P
∂t

+ ∇ × M. (18.13)

Using ∇ × B = μ0j + c−2∂E/∂t , it is straightforward to confirm that (18.13) can be written as

j = χe + χm + χeχm

χe

∂P
∂t

, (18.14)

or as

j = χe + χm + χeχm

χm(1 + χe)
∇ × M. (18.15)

We conclude that time-dependent currents in matter may be described equivalently as polarization
effects, magnetization effects, or any combination of the two. For condensed matter systems below
optical frequencies, it is most natural to extrapolate from statics and use a dielectric permittivity ε̂(ω)
and magnetic permeability μ̂(ω) as in (18.9). In condensed systems at optical frequencies and above,
and particularly in plasma physics, it is common to set M = 0 and build all electric and magnetic
effects into an effective dielectric function or an effective conductivity. The ultimate choice of response
functions is entirely a matter of convenience.

Example 18.1 Use the dielectric response of a medium to a free charge density ρ̂f (r) exp(−iωt)
to argue that the inverse dielectric function, ε̂−1(ω), is a causal linear response function.

Solution: Free charge produces an electric field Êf (r, ω) exp(−iωt), where

ε0∇ · Êf (r, ω) = ρ̂f (r, ω).

On the other hand, dielectric theory defines a field, D̂(r, ω) exp(−iωt), where

∇ · D̂(r, ω) = ρ̂f (r, ω).

Combining these with the left member of (18.9) shows that

∇ · Ê(r, ω) = ε̂−1(ω)∇ · Êf (r, ω),

1 Note that (18.12) differs slightly from (17.105).
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18.3 Energy in Dispersive Matter 627

or

ρ̂(r, ω) = ε̂−1(ω)ρ̂f (r, ω).

This equation has the same structure as (18.6), which was derived from (18.3) using the convolution
theorem. Therefore, using the theorem in the opposite direction implies that an inverse dielectric
function ε−1(τ ) with the property (18.2) is also a causal linear response function. In words, the
inverse dielectric function specifies how a system creates its total (free + polarization) charge by
responding causally to its free charge.

18.3 Energy in Dispersive Matter

Frequency dispersion has a profound effect on the ability of a medium to store and dissipate electro-
magnetic energy. The key to this conclusion is the Poynting theorem in matter, which we reproduce
from Section 15.8.1 as∫

V

d 3r

[
E · ∂D

∂t
+ H · ∂B

∂t

]
= −

∫
V

d 3r jext · E −
∫
V

d 3r ∇ · (E × H). (18.16)

The free current jf does not appear in (18.16) if we use ε̂(ω) and μ̂(ω) to take account of all induced
electric and magnetic effects (see Section 18.2.1). Our goal is to interpret the Poynting theorem as
a balance equation for power by writing the integrand on the left side of (18.16) as the time rate of
change of an electromagnetic energy density plus a term which represents the rate at which energy is
lost in a unit volume of the medium by dissipative processes:

E · ∂D
∂t

+ H · ∂B
∂t

= ∂uEM(t)

∂t
+Q(t). (18.17)

The results of the last chapter (Section 17.2.2) for simple dielectric and conducting matter suggest that
uEM(t) will depend on the real parts of ε̂(ω) and μ̂(ω) and that Q(t) will depend on their imaginary
parts.

We begin with the first term on the left side of (18.16) and write a general, real, electric field as

E(r, t) = 1

4π

∞∫
−∞

dω
[
Ê(r, ω) exp(−iωt) + Ê∗(r, ω) exp(iωt)

]
. (18.18)

Omitting the explicit dependence on r, (18.18) and the left member of (18.9) combine to give

D(t) = 1

4π

∞∫
−∞

dω
[
ε̂(ω)Ê(ω) exp(−iωt) + ε̂∗(ω)Ê∗(ω) exp(iωt)

]
. (18.19)

Now, use ε̂∗(ω) = ε̂(−ω), and change integration variables from ω to −ω in one term each in (18.18)
and (18.19) to get2

E(t) = 1

4π

∞∫
−∞

dω
[
Ê(ω) + Ê∗(−ω)

]
exp(−iωt) (18.20)

2 See the left member of (18.7).
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and

D(t) = 1

4π

∞∫
−∞

dω
[
Ê(−ω) + Ê∗(ω)

]
ε̂∗(ω) exp(iωt). (18.21)

Consequently,

E · ∂D(t)

∂t
= 1

16π2

∞∫
−∞

dω1

∞∫
−∞

dω2
[
Ê(ω1) + Ê∗(−ω1)

] · [Ê(−ω2) + Ê∗(ω2)
]

× iω2ε̂
∗(ω2) exp[−i(ω1 − ω2)t]. (18.22)

Next, change integration variables in (18.22) from ω1 to −ω2 in one integral and from ω2 to −ω1 in
the other integral. Adding half the resulting integral to half the original integral gives

E · ∂D(t)

∂t
= 1

32π2

∞∫
−∞

dω1

∞∫
−∞

dω2
[
Ê(ω1) + Ê∗(−ω1)

] · [Ê(−ω2) + Ê∗(ω2)
]

× i[ω2ε̂
∗(ω2) − ω1ε̂(ω1)] exp[−i(ω1 − ω2)t]. (18.23)

Finally, use ε′′(−ω) = −ε′′(ω) and write out (18.23) using

ω2ε̂
∗(ω2) − ω1ε̂(ω1) = ω2ε

′(ω2) − ω1ε
′(ω1) − i[ω2ε

′′(ω2) + ω1ε
′′(ω1)]. (18.24)

The result has the anticipated form,

E · ∂D
∂t

= ∂uE

∂t
+QE, (18.25)

where

uE(t) = 1

16π2

∞∫
−∞

dω1

∞∫
−∞

dω2
[
Ê(ω1) + Ê∗(−ω1)

] · [Ê(−ω2) + Ê∗(ω2)
]

× ω2ε
′(ω2) − ω1ε

′(ω1)

ω2 − ω1
exp[−i(ω1 − ω2)t] (18.26)

and

QE(t) = E(t) · 1

4π

∞∫
−∞

dω [Ê(ω) + Ê∗(−ω)]ωε′′(ω) exp(−iωt). (18.27)

We analyze the second term on the left side of (18.16) similarly using B̂(ω) = μ̂(ω)Ĥ(ω). This gives

H · ∂B
∂t

= ∂uH

∂t
+QH, (18.28)

where uH (t) and QH (t) are identical to (18.26) and (18.27) with ε → μ and E → H. This confirms
(18.17) with uEM(t) = uE(t) + uH (t) and Q(t) = QE(t) +QH (t). On the other hand, the formulae of
interest are rather complicated for fields with arbitrary time dependence. This motivates the discussion
of the next section.

18.3.1 Quasi-Monochromatic Fields
The Fourier amplitude Ê(ω) in (18.18) encodes the entire time history of E(t). A similar formula
with B̂(ω) does the same for B(t). Since (18.26), (18.27), and their magnetic analogs depend on
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18.4 Transverse and Longitudinal Waves 629

these amplitudes as well, the total field energy and Joule heating rate depend on the entire time-
history of the fields. Luckily, useful formulae can be derived for the physically important case of
a quasi-monochromatic field, where both Fourier amplitudes are strongly peaked around a single
frequency.3 For such fields, the lowest-order Taylor expansions of (18.26) and (18.27) give the total
energy transiently stored in the medium as

uEM(t) = 1

2

{
∂

∂ω
[ωε′(ω)]|E(t)|2 + ∂

∂ω
[ωμ′(ω)]|H(t)|2

}
(18.29)

and the rate of energy absorption as

Q(t) = ω
[
ε′′(ω)|E(t)|2 + μ′′(ω)|H(t)|2] . (18.30)

These expressions are valid when ε̂(ω) and μ̂(ω) change slowly enough to justify the neglect of their
first and second derivatives in (18.30) and (18.29), respectively.

When the constitutive functions are approximated as frequency-independent constants, (18.29)
reduces to the simple matter formula derived in Section 17.2.2),

uEM(t) = 1

2

{
ε |E(t)|2 + μ|H(t)|2} . (18.31)

Equation (18.30) is consistent with the dissipation rate (17.101) for simple conducting matter because
μ′′ = 0 and ε′′ = σ/ω [see (17.105)]. Moreover, because the rate of heat production by electric or
magnetic processes is strictly positive in lossy matter,4 (18.30) implies that

ε′′(ω) > 0 and μ′′(ω) > 0. (18.32)

There is no comparable restriction on the behavior of ε ′(ω) or μ′(ω). Finally, (18.30) tells us that
energy dissipation occurs at every frequency where the imaginary parts ε′′(ω) and μ′′(ω) are non-zero.
This statement has broad significance because, as we will show in Section 18.7, if the function ε′(ω) is
not strictly constant, ε′′(ω) is guaranteed to be non-zero everywhere (albeit small at most frequencies).
The same is true for the real and imaginary parts of μ̂(ω). In other words, the mere existence of
frequency dispersion is sufficient to ensure that energy dissipation occurs.

18.4 Transverse and Longitudinal Waves

Plane electromagnetic waves propagate readily in dispersive matter. We study them using ε̂(ω) and
μ̂(ω) to treat the causal response, but otherwise mimicking our treatment of plane waves in simple
matter (Section 17.2.1). Therefore, we choose exp(ik · r) as the space dependence for the Fourier
amplitudes in (18.9) and use the Maxwell equations in matter,

∇ × E = −∂B
∂t

and ∇ × H = ∂D
∂t

, (18.33)

to deduce that

k × E = ωμ̂(ω)H and k × H = −ωε̂(ω)E. (18.34)

Combining the two equations in (18.34) produces the dispersion relation,

k × (k × E) = k(k · E) − (k · k)E = −ω2μ̂(ω)ε̂(ω)E. (18.35)

3 This is a wave packet of the sort studied in Section 16.5 if the space dependence is a sum of plane waves. Section 18.6
analyzes the propagation properties of wave packets in a dispersive medium.

4 A laser medium is exceptional because it supplies energy to the fields.
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In simple matter, we set k · E = 0 in a formula like (18.35) to comply with the Maxwell equation
∇ · E = 0 for a charge-neutral system. We proceed more cautiously now and decompose E into a
longitudinal component E‖ parallel to k and a transverse component E⊥ perpendicular to k:

E = E‖ + E⊥. (18.36)

Because k × E‖ = 0 and k · E⊥ = 0, substituting (18.36) into (18.35) gives

(k · k)E⊥ = ω2μ̂(ω)ε̂(ω)(E‖ + E⊥). (18.37)

Equation (18.37) defines two conditions. One is the dispersion relation for transverse waves:[
ω2μ̂(ω)ε̂(ω) − k · k

]
E⊥ = 0. (18.38)

Using (18.38) and (18.34), we define the complex, frequency-dependent index of refraction, n̂(ω),
from

k(ω) = ω
√
μ̂(ω)ε̂(ω) = ω

c
n̂(ω), (18.39)

and generalize the wave impedance formula (17.110) similarly. The latter appears when we combine
the left member of (18.34) with (18.39) to get

Ẑ(ω)H⊥ =
√
μ̂(ω)

ε̂(ω)
H⊥ = k̂ × E⊥. (18.40)

The second condition derived from (18.37) is a dispersion relation for longitudinal waves,

μ̂(ω)ε̂(ω)E‖ = 0. (18.41)

We will see in the next section that even relatively simple models of dispersive matter lead to transverse
waves with a vastly richer range of behavior than we encountered for waves in simple matter. The
longitudinal waves we will find are unavoidably accompanied by macroscopic accumulations of
electric charge. The latter never occurs in simple matter because μ̂(ω)ε̂(ω) = με never vanishes in
(18.41).

18.5 Classical Models for Frequency Dispersion

The epigraph to this chapter shows that physicists of the late 19th century were forced to invent
models for matter to harmonize Maxwell’s theory of electromagnetism with observations of frequency
dispersion. Classical physics was the only tool available and it was wielded with considerable skill by
Lorentz, Drude, and others of their generation to account for the optical properties of metals and insu-
lators. Later, the same methodology was applied (with greater justification) to study electromagnetic
phenomenon in plasmas in astrophysical, geophysical, and laboratory settings. Frequency dispersion
arises in every case from the presence of one or more characteristic frequencies that appear naturally
in the description of the matter.

We begin with classical models for matter where a propagating electromagnetic wave exerts a
dominantly electric Coulomb force on the electrons and ions. The small velocities acquired by these
particles ensures that the magnetic force is important only for plasmas and condensed matter systems
where the magnetic field of the wave is supplemented by a strong external magnetic field. We treat this
case because it arises very commonly, and also because it provides an introduction to the vast subject
of the electrodynamics of magnetized plasmas. We assume μ̂(ω) = μ0 except in Section 18.5.6 where
we discuss an artificial material with a frequency-dependent magnetic permeability where μ(ω) < 0.
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18.5.1 The Drude Model of Conducting Matter
Section 9.3 introduced the classical Drude model for the steady current produced by a static electric
field in a neutral system composed of free (mobile) charges. The calculated conductivity,σ0 = nq2τ/m,
applies to n particles per unit volume when each has charge q, massm, and travels a mean time τ before
suffering a momentum-degrading collision. A time-harmonic electric field produces a time-harmonic
current and thus a complex conductivity σ̂ (ω). To find it, we generalize our previous analysis and let
E → Ê exp(−iωt) in Newton’s equation of motion for the velocity v of a typical particle:

m
dv
dt

= qÊe−iωt − mv
τ
. (18.42)

Ignoring transients, a time-harmonic solution for v(t) is

v(t) = qÊ/m
1/τ − iω

e−iωt = v̂(ω)e−iωt . (18.43)

The amplitude of the time-harmonic current density that develops in the system is then

ĵ(ω) = nqv̂(ω) = nq2τ

m

Ê
1 − iωτ

= σ̂ (ω)Ê(ω). (18.44)

Equation (18.44) defines the complex, frequency-dependent, Drude conductivity as

σ̂ (ω) = nq2τ /m

1 − iωτ
= σ0

1 − iωτ
. (18.45)

More sophisticated calculations give the same form for σ̂ (ω) for simple metals.
It is convenient to introduce the characteristic plasma frequency,

ω2
p = nq2

ε0m
, (18.46)

and substitute (18.45) into (18.12) to derive the Drude dielectric function,

ε̂(ω)

ε0
=
[

1 − ω2
pτ

2

1 + ω2τ 2

]
+ i

[
ω2

pτ

ω

1

1 + ω2τ 2

]
. (18.47)

We assume that the scattering time and plasma frequency obey 1/τ � ωp, which is characteristic of
metals.

The low-frequency limit of (18.47) is

ε̂(ω)

ε0
≈ 1 + i

ω2
pτ

ω
ωτ � 1. (18.48)

This is the complex dielectric function studied under the name “simple conducting matter” in
Section 17.6. There, we found that the reflectivity had the near-unity Hagen-Rubens form (17.125).
Transverse plane waves transmitted into the medium had amplitudes that decayed exponentially as
they propagated because the fields lost energy by ohmic heating. The skin depth δ(ω) = √

2/μσ0ω

was the characteristic length scale for the decay.
Here, we focus on the high-frequency limit where (18.47) is purely real:

ε(ω)

ε0
≈ 1 − ω2

p

ω2
ωτ � 1. (18.49)

The dielectric function (18.49) is particularly important in what follows because it applies both to a
simple metal at high frequency and to a cold, collisionless (τ → ∞) classical plasma at all frequencies.
Figure 18.1 emphasizes that (18.49) changes sign when ω passes through ωp.
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Figure 18.1: High-frequency dielectric function of the Drude model. There is no propagation in the shaded
region where ε(ω) < 0.

18.5.2 Transverse Waves
In the high-frequency limit when (18.49) is valid, the dispersion relation (18.39) for a transverse wave
(E ⊥ k) reads

ω2 = ω2
p + c2k2 ωτ � 1. (18.50)

Equation (18.50) tells us how to interpret the zero-crossing of (18.49) at ω = ωp. When ω > ωp,
(18.50) predicts a propagating wave with a real wave vector k. When ω < ωp, (18.50) predicts an
evanescent wave with an imaginary k.5 The fact that no propagation occurs when ε < 0 (shaded
region in Figure 18.1) has immediate consequences for the reflectivity of a wave that strikes a Drude
medium from the vacuum. As ω increases through ωp, the dielectric function (18.49) changes sign
from negative to positive, the index of refraction in (18.39) changes from n̂ = i to n̂ = 1, and the
normal incidence reflectivity (17.44),

R(ω) =
∣∣∣∣ n̂− 1

n̂+ 1

∣∣∣∣2 = (n′ − 1)2 + n′′2

(n′ + 1)2 + n′′2 , (18.51)

drops abruptly from one to zero. The comparison between theory and experiment in Figure 18.2 shows
that this abruptness is only slightly smoothed out when the full dielectric function (18.47) is used to
evaluate R(ω). We speak of ω > ωp as the “transparency regime” of the Drude model because the
fully transmitted wave is undamped [see (17.111)].

The physical origin of the behavior seen in Figure 18.2 lies with the ultimate source of the reflected
and transmitted waves: the oscillating polarization of the medium. When ω < ωp, the medium radiates
two waves: a backward-propagating (reflected) wave and a forward-propagating wave which interferes
destructively with the incident wave.6 Whenω > ωp, the oscillations of the polarization suffer a change
of phase and, in place of the reflected wave, the medium creates a forward-propagating (transmitted)
wave. This phase change is reminiscent of the behavior of a harmonic oscillator when is driven below
and then above its natural frequency. It remains only to show that ωp is a natural oscillation frequency
of a Drude medium. This is the subject of the next section.

18.5.3 Longitudinal Waves
The dispersion relation for longitudinal waves is (18.41). A Drude medium does not support such waves
at low frequency because (18.38) never vanishes. However, because the high-frequency dielectric

5 Compare this to the behavior of the transmitted wave when passing from above to below the critical angle for total
internal reflection (Section 17.3.6).

6 This is an example of the extinction theorem. See Section 20.9.1.
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Figure 18.2: Experiment (solid curve) and Drude theory (dashed line) for the normal incidence reflectivity of Al
metal. Figure from Wooten (1972).

z

Figure 18.3: A cartoon to help rationalize the phenomenon of plasma oscillations.

function (18.49) vanishes at ω = ωp, the dispersion relation implies that a Drude medium supports
k ‖ E waves whose frequency ω = ωp does not depend on the wave vector k. Two characteristics of
these waves are noteworthy. First, B = 0, which follows from the equation on the left side of (18.34)
and the fact that k × E‖ = 0. Second, Gauss’ law reads k · E‖ = ρ/ε0, which means that the local
charge density is not zero when the wave is present. Both observations point to a phenomenon that is
fundamentally electrostatic in nature. How should we understand this?

The left panel of Figure 18.3 shows a small portion of neutral matter composed of immobile
positive particles and mobile negative particles. Both species have number density n in equilibrium.
The right panel shows a displacement of the entire negative charge population by an amount δz. Each
layer of displaced negative charge forms a parallel-plate capacitor with the layer of positive charge
exposed by its motion. The electric field between the plates, E = ẑenδz/ε0, produces a restoring force
on the negative charge. Each negative layer has mass/area M = mnδz and charge/area Q = −enδz.
Therefore, the equation of motion for the layer displacement is Mδz̈ = QE or

δz̈ = − e2n

mε0
δz = −ω2

pδz. (18.52)

In the absence of damping, δz(t) oscillates indefinitely at the plasma frequency (18.46). This “plasma
oscillation” is a normal mode of the system. For a metal, ωp ∼ 1016 s−1 lies in the ultraviolet portion
of the electromagnetic spectrum. For a low-density plasma in the ionosphere, ωp ∼ 106 s−1 is a
radio-frequency oscillation.

In the approximation used here, each set of “capacitor plates” oscillates at frequencyωp independent
of the other plates. This means that initial conditions may be prescribed where the t = 0 displacement
of the negative particle plate differs from capacitor to capacitor in a wave-like manner. This construction
explains why (18.41) describes waves with all possible wave vectors k, each with the same frequency
ωp. It also shows that these are standing waves incapable of transporting energy. More complete
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treatments show that truly propagating electrostatic waves occur both in real metals and in warm
plasmas.7

Application 18.1 Charge Relaxation in an ohmic Medium

This application revisits the issue (Section 14.7.1) of how rapidly an ohmic medium rids itself of charge
placed in its interior. The ingredients are the same as before except that we now let all quantities vary
in time as exp(−iωt). This leads us to Fourier transform the continuity equation,

∇ · j(r, t) = −∂ρ(r, t)
∂t

⇒ ∇ · ĵ(r, ω) = iωρ̂(r, ω), (18.53)

and Gauss’ law,

ε0∇ · E(r, t) = ρ(r, t) ⇒ ε0∇ · Ê(r, ω) = ρ̂(r, ω). (18.54)

Ohm’s law in the form (18.6) connects the right sides of (18.53) and (18.54) to give

[σ̂ (ω) − iε0ω] ρ̂(r, ω) = 0. (18.55)

Substituting the Drude conductivity from (18.45) into (18.55) generates a quadratic equation,

ω2 + iω/τ − ω2
p = 0, (18.56)

which has solutions

ω± = i
/

2τ ±
√
ω2
p − 1

/
4τ 2. (18.57)

The physics of (18.57) emerges when we examine the limits of a “good” conductor when σ0 is large
(ωpτ � 1) and a “poor” conductor when σ0 is small (ωpτ � 1),8 namely,

ω± �
{

−i/2τ ± ωp ωpτ � 1,

−i/τ, −iω2
pτ ωpτ � 1.

(18.58)

For a good conductor, the upper solution in (18.58) tells us that an initial charge distribution ρ(r, 0)
oscillates and damps to zero according to

ρ(r, t) = ρ(r, 0) exp(−t/2τ ) cosωpt. (18.59)

The collision time τ is about 10−14 s for most metals. Therefore, we are justified in setting ρ =
ε0∇ · E = 0 for the analysis of electromagnetic phenomena in metals up to approximately microwave
frequencies. This is the fundamental origin of our definition of a perfect conductor as a body where
ρ(r, t) = 0. Of course, the charge density ρ(r, 0) does not simply disappear. It winds up on the surface
of the metal by transport mechanisms we do not discuss here.

For a poor conductor, the lower solution in (18.58) tell us that the time variation of ρ(r, t) is the
sum of two damped exponentials with different time constants. One of these is nearly the same as for
a good conductor. However, because ωpτ � 1, the long-time behavior is dictated by the other term:

ρ(r, t) ∼ ρ(r, 0) exp(−σ0t
/
ε0). (18.60)

This formula is the same as the quasistatic result (14.79). A typical value for τE = ε0/σ0 is about
10−6 s for a poor conductor such as a lightly doped semiconductor. �

7 See Boyd and Sanderson (2003) in Sources, References, and Additional Reading.
8 This distinction between a “good” and a “poor” conductor is exactly the same as the one used in Section 14.7 on

quasistatics.
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18.5.4 The Lorentz Model for Dielectric Matter
Quantum mechanics lies at the foundation of the linear (and non-linear) response of atoms, molecules,
liquids, and solids to an external electromagnetic field. This makes it all the more remarkable that a
simple classical model proposed by Lorentz captures the structure of the complex dielectric function
ε̂(ω) for these systems very well. The reason for this happy accident will emerge in Example 18.4 of
Section 18.7. Until then, the reader should suspend disbelief and imagine a system of n independent
“atoms”, each composed of one electron bound to an infinitely massive nucleus by a spring with natural
frequency ω0. Dissipative processes are modeled as a drag force parameterized by a phenomenological
constant ".

The displacement of each electron from equilibrium is assumed to satisfy the classical equation of
motion

m
d2r
dt2

+m"
dr
dt

+mω2
0r = −eE. (18.61)

In steady state, both r(t) and E(t) vary as exp(−iωt) and the solution to (18.61) is

r(t) = −e/m
ω2

0 − ω2 − iω"
E(t). (18.62)

Lorentz identified the polarization P with the electric dipole moment per unit volume (see Sec-
tion 6.2.2):

P(t) = np(t) = −ner(t) = ne2/m

ω2
0 − ω2 − iω"

E(t). (18.63)

From (18.11) and the definition of the plasma frequency in (18.46), we conclude that the complex
index of refraction and dielectric function for this model is

n̂2(ω) = ε̂(ω)

ε0
= 1 + ω2

p

ω2
0 − ω2 − iω"

. (18.64)

Despite our use of a classical model, there are at least three reasons to take (18.64) seriously.
First, quantum mechanical perturbation theory produces a dielectric function with exactly the same
form, albeit with different meanings for the adjustable parameters. Second, the resonance structure of
(18.64) emerges naturally from the causality requirement built into every linear response function (see
Section 18.7). Finally, experiments sensitive to the real and imaginary parts of ε̂(ω) look very much
like those predicted by (18.64). This may be seen from Figure 18.4, which compares measured values
of ε′(ω) and ε′′(ω) for a silicon crystal with

ε′(ω)

ε0
= 1 + ω2

p(ω2
0 − ω2)

(ω2
0 − ω2)2 + ω2"2

ε′′(ω)

ε0
= ω2

pω"

(ω2
0 − ω2)2 + ω2"2

. (18.65)

Below resonance (ω < ω0), the induced polarization oscillates in-phase with the driving field and there
is an extended region where n′(ω) ≈ √

ε′(ω)/ε0 increases as the frequency increases. This is called
normal dispersion because it is consistent with the fact that a prism refracts blue light more strongly
than red light. There follows a band of frequencies around ω0 with width " where n′(ω) decreases
sharply as the frequency increases. This region of anomalous dispersion is not easy to observe because,
according to (18.30), the medium strongly absorbs energy from the wave in exactly the same range
of frequencies. Above resonance (ω > ω0), the induced polarization oscillates out-of-phase with the
driving field and there is an extended region of normal dispersion which persists to higher frequency.

The vertical dashed lines in Figure 18.4 divide the spectral domain shown into three regions,
each with characteristic behavior for the reflectivity R(ω). Using (18.51), the reader can confirm
that the reflectivity is quite low in the leftmost region but rises steadily through the middle region
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Figure 18.4: Real and imaginary parts of ε̂(ω)/ε0 for silicon. Left panel: experiment. Right panel: Lorentz
model. Vertical dashed lines are discussed in the text. Figure adapted from Wooten (1972).

where absorption occurs. The sample reflects like a metal in the rightmost region, before becoming
transparent at the higher frequencies not shown in Figure 18.4.

The dielectric function for most condensed systems may be modeled by computing the total polariza-
tion as the sum of Lorentz oscillator contributions like (18.63), one from each of the various electronic
and vibrational excitations of the system.9 Figure 18.5 shows this for the case of silica glass. Metals are
not excluded because we may make the Drude choice ω0 = 0 for one of the oscillators. An interesting
prediction of the multiple oscillator model is that the index of refraction is slightly less than one at
X-ray frequencies. This follows from (18.65) when ω far exceeds the largest excitation energy in the
system, so ε′′(ω) is negligible and

n2(ω) ≈ ε′(ω)

ε0
≈ 1 − ω2

p

ω2
< 1. (18.66)

Confirmation of (18.66) comes from the observation that grazing-incidence X-rays suffer total external
reflection from the surface of essentially all materials (cf. Section 17.3.6).

18.5.5 The Appleton Model of a Magnetized Plasma
In the middle 1920s, physicists studied the effect of the geomagnetic field on radio waves by modeling
the ionosphere as a neutral collection of electrons and ions moving in a uniform magnetic field
B0 = B0ẑ.10 This medium supports transverse electromagnetic waves even if we ignore all the effects
of temperature, collisions, and the motion of the relatively much heavier positive ions. Here, we
derive an approximate dielectric function for this cold, magnetized plasma from the time-harmonic
polarization which develops when each of n electrons per unit volume moves under the combined
action of the wave’s electric field and the external field B0. This is the Drude model of Section 18.5.1
with no collisions and a magnetic field added. The ith electron of the plasma is thus presumed to obey

9 The low-frequency response of molecular systems is dominated by the rotation of dipoles, which plays a large role in
the subject of dielectric relaxation.

10 The British scientist E.V. Appleton is most closely associated with the model presented here. See, however, Sources,
References, and Additional Reading.
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Figure 18.5: Real part of the index of refraction for SiO2 glass. The low-frequency structure reflects vibrational
excitations in the infrared. The high-frequency structure reflects electronic excitations in the ultraviolet. Figure
from Fox (2001), by permission of Oxford University Press.

the classical equation of motion,

m
d2ri
dt2

= −e
(

E + dri
dt

× B0

)
. (18.67)

The corresponding equation of motion for the polarization P = −(e/V )
∑

i ri is

d2P
dt2

= ε0ω
2
pE − ωc

dP
dt

× ẑ, (18.68)

where ωc = eB0/m is the electron cyclotron frequency (18.46) and ω2
p = ne2/ε0m is the electron

plasma frequency (18.46).
We seek a steady-state solution of (18.68) where P(t) = Pe−iωt and E(t) = Ee−iωt . In that case, the

Cartesian components of (18.68) are

−ω2Px = ε0ω
2
pEx + iωωcPy

−ω2Py = ε0ω
2
pEy − iωωcPx

−ω2Pz = ε0ω
2
pEz.

(18.69)

We use (18.69) to express each component of P in terms of the components of E. Then, because
D = ε0E + P, we find that the scalar dielectric function in D = εE is insufficient. Instead, we write

D = ε̂ · E, (18.70)

where

ε̂(ω) = ε0

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − ω2
p

ω2 − ω2
c

i
ω2

pωc

ω(ω2 − ω2
c )

0

−i ω2
pωc

(ω2 − ω2
c )

1 − ω2
p

ω2 − ω2
c

0

0 0 1 − ω2
p

ω2

⎤
⎥⎥⎥⎥⎥⎥⎦ . (18.71)

The matrix structure of its dielectric function identifies a magnetized plasma as an anisotropic medium
of the sort discussed in Section 17.7.

We find the dispersion relation for waves in a medium where the constitutive relation is (18.70) by
letting E and B vary as exp[i(k · r − ωt)] and combining the two Maxwell curl equations in the (by
now) familiar way. The final result generalizes (18.35) to

(k · k)E − k(k · E) = ω2

c2

ε̂(ω)

ε0
· E. (18.72)
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Figure 18.6: Two representations of the frequency dispersion of transverse electromagnetic waves in a
magnetized plasma with k ‖ B0 and ωp = 2ωc: (a) effective index of refraction vs. frequency; (b) frequency vs.
wave vector. Solid lines labeled R (L) describe waves with right (left) circular polarization. Figure adapted from
Sturrock (1994).

The general problem posed by (18.72) is quite complex. Here, we focus exclusively on the solutions
of (18.72) where k ‖ B0. The block diagonal structure of (18.71) gives the simplest of these as a time-
harmonic electric field E = Ezẑ with ω = ωp. This reproduces the longitudinal electrostatic wave
discussed in Section 18.5.3 because the electric field drives the charged particles parallel to B0, which
is a trajectory where the Lorentz magnetic force has no effect. More interesting are transverse waves
where E and B are both perpendicular to k ‖ B0. With n = ck/ω, the system of equations to be solved is⎛

⎜⎜⎝
−n2 + 1 − ω2

p

ω2 − ω2
c

i
ω2

pωc

ω(ω2 − ω2
c )

−i ω2
pωc

ω(ω2 − ω2
c )

−n2 + 1 − ω2
p

ω2 − ω2
c

⎞
⎟⎟⎠
(
Ex

Ey

)
= 0. (18.73)

Non-trivial solutions to (18.73) occur when the determinant of the matrix is zero. A brief calculation
confirms that this is so when n2 takes the values

n2
± = 1 − ω2

p

ω(ω ± ωc)
. (18.74)

Substituting (18.74) back into (18.73) shows that the upper sign choice gives Ex = iEy (right circular
polarization) and the lower sign choice gives Ex = −iEy (left circular polarization). The fact that
n+ �= n− in (18.74) means that the phase velocities of the RCP and LCP waves are not the same.

Figure 18.6 displays the dispersion information in (18.74) in two ways forωp = 2ωc. Figure 18.6(a)
uses R to label the curve of n2

+(ω) and L and L′ to label the two branches of n2
−(ω). Our experience

with the Drude dielectric function (Figure 18.1) tells us to expect wave reflection by the medium when
n2

± goes to zero (from above) at the cutoff frequencies ω = ω±. We will see in a moment that wave
absorption occurs when n2

+ diverges to positive infinity at the resonance frequency ω = ωc.
Figure 18.6(b) uses the same labeling for the branches ofω(k) with right and left circular polarization,

respectively. The frequencies ω± are defined by n2
+(ω+) = and n2

−(ω−) = 0. Explicitly,

ω±
ωc

=
∓ 1 +

√
1 + 4ω2

p

/
ω2

c

2
. (18.75)
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Figure 18.6(b) shows a band of frequencies between ωc and ω+ where no wave-like solutions exist.
This “gap” in the spectrum disappears when ωp < ωc. The R and L modes in Figure 18.6(b) are
magnetically split versions of the transverse waves (18.50) which propagate above the plasma frequency
in the Drude model. The location of the cutoff frequencies ω± in Figure 18.6(a) is important because
undamped, propagating waves occur only when n2 > 0. A circularly polarized wave incident on a
magnetized plasma from the vacuum with a frequency ω < ω+ (for LCP) or ω < ω− (for RCP)
reflects from the plasma because a mode with n2(ω) < 0 has a purely imaginary wave vector. Such
a “wave” is non-propagating and exponentially damped, exactly like the waves in Section 18.5.1
when ω < ωp.

The L′ wave at the bottom of Figure 18.6(b) is something new. The electric field vector of this
electron cyclotron wave rotates in the same direction and at the same speed as the cyclotron motion
of the electrons induced by B0 (see Section 12.2.2). The phase velocity of this wave goes to zero
(and the effective index of refraction diverges) as ω → ωc because it resonantly transfers its energy
to the electrons. At lower frequency, the name whistler attaches to this wave for reasons we will
explain in Application 18.4. The L′ mode frequency ω → 0 as k → 0, but this is not the shear
Alfvén wave discussed in Application 17.1. The latter appears only when we supplement the electron
polarization computed from (18.68) with the polarization contributed by the motion of the heavy,
positive ions.

Application 18.2 Reflection of Radio Waves by the Ionosphere

In 1901, Guglielmo Marconi demonstrated that radio waves could be transmitted from one side of the
Atlantic Ocean to the other. To account for this surprising observation (only line-of-sight reception was
thought possible), Oliver Heaviside and Arthur Kennelly independently proposed that the waves must
reflect from an electrically conducting layer located about 100 kilometers above the surface of the Earth.
Direct experimental evidence for the existence of the “Heaviside-Kennelly layer” (the ionosphere) was
reported in 1924 by E.V. Appleton, who subsequently developed the magnetized-plasma model of the
ionosphere discussed in this section.

Figure 18.7 shows the electron density n as a function of height h above the surface of the Earth
in the region of the ionosphere. An electromagnetic wave with frequency ω∗ launched upward from
the ground experiences a steady increase in electron density as it propagates. Since ω2

p = ne2/ε0m,
the wave reflects when it reaches a height where the cutoff frequency in (18.75) equals ω∗. The same
argument (reversed) explains why the L and R waves in Figure 18.6 are important tools in radio
astronomy. There is no barrier for these waves to propagate from deep inside an astrophysical source
(where the plasma density and ωp are large) to an observer far outside the source (where the plasma
density and ωp are small).
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Figure 18.7: Electron density n in the ionosphere as a function of height h above the surface of the Earth.
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Figure 18.8: Cartoon of a metallic split-ring resonator used to make a negative-index material. The magnetic
field B points out of the plane of the diagram.

18.5.6 The Split-Ring Model for Negative-Index Matter
We showed in Section 17.3.1 that a negative index of refraction results when the electric permittivity ε
and magnetic permeabilityμ of a medium are both negative. This never happens for naturally occurring
materials, so man-made structures are required to explore the consequences of n = −c√εμ < 0. The
Drude and Lorentz models show that it is not very difficult to make ε(ω) < 0 in a limited frequency
band. The key is to arrange matters so μ(ω) < 0 in the same band.

Figure 18.8 is a sketch of a “split-ring resonator”. Artificial crystals where these metal objects play
the role of atoms in natural crystals turn out to have n(ω) < 0 at infrared and higher frequencies if the
size and separation of the split rings is chosen properly. At these frequencies (still below the plasma
frequency), the skin depth is small enough to screen external electric and magnetic fields from the
interior of the rings. All induced currents circulate on the surface and the resulting magnetic moments
can be orders of magnitude larger than the magnetic moments induced in atoms and molecules. In a
lumped circuit model, the circulating currents produce an effective inductance L and the electric field,
which is confined to the gap which splits the ring, produces an effective capacitance C. As we will
show, an oscillating magnetic field can resonantly excite an electromagnetic mode in each ring with
frequency ω0 = 1/

√
LC.

The analogy with a parallel-plate capacitor permits us to estimate the gap capacitance as C =
ε0wt/d . A simple estimate of the inductance treats the ring as a solenoid with length t . In that case,
(12.135) implies that L = μ0�

2/t . Hence, the expected resonant frequency of a split ring is

ω0 = c

�

√
d

w
. (18.76)

To compute the magnetic permeability, μ(ω), we recall that

B = μ0(H + M) = μ0(1 + χm)H = μH (18.77)

and focus on the magnetization M = χmH induced by an external magnetic fieldB exp(−iωt) oriented
perpendicular to the plane of the diagram in Figure 18.8. The magnetic moment of a single split ring
is m = �2I , where the current induced in the ring is determined by Kirchhoff’s voltage law (14.146)
generalized to include the Faraday EMF induced in the ring by a flux �B of external magnetic
field:

İ + I

LC
+ 1

L

d2�B

dt2
= 0. (18.78)

For our problem, �B = �2B exp(−iωt). Therefore, if a is the distance between nearest-neighbor res-
onators in the artificial crystal we have envisioned, the frequency-dependent magnetization (magnetic
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moment per unit volume) of the crystal is

M = �2t

a3

ω2

ω2
0 − ω2

H. (18.79)

In this context, the dimensionless ratio f = �2t/a3 < 1 is called the “filling factor” and we find

μ(ω)

μ0
= 1 + f

ω2

ω2
0 − ω2

. (18.80)

The magnetic permeability (18.80) develops an imaginary part when energy-loss processes are
included. In that case, comparing μ(ω) with ε(ω) computed in Section 18.5.4 shows that the resonant
response of a collection of metallic split rings to a time-varying magnetic field is very much like the
resonant response of a collection of Lorentz oscillators to a time-varying electric field. In practice, one
can engineer ε(ω) < 0 in the same frequency band by threading the split-ring crystal with conventional
metallic wires. The final result is a man-made structure with n(ω) < 0.

18.6 Wave Packets in Dispersive Matter

A wave packet in vacuum spreads out transversely as it propagates (diffracts) because the wave vectors
of its constituent plane waves (all with the same phase speed) are not all parallel (see Section 16.5.5).
By contrast, a wave packet in a dispersive medium spreads out longitudinally along its propagation
direction (even if all the constituent wave vectors are parallel) because the phase speeds of its con-
tributing plane waves are not all the same. We study this phenomenon quantitatively using a complex
electric field E(z, t) = êE(z, t) built from plane waves with real wave vectors11

k(ω) = k(ω)ẑ = n(ω)
ω

c
ẑ. (18.81)

If A(ω) is a weight function, the wave packet of interest is

E(z, t) =
∞∫

0

dωA(ω) exp {i[k(ω)z − ωt]} . (18.82)

Equation (18.82) sums plane waves with different frequencies ω and uses the index of refraction n(ω)
in (18.81) to distinguish one wave from another. This differs from the vacuum wave packets studied in
Section 16.5 where we summed plane waves with different wave vectors and used the dispersion curve
ω(k) to distinguish one wave from another. We prefer (18.82) for studying waves in matter because
specifying A(ω) is equivalent (by Fourier transformation) to specifying E(z = 0, t), where z = 0 is
the entrance boundary of the dispersive medium. This is an easily measurable quantity. This may be
contrasted with E(z, t = 0), which is the quantity needed to determine the weight function A(k) in a
sum over wave vectors. The latter is more natural for an initial-value problem like the spreading of a
free-field wave packet.

Typically, A(ω) is sharply peaked around a single frequency ω0. This justifies an expansion of k(ω)
in a Taylor series around ω0. Using the variable � = ω − ω0,

k(ω) = k(ω0 +�) = k(ω0) +�
dk

dω

∣∣∣∣
ω0

+ 1

2
�2 d2k

dω2

∣∣∣∣
ω0

+ · · · . (18.83)

11 We treat a complex index n̂(ω) later.
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If we write k0 = k(ω0) and similarly for its derivatives, substituting (18.83) into (18.82) factors the
electric field into the product of a “carrier” plane wave and an envelope function A(z, t):

E(z, t) = exp {i[k0z − ω0t]}A(z, t), (18.84)

where

A(z, t) =
∞∫

−ω0

d�A(ω0 +�) exp
{
i
[
�k′

0 + 1
2�

2k′′
0 + · · ·] z − i�t

}
. (18.85)

This way of writing E(z, t) is useful because the envelope function A(z, t) satisfies a simple partial
differential equation. The derivatives ∂A/∂z, ∂A/∂t , and ∂2A/∂t2 all bring down factors of � from
the exponential in (18.85) and we find without difficulty that

i

(
∂

∂z
+ k′

0
∂

∂t

)
A(z, t) = 1

2k
′′
0
∂2A(z, t)

∂t2
. (18.86)

Our task is to solve (18.86) for various situations.

18.6.1 The Group Velocity Approximation
Section 16.5 identified the group velocity,

υg = ∂ω

∂k

∣∣∣∣
k=k0

= ∂ω

∂k

∣∣∣∣
k=k0

k̂, (18.87)

as the velocity of the envelope of a wave packet composed of plane waves with wave vectors clustered
near k0.12 This quantity appears in (18.86) because

k′
0 = ∂k

∂ω

∣∣∣∣
ω0

=
(
∂ω

∂k

∣∣∣∣
k0

)−1

= 1

υg
. (18.88)

An important special case occurs when the right-hand side of (18.86) may be neglected, i.e., when
k′

0 � k′′
0δ�, where δ� is the range of frequencies where A(ω) is large. The envelope equation (18.85)

simplifies in that case to (
∂

∂z
+ 1

vg

∂

∂t

)
A(z, t) = 0. (18.89)

The solution to (18.89) is A(z, t) = Ã(z − vgt), where Ã(x) is any scalar function of one variable. The
corresponding electric-field wave packet (18.84) propagates undistorted along the z-axis at the group
velocity vg:

E(z, t) = Ã(z − vgt) exp {i[k0z − ω0t]} . (18.90)

Equation (18.90) is exact for simple media (where ε and μ are strictly constant) because k = nω/c,
so k′′

0 = 0. Moreover, the group velocity is equal to the phase velocity:

vg = dω

dk
= c

n
= ω

k
= vp. (18.91)

12 The second equality in (18.87) is valid for isotropic matter where ω(k) = ω(k).
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18.6 Wave Packets in Dispersive Matter 643

A more interesting example is a wave packet propagating in Drude matter (Section 18.5.1). When
ω > ωp, the dispersion relation is (18.50), or

ck =
√
ω2 − ω2

p. (18.92)

The group velocity and phase velocity are inversely related in this case because

vg = c2

vp
= c

√
1 − ω2

p/ω
2 < c ω > ωp. (18.93)

The quantity k′′(ω0) is never zero for this medium, but it decreases with increasing frequency. Therefore,
the group velocity approximation can be used for wave propagation in a Drude conductor when the
central frequency ω0 is sufficiently large. A brief calculation shows that a quantitative condition is
ω3

0 � δ�ω2
p.

It is instructive to write the group velocity in terms of the index of refraction n(ω). By direct
calculation,

υg = ∂ω

∂k
= ∂

∂k

(
ck

n

)
= c

n
− ck

n2

∂n

∂ω
υg. (18.94)

Therefore,

vg = c

n+ ω
dn

dω

. (18.95)

When the index of refraction is complex, υp = c/n and (18.95) remain correct with n replaced by
n′ = Re n̂. This shows that υg < υp when the dispersion of the medium is normal (dn′/dω > 0). On
the other hand, peculiar behavior might be expected when the dispersion is anomalous (dn/dω < 0)
because the denominator of (18.95) could vanish or become negative.

Example 18.2 A transverse, quasi-monochromatic wave packet propagates in a medium with weak
dispersion and negligible absorption so uEM(t) is given by (18.29) and Q(t) in (18.30) is nearly
zero. Under these conditions, show that the group velocity (18.87) is equal to the time-averaged
energy velocity defined in Section 17.2 as

υE = 〈S〉
〈uEM 〉 .

Solution: Because losses can be neglected, the wave impedance in (18.40) is real, and the electric
and magnetic fields of the wave can be chosen as

E(r, t) = E(r) cosωt and H(r, t) =
√
ε′

μ′
[
k̂ × E(r)

]
cosωt.

The Poynting vector averaged over one cycle is

〈S〉 = 〈E × H〉 =
√
ε′

μ′ |E(r)|2〈cos2 ωt 〉k̂ = 1

2

√
ε′

μ′ |E(r)|2k̂.

The corresponding time average of the electromagnetic energy density is

〈uEM 〉 = 1

2

∂

∂ω
[ωε′(ω)]〈E · E〉 + 1

2

∂

∂ω
[ωμ′(ω)]〈H · H〉

= 1

4μ′

[
2μ′ε′ + ωμ′ dε

′

dω
+ ε′ω

dμ′

dω

]
|E(r)|2.
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On the other hand, because k2 = ω2μ′ε′ when absorption is absent,

dk

dω
= ω

2k

[
2μ′ε′ + ωμ′ dε

′

dω
+ ε′ω

dμ′

dω

]
.

Therefore,

υE = 〈S〉
〈uEM 〉 =

√
ε′

μ′μ
′ω
k

dω

dk
k̂ = dω

dk
k̂ = υg.

Application 18.3 Lorentz Model Velocities

Figure 18.9 shows the phase velocity υp and the group velocity υg for the Lorentz model (Sec-

tion 18.5.4). The two vertical lines labeled
√
ω2

0 − "2/4 and
√
ω2

0 + ω2
p − "2/4 bracket the region of

anomalous dispersion where most of the absorption of wave energy occurs. The phase velocity exceeds
the speed of light for much of the diagram. This does not contradict the special theory of relativity
because υp merely quantifies how the motion of planes of constant phase in infinite wave trains are
delayed in time with respect to one another. More disconcertingly, perhaps, the group velocity υg is
negative in Figure 18.9 in part of the anomalous-dispersion regime, and diverges to ±∞ near the edges
of the absorption band. This behavior leads some authors to conclude that the group velocity is not
meaningful under these conditions.

c p

g

,g E

g

E

222
p0 4

Lorentz
oscillator
model

–1

0

1

2

3

4

5

,g E

22
0 4

Figure 18.9: Lorentz oscillator model: phase velocity υp (dashed curve), group velocity υg

(three-branched solid curve); energy velocity υE (solid curve). Figure adapted from Oughstun (2006).

To the contrary, Figure 18.10 shows that a smoothly varying Gaussian wave packet can enter and
exit a slab of matter with υg < 0 at the same time that a Gaussian packet propagates backward through
the medium as predicted by (18.90). The peak which appears at the exit face of the slab (in the second
panel from the top) comes from a re-weighting of the plane waves which constitute the (exponentially
small) leading edge of the original Gaussian packet. The latter impinges on the slab long before the
peak does. Ultimately, all the distortion and “reshaping” of the original pulse shown in Figure 18.10
comes from constructive and destructive interference among the infinitely extended (in space) plane
waves which contribute to the wave packet in (18.82). No contradiction of special relativity ever
occurs, even when υg → ∞. We will return to the general question of signal speed in dispersive media
in Section 18.7.4.
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vg < 0 
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Figure 18.10: Cartoon of the propagation of a Gaussian wave packet through a slab of material with a
negative group velocity. Figure from Gauthier and Boyd (2007).

Besides the phase and group velocities, Figure 18.9 shows the time average of the energy velocity
υE for the Lorentz model. We leave it as an exercise for the reader to show that the latter can be written
in terms of the model’s complex index of refraction n̂ = n′ + in′′ and its damping constant ":

υE = c

n′ + 2ωn′′/"
. (18.96)

As expected from Example 18.2, υE coincides with the group velocity υg when the dispersion is
normal and there is negligible absorption. However, in the region of anomalous dispersion and strong
damping, υE deviates considerably from υg and remains strictly less than c (and near zero). �

18.6.2 Group Velocity Dispersion
The wave packet (18.90) propagates without distortion in the group velocity approximation. This
approximation breaks down if the second derivative on the right side of (18.86) cannot be neglected.
The name group velocity dispersion (GVD) is used for this second derivative because

k′′ = d

dω

dk

dω
= − 1

v2
g

dvg

dω
. (18.97)

To study the effect of GVD on the envelope function A(z, t), we define

τ = t − z/vg and A(z, t) = ψ(z, τ ). (18.98)

Because ∂A/∂z = ∂ψ/∂z + (∂ψ/∂τ )(∂τ/∂z), (18.86) simplifies to

i
∂ψ

∂z
= 1

2
k′′

0
∂2ψ

∂τ 2
. (18.99)

One way to solve (18.99) exploits the similarity of (18.99) to the time-dependent Schrödinger equation
for a free particle in one space dimension. The plane wave solutions of the latter lead (after exchanging
time and space variables) to plane wave solutions of (18.99) indexed by a real variable ν with
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t

z

Figure 18.11: Fixed-time snapshots of Re[E(z, t)] from (18.104) showing the effects of group velocity
dispersion on the time evolution of a wave packet.

dimensions of frequency:13

ψν(z, τ ) = exp
[
i
(

1
2k

′′
0ν

2z − ντ
)]
. (18.100)

A general solution to (18.99) follows by superposing many such waves with a weight function ψ̂(ν):

ψ(z, τ ) =
∞∫

−∞
dν ψ̂(ν) exp

[
i
(

1
2k

′′
0ν

2z − ντ
)]
. (18.101)

Setting z = 0 (18.101) shows that ˆψ(ν) is the Fourier transform of the boundary value ψ(0, τ ):

ψ̂(ν) = 1

2π

∞∫
−∞

dτ ψ(0, τ ) exp(−iντ ). (18.102)

It is convenient (and not unrealistic) to suppose that a detector at the z = 0 entrance to the medium
records a Gaussian pulse of the form

ψ(0, τ ) = exp(−τ 2/�T 2). (18.103)

Inserting (18.103) into (18.102) gives ψ̂(ν) = (�T/
√

4π ) exp(−ν2�T 2/4). Using this in (18.101)
produces an integral whose value we recorded in (16.85). With ψ(z, τ ) thus in hand, the electric field
given by (18.84) and (18.97) is

E(z, t) =
√

�T 2

�T 2 − 2ik′′
0z

exp

[
− (t − z/vg)2

�T 2 − 2ik′′
0z

]
exp[i(k0z − ω0t)]. (18.104)

Figure 18.11 shows the time evolution of the real part of (18.104) for a typical choice of parameters.
The traces in Figure 18.11 are best understood if we write the complex electric field in the form

E(z, t) = |E(z, t)| exp[iφ(z, t)]. (18.105)

The amplitude function,

|E(z, t)| =
[

1

1 + (
2k′′

0z/�T
2
)2

]1/4

exp

[
− (t − z/vg)2

�T 2 + (
2k′′

0z/�T
)2

]
, (18.106)

shows that the pulse remains a Gaussian as a function of time. However, the packet amplitude
decreases and its temporal width increases as z increases. In fact, the width doubles after the pulse
has propagated a distance �z ≈ �T 2/|k′′

0 | into the medium. Snapshots at different times show that

13 We solved the paraxial wave equation in Section 16.5.5 using its similarity to the time-dependent Schrödinger
equation for a free particle in two space dimensions.
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18.6 Wave Packets in Dispersive Matter 647

the packet propagates at the group velocity υg, but that the packet envelope stretches out and distorts
more and more as time goes on. The rightmost trace in Figure 18.11 demonstrates that GVD produces
the phenomenon of “chirp”. This word is used to indicate that the local frequency of the wave varies
as a function of position (or time). We confirm this using the phase function defined by (18.105) to
compute

ω(z, t) = dφ

dt
= ω0 + 4k′′

0z

�4 + (2k′′
0z)2

(t − z/vg). (18.107)

The wave packet in Figure 18.11 has k′′
0 > 0. Therefore, in accord with (18.107), the Fourier com-

ponents with longer (shorter) wavelengths appear at the front (back) of the pulse at the latest time
shown.

Example 18.3 Equation (18.106) defines the Gaussian width parameter W 2 = �T 2 +
(2k′′

0z/�T )2. Derive this position-dependent width by treating the z = 0 packet as a superposition
of sub-packets, each with a frequency bandwidth δ� � ��. Assume that the original packet has
central frequency ω0 and a wide but Fourier transform-limited bandwidth �� ∼ 1/�T .14

Solution: The smallness of δ� ensures that each sub-packet propagates undistorted at its own
group velocity. Therefore, using (18.97), the difference in time required for two sub-packets from
opposite ends of the original packet to propagate a distance z is

�t =
∣∣∣∣ z

vg(ω0 −��)
− z

vg(ω0 +��)

∣∣∣∣ ≈
∣∣∣∣∣2�� z

v2
g

dvg

dω

∣∣∣∣∣ ≈ 2��|k′′
0 |z ≈ 2|k′′

0 |z
�T

.

(18.108)

The delay �t introduces a width to the wave packet which adds in quadrature with the initial width
�T . Therefore, the total width predicted by this argument agrees with (18.106) because

�2 ≈ �T 2 +�t2 ≈ �T 2 + (
2k′′

0z/�T
)2
. (18.109)

Application 18.4 Whistlers

The dispersion curves in Figure 18.6(b) describe electromagnetic waves in a magnetized electron
plasma where the propagation vector k lies parallel to the applied magnetic field B. The L′ mode
propagates in the frequency interval 0 < ω < ωc, where the cyclotron frequency ωc = eB/m is about
1 MHz for electrons in the ionosphere. This interval includes the audio band, so one can imagine
“listening” to ionospheric waves using a suitable transducer. This was done, unintentionally, by the
physicist Heinrich Barkhausen when he served the German army in World War I by eavesdropping
on enemy field communications using a telephone connected by a high-gain amplifier to a buried
antenna. Besides military chatter, he frequently picked up “a very remarkable whistling” which he
characterized as “an oscillation . . . of very rapidly changing frequency, beginning with the highest
audible tones, passing through the entire scale, and becoming inaudible with the lowest tones”.

14 This is the time-frequency analog of the wave packets discussed in Section 16.5.3 with Fourier transform-limited
spatial widths �x ∼ 1/�k.
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Figure 18.12: A frequency-versus-time spectrogram shows the smoothly decreasing audio tone of a
“whistler”. Figure from Green and Inan (2006).

Figure 18.12 is a spectrogram of a “whistler” with exactly the characteristics described by
Barkhausen.15 The modern understanding of this phenomenon supposes that a lightning strike excites
a wave packet in the lower atmosphere composed of a broad (frequency) band of L′ waves. Then,
as shown in Figure 18.13, the packet propagates along a terrestrial magnetic field line up into the
ionosphere and then back down to the Earth where it is detected. This trajectory keeps the propagation
vectors parallel to B and thus maintains the integrity of the L′ waves in the packet. Following Exam-
ple 18.3, we treat this broad-band packet as a superposition of narrow-band packets, each propagating
undistorted at its own group velocity. Because the curve of ω(k) for the L′ mode in Figure 18.6(b) has
positive curvature (d2ω/dk2 > 0) at audio frequencies, the group velocity is an increasing function
of the central frequency of the sub-packets. This explains the characteristic descending tone seen in
Figure 18.12 because high-frequency packets arrive before low-frequency packets.

Whistler
propagation
path

Earth

B

Figure 18.13: A lightning-induced packet of L′ waves propagates into the ionosphere along a magnetic
field line of the Earth.

Quantitative studies presume that whistlers propagate along magnetic field lines because they are
guided by “plasma ducts” (regions of anomalously high or low plasma density) which form in the
immediate vicinity of a field line. Contemporary research focuses on the dynamics of duct formation
and the pondermotive interaction (see Section 16.10.2) between ducts and whistler waves. Turning
these arguments around, whistlers have been used as probes of the magnetosphere and to deduce the
presence of lightning on other planets of the solar system. �

15 Barkhausen’s 1918 paper, “Two phenomena discovered with the help of a new amplifier” [Physikalische Zeitschrift
20, 401 (1919), reported both “whistling tones from the Earth” and “noise during the magnetization of iron”. It is a
testament to his taste in problems that studies of “Barkhausen noise” in permanent magnets are just as common today
as studies of whistler phenomena.
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18.7 The Consequences of Causality

The requirement of causality built into a time-dependent response function like χ(r, t) (see Sec-
tion 18.2) has many consequences for the complex, frequency-dependent response function χ̂(r, ω)
obtained from it by Fourier transformation. Prominent among these are (i) the real and imaginary
parts of χ̂ (r, ω) can be obtained from each other; and (ii) χ̂(r, ω) is an analytic function in the upper
half-plane of complex ω. These mathematical properties, in turn, have direct physical consequences,
including (i) frequency dispersion and energy dissipation are always present together; and (ii) no
electromagnetic signal can travel faster than the speed of light in a causal medium. We discuss both
below.

18.7.1 The Kramers-Krönig Relations: Derivation
Focus attention on the Fourier transform pair associated with a typical response function, say, an
electric or magnetic susceptibility:

χ̂(ω) =
∞∫

−∞
dt χ(t) exp(iωt) and χ (t) = 1

2π

∞∫
−∞

dω χ̂(ω) exp(−iωt). (18.110)

Exactly as in Section 18.2, the response function χ(t) is real and causal. Reality imposes the condition
χ(t) = χ∗(t), which implies that the real part of χ̂(ω) is an even function and the imaginary part of
χ̂ (ω) is an odd function:

χ ′(−ω) = χ ′(ω) and χ ′′(−ω) = −χ ′′(ω). (18.111)

Causality imposes the condition χ(t < 0) = 0. If we recall the definition of the sign function from
Section 1.5.3,

sgn(x) =
{

−1 x < 0,

1 x > 0.
(18.112)

we can build in causality by writing

χ(t) = 1

2
[1 + sgn(t)]χ(t). (18.113)

Equation (18.113) is the key to the calculation. Using it in the left member of (18.110) gives

χ̂(ω) = 1

2

∞∫
−∞

dt χ(t) exp(iωt) + 1

2

∞∫
−∞

dt sgn(t)χ(t) exp(iωt). (18.114)

The first integral on the right-hand side of (18.114) is 1
2 χ̂ (ω). Therefore, substituting the right member

of (18.110) into the second integral on the right side of (18.114) gives

χ̂ (ω) = 1

2π

∞∫
−∞

ds χ̂(s)

∞∫
−∞

dt sgn(t) exp[i(ω − s)t]. (18.115)

Finally, equate the real and imaginary parts on each side of (18.115), use (18.111), and be aware that
time or frequency integrals with odd integrands vanish.16 The final result shows that the real part of

16 Note that sgn(t) = −sgn(−t) in (18.112).
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χ̂ (ω) is completely determined by the imaginary part of χ̂ (ω) and vice versa:

χ ′(ω) = 1

2π

∞∫
0

dt cos(ωt)

∞∫
−∞

ds χ ′′(s) sin(st)

(18.116)

χ ′′(ω) = 1

2π

∞∫
0

dt sin(ωt)

∞∫
−∞

ds χ ′(s) cos(st).

An unstated assumption, which we now make explicit, is that the integrals in (18.116) and (18.110)
converge. This, in turn, requires that

lim
t→∞χ(t) → 0 faster than

1

t
and lim

ω→∞ χ̂(ω) → 0 faster than
1

ω
. (18.117)

Before exploring the implications of (18.116), we return to (18.115) and carry out the integration
over time. This is best done using a convergence factor ε:

∞∫
−∞

dt sgn(t)eiωt = lim
ε→0

∞∫
0

dt ei(ω+iε)t − lim
ε→0

0∫
−∞

dt ei(ω−iε)t = lim
ε→0

[
i

ω − iε
+ i

ω + iε

]
.

(18.118)
Using (18.118), (18.115) reads

χ̂ (ω) = lim
ε→0

i

2π

∞∫
−∞

ds

[
χ̂(s)

ω − s + iε
+ χ̂(s)

ω − s − iε

]
. (18.119)

Evaluating each term in (18.119) using the Plemelj formula,

lim
ε→0

1

x − x0 ± iε
= P

1

x − x0
∓ iπδ(x − x0), (18.120)

generates the principal value integral equation17

χ̂ (ω) = i

π
P

∞∫
−∞

ds
χ̂ (s)

ω − s
. (18.121)

Equating real and imaginary parts on either side of (18.121) gives the Kramers-Krönig relations,

χ ′(ω) = − 1

π
P

∞∫
−∞

ds
χ ′′(s)
ω − s

(18.122)

χ ′′(ω) = 1

π
P

∞∫
−∞

ds
χ ′(s)
ω − s

.

The content of (18.122) is exactly the same as the content of (18.116). Both tell us that χ ′(ω) is
completely determined by χ ′′(ω) and χ ′′(ω) is completely determined by χ ′(ω).

18.7.2 The Kramers-Krönig Relations: Meaning and Uses
The Kramers-Krönig relations are quite general and apply to essentially any physically realizable
causal response function. An example is ε̂(ω) − ε0, where the subtraction of ε0 is needed to satisfy

17 See Section 1.5.2 for discussion of principal value integrals and the Plemelj formula.
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Figure 18.14: The physical origin of the connection between causality, dispersion, and absorption. Figure from
Toll (1956).

(18.117). Applying (18.116) or (18.122) to this example shows that if ε′(ω) is not constant anywhere,
ε′′(ω) is non-zero everywhere (although perhaps very small at most frequencies). In light of our
discussion of energy in a dispersive medium (Section 18.3), we glean the very non-trivial fact that
frequency dispersion and energy dissipation are inextricably linked. The mere existence of dispersion
in any interval of frequency implies that non-zero absorption occurs in every interval of frequency.
Conversely, frequency dispersion occurs everywhere if energy absorption occurs anywhere.

In practice, the Kramers-Krönig relations are used to reduce the experimental labor needed to
characterize the electromagnetic response of a causal medium. Thus, (18.116) or (18.122) can be used
to calculate ε′(ω) once ε′′(ω) has been deduced from, say, broadband absorption measurements. It is
particularly convenient (although not obvious) that the Kramers-Krönig relations apply to the complex
index of refraction, n̂(ω) − 1, and to the complex Fresnel reflectivity, r̂(ω) (see Section 17.6.4). This
makes it unsurprising that a minor industry exploits the Kramers-Krönig relations to derive the “optical
constants” (not limited to optical frequencies) for essentially all materials of physical interest.

We turn now to the physical reason why causality forces the intimate relationship between dispersion
and absorption revealed by the Kramers-Krönig relations. Consider the top panel of Figure 18.14. This
is an amplitude-versus-time trace for an incident (stimulus) electromagnetic wave packet at a fixed
observation point in a causal medium. The clock has been set so t = 0 corresponds to the first
appearance of the packet. Suppose, for simplicity, that the medium absorbs energy only in a very
narrow range of frequencies around a central frequency ω0. This makes the imaginary part of the index
of refraction, n′′(ω), a very sharply peaked function. The middle panel of Figure 18.14 shows the
(real part of the) plane wave component at ω0 which dominates the absorption. The bottom panel of
Figure 18.14 shows the output (or response) wave if the medium did nothing but eliminate the absorbed
wave from the input wave packet. The output wave violates causality because it is not identically zero
for t < 0. Therefore, the medium must introduce phase shifts into all the other waves in the packet to
ensure destructive interference at the observation point for all t < 0. However, it is precisely the real
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part of the complex index of refraction, n′(ω), which quantifies the phase shift imparted by a medium
to a wave with frequency ω. The final conclusion is inescapable: the real and imaginary parts of a
response function must be intimately related simply to meet the demands of causality.

Example 18.4 Write the Kramers-Krönig relation for ε ′(ω) using positive frequencies only. Justify
the Lorentz model form for this quantity in (18.65) using a narrow absorption band assumption
like the one used to discuss Figure 18.14.

Solution: Begin with the Kramers-Krönig relation,

ε′(ω)

ε0
= 1 − 1

πε0
P

∞∫
−∞

ds
ε′′(s)
ω − s

.

Splitting the integral into positive- and negative-frequency parts and changing variables in the latter
gives

ε′(ω)

ε0
= 1 + 1

πε0
P

∞∫
0

dsε′′(s)
[

1

ω + s
− 1

ω − s

]
= 1 + 2

πε0
P

∞∫
0

ds
sε′′(s)
s2 − ω2

.

Suppose that absorption occurs only in the interval (ω0 − δω, ω0 + δω) where δω � ω0. This
implies that ε′′(ω) vanishes outside that interval and

ε′(ω)

ε0
= 1 + 2

πε0

1

ω2
0 − ω2

ω0+δω∫
ω0−δω

ds sε′′(s).

This has exactly the form of (18.65) in the limit " → 0, which is consistent with the assumption
of a very narrow absorption band, namely,

ε′(ω)

ε0
= 1 + ω2

p

ω2
0 − ω2

where ω2
p = 2

πε0

ω0+δω∫
ω0−δω

ds s ε′′(s).

18.7.3 The Analytic Properties of χ̂ (ω)
Causal response functions like χ̂(ω) have interesting properties when regarded as functions of the
complex frequency ω = ω′ + iω′′. There are many reasons to do this, not least because it facilitates a
derivation of the Kramers-Krönig relations (18.122) entirely different from the one given in the previous
section. The generalization we need is straightforward because the causality condition χ(t < 0) = 0
permits us to write the left member of (18.110) as

χ̂(ω) =
∞∫

0

dt χ(t) exp(iωt). (18.123)

Given the left member of (18.117), the integral (18.123) converges everywhere in the upper half of the
complex ω plane where ω′′ > 0. The same is true of all the derivatives of χ̂ (ω). This means that χ̂(ω)
is analytic in the entire upper half ω-plane.18

18 See Section 7.10 for more on analytic functions.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-18 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 9:18

18.7 The Consequences of Causality 653

0 0

C

C′

Figure 18.15: The closed integration path C in the complex ω-plane used to evaluate (18.124). The
semi-circular arc C ′ with radius δ → 0 is part of C.

We derive the Kramers-Krönig relations using Cauchy’s theorem, which states that a line integral
around a closed contour in the complex plane is zero if the integrand is analytic everywhere inside the
contour. Figure 18.15 shows the closed contour C we will use to deduce that∫

C

dω
χ̂(ω)

ω − ω0
= 0. (18.124)

The key to this conclusion is that the lower portion ofC traces the real axis from ω = −∞ to ω = +∞
except for a tiny detour into the upper half-plane to avoid the point ω = ω0 on the real axis. The detour
follows a semi-circular arc C ′ whose radius δ will go to zero at the end of the calculation.19 The
remainder of C is a semi-circular arc with radius R → ∞ in the upper half-plane. Cauchy’s theorem
gives (18.124) because χ̂ (ω) is analytic in the upper half-plane andC excludes the pole of the integrand
at ω − ω0. On the other hand, the right member of (18.117) guarantees that the integral over the large
semi-circular part of C is zero by itself. Therefore, using the definition of the principal value integral
in (1.104), (18.124) is equivalent to the statement that

P
∞∫

−∞
dω

χ̂ (ω)

ω − ω0
+
∫

δ→0

dω
χ̂(ω)

ω − ω0
= 0. (18.125)

We evaluate the second integral in (18.125) using the parameterization ω = ω0 + δ exp(iθ ), where the
limits of θ are chosen so the semi-circle C ′ is traversed from ω0 − δ to ω0 + δ:

∫
δ→0

dω
χ̂(ω)

ω − ω0
= lim

δ→0

0∫
π

iδeiθ dθ
χ̂ (ω0 + δeiθ )

δeiθ
= −πiχ̂ (ω0). (18.126)

Combining (18.126) with (18.125) reproduces (18.121) and thus the Kramers-Krönig relations also.

18.7.4 Consistency with Special Relativity
Special relativity (Chapter 22) teaches that no signal capable of “initiating events” travels faster than
the speed of light. This fact, not obviously consistent with the behavior of the group velocity in regions
of anomalous dispersion (see Application 18.3), motivated Arnold Sommerfeld to ask the following
question: If a wave packet with a sharp leading edge (see Figure 18.16) enters a dispersive medium at
t = 0, how much time elapses before an observer at a distance z in the medium first detects a non-zero
field amplitude?20

19 When metals are considered and χ̂ (ω) = ε̂(ω) − ε0, the contour C must avoid the origin using another small
semi-circle because ε̂(ω) has a pole there. See (18.47).

20 A wave packet with a sharp edge is needed so the clock can be set to t = 0 at the precise moment the packet enters
the medium. A Gaussian wave packet cannot be used because its leading edge is never exactly zero. We note also that
the energy velocity formula (18.96) was unknown in 1906 when Sommerfeld initiated his study.
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)n(

z

Figure 18.16: At what time does an observer at z detect the wave packet?

A physical argument observes that the packet moves at the speed of light in vacuum, but gets
distorted in the medium by the addition of fields produced by the response of the medium. That
response comes from the motion of charged particles in the medium which have mass and thus cannot
respond instantaneously. Therefore, we expect at least some portion of the packet to arrive at the
observation point in a time t = z/c.

Sommerfeld’s calculation compares the vacuum wave packet shown in Figure 18.16,

EV (z, t) =
∞∫

−∞
dω Â(ω) exp {iω(z/c − t)} , (18.127)

with the same packet after it has propagated into the medium. Using the Fresnel transmission amplitude
for normal incidence (see Section 17.3.2), the latter is

E(z, t) =
∞∫

−∞
dω

2

1 + n̂(ω)
Â(ω) exp {iω[n̂(ω)z/c − t]} . (18.128)

Our first observation is that (18.127) vanishes when z > ct because EV (z, t) propagates undistorted
at the speed of light. This fact provides information about Â(ω) in the complex ω-plane which we
will use to analyze (18.128). The trick is to extend the path of integration in (18.127) to include
the semi-circular contour C1 in Figure 18.17. This does not change the value of the integral because
the contribution from C1 is zero when z > ct as long as A(ω) does not increase more rapidly than
the exponential decrease of exp[iω(z/c − t)]. We conclude that the integral (18.127) vanishes when
integrated over a contour which encloses the entire upper half-plane. It follows from Cauchy’s theorem
that A(ω) is analytic in the upper half-plane.

We analyze (18.128) similarly by extending its path of integration to include C1 when z > ct .
However, n̂(ω) → 1 as C1 expands to infinity because, as mentioned earlier, n̂(ω) − 1 is a causal
response function which satisfies the Kramers-Krönig relations. Therefore, the contribution to the
integral from C1 vanishes as it did in the previous paragraph and (18.128) may be evaluated for z > ct

using a contour which encloses the entire upper half-plane. Invoking Cauchy’s theorem shows that
E(z, t) is determined by the poles of the integrand of (18.128) in the upper half-plane. However,
Â(ω) has no poles in the upper half-plane (see just above), and one can check that [1 + n̂(ω)]−1

also has no poles in the upper half-plane for representative dielectric models like the one of Lorentz
(Section 18.5.4). Consequently, E(z, t) = 0 when z > ct and we confirm the prediction of special
relativity that no signal can be transmitted through a dispersive medium faster than the speed of light.

The foregoing shows that all non-zero values of E(z, t) come from (18.128) evaluated for z < ct .
To perform the integration, we exploit the change of sign of the argument of the exponential factor and
close the integration path using the infinitely large semi-circle C2 in Figure 18.17. The contribution
to the integral from C2 itself is zero (as above), so Cauchy’s integral formula and the pole structure
of Â(ω)/[1 + n̂(ω)] in the lower half-plane determine the behavior E(z, t). The integral cannot be
done exactly so Sommerfeld used asymptotic methods and a vacuum wave packet with a step-function
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Figure 18.17: Contours in the complex ω-plane used to evaluate EV (z, t) and E(z, t).

leading edge to show that the first hint of an electromagnetic field at z appears at exactly time t = z/c.
However, the structure of this “forerunner” field differs considerably from the leading edge of the
original wave packet. Follow-up work by Brillouin and others elucidated the nature of these precursor
waves and the subsequent appearance of a field recognizably related to the original packet.21

Application 18.5 Sum Rules

The discovery of new materials demands the construction of model dielectric functions to describe
their response to electromagnetic fields. Guidance for this process comes from the experience gained
from earlier models (see Section 18.5) and from various sum rules which proposed dielectric functions
must satisfy to be consistent with general principles. Two such rules follow from the positive-frequency
version of the Kramers-Krönig relation derived in Example 18.4:

ε ′(ω) = ε0 + 2

π

∞∫
0

ds
s ε′′(s)
s2 − ω2

. (18.129)

The first sum rule constrains the value of the static dielectric constant by setting ω = 0 in (18.129) to
get

ε′(0) = ε0 + 2

π

∞∫
0

ds
ε′′(s)
s

. (18.130)

A second sum rule follows from (18.129) and the fact that all systems possess a frequency � beyond
which the absorption is negligible. In other words, ε′′(ω > �) = 0, so

ε′(ω) = ε0 + 2

π

�∫
0

ds
s ε′′(s)
s2 − ω2

. (18.131)

When ω � �, we can neglect s in the denominator of (18.131) and ε′(ω) approaches the Drude form
(18.66). The latter statement is true because all charge carriers behave as if they were free in the

21 See Sources, References, and Additional Reading.
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presence of an extremely rapidly varying field. Therefore,

ε0 − 2

π

�∫
0

ds
s ε′′(s)
ω2

= ε0

[
1 − ω2

p

ω2

]
. (18.132)

Extending the upper limit back to infinity shows that the plasma frequency of the medium sets the
scale for the rate of energy absorption integrated over all frequencies [cf. (18.30)]:

∞∫
0

ds sε′′(s) = 1
2πε0ω

2
p. (18.133)

Equation (18.133) is a classical version of the “f-sum rule” in quantum mechanics because ω2
p is

proportional to the number of charge carriers in the system [see (18.46)]. �

18.8 Spatial Dispersion

The linear response formulae discussed in Section 18.2 are far from the most general that can be
written down.22 For example, Section 18.5.5 showed that the non-isotropic response of a magnetized
plasma to a propagating electromagnetic wave had the effect of replacing D(r, ω) = ε̂(ω)E(r, ω) by
the matrix equation

Di(r, ω) = ε̂ij (ω)Ej (r, ω). (18.134)

Similarly, an isotropic medium which responds differently from point to point would lead us to write

D̂(r, ω) = ε̂(r, ω)Ê(r, ω). (18.135)

A generalization of (18.135) recognizes that P(r, ω), and hence D(r, ω), may depend on the electric
field, not just at r but also at other points r′ of the medium. This is called spatial dispersion and the
generalization of (18.135) for a homogeneous medium is

D̂(r, ω) =
∫

d 3r ′ ε̂(r − r′, ω)Ê(r′, ω). (18.136)

One way to think about (18.136) comes from changing variables to

D̂(r, ω) =
∫

d 3s ε̂(s, ω)Ê(r + s, ω) (18.137)

and noting that the dielectric response at r often comes from points in the immediate vicinity of r.
This justifies a Taylor expansion of E(r + s, ω), from which we conclude that D(r, ω) may depend on
both E(r, ω) and its low-order spatial derivatives:

D̂(r, ω) = ε(ω)Ê(r, ω) + ε
(1)
k (ω)

∂Ê(r, ω)

∂xk
+ ε

(2)
kj (ω)

∂2Ê(r, ω)

∂xk∂xj
+ · · · . (18.138)

Equation (18.136) is a spatial convolution integral analogous to the temporal convolution integral in
(18.1). Extending the logic used there, we Fourier transform in space (having previously transformed
from time to frequency) and define a wave vector and frequency-dependent dielectric function

ε̂(k, ω) =
∫

d 3s ε̂(s, ω) exp(−ik · s). (18.139)

22 We do not discuss non-linear response here.
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Combining (18.137) with (18.139) shows that a field E(r, t) = E(k, ω) exp[i(k · r − ωt)] in a spatially
dispersive medium induces a field D(r, t) = D(k, ω) exp[i(k · r − ωt)] where

D(k, ω) = ε̂(k, ω)E(k, ω). (18.140)

Constitutive relations like (18.140) play a large role in plasma physics and condensed matter physics.
Spatial dispersion occurs whenever a characteristic length appears in the description of a polarizable

medium.23 A good example is the screening length � of a real conductor discussed in Section 5.7. In our
present language, the calculation performed in that section described the static (ω = 0) response of a
real conductor in an approximation where the Coulomb potential of a point charge, ϕ0(r) = q/4πε0r ,
is screened by mobile charges of the opposite sign to a Yukawa-type potential,

ϕ(r) = q

4πε0r
exp(−r/�). (18.141)

Performing an integral like (18.139) shows that the Fourier transform partner of (18.141) is

ϕ(k) = q/ε0

k2 + (1/�)2
. (18.142)

The corresponding partner of the point charge Coulomb potential is

ϕ0(k) = q/ε0

k2
. (18.143)

In light of Example 18.1, the analog of (18.140) is ϕ(k) = ϕ0(k)/ε(k), and we conclude that the static
but wave-vector-dependent dielectric function of this medium is

ε(k, 0) = 1 + 1

k2�2
. (18.144)

Better approximations produce dielectric functions for conductors which are more accurate than
(18.144) and which include ω �= 0 dependence more accurately than the Drude treatment of
Section 18.5.1.

�

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is taken from Lorentz’ original paper (1878) on frequency-dispersive
matter:

H.A. Lorentz, “Concerning the relation between the velocity of propagation of light and the density and
composition of media”, in Collected Papers, edited by P. Zeeman and A.D. Fokker (Martinus Nijhoff, The
Hague, 1936), Volume II.

Section 18.1 Two good textbook treatments of the subject matter of this chapter are
L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960).

R.H. Good, Jr. and T.J. Nelson, Classical Theory of Electric and Magnetic Fields (Academic, New York, 1971).

Two well-written monographs devoted to dispersive waves in plasmas and solids, respectively, are
D.B. Melrose and R.C. McPhedran, Electromagnetic Processes in Dispersive Media (University Press, Cam-
bridge, 1991).

M. Dressel and G. Grüner, Electrodynamics of Solids (University Press, Cambridge, 2002).

23 We recall from Section 18.5 that frequency dispersion occurs whenever a characteristic frequency appears in the
description of a polarizable medium.
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Section 18.2 For more on the equivalence of different formulations of linear response theory for electrodynamics,
see the two books immediately preceding and

C.R. Smith and R. Inguva, “Electrodynamics in a dispersive medium: E, B, D, and H”, American Journal of
Physics 52, 27 (1984).

P.S. Pershan, “Magneto-optical effects”, Journal of Applied Physics 38, 1482 (1967).

Section 18.3 Our discussion of energy and dissipation in dispersive media derives from

F. Borgnis, “On electromagnetic energy density in dispersive media”, Zeitschrift für Physik 159, 1 (1960).

Section 18.5 Figure 18.2 and Figure 18.4 come from Wooten. Figure 18.5 comes from Fox.

F. Wooten, Optical Properties of Solids (Academic, New York, 1972).

M. Fox, Optical Properties of Solids (University Press, Oxford, 2001).

Application 18.1 on charge relaxation in ohmic matter was adapted from

W.M. Saslow and G. Wilkinson, “Expulsion of free electronic charge from the interior of a metal”, American
Journal of Physics 39, 1244 (1971).

The source of Figure 18.6 and a clearly written treatment of waves in plasmas are, respectively,

P.A. Sturrock, Plasma Physics (University Press, Cambridge, 1994).

T.J.M. Boyd and J.J. Sanderson, The Physics of Plasmas (University Press, Cambridge, 2003).

The discovery of the dispersive properties of the ionosphere is a fascinating story. See

“A discussion on the early days of ionospheric research and the theory of electric and magnetic waves in the
ionosphere and magnetosphere”, Philosophical Transactions of the Royal Society of London A 280(1293) 1
(1975).

The principal sources for our discussion of the split-ring oscillator were

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced nonlinear
phenomena”, IEEE Transactions on Microwave Theory and Techniques 47, 2075 (1999).

S. Linden, C. Enkrich, G. Dolling, et al. “Photonic metamaterials: Magnetism at optical frequencies”, IEEE
Journal of Selected Topics in Quantum Electronics 12, 1097 (2006).

R. Merlin, “Metamaterials and the Landau-Lifshitz permeability argument: Large permittivity begets high-
frequency magnetism”, Proceedings of the National Academy of Sciences 106, 1693 (2009).

Section 18.6 A reference book which devotes several chapters to wave packet (pulse) propagation in dispersive
media is

A.E. Siegmann, Lasers (University Science Books, Sausalito, CA, 1986).

Figure 18.9 and Figure 18.10 were adapted, respectively, from

K.E. Oughstun, Electromagnetic and Optical Pulse Propagation 1: Spectral Representations in Temporally
Dispersive Media (Springer, New York, 2006).

D.J. Gauthier and R.W. Boyd, “Fast light, slow light and optical precursors: What does it all mean?”, Photonics
Spectra, January 2007, pp. 82-90.

For more on anomalous group velocities, see

K.T. McDonald, “Negative group velocity”, American Journal of Physics 69, 607 (2001).

The source of Figure 18.12 and a good introduction to whistler phenomena are, respectively,

J.L. Green and U.S. Inan, “Lightning effects on space plasmas and applications”, in Plasma Physics Applied,
edited by C.L. Grabbe (Transworld Research Network, Trivandrum, India, 2006), Chapter 4.

M. Hayakawa, “Whistlers”, in Handbook of Atmospheric Electrodynamics, edited by H. Volland (CRC Press,
Boca Raton, FL, 1995), Volume II, pp. 155-194.

Section 18.7 Our treatment of the Kramers-Krönig relations and Figure 18.14 (with its discussion) come from

B. Harbecke, “Application of Fourier’s allied integrals to the Kramers-Krönig transformation of reflectance
data”, Applied Physics A 40, 1151 (1986).

J.S. Toll, “Causality and the dispersion relation: Logical foundations”, Physical Review 104, 1760 (1956).
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The classic treatise on the subject of signal velocity and forerunners, and a monograph that brings this work up to
date, are

L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960).

K.E. Oughstun and G.C. Sherman, Electromagnetic Wave Propagation in Causal Dielectrics (Springer, New
York, 1994).

A gentle introduction to spatial dispersion is
D.L. Mills, “Spatial dispersion and its effect on the properties of dielectrics”, in Polaritons, edited by E. Burstein
and F. De Martini (Pergamon, New York, 1974), pp. 147-160.

Problems
18.1 Electric Susceptibilities in Time and Frequency Find the frequency-dependent susceptibility χ̂ (ω) when

the temporal susceptibility χ (t) of a medium is

(a) χ (t) = χ0 δ(t)
(b) χ (t) = χ0θ (t)
(c) χ (t) = χ0θ (t) exp(−t/τ )
(d) χ (t) = χ0θ (t) sin(ω0t).

Hint: Delta functions appear naturally in some of these if you use a convergence factor limε→0 exp(−εt) and
remember that limε→0 ε/(ω2 + ε2) = πδ(ω).

18.2 Magnetization and Conductivity

(a) A homogeneous medium is characterized by a magnetic susceptibility χm. Use Faraday’s law to show
that the magnetization current J = ∇ × M can be expressed in the form

Ji(r, t) = χm

μ0(1 + χm)

t∫
−∞

dt ′
{
δij

∂2

∂xk∂xk
− ∂2

∂xi∂xj

}
Ej (r, t ′).

This result can be regarded as a special case of a homogeneous medium that obeys Ohm’s law with
a conductivity tensor that is non-diagonal, non-local in time, and non-local in space. That is, the total
current can be written in the form

ji(r, t) =
t∫

−∞

dt ′
∫

dr ′ σij (r − r ′, t − t ′)Ej (r ′, t ′).

(b) Expand E(r′, t ′) in a Taylor series around E(r, t ′) and show that ji(r, t) contains a piece consistent with
the form of Ji(r, t). Comment on the other pieces you find. What happens if the system is invariant to
the symmetry operation of inversion (r → −r)?

18.3 The Radio Operator’s Friend The dielectric function of the ionosphere is ε(ω)/ε0 = 1 −�2/ω2, where
� is a constant. Explain why a radio operator, exploiting the reflection of radio waves from the ionosphere,
nearly always receives signals withω > � from distant broadcasting stations, but only occasionally or never
receives signals with ω > � from nearby stations.

18.4 Plane Waves of Vector Potential Show that plane wave propagation does not occur at all frequencies in
a medium where the current density j is proportional to the vector potential: μ0j = −k2

0A.

18.5 Plasma Sheath Let ε(ω)/ε0 = 1 − ω2
p/ω

2 be the dielectric function of a plasma where ωp is the plasma
frequency. In a typical laboratory or astrophysical environment, any attempt to create a voltage drop
V (t) = V cosωt across the plasma generates a region of vacuum (called the “sheath”) on either side of the
plasma volume as indicated in the one-dimensional sketch below.
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(a) Derive expressions for the uniform electric field EP (t) = EP cosωt in the plasma and for the uniform
electric field ES(t) = ES cosωt in the sheath. Assume there is no free charge anywhere. Assume also
that ωp is small enough that an electrostatic approximation is always valid.

(b) Plot the field amplitudes EP and ES on the same graph as a function of frequency. Discuss where the
voltage drop occurs and why when (1) ω � ωp, (2) ω = ωp, and (3) ω � ωp.

(c) Make an “LC circuit” interpretation of the resonance behavior at ω = ωp/
√

1 + L/�.

18.6 Propagation in an Undamped Medium Derive the inhomogeneous wave equation satisfied by the electric
field E(r, t) in a system where ρ(r, t) = 0 but j(r, t) �= 0. Show that this equation has a plane solution
E = E0 exp[i(k · r − ωt)] for a system of non-interacting electrons (number density n) that respond to an
electric field E according to Newton’s law. Display the dispersion relation ω(k) explicitly.

18.7 Surface Plasmon Polariton Let ε̂(ω)/ε0 = 1 − ω2
p/ω

2 be the dielectric function of the half-space z > 0.
The half-space z < 0 is vacuum. Consider solutions of the appropriate wave equation inside and outside the
conducting medium which are localized in the vicinity of the z = 0 free surface:

E(x, z) = [
Ein/out
x (x, z)x̂ + Ein/out

z (x, z)ẑ
]

exp[i(qx − ωt)] exp(−κin/out|z|).
(a) Relate κ to q‖ in each medium.
(b) Use ∇ · D = 0 and the matching conditions for E to deduce that

ε̂(ω)

ε0
= − κin

κout
< 0.

(c) Derive the dispersion relation

q2 = ω2

c2

ε̂(ω)/ε0

1 + ε̂(ω)/ε0
,

and find the physically allowed solution ω(q) for the specific choice of ε̂(ω) given. Sketch ω(q) and
investigate the limits q → 0 and q → ∞.

18.8 Inverse Faraday Effect An electromagnetic wave E = δE exp(−iωt) can induce a net magnetization in a
metal. To see this, let the density and velocity of the electrons at a typical point be n = n̄+ δn exp(−iωt) and
v = v̄ + δv exp(−iωt), where n̄ is the mean density of the electrons and v̄ = 0 is the mean velocity of the
electrons. The current density j = −env has two time-dependent pieces, one of which is δj = −en̄δv = σδE,
where σ = in̄e2/mω is the collisionless Drude conductivity.

(a) Show that the time-averaged current density is 〈j〉 = − 1
2 Re {eδnδv∗} .

(b) Evaluate δn to first order in δv (using the continuity equation) and show that a piece of 〈j〉 has the form
∇ × M where (the plasma frequency is defined by ω2

p = ne2/mε0)

M = iε0eω
2
p

4mω3
(δE × δE∗).

(c) Evaluate M when δE is linearly polarized. Repeat for circular polarization.
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18.9 The Anomalous Skin Effect Drude’s conductivity formula fails when the frequencyω is low and the mean
time τ between electron collisions is large. If v̄ is a characteristic electron speed, one says that the normal
skin effect becomes anomalous when the mean distance between collisions � = v̄τ exceeds the skin depth
δ(ω). To study this regime, we first write the rate of change of an ohmic current density j(t) as the sum of
a field-driven acceleration term dj/dt |acc = (σ0/τ )E and a collisional deceleration term dj/dt |coll = −j/τ .
This reproduces Ohm’s law in the steady state dj/dt = 0 because

dj
dt

= σ0

τ
E − j

τ
.

(a) Approximate dj/dt by ∂j/∂t and combine the foregoing with the Maxwell equations (neglecting the
displacement current) to get a partial differential for B(r, t) that has only first-order time derivatives:

∇2

[
B + τ

∂B
∂t

]
= μ0σ0

∂B
∂t

.

Let B(z, t) = B0e
i(kz−ωt) and confirm that Drude’s frequency-dependent conductivity emerges from your

dispersion relation k(ω).
(b) Drude’s conductivity formula overestimates the effect of collisions when � � δ. A phenomenological

way to correct this exploits the convective derivative to write

dj
dt

= ∂j
∂t

− v̄
∂j
∂z
.

Derive a cubic equation which determines the new dispersion relation. Find k(ω) explicitly in the
extreme anomalous limit (where the gradient term dominates) and show that

B(z, t) = B0 exp[(i −
√

3)z
/
δ∗(ω)]e−iωt .

The anomalous skin depth δ∗(ω) = 2(�2v̄/ω)1/3 found here describes experiments well in this regime.
The constant �2 = m/μ0ne

2.

(c) Show that � � δ =
√

2
/
μ0ωσ0 is the condition to neglect the non-local gradient term.

18.10 Energy Storage and Energy Loss

(a) Consider a medium composed of N one-dimensional, undamped Lorentz oscillators per unit volume.
Show by explicit calculation that the time average of

uEM(t) = 1

2

∂

∂ω

[
ωε′(ω)

] |E(t)|2

is equal to the time average of the sum of the electric, kinetic, and potential energy densities of the
medium.

(b) Consider a Drude medium with momentum relaxation time τ . Show by explicit calculation that the time
average of

Q(t) = ωε ′′(ω)|E(t)|2

is equal to the time average of the rate at which the fields do work on the charges in a unit volume of
the medium.

18.11 The Lorenz-Lorentz and Drude Formulae Let the dielectric function ε(ω) = ε0 n
2(ω) characterize a

macroscopic sphere of matter composed of N electrons. If the wavelength of the incident field is large
compared to the sphere radius a, it is legitimate to use a quasistatic approximation. This problem equates
two expressions for the polarization P(t) to find ε(ω).

(a) Solve a quasi-electrostatic boundary value problem to find P(t) when the sphere is exposed to an external
electric field E0 cos(ωt).
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(b) Let the sphere have polarization P cosωt . Cut out a tiny sphere (of vacuum) around any one of its
electrons and show that P(t) produces no force on the electron. Find the dipole moment of the electron
induced by the electric field in part (a) and a spring-like force (with natural frequency ω0) which holds
the electron at the center of its vacuum sphere. Sum the moments from all the electrons and equate the
resulting polarization to the result of part (a) to get the Lorenz-Lorentz formula,

3
n2(ω) − 1

n2(ω) + 2
= ω2

p

ω2
0 − ω2

,

where 4
3πa

3n0 = N and ω2
p = n0e

2/mε0.

(c) For a neutral plasma, we suppose that the N electrons are distributed in a sphere of uniform positive
charge. The forces on any one electron come from (i) the electric field due to the positively charged
sphere; (ii) the (quasistatic) Coulomb interaction with the other N − 1 electrons; and (iii) the external
electric field. Show that force (ii) drops out in Newton’s equation of motion for the total dipole moment
P = −(e/V )

∑N
k=1 rk where V = 4

3πa
3. Solve the equation of motion for P and equate this to the result

in part (a) to get the high-frequency Drude formula,

n2(ω) = 1 − ω2
p

ω2
.

18.12 Loss and Gain Media Consider the Lorentz-type index of refraction

n̂2(ω) = 1 + fω2
p

ω2
0 − ω2 − iω"

.

The damping constant " > 0 and f is called the oscillator strength. Assume |f | � 1.

(a) Produce an argument based on monochromatic plane wave propagation that f > 0 describes an absorb-
ing medium (like a conventional dielectric) that extracts energy from the field while f < 0 describes a
gain medium (like a population of inverted atoms in a laser cavity) that supplies energy to the field.

(b) A wave packet propagates a distance LA through an absorbing medium with fA > 0 immediately after
it propagates a distance LG through a gain medium with fG < 0. Under what conditions does the packet
emerge undistorted from the absorbing medium? Hint: Do not make a group velocity (or any other)
approximation to the sum of monochromatic plane waves that constitutes the packet.

18.13 A Magnetic Lorentz Model The figure below shows a sample of “artificial matter” composed of infinite,
parallel, filamentary wires. Each row of wires carries current in the opposite direction from the rows just
above and below it. Each row is also displaced (vertically and horizontally) by a distance a/2 from the rows
just above and below it. Each wire feels a restoring force −ku (per unit length) if it moves a distance u

(perpendicular to its length) from its equilibrium position shown in the diagram. Each wire (mass per unit
length m) also feels a damping force −mγ u̇ when it is in motion.

x
z

y
a

extB

a
I

I

(a) Explain why the magnetic force exerted on each wire by the other wires can be neglected (compared to
the force from an external magnetic field) when u is small.
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(b) Let +z be the direction of positive current I . Show that a uniform magnetic field B = ŷB exp(−iωt)
inside the sample induces a steady-state displacement of each wire in the x-direction by an amount

ux(t) = IB

mω2 − k + imγω
exp(−iωt).

(c) The displacements in part (a) expose current sheets at the top and bottom faces (parallel to the y-z
plane) of the sample. Taking this into account, show that, when exposed to an external field Bext =
ŷBext exp(−iωt), the total field inside the sample satisfies the self-consistency equation

B = Bext − �2
p

ω2 − ω2
0 + iγ ω

B,

where ω2
0 = k/m and �2

p = 2μ0I
2/ma2.

(d) Use the matching conditions for H to derive an expression for B/Bext. Combine this information with
the formula derived in part (c) to obtain an expression for the magnetic permeability μ(ω) of the “wire
matter” sample.

18.14 Energy Flow in the Lorentz Model A non-magnetic dielectric consists of N atoms per unit volume.
Model the polarization of this system as the dipole moment per unit volume P = −Ner, where r(t) is the
displacement of each electron from its nucleus. The dynamics of each electron is modeled as a damped
harmonic oscillator:

d2r
dt2

+ 1

τ

dr
dt

+ ω2
0r = − e

m
E.

(a) Do not assume any particular time dependence for E and establish that

∇ · S + ∂uEM

∂t
+ ∂umech

∂t
+N

m

τ

∣∣∣∣dr
dt

∣∣∣∣2 = 0,

where S = μ−1
0 E × B, uEM = 1

2 ε0(E · E + c2B · B), and umech is the total mechanical (kinetic plus
potential) energy density of the Lorentz oscillators. Physically interpret the last term on the left-hand
side above.

(b) Now assume that a time-harmonic wave propagates through this medium. The index of refraction
n̂(ω) = n̂1(ω) + in̂2(ω) is

n̂2(ω) = 1 + ω2
p

ω2
0 − ω2 − iω/τ

,

where ω2
p = Ne2

/
mε0. Show that 〈S〉 = 1

2 ε0cn̂1|E|2k̂ is the time-averaged Poynting vector if the real
and imaginary parts of k are parallel.

(c) Show that the energy density 〈u〉 = 〈uEM + umech 〉 = 1
2 ε0|E|2(n̂2

1 + 2ωτn̂1n̂2) when similarly averaged
so that the “energy velocity”

vE(ω) = 〈S 〉
〈u〉 = c

n̂1 + 2ωτn̂2
.

(d) Prove that vE(ω) < c for the Lorentz model.

18.15 A Paramagnetic Microwave Amplifier Let a transverse electromagnetic wave H = x̂Hx exp i(ky − ωt)
propagate in a linear magnetic medium exposed to a static magnetic field B = Bzẑ. If γ and τ are constants,
experiment shows that the induced magnetization obeys

dM
dt

= γ (M × B) − M

τ
(M̂ − ẑ).

(a) The first term on the right describes precession of the magnetization vector. The second term on the
right side accounts (phenomenologically) for loss mechanisms that drive the system toward equilibrium
(where M is aligned with the external field). Confirm this claim by computing M(t) when γ = 0.
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(b) Let ω2
0 = γ 2μ0BzHz and show that

d2Mx

dt2
+ 2

τ

dMx

dt
+ (ω2

0 + τ−2)Mx = ω2
0

Mz

Hz

Hx.

Use this information to find the real and imaginary parts of the complex magnetic permeability μ̂(ω).
Establish that the magnetic permeability of the system is

μ̂(ω) = μ0

{
1 + ω2

0

ω2
0 + 1/τ 2 − ω(ω + 2i/τ )

Mz

Hz

}
.

(c) Derive a wave equation for this medium and relate the real and imaginary parts of k to the real and
imaginary parts of μ̂ and to ε (assumed real, positive, and constant). Prove that the amplitude of the
H-wave given above decreases (increases) as it propagates if Mz/Hz is positive (negative).

Remark: Given the result in (c), amplification of the wave occurs only if we supply energy to “pump” the
system into the higher energy state with M anti-parallel to H. This is the analog of producing a “population
inversion” to initiate laser action in an active medium.

18.16 Limits on the Photon Mass If the photon had a massM , the dispersion relation for electromagnetic waves
in vacuum would be

ω2 = c2k2 + (Mc2/−h)2.

A limit on Mc2 � −hω ≈ −hck can be determined by measuring the difference in arrival times of the highest-
and lowest-frequency components of a wave packet received from an astrophysical source that emits
electromagnetic energy in bursts. Estimate �t from the proposed dispersion relation. Should one collect
data from a radio source or from a γ -ray source to obtain the lowest limit on M? Why?

18.17 Negative and Infinite Group Velocity An infinite slab of material with index of refraction n(ω) and group
velocity vg < 0 occupies the space 0 < z < a. The rest of space is vacuum.

(a) Consider a plane wave with electric field E = x̂E0 exp[iω(z/c − t)] incident on the slab from z < 0. Use
n(ω) to write formulae for the wave in regions 0 < z < a and z > a. Assume n(ω) is not far from unity
so reflection from the slab surfaces can be ignored. State the frequency-independent transformation that
permits you to derive the z > a field from the 0 < z < a field.

(b) Make the group velocity approximation ωn(ω) ≈ ω0n(ω0) + (c/vg)(ω − ω0) and write formulae for
E(z, t) in all three regions.

(c) Let E(z < 0, t) = f (z/c − t) = ∫∞
−∞ dω Ê(z, ω) exp(−iωt) be a wave packet incident on the slab. Find

expressions for E(z, t) for 0 < z < a and z > a using the Fourier components calculated in part (b).
(d) Choose f (x) = E0δ(x) and deduce that the packet exits the slab before it enters.
(e) Let the z < 0 field be E0 exp[−(z/c − t)2/2τ 2] exp[iω0(z/c − t)] and write formulae for the electric

field in all three regions.
(f) For the Gaussian packet of part (e), let ω0[n(ω0) − 1] = −iε, where ε = 10−3. Otherwise, choose

c = 1, vg = −1/2, a = 50, and τ = 8. Take out the vacuum plane wave as a common factor and plot a
sequence of snapshots of E(z, t) in the interval −200 < z < 250. Choose a sufficient number of times
in the interval −150 < t < 50 to get a clear idea of how the packet passes through the slab.

(g) Repeat part part (f) with vg = +∞ and −4 < t < 50. Explain the physical meaning of infinite group
velocity.

18.18 Parseval’s Relation

(a) �(x) is an acceptable representation of a delta function if �(0) diverges and it “filters” any smooth test
function f (x):

f (0) =
∞∫

−∞

dxf (x)�(x).
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Show that these properties are satisfied by

�(x) = 1

π 2

∞∫
−∞

dy

y(y − x)
.

Hint: Let the real and imaginary parts of χ̂ (ω) = χ ′(ω) + iχ ′′(ω) satisfy the Kramers-Krönig relations.
Substitute one relation into the other.

(b) Use �(x) in part (a) to prove Parseval’s relation,

∞∫
−∞

dω|χ ′(ω)|2 =
∫ ∞

−∞
dω|χ ′′(ω)|2.

18.19 A Dispersive Dielectric The polarization of a medium obeys P = γ∇ × E.

(a) Find the propagation equation for the electric field E(r, t) in this medium.
(b) Find the dispersion relation and polarization of the plane waves that propagate in this medium.

18.20 Lorentz-Model Sum Rule The Lorentz-model dielectric function satisfies the f-sum rule (see Applica-
tion 18.5),

∞∫
0

dω ω Im ε̂(ω) = π

2
ε0ω

2
p.

Show this explicitly for the case when the damping constant " is small.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-19 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 6:51

19 Guided and Confined Waves

I managed to illuminate the interior of a stream of water in a
dark space.

Jean-Daniel Colladon (1842)

19.1 Introduction

Many contemporary technologies exploit the fact that electromagnetic waves can be guided along
specified paths through space and transiently stored in low-loss enclosures. The special configurations
of conductors and dielectrics used to do this are called waveguides and resonant cavities. In this
chapter, we show that electromagnetic fields can be guided and stored because they adjust themselves
to satisfy the required boundary (or matching) conditions at the surfaces (or internal interfaces) of a
guide or cavity. The nature and characteristics of the waves are fixed by the geometry and topology
of the guiding and storage structures. Besides the familiar transverse electromagnetic (TEM) waves,
where E and B are both transverse to the direction of propagation, we will find transverse electric (TE)
waves where only E is transverse and transverse magnetic (TM) waves where only B is transverse. By
and large, our discussion focuses on the applications of waveguides and cavities to specific problems
of physics. Textbooks of engineering electromagnetics discuss applications to communication and
power transmission.1

Guided waves were discovered in 1842 by the Swiss physicist Colladon, who reported that total
internal reflection could be exploited to trap light inside the parabolic streams of water produced by
drilling holes in a water-filled vessel. Fifty-five years later, Hertz sought and observed meter-scale
waves guided by a conducting wire. Most readers will know that two-wire (power) lines and twisted-
pair (telephone) lines have been used to guide low-frequency electromagnetic waves for over a century.
Coaxial cables are used at higher frequencies (into the microwave) where shielding against radiation
and interference are important. Lord Rayleigh recognized the wave guiding properties of hollow metal
tubes as early as 1897 and physicists played a central role in the analysis of these structures for
radar purposes during World War II. For many years, hollow-tube “microwave plumbing” competed
with coaxial lines for communication and other purposes in the 10-100 GHz band. Low-cost planar
arrangements of conductors and dielectrics known as striplines became available in the 1970s and
their compatibility with integrated-circuit technology makes them the waveguide of choice for many
high-frequency applications. Dielectric structures are efficient guides for electromagnetic waves at
optical frequencies and steady progress in the development of low-loss glasses and laser technology
have made it possible to connect the globe with optical-fiber networks for broadband communication.
The operating principle for an optical fiber comes directly from Colladon’s insight.

1 See Sources, References, and Additional Reading.
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Figure 19.1: Two-conductor transmission lines. Left side: perspective view of a generic line. Right side: cross
section views of typical lines. Figure from Staelin, Moregenthaler, and Kong (1994).

Resonant cavities store electromagnetic standing waves at a discrete set of frequencies. The most
familiar example is the laser cavity operating in the optical and adjacent bands of the electromagnetic
spectrum. The microwave klystron was invented in the late 1930s as an alternative to vacuum-tube
technology. Today, it is used for high-power applications. The closely related magnetron oscillator is
found in virtually every microwave oven. At lower frequencies, the tuning circuits for AM and FM
radio are quasistatic resonators where the oscillating electric and magnetic fields do not overlap in
space. Finally, the annular region between the surface of the Earth and the lower edge of the ionosphere
turns out to form an enormous resonant cavity for very low frequency electromagnetic standing waves.
The normal modes (∼ 25 Hz) of this cavity are called Schumann resonances.

19.2 Transmission Lines

The vast majority of electromagnetic energy transport on the Earth’s surface is performed by guided,
transverse electromagnetic waves (TEM) where both E and B are transverse to the direction of
propagation. The structures capable of guiding such waves are called transmission lines.2 The left
side of Figure 19.1 shows a generic example composed of two parallel perfect conductors whose
cross sectional shapes do not vary along their lengths. The right side of Figure 19.1 shows several
transmission-line geometries used in practice.

19.2.1 The Coaxial Line
The two coaxial cylinders in Figure 19.1 illustrate all the essential features of a TEM transmission
line. We assume that a simple, non-conducting medium (ε, μ) fills the space between the inner and
outer cylinders. We respect the symmetry of the problem and satisfy the perfect-conductor boundary
conditions ρ̂ × E|S = 0 and ρ̂ · H|S = 0 on the surface S of both cylinders by guessing TEM traveling-
wave solutions of the form

H = H (ρ) exp[i(hz − ωt)]φ̂ and E = E(ρ) exp[i(hz − ωt)]ρ̂. (19.1)

2 Transmission lines guide non-TEM waves also. We treat this more general class of waves in Section 19.4 in
connection with hollow-tube waveguides.
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Substituting (19.1) into the Maxwell equations (17.7) and (17.8) produces

∂

∂ρ
[ρE(ρ)] = 0, hE(ρ) = ωμH (ρ), and hH (ρ) = ωεE(ρ). (19.2)

Consistency between the two rightmost equations in (19.2) requires that ω = h/
√
με. This dis-

persion relation is the same as for a uniform monochromatic plane wave in an infinite volume of
the inter-cylinder medium. The additional information provided by the leftmost equation in (19.2)
determines the propagating fields up to a constant I0 with the dimensions of current:

H = I0

ρ
exp[i(hz − ωt)]φ̂ and E =

√
μ

ε

I0

ρ
exp[i(hz − ωt)]ρ̂. (19.3)

The TEM wave (19.3) is called non-uniform (see Section 17.3.7) because its amplitude is not constant
on the planes of constant phase perpendicular to the z-direction of propagation. Note also that the ρ−1

dependencies of E and H in (19.3) are exactly what one finds, respectively, for the electric field of a
cylindrical capacitor and the magnetic field of a wire carrying a steady current. We will see in the next
section that this is not an accident.

The sources for the fields guided by the coaxial transmission line are the charge density σ = ε n̂ · E|S
[see (5.15] and the current density K = n̂ × H|S [see (10.39)] that appear on the surfaces of the
conductors. Using (19.3) and the dispersion relation, the reader can check that the current flows in
opposite directions on the inner and outer conductors and that

∇ · K + ∂σ

∂t
= 0. (19.4)

This surface version of the continuity equation shows that the coaxial transmission line respects
conservation of charge, as it must.

19.2.2 TEM Waves
All transmission lines support TEM waves where the propagation wave vector h = hẑ can have any
magnitude and the wave frequency satisfies the infinite-medium dispersion relation ω = h/

√
με. To

prove this, we use the subscript ⊥ to label vectors which lie in the plane perpendicular to h and
substitute the fields E = E⊥ and H = H⊥ into the two Maxwell curl equations. If we separate the
z-derivative from derivatives with respect to the transverse coordinates using

∇ = ∇⊥ + ẑ
∂

∂z
, (19.5)

the result is

∇⊥ × E⊥ + ẑ × ∂E⊥
∂z

= −μ∂H⊥
∂t

and ∇⊥ × H⊥ + ẑ × ∂H⊥
∂z

= ε
∂E⊥
∂t

. (19.6)

The only vectors in (19.6) that point along ẑ are ∇⊥ × E⊥ and ∇⊥ × H⊥. Therefore,

∇⊥ × E⊥ = 0 and ∇⊥ × H⊥ = 0. (19.7)

In the absence of free charge and current embedded in the simple dielectric filling of the line, the
Maxwell divergence equations read

∇⊥ · E⊥ = 0 and ∇⊥ · H⊥ = 0. (19.8)

Equations (19.7) and (19.8) tell us that, as far as the two variables transverse to z are concerned,
the TEM electric and magnetic fields of a general two-conductor transmission line are de-coupled
from one another and satisfy the equations of electrostatics and magnetostatics without sources. The
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Line of E

Line of H

Figure 19.2: Electric field lines (solid) and magnetic field lines (dotted) in a plane transverse to the z-axis of a
two-wire transmission line. The current in the right (left) wire flows out of (into) the paper.

source charge and current appear on the conductor surfaces in response to the boundary conditions
n × E|S = 0 and n · H|S = 0, respectively. We complete the solution by looking for propagating waves
where both E⊥ and H⊥ are proportional to exp[i(hz − ωt)]. Using this information in (19.6) and taking
the cross product with ẑ reveals that

ω = 1√
με

h and

√
μ

ε
H⊥ = ẑ × E⊥. (19.9)

Like the coaxial line studied in the previous section, a general two-conductor transmission line
guides non-uniform TEM plane waves with the same dispersion relation as uniform TEM waves in
an unbounded volume. This fundamental TEM mode propagates at any wavelength 2π/h, with phase
speed vp = ω/h = 1/

√
με. The surface charge density σ = ε0n · E|S and surface current density

K = n̂ × H|S similarly satisfy the surface continuity equation (19.4). We reiterate that the geometry
of the guiding conductors defines electrostatic and magnetostatic problems which determine how the
fields depend on the transverse variables. Figure 19.2 illustrates the field patterns for the case of
two parallel wires. Note that the surface charge and surface current have opposite signs on the two
conductors.

19.2.3 The Telegraph Equations
We have emphasized that the TEM wave propagation speed v = 1/

√
με is the same for all the

transmission lines shown in Figure 19.1. This is so despite the very different spatial appearance
of their propagating electric and magnetic fields. To gain some insight, we analyze the two-wire
transmission line in Figure 19.2 (as a prototype) from the point of view of the voltage difference
V (z, t) between the wires and the current I (z, t) that flows through them. Thus, let C be any path in
the plane of the diagram which begins on the left wire and ends on the right wire (the curve labeled
“Line of E” in Figure 19.2 is an example). The zero-curl condition (19.7) guarantees that the unique
voltage difference is

V = −
∫
C

d� · E = −
∫
C

(Exdx + Eydy). (19.10)

Since Ez = 0 for TEM waves, ∇ × E = −∂B/∂t permits us to conclude that

∂V

∂z
= − ∂

∂t

∫
C

(Bxdy − Bydx). (19.11)
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Consider now the surface S swept out by C when it translates rigidly by an amount dz. The unit
normal to C (and thus also to S) satisfies n̂d� = dyx̂ − dxŷ. Therefore, the magnetic flux through S is

�B =
∫
S

dS · B =
∫
S

dzd�n̂ · B =
∫
S

dz(Bxdy − Bydx). (19.12)

Comparing (19.11) to (19.12), we define an inductance per unit length L as the ratio of the magnetic
flux per unit length to the current and write (19.11) as

∂V

∂z
= −L

∂I

∂t
. (19.13)

We get a second relation between voltage and current as follows. First, write Ampère’s law using a
closed planar loop C ′ that encircles only the left wire (the curve labeled “Line of H” in Figure 19.2 is
an example):

I =
∮
C ′

d� · H =
∮
C ′

(Hxdx +Hydy). (19.14)

Second, use Hz = 0 and the validity of ∇ × H = ∂D/∂t along the integration path to write

∂I

∂z
= − ∂

∂t

∮
C ′

(Dxdy −Dydx). (19.15)

Third, translate C ′ rigidly by dz to sweep out a surface S ′. The unit normal to C ′ (and also to S ′) is
n̂d� = dyx̂ − dxŷ. Therefore, because Ez = 0, we define a charge per unit length along the wire, Q,
and write Gauss’ law for the electric flux through S ′ as

�E =
∫
S ′

dS · D =
∫
S ′

dz(Dxdy −Dydx) = Qdz. (19.16)

Finally, define a capacitance per unit length of wire using Q = CV and use (19.16) to write (19.15) as

∂I

∂z
= −C

∂V

∂t
. (19.17)

Equations (19.13) and (19.17) are called the telegraph equations. They apply to any two-conductor
transmission line because the geometric details of the transverse field distributions are “integrated
out” by introducing the voltage and current as variables. A brief manipulation of the two telegraph
equations shows that V (z, t) and I (z, t) both satisfy the wave equation

∂2V

∂z2
= LC

∂2V

∂t2
and

∂2I

∂z2
= LC

∂2I

∂t2
. (19.18)

We conclude that transmission lines support “voltage waves” and “current waves” which propagate
at speed v = 1/

√
LC down the line. This speed must equal the TEM phase speed ω/h in (19.9).

Therefore, it is a characteristic feature of a transmission line that

LC = με. (19.19)
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Example 19.1 Show that the telegraph equations (19.13) and (19.17) describe the electrical network
shown below where every length element �z contributes a capacitance C�z and an inductance
L�z.

Solution: According to AC circuit theory (Section 14.13), the voltage in this network drops by
�V when current flows through an inductor of length �z. The algebraic statement of this fact
produces (19.13):

�V = ∂V

∂z
�z = −L�z

∂I

∂t
.

Similarly, the current decreases by �I when some of the charge �Q = C�zV in an element of
line diverts to charge a shunt capacitor. This observation generates (19.17) because

�I = ∂I

∂z
�z = −d(�Q)

dt
= −C�z

∂V

∂t
.

Telegraphy and the Law of Squares

Before the telephone, the telegraph made long-distance communication possible by sending elec-
trical signals through conducting wires. In 1851, the first telegraph line across the English channel
was laid, and submarine cables below the North Sea, the Irish Sea, and the Mediterranean Sea
followed soon thereafter. As cables grew longer, telegraph operators began to complain of signal
retardation and distortion. Seeking help, telegraph companies approached prominent scientists
of the day, including Michael Faraday and William Thomson, (later Lord Kelvin). Faraday con-
ducted a year of experiments and concluded that electric induction draws charge to the surface
of the insulating material used to coat a telegraph wire. Thomson took account of the cable
resistance and the cable capacitance implied by Faraday’s observations to predict a “Law of
Squares”: the signal arrival time would increase with the square of the cable length. Experi-
ments confirmed this prediction, thereby dampening enthusiasm for a proposed trans-Atlantic
cable. Investors in the project engaged Thomson to advise them on modifications needed to
salvage its technical viability by sailing on several cable-laying sea voyages as “chief cable
engineer”.

In 1876, Oliver Heaviside generalized Thomson’s theory of telegraph signal propagation to
include the effects of self-induction. To make contact with his theory, we need only consider a line
resistance per unit length R and add a voltage drop term −IR to the right side of (19.13). Doing
this, and combining the two telegraph equations as before gives

∂2V

∂z2
= LC

∂2V

∂t2
+ RC

∂V

∂t
.

The signal speed of modern low-loss cables is v = 1/
√
LC because magnetic induction dominates

electric resistance. The early submarine cables operated in the opposite limit where resistance
dominates inductance. This situation reduces the preceding equation to Thomson’s equation for
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the propagation of telegraph signals,

∂2V

∂z2
= RC

∂V

∂t
.

This is a diffusion equation with diffusion constant D = 1/RC. From Section 14.11 (or from
dimensional analysis), we deduce that the time needed for a signal to diffuse a distance L is
T = L2/D. This is the Law of Squares.

19.3 Planar Conductors

The possibility of guiding waves more general than TEM, and the physics of wave guiding more
generally, become clear when we revisit the problem of a plane wave incident on a perfectly conducting
plane. The essential point is that an incident wave generally does not satisfy the boundary condition
that the tangential component of the electric field vanish at a perfectly conducting surface,

n̂ × E|S = 0. (19.20)

However, the incident field induces charges and/or currents on the conducting surface that are the
source of a reflected (or scattered) field. It is the total field (incident plus reflected) which satisfies
(19.20) and is guided by the conductor.

19.3.1 One Conducting Plane
A flat conducting surface guides electromagnetic waves parallel to itself. Consider Figure 19.3, which
shows an s-polarized plane wave (see Section 17.3.2) incident on the conducting half-space x ≤ 0.
The incident electric field is tangential to the surface and thus does not satisfy (19.20). The remedy
is to add a specularly reflected wave with its electric field anti-parallel to the incident electric field.
With ω = ck0, the sum of the incident electric field, EI = ŷE0 exp [ik0(z sin θ − x cos θ − ct)], and
the reflected electric field, ER = −ŷE0 exp [ik0(z sin θ + x cos θ − ct)], vanishes on the x = 0 plane:

E = −2iE0 exp [i(k0z sin θ − ωt)] sin(k0x cos θ )ŷ. (19.21)

The associated magnetic field follows from Faraday’s law, ∇ × E = −∂B/∂t , as

cB = 2E0 exp [i(k0z sin θ − ωt)] {i sin θ sin(k0x cos θ )x̂ − cos θ cos(k0x cos θ )ẑ} . (19.22)

The x-component of (19.22) vanishes on the x = 0 plane. This makes the normal component of B
continuous at the conductor surface, as it must be.

The total field above the conducting surface defined by (19.21) and (19.22) is a standing wave in
the x-direction and a traveling wave in the z-direction. The traveling part of the wave is not TEM. It
is a transverse electric (TE) wave because only E is transverse to the z-direction of propagation.3 The
wave amplitude is not constant on the x-y planes of constant phase. This identifies the x ≥ 0 field as
a non-uniform plane wave (see Section 17.3.7) propagating in the z-direction with phase velocity

vp = ω

kz
= c

sin θ
> c. (19.23)

3 A transverse magnetic (TM) wave results if the incident plane wave is p-polarized rather than s-polarized.
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perfect conductor

EI ERBI

BR
x

θθ
z

Figure 19.3: An s-polarized plane wave reflects specularly from the flat surface of a perfect conductor. The total
field above the conductor is a TE wave propagating parallel to the surface.
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Figure 19.4: Multiple reflections of a TE mode of a parallel-plate transmission line.

The time average of the Poynting vector shows that the energy of the wave flows exclusively parallel
to the interface:

〈S〉 = 1

2μ0
Re(E∗ × B) = 2E2

0

cμ0
sin θ sin2(k0x cos θ )ẑ. (19.24)

The charge density induced on the conductor is zero [see (5.15)]:

σ (z) = ε0n̂ · E|S = ε0Ex(x = 0) = 0. (19.25)

The current density induced on the conductor is [see (10.39)]

K(z, t) = 1

μ0
(n̂ × B)S = 1

μ0
(x̂ × B)x=0 = 2E0

cμ0
cos θ exp[i(k0z sin θ − ωt)]ŷ. (19.26)

The importance of the current density (19.26) cannot be overstated. It is the source of the reflected
wave ER in the vacuum space outside the conductor. It is also the source of a wave field inside the
conductor which exactly annuls the incident wave in that region of space. The latter is an elementary
example of the extinction theorem, a topic we treat more generally in Chapter 21.

19.3.2 Two Parallel Planes
A glance at (19.21) and (19.22) shows that x̂ × E = 0 and x̂ · B = 0 on planes parallel to the conductor
surface defined by x = 2πmk0 cos θ , where m is a positive integer. This implies that the field is
undisturbed and all boundary conditions are satisfied if a perfectly conducting sheet is inserted into
every such plane. On the other hand, if we add a single conducting plane at x = a to create the parallel-
plate transmission line as shown in Figure 19.4, the electric field boundary condition Ey(x = a) = 0
applied to (19.21) quantizes the “angle of incidence” to a set of allowed values defined by

k0 cos θm = m
π

a
. (19.27)

The corresponding wave can be visualized as a sequence of specular reflections from the top and
bottom planes as shown in Figure 19.4. The electromagnetic field in the space x > a is annulled by
a surface current like (19.26) that appears on the x = a plane. We introduce a quantized propagation
factor hm defined by

h2
m = k2

0 sin2 θm = k2
0(1 − cos2 θm) = ω2

c2
−m2

(π
a

)2
, (19.28)
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ch

ωc,3

ωc,1

ωc,2

ω

Figure 19.5: The dispersion curves ω(h) for the modes (19.29) of a parallel-plate transmission line.

and write the TE mode functions for this line as

Em = −2E0 sin
(mπx

a

)
exp [i(hmz − ωt)]ŷ

(19.29)
cBm = 2E0

{
i sin θ sin

(mπx
a

)
x̂ − cos θ cos

(mπx
a

)
ẑ
}

exp [i(hmz − ωt)].

Alternatively, we can treat the propagation wave vector h as a continuous variable and plot (19.28)
as shown in Figure 19.5. From this point of view, the conducting-wall boundary conditions induce
frequency dispersion of the vacuum waves between the plates. This is called structural dispersion to
distinguish it from the intrinsic dispersion of waves in matter treated in Chapter 18. Each transmission
line mode (indexed by m) has its own dispersion relation,

ωm = c
√
h2 +m2π2/a2. (19.30)

The hyperbolae in Figure 19.5 show that each mode propagates only when ω exceeds the characteristic
cutoff frequency for that mode, ωc,m, defined by h = 0 in (19.30):

ωc,m = m
πc

a
. (19.31)

Exactly as we saw for transverse wave propagation in a Drude medium above and below the plasmas
frequency ωp (Section 18.5.2), the propagation factor h is real when ω > ωc and imaginary when
ω < ωc. The wave is evanescent in the latter case and decays exponentially as z increases. Combining
(19.31) with (19.27) shows that θm = 0 at cutoff. From this point of view, cutoff occurs because the
total field bounces back and forth in the direction normal to the conducting walls in Figure 19.4 with
no advancement down the guide. The Poynting vector (19.24) confirms that energy flow ceases when
propagation ceases.

The mode functions in (19.29) continue to satisfy all the relevant boundary conditions when the long
open sides of the transmission line are closed by two parallel conducting planes to form a tube with
a rectangular cross section. The electric field is entirely normal to the new walls and thus generates
a surface charge density. The magnetic field is entirely tangential to the new walls and generates a
surface current density. By their action, the waveguide entirely confines the electromagnetic field to
the volume enclosed by its walls. The field is identically zero everywhere outside the walls. The same
statements apply to a set of transverse magnetic (TM) mode functions. The latter appear naturally in
the general discussion to follow.
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n̂

ˆ

ẑ

,

Figure 19.6: A conducting-tube waveguide. The unit normal n̂ points inward. The orthogonal unit vectors τ̂ and
ẑ are both tangent to the walls.

19.4 Conducting Tubes

The Introduction to this chapter pointed out the importance of conducting-tube waveguides in the
history of physics. The sketch in Figure 19.6 illustrates a geometry we can analyze in detail: an
infinitely long tube with conducting walls and a uniform cross sectional shape. The tube is filled with
simple dielectric matter (μ, ε). In this section, we prove that any field guided by such a structure can be
decomposed into two independent fields, one where Ez = 0 and Hz �= 0, and one where Hz = 0 and
Ez �= 0. Later sections focus on the detailed structure and characteristics of the propagating modes. If
r = (r⊥, z), a general form for fields that propagate down the guide is

E(r, t) = [E⊥(r⊥) + ẑEz(r⊥)] exp [i(hz − ωt)]
(19.32)

H(r, t) = [H⊥(r⊥) + ẑHz(r⊥)] exp [i(hz − ωt)].

The fields are harmonic, so the Maxwell divergence equations, ∇ · E = 0 and ∇ · H = 0, are satisfied
automatically when we impose the Maxwell curl equations,

∇ × E = iωμH and ∇ × H = −iωεE. (19.33)

Now, using (19.5) to evaluate the curl, the fact that E⊥ and Ez do not depend on z in (19.32) shows
that

∇ × E = [∇⊥ × E⊥ + ihẑ × E⊥ − ẑ × ∇⊥Ez] exp [i(hz − ωt)]. (19.34)

The first term in square brackets in (19.34) points along ẑ. The other two terms point transverse to ẑ.
Therefore, substituting (19.34) and a similar expression for ∇ × H into (19.33) gives

∇⊥ × E⊥ = iωμHzẑ
(19.35)

iωμH⊥ − ihẑ × E⊥ = −ẑ × ∇⊥Ez,

and

∇⊥ × H⊥ = −iωεEzẑ
(19.36)

iωεE⊥ + ihẑ × H⊥ = ẑ × ∇⊥Hz.

If we regard Ez and Hz as non-zero and known, (19.35) and (19.36) are four linear equations in the
four unknown scalar components of E⊥ and H⊥. This proves that the transverse field components are
determined by the longitudinal field components. To be more explicit, take the cross product of ẑ with
the second equation in (19.36), substitute ẑ × E⊥ into the second equationin (19.35), and solve for

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-19 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 6:51

676 GUIDED AND CONFINED WAVES: TRANSMISSION LINES, WAVEGUIDES, AND CAVITIES

H⊥. The result can be written

H⊥ = ih

γ 2
∇⊥Hz + iωε

γ 2
ẑ × ∇⊥Ez, (19.37)

where γ is an inverse length defined by

γ 2 = μεω2 − h2. (19.38)

Next, use (19.37) to compute ẑ × H⊥, substitute this into the second equation in (19.36), and solve for
E⊥. This gives

E⊥ = ih

γ 2
∇⊥Ez − iωμ

γ 2
ẑ × ∇⊥Hz. (19.39)

It remains only to determine the longitudinal components. To isolate Ez, take the curl of (19.37)
and use the first equation in (19.36) to eliminate ∇⊥ × H⊥. To isolate Hz, take the curl of (19.39) and
use the first equation in (19.35) to eliminate ∇⊥ × E⊥. Because Ez and Hz do not depend on z, these
steps show that both functions satisfy the same two-dimensional Helmholtz equation:

[∇2
⊥ + γ 2

] {Ez

Hz

}
= 0. (19.40)

Collecting these results, we conclude that any Maxwell field of the form (19.32) can be decomposed
into the sum of two independent fields, called transverse electric (TE) and transverse magnetic (TM),
where4

Transverse Electric (TE) Transverse Magnetic (TM)

Ez = 0 Hz = 0[∇2
⊥ + γ 2

]
Hz = 0

[∇2
⊥ + γ 2

]
Ez = 0

H⊥ = ih

γ 2
∇⊥Hz E⊥ = ih

γ 2
∇⊥Ez

E⊥ = −ωμ

h
ẑ × H⊥ H⊥ = ωε

h
ẑ × E⊥.

(19.41)

More explicit formulae for the total fields are

ETE = − iωμ

γ 2
[ẑ × ∇⊥Hz] exp[i(hz − ωt)]

(19.42)

HTE =
[
ih

γ 2
∇⊥Hz +Hzẑ

]
exp[i(hz − ωt)],

and

ETM =
[
ih

γ 2
∇⊥Ez + Ezẑ

]
exp[i(hz − ωt)]

(19.43)

HTM = iωε

γ 2
[ẑ × ∇⊥Ez] exp[i(hz − ωt)].

The great similarity between (19.42) and (19.43) is no accident. Recalling the wave impedance
Z = √

μ/ε from (17.12), a quick check confirms that

ZHTE = ETM and ETE = −ZHTM. (19.44)

4 The next-to-last line in each column of (19.41) has been used to simplify the last line in each column derived from
(19.37) and (19.39).

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-19 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 6:51

19.4 Conducting Tubes 677

The fields in (19.44) reflect the duality of our starting equations and thus (ultimately) the duality of
the original Maxwell equations (see Section 16.8.1).

19.4.1 No TEMWaves in Conducting Tubes
TEM waves with Ez = Hz = 0 do not propagate in conducting-tube waveguides. This conclusion
does not follow from (19.41) because those formulae were derived assuming either Ez �= 0 or Hz �= 0.
Rather, Hz = 0 in the first member of (19.35) tells us that ∇⊥ × E⊥ = 0. This implies that E⊥ =
−∇ϕ. Moreover, ∇ · E = 0 applied to the first member of (19.32) guarantees that ∇⊥ · E⊥ = 0.
Therefore, ∇2

⊥ϕ = 0 and ϕ is the solution of a two-dimensional electrostatic problem with a closed
conducting boundary. The potential is constant on any such boundary. Therefore, by Earnshaw’s
theorem (Section 3.3.3), the unique solution is ϕ = const. throughout the cross sectional space
enclosed by the boundary. This implies that E⊥ = 0. Exactly the same logic applied to the first member
of (19.36) with Ez = 0 leads to H⊥ = 0. We conclude that no waves propagate when Ez = Hz = 0.

The difference between a conducting-tube waveguide and the transmission lines studied in
Section 19.2 (where TEM waves do propagate) is the topology of the space occupied by the waves.
That space is simply connected for a hollow tube and not simply connected for a transmission line.
The latter makes it possible to set up a voltage difference between two distinct conductors and avoid
the pre-conditions needed to exploit Earnshaw’s theorem. Indeed, by inserting a second conducting
tube (with a smaller cross sectional area) into the conducting tubes studied here, we get a structure
which propagates TE waves, TM waves, and a TEM wave.

19.4.2 Boundary Conditions for TE and TM Modes
The conducting-wall boundary condition n̂ × E|S = 0 transforms the two equations in (19.40) into
two eigenvalue problems. One eigenvalue problem determines the propagating TE modes; the other
determines the propagating TM modes. In practice, we impose the boundary conditions

Ez|S = 0 (TM waves) and
∂Hz

∂n

∣∣∣∣
S

= 0 (TE waves), (19.45)

because (as we will now show) these conditions imply that n̂ × E|S = 0.
The orthogonal triad of unit vectors sketched in Figure 19.6 are basis vectors for the electric field

expansion, E = τ̂Eτ + n̂En + ẑEz. Using this form, the third line on the right side of (19.41) gives

n̂ × E|S = ẑ
ih

γ 2

∂Ez

∂τ

∣∣∣∣
S

− τ̂Ez|S (TM waves). (19.46)

The condition on the left side of (19.45) makes (19.46) zero because the τ -derivative is performed
along the surface. Similarly, the third and fourth lines on the left side of (19.41) give

n̂ × E|S = −ẑ
iωμ

γ 2

∂Hz

∂n

∣∣∣∣
S

− τ̂Ez|S (TE waves). (19.47)

The condition on the right side of (19.45) makes (19.47) zero because Ez = 0 is true everywhere for
a TE wave. We conclude that the boundary conditions in (19.45) complete the waveguide problem
posed by (19.41) because n̂ × E|S = 0 is a sufficient condition to ensure a unique solution for the fields
in the volume bounded by S (see Application 15.1). In later sections, we solve the two-dimensional
eigenvalue problem explicitly for waveguides with rectangular and circular cross sections.
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Example 19.2 Use Faraday’s law to prove that the boundary condition n̂ × E|S = 0 applied to
the walls of a conducting-tube waveguide implies that n̂ · H|S = 0 on those walls. Prove that the
converse is not true.

Solution: Faraday’s law is ∇ × E = −∂B/∂t and there is no essential difference between B and
H for this problem. Therefore,

∂

∂t
[n̂ · B]S = −n̂ · (∇ × E)S = [∇ · (n̂ × E)]S .

On the other hand, using the orthogonal triad of unit vectors in Figure 19.6,

[∇ · (n̂ × E)]S =
[
∂

∂n
n̂ · (n̂ × E)

]
S

+
[
∂

∂z
ẑ · (n̂ × E)

]
S

+
[
∂

∂τ
τ̂ · (n̂ × E)

]
S

.

The first term on the right side of this identity is zero because n̂ is perpendicular to n̂ × E. Then,
because τ̂ and ẑ are both tangent to the boundary, the second and third terms on the right side of
the identity are also zero if we impose n̂ × E|S = 0 at every point on the boundary S. This proves
the assertion because n̂ · B varies in time and cannot be a constant on the boundary other than zero.

As for the converse, we require n̂ · B|S = 0, and the same algebra makes the sum of the last
two terms in the identity above equal to zero. However, this could happen by some accident of the
τ and z derivatives, rather than because n̂ × E vanishes everywhere on the boundary. Therefore,
n̂ · B|S = 0 does not necessarily imply that n̂ × E|S = 0 for a hollow-tube waveguide.

19.4.3 General Properties of Modes in Conducting Tubes
In this section only, we use the function ψ to stand for both Ez and Hz. This permits us to rewrite the
TE and TM problems defined by (19.40) and (19.45) as

[∇2
⊥ + γ 2

]
ψ = 0 with ψTM|S = 0 or

∂ψTE

∂n

∣∣∣∣
S

= 0. (19.48)

Equation (19.48) is a two-dimensional Helmholtz equation with Dirichlet or Neumann boundary
conditions. The same equation and boundary conditions apply to the vertical displacements of a
vibrating drumhead with either fixed (TM) or free (TE) boundary conditions. The TM case is also
isomorphic to the Schrödinger problem for the wave functions and energy eigenvalues of a free particle
in a two-dimensional box with hard walls. These analogous problems provide useful intuition when
thinking about the modal eigenfunctions ψi and eigenvalues γi of a waveguide. For example, the
drumhead analogy can be used to show that the smallest value of γi always occurs for a TE mode.
Some purely mathematical results are:

1. There are an infinite number of TE- and TM-mode eigenfunctions.
2. The eigenvalues are all real and positive.
3. The eigenfunctions can always be chosen real.
4. The eigenfunctions form a complete set of functions.
5. Eigenfunctions belonging to different eigenvalues are orthogonal.

A complete statement of proposition (5) involves the bracketed quantities in (19.32). Calling these
E(r⊥) and H(r⊥), the orthogonality relations for distinct modes labeled μ and λ are integrals over the
cross sectional area of the guide:∫

d 2r⊥ Eμ · Eλ = 0
∫

d 2r⊥ Hμ · Hλ = 0
∫

d 2r⊥ Eμ × Hλ · ẑ = 0. (19.49)
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We leave the proof of (19.49) as an exercise. Here, we prove proposition (2) by exploiting (19.48)
and an integration by parts to get a line integral over the perimeter of the guide’s cross section. Bearing
in mind that n̂ points inward in Figure 19.6,

γ 2
i

∫
d 2r⊥ |ψi |2 = −

∫
d 2r⊥ ψ∗

i ∇2
⊥ψi =

∫
d 2r⊥ |∇⊥ψi |2 +

∮
d�ψ∗

i n̂ · ∇⊥ψi. (19.50)

The line integral in (19.50) vanishes for both TE and TM boundary conditions. Therefore, because
γi = 0 corresponds to ψi = const. (and thus identically zero fields), we conclude that

γ 2
i =

∫
d 2r⊥ |∇⊥ψi |2∫
d 2r⊥ |ψi |2 > 0. (19.51)

19.4.4 Structural Dispersion in Conducting Tubes
The wave modes of a conducting tube exhibit structural dispersion, by which we mean that the
boundary condition at the tube wall makes the dispersion relation differ from ω(h) = h/

√
με. Indeed,

the positivity of the mode eigenvalue γ 2
i in (19.51) guarantees that (19.38) is physically meaningful

for the ith mode of either TM or TE type:

μεω2
i = (

γ 2
i + h2

)
. (19.52)

The dispersion curves sketched in Figure 19.5 also apply here, as does all the discussion in Sec-
tion 19.3.2. Most important is that TE and TM waveguide modes exhibit the phenomenon of cutoff,
where the wave vectorh changes from real to imaginary and the wave (19.32) changes from propagating
to evanescent when the frequency falls below the cutoff frequency,

ωc,i = γi√
με

= γi
c

n
. (19.53)

A geometrical picture of cutoff follows the argument following (19.31) for a parallel-plate transmission
line. Note also, from Figure 19.5, that the (finite) number of propagating modes at a fixed value of ω
increases as ω increases.

Using (19.52), a direct computation of the phase velocity of the ith propagating (h2 > 0) mode
gives

vp,i = ωi

h
= c

n

1√
1 − (ωc,i/ωi)2

. (19.54)

The corresponding group velocity is

vg,i = dωi

dh
= c

n

√
1 − (ωc,i/ωi)2. (19.55)

Equation (19.55) shows that waves in a conducting tube exhibit group velocity dispersion of the sort
studied in Section 18.6.2. This means that wave packets launched into waveguides inevitably spread
and distort as they propagate down the guide. On the other hand, the connection between vg and vp is
particularly simple for waves in conducting tubes:5

vgvp = c2

n2
and vg <

c

n
< vp. (19.56)

Figure 19.7 illustrates (19.56) geometrically using the plane wave propagation model of Figure 19.4.
The planes of constant phase propagate parallel to themselves at the uniform plane wave speed c/n.
An observer fixed at one point on the wall of the guide sees these planes go by at the phase speed vp.

5 The relation (19.56) is not generally valid for wave-guiding systems.
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vp

vg

c n

Figure 19.7: The relation between phase speed vp, group speed vg, and uniform plane wave speed c/n in a
waveguide. Parallel lines are planes of constant phase.

The net propagation speed down the guide is the group speed vg. The last statement requires proof,
which we do in Section 19.4.7 by showing that vg is the speed at which energy is transported down
the guide.

19.4.5 Rectangular-Tube Waveguides
The simplest hollow-tube waveguide has a rectangular cross section with conducting walls at x = 0,
x = a, y = 0, and y = b. Equation (19.48) reads

TM :

[
∂2

∂x2
+ ∂2

∂y2
+ γ 2

]
Ez = 0 with Ez|S = 0,

TE :

[
∂2

∂x2
+ ∂2

∂y2
+ γ 2

]
Hz = 0 with

∂Hz

∂n

∣∣∣∣
S

= 0.

(19.57)

The eigensolutions follow immediately using separation of variables, namely,

Emn
z (x, y) = E sin

(mπx
a

)
sin

(nπy
b

)
m, n = 0, 1, . . . ,

(19.58)
Hmn
z (x, y) = H cos

(mπx
a

)
cos

(nπy
b

)
m, n = 0, 1, . . . ,

with the same eigenvalue spectrum for both:

γmn = π

√
m2

a2
+ n2

b2
. (19.59)

The TM fields in (19.43) vanish if m = 0 or n = 0. The TE modes in (19.42) are all non-zero except
whenm = n = 0. Indeed, the modes (19.29) of the parallel-plate transmission line are the TEm0 modes
of a rectangular waveguide. If a > b, the lowest-frequency (principal) mode is TE10, for which (19.53)
gives the cutoff frequency,

ωc = 1√
με

π

a
. (19.60)

In practice, ω is fixed just above ωc so only the principle mode propagates. Combining (19.60) with
the fact that it is easy to machine conducting tubes with centimeter and millimeter dimensions shows
that single-mode propagation in conducting tubes occurs at microwave frequencies.

Figure 19.8 shows the instantaneous field line pattern for several low-frequency modes in a cross
sectional plane of a rectangular guide. Half a period later in time, the field lines reverse direction and
the surface charges (indicated by ± signs inside small circles) change sign. It is worth noting the spatial
inhomogeneity of the field line density (field strength) and also the regions of space where the electric
(magnetic) field lines for TM (TE) modes seem to appear or disappear. The latter are regions where
the field lines have bent into or out of the direction of propagation. Figure 19.9 plots lines of current
density K(x, y, z) = n̂ × H|S on the surfaces of the guide at one moment in time for a propagating
T E10 mode.
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10TE 20TE

21TE
11TE

11TM 21TM

Figure 19.8: Cross sectional view of the instantaneous electric (solid) and magnetic (dashed) field line
configurations for some low-frequency modes of a rectangular waveguide. Small circles indicate the sign of the
charge induced on the walls. Figure from Borgnis and Papas (1958).

b

a

0
π/2

3π/2

hz

π

2π

Figure 19.9: Instantaneous field line configuration of the current density K on the surface of a rectangular
waveguide that carries a T E10 mode. Figure from Cheng (1989).

19.4.6 Circular-Tube Waveguides
We study the modes of a waveguide with a circular cross section by writing (19.48) in two-dimensional
polar coordinates:

TM :

[
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂φ2
+ γ 2

]
Ez = 0 with Ez|S = 0,

TE :

[
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ + 1

ρ2

∂2

∂φ2
+ γ 2

]
Hz = 0 with

∂Hz

∂n

∣∣∣∣
S

= 0.

(19.61)
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Separation of variables produces exp(imφ) in the angular variable multiplied by Bessel functions (see
Section 7.8.1) in the radial variable. Finiteness of the solution at the origin restricts us to the Jm(x)
exclusively, so the boundary conditions for a guide of radius R are

Jm(γ TMR) = 0 and J ′
m(γ TER) = 0. (19.62)

The prime on the right side of (19.62) indicates a derivative with respect to the argument. To satisfy
(19.62), we exploit the nth zero of the mth Bessel function defined by Jm(umn) = 0, and the nth zero
of the derivative of the mth Bessel function defined by J ′

m(wmn) = 0. In both cases, n = 1 labels the
first zero, n = 2 labels the second zero, etc. Therefore, the eigenvalues are

γ TM
mn = umn

R
and γ TE

mn = wmn

R
. (19.63)

The mode eigenfunctions of a circular waveguide are doubly degenerate (plus/minus sign below)
when m > 0:

Emn
z (ρ, φ) = EJm(γ TM

mn ρ) exp(±imφ) m = 0, 1, . . . n = 1, 2, . . . ,
(19.64)

Hmn
z (ρ, φ) = HJm(γ TE

mn ρ) exp(±imφ) m = 0, 1, . . . n = 1, 2, . . . .

The zeroes umn and wmn are all irrational numbers, but they are well known and tabulated.6 For
example, the TE11 mode has the lowest cutoff frequency,

ωc = 1√
με

1.8412

R
. (19.65)

The numerical similarity of this frequency to (19.60) with a = 2R reinforces the geometrical picture
of cutoff derived from Figure 19.4. Figure 19.10 shows the instantaneous field line pattern in a cross
sectional plane for the TE11 mode and a few other low-frequency modes.

19.4.7 The Energy Velocity
A figure of merit for any waveguide is the rate at which energy flows down the guide. A natural
definition for this rate is the energy velocity,

〈vE〉 = 〈P〉
〈U 〉/L = time-averaged power flow through a cross section

time-averaged energy per unit length
. (19.66)

The numerator of (19.66) is the integral over the guide cross section of the projection of the time-
averaged Poynting vector along the guide axis. The longitudinal components of the fields in (19.32)
do not contribute to this quantity because

〈S〉 · ẑ = 1

2
Re

(
E × H∗) · ẑ = 1

2
Re

(
E⊥ × H∗

⊥
) · ẑ. (19.67)

Specializing to the TE case for illustration, the third and fourth lines of the left column of (19.41) show
that (19.67) is zero for an evanescent mode where h is imaginary.7 For a propagating mode where h
is real,

〈PTE〉 =
∫

d 2r⊥〈S〉 · ẑ = 1

2
vpμ

∫
d 2r⊥|H⊥|2 = h2vpμ

2γ 4

∫
d 2r⊥|∇⊥Hz|2. (19.68)

6 See, e.g., M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
7 Thus, an evanescent wave does not transport energy down a waveguide. Nor does the exponential decay of its

amplitude with distance imply that any dissipation of energy has occurred.
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11TM01TE

11TE

01TM

21TE

Figure 19.10: Instantaneous electric (solid) and magnetic (dashed) field line configurations for some
low-frequency modes of a circular waveguide. Figure from Borgnis and Papas (1958).

Equation (19.40), the TE boundary condition in (19.45), and vp = ω/h reduce (19.68) to

〈PTE〉 = h2vpμ

2γ 4

∫
d 2r⊥

{∇⊥ · [H ∗
z ∇⊥Hz

]−H ∗
z ∇2

⊥Hz

} = ωhμ

2γ 2

∫
d 2r⊥|Hz|2. (19.69)

Turning to the denominator of (19.66), the time-averaged total energy in a length L of guide is

〈UTE〉 = L

4

∫
d 2r⊥

[
ε|E⊥|2 + μ|H|2] . (19.70)

We write E⊥ and H = H⊥ +Hzẑ in (19.70) entirely in terms of Hz using (19.41) and the same steps
used to pass from the last member of (19.68) to the last member of (19.69). Finally, the dispersion
relation (19.38) allows us to write (19.70) in the form

〈UTE〉
L

= ω2μ2ε

2γ 2

∫
d 2r⊥|Hz|2. (19.71)

Forming the ratio (19.66) and using (19.56) gives the desired result: TE modes transport energy through
a hollow conducting tube at the group velocity:

〈vE〉 = 1

μεvp
= vg. (19.72)

The TM modes satisfy (19.72) also. This follows from (19.66) when we apply the duality relations
(19.44) to (19.69) and (19.71) to get

〈PTM〉 = ωhε

2γ 2

∫
d 2r⊥|Ez|2 (19.73)
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and

〈UTM〉
L

= ω2με2

2γ 2

∫
d 2r⊥|Ez|2. (19.74)

19.4.8 Energy Loss by Ohmic Heating
Waves propagating in real conducting tubes lose energy by Joule heating of the guide’s imperfectly
conducting walls. It is usual to write the variation of the time-averaged power flow down the guide as

〈P(z)〉 = 〈P (0)〉 exp(−2βz) (19.75)

and compute the attenuation constant β from the time-averaged rate of energy loss per unit length of
guide, −d〈P〉/dz, because

β = − 1

2〈P〉
d〈P〉
dz

. (19.76)

The power lost per unit length of guide is the integral over the guide’s perimeter of the power lost per
unit area of conducting wall,

d〈P 〉
dz

=
∮

d〈P 〉
dA

d�. (19.77)

Our strategy to evaluate (19.77) has two parts. First, if Ein
‖ (parallel to the walls) dominates Ein

⊥
(normal to the walls) just inside the walls of a waveguide with conductivity σ and skin depth δ =√

2/μσω, the results of Section 17.6.3 apply and

d 〈P 〉
dA

= σδ

4
|Ein

‖ |2S = 1

2σδ
|Hin

‖ |2S. (19.78)

Second, we assume that the fields just outside a good ohmic conductor cannot differ greatly from the
fields just outside a perfect conductor. If so, the continuity of H‖ at an ohmic surface implies that

Hin
‖ (imperfect)|S ≈ Hout

‖ (perfect)|S. (19.79)

Substituting all the above into (19.76) gives

β =
∮
d�|Hout

‖ |2
4σδ〈P〉 . (19.80)

Rather than evaluate β exactly for any particular waveguide mode, we focus on its frequency
dependence for a generic TE mode. We estimate the denominator of (19.80) using (19.69), the phase
velocity (19.54), and a mean-value approximation for a guide with cross sectional area A:∫

d 2r⊥|H out
z |2 ≈ A|H out

z |2. (19.81)

In the numerator of (19.80), |Hout
‖ |2 = |H out

z |2 + |n̂ × Hout
⊥ |2, where Hout

⊥ = (ih/γ 2)∇⊥H out
z from

(19.41). The Helmholtz equation on the left side of (19.48) gives the estimate ∇⊥H out
z ≈ γH out

z .
Therefore, using (19.52) and (19.53) for a guide with perimeter circumference C,∮

d�|Hout
‖ |2 ≈ C

[
ζ + ζ ′

(
ω2

ω2
c

− 1

)]
|H out

z |2. (19.82)
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Figure 19.11: Frequency dependence of the attenuation constant (19.80) for selected modes of a circular
(R = 1 cm) tube waveguide made of copper. Multiply the SI unit neper/m by 8.69 to get decibel/m. Figure from
Inan and Inan (2000).

The dimensionless constants ζ and ζ ′ in (19.82) are of order one. If δc = δ
√
ω/ωc is the skin depth

evaluated at cutoff, we conclude that

βTE(ω) ≈
√
ε

μ

(
C

2A

)
1

σδc

√
ω/ωc√

1 − ω2
c/ω

2

[
ζ ′ + (ζ − ζ ′)

ω2
c

ω2

]
. (19.83)

A related calculation shows that βTM(ω) has the same form except that the frequency-dependent term
in the square brackets in (19.83) is absent.

Figure 19.11 shows β(ω) for a few low-order TE and TM modes of a copper waveguide with a
circular cross section. The general behavior is that β(ω) has a minimum. Above the minimum, the
attenuation increases as

√
ω because the current induced in the walls flows in an increasingly thin

(and thus more resistive) skin-depth layer. Below the minimum, the attenuation increases because
(19.83) diverges as ω → ωc. The attenuation is not infinitely large, of course; it is simply that 〈P〉 = 0
below cutoff. The TE0n modes are an interesting exception where ζ ′ = 0 in (19.83) and β(ω) simply
decreases monotonically. These modes are not lossy because their electric field lines form closed
loops tangential to the tube walls (see Figure 19.10). Such modes were serious candidates for the
transmission of data over long distances until the invention of optical fibers made them obsolete.

It remains only to justify our assumption that Ein
⊥ � Ein

‖ , despite the general fact that Eout
⊥ � Eout

‖ .
The idea is to use

√
μ/εH out

‖ ≈ Eout
⊥ , the refraction results from Section 17.6.3, and the continuity of

the tangential component of H to write the tangential component of the electric field just inside the
guide walls as

Ein
‖ |S =

√
μω

σ
H in

‖

∣∣∣∣
S

≈
√
μω

σ
H out

‖

∣∣∣∣
S

≈
√
ωε

σ
Eout

⊥

∣∣∣∣
S

. (19.84)

To estimate the corresponding amplitude Ein
⊥|S , we recall that ∇ × Hin ≈ σEin inside the walls of

a good conductor while ∇ × Hout = −iωεEout applies everywhere outside the walls [see 19.33)].
Therefore,

σEin
⊥
∣∣
S

= n̂ · ∇ × Hin
∣∣
S

= n̂ · ∇ × Hout
∣∣
S

= −iωεEout
⊥
∣∣
S
, (19.85)

or

Ein
⊥

Eout
⊥

∣∣∣∣
S

= − iωε

σ
� 1. (19.86)
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Comparing (19.86) to (19.84) shows that Ein
‖ is small inside the waveguide walls, but Ein

⊥ is even
smaller. This justifies our use of (19.78).

We conclude with a remark about the tangential component of the electric field just outside the walls
of a conducting waveguide with complex impedance Ẑ. To estimate this small but non-zero field, we
again exploit the small difference between the fields inside the waveguide walls and the refraction
wave fields (17.118) and (17.119). These refraction fields satisfy

n̂ × Ein|S = Ẑ n̂ × (n̂ × Hin)|S. (19.87)

Therefore, because E‖ and H‖ are continuous at S,

n̂ × Eout|S = Ẑ n̂ × (n̂ × Hout)|S. (19.88)

The left side of (19.88) is an estimate of the tangential electric field we seek when the perfect conductor
value for Hout|S is used on the right side. Beyond that, (19.88) is often used in the electromagnetic
scattering literature as a boundary condition (in place of n̂ × Eout|S = 0) at the surface of an imperfect
conductor. This impedance boundary condition is not exact because (19.87) is not exact.

Application 19.1 Slow Waves for Charged Particle Acceleration

The longitudinal electric field of the fundamental TM mode of a conducting-tube waveguide appears
ideally suited to accelerating a charged particle through the tube by the Coulomb force F = qE.
However, because the phase velocity of any waveguide mode is greater than the speed of light [see
(19.56)], the crests and troughs of the wave pass rapidly over the particle, alternately accelerating and
decelerating it, with negligible net change in the particle velocity. We show here that a modification
of the guide to include a structural periodicity solves this problem by reducing the phase velocity so
vp < c. At the 2-mile, 50 GeV Stanford linear accelerator, this is done by the periodic insertion of
metal irises into a circular waveguide, as shown in Figure 19.12.

Figure 19.12: End view and exploded view of the periodic motif of the Stanford linear accelerator
waveguide. Photograph from Neal (1968), reprinted with permission from AAAS.

We have seen repeatedly that time-harmonic solutions to the Maxwell equations, whether in empty
space or in empty tubes, ultimately derive from solutions to the scalar Helmholtz equation,[

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
+ ω2

c2

]
ϕ(x, y, z) = 0. (19.89)

The difficult issue posed by the “disk-loaded” waveguide in Figure 19.12 is to find solutions to
(19.89) where the associated electric field satisfies n̂ × E|S = 0, where S is the awkward-shaped
interior boundary of the guide. Our strategy is to suppress the variables transverse to the z-direction of
propagation and define an operator F̂ (z) which stands for both the bracketed operator in (19.89) and
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the boundary conditions. The key point is that the latter is periodic. If the repeat distance is L, we are
interested in ϕ(z) when

F̂ (z)ϕ(z) = 0 where F̂ (z + L) = F̂ . (19.90)

According to Floquet’s theorem,8 the functions ϕ(z) which satisfy (19.90) can be written in terms
of a periodic function u(z) = u(z + L) and a parameter h:

ϕ(z) = exp(ihz)u(z). (19.91)

The periodic function u(z) has a Fourier series (Section 1.6) representation. Therefore,

ϕ(z) = exp(ihz)
∞∑

m=−∞
bm exp(im2πz/L). (19.92)

The Maxwell fields are derived from (19.92) by some combination of space and time derivatives.
Hence, the accelerating electric field of the fundamental TM mode of the guide of Figure 19.12 must
have the general form

Ez(x, y, z, t) =
∞∑

m=−∞
Bm(x, y) exp[i(h+m2π/L)z] exp(−iωt). (19.93)

Recall now that the electric field of the fundamental TM mode of a smooth-wall waveguide is a
traveling wave exp[i(hz − ωt)] with phase velocity vp = ω/h. By contrast, (19.93) shows that the
boundary conditions imposed on the field by a periodically structured waveguide force the TM-mode
field to be an infinite sum of traveling waves. Each wave has a different phase velocity,

vmp = ω

hm
= ω

h+ 2πm/L
= 1

1/vp + 2πm/ωL
, (19.94)

but the same group velocity, vmg = dω/dhm = dω/dh = vg. The crucial observation from (19.94)
is that Ez contains waves with arbitrarily small phase velocities. Hence, there is always a wave in
(19.93) with a phase velocity very near the initial velocity of an injected charged particle. Continuous
acceleration occurs because the particle interacts sequentially with waves in (19.93) with steadily
increasing phase velocities. The energy gained by the particle is lost by the power source which
maintains the field in the guide. �

19.5 Dielectric Waveguides

Waveguides made entirely from dielectric materials are very desirable for applications where ohmic
losses cannot be tolerated. The most familiar example is the optical fiber, which is today the dominant
transmission medium for high-speed, high-capacity telecommunications. The optical fiber shown in
Figure 19.13 is a dielectric waveguide with a nested-cylinder structure. The inner “core” material has
an index of refraction n1. The “cladding” material which surrounds the core has an index of refraction
n2 < n1. Waves are guided down the cylindrical core with very little loss by repeated total internal
reflection from the cladding layer. A buffer layer separates the cladding from a jacket which provides
mechanical strength. This system is often called a “step-index” fiber because the index of refraction in
the radial direction is constant except for a step discontinuity at the core/cladding interface. The more
general case of a “graded-index” fiber permits a continuous variation of the index like n(r).

8 See, e.g., M.J. Gans, “A general proof of Floquet’s theorem”, IEEE Transactions on Microwave Theory and Technique
13, 384 (1965).
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Jacket

Buffer

Cladding (n2)

Core (n1)

Figure 19.13: Exploded view of an optical fiber.

n1
θmax

n2

2a

x

z

n2

Figure 19.14: Longitudinal cross section of a typical dielectric waveguide (n2 < n1). θmax is the largest angle
(measured from the axis of the guide) at which total internal reflection occurs at the n1-n2 interface.

Dielectric waveguides differ from their perfectly conducting counterparts in three important ways:
(i) the electromagnetic field is not entirely confined to the guiding volume; (ii) the number of confined
modes is finite, rather than infinite; and (iii) the modes are usually not exclusively of either TE or
TM type. These differences all originate from the need to impose matching (rather than boundary)
conditions at dielectric interfaces.

19.5.1 Waves Guided by Total Internal Reflection
Figure 19.14 is a cross section view of an infinite slab of matter with thickness 2a and index of
refraction n1 embedded in an infinite medium with index of refraction n2 < n1. The physics of total
internal reflection is sufficient to show that this structure is the dielectric analog of the wave-guiding
parallel-plate transmission line studied in Section 19.3.2. The argument applies also to an optical fiber
(whose cladding has an infinitely large outer radius) as long as the propagation wavelength is small
compared to the radius of the core. For that case, we re-interpret Figure 19.14 as a longitudinal cut
along a diameter of the fiber.

The rays drawn in Figure 19.14 demonstrate wave guiding in the slab due to repeated total internal
reflection from the surrounding medium. The electromagnetic field is not truly confined to the n1

material because a totally reflected wave is always accompanied by a wave which propagates along
the interface in the n2 material with an amplitude that decays exponentially with distance away from
the interface (see Section 17.3.6). Similarly, the existence of a critical angle for total internal reflection
tells us that only rays that propagate within a cone with opening angle θmax = cos−1(n2/n1) from the
guide axis reflect totally back into the guiding material.

Figure 19.14 is similar to Figure 19.4 in the sense that each ray represents the wave vector of a
plane wave with k = n1ω/c. Another similarity is that a ray bouncing back and forth down the fiber
core represents one of the dielectric guide’s discrete set of allowed transverse modes. To count these
modes, we use a wave-vector version of the counting argument used in Section 19.6.4, taking care
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19.5 Dielectric Waveguides 689

Figure 19.15: Graphical solution of (19.97) shows that only a finite number of modes propagate in a typical
dielectric waveguide.

to limit the range of the transverse component of the wave vector to 0 ≤ k⊥ ≤ k sin θmax. Therefore,
including a factor of 2 to account for polarization, the number of modes that can be propagated in a
cylindrical optical fiber with core radius a in a differential element of transverse wave vector is

dN = 2 × πa2 × d 2k⊥
(2π )2

. (19.95)

Since d 2k⊥ = 2πk⊥dk⊥, this gives the total number of guided modes as

N = 2a2

k sin θmax∫
0

dk⊥k⊥ = a2k2 sin θmax = a2k2

(
1 − n2

1

n2
2

)
. (19.96)

Depending on the intended application, manufacturers make different choices for a and fabricate optical
fibers for both multimode operation, where N ∼ O(102), and for single-mode (two-polarization-state)
operation, where N = 2.

The preceding geometrical optics argument neglects the fact that a true propagating mode can be
constructed from the internally reflected rays in Figure 19.14 only if there is constructive interference
among all the rays that travel in the same direction. Not least, this physical optics constraint distin-
guishes TE modes from TM modes because the Fresnel equations (Section 17.3.2) show that TE and
TM waves acquire different phase shifts, φTE and φTM, when they experience total internal reflection.
These phase shifts depend on the angle θ in Figure 19.14. Therefore, because two consecutive reflec-
tions and a total transverse path length of 4ka sin θ occur before a ray returns to the same direction,
the condition for constructive interference for one polarization is

4ka sin θ + 2φ(θ ) = 2πm m = 0, 1, . . . (19.97)

The graphical solution of (19.97) illustrated in Figure 19.15 (for typical values of the material parame-
ters) shows that propagating modes with θm < θmax exist only when m = 1, 2, 3. This is characteristic
of the general case: the core guides only a finite number of modes through the fiber.

The physical optics argument behind (19.97) does not recognize the curvature of the interface
between the core and the cladding in a real optical fiber. As a result, it misses the existence of hybrid
modes which have mixed TE and TM character. The only way to faithfully capture these modes is to
solve the full Maxwell equations with dielectric matching conditions on the cylindrical interface. This
is a fairly complicated task which does not provide a great deal of insight. Therefore, after setting up
the general Maxwell problem in Section 19.5.2, we devote Section 19.5.3 to the guided waves of a
planar slab waveguide (where no hybrid modes occur) and then give only a descriptive account of the
hybrid modes of an optical fiber in Section 19.5.4.
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19.5.2 Wave Fields in Inhomogeneous Dielectric Matter
This section derives a generalized Helmholtz equation for wave propagation in an inhomogeneous
dielectric medium where the index of refraction varies with position. We focus on non-magnetic matter
so the permittivity carries all the space variation and write the index of refraction as n(r) = c

√
μ0ε(r).

Manipulating ∇ × E = −∂B/∂t and ∇ × H = ∂D/∂t in the usual way gives

∇ × ∇ × E = −n2(r)

c2

∂2E
∂t2

= ∇(∇ · E) − ∇2E. (19.98)

When no free charge is present, 0 = ∇ · D = ∇ · (εE) = ε∇ · E + E · ∇ε. Substituting this informa-
tion in (19.98) produces an inhomogeneous wave equation:

∇2E − n2(r)

c2

∂2E
∂t2

= −∇
(

E · ∇ε
ε

)
. (19.99)

For time-harmonic fields that vary as exp(−iωt), (19.99) reduces to an inhomogeneous Helmholtz
equation, [

∇2 + n2(r)
ω2

c2

]
E = −∇

(
E · ∇ε

ε

)
. (19.100)

The gradient term on the right side of (19.100) has not concerned us to this point because we
have focused exclusively on systems where the dielectric function is piecewise constant. For those
situations, the gradient produces a delta function on the surfaces where n(r) is discontinuous and it
is sufficient to impose the dielectric matching conditions at those surfaces. The right side of (19.100)
also plays no explicit role if the variation of ε(r) is sufficiently weak.

19.5.3 Guided Modes of a Planar Waveguide
The guided modes of the dielectric slab waveguide in Figure 19.14 can be found by solving (19.100).
The ∇ε term is not needed because, as explained just above, we will apply the dielectric matching
conditions at x = ±a. We focus on TE modes and assume an electric field of the form E(x, z, t) =
ŷE(x) exp[i(hz − ωt)]. Substituting this guess into (19.100) generates the one-dimensional differential
equation [

d2

dx2
+
(
n2ω

2

c2
− h2

)]
E(x) = 0. (19.101)

The symmetry of the guide and (19.101) with respect to inversion through the x = 0 plane leads us to
expect “even” solutions where E(−x) = E(x) and “odd” solutions where E(−x) = −E(x).

We are interested in modes that are guided by the slab and thus have the majority of their energy
stored in the region −a ≤ x ≤ a. Therefore, we draw on our experience with total internal reflection
and seek solutions which decay exponentially away from the interface into medium n2. This leads us
to define the parameters γ1 and γ2 so (19.101) in the slab and in the cladding take the form

γ 2
1 = n2

1
ω2

c2
− h2 and

d2E1

dx2
+ γ 2

1 E1 = 0 in n1 (19.102)

and

γ 2
2 = h2 − n2

2
ω2

c2
and

d2E2

dx2
− γ 2

2 E2 = 0 in n2. (19.103)
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The magnetic fields which accompany E1 and E2 follow from Faraday’s law, ∇ × E = −∂B/∂t ;
namely,

H = 1

iωμ
∇ × E = 1

iωμ

[
−ihx̂ + ẑ

∂

∂x

]
E(x)ei(hz−ωt). (19.104)

It remains only to find γ1 and γ2 in (19.102) and (19.103). These are determined uniquely and
simultaneously by the matching conditions that the tangential components of E and H be continuous
at x = ±a. Using (19.104) and the sinusoidal and exponential solutions to (19.102) and (19.103), the
even and odd components of interest are

E1y(x) = E1

{
sin(γ1x)

cos(γ1x)

}
H1z(x) = γ1E1

iωμ1

{
cos(γ1x)

−sin(γ1x)

}
(19.105)

and

E2y(x) = E2 exp (−γ2|x|) H2z(x) = −sgn(x)
γ2E2

iωμ2
exp (−γ2|x|). (19.106)

The matching conditions applied to the odd-parity solutions give

E1 sin(γ1a) = E2e
−γ2a and

γ1

μ1
E1 cos(γ a) = − γ2

μ2
E2e

−γ2a. (19.107)

Dividing one equation in (19.107) by the other gives a relation between γ1 and γ2:

cot(γ1a) = −μ1

μ2

γ2

γ1
. (19.108)

Proceeding identically for the even-parity solutions replaces (19.108) by

tan(γ1a) = μ1

μ2

γ2

γ1
. (19.109)

Finally, adding (19.102) to (19.103) gives

γ 2
1 + γ 2

2 = ω2

c2

(
n2

1 − n2
2

)
. (19.110)

At fixed frequency, (19.110) is the equation of a circle in the γ1-γ2 plane. The points where this circle
intersects the branches of (19.108) define the odd-parity modes guided by the slab. The points where
this circle intersects the branches of (19.109) define the even-parity modes guided by the slab. The
number of guided modes is finite and increases as the frequency (and hence the radius of the circle)
increases.

As a numerical example, let the constitutive parameters of the guide be ε1 = 2ε0 andμ1 = μ2 = μ0,
and fix the frequency so ωa = (5/4)πc. These choices simplify (19.110) to

(γ1a)2 + (γ2a)2 =
(

5π

4

)2

. (19.111)

Figure 19.16 plots (19.111) for positive values of γ1a and γ2a. The solid curves in the diagram marked
“Odd” and “Even” are (19.108) and (19.109), respectively. The black dots indicate the solutions. With
the solution values of γ1, the equation on the far left side of (19.102) is the dispersion relation for each
mode. The solution values of γ2 inserted into (19.106) determine the degree to which each propagating
mode leaks into the cladding layer. Indeed, the condition γ2 = 0 is used to define the “cutoff” for a
dielectric waveguide mode because this value implies that the wave field (19.106) is no longer guided
by the slab, but extends into the cladding layer without attenuation. Substituting γ2 = 0 into (19.108),
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Even EvenOdd

Figure 19.16: Graphical solution for the propagation constant γ1 and evanescent decay constant γ2 for the even-
and odd-parity TE modes of a slab dielectric waveguide with thickness 2a and frequency ω = (5/4)πc/a.

(19.109), and (19.110) thus determines the TE cutoff frequencies of the dielectric slab waveguide as

ωc,m = mπc

2a
√
n2

1 − n2
2

{
m = 0, 2, 4, . . . even modes,
m = 1, 3, 5, . . . odd modes.

(19.112)

Them = 0 value of (19.112) shows that the lowest even-parity TE mode of the dielectric slab waveguide
has zero cutoff frequency. Like the TEM mode of a parallel-plate transmission line [see (19.9)], this
TE mode can propagate through the guide at arbitrarily low frequency. The next section discusses the
concept of cutoff for a dielectric guide in more detail.

19.5.4 Radiation Modes and Hybrid Modes
The guided modes of the planar dielectric waveguide found in the preceding section do not form a
complete set until they are supplemented by the guide’s infinite continuum of radiation modes. The
latter are nothing but the rays in Figure 19.14 which do not suffer total internal reflection because
they encounter the dielectric interface at an angle θ > θmax. This is the situation for the Fabry-Perot
geometry sketched in Figure 17.8, where rays zig-zag through the slab, losing power at each reflection
due to refraction into the cladding material. Eventually, all the energy of the initial ray is lost to the
cladding.

From the Maxwell point of view, the refracted ray is a solution of the wave equation in the cladding
material which varies sinusoidally (rather than decays exponentially) in the transverse direction. This
shows that the word “cutoff” is used very differently for dielectric and conducting waveguides. An
above-cutoff mode in a conducting waveguide is propagating and transports time-averaged power
down the guide. A below-cutoff mode in a conducting waveguide is evanescent; it neither transports
time-averaged power down the guide nor dissipates energy to the environment. An above-cutoff mode
in a dielectric waveguide similarly transports time-averaged power down the guide. However, a below-
cutoff mode in a dielectric waveguide is radiative and transports time-averaged power transversely out
of the guide.

A hybrid mode is a mode of a dielectric waveguide that is neither TE nor TM because its longitudinal
field components Ez and Hz are simultaneously non-zero. Modes of this kind occur generically in
dielectric waveguides except for special geometries where the modal field is strictly uniform in
the direction transverse to both the interface normal and the direction of propagation. The planar slab
waveguide analyzed in Section 19.5.3 is an example of the latter because Figure 19.14 is translationally
invariant in the y-direction. A system where this type of invariance is lost—and the matching conditions
cannot be satisfied by either TE or TM modes—is called a microstrip.
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HE

(a) (b)

HE

Figure 19.17: Fields lines for a microstrip where a conducting strip (speckled) and a conducting sheet (dark
solid line) sandwich a slab of dielectric: (a) fundamental mode at low frequency; (b) fundamental mode at high
frequency. Figure adapted from Hoffmann (1987).

Figure 19.17 shows a microstrip used in microwave integrated circuits. It consists of a conducting
strip bonded to the top face of a dielectric slab with a conducting plate bonded to the bottom of the
slab. Without the dielectric, this is a two-conductor transmission line (see Section 19.2). The presence
of the dielectric distorts the strictly transverse fundamental TEM mode of the transmission line into a
hybrid mode with longitudinal field components. In practice, one finds that Ez and Hz are negligible
(compared to the transverse field components) at low frequency and the fundamental mode is nearly
indistinguishable from pure TEM [Figure 19.17(a)]. The hybrid nature of the mode becomes apparent
only at higher frequencies when the wavelength becomes comparable to the characteristic dimensions
of the strip [Figure 19.17(b)].

Hybrid modes occur similarly in the optical fiber in Figure 19.13 because (see Section 19.4.6)
separated-variable solutions of the Helmholtz equation in cylindrical coordinates are indexed by an
integer n and have the form

(Bessel function of order n) × exp(inφ). (19.113)

If n = 0, TE and TM modes exist because the field is constant in the (φ) direction that is perpendicular
to the propagation direction and to the interface normal. This is not true for modes with n �= 0, and the
matching conditions can only be satisfied by hybrid modes. The name skew ray is used for some of
these modes because the propagation path resembles a corkscrew spiraling around the symmetry axis
of the fiber.

19.6 Conducting Cavities

An enclosed volume used to trap and store standing waves is called a resonant cavity. In this section, we
study electromagnetic standing waves in a volume bounded by perfectly conducting walls.9 Storage
occurs only for waves that oscillate at one of a discrete set of frequencies because the source-
free Maxwell equations and the field boundary conditions at the cavity walls define a normal-mode
eigenvalue problem. Apart from the difference between vector waves and scalar waves, the normal
modes of a three-dimensional electromagnetic cavity are perfectly analogous to the normal modes of a
one-dimensional string or a two-dimensional drumhead. Indeed, the simplest possible electromagnetic
resonator consists of two flat and perfectly parallel mirrors separated by a distance L. The normal
modes are TEM waves that reflect back and forth in such a way that the round trip distance 2L is
equal to an integer number of wavelengths. This guarantees that the electric field boundary condition
is satisfied and gives the equally spaced mode frequencies as

νm = ωm

2π
= m

c

2L
m = 1, 2, . . . (19.114)

9 We neglect the effect of small holes in the walls needed to inject waves into, and extract waves from, the cavity.
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A resonator for the Gaussian beam sketched in Figure 16.11 results if the two flat mirrors are replaced
by slightly curved mirrors shaped like the wavefronts of the beam far from its waist. Many laser
resonators use this geometry.

19.6.1 General Properties of Cavity Modes
A general approach to finding the standing waves of a conducting resonant cavity focuses on time-
harmonic and divergence-free solutions of the homogeneous wave equation. Thus, the electric field
E(r) exp(−iωt) of a resonant cavity formed by a volume V of simple matter (ε, μ) with a perfect
conductor surface S satisfies [∇2 + εμω2

]
E = 0 in V,

∇ · E = 0 in V, (19.115)

n̂ × E = 0 on S.

Let us choose the electric field E(r) in (19.115) to be real. The corresponding function H(r) is pure
imaginary by virtue of Faraday’s law for time-harmonic fields,

∇ × E = iωμH. (19.116)

This means that H(r) exp(−iωt) oscillates 90◦ out of phase with the electric field. The main challenge
is to solve the Helmholtz equation in (19.115). For simple geometries, separation of variables produces
a general solution. Given this, the boundary and zero-divergence conditions in (19.115) determine a
complete set of eigenfunctions, Eλ(r), and eigenvalues, ωλ.

Orthogonality relations follow from∫
S

dS · [a × (∇ × b) + (∇ · b)a] =
∫
V

d 3r
[
(∇ × a) · (∇ × b) + (∇ · a)(∇ · b) + a · ∇2b

]
(19.117)

when we set a = Eλ, b = Eμ, and use all three equations in (19.115). The result is

μεω2
μ

∫
V

d 3r Eλ · Eμ =
∫
V

d 3r (∇ × Eλ) · (∇ × Eμ). (19.118)

Subtracting (19.118) from the same equation with λ and μ interchanged shows that∫
V

d 3r Eλ · Eμ = 0 and
∫
V

d 3r (∇ × Eλ) · (∇ × Eμ) = 0 when ωλ �= ωμ. (19.119)

The Gram-Schmidt procedure is available for orthogonalization in the case of degeneracy.

Example 19.3 A cubical resonant cavity has perfectly conducting walls at x = 0, x = a, y = 0,
y = a, z = 0, and z = a. The region 0 ≤ z ≤ b (b < a) is filled with a non-magnetic dielectric
with relative permittivity κ = ε/ε0. Derive a transcendental equation for the frequencies of the
cavity normal modes which have Ey = Ez = 0. Solve the equation when κ = 1.

Solution: ∇ · E = ∂Ex/∂x = 0, so Ex(x, y, z, t) = Ex(z, y)e−iωt for harmonic modes. These
satisfy

z < b :

[
∂2

∂y2
+ ∂2

∂z2
+ κ

ω2

c2

]
Ex = 0

z > b :

[
∂2

∂y2
+ ∂2

∂z2
+ ω2

c2

]
Ex = 0.
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The tangential part of Ex vanishes at the cavity walls. Therefore, writing Ex(y, z) = Y (y)Z(z)
with a separation constant λ2, the equations to be solved are

Y ′′(y) + λ2Y (y) = 0 Y (0) = Y (a) = 0,

Z′′(z) +
(
κ
ω2

c2
− λ2

)
Z(z) Z(0) = 0, z < b,

Z′′(z) +
(
ω2

c2
− λ2

)
Z(z) Z(a) = 0, z > b.

TheY (y) equation (and solution) is the same for both sections of the cavity becauseEx is continuous
at z = b. If m is an integer, we find

z < b : Ex ∝ sin
mπy

a
sin[k<z] k2

< = κ
ω2

c2
−

(mπ
a

)2

z > b : Ex ∝ sin
mπy

a
sin[k>(z − a)] k2

> = ω2

c2
−
(mπ

a

)2
.

Continuity of Ex at z = b gives the constraint sin[k<b] = sin[k>(b − a)]. From ∇ × E = iωB, the
tangential component of B satisfies iωBy = −∂Ex/∂z. Hence,

z < b : By ∝ k< sin
mπy

a
cos[k<z]

z > b : By ∝ k> sin
mπy

a
cos[k>(z − a)].

By is also continuous at z = b. This gives the constraint k< cos[k<b] = k> cos[k>(b − a)].
Combining the two constraints produces the desired transcendental equation:

k> tan[k<b] = k< tan[k>(b − a)].

When κ = 1, k< = k> = k, and the transcendental equation is satisfied when the arguments of the
tangent functions differ by πn, where n is an integer. This gives theEy = Ez = 0 mode frequencies
of a cubical box as

ω2

c2
=
(mπ

a

)2
+
(nπ
a

)2
.

19.6.2 Conducting-Tube Cavities
The conducting-tube waveguide sketched in Figure 19.6 of Section 19.4 becomes a conducting-tube
resonant cavity when parallel conducting plates at z = 0 and z = L are used to cap the open ends of
the waveguide. In the notation of the previous section, the new boundary conditions introduced by the
end caps are

E⊥(z = 0) = 0 and E⊥(z = L) = 0. (19.120)

The standing-wave modes of the cavity can be derived from the propagating-wave modes of the infinite
waveguide because the latter already satisfy the boundary conditions on the side walls. We satisfy the
z = 0 condition in (19.120) by superposing a mode propagating in the +z-direction with an identical
mode propagating in the −z-direction. For the TE case, subtract (19.42) from itself (with a change of
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sign of h) to get

ETE = 2ωμ

γ 2
[ẑ × ∇⊥Hz] sin(hz) exp(−iωt)

(19.121)

HTE = 2i

[
h

γ 2
∇⊥Hz cos(hz) +Hz sin(hz)ẑ

]
exp(−iωt).

For the TM case, add (19.43) to itself (with a change of sign of h) to get

ETM = 2

[
h

γ 2
∇⊥Ez sin(hz) + ẑEz cos(hz)

]
exp(−iωt)

(19.122)

HTM = 2iωε

γ 2
[ẑ × ∇⊥Ez] cos(hz) exp(−iωt).

For both the TE and TM cases, the z = L boundary condition in (19.120) restricts the previously
continuous variable h to the values h = pπ/L, where p is a non-negative integer. Using (19.52), the
resulting mode eigenfrequencies are quantized by p and the waveguide mode index i to the discrete
set of values

ωip = 1√
με

√
γ 2
i + p2

π2

L2
i = 1, 2, . . . , p = 0, 1, . . . (19.123)

As an example, substituting (19.59) into (19.123), gives the mode frequencies of a conducting paral-
lelepiped with dimensions a × b × L:

ωm,n,p = π√
με

√
m2

a2
+ n2

b2
+ p2

L2
m, n, p = 0, 1, . . . (19.124)

These cavity modes happen to be doubly degenerate because there is a TE mode and a TM mode
associated with every value of γi for a rectangular waveguide (see Section 19.4.5). This degeneracy
does not occur for cavities formed by capping the ends of waveguides with arbitrary cross sectional
shapes.

19.6.3 Spherical Cavities
The electromagnetic normal modes of a spherical resonant cavity are time-harmonic, vector spherical
waves that satisfy the perfect-conductor boundary condition r̂ × E|S = 0 at the cavity’s walls. The
candidate waves (Section 16.8) are transverse electric,

ETE = −iωr × ∇û BTE = −∇ × [r × ∇û], (19.125)

and transverse magnetic,

cBTM = −iωr × ∇û ETM = c∇ × [r × ∇û], (19.126)

where û(r) is a solution of the Helmholtz equation in spherical coordinates.
In Section 16.8, we wrote k = ω/c and used û(r) = ∑

�[A�h�(kr) + B�h
∗
�(kr)]Y�m(θ, φ) where

h�(kr) and h∗
�(kr) were outgoing wave and incoming wave spherical Hankel functions. These functions

cannot be used for cavity fields because they diverge at r = 0. Instead, we use the linearly independent
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spherical Bessel functions, j�(kr) = 1
2 [h�(kr) + h∗

�(kr)], and spherical Neumann functions, n�(kr) =
1
2 i[h

∗
�(kr) − h�(kr)]. The first two of each are

j0(kr) = sin(kr)

kr
n0(kr) = −cos(kr)

kr

j1(kr) = sin(kr)

(kr)2
− cos(kr)

kr
n1(kr) = −cos(kr)

(kr)2
− sin(kr)

kr
.

The spherical Neumann functions diverge at the origin. Therefore, all the resonant modes of a spherical
cavity derive from

û�m(r) = j�(kr)Y�m(θ, φ). (19.127)

Using (19.127) to evaluate (19.125), the TE electric field is

ETE = iωj�(kr)

[
1

sin θ

∂Y�m

∂φ
θ̂ − ∂Y�m

∂θ
φ̂

]
. (19.128)

We compute the TM electric field in (19.126) using the vector identity

∇ × (r × ∇u) = r∇2u− 2∇u− r
∂

∂r
∇u (19.129)

and the fact that (see Section 7.7)

∇2 = 1

r2

∂

∂r
r2 ∂

∂r
− L̂2

r2
where L̂2Y�m = �(�+ 1)Y�m. (19.130)

A bit of algebra gives

ETM = −c
[

r̂
�(�+ 1)

r2
+
(

θ̂
∂

∂θ
+ φ̂

1

sin θ

∂

∂φ

)
1

r

∂

∂r

]
rj�(kr)Y�m(θ, φ). (19.131)

It is worth noting that the � = 0 fields vanish. This is consistent with Application 16.1.
We determine the eigenfrequencies of the spherical cavity by forcing the tangential components

(θ̂ , φ̂) of the electric fields (19.128) and (19.131) to be zero at the cavity walls. If the cavity has radius
R, the conditions that fix k = ω/c are

j�(k
TER) = 0 and

d

dr

[
rj�(k

TMr)
]
r=R = 0. (19.132)

The fact that the indexm in (19.127) does not appear in (19.132) means that every TE and TM mode of
a spherical cavity is (2�+ 1)-fold degenerate. The roots needed for evaluation of (19.132) are tabulated
and the lowest resonant frequency happens to belong to a TM mode with

ω = 2.744
c

R
. (19.133)

19.6.4 The Density of Modes
For many cavity problems, the precise values of the resonant frequencies are less interesting than a
statistical quantity such as the number of modes per unit frequency interval. We define the density of
modes g(ω) so

g(ω)dω = number of normal modes with frequency between ω and dω. (19.134)

It is not difficult to calculate g(ω) for a cubic cavity of volume V = L3, where [see (19.124)]

ω = cπ

L

√
n2 +m2 + p2 m, n, p ≥ 0. (19.135)
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Figure 19.18: Mode counting in two dimensions.

The idea is to mark the integers on orthogonal axes labeled m, n, and p. Figure 19.18 shows the p = 0
plane of this space. There is one TE mode and one TM mode for every point (m, n, p) in the positive
octant (except m = n = 0) or, equivalently, for every 1 × 1 × 1 cube in the octant. This means that
counting modes is equivalent to measuring volume in (m, n, p) space.

The radial distance from the origin in this space is

� =
√
n2 +m2 + p2. (19.136)

Therefore, ifm, n, and p were real numbers, we could sensibly identify g(ω)dω with the volume of one
octant of a spherical shell of radius � and thickness d� (multiplied by 2 for the TE/TM degeneracy);
that is,

g(ω)dω = 2 × 1

8
× 4π�2d� = Vω2dω

π2c3
. (19.137)

Alternatively, we can use a delta function to count the modes directly:

g(ω) = 2 × 1

8
×
∫

d�

∞∫
0

d��2δ
(
ω − c

π

L
�
)

= Vω2

π2c3
. (19.138)

The key observation is that (19.137) and (19.138) remain valid when m,n, and p are integers if we
restrict ourselves to frequencies ω � c/L so �ω computed using (19.135) and adjacent integers is a
good approximation to dω.10

The density of electromagnetic cavity modes has many uses. For example, blackbody radiation is
the name given to electromagnetic waves that freely exchange energy with the walls of a resonant
cavity held at temperature T . In 1900, Rayleigh used (19.138) to calculate u(ν, T ), the average
blackbody energy per unit volume and per unit interval of frequency ν = ω/2π . If ε is the average
energy of a cavity normal mode, the classical equipartition theorem gives ε = kT .11 Then, because
g(ω)dω = 2πg(ν)dν, we get the Rayleigh-Jeans law,

u(ν, T ) = 2π

V
g(ν)ε = 8πν2

c3
kT . (19.139)

Modern physics was born when the disagreement of (19.139) with experimental measurements at high
frequency led Planck, in 1900, to introduce the “quantum of energy” hν and modify (19.139) to

u(ν, T ) = 8πhν3

c3

1

exp(hν/kT ) − 1
. (19.140)

10 A celebrated theorem due to Weyl states that (19.138) applies to cavities of any shape if they are sufficiently large.
See Sources, References, and Additional Reading.

11 Section 19.6.7 shows that a cavity mode behaves like a one-dimensional harmonic oscillator.
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Figure 19.19: The spectral radiance, L(ν), of the cosmic microwave background radiation. The dozens of data
points in the curve have uncertainties smaller than the thickness of the theoretical line drawn using the Planck
distribution with T = 2.73 K. The non-SI unit MJy = 10−23 W m−2 Hz−1. Figure adapted from Fixsen et al.
(1996). Reprinted by permission of the AAS.

Over a century later, the best example of blackbody radiation is the cosmic microwave background
radiation which provides evidence for the Big Bang model for the origin of the Universe. Figure 19.19 is
a fit to satellite-collected spectral radiance data toL(ν, T ) = u(ν, T )c/4π using the Planck distribution
(19.140).

The density of electromagnetic modes also enters the “Golden Rule” formula,

" = 2π
−h

|〈F |H|I 〉|2g(ω), (19.141)

for the rate at which an interaction Hamiltonian H causes a quantum system to make a radiative
transition from an initial state to a final state where EF − EI = −hω. Using (19.138), the Golden Rule
predicts spontaneous emission rates very well because empty space may be regarded as an infinitely
large resonant cavity. One the other hand, when faced with very small values of " for microwave
transitions, Purcell pointed out that spontaneous emission rates could be enhanced by arranging cavity
situations where (19.138) no longer accurately predicts the density of electromagnetic modes.12 Today,
the enhancement and suppression of spontaneous emission rates by manipulation of g(ω) is an active
field of research.

Application 19.2 Quantum Billiards in a Resonant Cavity

This Application demonstrates how the statistical properties of the eigenfrequencies of an electromag-
netic resonant cavity have been used to to inform the subject of quantum chaos. Consider a billiard ball
which reflects specularly from the side walls of a billiard table. For a rectangular table, infinitesimal
changes in initial conditions produce infinitesimal changes in the billiard’s trajectory. However, for
a table with a less simple shape, infinitesimal changes in initial conditions typically produce wildly
different trajectories. This is a signature of classical chaos. The corresponding quantum problem is a
free particle in a two-dimensional box with the shape of the billiard table. The question arises: does

12 E.M. Purcell, “Spontaneous emission probabilities at radio frequencies”, Physical Review 69, 681 (1946).
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any signature occur in the quantum behavior when the classical motion changes from non-chaotic to
chaotic?

To find the answer, it is sufficient to notice that the Schrödinger equation and boundary condition
satisfied by the quantum billiard’s wave function,

−
−h2

2m

[
∂2

∂x2
+ ∂2

∂y2

]
ψ = εψ ψ |S = 0, (19.142)

are the same as the Helmholtz equation and boundary condition in (19.57) satisfied by Ez for a
TM mode in a conducting-tube waveguide. Moreover, setting h = pπ/L = 0 in the resonant-cavity
equations (19.121) and (19.122) shows that ETE = 0 and

ETM(x, y, t) = 2Ez(x, y) exp(−iωt) ẑ. (19.143)

Therefore, the eigenvalues of (19.142) are in one-to-one correspondence with the p = 0 mode fre-
quencies ωi0 in (19.123). The latter can be studied using pancake-shaped cavities where L is much
smaller than the other cavity dimensions. This guarantees that the first p = 1 mode lies at much higher
frequency than very many p = 0 modes.

Rather than the density of modes, the quantity plotted in Figure 19.20 is the distribution of the
differences in frequency between adjacent cavity modes. The (numerical) data for a rectangular cavity
follow a Poisson distribution, P (s) ∝ exp(−as), which is the quantum prediction for a billiard whose
classical motion is not chaotic. The (experimental) data for a cavity shaped like one quarter of a stadium
(see inset) follow the statistics of a Gaussian orthogonal ensemble (GOE) where P (s) ∝ s exp(−bs2).
This is the quantum prediction for a billiard whose classical motion is chaotic. Thus, chaotic motion
on a classical billiard table manifests itself as an effective “repulsion” between the successive energy
levels of a quantum billiard.

GOE

s

P
(s

)

Poisson
1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 19.20: Distribution of spacings between adjacent resonant-cavity frequencies. Solid curves:
predicted distributions when the classical motion is chaotic (GOE) and non-chaotic (Poisson). Histogram:
numerical data for a rectangular cavity. Shaded bars: experimental data for the cavity shown in the inset.
Figure adapted from Richter (1999).

�

19.6.5 Energy Exchange in Lossless Cavities
The total energy of an electromagnetic cavity is periodically exchanged between its electric field and
its magnetic field. To prove this, we show first that the time-averaged electric energy 〈UE 〉 is equal to
the time-averaged magnetic energy 〈UB 〉 for every normal mode. This, in turn, is a consequence of a
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time-averaged version of Poynting’s theorem for the normal mode fields Eλ(r, t) = Eλ(r) exp(−iωλt)
and Hλ(r, t) = Hλ(r) exp(−iωλt). The theorem in question is

∇ × (Eλ × H∗
λ) = 4iωλ [〈uE 〉 − 〈uB 〉] . (19.144)

To derive (19.144), we need only combine the curl equations in (19.33) with the identity

∇ × (E × H∗) = H∗ · (∇ × E) − E · (∇ × H∗) (19.145)

and use the definition of the time-averaged electric and magnetic energy densities,

〈uE 〉 = 1

4
εE · E∗ and 〈uE 〉 = 1

4
μH · H∗. (19.146)

Integrating (19.144) over the volume of the cavity and using the divergence theorem gives∫
S

dAn̂ · (Eλ × H∗
λ) = 4iωλ [〈UE 〉 − 〈UB 〉] . (19.147)

However, the left side of (19.147) vanishes because the conducting wall-boundary conditions ensure
that n̂ · (Eλ × H∗

λ)|S = H∗
λ · (n̂ × Eλ)|S = 0. This proves that the time-averaged electric and magnetic

energies are equal:

〈UE 〉 = 〈UB 〉. (19.148)

The final step in the argument exploits the 90◦ phase difference between Eλ and Hλ pointed out
in the paragraph following (19.116). This implies that the instantaneous total electric and magnetic
energies in a resonant cavity are

UE(t) = ε

2

∫
V

d 3r [Re Eλ(r, t)]2 = 2〈UE 〉 cos2 ωλt

(19.149)
UB (t) = μ

2

∫
V

d 3r [Re Hλ(r, t)]2 = 2〈UB 〉 sin2 ωλt.

Combining (19.148) with (19.149) shows that the total energy, UEM(t) = UE(t) + UB (t), is indeed
periodically exchanged between the modal electric field and the modal magnetic field.

Equation (19.149) should remind the reader of the periodic exchange of energy which occurs when
an LC circuit oscillates at its resonant frequency ω = 1/

√
LC. This not an accident. As Figure 19.21

shows, the passage from a circuit oscillator to a resonant cavity does not introduce new physics, just
a change in geometry and an increase in resonant frequency. The latter is achieved by reducing the
effective inductance (first by reducing the number of turns in the circuit solenoid from many to one and
then by adding more and more one-turn solenoids in parallel) and reducing the effective capacitance (by
increasing the separation between the surfaces with equal and opposite charge). The final, cylindrically
symmetric resonant cavity on the far right of Figure 19.21 is typical of a two-cavity klystron. It is
worth noting that the modal electric and magnetic fields largely occupy different regions of space in
Figure 19.21. This is not true for the hollow-tube resonant cavities discussed in Section 19.6.2.

19.6.6 Energy Loss in Ohmic Cavities
The modes of a real resonant cavity do not oscillate forever. The mode amplitudes steadily decrease
because ohmic heating in the walls drains away the field energy. A figure of merit is the quality factor
Q (see Example 17.2.2), which is the mode frequency ω0 multiplied by the ratio of the time-averaged
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Lines of E

Lines of H

Figure 19.21: The natural frequencies increase from left to right for the resonators shown. Figure from
Feynman, Leighton, and Sands (1964).

total energy to the time-averaged power dissipated:

Q = ω0
〈UEM 〉
〈PEM 〉 . (19.150)

Using (19.148), we write 〈UEM 〉 as twice the time-averaged magnetic energy integrated over the
volume of the cavity. For 〈PEM 〉, we integrate (19.78) over the surface area of the cavity. Hence,

Q = 2

δ
×

∫
V

dV |H(r)|2∫
S

dA |H(r)|2 ≈ 2

δ

V

A
. (19.151)

The estimate on the right side of (19.151) is always intuitively useful, but only quantitatively accurate
for modes where the magnitude of H does not vary significantly over the volume of the cavity.

We get a better understanding of Q by writing (19.150) as a differential equation for the time-
averaged cavity energy:

d〈UEM 〉
dt

= −ω0

Q
〈UEM 〉. (19.152)

The solution to (19.152),

〈UEM(t)〉 = 〈UEM(0)〉 exp

[
−ω0t

Q

]
, (19.153)

implies that E(t) [and also H (t)] vary in time as

E(t) = E(0) exp

[
−ω0t

2Q

]
exp [−iω0t] . (19.154)

Frequency-domain measurements probe the Fourier transform of (19.154). Assuming that E(t) = 0
for t < 0,

Ê(ω) =
∞∫

0

dt E(t)eiωt = E(0)

i(ω0 − ω) + ω0/2Q
. (19.155)

Figure 19.22 plots the absolute square |Ê(ω)|2. The line shape is Lorentzian, where the ratio of the
full width at half-maximum to the resonance frequency is exactly the quality factor:

�ω

ω0
= 1

Q
. (19.156)

The Q factor generally differs considerably for the different modes of a resonant cavity.
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0

Figure 19.22: �ω is the width at half-maximum of the Lorentzian line shape of |Ê(ω)|2 for a typical mode of a
lossy resonant cavity.

19.6.7 Excitation of Cavity Modes
A localized current source is often used to excite the electromagnetic modes of a conducting resonant
cavity. Our approach to this problem uses a method (borrowed from the quantum theory of radiation)
which demonstrates the dynamical similarity of the modes of a lossless resonant cavity to a collection
of harmonic oscillators. Without loss of generality, we ignore free charge and adopt the Coulomb
gauge where ∇ · A = 0. This permits us to neglect the scalar potential (see Section 16.2.2) and write
the cavity fields as

E = −∂A
∂t

and B = ∇ × A. (19.157)

Under the assumed conditions, the general time-evolution equation for the vector potential (15.9)
simplifies to

∇2A − 1

c2

∂2A
∂t2

= −μ0j. (19.158)

The cavity-mode eigenfunctions Aλ(r) exp(−iωλt) are the solutions to (19.158) (with j = 0) that
satisfy n̂ × Aλ|S = 0. This is so because (19.157) tells us that Eλ(r) = iωλAλ(r), where Eλ is an
electric field cavity mode. The key step exploits the completeness of the mode functions to write an
arbitrary vector potential in the cavity as

A(r, t) =
∑
λ

Aλ(r, t) =
∑
λ

qλ(t)Aλ(r). (19.159)

Substituting (19.159) into (19.158) and using the first equation in (19.115) applied to Aλ(r) gives∑
λ

Aλ(r)
(
q̈λ) + ω2

λqλ
) = 1

ε0
j(r, t). (19.160)

Finally, multiply (19.160) by Aμ, integrate over the cavity volume, and use (19.119) to get13

q̈μ(t) + ω2
μqμ(t) = 1

ε0

∫
V

d 3r j(r, t) · Aμ(r). (19.161)

13 We assume the mode functions A(r)λ are normalized in the cavity volume V .
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Figure 19.23: Scanning electron micrograph of a silica dielectric resonator supported by a silicon pillar. Image
from Schliesser et al. (2008).

This equation shows that the amplitude of the μth cavity mode behaves exactly like a driven harmonic
oscillator. The “driving force” is the projection of the excitation current density onto the spatial
distribution of that mode. Thus, if j(r, t) reflects a current loop inserted into the cavity, it is not
difficult to imagine that different modes will be excited as a function of the size and orientation of the
loop.

Multiplying (19.161) by q̇λ and using (19.157) and (19.159) produces a power-balance equation:

d

dt
ε0

[
1

2
q̇2
μ(t) + 1

2
ω2
μq

2
μ(t)

]
+
∫
V

d 3r j(r, t) · Eμ(r, t) = 0. (19.162)

We leave it as an exercise for the reader to show that the kinetic (potential) energy term on the left
side of (19.162) may be identified with the electric (magnetic) energy of the mode. From this point of
view, (19.162) shows how the work done by the current source increases the total energy of the cavity
mode.

19.7 Dielectric Resonators

The conducting-wall resonators studied in the previous section are useful as long as the ohmic losses
in their walls can be tolerated. When this is not the case, all-dielectric structures can sometimes be
used as temporary storage facilities for oscillating electromagnetic fields. We have seen an example of
this already in Section 17.5.2 where the middle panel of Figure 17.12 showed an infrared laser cavity
closed at either end by highly reflective mirrors made from GaAs/AlAs multilayers. Here, we take note
of high dielectric constant (κ > 30) materials which respond resonantly to oscillating electromagnetic
fields when they are machined into simple shapes like spheres, cylinders, or disks.

In the microwave band, dielectric resonators with large quality factors (Q > 104) are used as
filters and low-noise reference oscillators when small size and temperature stability are important.
Figure 19.23 is a scanning electron microscope image of a more exotic, toroid-shaped dielectric
resonator. The toroid was created by the selective melting and re-solidification of the perimeter of a
silica (SiO2) disk supported by a silicon pillar. The standing optical waves which propagate around
this toroid’s perimeter (see Application 19.3) have Q values as high as 108.

The normal modes of a dielectric resonator all have a finite quality factor, even if the dielectric is
lossless. This is so because the fields are never completely confined to the volume of the resonator. The
dielectric matching conditions guarantee that any field that lies inside the volume connects to a field
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(evanescent or propagating) that lies outside the volume.14 With this complication, a complete theory
of the modes can be developed along the lines developed in Section 19.6 for conducting resonant
cavities.

Application 19.3 Whispering Gallery Modes

The high-Q optical modes of the micro-toroid shown in Figure 19.23 have almost all of their field
strength in the immediate vicinity of the perimeter of the toroid. They propagate circumferentially
at the dielectric-air interface because, in optical language, the rays trace a closed polygonal path due
to repeated total internal reflection at the interface. The name whispering gallery modes is given to
these electromagnetic waves, by analogy with sound waves (first explained by Lord Rayleigh) which
propagate circumferentially along the circular base of the dome of St. Paul’s Cathedral in London.

This application exploits the similarity of the Helmholtz equation (19.100) to the Schrödinger
equation to study the whispering gallery modes of a dielectric sphere. We limit ourselves to TE modes
and recall from (19.125) and (19.130) that

E(r) = −ωL̂u(r) and L̂ = −ir × ∇, (19.163)

where

∇2f = 1

r

∂2(rf )

∂r2
− L̂2

r2
f and L̂2Y�m = �(�+ 1)Y�m. (19.164)

The electric field (19.163) has no radial component [see (19.128)] and we assume that the dielectric
“constant” varies only radially so ε(r) = ε(r). This means that the right side of (19.100) vanishes.
The key is to let r2u(r) = ψ(r)Y�m(θ, φ) and substitute (19.163) and (19.164) into (19.100). Using
the operator commutation relation [L̂2,L] = 0 familiar from quantum mechanics, the result takes the
form of a radial Schrödinger equation:

− d2ψ

dr2
+
[
ω2

c2
{1 − n(r)} + �(�+ 1)

r2

]
ψ = ω2

c2
ψ. (19.165)

The piecewise constant index of refraction n(r > R) = 1 and n(r < R) = n > 1 defines a uniform
dielectric sphere of radius R. With this choice, the effective potential in square brackets in (19.165)
has an attractive-well component for r < R and a repulsive centrifugal barrier. The latter increases
in magnitude as the angular momentum increases but falls off from the center of the sphere as 1/r2.
The discontinuity of n(r) requires that we impose the continuity of the tangential components of
the electric and magnetic fields on the spherical shell r = R. From (19.163), E will be continuous
if ψ(r) is continuous. From the duality15 of HTE and ETM [compare (19.125) to (19.126)], together
with (19.131), we see that r̂ × HTE will be continuous if the radial derivative ψ ′(r) is continuous.
This completes the analogy between the TE-mode problem for a dielectric sphere and the Schrödinger
problem of a particle in a spherical well.

Our aim is to demonstrate the existence of whispering gallery modes localized near r = R. Using
intuition gained from elementary quantum mechanics, Figure 19.24 shows that it is sufficient to choose
� � 1 and locate ω just above the zero of the effective potential. The dashed line shows that most of
the amplitude of ψ(r) is trapped near r = R by the large centrifugal barrier. The fact that this wave
function “tunnels” through the barrier into the continuum at larger values of r identifies this mode as
a resonance with a finite lifetime rather than a bound state with an infinite lifetime. The resonance
lifetime is simply related to the quality factor Q of the mode [cf. (19.156)].

14 Compare this with Section 19.5.4 on the radiation modes of a dielectric waveguide.
15 See Section 16.8.1.
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Figure 19.24: The wave function of a resonance (whispering gallery) state superimposed on the effective
potential in (19.165). Figure adapted from Johnson (1993).
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Our treatment of cavity mode excitation (Section 19.6.7) comes from
E.U. Condon, “Electronic generation of electromagnetic oscillations”, Journal of Applied Physics 11, 502
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Section 19.7 For more details about dielectric resonators, the reader may consult
D. Kajfez and P. Guillon, Dielectric Resonators (Artech House, Dedham, MA, 1986).

Figure 19.23 comes from Schliesser et al. Figure 19.24 and the analogy between whispering gallery modes and
resonances in quantum mechanics used in Application 19.3 come from Johnson.
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micromechanical oscillator”, Nature Physics 4, 415 (2008).

B.R. Johnson, “Theory of morphology-dependent resonances: Shape resonances and width formulas”, Journal
of the Optical Society of America A 10, 343 (1993).

Problems
19.1 Two-Wire Transmission Line A long transmission line consists of two identical wires embedded in a

medium with permittivity ε and permeability μ. Let the wire separation d be large compared to the wire
radius a. Calculate the capacitance per unit length C and the inductance per unit length L. Confirm the
general relation LC = με derived in the text.

19.2 TM Wave Guided by a Flat Conductor A monochromatic plane wave in vacuum (x > 0) with Ez > 0
and Ex < 0 strikes a perfect conductor (x < 0) at an angle of incidence θ .

(a) Show that, in steady state, a non-uniform TM wave occupies the vacuum space above the conductor.
(b) Calculate the time-averaged Poynting vector everywhere.
(c) Calculate the charge density and current density induced on the surface of the conductor. Do they satisfy

a continuity equation?
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19.3 TEM Waves Guided by a Cone and a Plane Consider time-harmonic solutions to the Maxwell equations
in vacuum where the fields are independent of the azimuthal angle φ. TEM solutions of this type also have
no radial component to the fields: Er = Br = 0.

(a) Show that the conditions stated above decouple the Maxwell curl equations into two subsets, each of
which describes a different type of TEM wave.

(b) Begin with the Maxwell divergence equations and find general solutions for E(r, θ, t) and B(r, θ, t) for
each of the two TEM wave types.

(c) The figure below shows the apex of an infinite, solid conducting cone touching the conducting half-space
z < 0. Explain why this structure can be used to guide one of the TEM wave types found above but not
the other.

z

z=0

19.4 The Lowest Propagating Mode of a Waveguide The TM and TE modes of a hollow-tube waveguide
are determined by the two-dimensional Helmholtz equation [∇2

⊥ + γ 2]ψ = 0 with boundary conditions
ψ |S = 0 and ∂ψ/∂n|S = 0, respectively. The same equation and boundary conditions apply when ψ(x, y)
is the wave function of a free particle in a two-dimensional box with infinite or finite potential walls, and
when ψ(x, y) is the vibrational amplitude of a drumhead whose perimeter is held fixed or left free.

(a) Produce an argument based on the behavior of a quantum particle-in-a-box to argue that one type of
mode (either TE or TM) always has the lowest (non-zero) frequency for a hollow-tube waveguide with
an arbitrary cross sectional shape.

(b) Produce an argument based on the behavior of an elastic drumhead to reach the same conclusion as in
part (a).

Flexible membrane

Hollow shell

19.5 Semi-Circular Waveguide A perfectly conducting waveguide has a cross section in the shape of a semi-
circle with radius R.

(a) Find the longitudinal fields Ez and Bz for the TM and TE modes, respectively. Find also the cut-off
frequency for these modes.

(b) Write explicit formulae for the transverse fields for the lowest cutoff frequency found in part (a).

19.6 Whispering Gallery Modes Consider a hollow conducting tube with a circular cross section of radius R
and infinite length.

(a) Find monochromatic TE (Ez = 0) and TM (Hz = 0) solutions of the Maxwell equations inside the
tube which propagate around the tube circumference and thus do not depend on the longitudinal
coordinate z.
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(b) Identify the subset of waves where the electric field has no nodes inside the tube and almost all of the
field energy is concentrated in a very small annular volume near the wall of the tube.

19.7 Waveguide Discontinuity Two rectangular waveguides with different major side lengths (a1 < a2) along
the x-axis and equal minor sides (b1 = b2) along the y-axis are butt-joined in the z = 0 plane. Waveguide 1
propagates a TE10 mode (only) in the +z-direction toward waveguide 2. Find the amplitude of the various
modes excited in waveguide 2 if the two guides share a corner at x = y = 0 and the open portion of the
larger guide in the x-y plane is closed by a perfect conductor. Check the a1 = a2 limit.

19.8 A Vector-Potential Method

(a) Show that a general TM wave in a hollow-tube waveguide can be derived from a longitudinal vector
potential A(r, t) = ẑA(r⊥) exp(ihz − ωt) which satisfies the wave equation.

(b) Duality implies that a general TE wave can be derived from an “electric vector potential” Ã, where
ETE = ∇ × Ã. Explain why this makes perfectly good sense.

19.9 Waveguide Filters The figure below shows two circular conducting tubes in cross section. Each tube has
a thin metal screen inserted at one point along its length. One screen takes the form of metal wires bent
into concentric circles. The other takes the form of metal wires arranged like the spokes of a wheel. One of
these tubes transmits only a low-frequency TE waveguide mode down the tube. The other transmits only a
low-frequency TM waveguide mode down the tube. Explain which tube is which and why, using the fact
that the fields of a general waveguide satisfy ∇ × E⊥ = iωBzẑ.

(a) (b)

wires

19.10 Waveguide Mode Orthogonality

(a) Suppose that ∇2
⊥ψp = λpψp and ∇2

⊥ψq = λqψq in a two-dimensional domain A where either ψ |C = 0
or ∂ψ/∂n|C = 0 on the perimeter C of A. Use one of Green’s identities to show that∫

A

d 2r ψp(r⊥)ψq (r) = 0 (λp �= λq ).

(b) Let Ep(r, t) = Ep(x, y)ei(hpz−ωt) and Bp(r, t) = Bp(x, y)ei(hpz−ωt) be the fields associated with the pth
mode of a cylindrical waveguide with cross sectional area A. When p �= q and both modes are TE, use
the results of part (a) to show that non-degenerate modes satisfy∫

A

d 2r Ep · Eq = 0 =
∫
A

d 2r Bp · Bq .

(c) Repeat part (b) when both modes are TM.
(d) Repeat part (b) when one mode is TE and one mode is TM.

19.11 A Waveguide with a Bend A rectangular waveguide with a constant cross section and perfectly conducting
walls contains a curved section as sketched below. Also indicated is a local Cartesian coordinate system
where the z-axis and y-axis remain tangent and normal to the walls, respectively.
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x

z

y

x

y

z

a

(a) The scalar function � satisfies [∇2
⊥ + ω2/c2]�(y, z) = 0, where ∇2

⊥ = ∂2/∂x2 + ∂/∂y2. Show that
the four vacuum Maxwell equations and conducting wall-boundary conditions are satisfied by time-
harmonic transverse electric (TE) modes of the form

E = x̂ i
ω

c
� cB = −x̂ × ∇�.

(b) Suppose that the curvature κ(z) of the side wall at any point on the guide satisfies κa � 1 so the
Laplacian operator in the local coordinate Cartesian coordinate system is well approximated by

∇2 = ∂2

∂y2
+ ∂2

∂z2
+ 1

2
κ2(z).

Separate variables in the Helmholtz equation and show that propagating modes exist in the straight
portion of the guide (at least) when ω > πc/a.

(c) Show that at least one mode exists in the curved part of the guide for ω < πc/a. Describe the spatial
characteristics of this solution. Hint: Make an analogy with the one-dimensional, time-independent
Schrödinger equation.

19.12 TE and TM Modes of a Coaxial Waveguide An infinitely long coaxial waveguide is formed in the
vacuum volume between two concentric, perfectly conducting cylinders with radii b and a > b.

(a) Find E and B for the TE and TM modes of this guide and find (but do not try to solve) the transcendental
equations that determine the mode frequencies.

(b) Approximate expressions for the TE and TM mode frequencies can be found for the case when
a − b � ρ̄ = 1

2 (a + b). Replace the variable ρ by ρ̄ in appropriate places in the radial part of the
Helmholtz equation and redo the analysis of part (b), now including a determination of the mode
frequencies.

19.13 A Baffling Waveguide The figure below shows the circular cross section of an infinitely long metallic
waveguide with an infinitesimally thin, metallic baffle inserted into its otherwise hollow interior. The baffle
has infinite length and a width equal to the radius R of the waveguide.

(a) Show that the baffle increases the lowest cutoff frequency for TM modes.
(b) Show that the baffle decreases the lowest cutoff frequency for TE modes.

R

19.14 Waveguide Charge and Current

(a) Calculate the induced surface charge density σTM and the longitudinal surface current density KTM

associated with the propagation of a TM mode in a perfectly conducting waveguide with a uniform
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cross section. Show that KTM = vpσTMẑ where vp is the phase velocity of the wave propagating in the
z-direction.

(b) Calculate the induced surface charge density σTE and the surface current density KTE associated with
the propagation of a TE mode in a perfectly conducting waveguide with a uniform cross section. Show
that ẑ · KTE = vgσTE where vg is the group velocity of the wave.

(c) Show that in the TE case a surface current appears in the transverse (τ̂ = n̂ × ẑ) direction also.
(d) Show that the surface current and surface charge satisfy a “surface continuity equation” for both TE and

TM modes.

19.15 Cavity Modes as Harmonic Oscillators Prove the assertion made in the text that the total electromagnetic
energy of a lossless resonant cavity can be put in the form of the total mechanical energy of a collection of
undamped harmonic oscillators. Identify the electric and magnetic contributions explicitly. Assume that the
vector potential mode functions Aλ(r) are normalized in the cavity volume.

19.16 An Electromagnetic Oscillator An electromagnetic oscillator is formed when charge sloshes back and
forth between two identical, perfectly conducting spheres of radius R connected by a very thin, very long,
perfectly conducting rod of radius a � R and length l � R. The net charge of the entire structure is zero.
Assume that no charge accumulates on the connecting rod and that the currents that flow in the spheres are
negligible.

R 2a

(a) Estimate the capacitance of this system.
(b) Estimate the inductance of this system.

(c) Show that the resonant frequency of the oscillator is ω ≈ c√
Rl ln(l/a)

.

19.17 A Variational Principle

(1) (a) Show that the frequency of any mode (E,B) of a resonant cavity with volume V can be computed
from

ω2

c2
=

∫
V

d 3r |∇ × E|2∫
V

d 3r |E|2 =

∫
V

d 3r |∇ × B|2∫
V

d 3r |B|2 .

(b) Suppose E → E + δE or B → B + δB, where δE and δB satisfy the boundary conditions. Prove that
the change in ω2 is only second-order in δE or δB. This implies that any choice of E(r) or B(r) in these
formulae which satisfies the boundary conditions (but not the Maxwell equations) provides an upper
bound on the lowest mode frequency.

(c) Obtain an estimate of the lowest TM-mode frequency in a cylindrical cavity of radius R by minimizing
the frequency with respect to the variational parameter a in the choice B = (ρ + aρ2)φ̂. Compare your
answer with the exact result.

19.18 An Asymmetric Two-Dimensional Resonant Cavity The two-dimensional vectors km shown below are
inclined at angles θm = mπ/3 with respect to the positive x-axis. The vectors share a common magnitude
|km| = k.
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x

y

0k

1k2k

3k

4k
5k

Superpose the six waves with alternating amplitudes to form the scalar function

ψ(x, y, t) =
5∑

m=0

(−1)k sin(ki · r − ckt).

Draw the outline of a two-dimensional resonant cavity which supports a TM mode built from ψ(x, y, t).

19.19 The Ark of the Covenant Find the numerical value of the lowest resonant frequency ω0 and the exact
half-width " of the resonant cavity God instructed Moses to build in Exodus 25:10-11: “Make an ark of
acacia-wood: two cubits and a half shall be the length thereof, and a cubit and a half the breadth thereof,
and a cubit and a half the height thereof. And thou shalt overlay it with pure gold.”

19.20 Perturbation of a Cavity Resonator A small polarizable and magnetizable object inserted into a resonant
cavity produces a shift in each resonance frequency by an amount δω/ω. Derive an expression for this
frequency shift in terms of the time-harmonic dipole moments p(t) and m(t) induced in the object by the
relevant cavity mode and the values of the unperturbed mode fields E0 and B0 evaluated at the position
of the object. Do this using the Boltzmann-Ehrenfest adiabatic theorem, which states that any adiabatic
(quasistatic) change in the state of any oscillating system has no effect on the product of the oscillation
period T and the time-averaged total energy 〈UEM 〉. Hint: Look back at Section 6.7.3 and Section 13.7.3.

19.21 Resonant-Frequency Differences for a Cavity A perfectly conducting resonant cavity has the shape
of a rectangular box where the length, width, and height are chosen as three unequal irrational numbers.
Evaluate (at least) the first 105 resonant frequencies numerically, label them so that ω1 ≤ ω2 ≤ ω3 ≤ · · ·,
and construct a histogram of the nearest-neighbor frequency spacings of the form

P (s) =
N∑
k=1

δ(ωk+1 − ωk − s).

Show that your histogram is well approximated by a Poisson distribution. Hint: Be sure your histogram
takes account of all frequencies less than a fixed maximum ωmax (including degeneracies) and none greater
than ωmax.

19.22 The Panofsky-Wenzel Theorem A particle with charge q and velocity v = vẑ enters a perfectly conduct-
ing radio-frequency resonant cavity (length L) through a tiny entrance hole and then exits the cavity through
an equally tiny exit hole. If v is large, we can use the impulse approximation to compute the momentum
“kick” transverse to z.

(a) For a cavity with oscillation frequency ω, show that

�p⊥ = q

v

L∫
0

dz [E + v × B]⊥ = −i q
ω

L∫
0

dz∇⊥Ez.

Hint: A particle with velocity v = ż experiences a change in vector potential dA/dt = ∂A/∂t +
(v · ∇)A.

(b) The formula derived in part (a) gives �p⊥ = 0 for TE modes. Reconcile this with the fact that both TE
and TM modes produce Lorentz forces in the transverse direction.
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19.23 Forces on Resonant-Cavity Walls In connection with the law of conservation of linear momentum, we
showed that the electromagnetic force on a volume V can be written in the form

F =
∫
V

d 3r

[
∇ · T − 1

c2

∂S
∂t

]
.

Use this formula to find the time-averaged force on each of the six perfectly conducting walls of a resonant
cavity defined by 0 ≤ x ≤ a, 0 ≤ y ≤ a, and 0 ≤ z ≤ h, when it is excited in a mode where Ex = Ey =
Bz = 0 but

Ez = E0 sin
πx

a
sin

πy

a
exp(−iωt).

19.24 Graded Index Fiber

(a) Clearly state the conditions required for the electric field in a medium with a spatially varying index of
refraction to satisfy the equation

∇2E − n2(r)

c2

∂2E
∂t2

= 0.

(b) Let the index decrease radially away from a central axis according to n(ρ) = n0[1 − α2ρ2]. Ensure that
the foregoing applies and show that a solution E = E(ρ) exp[i(hz − ωt)]φ̂ exists where the electric field
decreases very rapidly away from the central axis. This is a technique used to produce wave guiding in
an optical fiber.

19.25 Interfacial Guided Waves A medium with index of refraction n1 occupies the half-space y < 0. The
half-space y > 0 is filled with a medium with index of refraction n2. A propagating electric field bound to
the y = 0 plane can have the form

E(r, t) =
{

E2 exp(−βy) exp[i(kx − ωt)] y > 0

E1 exp(αy) exp[i(kx − ωt)] y < 0.

(a) Find the field H(r, t) that accompanies E(r, t).
(b) Show that two types of solutions exist, one where E has only a z-component and one where E has no

z-component. For the latter, show that the polarization of the wave is elliptical.
(c) Show that the time-averaged Poynting vector points exclusively along the x-axis for both solutions.
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20 Retardation and Radiation

A portion of each of the outer [field] lines detaches itself as a
self-closed line which advances independently into space.

Heinrich Hertz (1889)
By permission of Palgrave Macmillan

20.1 Introduction

This chapter explores the electromagnetic fields produced by arbitrary but specified distributions of
charge and current. After many pages of special cases and approximations, we are finally ready to
solve the Maxwell equations in full generality:

∇ · E = ρ

ε0
∇ · B = 0 (20.1)

∇ × E = −∂B
∂t

∇ × B = μ0j + 1

c2

∂E
∂t

. (20.2)

The main conclusion is that fields produced by sources that are neither static nor quasistatic typically
exhibit both retardation and radiation. Retardation refers to the fact that E(r, t) and B(r, t) do not
reflect the behavior of the sources at the observation time t . Instead, they reflect the properties of
the sources at an earlier (retarded) time t − R/c, where R is the distance between the source and the
observer. Radiation is the name give to propagating fields that carry energy undiminished to points
infinitely far from their sources.

Our discussion begins with the inhomogeneous wave equation—the prototype equation satisfied
by the electromagnetic fields and many of the potentials of electromagnetism—which we solve using
a Green function method. The physics of retardation is emphasized and, as examples, we compute
the fields exactly everywhere for an infinite solenoid with a time-harmonic current and for a time-
dependent point electric dipole. We derive explicit formulae for the radiation fields as integrals over
the source densities and use a field line analysis to show how fields that are recognizably connected
to their sources “break free” and evolve into freely propagating waves. Larmor’s treatment of a
slowly moving accelerated charge and a linear dipole antenna are used to illustrate radiation and its
characteristics. A time-domain solution of the antenna problem provides insight complementary to
the usual Fourier frequency-domain analysis. We then turn to approximate calculations and derive
Cartesian and spherical multipole expansions for the radiation fields. The latter are most useful when
the source size is small compared to the wavelength of the emitted radiation. The chapter concludes
with the problem of plane wave refraction at a dielectric boundary analyzed from the point of view of
the radiation emitted by the dielectric.
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20.2 Inhomogeneous Wave Equations 715

20.2 Inhomogeneous Wave Equations

The potentials and fields of electromagnetism are connected to their sources by inhomogeneous wave
equations. For example, suppose we insert each curl equation in (20.2) into the curl of the other
equation in (20.2) and use the identity

∇ × ∇ × c = ∇(∇ · c) − ∇2c. (20.3)

Making use of (20.1) shows that the electric field and the magnetic field satisfy the (vector) inhomo-
geneous wave equations

∇2E − 1

c2

∂2E
∂t2

= 1

ε0
∇ρ + μ0

∂j
∂t

(20.4)

and

∇2B − 1

c2

∂2B
∂t2

= −μ0∇ × j. (20.5)

Equations (20.4) and (20.5) are more challenging to solve than their homogeneous counterparts.
Moreover, any solution we find is not guaranteed to satisfy the original Maxwell equations. A similar
state of affairs in Section 15.3 led us to define potential functions ϕ and A from

E = −∇ϕ − ∂A
∂t

and B = ∇ × A. (20.6)

Substituting (20.6) into (20.1) and (20.2) produced equations of motion for ϕ and A which we imme-
diately simplified by exploiting the gauge freedom of the potentials. For example, in Section 15.3.3,
the Lorenz gauge choice,

∇ · AL + 1

c2

∂ϕL

∂t
= 0, (20.7)

led to the evolution equations

∇2ϕL − 1

c2

∂2ϕL

∂t2
= −ρ/ε0 (20.8)

and

∇2AL − 1

c2

∂2AL

∂t2
= −μ0j. (20.9)

Equations (20.8) and (20.9) are inhomogeneous wave equations also, but with much simpler source
terms than (20.4) and (20.5). For that reason, the Lorenz gauge potentials are widely used to find the
fields produced by specified distributions of free charge and current.

Two other inhomogeneous wave equations are often used to calculate the fields produced by dynam-
ically polarized or magnetized matter. To derive them, we recall that a system with polarization P(r, t)
and magnetization M(r, t) behaves exactly like a system with charge and current densities

ρ = −∇ · P and j = ∂P
∂t

+ ∇ × M. (20.10)

Inserting (20.10) into (20.8) and (20.9) seems like a complication except that (20.7) is satisfied
automatically if we write1

ϕL = −∇ · π e and AL = 1

c2

∂π e

∂t
+ ∇ × πm. (20.11)

1 The similarity of (20.11) to (20.10) is not surprising in the light of the similarity of (20.7) to the continuity equation,
∇ · j + ∂ρ/∂t = 0.
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A glance back at Section 16.9 identifies π e(r, t) as the electric Hertz vector and πm(r, t) as the
magnetic Hertz vector.

The reason to introduce the Hertz vectors emerges when we substitute (20.11) into (20.8) and (20.9)
and do a bit of algebra using the fact that the Laplacian commutes with both the divergence and the
curl. The result is that the evolution equations for A and ϕ are both satisfied if π e and πm themselves
satisfy the inhomogeneous wave equations

∇2π e − 1

c2

∂2π e

∂t2
= − 1

ε0
P (20.12)

and

∇2πm − 1

c2

∂2πm

∂t2
= −μ0M. (20.13)

It is very advantageous for problem-solving that the polarization and magnetization appear on the
right-hand sides of (20.12) and (20.13).

The electromagnetic fields follow from (20.3), (20.6), (20.11), and (20.12) as

E = ∇ × ∇ × π e − ∇ × ∂πm

∂t
− P

ε0
and B = ∇ × ∇ × πm + ∇ × 1

c2

∂π e

∂t
. (20.14)

In practice, π e alone is sufficient to describe non-magnetic dielectric matter and πm alone is sufficient
to describe non-polarizable magnetic matter. As an example, we exploit (20.12) at the end of the
chapter (Section 20.9) to gain a new perspective on the problem of plane wave reflection/transmission
at a vacuum/dielectric interface.

Application 20.1 The Fields of a Point Charge in Uniform Motion I

Lorentz solved the inhomogeneous wave equations (20.8) and (20.9) directly to find the fields produced
by a point charge moving with constant velocity υ = υ ẑ (Figure 20.1). His calculation begins with the
source densities

ρ(r, t) = qδ(x)δ(y)δ(z − υt) and j(r, t) = υρ(r, t). (20.15)

A glance at (20.9) shows that the z-directed current density in (20.15) produces, at most, a z-directed
vector potential. In that case, the physical situation of uniform motion guarantees that ϕ and A can
only depend on the variable ξ = z − υt :

ϕ(x, y, z − υt) A(x, y, z − υt)ẑ. (20.16)

ˆt z

Rr

( , , )x y z

q

Figure 20.1: The vector υt ẑ points to a point charge moving with constant speed υ. The vector r points
to an observation point.

Setting β = υ/c and substituting ρ(r, t) from (20.15) into (20.8) gives

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ (1 − β2)

∂2ϕ

∂ξ 2
= − q

ε0
δ(x)δ(y)δ(ξ ). (20.17)
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20.2 Inhomogeneous Wave Equations 717

The definition γ 2 = 1/(1 − β2) and a change of variable to z′ = γ ξ = γ (z − υt) transform (20.17)
to Poisson’s equation,

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z′2 = −γ q

ε0
δ(x)δ(y)δ(z′). (20.18)

The solution to (20.18) is the familiar Coulomb potential. Therefore, in the original variables,

ϕ = 1

4πε0

γ q√
x2 + y2 + γ 2(z − υt)2

. (20.19)

A solution of the vector potential equation (20.9) is similarly

A = μ0

4π

γ qυ√
x2 + y2 + γ 2(z − υt)2

ẑ. (20.20)

Straightforward differentiation using (20.6) shows that

E(r, t) = γ q

4πε0

xx̂ + yŷ + (z − υt)ẑ
[x2 + y2 + γ 2(z − υt)2]3/2

. (20.21)

The physical meaning of this formula becomes clearer when we define a vector R which points from
the point charge position υt to the observation point position r = (x, y, z):

R = xx̂ + yy + (z − υt)ẑ. (20.22)

If R makes an angle θ with the direction of υ (see Figure 20.1),

sin2 θ = x2 + y2

x2 + y2 + (z − υt)2
. (20.23)

With this information, only a few lines of algebra are needed to confirm that

E(r, t) = q

4πε0

R̂
R2

1 − β2

(1 − β2 sin2 θ )3/2
. (20.24)

Equation (20.24) shows that a point charge in uniform motion drags an electric field along with it
that is Coulomb-like except that the field magnitude varies with observation angle and the speed of
the charge. When υ � c, the magnitude is isotropic as in the static case. When υ ∼ c, a polar plot of
the field magnitude shows that the field becomes very weak in the forward and backward directions
(with respect to the direction of motion) and very strong in the transverse directions. Figure 20.2 gives
a field line representation of this fact.

Figure 20.2: Electric field lines for a point charge in uniform motion with υ/c = 0.95.
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718 RETARDATION AND RADIATION: THE FIELDS PRODUCED BY RAPIDLY-VARYING SOURCES

The reader can confirm that the right members of (20.6) and (20.20) give the magnetic field of a
uniformly moving point charge as

B = υ

c2
× E. (20.25)

The magnetic field lines of (20.25) are concentric closed circles in planes perpendicular to the direction
of motion of the charge. When υ � c, the exact B(r, t) in (20.25) reduces to the Biot-Savart field
produced by the current density in (20.15). In that limit, (20.24) and (20.25) satisfy the Ampère-
Maxwell law, but not Faraday’s law.2 �

Example 20.1 An infinitely long solenoid with radius a is concentric with the z-axis and tightly
wound with n turns per unit length of wire which carries a current I (t) = I cos(ωt).

(a) Find A(r, t) outside the solenoid by matching solutions of the inhomogeneous wave equation
(20.9) inside and outside the solenoid at ρ = a. Assume outgoing waves at infinity.

(b) Find the exterior fields E and B and confirm the quasi-magnetostatic result of Application 14.4
of Section 14.6.1.

(c) Calculate the time-averaged rate at which energy passes through a unit length of an imaginary
cylinder that is concentric with the solenoid but has radius ρ � a.

(d) Compare the power computed in (c) with the time-averaged power per unit length supplied to
the solenoid to drive its current.

Solution:

(a) The effective surface current density of the solenoid is K(t) = nI cos(ωt)φ̂. This fact and
(20.9) tell us that A(r, t) = A(ρ, t)φ̂ in cylindrical coordinates. However, as discussed in
Section 1.2.7, we cannot simply write out the φ̂-component of the Laplacian in (20.9). Instead,
we must use (20.3) and the Coulomb gauge condition ∇ · A = 0 to write

∇ × ∇ × A + 1

c2

∂2A
∂t2

= μ0j.

With A(ρ, t) = A(ρ) exp(−iωt) and ω = ck, the φ̂-component of this equation for ρ �= a is

ρ
d

dρ

(
ρ
dA

dρ

)
+ (k2ρ2 − 1)A = 0.

This is one form of Bessel’s differential equation. The vector potential A must be finite at the
origin and have outgoing-wave character as ρ → ∞. Therefore, the Bessel function properties
collected in Appendix C tell us that

A(ρ) =
{
c1J1(kρ) ρ < a,

c2H
(1)
1 (kρ) ρ > a.

The matching conditions at ρ = a are n̂ · [A1 − A2] = 0 and n̂2 × [B1 − B2] = μ0K. Using
H

(1)
1 (x) = J1(x) + iN1(x), (d/dx)(xJ1) = xJ0, and (d/dx)(xN1) = xN0, these conditions

read

c1J1(ka) = c2H
(1)
1 (ka)

c1kJ0(ka) − c2kH
(1)
0 (ka) = μ0nI.

2 This is the quasi-electrostatic limit studied in Example 13.2.
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Solving for c2 and using the Bessel function Wronskian relation (C.27), we conclude that the
(real) vector potential outside the solenoid is

A(ρ ≥ a, t) = 1
2μ0nIπaJ1(ka) [J1(kρ) sinωt −N1(kρ) cosωt] φ̂.

(b) By direct computation, the fields E = −∂A/∂t and B = ∇ × A outside the solenoid are

E(ρ ≥ a, t) = − 1
2μ0nIπaωJ1(ka) [N1(kρ) sinωt + J1(kρ) cosωt] φ̂

B(ρ > a, t) = 1
2μ0nIπaωJ1(ka) [J0(kρ) sinωt −N0(kρ) cosωt] ẑ.

The low-frequency limit is ka � 1 and kρ � 1. When x � 1, the Bessel functions satisfy
J0(x) ≈ 1, N0(x) ≈ (2/π ) ln(x), and J1(x) ≈ x/2. Therefore,

B(ρ > a, t) ≈ μ0nIπω
2a2

4c2

[
sinωt − 2

π
ln(ωρ/c) cosωt

]
ẑ.

This agrees with the calculation in Application 14.4 for the first correction to the quasi-
magnetostatic limit due to the displacement current.

(c) The rate of energy flow through a large cylindrical surface concentric with the solenoid requires
a calculation of the Poynting vector whenρ � a. For this purpose, we quote (from Appendix C)
two Bessel function formulae which are valid when x � 1:

Jm(x) −→
√

2

πx
cos

(
x − mπ

2
− π

4

)
Nm(x) −→

√
2

πx
sin

(
x − mπ

2
− π

4

)
.

A straightforward evaluation gives

S(ρ � a, t) = lim
ρ→∞

1

μ0
E × B = 1

2μ0n
2I 2πa2ωJ 2

1 (ka)
sin2(kρ − ωt − π/4)

ρ
ρ̂.

Therefore, the time-averaged power per unit length which flows through the walls of the
imaginary cylinder is

〈P 〉 = 〈S〉 · 2πρρ̂ = 1
2μ0n

2I 2π2a2ωJ 2
1 (ka).

Section 20.5.1 will use the word radiation to characterize the asymptotic (ρ → ∞) fields
which produce this result.

(d) The time-averaged power which maintains the current in the solenoid is the negative of the rate
at which work is done by the electric field on the current density which flows on the solenoid’s
surface. Using the electric field computed above, this power for a unit length of solenoid is

〈P〉 = −n〈I (t)
∮

ds · E(a, t)〉 = 1
2μ0n

2I 2π2a2ωJ 2
1 (ka).

The fact that 〈P 〉 = 〈P〉 reflects conservation of energy for an ideal solenoid with no ohmic
resistance.

20.3 Retardation

The finite propagation speed of electromagnetic waves guarantees that changes in the behavior of a
source cannot be detected instantaneously by a distant (or even a nearby) observer. This phenomenon,
called retardation, connects electromagnetic fields in a fundamental way to the time-varying distri-
butions of charge and current that produce them. Mathematically, retardation emerges in a natural
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way when we solve any of the inhomogeneous wave equations derived in the previous section.3

Accordingly, we focus on the following generic version:[
∇2 − 1

c2

∂2

∂t2

]
ψ(r, t) = −f (r, t). (20.26)

The static limit of this equation is the Poisson equation studied in Chapter 8 using a Green function
method. In this section, we use a time-dependent generalization of the Green function method to find
solutions of (20.26). Section 20.3.3 deals explicitly with the case of sources that vary harmonically in
time.

20.3.1 General Solution of the Inhomogeneous Wave Equation
The most general solution of the inhomogeneous wave equation (20.26) is constructed by manipulating
the equation of motion for its Green function, G(r, t | r′, t ′). By definition, the Green function is the
wave produced at (r, t) by a unit-strength point source which acts only at (r′, t ′). Hence, the equation
in question is simply a special case of (20.26) itself:[

∇2 − 1

c2

∂2

∂t2

]
G(r, t | r′, t ′) = −δ(r − r′)δ(t − t ′). (20.27)

We begin by multiplying (20.27) by ψ(r′, t ′)d 3r ′dt ′, replacing the derivatives by their primed coun-
terparts,4 and integrating the result over a volume V and from an initial time t1 to a final time t2. This
gives

ψ(r, t) = 1

c2

t2∫
t1

dt ′
∫
V

d 3r ′ψ(r′, t ′)
∂2

∂t
′2G(r, t |r′, t ′) −

t2∫
t1

dt ′
∫
V

d 3r ′ψ(r′, t ′)∇′2G(r, t |r′, t ′).

(20.28)
The first term on the right side of (20.28) can be rewritten using

t2∫
t1

dt ′ψ
∂2G

∂t
′2 =

t2∫
t1

dt ′G
∂2ψ

∂t
′2 +

[
ψ
∂G

∂t ′
−G

∂ψ

∂t ′

]t2
t1

. (20.29)

The first term on the right side of (20.29) can also be rewritten, this time using (20.26) written in
primed variables. The last step is to exploit Green’s second identity in the form∫ t2

t1

dt ′
∫
V

d 3r ′
(
G ∇′2ψ − ψ ∇′2G

)
=
∫ t2

t1

dt ′
∫
S

dS′ · (G∇′ψ − ψ ∇′G
)
. (20.30)

The final result is

ψ(r, t) =
∫ t2

t1

dt ′
∫
V

d 3r ′ G(r, t |r′, t ′)f (r′, t ′)

+
∫ t2

t1

dt ′
∫
S

dS′ · [G(r, t |r′, t ′)∇′ψ(r′, t ′) − ψ(r′, t ′)∇′G(r, t |r′, t ′)
]

+ 1

c2

∫
V

d 3r ′ [∂t ′G(r, t |r′, t ′)ψ(r′, t ′) −G(r, t |r′, t ′)∂t ′ψ(r′, t ′)
] ∣∣∣t ′=t2

t ′=t1
. (20.31)

3 The mathematical signature of retardation derived in this section is not manifest in the solution of the inhomogeneous
wave equation found in Application 20.1. See Application 23.1 of Section 23.2.4.

4 The correctness of this step follows directly from (20.26).
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This integral equation for ψ(r, t) is recognizably a generalization of the integral equation for ϕ(r)
generated in Section 8.4 when we applied the Green function method to Poisson’s equation. The first
line of (20.31) is a superposition integral. The “observer” function ψ(r, t) is synthesized by summing
up the response of the wave equation to unit perturbations at different times and places weighted by
the “source” function f (r′, t ′). The second line in (20.31) is a boundary term in the spatial variables.
Subject to later confirmation, we assume that this term vanishes for the situation of immediate interest:
a spatially localized source function in infinite space. The third line in (20.31) is a boundary term in
the time variable.

We expect to specify ψ and ∂tψ (at one time) because (20.26) is second-order in time. But the
third line of (20.31) demands knowledge of these functions at two times. A similar situation occurs
in the second line of (20.31) where knowledge is required of both ψ and ∇ψ on the boundary S. We
resolved exactly the same issue in electrostatics by a suitable choice of spatial boundary conditions
(Dirichlet or Neumann) for the Poisson Green function. Here, where we have assumed that the spatial
boundary term is absent, (20.31) becomes a useful formula when we make a suitable choice of temporal
“boundary conditions” for the Green function (20.27).

To see how this happens, the right side of (20.27) motivates us to seek a solution of the form

G(r, t |r′, t ′) = G(r − r′, t − t ′). (20.32)

With the understanding that the true time and location of the perturbation can be re-inserted later, we
put r′ = t ′ = 0 and study [

∇2 − 1

c2

∂2

∂t2

]
G(r, t) = −δ(r)δ(t). (20.33)

The delta function in (20.33) occurs at the origin of an otherwise spherically symmetric space. This
implies that G(r, t) = G(r, t) and

∇2G = 1

r2

∂

∂r

(
r2 ∂G

∂r

)
= 2

r

∂G

∂r
+ ∂2G

∂r2
. (20.34)

Using (20.34), (20.33) can be written in the form

1

r

{
∂2

∂r2
− 1

c2

∂2

∂t2

}
rG = −δ(r)δ(t). (20.35)

The operator in curly brackets in (20.35) can be factored. Therefore, away from the origin,

1

r

{
∂

∂r
− 1

c

∂

∂t

}{
∂

∂r
+ 1

c

∂

∂t

}
rG = 0 (r > 0). (20.36)

This equation has two independent solutions:

G±(r, t) = 1

r
g±(t ± r/c), (20.37)

where g+(s) and g−(s) are arbitrary functions of one scalar variable.
Now apply the bracketed operator on the left-hand side of (20.33) to (20.37). Using (20.34),

∇2
(g
r

)
= ∇ ·

{
1

r
∇g + g∇

(
1

r

)}
, (20.38)

and ∇2(1/r) = −4πδ(r), the chain rule leads finally to[
∇2 − 1

c2

∂2

∂t2

]
G±(r, t) = −4πδ(r)g±. (20.39)
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Comparing (20.39) with (20.33) shows that g±(s) = δ(s)/4π . We conclude that two independent,
particular solutions to (20.33) are

G±(r, t) = 1

4πr
δ(t ± r/c). (20.40)

The corresponding solutions to (20.27) follow by putting r → r − r′ and t → t − t ′:

G±(r, t |r′, t ′) = 1

4π |r − r′|δ(t − t ′ ± |r − r′|/c). (20.41)

20.3.2 Advanced and Retarded Waves
The Green functions derived in the preceding section transform (20.31) from an integral equation for
ψ(r, t) into an explicit solution of the inhomogeneous wave equation. To see this, we first write (20.31)
omitting the surface integrals we expect to vanish:

ψ(r, t) =
∫ t2

t1

dt ′
∫
V

d 3r ′ G(r, t |r′, t ′)f (r′, t ′)

+ 1

c2

∫
V

d 3r ′ [∂t ′G(r, t |r′, t ′)ψ(r′, t ′) −G(r, t |r′, t ′)∂t ′ψ(r′, t ′)
] ∣∣∣t ′=t2

t ′=t1
. (20.42)

The temporal behaviors of G+ and G− in (20.41) are the keys to simplifying (20.42). Because
R = |r − r′| ≥ 0 and t1 ≤ t < t2, G+ is non-zero only at the t2 boundary [G+(t − t ′ > 0) = 0] and
G− is non-zero only at the t1 boundary [G−(t − t ′ < 0) = 0]. Therefore, substituting (20.41) into
(20.42) and performing the delta function integration over t ′ in the first term gives two equally good
particular solutions of the inhomogeneous wave equation.

The retarded solution makes use ofG− and defines the functionψin(r, t) as the integral in the second
line of (20.42) evaluated at t ′ = t1:

ψret(r, t) = ψin(r, t) + 1

4π

∫
V

d 3r ′ f (r′, t − |r − r′|/c)

|r − r′| . (20.43)

The retarded observer in (20.43) feels the influence of a source f (r′, t ′) which is a distanceR = |r − r′|
away only if the source acted at an earlier or retarded time t ′ = t − R/c. The time delay reflects the
finite propagation speed c of the signal and accords with our intuitive notion that cause precedes
effect. Physically, ψin(r, t) is an “incoming wave” solution of the homogeneous wave equation which
describes the physical situation at the initial time t = t1 before the integral in (20.43) begins to
contribute.

The advanced solution makes use of G+ and defines the function ψout(r, t) as the integral in the
second line of (20.42) evaluated at t ′ = t2:

ψadv(r, t) = ψout(r, t) + 1

4π

∫
V

d 3r ′ f (r′, t + |r − r′|/c)

|r − r′| . (20.44)

The advanced observer in (20.44) feels the influence of a source f (r′, t ′) which is a distance R =
|r − r′| away only if the source acted at a later or advanced time t ′ = t + R/c. That is, the behavior
the source at future times determines the response of the observer at the present time. ψout(r, t) is an
“outgoing wave” solution of the homogeneous wave equation which describes the physical situation
at the final time t = t2 after the integral in (20.44) no longercontributes.
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20.3 Retardation 723

There is no compelling mathematical reason to choose between the retarded solution and the
advanced solution.5 However, when the volume V → ∞ in (20.42), it is not physically possible to
specify the final state conditions required by the advanced solution. For that reason, the retarded
solution (20.43) is invariably used to study the fields produced by spatially localized sources in
otherwise empty space. Moreover, ψin = 0 when we specify initial conditions for the source function
f (r, t). Since it is typical to let f be zero until t = t1, the finite propagation speed of the signal
guarantees that ψret(r, t) = 0 is zero on the infinitely distant boundary surface S in (20.31) at any finite
time. This justifies our neglect of the surface integrals when passing from (20.31) to (20.42). Our final
conclusion is that the practically important solution of the inhomogeneous wave equation (20.26) is

ψ(r, t) =
∫

d 3r ′G−(r − r′, t − t ′)f (r′, t ′) = 1

4π

∫
d 3r ′ f (r′, t − |r − r′|/c)

|r − r′| . (20.45)

Ritz vs. Einstein

The non-causal nature of the advanced potential sparked a lively exchange between Albert Einstein
and the Swiss physicist Walther Ritz. They debated whether, as a matter of physical principle, the
retarded potential alone must be used to discuss electromagnetic phenomena. Ritz argued that the
retarded potential is chosen by Nature to distinguish the past from the future and that this choice
underlies the second law of thermodynamics. Einstein asserted that the advanced and retarded
potentials are equally valid for use in any finite volume of space and that the origin of the second
law should be sought in the laws of probability. The two young theorists agreed to disagree in a
one-paragraph paper. Two months after the paper was published, Ritz died of tuberculosis at the
age of 31. History has borne out Einstein’s point of view.

20.3.3 Retarded Waves from Time-Harmonic Sources
Direct substitution of f (r, t) = f (r|ω) exp(−iωt) into the far right side of (20.45) gives the retarded
solution of the inhomogeneous wave equation for the important special case of a time-harmonic source:

ψ(r, t) =
∫

d 3r ′ exp(iω|r − r′|/c)

4π |r − r′| f (r′, t). (20.46)

However, the physical meaning of this retarded solution is not immediately obvious for oscillating
sources which, by construction, do not turn on or turn off at any particular moment. To gain some
insight, we substitute ψ(r, t) = ψ(r|ω) exp(−iωt) into the inhomogeneous wave equation (20.26).
With ω = ck, the result is an inhomogeneous version of the Helmholtz equation:[∇2 + k2

]
ψ(r|ω) = −f (r|ω). (20.47)

Direct substitution confirms that a particular solution of this equation is

ψ(r|ω) =
∫

d 3r ′ G(r, r′ |ω)f (r′ |ω), (20.48)

where G(r, r′ |ω) is the Green function for the Helmholtz equation:[∇2 + k2
]
G(r, r′ |ω) = −δ(r − r′). (20.49)

A quick way to solve (20.49) recognizes that

G(r, t) = 1

2π

∫ ∞

−∞
dωG(r|ω) exp(−iωt) and δ(t) = 1

2π

∫ ∞

−∞
dω exp(−iωt) (20.50)

5 See Sources, References, and Additional Reading.
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transform (20.33) into (20.49) with r′ = 0. Therefore, the Green function we seek is the inverse Fourier
transform of (20.40):

G±(r|ω) =
∞∫

−∞
dt G±(r, t) exp(iωt) = 1

4πr

∞∫
−∞

dt δ(t ± r/c) exp(iωt) = exp(∓ikr)

4πr
. (20.51)

Back in the time domain,

G±(r, t) = G±(r|ω) exp(−iωt) = exp(∓ikr − iωt)

4πr
. (20.52)

Equation (20.52) provides the desired physical interpretation. The retarded solution is a spherical
wave which propagates outward from the origin to infinity. The advanced solution is a spherical
wave which propagates inward toward the origin from infinity. To be consistent with (20.45), we
substitute the outgoing wave Green function G−(r|ω) into (20.48) to get the retarded solution of the
inhomogeneous Helmholtz equation:

ψ(r|ω) =
∫

d 3r ′ exp(ik|r − r′|)
4π |r − r′| f (r′ |ω). (20.53)

This reproduces (20.46), as advertised. From a boundary-condition point of view, our choice of the
outgoing wave solution to (20.49) is consistent with imposing the Sommerfeld radiation condition,

lim
r→∞ r

(
∂

∂r
− ik

)
G = 0. (20.54)

The retarded Green function for the Helmholtz equation derived in this section plays an important
role in the theory of scattering and diffraction (Chapter 21). In that context, we will refer to G−(r|ω)
as the free-space Green function in three dimensions and use the notation:

G0(r, r′) = exp(ik|r − r′|)
4π |r − r′| . (20.55)

The corresponding free space Green function in two dimensions is relevant for scattering from slits,
wires, and long sharp edges. We leave it as an exercise for the reader to show that the outgoing wave
solution to (20.49) in two-dimensional plane polar coordinates is

G0(ρ, ρ ′) = i

4
H

(1)
0 (k|ρ − ρ ′|), (20.56)

where H (1)
0 (x) is the Hankel function of the first kind defined in Appendix C.3.

20.3.4 Retarded Potentials and Fields
The electric field, E(r, t), and the magnetic field, B(r, t), are retarded functions of the time-dependent
charge density and current density which produce them. This conclusion follows immediately when
we apply (20.45) to the Cartesian components of (20.4) and (20.5). However, because the explicit
formulae so obtained are rather awkward (see Application 20.2 below), most practitioners begin with
the retarded potentials. These are the particular solutions obtained when we apply (20.45) to a scalar,
vector, or Hertz potential function which satisfies the inhomogeneous wave equation.

Consider first the Lorenz gauge potentials which satisfy (20.8) and (20.9). The corresponding
retarded potentials are

ϕL(r, t) = 1

4πε0

∫
d 3r ′ ρ(r′, t − |r − r′|/c)

|r − r′| (20.57)
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20.3 Retardation 725

and

AL(r, t) = μ0

4π

∫
d 3r ′ j(r′, t − |r − r′|/c)

|r − r′| . (20.58)

When the sources vary in time as exp(−iωt), we use (20.46) in place of (20.45) and the space parts of
the time-harmonic electrodynamic potentials are

ϕ(r|ω) =
∫

d 3r ′ exp(iω|r − r′|/c)

4π |r − r′| ρ(r′ |ω) (20.59)

and

A(r|ω) =
∫

d 3r ′ exp(iω|r − r′|/c)

4π |r − r′| j(r′ |ω). (20.60)

We showed in (20.11) that the Hertz vectors are potential functions for the usual scalar and vector
potentials. The retarded Hertz potentials which satisfy the inhomogeneous wave equations (20.12) and
(20.13) are

π e(r, t) = 1

4πε0

∫
d 3r ′ P(r′, t − |r − r′|/c)

|r − r′| (20.61)

and

πm(r, t) = μ0

4π

∫
d 3r ′ M(r′, t − |r − r′|/c)

|r − r′| . (20.62)

Given the meaning of retardation, it is common to say that the Lorenz and Hertz potentials “propagate
at the speed of light”.

It is worth noting that not all potentials are retarded. In the Coulomb gauge, the vector potential
satisfies the inhomogeneous wave equation (15.17) and thus AC(r, t) has a retarded representation.
However, the Coulomb gauge scalar potential ϕC(r, t) satisfies the Poisson equation, for which the
relevant particular solution is the usual Coulomb integral.6 The latter connects the scalar potential
at time t to the charge density at time t . There is no retardation for this quantity, nor need there
be, because the potential functions of electromagnetism are not observables. The observables are the
fields, B = ∇ × AC and E = −∇ϕC − ∂AC/∂t , which the reader can confirm (by direct calculation)
are properly retarded.

Example 20.2 Beginning at t = 0, a time-dependent but spatially uniform surface current density
K(t) flows everywhere in the x-y plane. Show that this current generates transverse electromagnetic
waves which propagate away from the plane.

K

z
r

P

Figure 20.3: The point P lies a perpendicular distance z from a current density K(t) that occupies the entire
x-y plane.

6 See (15.18) of Section 15.3.2.
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Solution: There is no charge and thus no scalar potential for this problem. Since K(t) = 0 for
t < 0, we use the Heaviside step function and write the Lorenz gauge vector potential as

A(r, t) = μ0

4π

2π∫
0

dφ

∞∫
0

dρρ
K(t − r/c)�(t − r/c)

r
.

From Figure 20.3, ρ2 = r2 − z2 so ρdρ = rdr and

A(r, t) = μ0

2

ct∫
|z|

drK(t − r/c)�(t − r/c) = μ0c

2

t−|z|/c∫
0

dsK(s)�(s).

The electric field is

E(z, t) = −∂A
∂t

= −μ0c

2
K(t − |z|/c)�(t − |z|/c).

The associated magnetic field is

B(z, t) = ∇ × A = −(∂Ay/∂z)x̂ + (∂Ax/∂z)ŷ,

or

B(z, t) = sgn(z)
μ0

2

[
x̂Ky(t − |z|/c) − ŷKx(t − |z|/c)

]
�(t − |z|/c).

Because E lies in the x-y plane, we see that

cB(|z| − ct) = sgn(z)ẑ × E(|z| − ct).

Therefore, the current sheet generates one-dimensional, transverse electromagnetic waves which
propagate away from the x-y plane in the ±z-direction.

Application 20.2 Schott’s Formulae

The retarded Lorenz potentials lead straightforwardly to retarded expressions for the electric and
magnetic fields. To derive them, let R = r − r′ and tret = t − R/c, and introduce the notation

f (r′, tret) = fret(r′). (20.63)

The first step is to insert (20.57) and (20.58) into (20.6). This gives

E(r, t) = − 1

4πε0
∇
∫

d 3r ′ ρret(r′)
R

− μ0

4π

∂

∂t

∫
d 3r ′ j ret(r′)

R
(20.64)

and

B(r, t) = μ0

4π
∇ ×

∫
d 3r ′ j ret(r′)

R
. (20.65)

The derivatives in (20.64) and (20.65) require some care because both r and r′ appear in the retarded
time, tret = t − |r − r′|. This means that space derivatives of retarded-time functions are not the same
as space derivatives of present-time functions. On the other hand, derivatives with respect to t are the
same as derivatives with respect to tret. Therefore, because ∇tret = −R̂/c,

∇
[
ρ(r′, tret)

R

]
= ρret∇ 1

R
+ 1

R

∂ρret

∂tret
∇tret = −ρretR

R3
− R
cR2

∂ρret

∂t
. (20.66)
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20.4 The Time-Dependent Electric Dipole 727

Similarly,

∇ ×
[

j(r′, tret)

R

]
= −jret × ∇ 1

R
+ 1

R
∇ × jret = jret × R

R3
+ 1

R
∇tret × ∂jret

∂tret
. (20.67)

Using these results to evaluate (20.64) and (20.65) produces Schott’s formulae:7

E(r, t) = 1

4πε0

∫
d 3r ′

{
ρretR
R3

+ R
cR2

∂ρret

∂t
− 1

c2R

∂jret

∂t

}
(20.68)

and

B(r, t) = μ0

4π

∫
d 3r ′

{
jret

R3
+ 1

cR2

∂jret

∂t

}
× R. (20.69)

The “ret” subscript everywhere makes it clear that electromagnetic communication between any two
points separated by a distance R requires an elapsed time of at least R/c.

We reiterate that the retardation of E(r, t) and B(r, t) with respect to their sources is a consequence
of (20.4) and (20.5), and does not depend on the fact that we used the retarded Lorenz gauge potentials
to derive (20.68) and (20.69). As noted earlier, the partially retarded Coulomb gauge potentials lead
to exactly the same result. This is a consequence of the gauge invariance of electromagnetism. �

20.4 The Time-Dependent Electric Dipole

A point electric dipole with moment p(t) is a time-varying source where the fields can be calculated
exactly and analyzed in detail. If the dipole sits at the origin, (4.14) specifies its charge density
as

ρ(r, t) = −p(t) · ∇δ(r) = −∇ · [p(t)δ(r)]. (20.70)

The continuity equation fixes the associated current density:

j(r, t) = ṗ(t)δ(r). (20.71)

This is all the information we need to calculate the fields using the Schott formulae (Application 20.2).
However, because the dipole potentials will be useful later for other purposes, we calculate them here
as an intermediate step on the way to the fields.

The current density (20.71) determines the vector potential (20.58) as

A(r, t) = μ0

4π

∫
d 3r ′ ṗ(t − |r − r′|/c)

|r − r′| δ(r′) = μ0

4π

ṗ(t − r/c)

r
. (20.72)

We calculate the scalar potential using (20.57) and (20.70). An alternative is to use (20.72) and integrate
the Lorenz gauge condition. Either way,

ϕ(r, t) = 1

4πε0

[
ṗ(t − r/c) · r

cr2
+ p(t − r/c) · r

r3

]
. (20.73)

7 G.A. Schott (1912) derived (20.68) and (20.69) in the Fourier frequency domain. Contemporary authors often cite
Jefimenko (1966) for the time-domain formulae derived here. See Sources, References, and Additional Reading.
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Given (20.72) and (20.73), the electric and magnetic fields follow straightforwardly from (20.6).
We restrict ourselves to r > 0 and use fret ≡ f (t − r/c) as in Application 20.2 so8

B(r, t) = −μ0

4π
r̂ ×

{
ṗret

r2
+ p̈ret

cr

}
(20.74)

E(r, t) = 1

4πε0

{
3r̂(r̂ · pret) − pret

r3
+ 3r̂(r̂ · ṗret) − ṗret

cr2
+ r̂(r̂ · p̈ret) − p̈ret

c2r

}
. (20.75)

A striking feature of these formulae is the coexistence of various terms with different algebraic
dependence on the radial distance r from the source. If τ is a characteristic time for the variation of
the source, the electric field formula suggests a convenient way to partition space:

r � cτ near zone,
r ∼ cτ intermediate zone,
r � cτ far zone.

(20.76)

The near zone is dominated by the first term in the curly brackets of both (20.74) and (20.75).
The 1/r3 electric field has the structure of an electrostatic dipole field. The 1/r2 magnetic field takes
account of Maxwell’s displacement current but not Faraday’s law. In other words, these are quasi-
electrostatic (see Section 14.5) Coulomb and Biot-Savart fields calculated using the source densities
(20.70) and (20.71) evaluated at the retarded time rather than the present time.

No single term dominates either the magnetic field or the electric field in the intermediate zone. The
1/r2 term in the latter is often called the “induction” electric field because it derives from the first term
in (20.74) using Faraday’s law. The dependence of this field on the time derivative ṗ(t) shows that it
arises from the velocity of the elementary charges that constitute the dipole.

The far zone is dominated by the 1/r terms in (20.74) and (20.75). These are distinguished
by their dependence on p̈(t), the second time derivative, showing that these fields owe their exis-
tence to the acceleration of the charges in the dipole. We will see in the next section that the 1/r
behavior of the fields is characteristic of radiation. As a preview, let us calculate the rate at which
energy passes through a spherical surface of radius R centered on the dipole. From Section 15.4.1,
this is the integral over the surface of the radial component of the Poynting vector S = E × B/μ0. If
the direction of p is fixed in space, the reader can confirm that

dU

dt
= 2

3

1

4πε0

[
d

dt

{
p2

2R3
+ pṗ

cR2
+ ṗ2

c2R

}
ret

+ p̈2
ret

c3

]
. (20.77)

The near field and the intermediate field contribute exclusively to the curly brackets in (20.77). The total
derivative which acts on the curly brackets implies that the time integral of this contribution to dU/dt
vanishes if p(t) is time-harmonic and we integrate over one period. The same is true if p(t) turns on and
off and we integrate from slightly before turn-on to slightly after turn-off. A consistent interpretation
is that energy flows back and forth across any spherical surface in the near and intermediate zones for
these choices for p(t). The last term in (20.77) is strictly positive and comes exclusively from the 1/r
fields produced by the dipole. It is the only contribution to the rate of energy flow that remains finite
as R → ∞. This shows that the “acceleration” or “radiation” fields in (20.74) and (20.75), acting
together, have the unique ability to carry energy undiminished all the way to infinity.

An alternative to the scalar/vector potential method used above recognizes that a point electric
dipole at the origin is equivalent to a polarization P(r, t) = p(t)δ(r). There is no magnetization, so the
retarded Hertz potential (20.61) substituted into (20.14)) gives

B(r, t) = ∇ × μ0

4π

ṗret

r
and E(r, t) = ∇ × ∇ × 1

4πε0

pret

r
(r > 0). (20.78)

8 Our notation is ṗret ≡ (d/dt)p(t − r/c).
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The magnetic field in (20.78) is recognizably the same as (20.74). Less obviously, the electric field
in (20.78) is a very compact way to write (20.75). The Hertz potential method also reveals the dual
symmetry (Section 15.2.2) between the fields of a point electric dipole and a point magnetic dipole.
To see this, we note that a point magnetic dipole at the origin with moment m(t) is equivalent to a
magnetization M(r, t) = m(t)δ(r). There is no polarization in this case, so (20.62) substituted into
(20.14) gives

E(r, t) = −∇ × μ0

4π

ṁret

r
and B(r, t) = ∇ × ∇ × μ0

4π

mret

r
(r > 0). (20.79)

The key observation is that (20.78) transforms into (20.79) when we let p → m/c and make the
duality transformations E → cB and B → −E/c. The same operations applied to (20.74) and (20.75),
respectively, give explicit and detailed formulae for the electric and magnetic fields of a point magnetic
dipole.

Example 20.3 Figure 20.4 shows N � 1 point electric dipoles arranged head-to-tail to form a ring
of radius a. If R = r − r′ and d� is an element of arc length at r′, prove that the scalar potential of
the ring vanishes and that a function I (t) parameterizes the vector potential of the ring in the form

A(r, t) = μ0

4π

∮
d�

I (t − R/c)

R
.

Comment on the physical connection between I (t) and the moment p(t) of each electric dipole.

z

a

x

θ r

R
y

dr′=dR

r′φ

Figure 20.4: A ring formed from N point electric dipoles arranged head-to-tail.

Solution: Let ϕd (r, t) be the point dipole scalar potential (20.73). By superposition, the scalar
potential of the ring is

ϕ(r, t) = N

2πa

∮
d� ϕd (R, t).

Now, p(t) = p(t)φ̂ for each dipole and dR = d� = d�φ̂. Therefore, if

ψ(R) = − 1

4πε0

p(t − R/c)

R
,

a brief calculation confirms that dR · ∇Rψ = d� ϕd . Consequently,

ϕ(r, t) = N

2πa

∮
dR · ∇ψ = 0.

The scalar potential vanishes because the charge density of each dipole is canceled by the charge
density of the dipoles that immediately precede and follow it.
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Let Ad (r, t) be the point dipole vector potential (20.72). Because p(t) and d� both point in the
φ̂ direction, superposition and the choice

I (t) = N

2πa

dp

dt

produce a vector potential with the suggested form,

A(r, t) = N

2πa

∮
d�Ad (R, t) = μ0

4π

∮
d�

I (t − R/c)

R
.

Dimensional analysis shows that I (t) is an electric current. To get the precise form, note that
V = 2πaS is the volume of a circular toroid with cross sectional area S → 0 which closely
encloses the ring. This volume has uniform polarization P = Np/V and I (t) = jP(t)S is the
current associated with the polarization current density jP = dP/dt (see Section 14.2.2).

20.5 Radiation

Radiation is the name given to electromagnetic fields that transport energy undiminished from their
sources to observation points infinitely far away. For physically realizable sources of finite spatial
extent, this occurs only if the radiation fields somehow “detach” from their sources and propagate
to infinity as electromagnetic waves. In Section 16.1, detached waves of this kind were called free
fields. In this section, we define radiation fields precisely and use an oscillating point electric dipole to
illustrate the process of radiation field detachment. We derive expressions for the angular distribution
of radiated power (in both the time and frequency domains) and derive Larmor’s formula for the total
power radiated by a slowly moving but accelerating point charge.

20.5.1 The Definition of Radiation
By definition, a compact source radiates into a differential element of solid angle d� if r lies on the
spherical surface element r2d� and the Poynting vector S = E × B/μ0 gives a non-zero value for

dP (t) = lim
r→∞ r̂ · S(r, t)r2d�. (20.80)

This definition implies that S ∝ r̂/r2 as r → ∞. The corresponding radiation electric and magnetic
fields, Erad(r, t) and Brad(r, t) must each vary as 1/r in the same limit. Therefore, (20.80) predicts an
angular distribution of radiated power given by

dP

d�
= r2r̂ · (Erad × Brad)/μ0. (20.81)

The total power radiated to infinity, P (t), is the integral of (20.80) over all angles. In other words, P (t)
is the flux of the Poynting vector through a spherical surface A at infinity:

P (t) = lim
r→∞

∫
A

dA · S. (20.82)

An alternative to (20.82) follows from Poynting’s theorem (Section 15.4.1),∫
A

dA · S +
∫
V

d 3r j · E = −
∫
V

d 3r
∂

∂t

1

2
ε0
[
E · E + c2B · B

] = −dUEM

dt
. (20.83)
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Comparing (20.82) to (20.83) shows that

−
∫

d 3r j · E = P (t) + dUEM

dt
. (20.84)

Hence, the total radiated power P (t) can be calculated from the integral on the left side of
(20.84) if we agree to drop all total time derivative terms. The important special case when
j(r, t) = j(r|ω) exp(−iωt) simplifies matters because the quantity of interest is the power (20.82)
averaged over one period. Performing this time average on (20.84) eliminates the total time derivative.
Using the time-averaging theorem (Section 1.6.3), we conclude that the power radiated into the far
zone is equal to the power required to maintain the source current:

〈P 〉 = −1

2
Re

∫
V

d 3r j · E∗. (20.85)

In the literature, the term “induced EMF method” is often used in connection with (20.85).
Example 20.1 at the end of Section 20.2 demonstrated explicitly that (20.85) and the time average of

(20.82) give the same answer for the radiation produced by an infinitely long cylindrical solenoid with a
sinusoidally time-varying current. We note in passing that this two-dimensional current source requires
a slightly different definition of radiation. Part (c) of Example 20.1 showed that the asymptotic electric
and magnetic fields of the solenoid vary as 1/

√
ρ. These are two-dimensional cylindrical waves rather

than three-dimensional spherical waves and the associated Poynting vector varies as 1/ρ. Therefore,
the power radiated into an element of polar angle dφ is

dP

dφ
= ρρ̂ · (Erad × Brad)/μ0. (20.86)

The same remarks apply to the radiation produced by a long, straight wire which carries a time-varying
current.

20.5.2 The Birth of Radiation
In this section, we develop some intuition about the radiation process by using the fields of a time-
dependent electric dipole derived in Section 20.4 to study how radiation fields detach from their
sources and propagate to infinity as free electromagnetic waves. Our field line analysis follows the
original discussion given by Heinrich Hertz—the first person to purposefully produce and detect
electromagnetic waves in the laboratory—in his book Electric Waves (1893). From this point of view,
radiation is created by a topological process called field line reconnection.

Hertz’ analysis of the radiation process exploits an alternative form of the point dipole electric field
(20.75) obtained by substituting the vector potential (20.72) into the Ampère-Maxwell law,

1

c2

∂E
∂t

= ∇ × B = ∇(∇ · A) − ∇2A. (20.87)

For a z-oriented dipole, the result is

1

c2

∂E
∂t

= μ0

4π

[
∇ d

dz

ṗ

r
− ẑ∇2 ṗ

r

]
ret

. (20.88)

Integration over time and evaluation of the gradient and Laplacian in cylindrical coordinates gives

E = 1

4πε0

[
ρ̂
∂

∂z

∂

∂ρ

p

r
− ẑ

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

p

r

)]
ret

. (20.89)
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0.000 T 0.143 T 0.158 T

0.160 T 0.210 T 0.318 T

Figure 20.5: Electric field lines for a vertically oriented, time-harmonic point dipole located at the center of each
panel. The indicated times are fractions of the oscillation period T . Field direction arrows are omitted for clarity.

The definition

R(t) ≡ −ρ ∂

∂ρ

p(t − r/c)

r
(20.90)

puts (20.89) into the desired final form,

E = 1

4πε0ρ

[
dR

dρ
ẑ − dR

dz
ρ̂

]
. (20.91)

The virtue of (20.91) is that ∇R = (∂R/∂ρ)ρ̂ + (∂R/∂z)ẑ. This means that E · ∇R = 0 and the set
of curves R(ρ, z) = const. are everywhere tangent to electric field lines. Therefore, except for their
direction, we are at liberty to regard the level curves of R(ρ, z) as electric field lines.

Figure 20.5 shows a series of snapshots of the field lines associated with (20.91) when R(t) in
(20.90) is evaluating using the time-harmonic dipole moment

p(t − r/c) = p0 cos(kr − ωt + φ). (20.92)

We have chosen the phase φ in (20.92) so t = 0 for the panel in the upper left corner of the figure.
The field line pattern in this first panel is recognizably similar to a static dipole field (Figure 3.2). The
remaining panels indicate the time as a fraction of the period T = 2π/ω. A notable feature of the top
row of panels is that the field line loop closest to the dipole shrinks as time goes on. The other three
loops expand during the same time interval. These dynamical features may remind the reader of the
ebb and flow of electromagnetic energy in the near and intermediate zones of the dipole discussed in
the paragraph following (20.77).

The last two panels in the top row of Figure 20.5 show that the innermost of the three expanding
loops distorts and pinches inward. A closed loop of electric field line has formed by the time of the first
panel of the second row. Figure 20.6 gives an expanded (and schematic) view of how this occurs. The
pinching-in process terminates when the field lines intersect at a point where E = 0. Infinitesimally
later, the topology of the field lines changes and a closed loop of electric field appears. The last two
panels of Figure 20.5 show that the middle and outer loops pinch off, one at a time, and thereby launch
two more concentric closed loops of E. As these loops propagate away from the dipole, new field
lines attached to the dipole are created. The entire cycle repeats indefinitely, as near fields evolve into
intermediate fields and then break off to form fields which propagate freely to infinity. This is how
radiation is born.
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(a) (b) (c)

Figure 20.6: Schematic view of field line reconnection between t = 0.158T and t = 0.160T in Figure 20.5.
Arrows indicate the direction of E. (a) a dipole loop attached to its source (black dot) begins to pinch in;
(b) E = 0 at the point where the loop intersects itself; (c) field line reconnection creates a detached loop which
propagates away from the source and a loop which remains connected to (and shrinks back toward) the source.

20.5.3 Radiation Fields in the Time Domain
In this section, we derive explicit formulae for (i) the radiation fields, Erad(r, t) and Brad(r, t), produced
by a specified (but otherwise arbitrary) time-dependent current distribution; and (ii) the angular
distribution of power radiated by that distribution. Consistent with (20.81), we do this by keeping only
the leading 1/r contribution to the total fields computed from B = ∇ × A and E = −∇ϕ − ∂A/∂t .

For convenience, we repeat the Lorenz gauge expression (20.58) for the retarded vector potential:

A(r, t) = μ0

4π

∫
d 3r ′ j(r′, t − |r − r′|/c)

|r − r′| . (20.93)

For a current density with characteristic size L, radiation appears when L/r � 1. Therefore, because
r ′ ≤ L in (20.93), we consider the expansion

|r − r′| = r

√
1 − 2

r̂ · r′

r
+
(
r ′

r

)2

= r

{
1 −

(
r ′

r

)
(r̂ · r̂′) − 1

2

(
r ′

r

)2 [
1 − (r̂ · r̂′)2

]}+ · · · .
(20.94)

The approximation |r − r′| ≈ r is sufficient in the denominator of (20.93) because we are looking for
derivatives of A that vary exactly as 1/r .

It is necessary to retain the second term in the curly brackets in (20.94) when we approximate the
numerator of (20.93). This so because (i) the fields would have angular dependence otherwise and (ii)
the quantity r̂ · r′/c ≈ L/c is the time needed for an electromagnetic signal to propagate across the
source. This correction to the retarded time t − r/c can be significant when the source is large or its
time variation is rapid. This contrasts with the third term in curly brackets in (20.94), which produces
a correction to t − r/c that can be made as small as we like by choosing r large enough. Putting all
this together, we conclude that the part of (20.93) that contributes to radiation is

Arad(r, t) = μ0

4πr

∫
d 3r ′ j (r′, t − r/c + r̂ · r′/c). (20.95)

The corresponding radiation scalar potential is

ϕrad(r, t) = 1

4πε0r

∫
d 3r ′ ρ(r′, t − r/c + r̂ · r′/c). (20.96)

We compute Brad = ∇ × Arad using (20.95) and the chain rule. For the latter, it is convenient to
define

t� = t − r/c + r̂ · r′/c (20.97)

and use the fact that

∇t� = −1

c
∇r + 1

c
∇(r̂ · r′) = − r̂

c
− r̂

c
×
(

r̂ × r′

r

)
≈ − r̂

c
. (20.98)
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The approximation in (20.98) is valid because the omitted factor is higher-order in 1/r and thus
irrelevant to radiation. The final result for the radiation magnetic field is

Brad(r, t) = − μ0

4πc

r̂
r

×
∫

d 3r ′ ∂
∂t

j (r′, t − r/c + r̂ · r′/c). (20.99)

The computation of Erad = −∇ϕrad − ∂Arad/∂t using (20.95) and (20.96) is similar in the sense that
we only retain terms that vary as 1/r . We begin with (20.98) and the fact that derivatives with respect
to t� are the same as derivatives with respect to t to deduce that

− ∇ρ(r′, t�) = −∂ρ(r′, t�)
∂t�

∇t� = ∂ρ(r′, t∗)

∂t

r̂
c
. (20.100)

This gives the intermediate result

Erad(r, t) = r̂
4πε0cr

∫
d 3r ′ ∂ρ(r′, t�)

∂t
− μ0

4πr

∫
d 3r ′ ∂j (r′, t�)

∂t
. (20.101)

A brief side-calculation permits us to eliminate the charge density in favor of the current density in
(20.101). The first step uses (20.97), (20.98), and the continuity equation to write

∂ ρ(r′, t�)
∂t

= ∂ ρ(r′, t�)
∂t�

=
[
∂

∂t ′
ρ(r′, t ′)

]
t ′=t�

= − [∇′ · j(r′, t ′)
]
t ′=t� . (20.102)

The second step uses ∇′t� = r̂/c and the chain rule to get

∇′ · j(r′, t�) = [∇′ · j (r′, t ′)
]
t ′=t� + ∂ j(r′, t�)

∂t�
· ∇′t� = [∇′ · j (r′, t ′)

]
t ′=t� + r̂

c
· ∂ j(r′, t�)

∂t
.

(20.103)

Using (20.103) to eliminate the rightmost member of (20.102) gives the desired result:

∂ρ(r′, t�)
∂t

= −∇′ · j(r′, t�) + r̂
c

· ∂j(r′, t�)
∂t

. (20.104)

Substituting (20.104) into (20.101) expresses Erad(r, t) as the sum of three integrals over all space. The
integral with ∇′ · j (r′, t�) as its integrand vanishes (after an integration by parts) for a localized current
distribution. The two others combine using r̂(r̂ · a) − a = r̂ × (r̂ × a) to give the desired formula for
the radiation electric field:

Erad(r, t) = r̂ ×
[
μ0

4π

r̂
r

×
∫

d 3r ′ ∂
∂t

j (r′, t − r/c + r̂ · r′/c)

]
. (20.105)

20.5.4 Summary of Radiation-Zone Results
The radiation produced by a localized current distribution, j (r, t), can be determined entirely from the
radiation vector potential,

Arad(r, t) = μ0

4πr

∫
d 3r ′ j (r′, t − r/c + r̂ · r′/c). (20.106)

The radiation fields themselves are

cBrad(r, t) = −r̂ × ∂Arad(r, t)
∂t

(20.107)

and

Erad(r, t) = −r̂ × cBrad. (20.108)

We have already emphasized the 1/r dependence of Erad and Brad. This implies that the Poynting
vector S = Erad × Brad/μ0 transports energy undiminished to radial distances arbitrarily far from the
source. Otherwise, we draw attention to four consequences of (20.106), (20.107), and (20.108).
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rad
E

rad
B

r̂

r

Figure 20.7: The vectors Erad, Brad, and r̂ are mutually orthogonal in the radiation zone far from the source
(black dot).

First, the field magnitudes satisfy |Erad| = c|Brad|. Second, the vectors r̂, Erad, and Brad form the
right-handed orthogonal triad shown in Figure 20.7:

r̂ × Erad = cBrad and Erad × cBrad = r̂|Erad|2. (20.109)

Third, at a fixed time, |Erad| and |Brad| take constant values on spherical surfaces centered at the source.
Finally, as r increases and the wave front flattens out, the local characteristics of the radiation fields
(20.107) and (20.108) increasingly resemble the characteristics of a transverse electromagnetic plane
wave with a propagation vector which points from the source to the observer.

We conclude with a general formula for the angular distribution of radiated power derived by
substituting (20.109) into (20.81) and using (20.107) and (20.108):

dP

d�
= r2

cμ0
|Erad |2 = 1

cμ0

∣∣∣∣r × ∂Arad(r, t)
∂t

∣∣∣∣2 . (20.110)

The total radiated power is the integral of (20.110) over all angles.

20.5.5 Larmor’s Formula
A famous formula due to Joseph Larmor predicts the total power radiated by an accelerating but slowly
moving charged particle. This result is important because moving charged particles are the constituents
of every real current density. For a single point charge q with velocity v(t) = ṙ0(t),

j (r, t) = qv(t)δ[r − r0(t)]. (20.111)

When a sum of terms like (20.111) is used to evaluate (20.106), the time derivative in (20.110) shows
that radiation cannot occur unless at least some of the charged particles accelerate for at least some of
the time. This is consistent with the absence of radiation fields for the problem of a charged particle
moving with uniform velocity (Section 20.1).

It is important to appreciate that the mere presence of accelerating particles does not guarantee
that radiation exists. The fields produced by different accelerating particles can interfere destructively
and conspire to produce no radiation at all. An example is a uniformly charged spherical shell whose
radius oscillates periodically in time. Regardless of the distribution of charge over the surface of the
shell, j ∝ r̂, so (20.107) and (20.108) imply that the radiation fields are identically zero. Other classes
of time-dependent but radiation-less current distributions are known as well.

Let us use (20.111) to evaluate the vector potential (20.106). If the particle speed v � c, it is a good
approximation to write

j (r, t − r/c + r̂ · r0/c) ≈ j (r, t − r/c) (20.112)
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a

Figure 20.8: The angular distribution of power radiated by a slowly moving (v � c) point particle with
instantaneous acceleration a.

because the first correction is of order v/c. Using (20.112) to evaluate (20.105) and defining a⊥ as the
component of the particle acceleration a perpendicular to r̂, we find9

Erad = μ0q

4πr
r̂ × [r̂ × a(t − r/c)] = −μ0q

4πr
a⊥(t − r/c). (20.113)

If r̂ · â = cos θ , the angular distribution of radiated power from (20.110) is10

dP

d�
= μ0q

2|aret |2
16π2c

sin2 θ. (20.114)

Figure 20.8 shows that the radiation pattern resembles a doughnut, with no radiation emitted either
parallel or anti-parallel to aret. Acceleration and deceleration produce exactly the same pattern and the
total radiated power is given by Larmor’s formula:

P =
∫

d�
dP

d�
= 1

4πε0

2q2|aret |2
3c3

. (20.115)

A quick application of (20.115) is to the emission of cyclotron radiation by a particle with charge q
and mass m moving non-relativistically in a uniform magnetic field B. As discussed in Section 12.2.2,
such a particle follows a helical trajectory. The motion parallel to B is uniform. The motion perpen-
dicular to B is circular with uniform speed v. The circular (cyclotron) motion is maintained by a
centripetal acceleration v2/R where R = mv/qB is the orbit radius. With this data, we conclude from
(20.115) that energy radiates from the circling charge at a rate

P = q4v2B2

6πε0m2c3
. (20.116)

20.5.6 Radiation Fields in the Frequency Domain
Many authors focus exclusively on the radiation produced by a time-harmonic current density. They
do this because Fourier’s theorem guarantees that the harmonic content of any current density j (r, t)
and radiation vector potential Arad(r, t) is revealed by writing[

j (r, t)
Arad(r, t)

]
= 1

2π

∞∫
−∞

dω

[
j(r|ω)

Arad(r|ω)

]
exp(−iωt). (20.117)

If we substitute the top member of (20.117) into (20.106) and let k = (ω/c)r̂, the bottom member of
(20.117) permits us to deduce that

Arad(r|ω) = μ0

4π

eikr

r

∫
d 3r ′ j (r′ |ω)e−ik·r′ ≡ μ0

4π

eikr

r
ĵ (k|ω). (20.118)

The function ĵ (k|ω) is the Fourier transform (over space and time) of the source current density.

9 We choose the position of the particle as r = 0. The (slow) motion of this origin is not problematical for observations
made in the radiation zone.

10 As in Section 20.4, the subscript “ret” refers to the retarded time t − r/c.
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Using( 20.107) and (20.108), the time-harmonic fields associated with the vector potential (20.118)
are

cBrad(r|ω) = iω r̂ × Arad(r|ω) Erad(r|ω) = −iω r̂ × [r̂ × Arad(r|ω)] . (20.119)

The corresponding time-averaged angular distribution of radiated power follows from (20.110) and
the time-averaging theorem (see Section 1.6.3):〈

dP

d�

〉
= ω2

2cμ0
|r × Arad(r|ω)|2 = μ0ω

2

32π2c
| r̂ × ĵ (k|ω)|2 = μ0ω

2

32π2c
| ĵ⊥(k|ω)|2. (20.120)

In other words, the time-averaged rate at which a harmonic source radiates into a unit solid angle
(centered on k̂) is proportional to the absolute square of the transverse component of the Fourier
transform of the current density, ĵ⊥(k|ω). This is the component of ĵ (k|ω) which lies perpendicular
to k.

We conclude with two remarks. First, (20.120) shows that a current density j (r, t) produces no
radiation if all its transverse Fourier components ĵ⊥(k|ω = ck) vanish. Second, we will prove in
Section 23.4.2 that (20.120) is essentially the angular-resolved frequency spectrum of the radiation
produced by a current density j (r, t) with Fourier transform ĵ(k|ω). This is the amount of energy
radiated into a unit solid angle in a unit interval of frequency. An example is the non-relativistic
cyclotron emission studied in Section 20.5.5, where the radiation occurs exclusively at the cyclotron
frequency ωc = |q|B/m.

20.6 Thin-Wire Antennas

Every radio listener knows that a thin wire conductor of almost any shape acts as an antenna for the
reception of electromagnetic waves broadcast from distant sources. Incident waves induce a time-
dependent current on the antenna’s surface which drives a voltage across the antenna’s load resistance.
This voltage encodes the information content of the broadcast. Conversely, an external voltage applied
to its input terminals drives a time-varying current in a broadcast antenna. This makes a thin-wire
antenna a prototype radiating system.

20.6.1 The Dipole Antenna: Frequency Domain
Figure 20.9 shows a straight, thin-wire, linear antenna driven at its center point by an input voltage.
This is called a dipole antenna. The current which actually flows in this antenna is determined by an
integral equation which guarantees that the tangential component of the total electric field vanishes at
the antenna surface.11 In this section, we suppose that the driving voltage varies in time as exp(−iωt)
and focus on the limit when the radius of the wire goes to zero. In that case, a first approximation to
the current which flows in a time-harmonic dipole antenna is the standing wave (ω = ck)

I (z, t) = I0 sin k(d − |z|)e−iωt − d ≤ z ≤ d. (20.121)

We use j (r′)d 3r ′ → I (z′)dz′ to evaluate (20.118) with the antenna current (20.121). Because ẑ · r̂ =
cos θ is effectively constant in the radiation zone, and∫

dz exp(az) sin(bz + c) = exp(az)

a2 + b2
[a sin(bz + c) − b cos(bz + c)] , (20.122)

11 Approximate analytic solutions to this classic boundary value problem in antenna theory have given way to accurate
numerical solutions. See, e.g., S.J. Orfanidis, Electromagnetic Waves and Antennas, Chapter 21. Available at
http://www.ece.rutgers.edu/∼ orfanidi/ewa/.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-20 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 7:22

738 RETARDATION AND RADIATION: THE FIELDS PRODUCED BY RAPIDLY-VARYING SOURCES

d

d

z

r

P
1

r

2
r

Figure 20.9: A linear (dipole) antenna of length 2d driven by a voltage source at its midpoint (open circle).
P labels an observation point.

θ

d = λ / 2

θ

d = 3 λ / 2

θ

d = 5 λ / 2

Figure 20.10: Angular distribution of radiation produced by a dipole antenna (Figure 20.9) when d = λ/2,
d = 3λ/2, and d = 5λ/2. The figures are rotationally symmetric around the vertical axis of the antenna.

a few lines of algebra are sufficient to confirm that

Arad(r, |ω) = μ0I0

2π

exp(ikr)

kr

[
cos(kd cos θ ) − cos kd

sin2 θ

]
ẑ. (20.123)

The time-averaged angular distribution of radiated power (20.120) is12〈
dP

d�

〉
= μ0cI

2
0

8π2

[
cos(kd cos θ ) − cos kd

sin θ

]2

. (20.124)

Figure 20.10 illustrates (20.124) for three choices of antenna length: d = λ/2, d = 3λ/2, and
d = 5λ/2. The number of lobes is equal to the number of radiation half-wavelengths m that “fit”
into the antenna. The principal radiation lobe becomes narrower and lies closer and closer to the
antenna axis as m → ∞.

The integration of (20.124) over all angles cannot be reduced to elementary functions. Nevertheless,
the dependence of 〈dP/d�〉 on I 2

0 guarantees that we can define a radiation resistance Rrad such
that13

〈P 〉 = 1

2
I 2

0Rrad. (20.125)

12 The angular distribution of power radiated when an antenna operates in “broadcast” mode is the same as the angular
distribution of power absorbed when the same antenna operates in “receiving” mode. See Sources, References, and
Further Reading.

13 In practical antenna theory, the radiation resistance (the real part of the complex impedance) is defined by
〈P 〉 = 1

2 |IT|2Rrad where |IT| is the magnitude of the current which flows through the input terminals of the antenna.
The input impedance of an antenna is discussed clearly in Section 9.3 of D.H. Staelin, A.W. Morgenthaler, and J.A.
Kong, Electromagnetic Waves (Prentice Hall, Englewood Cliffs, NJ, 1994).
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20.6 Thin-Wire Antennas 739

Figure 20.11: The radiation resistance of a dipole antenna of total length 2d which produces radiation with
wavelength λ. Figure adapted from Balanis (2005).

1
I

2
I

3
I

4
I

0z

z d

z d

(a) (b)

Figure 20.12: (a) A dipole antenna; (b) four linear end-fed antennas. For each, a wave of current launches from
the open circle and is absorbed at the closed square. Plus and minus signs identify the charge driven in the
direction of the arrows. Figure adapted from Smith (2001). Copyright 2001, American Association of Physics
Teachers.

Figure 20.11 shows that Rrad predicted by (20.125) and (20.124) oscillates around a mean value
which increases roughly as ln(2d/λ). The local maxima occur when 2d is slightly less than an integer
number of wavelengths. Because current flows into and out of the center point, the condition 2d = nλ

corresponds to situations where equal lengths of antenna carry current in opposite directions.

20.6.2 The Dipole Antenna: Time Domain
The frequency-domain analysis of the previous section does not reveal the process by which an antenna
radiates. To gain this insight, we follow Smith (2001) and switch to the time domain. The key step
is to represent the standing wave (20.121) on the dipole antenna of Figure 20.12(a) as a sum of four
traveling waves, each of which propagates an identical current IS(t) at speed c. We will show below
that a suitable choice of IS(t) reproduces the vector potential (20.123). More importantly, we will
discover the time-history of the radiation experienced by an observer.

Figure 20.12(b) illustrates four traveling waves, each confined to its own linear, end-fed antenna of
length d. Waves 1 and 3 launch from z = 0 at t = 0. Wave 1 drives positive charge upward until it is
absorbed at z = d. Wave 3 drives negative charge downward until it is absorbed at z = −d. No charge
accumulates at the ends of the original dipole antenna because, at t = d/c, wave 2 launches positive
charge downward from z = d and wave 4 launches negative charge upward from z = −d. Both are
absorbed at z = 0 at t = 2d/c.

We focus first on the radiation produced by wave 1 due to its current:

I1(z, t) = IS(t − z/c) 0 ≤ z ≤ d. (20.126)
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(a) (b)

Figure 20.13: Logarithmic grayscale plots of |Erad(r, t)| at a fixed time produced by (a) a traveling wave of
current created and then absorbed at opposite ends of a single end-fed antenna; (b) four traveling waves of
current superposed to produce a standing wave of current on the dipole antenna of Figure 20.12(a). The various
spherical wave fronts Wk are discussed in the text. Figure adapted from Smith (2001). Copyright 2001, American
Association of Physics Teachers.

If r and θ are defined with respect to the open circle at the end of antenna 1 as they are in Figure 20.9,
the radiation vector potential (20.106) generated by this current satisfies

∂A1

∂t
= ẑ

μ0

4πr

d∫
0

dz′ d
dt
IS[t − r/c − (z′/c)(1 − cos θ )]. (20.127)

The integral (20.127) is straightforward because the chain rule relates dIS/dt to dIS/dz′. The result is

∂A1

∂t
= ẑ

μ0

4πr

c

1 − cos θ
[IS(t − r/c) − IS(t − r/c − (d/c)(1 − cos θ ))] . (20.128)

Using (20.107) and (20.108), we conclude that the electric field radiated by the current I1 in Figure 20.12
is

E1(r, t) = μ0c

4π

sin θ

1 − cos θ

[
IS(t − r/c)

r
− IS(t − d/c − (r − d cos θ )/c)

r

]
θ̂ . (20.129)

Equation (20.129) is valid for any choice of the time-dependent current IS(t). We follow Smith
(2001) and choose a Gaussian pulse of the form IS(t) = I0 exp[−(4ct/d)2]. Figure 20.13(a) plots the
magnitude of |E1(r, t)| from (20.129) at time t = 2.5d/c. The grayscale intensity is logarithmic. The
large ring W1 comes from the first term in the square brackets in (20.129). It is a spherical wave which
propagates at the speed of light away from the z = 0 launch point of the wave. The small ring W2

comes from the second term in (20.129). This is also a spherical wave, but it is delayed by a time
d/c and propagates at the speed of light away from the z = d absorption point of the wave. The latter
assignment follows from the retardation factor in the second term and the fact that the distance r1 in
Figure 20.9 is

r1 ≈ r − d cos θ r � d. (20.130)

We note in passing that the electrically neutral traveling wave exposes negative charge when it
leaves the launch point and deposits positive charge when it reaches the absorption point. These
charges are the source of the static electric field seen in the immediate vicinity of the end points in
Figure 20.13(a).

Our interpretation of Figure 20.13(a) must be consistent with the fact that radiation is produced
by the acceleration of charged particles (Section 20.5.5). Electrons on the surface of the antenna are
transiently accelerated by a guided electromagnetic wave (associated with the current pulse) which
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20.6 Thin-Wire Antennas 741

propagates down the wire at the speed of light. However, the numerical results of Smith (2001) show
that the field produced by the charge induced when the wave reaches any particular segment of the
wire is effectively canceled by the field produced by the charge induced when the wave propagates
to the immediately adjacent segment. The only places where field cancellation does not occur are the
launch point z = 0 at t = 0 and the reflection points z = ±d at t = d/c. It is important to appreciate
that the moving charges which constitute the current pulse itself are not relevant here.14

The radiation electric fields produced by the traveling waves 2, 3, and 4 in Figure 20.12(b) are
calculated similarly. Care must be taken because the sign of the moving charge and the launch times,
launch points, and absorption points are not the same for each. When these fields are added to (20.129),
we get the total radiation electric field:

Etot(r, t) = μ0c

2π sin θ

{
IS(t − r/c)

r
+ IS(t − r/c − 2d/c)

r

− IS[t − d/c − (r − d cos θ )/c]

r
(20.131)

− IS[t − d/c − (r + d cos θ )/c]

r

}
θ̂ .

Figure 20.13(b) is a grayscale plot of |Etot(r, t)| from (20.131) at time t = 2.5d/c for the current
choice IS(t) = I0 exp[−(4ct/d)2]. This is the same Gaussian pulse used in Figure 20.13(a). The ring
W1 comes from the launch of waves 1 and 3 at t = 0 from the center of the antenna. Rings W2 and W ′

2
come from the absorption of these waves at t = d/c and the simultaneous launch of wave 2 and 4 from
the ends of the antenna.15 The ring W3 comes from the absorption of waves 2 and 4 at t = 2d/c at the
center of the antenna. We conclude that an observer experiences the radiation produced by this pulsed
dipole antenna as a sequence of four signals (separated in time), one from each of the four spherical
wave shells indicated in Figure 20.13(b).

It remains only to choose IS(t) properly to connect the radiation electric field (20.131) to
the field produced by the time-harmonic current (20.121). To do this, we note that Arad(r, t) =
Arad(r|ω) exp(−iωt)ẑ and use (20.107) and (20.108) to write

Erad(r, t) = r̂ ×
[

r̂ × ∂Arad(r, t)
∂t

]
= ∂Arad(r, t)

∂t
sin θ θ̂ . (20.132)

With a few lines of algebra, the reader can confirm that the electric field computed using (20.132) with
the vector potential (20.123) is exactly the same as the electric field (20.131) with the particular choice

IS(t) = i

2
I0 exp[−i(kd + ωt)]. (20.133)

If we approximate the time-harmonic current (20.133) as a time-series of Gaussian current pulses with
alternating signs, it is not difficult to see that the discrete bursts of radiation represented by the rings in
Figure 20.13 evolve into continuous radiation emission from the center and end points of the antenna.
The constructive and destructive interference of these waves is responsible for the lobe structure of the
emission pattern in Figure 20.10.

20.6.3 Antenna Arrays
Any collection of radiating elements where the positions of the individual radiators are chosen on
purpose is called an antenna array. Interference effects guarantee that the radiation pattern produced

14 These electrons move at the drift velocity υd � c. See Section 9.3.
15 The distance r2 in Figure 20.9 is approximately r + d cos θ when r � d. The latter distance appears in the last term

in (20.131).
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x

z

y
φ

Figure 20.14: A line of parallel and equally spaced linear antennas.

by an array depends sensitively on the spatial arrangement of the individual radiators. This makes it
possible to “engineer” the pattern in various ways, including (but not limited to) focusing the bulk of
the radiated power into a relatively small angular range.

As an example, Figure 20.14 shows N linear antennas sitting on the x-axis at positions x = ma

where m = 0, 1, . . . , N − 1. All the antennas point in the z-direction and the current in each antenna
is

I (z, t) = I0 cos(kz) cosωt − λ/4 ≤ z ≤ λ/4. (20.134)

Our task is to find the angular distribution of power radiated by this array.
The current density of the array is a sum of N terms, one for each antenna. For the mth antenna,

we write the integration variable in (20.118) as r′ = max̂ + z′′ẑ and use the azimuthal angle φ in
Figure 20.14 to locate the observation point in the x-y plane. Since ω = ck = 2πc/λ,

Arad(ω) = ẑ
μ0I0

4π

exp(ikr)

r

⎡
⎢⎣

λ/4∫
−λ/4

dz′′ cos kz′′

⎤
⎥⎦ N−1∑

m=0

e−ikma cosφ. (20.135)

Evaluating the integral and performing the sum (a geometric series) gives

Arad(ω) = ẑ
μ0I0

2π

exp(ikr)

kr
ei(N−1) 1

2 ka cosφ sin
(

1
2kNa cosφ

)
sin

(
1
2ka cosφ

) . (20.136)

It is conventional to define an array factor,

F(cosφ) = sin
(

1
2kNa cosφ

)
sin

(
1
2ka cosφ

) , (20.137)

and use (20.120) to write the time-averaged distribution of power radiated into the x-y plane as〈
dP

dφ

〉
= μ0cI

2
0

8π2
|F(cosφ)|2 . (20.138)

Figure 20.15 is a graph of the absolute value of the normalized array factor, |F(cosφ)|/N , for the case
N = 7. Compared to a single z-oriented antenna (which radiates isotropically in the x-y plane), the
array factor introduces a strong angular dependence to the radiated power.

The important features of Figure 20.15 are the position, relative amplitude, and angular width of the
main peak. Of these, only the position (cosφ = 0 or φ = π/2) is not a function of N . For simplicity,
let λ = a so

F(cosφ) = sin(Nπ cosφ)

sin(π cosφ)
. (20.139)

By l’Hospital’s rule, |F(0)| = N , and the first zero occurs when cosφ = 1/N . This angle can be made
arbitrarily close to the y-axis by making N arbitrarily large. The next (secondary) maximum occurs
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Figure 20.15: The absolute value of the normalized array factor |F |/N for N = 7.

when cosφ = 3/2N . When N � 1, the radiated power at the secondary maximum is proportional to

|F(3/2N )|2 = sin2(3π/2)

sin2(3π/2N )
≈
(

2N

3π

)2

≈ 0.045|F(0)|2. (20.140)

This shows that the majority of the radiation emitted by the array can be confined to a narrow beam
along the ±y-axes. This is called the broadside direction with respect to the line of antennas.

A new feature appears if we introduce a constant phase difference between the currents in successive
antennas. In other words, we let cosωt → cos(ωt +mδ) in (20.134) so the summand in the sum over
antennas in (20.135) becomes exp[−im(ka cosφ + δ)]. This changes the array factor from (20.137)
to

F(cosφ) = sin[ 1
2N (ka cosφ + δ)]

sin[ 1
2 (ka cosφ + δ)]

. (20.141)

As a result, the position of the main radiation beam rotates from φ = π/2 to an angle φ� where
ka cosφ� + δ = 0. This shows that the angular position of the principal radiation beam can be “steered”
by changing the value of the phase δ. For that reason, the name phased-array antenna is used for the
entire arrangement.

The footnote to (20.124) implies that all the results of this section apply equally well to the receiving
characteristics of an antenna array. This fact was essential to the 1967 discovery of the pulsar in the
Crab nebula by Antony Hewish and Jocelyn Bell. The phased array of 2048 radio antennas used by
them had the ability to resolve distant radio sources with unprecedentedly small size.

20.7 Cartesian Multipole Radiation

Radiation fields can rarely be computed exactly for physically interesting current densities. This
motivates us to develop an approximation scheme which reliably approximates radiation fields when
the source size is sufficiently small or when its time variation is sufficiently slow. To set the stage,
recall from (20.107) and (20.108) that Brad(r, t) and Erad(r, t) are completely determined by the time
derivative of the radiation vector potential (20.106). However, rather than work with Arad(r, t) directly,
it is somewhat more convenient to work with the radiation vector, α(r, t), defined by

∂Arad(r, t)
∂t

= μ0

4πr
α(r, t), (20.142)

where

α(r, t) = ∂

∂t

∫
d 3r ′ j (r′, t − r/c + r̂ · r′/c). (20.143)
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r′ j(r,t)

r

L

Figure 20.16: To calculate fields in the radiation zone (r � L), a low-order multipole expansion is valid when
j(r, t) varies sufficiently slowly in time.

In this language, the angular distribution of radiated power (20.110) is

dP

d�
= μ0

16π2c
|r̂ × α(r, t)|2 . (20.144)

The key point is that r̂ · r′/c � L/c is the time needed for an electromagnetic signal to propagate
across the source (see Figure 20.16). Consequently, a rapidly converging series results if we Taylor
expand the current density in (20.143) around the time t − r/c for a spatially small or slowly varying
source source. The series in question generates a Cartesian multipole expansion for α(r, t), and thus
for the radiation fields themselves. Similar to the electrostatic and magnetostatic Cartesian multipole
expansions studied earlier in this book, an approximation based on a low-order truncation of this
expansion is often sufficient to extract the most important physics.

The expansion of interest is

j (r′, t − r/c + r̂ · r′/c) ≈ j (r′, t − r/c) + r̂ · r′

c

∂

∂t
j (r′, t − r/c)

+ 1

2

(
r̂ · r′

c

)2
∂2

∂t2
j (r′, t − r/c) + · · · . (20.145)

The meaning of (20.145) becomes clear if the source current varies maximally over a characteristic
time T . In that case, the estimates ∂j/∂t ∼ j/T and ∂2j/∂t2 ∼ j/T 2 are valid and we see that (20.145)
is an expansion of powers of

L

cT
≡ source size

distance travelled by light in time T
. (20.146)

For harmonic time dependence with wavelength λ = 2π/k, we have ω = ck and T = 2π/ω. This
identifies the expansion parameter in (20.146) as L/λ. Therefore, truncation of (20.145) after a small
number of terms is most valid for long wavelength or slow time variations of the driving source current
density. These low-order terms produce radiation fields driven by temporal changes of the electric
dipole moment p(t), the magnetic dipole moment m(t), and the electric quadrupole tensor Q(t) of the
source current density. More precisely, we will demonstrate in the next three subsections that

α(r, t) = d2

dt2
p(t − r/c) + 1

c

d2

dt2
m(t − r/c) × r̂ + 1

c

d3

dt3
Q(t − r/c) · r̂ + · · · . (20.147)

20.7.1 Electric Dipole Radiation
The term electric dipole radiation is used when only the first term on the right-hand side of (20.145)
is used to evaluate (20.143) and (20.144). To see why, we focus attention on16

αE1(r, t) = d

dt

∫
d 3r ′j (r′, t − r/c). (20.148)

16 The notation “E�” is shorthand for electric multipole of order 2� . Thus E1 stands for electric dipole, E2 for electric
quadrupole, etc. M1 and M2 similarly stand for magnetic dipole and quadrupole.
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p̈

Figure 20.17: Radiation pattern produced by a vertically oriented electric dipole located at the center of the
diagram.

We encountered this integral previously in magnetostatics (Section 11.1.2), where its value was zero as
a consequence of the steady-current condition ∇ · j = 0. Repeating this calculation in the present case
gives a non-zero value for (20.148) because the current density is constrained only by the continuity
equation,

∇ · j + ∂ρ

∂t
= 0. (20.149)

An alternative and equivalent way to evaluate the integral uses (20.111) for the current density and
ρ(r, t) = ∑

k qkδ[r − rk(t)]. In detail,∫
d 3r ′ j (r′, t) =

∑
k

qkυk(t) = d

dt

∑
k

qkrk(t) = d

dt

∫
d 3r ′ ρ(r′, t)r′ = d

dt
p(t). (20.150)

Using (20.150) to evaluate (20.148) shows that the radiation from a slowly time-varying current
distribution is dominated by the second time derivative of the electric dipole moment of the distribution:

αE1(r, t) = d2

dt2
p(t − r/c) ≡ p̈ret. (20.151)

Substituting (20.151) into (20.107) and (20.108) gives the dipole radiation fields

BE1 = − μ0

4πc

r̂ × p̈ret

r
(20.152)

and

EE1 = −r̂ × cBE1 = μ0

4π

r̂(r̂ · p̈ret) − p̈ret

r
. (20.153)

These are identical to the last terms in the formulae (20.74) and (20.75) for the magnetic and electric
fields of a point electric dipole. This is consistent with our understanding from electrostatics and
magnetostatics that suitably chosen point multipole sources reproduce the effect of a spatially extend
source for observation points that lie sufficiently far from the sources.

Substituting (20.151) into (20.144) gives the angular distribution of dipole radiation as(
dP

d�

)
E1

= μ0

16π2c
|r̂ × p̈ret|2. (20.154)

If the direction of p(t) is fixed in space, (20.154) predicts that the radiated power varies as sin2 θ

where θ is the angle between p and r̂ (see Figure 20.17). There is no emission along the dipole
axis because radiation fields are transverse and the rotational symmetry of a dipole implies that no
transverse direction can be singled out. The maximum emission occurs in the plane perpendicular to
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p that passes through the source. The subscript “ret” reminds us that the angular distribution of power
is evaluated at fixed values of the retarded time t − r/c when the fields left the source.

The total radiated power is the integral of (20.154) over all angles:

PE1(t) = μ0

16π2c
|p̈ret|2

∫
d� sin2 θ = μ0

6πc
|p̈ret|2. (20.155)

A superficially less simple way to get (20.155) has the virtue that it generalizes to more complicated
situations in a way that direct integration over angles does not. The first step is to write

|r̂ × p̈ret|2 = | p̈ret|2 − | r̂ · p̈ret|2. (20.156)

The integral over the first term in (20.156) gives a multiplicative factor of 4π . Replacing p̈ret by b, the
integral over the second term is∫

d� | r̂ · b|2 = bib
∗
j

∫
d�r̂i r̂j = bib

∗
j Iij . (20.157)

Since r̂i = ri/r , symmetry implies that Iij = Iδij . Then, because
∑

i r̂i r̂i = 1, we find that I = 4π/3.
Combining both terms in (20.156) gives

PE1(t) = μ0

6πc
|p̈ret|2 = 1

4πε0

2|p̈ret|2
3c3

. (20.158)

This agrees with (20.155) and the last term in (20.77), as it should.
The alert reader will have noticed the similarity of Figure 20.17 to Figure 20.8. This is no accident,

because (20.158) becomes the Larmor formula (20.115) if we set p = qr, where r is the displacement of
a charge q from a fixed origin. This choice is consistent with the definition of the electric dipole moment
in (20.150). From this point of view, the cyclotron radiation discussed at the end of Section 20.5.5 is
interpreted as the radiation produced by a rotating dipole moment.

A rotating dipole moment is a special case of a time-harmonic dipole moment p(t) = p exp(−iωt),
where p may be complex. With ω = ck, the radiation fields in such a case are the real part of

BE1 = μ0

4π

ω2

c
(r̂ × p)

ei(kr−ωt)

r
(20.159)

EE1 = −μ0

4π
ω2[r̂ × (r̂ × p)]

ei(kr−ωt)

r
. (20.160)

The quantity in square brackets in (20.160) gives the direction of the radiation electric field and thus,
by our convention (Section 16.4), fixes the polarization of the emitted electric dipole radiation. Since
p̈ = −ω2p for a time-harmonic source, using (20.151) to evaluate (20.144) gives the time-averaged
angular distribution of power radiated by a time-harmonic electric dipole as

〈
dP

d�

〉
E1

= ck4

32π2ε0

[
(r̂ × p) · (r̂ × p∗)

]
. (20.161)

The corresponding total radiated power obtained by time-averaging (20.158) is

〈
dU

dt

〉
E1

= μ0ω
4

12πc
p · p∗. (20.162)
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Application 20.3 The Classical Zeeman Effect

In 1896, Zeeman observed that the D emission line of sodium splits into three components when the
source atoms are placed between the poles of a magnet. Lorentz provided an immediate explanation
by taking account of an external magnetic field in the equation of motion for the displacement s(t) of a
particle with charge q and mass m which oscillates with frequency ω0 around a stationary equilibrium
point.17

Assuming that the entire system is charge-neutral, Lorentz’ idea was to study the radiation produced
by the dipole moment p(t) = qs(t). The equation of motion is

r̈ + ω2
0s = q

m
(ṡ × B). (20.163)

If s(t) = s exp(−iωt), B = B ẑ, and ωL = qB/2m is the Larmor frequency (see Section 12.2.3), the
Cartesian components of s satisfy⎡

⎣ ω2 − ω2
0 2ωLω 0

−2iωLω ω2 − ω2
0 0

0 ω2 − ω2
0

⎤
⎦
⎡
⎣ sx
sy
sz

⎤
⎦ = 0. (20.164)

It is straightforward to check that, when ωL � ω, the three solutions to (20.164) are

s0(t) = a0ẑe−iω0t

s+(t) = a+(x̂ + iŷ)e−i(ω0+ωL)t

s−(t) = a−(x̂ − iŷ)e−i(ω0−ωL)t . (20.165)

The dipole moment p0(t) = qs0(t) oscillates along the z-axis. The corresponding radiation fields
(20.159) and (20.160) are linearly polarized and propagate with frequency ω0. The dipole moments
p+(t) = qs+(t) and p−(t) = qs−(t) rotate in the x-y plane (in opposite directions) and produce
radiation at frequencies ω0 + ωL and ω0 − ωL, respectively. The unit vector identities

x̂ = sin θ cosφ r̂ + cos θ cosφ θ̂ − sinφ φ̂ (20.166)

ŷ = sin θ sinφ r̂ + cos θ sinφ θ̂ + cosφ φ̂ (20.167)

imply that

r̂ × p± ∝ e±iφ(cos θ φ̂ ∓ i θ̂ ). (20.168)

Applying this result to (20.160) and (20.161) shows that the ω0 ± ωL radiation fields have opposite
elliptical polarization (circular for emission along the z-axis) and angular distributions that vary as
1 + cos2 θ .

From a quantitative analysis of the line splitting and the polarization, Zeeman and Lorentz concluded
that q was negative and that |q|/m was 2000 times larger than the charge-to-mass ratio known for
hydrogen ions. Today, we identify their particle as the electron and draw the same conclusions about
the spectrum using quantum mechanics rather than classical mechanics. �

Example 20.4 Use (20.84) to derive Larmor’s formula (20.158) by assuming that the localized
sources of E(r, t) vary slowly in time. Begin with the electromagnetic potentials and expand the
current density to second order and the charge density to third order.

17 Zeeman and Lorentz shared the 1902 Nobel Prize in “recognition of the extraordinary service they rendered by their
researches into the influence of magnetism upon radiation phenomena”.
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Solution: Let R = r − r′ and suppress the spatial argument of the charge and current densities.
The suggested expansion for the latter is j(t − R/c) ≈ j(t) − (R/c)j̇(t). Therefore, using (20.150),

A = μ0

4π

∫
d 3r ′ j(t − R/c)

R
= μ0

4π

∫
d 3r ′

[
j
R

− 1

c

∂j
∂t

]
= μ0

4π

∫
d 3r ′ j

R
− μ0

4πc
p̈.

A third-order expansion of the charge density gives

ϕ = 1

4πε0

∫
d 3r ′

[
ρ

R
− 1

c

∂ρ

∂t
+ 1

2c2
R
∂2ρ

∂t2
− 1

6c3
R2 ∂

3ρ

∂t3

]
= ϕ1 + ϕ2 + ϕ3 + ϕ4.

By conservation of charge,

ϕ2 = − 1

4πε0c

d

dt

∫
d 3r ′ ρ = 0.

Otherwise, E = −∇ϕ − ∂A/∂t , integration by parts, and (20.149) show that

−
∫

d 3r j · E =
∫

d 3r j · [∇ϕ + Ȧ] =
∫

d 3r

[
∇ · (ϕj) − ϕ∇ · j + j · ∂A

∂t

]

=
∫

d 3r [ϕρ̇ + j · Ȧ].

For our purposes, it is somewhat simpler to separate the ϕ4 term and calculate

−
∫

d 3r j · E =
∫

d 3r [ρ̇(ϕ1 + ϕ3) + j · (∇ϕ4 + Ȧ)],

where ρ̇ and j are evaluated at time t . Specifically, because ∇R = 2R and p(t) = ∫
d 3r ′ r′ρ(r′, t)

is the electric dipole moment, conservation of charge implies that

∇ϕ4 = − 1

4πε0

1

3c3

∫
d 3r ′ Rρ̈(r′, t) = − 1

4πε0

1

3c3

d3

dt3
d 3r ′ (r − r′)ρ(r′, t) = 1

4πε0

1

3c3
p̈.

This result, (20.150), and the expressions for ϕ1, ϕ3, and Ȧ above lead without difficulty to

−
∫

d 3r j · E = −μ0

4π

2

3c
ṗ · p̈

+ d

dt

∫
d 3r

∫
d 3r ′ 1

4πε0

[
ρ(r)ρ(r′)

2R
+ 1

4c2
ρ̇(r)ρ̇(r′)R + j(r) · j(r′)

2c2R

]
.

The final step uses −ṗ · p̈ = |p̈|2 − (d/dt)(ṗ · p̈) to conclude that

−
∫

d 3r j · E = μ0

4π

2

3c3
|p̈|2 + terms which are total time derivatives.

Comparing this to (20.84) shows that the total time derivative terms contribute to the stored
electromagnetic energy. What remains is Larmor’s formula (20.158) because pret = p(t) when the
sources vary slowly in time.

20.7.2 Magnetic Dipole Radiation
If the electric dipole moment p(t) happens to vanish, or merely if p̈(t) = 0 [see (20.151)], the dominant
contribution to long-wavelength radiation comes from the second term on the right side of (20.145).
Not obviously, the analysis of this term simplifies if we use the identity

(r′ · r̂)j = (r′ × j) × r̂ + (j · r̂)r′ (20.169)
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to rewrite (r′ · r̂)j as the sum of two terms, one that is symmetric and one that is anti-symmetric with
respect to the interchange of j and r′. The decomposition we want is

(r′ · r̂)j = 1
2 (r′ × j) × r̂︸ ︷︷ ︸
anti−symmetric

+ 1
2 [(r′ · r̂)j + (r̂ · j)r′]︸ ︷︷ ︸

symmetric

. (20.170)

The anti-symmetric piece of (20.170) produces magnetic dipole radiation. The symmetric piece of
(20.170) produces electric quadrupole radiation. For the first of these, we recall from magnetostatics
(Section 11.2) that the magnetic dipole moment of a current distribution is

m = 1
2

∫
d 3r ′ r′ × j. (20.171)

Using (20.171) in (20.170), and using the latter in (20.145) to evaluate (20.143) produces18

αM1(r, t) = 1

c
m̈(t − r/c) × r̂. (20.172)

The radiation fields generated by (20.172) using (20.107) and (20.108) are

BM1 = μ0

4πc2

r̂(r̂ · m̈ret) − m̈ret

r
(20.173)

and

EM1 = μ0

4πc

r̂ × m̈ret

r
. (20.174)

If m(t) = m exp(−iωt) and ω = ck, the fields are the real part of

BM1 = μ0

4π
k2[r̂ × (m × r̂)]

ei(kr−ωt)

r
(20.175)

EM1 = −μ0

4π

ω2

c
(r̂ × m)

ei(kr−ωt)

r
. (20.176)

We make two remarks about these fields. First, the replacement p → m/c in the electric dipole
radiation fields of the previous subsection generates the magnetic dipole radiation fields of the present
subsection if we use the duality transformation (see Section 15.2.2),

BE1(r, t) → −EM1(r, t)/c EE1(r, t) → cBM1(r, t). (20.177)

Second, if m = mẑ, the identity ẑ = cos θ r̂ − sin θ θ̂ implies that

BM1(r, θ ) ∝ − sin θ
ei(kr−ωt)

r
θ̂ EM1(r, θ ) ∝ sin θ

ei(kr−ωt)

r
φ̂. (20.178)

These magnetic dipole radiation fields are the asymptotic (r → ∞) part of the spherical TE waves one
would compute in Section 16.8.1 from the � = 1 solution of the homogeneous scalar wave equation
in spherical coordinates (see Section 16.8.2). The electric dipole fields in Section 20.7.1 are the
asymptotic part of the corresponding spherical TM waves.

The angular distribution of power from (20.110) and (20.172) is(
dP

d�

)
M1

= μ0

16π2c3
|r̂ × m̈ret|2, (20.179)

18 See footnote at the beginning of Section 20.7.1 for the M1 notation.
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with its time-averaged counterpart for harmonic fields,〈
dP

d�

〉
M1

= μ0ck
4

32π2
(r̂ × m) · (r̂ × m∗). (20.180)

As expected from the duality (20.177), the formulae (20.179) and (20.180) are exactly (20.154) and
(20.161) with p → m/c. By the same argument, the electric dipole formulae (20.158) and (20.162)
imply that the total power radiated to infinity by a magnetic dipole source is

PM1(t) = μ0

4π

2|m̈ret|2
3c3

, (20.181)

or, for time-harmonic fields,

〈PM1 〉 = μ0ω
4

12πc3
m · m∗. (20.182)

Electromagnetic duality also implies that the radiation pattern produced by a vertical magnetic dipole
source is identical to the radiation pattern produced by a vertical electric dipole source (Figure 20.17).
On the other hand, comparison of (20.160) with (20.176) shows that the polarization of the radiation
is different in the two cases.

Our discussion of M1 radiation assumes that no E1 radiation is present. If an electromagnetic
source has both p̈ �= 0 and m̈ �= 0, the total radiation is a superposition of both electric and magnetic
dipole fields. This produces interference effects in the angular distribution of power. On the other hand,
conservation of energy guarantees that the total radiated power does not show the effect of interference.
Ptot is simply the arithmetic sum of (20.158) and (20.181). With some care, this fact can be used to
estimate the relative power emitted into E1 and M1 radiation by a single source.

Consider a model for a rotating nucleus where the charge and current are related by j = ρv. Because

m = 1

2

∫
d 3r r × j and p =

∫
d 3r rρ, (20.183)

an order-of-magnitude estimate for the ratio of the magnetic dipole power to the electric dipole power
is

PM1

PE1
∼
(
m

cp

)2

∼
(
j

cρ

)2

∼
(v
c

)2
. (20.184)

This shows that electric dipole radiation dominates magnetic dipole radiation when the charged particle
velocities are non-relativistic. When the charge and current densities vary in time as exp(−iωt), the
continuity equation (20.149) estimate j/L ∼ ωρ (L is the system size) gives the same answer in the
long-wavelength limit when the multipole expansion applies:

〈PM1 〉
〈PE1 〉 ∼

(
m

cp

)2

∼
(
j

cρ

)2

∼
(
L

λ

)2

. (20.185)

An exception to the rule of E1 dominance is a perfectly conducting sphere immersed in a long-
wavelength, monochromatic plane wave. If a is the sphere radius and E0 = cB0 are the field amplitudes,
the electric dipole moment is p = 4πε0a

3E0 (see Example 5.1 of Section 5.2) and the magnetic dipole
moment is m = −2πa3B0/μ0 (see Example 13.4 of Section 13.6.6). The E1 and M1 channels radiate
comparably in this case because m/cp = 1

2 . The general argument responsible for (20.185) does not
apply because the electric moment p comes from a charge density ρE induced by E0 and the magnetic
moment m comes from a current density jB induced by B0. The continuity equation ensures that the
densities ρB and jE exist, but they contribute negligibly to the dipole moments.
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Example 20.5 (a) Show that a magnetic moment m(t) radiates angular momentum at the rate

dL
dt

= −μ0

4π

2

3c3
(ṁret × m̈ret).

(b) Apply this formula to a pulsar modeled as a rotating neutron star with a frozen-in magnetic
dipole moment m0 that is misaligned with the z-axis of rotation (Figure 20.18). Compare the time
average of dLz/dt to the time average of dU/dt .

0m
ω

m

Figure 20.18: A pulsar modeled as a rotating neutron star. Only the component of the frozen-in magnetic
moment m perpendicular to the rotation axis changes in time.

Solution: (a) Far outside itself, we can replace any extended source having a magnetic dipole
moment m(t) by a point source with the same moment. In Section 15.6.1, we calculated the rate of
change of angular momentum in a volume V due to fields that pass through its bounding surface
S to be

dL
dt

= ε0

∫
S

dS · {E(r × E) + c2B(r × B)
}+ 1

2ε0

∫
S

dS × r(E2 + c2B2).

We choose S as a sphere centered on m(t) so dS = r̂R2d�. This immediately eliminates the
second integral above. Following the logic of (20.80), it is necessary that the quantities B(r × B)
and E(r × E) both decay as 1/R2 for the integral to be finite in the R → ∞ limit. Moreover, the
factors dS · Erad and dS · Brad vanish because radiation fields are transverse to r̂. Combining all
this information tells us that, if E2 and B2 are non-radiation fields which decay as 1/R2,

dL
dt

= ε0

∫
S

dS · {E2 (r × Erad) + c2B2 (r × Brad)
} = ε0

∫
S

(dS · E2)crBrad− 1

cμ0

∫
S

(dS · B2)rErad.

The second equality above is a consequence of (20.108) and (20.109). E2 and B2 are the
“intermediate-zone” fields of a point magnetic dipole analogous to the intermediate-zone fields of a
point electric dipole in (20.74) and (20.75). At points away from the source, we can use p → m/c

and the duality transformation (20.177) to read off the magnetic dipole fields from the electric
dipole fields:

E2 = μ0

4π
r̂ × ṁret

r2
B2 = μ0

4πc

3r̂(r̂ · ṁret) − ṁret

r2
.

E2 makes no contribution because dS · E2 = 0. Therefore, reading Erad from (20.174),

dL
dt

= − μ0

8π2c3

∫
d�(r̂ · ṁret)(r̂ × m̈ret).
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The integral to be done here appeared previously in (20.157). The answer is quoted on the left side
of (20.197) below. Therefore,

dL
dt

= −μ0

4π

2

3c3
(ṁret × m̈ret).

(b) For the pulsar, the component of m0 parallel to the rotation axis does not change in time. The
perpendicular component m⊥ rotates in a plane with frequency ω (see Figure 20.18). If the angular
velocity of the pulsar is ω = ωẑ, we may choose

m⊥(t) = m⊥e−iωt = m⊥(x̂ + iŷ)e−iωt .

Therefore, ignoring the sign that tells us that the system loses angular momentum to radiation,〈
dL
dt

〉
= μ0

6πc3

1

2
Re

{
ṁ⊥ × m̈�

⊥
} = μ0

4π

2m2
⊥ω

3

3c3
ẑ.

Equation (20.182) gives the time-averaged energy loss rate as〈
dU

dt

〉
= μ0

4π

2m2
⊥ω

4

3c3
= ω

〈
dL

dt

〉
.

20.7.3 Electric Quadrupole Radiation
The term electric quadrupole radiation is used when the symmetric piece of (20.170) is used from
(20.145) to evaluate the angular distribution of radiated power from (20.143) and (20.144). Our focus
is now the vector19

αE2(r, t) = 1

2c

d2

dt2

∫
d 3r ′ [(r′ · r̂)j + (r̂ · j)r′]. (20.186)

As in (20.150), we use j(r, t) = ∑
k qkυkδ(r − rk) and ρ(r, t) = ∑

k qkδ(r − rk) to write (20.186) in
the form

αE2(r, t) = 1

2c

d2

dt2

∑
k

qk[υk(rk · r̂) + rk(υk · r̂)] = 1

2c

d3

dt3

∑
k

qkrk(rk · r̂). (20.187)

Switching back to continuous variables gives αE2 in terms of the electric quadrupole moment tensor
Q of the charge distribution (see Section 4.4):

αE2(r, t) = 1

c

d3

dt3

1

2

[∫
d 3r ′ ρ(r′, t − r/c)r′r′

]
· r̂ = 1

c
Q̈(t − r/c) · r̂. (20.188)

Substituting (20.188) into (20.107), (20.108), and (20.110) generates the fields and the angular distri-
bution of power for electric quadrupole radiation. In detail,

BE2 = − μ0

4πc2

r̂ × (Q̈ret · r̂)

r
(20.189)

EE2 = μ0

4πc

(r̂ · Q̈ret · r̂)r̂ − Q̈ret · r̂
r

(20.190)(
dP

d�

)
E2

= μ0

16π2c2
|r̂ × (Q̈ret · r̂)|2. (20.191)

19 See footnote at the beginning of Section 20.7.1 for the E2 notation.
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z z

x x
y y

Qzz
Qxy Qyx=

Figure 20.19: A point quadrupole is formed when two oppositely oriented dipoles are displaced toward one
another and meet at the origin. Left panel: “axial” quadrupole where the dipoles point along ẑ and are displaced
along ẑ. Right-panel: “lateral” quadrupole where the dipoles point along a line in the x-y plane and are displaced
in the x-y plane at right angles to their orientation.

Figure 20.20: Angular distribution of power from point-like radiators. Left panel: axial quadrupole Qzz.
Right-panel: lateral quadrupole Qxy = Qyx .

The angular distribution of quadrupole radiation depends on the details of Q. For example, a point
electric quadrupole can be regarded as the superposition of two identical but oppositely oriented point
electric dipoles (see Section 4.2.1). The left side of Figure 20.19 is a cartoon of an “axial” quadrupole
where only the component Qzz is non-zero. In dyadic notation (see Section 1.8),

Q = ẑQzzẑ. (20.192)

Therefore, since ẑ = r̂ cos θ − θ̂ sin θ ,

r̂ × (Q · r̂) = (r̂ × ẑ)Qzz(ẑ · r̂) = −Qzz sin θ cos θ φ̂. (20.193)

The right side of Figure 20.19 shows a “lateral” quadrupole where the quadrupole dyadic reads

Q = x̂Qxy ŷ + ŷQyx x̂. (20.194)

Because Qxy = Qyz [see (20.188)], the reader can confirm that

r̂ × (Q · r̂) = Qxy sin θ [cos θ sin(2φ)φ̂ − cos(2φ)θ̂]. (20.195)

Figure 20.20 shows the angular distributions of radiation for these two cases calculated using (20.191).
The total power radiated by a quadrupole source is best computed by writing out (20.191) in

Cartesian components:

|r̂ × (Q̈ · r̂)|2 = r̂mr̂j Q̈imQ̈ij − r̂t r̂mr̂k r̂pQ̈kmQ̈tp. (20.196)

The formulae needed to integrate (20.196) over all angles are∫
d� r̂mr̂j = 4π

3
δmj

∫
d� r̂t r̂mr̂k r̂p = 4π

15
(δtmδkp + δtkδmp + δtpδmk). (20.197)
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The integral on the left side of 20.197) is not new; we evaluated it following (20.157). The integral on
the right side of (20.197) is similar.20

Collecting this information together and remembering that repeated indices are summed over x, y,
and z, we find without difficulty that

PE2(t) =
∫

d�

(
dP

d�

)
E2

= μ0

20πc3

[
Q̈imQ̈im − 1

3Q̈iiQ̈mm

]
ret
. (20.198)

The appearance in (20.198) of the square of the trace21 of Q̈ reminds us that a traceless electric
quadrupole tensor  can be defined with components (Section 4.4.1)

�ij = 1
2

∫
d 3r ρ(r)(3rirj − r2δij ) = 3Qij −Qij δij . (20.199)

Substituting (20.199) into (20.198) gives the more compact formula

PE2(t) = μ0

180πc3

[
�̈im�̈im

]
ret . (20.200)

Some care is needed when performing time averages of dP/d� and the total power when a
quadrupole source varies periodically in time. The time-averaging theorem (1.139) is not immediately
useful when, as can happen, the time dependencies of the individual elements of Q are not exactly
the same. In such cases, the time average must be performed explicitly. On the other hand, when
�̈ = iω3�, we can use the ratio of (20.200) to (20.162) to estimate the relative importance of E1 and
E2 radiated power when a single source radiates both simultaneously. The result,

〈PE2 〉
〈PE1〉 ∼

(
L

λ

)2

, (20.201)

shows that E1 radiation always dominates E2 radiation at long wavelength. The discussion surrounding
(20.184) should be consulted to estimate the relative importance of E2 to M1 radiation.

Example 20.6 Show that quadrupole radiation dominates the long-wavelength emission from
an isolated group of N moving particles when all the particles have the same charge-to-mass
ratio q/m.

Solution: Quadrupole radiation dominates at long wavelength if there is no dipole radiation. There
will be no electric dipole radiation if p̈(t) = 0 and no magnetic dipole radiation if m̈(t) = 0. As in
(20.150), the total electric dipole moment is

p =
N∑
k=1

qkrk = q

m

N∑
k=1

mkrk.

Therefore, p̈ = (q/m)
∑

k mk r̈k . The sum is proportional to the acceleration of the center of mass,
which is zero for an isolated system. The total magnetic dipole moment is

m = 1

2

N∑
k=1

qk(rk × υk) = q

2m

N∑
k=1

(rk ×mυk) = q

2m

N∑
k=1

Lk.

The sum is equal to the total orbital angular momentum, which is constant for an isolated system.
Therefore, m̈ = 0.

20 The delta function structure follows from the symmetry of the integral with respect to exchanging any two indices.
The numerical pre-factor follows because the integral equals 4π when we set t = m, k = p, and sum over t and p.

21 TrA = ∑
k Akk .
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z

θ0
R

Figure 20.21: A perfectly conducting sphere with a gap at a fixed latitude. A voltage V cosωt is applied across
the gap.

20.8 Spherical Multipole Radiation

In this section, we use outgoing spherical waves to construct a multipole decomposition of the electro-
magnetic fields radiated by a compact source of time-dependent charge and current. For rotationally
invariant sources, this representation is the natural generalization of the spherical expansions derived in
Section 4.6 and Section 11.4.2 for electrostatic and magnetostatic sources, respectively. An important
step is to find the spherical multipole moments which relate the amplitudes of the various outgoing
multipole fields to the charge density ρ(r, t) and current density j (r, t). We restrict ourselves through-
out to time-harmonic sources which vary as exp(−iωt). The formidable algebra required to treat the
case of full spherical symmetry motivates us to begin with an example with azimuthal symmetry. We
then pass to the general case and derive expressions for the fields and the multipole moments. We
compute the energy and angular momentum radiated by a single multipole field and indicate (in brief)
how the general formalism applies to radiative transitions in atoms.

We learned in Section 16.8 that any solution of the free-space Maxwell equations can be written as
a linear combination of a transverse electric (TE) wave (where r · E = 0) and a transverse magnetic
(TM) wave (where r · B = 0). If u(r, t) and w(r, t) are arbitrary solutions of the scalar wave equation,
the solutions found previously were

E = r × ∇ ∂u

∂t
+ c∇ × (r × ∇w)

(20.202)
cB = r × ∇ ∂w

∂t
− c∇ × (r × ∇u).

In this section, we restrict ourselves to harmonic waves and let ∂/∂t → −iω in (20.202). The space
parts of u and w then satisfy the Helmholtz equation with ω = ck:[∇2 + k2

]
ψ(r) = 0. (20.203)

For radiation problems, we will always choose the outgoing wave solutions to (20.203).

20.8.1 A Slotted Conducting Sphere
Figure 20.21 shows a conducting sphere of radius R separated into two parts by a narrow gap at a
fixed latitude. Our interest is the radiation produced by the sphere when a voltage V cosωt is applied
across the gap. Away from the gap, the tangential component of the electric field must vanish at the
conductor surface. Just at the gap, we impose the electric field E(θ ) = (V/R)δ(θ − θ0)θ̂ . By symmetry,
the electric field produced by the sphere does not depend on φ and does not have a component in
the φ̂ direction. A glance at the curl operator in spherical coordinates shows that this will be true if
u(r, t) = 0 in (20.202). In other words, the fields produced by the slotted sphere are purely transverse
magnetic (TM).
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We showed in Section 16.8.2 that each elementary, outgoing wave solution of (20.203) is the
product of a spherical Hankel function, h(1)

� (kr), and a spherical harmonic, Y�m(θ, φ) = Y�m(�). Here,
the spherical harmonic may be replaced by a Legendre polynomial, P�(θ ). Therefore, with a minus
inserted for convenience, the general solution for w(r) is

w(r, θ ) = −
∞∑
�=0

A�h
(1)
� (kr)P�(cos θ ). (20.204)

Substituting (20.204) into (20.202), we use the fact that

L2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂2φ
(20.205)

is the square of the angular momentum operator (with −h = 1) in quantum mechanics andL2P�(cos θ ) =
�(�+ 1)P�(cos θ ) to deduce that

cBφ = iω

∞∑
�=1

A�h
(1)
� (kr)

d

dθ
P�(cos θ )

Er = c

∞∑
�=1

A�

�(�+ 1)

r
h

(1)
� (kr)P�(cos θ ) (20.206)

Eθ = c

∞∑
�=1

A�

1

r

d

dr

[
rh

(1)
� (kr)

] d

dθ
P�(cos θ ).

The identity (C.14) makes the orthogonality relation (C.16) useful for finding A� when we apply
the boundary condition Eθ (R, θ) = (V/R)δ(θ − θ0) to (20.206). The result is

A� = −V

c

2�+ 1

2�(�+ 1)

sin θ0P
1
� (cos θ0)

d

dr

[
rh

(1)
� (kr)

]
r=R

. (20.207)

Inserting (20.207) into (20.206) gives fields which are exact at all distances. However, to find the
angular distribution of radiated power, we need only one of the transverse fields, Eθ or Hφ , in the
r → ∞ limit. This, in turn, requires the asymptotic formula

lim
r→∞h

(1)
� (kr) = 1

kr
exp{i[kr − 1

2 (�+ 1)π]}. (20.208)

Figure 20.22 shows the corresponding time-averaged angular distribution of power for λ = 4R and
λ = R/2. The first of these is the beginning of the long-wavelength regime and the radiation pattern
exhibits the broadside behavior expected for dipole emission (see Figure 20.17). Many multipoles
contribute to the shorter-wavelength case shown where the emission is nearly isotropic, albeit with
significant lobes near θ = 0 and θ = π .

20.8.2 Multipole Expansions for E(r, t) and B(r, t)
In this section, we derive a spherical multipole expansion for a general radiation field produced by
arbitrary time-harmonic sources. We change notation slightly from the previous section and write the
functions u(r, t) and w(r, t) which appear in (20.202) in the form

ωu(r, t) = �M(r) exp(−iωt) and ωw(r, t) = �E(r) exp(−iωt). (20.209)

The assumed time dependence implies that �M(r) and �E(r) must be taken from among the solutions
of the scalar Helmholtz equation (20.203). We conform with the physics literature of multipole fields
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Figure 20.22: The time-averaged angular distribution of power radiated by the slotted sphere in Figure 20.21
with θ0 = π/2. Figure from Harrington (1961).

if we introduce the quantum mechanical operator for angular momentum (with −h = 1),

L = −ir × ∇, (20.210)

and write (20.202) in the form

E = L�M + i

k
∇ × L�E

(20.211)

cB = L�E − i

k
∇ × L�M.

The reader can check that the fields in (20.211) satisfy ∇ · E = 0, ∇ · B = 0, and the two Maxwell
curl equations,22

E = i

k
∇ × cB and cB = − i

k
∇ × E. (20.212)

The key step is to expand �M(r) and �E(r) in (20.211) as sums of the elementary outgoing wave
solutions of the Helmholtz equation (20.203) written in spherical coordinates. As noted just before
(20.204), each of these elementary solutions is a product of a spherical Hankel function, h(1)

� (kr), and
a spherical harmonic, Y�m(θ, φ) = Y�m(�). Therefore, if �M

�m and �E
�m are expansion coefficients with

the dimensions of electric field, the fields in (20.211) take the spherical multipole form

cB(r) =
∞∑
�=1

�∑
m=−�

�E
�mLh(1)

� (kr)Y�m(�) − i

k

∞∑
�=1

�∑
m=−�

�M
�m∇ × Lh(1)

� (kr)Y�m(�) (20.213)

and

E(r) =
∞∑
�=1

�∑
m=−�

�M
�mLh(1)

� (kr)Y�m(�) + i

k

∞∑
�=1

�∑
m=−�

�E
�m∇ × Lh(1)

� (kr)Y�m(�). (20.214)

There are no � = 0 terms in (20.213) and (20.214) because L acts only on the angular variables and
Y00 is a constant.23 The magnetic multipole moment �M

�m fixes the amplitude of each TE wave and the

22 This requires the use of (20.203) and the operator identities ∇ · L = 0 and ∇ × (∇ × L) = −L∇2.
23 This is consistent with Application 16.1 of Section 16.8.2.
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electric multipole moment �E
�m fixes the amplitude of each TM wave. The reason for these names will

emerge in the next section.

20.8.3 Explicit Formulae for the Multipole Moments
Our task now is to connect the expansion coefficients �M

�m and �E
�m to the charge and current densities

of the source. For this purpose, we take the scalar product of r with the two equations in (20.211).
Because r · L = 0 and r · ∇ × L = iL2 are operator identities, we find

r · cB = 1

k
L2�M and r · E = −1

k
L2�E. (20.215)

Equation (20.215) implies that r · E and r · B can be expanded in elementary solutions of the Helmholtz
equation, just like �M and �E. Indeed, because L2Y�m(�) = �(�+ 1)Y�m(�), the expansion coeffi-
cients are related by

�M
�m = k

�(�+ 1)
(r · cB)�m and �E

�m = − k

�(�+ 1)
(r · E)�m. (20.216)

In light of (20.216), we focus on the connection between the expansion coefficients, (r · B)�m and
(r · E)�m, and the charge density ρ(r, t) and current density j (r, t). This is not difficult to discover
because r · E and r · B both satisfy inhomogeneous Helmholtz equations derived by specializing the
inhomogeneous wave equations (20.4) and (20.5) to time-harmonic fields and using the identity

r · (∇2F) = ∇2(r · F) − 2∇ · F. (20.217)

These steps produce [∇2 + k2
]

(r · B) = −μ0 r · ∇ × j (20.218)

and [∇2 + k2
]

(r · E) = 1

ε0
[2ρ + r · ∇ρ] − iωμ0 r · j. (20.219)

We found the retarded solution to the inhomogeneous Helmholtz equation in Section 20.3.3. If

G0(r, r′) = exp(ik|r − r′|)
4π |r − r′| (20.220)

is the free-space Green function, two applications of (20.53) give

r · B = μ0

∫
d 3r ′ G0(r, r′)

[
r′ · ∇′ × j (r′)

]
(20.221)

and

r · E = 1

ε0c

∫
d 3r ′ G0(r, r′)

[
ikr′ · j (r′) − c(2 + r′ · ∇′)ρ(r′)

]
. (20.222)

We now write a spherical expansion for G0(r, r′) by combining (C.54) with the spherical harmonic
addition theorem (4.79) to get24

G0(r, r′) = ik

∞∑
�=0

�∑
m=−�

j�(kr<)h(1)
� (kr>)Y ∗

�m(�<)Y�m(�>). (20.223)

24 The inequality r ′ < r is always true because we enclose the charge and current in a sphere and compute the fields
outside that sphere only.
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20.8 Spherical Multipole Radiation 759

Spherical expansions for r · B and r · E follow by substituting (20.223) into (20.221) and (20.222). The
coefficients (r · B)�m and (r · E)�m are the pre-factors that multiply h(1)

� (kr)Y�m(�) in each expression.
Using these in (20.216) gives explicit expressions for the spherical multipole moments which appear
in (20.213) and (20.215):

�M
�m = ick2μ0

�(�+ 1)

∫
d 3r j�(kr)Y ∗

�m(�) [r · ∇ × j (r)] (20.224)

and

�E
�m = − ik2

ε0c�(�+ 1)

∫
d 3r j�(kr)Y ∗

�m(�) [ikr · j (r) − c(2 + r · ∇)ρ(r)] . (20.225)

The origin of the names “magnetic” and “electric” for the moments �M
�m and �E

�m becomes clear
when we assume that the source has linear size a and pass to the long-wavelength (ka � 1) limit.
Using limx→0 j�(x) = x�/(2�+ 1)!! from (C.46), we find25

lim
ka→0

�M
�m = ick�+2μ0

�(2�+ 1)!!
M�m and lim

ka→0
�E

�m = − ik�+2

4πε0�(2�− 1)!!
A�m. (20.226)

�M
�m is proportional to the magnetostatic momentM�m defined in (11.66) and�E

�m is proportional to the
electrostatic moment A�m defined in (4.87). We conclude that slowly time-varying currents produce
long-wavelength TE waves and slowly time-varying charges produce long-wavelength TM waves.

20.8.4 Electric Multipole Radiation of Energy
We consider here the radiation of energy from a single electric multipole source. From (20.213) and
(20.214), the exact fields of interest are

cB = �E
�mLh(1)

� (kr)Y�m(�) and E = �E
�m

i

k
∇ × Lh(1)

� (kr)Y�m(�). (20.227)

Equation (20.227) simplifies when r → ∞ because limx→∞ h
(1)
� (x) = (−i)�+1 exp(ix)/x [see (C.49)]

and L operates only on the angular variables. The fields that result are tangential and fall off as 1/r ,
as expected for radiation fields:

cBrad = �E
�m(−i)�+1 exp(ikr)

kr
LY�m(�) and Erad = cBrad × r̂. (20.228)

Using (20.120), the time-averaged angular distribution of power radiated by the multipole field
(20.228) is 〈

dP

d�

〉
= r2

2μ0c
|cBrad |2 = 1

2μ0ck2

∣∣�E
�m

∣∣2 |LY�m(�)|2 . (20.229)

We state without proof that the vector LY�m in (20.228) and (20.229) is a linear combination of the
form26

LY�m = ẑA0Y�m + (x̂ + iŷ)A1Y�,m+1 + (x̂ − iŷ)A−1Y�,m−1, (20.230)

where A0, A1, and A−1 are functions of � and m. LY�m is also one member of a set of spherical tensors
called vector spherical harmonics. The most sophisticated treatments of multipole radiation exploit

25 The electric moment requires an integration by parts and the convention that (−1)!! = 1.
26 See, for example, D.M. Brink and G.R. Satchler, Angular Momentum, 2nd edition (Clarendon, Oxford, 1968),

Section 4.10.2.
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the rotational properties of these tensors. Here, we note only that the angular distribution (20.229) is
a different function of the polar angle θ (only) for each value of � and |m|.27

The total radiated power is the integral of (20.229) over all angles. Because L is a Hermitian operator,∫
d� [LY�m]∗ · [LY�m] =

∫
d�

[
L2Y�m

]∗
Y�m = �(�+ 1). (20.231)

Therefore, the rate at which an (�m) electric multipole radiates energy to infinity is〈
dU

dt

〉
= �(�+ 1)

2μ0ck2

∣∣�E
�m

∣∣2 . (20.232)

Substitution of �E from (20.226) into (20.232) shows that the radiated power is proportional to ω2�+2

when the radiation wavelength is large compared to the source size. The radiated power decreases
rapidly as the �-order increases. The ω4 and ω6 dependence of the radiated power predicted for dipole
(� = 1) and quadrupole (� = 2) sources agrees with the Cartesian multipole analysis of Section 20.7.

The results for the power radiated by a single magnetic multipole are similar. The vector spherical
harmonic in (20.229) again gives the radiation pattern, but the polarization is rotated by 90◦. When
several multipoles radiate simultaneously, the reader can confirm that interference between multipoles
occurs in the angular distribution of power, but not in the total radiated power.

20.8.5 Electric Multipole Radiation of Angular Momentum
The rate at which a single electric multiple source radiates angular momentum is fixed by the conser-
vation law derived in Section 15.6.1. Equation (15.77) gives the rate at which electromagnetic fields
carry angular momentum through a surface S which completely encloses the sources:

dL
dt

= ε0

∫
S

dS · {E(r × E) + c2B(r × B)
}+ 1

2ε0

∫
S

dS × r(E2 + c2B2). (20.233)

If S as an enormous sphere, the last integral in (20.233) vanishes because dS × r = 0. For an electric
multipole, the term proportional to dS · B also vanishes because B in (20.227) is transverse magnetic
and has no radial component. Therefore, the time-averaging theorem (Section 1.6.3) gives〈

dL
dt

〉
= 1

2ε0Re
∫
S

dS (r̂ · E∗)(r × E). (20.234)

We have not written Erad in (20.234) because (20.228) shows that this field is tangential and thus
makes no contribution to the radiated angular momentum. Accordingly, we return to the exact fields
(20.227) and use the operator identity r · ∇ × L = iL2 to find that the radial piece of the electric field
is

r̂ · E = −�(�+ 1)

kr
�E

�mh
(1)
� (kr)Y�m(�). (20.235)

The x → ∞ form of h(1)
� (x) following (20.227) shows that the asymptotic behavior of (20.235) is

1/r2, which is just what we need to compensate the extra factor of r in the integrand of (20.234). We
will also need the identity r × (∇ × L) = −L(1 + r · ∇), which shows that

r × E = −�E
�m

i

k

(
1 + r

∂

∂r

)
h

(1)
� (kr)LY�m(�). (20.236)

27 Jackson (1999) gives polar plots of (20.229) for � = 1 and � = 2.
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The final result follows by substituting (20.235) and (20.236) into (20.234), and using the asymptotic
form of h(1)

� (kr) everywhere:〈
dL
dt

〉
= ε0�(�+ 1)

2k3

∣∣�E
�m

∣∣2 Re
∫

d�Y ∗
�mLY�m. (20.237)

We evaluate (20.237) using (20.230), the orthogonality of the spherical harmonics, and the familiar
fact that LzY�m = mY�m. The result is that only the z-component of (20.237) is non-zero:〈

dLz

dt

〉
= ε0�(�+ 1)

2k3

∣∣�E
�m

∣∣2 m. (20.238)

The explicit multiplicative factor of m in (20.238) shows that each of the 2�+ 1 components of an
�-order electric multipole source radiates a different amount of (z-component of) angular momentum.
Moreover, using the remarks following (20.230), we see that there is a one-to-one correspondence
between the absolute magnitude of Lz radiated by an (�m) electric multipole and the angular pattern of
power radiated by that multipole. The results for the angular momentum radiated by a single magnetic
multipole are similar. However, interference occurs when several multipoles radiate simultaneously,
e.g., the x- and y-components of (20.237) are no longer zero. This is so even if the simultaneously
radiating multipoles belong to the same value of �.

20.8.6 Radiation from Atoms and Nuclei
The main use of the classical multipole formalism developed in this section is to analyze the radiation
emitted by atoms and nuclei. A first hint that our classical theory might describe radiation from a
quantum system comes when we combine (20.232) with (20.238). The result is28

1

m

〈
dLz

dt

〉
= 1

ω

〈
dU

dt

〉
. (20.239)

Equation (20.239) has an immediate and familiar “photon” interpretation: if an (�m) electric multipole
radiates energy in units of −hω, the z-component of the angular momentum must radiate in units of m−h.
Beyond this, the transition to quantum mechanics obliges us to replace certain functions in our theory
by their operator counterparts. The most important of these is the current density which appears in the
radiation vector potential (20.118) and in the multipole moments (20.224) and (20.225).29

Textbooks of quantum mechanics define the current density operator for a point particle of charge
q and mass m at position s as

jop(r, s) = q−h
2mi

[∇sδ(r − s) + δ(r − s)∇s] . (20.240)

Radiation from an atom is associated with the transition of an electron from an initial state with wave
function ψI (s) to a final state with wave function ψF (s). If the energy difference between the two
states is −hω, the effective current density needed to describe this transition in our classical theory is
the matrix element

j (r|ω) =
∫

d 3s ψ∗
F (s)jop(r, s)ψI (s) = q−h

2mi

[
ψ∗
F (s)∇ψI (s) − ψI (s)∇ψ∗

F (s)
]
. (20.241)

Substituting the spatial Fourier transform of (20.241) into the next-to-rightmost member of (20.120)
gives exactly the same angular distribution of radiated power as predicted by quantum mechanics for
the ψI → ψF transition.30

28 Compare with the last equation in Example 20.5.
29 The charge density in (20.225) can be eliminated in favor of j using the continuity equation.
30 See, e.g., Chapter 13 of G. Baym, Lectures on Quantum Mechanics (Benjamin/Cummings, Menlo Park, CA, 1969).

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-20 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 7:22

762 RETARDATION AND RADIATION: THE FIELDS PRODUCED BY RAPIDLY-VARYING SOURCES

To include spin, we supplement the electron orbital current density (20.241) by a spin magnetization
current density jS(r) = ∇ × MS and use the Pauli spin matrix, σ , to generalize the definition of spin
magnetization offered in Section 13.2.1 to

MS = e−h
2m

〈ψF |σ |ψI 〉. (20.242)

The matrix element notation in (20.242) indicates a sum over the two values of spin- 1
2 .

We now remind the reader that not all current distributions produce radiation [see the remarks
following (20.111) and (20.120)]. The distribution (20.241) must have this property for some choices
of ψI and ψF because (by construction) it reproduces the transition matrix element (and thus the
selection rules) of the quantum theory. The angular momentum selection rules follow by conservation
of angular momentum because the angular momentum carried away by the relevant multipole radiation
field (see Section 20.8.5) must account for the difference in intrinsic angular momentum associated
with ψI (r) and ψF (r). The parity selection rules can be deduced similarly because, like the initial and
final state wave functions, the electric and magnetic multipole fields have definite parity.31

20.9 Radiation in Matter

Except for neutron stars, all matter consists of atoms (or ions and free electrons) distributed more or
less densely in otherwise empty space. The bound or free electrons (and even the ions) can be set into
accelerated motion in various ways. As a result, radiation is easily produced inside matter and easily
propagates in matter before (possibly) exiting into the vacuum. The differences between radiation
in matter and radiation in vacuum come from the influence of the index of refraction, n(ω), and its
frequency dispersion. For example, the field vectors Erad and Brad need not be transverse to r when a
time-dependent current density produces radiation in a medium which supports longitudinal waves. A
low-density plasma is an example (see Section 18.5.3).

Unusual effects also occur when the velocity of a charged particle in a medium exceeds the
phase speed of electromagnetic waves in that medium (Cherenkov radiation). We will discuss this
effect separately in Chapter 23. In this section, we limit ourselves to a non-dispersive dielectric
and demonstrate the power of the Hertz vector method by showing explicitly that the reflected and
transmitted waves of elementary refraction theory are produced by the mutual interference of all the
radiation fields produced when an incident wave enters and polarizes a dielectric medium.

20.9.1 The Ewald-Oseen Extinction Theorem
Figure 20.23 shows a plane wave in vacuum approaching a linear dielectric half-space at normal
incidence. We have analyzed this situation previously using the Fresnel equations (Section 17.3.2) to
find the amplitude of the reflected and transmitted waves. The wave equation in matter (Section 17.2)
shows that the phase speed of the transmitted wave is c/n, where n = √

1 + χ is the index of refraction.
In this section, we derive both results simultaneously by solving an inhomogeneous wave equation
which has the electric polarization P(r, t) as its source term. We will gain new insight by interpreting
the solution as an example of the Ewald-Oseen extinction theorem. This is the statement that the
time-dependent polarization of the dielectric medium induced by the incident wave is the source of a
retarded field which plays several roles. Inside the medium, it cancels the incident wave and replaces
it by the transmitted wave. Outside the medium, it is exactly the reflected wave.

31 See Sources, References, and Additional Reading.
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Figure 20.23: The half-space z > 0 is a linear dielectric medium. The dielectric develops a polarization
P = ε0χE when a plane wave enters it at normal incidence from the vacuum half-space z < 0.

To prove these statements, we begin with the inhomogeneous wave equation satisfied by the electric
Hertz vector, π e(r, t) (see Section 20.2):

∇2π e − 1

c2

∂2π e

∂t2
= − 1

ε0
P. (20.243)

Also from Section 20.2, we recall that π e determines the electric field in a non-magnetic medium from

E = ∇ × ∇ × π e − P
ε0
. (20.244)

Matching conditions do not play a role if we seek a solution to (20.243) that is valid for all values of
z in Figure 20.23.

Our strategy is to write π e as the sum of a homogeneous solution, π0, and a particular solution, πp:

π e(r, t) = π0(r, t) + πp(r, t). (20.245)

The homogeneous (P = 0) solution accounts for the incident wave propagating in the positive
z-direction with wave vector k0 = ω/c and amplitude E0 ⊥ ẑ. Accordingly,

E0 exp[i(k0z − ωt)] = ∇ × ∇ × π0. (20.246)

The particular solution accounts for the field produced by the polarization of the medium. This is the
retarded integral (20.61), which we repeat here for convenience:

πp(r, t) = 1

4πε0

∫
d 3r ′ P(r′, t − |r − r′|/c)

|r − r′| . (20.247)

To find the physical solution of interest, we evaluate (20.247) for a plane wave-type polarization,
P(r, t) = P exp[i(kz − ωt)], and require consistency between the total electric field inside the medium
and the polarization which contributes to it. The first step leads to

πp(r, t) = P exp[i(kz − ωt)]

4πε0

∞∫
0

dz′ exp[ik(z′ − z)]

∞∫
−∞

dx ′
∞∫

−∞
dy ′ exp(ik0|r − r′|)

|r − r′| . (20.248)

The integrand of the x ′ and y ′ integrals is azimuthally symmetric and thus produces a factor of 2π
when performed in cylindrical coordinates. Changing variables to R2 = ρ2 + |z′ − z|2 and using a
convergence factor λ to regularize the final integral over R gives

2π

∞∫
0

dρρ
exp(ik0R)

R
= lim

λ→0
2π

∞∫
|z′−z|

dR exp(ik0R) exp(−λR) = 2πi

k0
exp[i(k0|z′ − z|)].

(20.249)
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Therefore,

πp(z, t) = i
P exp[i(kz − ωt)]

2ε0k0

∞∫
0

dz′ exp[ik(z′ − z)] exp(ik0|z − z′|). (20.250)

The integral over z′ in (20.250) must be done separately for z < 0 and for z > 0. We find

πp(z, t) = −P exp(−iωt)
2ε0k0

⎧⎪⎪⎨
⎪⎪⎩

1

k + k0
exp(−ik0z) z < 0,

2k0

k2
0 − k2

exp(ikz) + 1

k − k0
exp(ik0z) z > 0.

(20.251)

Nominally, the electric field follows from (20.244), (20.245), (20.246), and (20.251). However, it
is convenient to use (20.3) and (20.12) to eliminate the double curl and Laplacian operators acting on
πp. Moreover, ∇ · πp = 0 because P · ẑ = 0. Therefore,

E(z, t) = E0 exp[i(k0z − ωt)] + k2
0πp(z, t). (20.252)

Substituting (20.251) into (20.252) for z < 0 gives

E(z < 0, t) = E0 exp[i(k0z − ωt)] − P
2ε0

k0

k + k0
exp[−i(k0z + ωt)]. (20.253)

Doing the same for z > 0 gives

E(z > 0, t) = E0 exp[i(k0z − ωt)] − P
2ε0

k0

k − k0
exp[i(k0z − ωt)] − P

ε0

k2
0

k2
0 − k2

exp[i(kz − ωt)].

(20.254)

Focus now on the dielectric half-space and set E(z > 0, t) = E exp[i(kz − ωt)] on the left side of
(20.254) and P = ε0χE on the right side of (20.254). The requirement that the coefficients of exp(ik0z)
and exp(ikz) agree on both sides of this equation generates two self-consistency conditions,

1 = −χ k2
0

k2
0 − k2

and E0 = 1

2
χ

k0

k − k0
E. (20.255)

The left side of (20.255) determines the propagation wave vector in the medium as

k =
√

1 + χ k0 = nk0. (20.256)

The right side of (20.255) determines the polarization amplitude as

P = ε0χE = 2ε0(n− 1)E0. (20.257)

Substituting (20.256) and (20.257) into (20.253) gives the final result for the field in the vacuum as

E(z < 0, t) = E0 exp[i(k0z − ωt)] −
(
n− 1

n+ 1

)
E0 exp[−i(k0z + ωt)]. (20.258)

Making the same substitutions in (20.254) gives the final result for the field in the dielectric:

E(z > 0, t) =
(

2

n+ 1

)
E0 exp[i(nk0z − ωt)]. (20.259)

The electric fields (20.258) and (20.259) illustrate the Ewald-Oseen extinction theorem. This is
the name given to the observation that there are three parts to the field produced by the dynamic
polarization induced in a dielectric by an incident electromagnetic wave. One part is a “reflected”
wave which propagates in the vacuum with speed c. Another part annuls the incident wave inside the
medium by destructive interference. The third part is a “transmitted” wave which propagates in the
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medium with phase speed c/n. The amplitudes of the reflected and transmitted waves are exactly those
predicted by a conventional Fresnel analysis which matches solutions of different wave equations at
z = 0. The sheer implausibility of our conclusion motivates us to repeat it. The time-dependent
polarization induced in a dielectric medium by an incident plane launches retarded waves from every
point in the medium. These waves have just the right amplitude and phase for their superposition
to annihilate the incident wave and create both the usual transmitted and reflected waves of Fresnel
theory.

�

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is taken from
H. Hertz, Electric Waves (Macmillan, London, 1893), Chapter IX.

Section 20.1 Three good treatments of retardation and radiation are
R.H. Good, Jr. and T.J. Nelson, Classical Theory of Electric and Magnetic Fields (Academic, New York, 1971).

E.J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981).

J. Schwinger, L.L. DeRaad, Jr., K.A. Milton, and W.-Y. Tsai, Classical Electrodynamics (Perseus, Reading, MA,
1998).

Section 20.2 The sources for Application 20.1 and Example 20.1 are, respectively,
H.A. Lorentz, The Theory of Electrons, 2nd edition (Dover, New York, 1952), Section 26.

J.D. Templin, “Exact solution to the field equations in the case of an ideal, infinite solenoid”, American Journal
of Physics 63, 916 (1995).

Section 20.3 The phrase “arrow of time” is often used for the apparent breaking of time-reversal symmetry in
thermodynamic and electrodynamic phenomena. An illuminating one-dimensional model calculation is

A.D. Boozer, “Retarded potentials and the radiative arrow of time”, European Journal of Physics 28, 1131
(2007).

Hansen and Yaghjian discuss a “causality trick” where the advanced solution can be useful (for numerical reasons)
to solve propagation problems when V is finite. Wheeler and Feynman famously studied radiation in the V → ∞
limit using a linear combination of ψret and ψadv with an “absorbing boundary condition” at infinity. As it turns
out, the requirements of their model do not accord with contemporary cosmological ideas.

T.B. Hansen and A.D. Yaghjian, Plane Wave Theory of Time-Domain Fields (IEEE Press, New York, 1999).

J.A. Wheeler and R.P. Feynman, “Interaction of the absorber as the mechanism for radiation”, Reviews of
Modern Physics 17, 157 (1945).

The one-page Ritz-Einstein paper mentioned at the end of Section 20.3.2 is
W. Ritz and A. Einstein, “On the current state of the radiation problem”, Physikalische Zeitschrift 10, 323
(1909).

The original, frequency-domain derivation of the Schott formulae appears in Chapter II of
G.A. Schott, Electromagnetic Radiation (University Press, Cambridge, 1912).

The time-domain version of the Schott formulae derived in the text appears in, e.g.,
O.D. Jefimenko, Electricity and Magnetism (Appleton-Century-Crofts, New York, 1966).

P.D. Clemmow and J.P. Dougherty, Electrodynamics of Particles and Plasmas (Addison-Wesley, Reading, MA,
1969).

Section 20.4 Our discussion of (20.77) follows Mandel. Example 20.3 was taken from Nevesskii.
L. Mandel, “Energy flow from an atomic dipole in classical electrodynamics”, Journal of the Optical Society
of America 62, 1101 (1972).

N. Ye. Nevesskii, “Electromagnetic fields of current structures”, Electrical Technology 4, 141 (1994).
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Section 20.5 The “induced EMF” method to calculate the power radiated by a time-dependent current source
was introduced by the French-American polymath Léon Brillouin during a period when he lectured on radio science
at the École Supérieure d’Electricité. He subsequently made many contributions to electromagnetic theory, optics,
quantum mechanics, solid state theory, and information theory.

L. Brillouin, “On the origin of radiation resistance”, Radioelectricité 3, 147 (1922).

Our treatment of Hertz’ analysis of the “birth of radiation” benefitted from
G. Scharf, From Electrostatics to Optics (Springer, Berlin, 1994), Section 3.4.

For an appreciation of the life and work of Joseph Larmor, see
A. Warwick, “Frequency, theorem and formula: Remembering Joseph Larmor in electromagnetic theory”,
Notes and Records of the Royal Society of London 47, 49 (1993).

Section 20.6 Our frequency-domain analysis, including Figure 20.11, comes from Balanis. Our time-domain
discussion, including Figure 20.12 and Figure 20.13, comes from Smith.

C. Balanis, Antenna Theory: Analysis and Design, 3rd edition (Wiley, New York, 2005).

G.S. Smith, “Teaching antenna radiation from a time-domain perspective”, American Journal of Physics 69,
288 (2001).

de Hoop uses electromagnetic theory to prove the equivalence of the broadcast and receiving patterns of
an antenna. Rohlfs presents an alternative proof based on thermodynamic considerations. Smith explains the
physics.

A.T. de Hoop, “A reciprocity relation between the transmitting and receiving properties of an antenna”,
Applied Scientific Research 19, 90 (1968).

K. Rohlfs, Tools of Radio Astronomy (Springer, Berlin, 1986), Section 4.5.3.

G.S. Smith, “Teaching antenna reception and scattering from a time-domain perspective”, American Journal
of Physics 70, 829 (2002).

The phased antenna array used to detect the first pulsar is described in the article which earned Antony Hewish a
share of the 1974 Nobel Prize:

A. Hewish, S.J. Bell, J.D.H. Pilkington, P.F. Scott, and R.A. Collins, “Observation of a rapidly pulsating radio
source”, Nature 217, 709 (1968).

Section 20.7 Application 20.3, Example 20.4, and Example 20.6 come, respectively, from
E. Collett, “The description of polarization in classical physics”, American Journal of Physics 36, 713 (1968).

J. Schwinger, L.L. DeRaad, Jr., K.A. Milton, and W.-Y. Tsai, Classical Electrodynamics (Perseus, Reading, MA,
1998), Chapter 33.

L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, 2nd edition (Addison-Wesley, Reading, MA,
1962), Section 71.

Two quite different approaches to the complete Cartesian multipole expansion are
C. Vrejoiu, “Electromagnetic multipoles in Cartesian coordinates”, Journal of Physics A 35, 9911 (2002).

N. Kemmer, “Elementary derivation of general multipole moments for classical charge and current distribu-
tions” in Quanta: Essays in Theoretical Physics Dedicated to Gregor Wentzel, edited by P.G.O. Freund, C.J.
Goebel, and Y. Nambu (University Press, Chicago, IL, 1970), pp. 1-12.

Section 20.8 The slotted-sphere problem discussed in Section 20.8.1 comes from Karr. The accompanying
Figure 20.22 was reproduced from Harrington.

P.R. Karr, “Radiation properties of a spherical antenna as a function of the location of the driving force”,
Journal of Research of the National Bureau of Standards 46, 422 (1951).

R.F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961).

We follow Gray for our general discussion of spherical multipole radiation. Blatt and Weisskopf and Konopinski
(see Section 20.1 above) treat this subject using vector spherical harmonics. This is the method of choice for
rotationally invariant quantum systems. Jackson discusses the radiation from atoms and molecules from this point
of view.

C.G. Gray, “Multipole expansions of electromagnetic fields using Debye potentials”, American Journal of
Physics 46, 169 (1978).
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J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952).

J.D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1999).

Section 20.9 Two complementary treatments of radiation in dispersive matter are
V.L. Ginzburg, Theoretical Physics and Astrophysics (Pergamon, Oxford, 1979).

D.B. Melrose and R.C. McPhedran, Electromagnetic Processes in Dispersive Matter (University Press,
Cambridge, 1991).

Our Hertz vector approach to the extinction theorem was inspired by
R.K. Wangsness, “Effect of matter on the phase velocity of an electromagnetic wave”, American Journal of
Physics 49, 950 (1981).

J.J. Sein, “Solutions to time-harmonic Maxwell equations with a Hertz vector”, American Journal of Physics
57, 834 (1989).

Problems
20.1 Poynting Flux above a Thunderstorm A lighting strike associated with a thunderstorm acts very much

like a broadband antenna. Explain why data from airplane-borne electric and magnetic field sensors flown
immediately above (in the near zone of) such storms reveal Poynting fluxes in the ρ̂ direction (with respect
to the ẑ-direction of the vertical lighting strike) which increase linearly with frequency between 100 Hz and
10 kHz. Hint: Thunderclouds rise to about 50,000 feet above sea level.

20.2 Fields from an Alternating Current in an Ohmic Wire An infinitely long straight wire on the z-axis has
a circular cross section and obeys j(ω) = σ0E(ω) for all ρ ≤ a. After initial transients, the charge density
ρ(r, t) ≡ 0 and the current I (t) = I0 cosωt everywhere inside the wire.

(a) Solve an appropriate Helmholtz equation and find the exact E(r, t) inside the wire. Express the amplitude
of the field in terms of I0.

(b) Solve an appropriate Helmholtz equation and find E and B exactly outside the wire.
(c) Use Poynting’s theorem to show that the normal component of the time-averaged Poynting vector 〈S〉

evaluated on any cylindrical surface concentric with the wire always points toward the z-axis.
(d) Use the Poynting vector to calculate the rate at which energy is lost to ohmic heating per unit length of

wire.
(e) Use the Poynting vector to calculate the rate at which energy is lost to radiation per unit length of wire.

How is this result consistent with conservation of energy and the answer to part (c)?

20.3 Free-Space Green Function in Two Dimensions Confirm by direct substitution into the defining equation
that the free-space Green function for the Helmholtz equation in two-dimensional plane polar coordinates
ρ = (ρ, φ) is

G0(ρ, ρ ′) = i

4
H

(1)
0 (k|ρ − ρ ′|),

where H (1)
0 (x) is the zero-order Hankel function of the first kind.

20.4 The Method of Descent The Green function G(x, y, z, t > 0) = δ(t − r/c)/4πr is a solution of the
inhomogeneous wave equation in three space dimensions with the source term −δ(x)δ(y)δ(z)δ(t).

(a) Show that G2(x, y, t) = ∫∞
−∞ dzG(x, y, z, t) is a solution of the inhomogeneous wave equation in two

space dimensions with the source term −δ(x)δ(y)δ(t).
(b) Evaluate the integral in part (a) to find G2(ρ, t) explicitly, where ρ2 = x2 + y2.

20.5 Retarded Fields from Non-Retarded Potentials The scalar and vector potentials in the Coulomb gauge
are

ϕC(r, t) = 1

4πε0

∫
d 3r ′ ρ(r′, t)

|r − r′| and AC(r, t) = μ0

4π

∫
d 3r ′ j⊥(r, t − |r − r′|/c)

|r − r′| ,
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where

j⊥(r, t) = ∇ × 1

4π

∫
d 3r ′ ∇′ × j(r′, t)

|r − r′| .

(a) The scalar potential ϕC(r, t) is not retarded because it depends on ρ(r′, t). The vector potential AC(r, t)
looks retarded, because it depends on j⊥(r′, t − |r − r′|/c), but it is not. Use the properties of the
transverse current density, j⊥, to explain why at least some contributions to AC are not retarded.

(b) Show by direct calculation that AC(r, t) nevertheless produces a properly retarded magnetic field,
B(r, t). Hint: Use an extra integration over t ′ and a delta function δ(t ′ − t + |r − r′|/c) to impose the
retardation of j⊥.

(c) Exploit the Ampère-Maxwell equation to derive a retarded expression for E(r, t).

20.6 Radiation from a Magnetized Electron Gas A classical electron gas with number density n0 exhibits
a Maxwell velocity distribution at temperature T . In the presence of a uniform magnetic field B0, the gas
emits radiation at a wavelength which is much larger than the mean separation between the electrons. Find
the radiated power per unit volume.

20.7 Energy Flow from a Point Electric Dipole A point electric dipole with moment p(t) has a fixed position
in space. Show that the rate at which energy flows through a spherical surface of radius R centered at the
dipole is

dU

dt
= 2

3

1

4πε0

[
d

dt

{
p2

2R3
+ pṗ

cR2
+ ṗ2

c2R

}
ret

+ p̈2
ret

c3

]
.

20.8 A Point Charge Blinks On A charge density ρ(r, t) = q(t)δ(r) where q(t) = 0 for t < 0 and q(t) = q

for t > τ .

(a) Calculate E(r, t) and B(r, t) using symmetry and elementary methods.
(b) Calculate E(r, t) and B(r, t) from the Coulomb gauge scalar and vector potentials.
(c) Calculate E(r, t) and B(r, t) from the Lorenz gauge scalar and vector potentials. As an intermediate

step, you will prove that∫
d 3s

δ(τ − s/c)

|r − s| = 4π

[
c3τ 2

r
�(r − cτ )�(τ ) + c2τ�(cτ − r)

]
.

Hint: Use an extra integration over t ′ and a delta function δ(t ′ − t + |r − r′|/c) to impose retardation of the
vector potential in part (c).

20.9 The Birth of Radiation The text shows that the electric field of a point electric dipole at the origin with
moment p(t) = p (t)ẑ produces an electric field (away from the source) in cylindrical coordinates of the
form

E(ρ, z, t) = 1

4πε0

[
1

ρ

dR

dρ
ẑ − 1

ρ

dR

dz
ρ̂

]
,

where

R(ρ, z, t) = −ρ ∂

∂ρ

[
p (t − r/c)

r

]
.

The family of curves R(ρ, z) = const. = R0 may be interpreted as electrical field lines.

(a) Show that the points (ρ, z) of null (zero) electric field where the field lines pinch off and detach from
the source at time t satisfy

z = 0
R0

ρ
+ p̈ (t − ρ

/
c)

c2
= 0.
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(b) Assume that p(t) = p0 cosωt and show that only those field lines with |R0| < 2ωp0/c
√

3 can detach
from the source. Check that the detachment-point solutions correspond to ρ > 0.

20.10 An Electrically Short Antenna Consider the time-harmonic dipole antenna with imposed current
I (z) = I0 sin(kd − k|z|) discussed in Section 20.6.1 of the text.

(a) Evaluate the time-averaged angular distribution of power in the limit when the radiation wavelength is
very large compared to the length of the antenna. Such an antenna is called “electrically short”.

(b) Compute the exact electric dipole moment of the antenna. Take the long-wavelength limit and use this
moment to evaluate the time-averaged angular distribution of power radiated by a point electric dipole.
Compare with part (a).

(c) In the literature, 〈dP/d�〉 is often quoted using the current at the input point, I (0) = I (z = 0), rather
than the peak current I0. Show that doing this changes the explicit wavelength dependence into the
dependence found for 〈dP/d�〉 for a time-harmonic point electric dipole modeled as two point charges
±q(t) at z = ±d connected by a spatially uniform current I (0).

20.11 The Time-Domain Electric Field of a Dipole Antenna Derive the expression (20.131) for Etot(r, t), the
total, time-domain electric field produced by a dipole antenna synthesized from four traveling current waves
IS(t).

20.12 Radiation Recoil

(a) Explain why a localized (and entirely classical) source of charge and current does not recoil when it
emits dipole radiation.

(b) Is recoil ever possible for a classical radiation source? If not, explain why not. If so, give an example.

20.13 Non-Radiating Sources Suppose f(r) is a localized vector function and j(r, t) = j(r|ω) exp(−iωt) a
time-harmonic current density where

iωμ0j(r|ω) = ∇ × [∇ × f(r)] − ω2

c2
f(r).

Prove that j(r, t) does not radiate and find the physical meaning of f(r, t).

20.14 Lorentz Reciprocity A current density j1(r) exp(−iωt) produces fields E1(r) exp(−iωt) and B1(r) ×
exp(−iωt). A second current density j2 exp(−iωt) produces fields E2(r) exp(−iωt) and B2(r) ×
exp(−iωt).
(a) If V is a volume bounded by a surface S, prove the Lorentz reciprocity theorem:

μ0

∫
V

d 3r (E2 · j1 − E1 · j2) =
∫
S

dS · (E1 × B2 − E2 × B1).

(b) Specialize to a spherical volume which both encloses the current sources and is large enough that all
the fields on S can be taken to be radiation fields. Prove that∫

V

d 3r E2 · j1 =
∫
V

d 3r E1 · j2.

(c) Specialize further to time-harmonic point electric dipole sources located at r1 and r2. If pk is the dipole
moment of the kth dipole, prove that

p1 · E2(r1) = p2 · E1(r2).

Lorentz reciprocity is used to prove that the angular distribution of power radiated by an antenna in
broadcast mode is identical to the angular distribution of power absorbed by the same antenna in receiving
mode.
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20.15 Radiation from a Phased Array A current distribution consists of N identical sources. The kth source is
identical to the first source except for a rigid translation by an amount Rk (k = 1, 2, . . . , N ). The sources
oscillate at the same frequency ω but have different phases δk . That is,

jk ∝ exp[−i(ωt + δk)].

(a) Show that the angular distribution of radiated power can be written as the product of two factors: one is
the angular distribution for N = 1; the other depends on Rk and δk but not the structure of the sources.

(b) The planes of two square loops (each with side length a) are centered on (and lie perpendicular to)
the z-axis at z = ±a/2. The loop edges are parallel to the x and y coordinate axes. Find the angular
distribution of power, dP/d�, in the x-z plane if the current at all points in both loops is I cosωt . Make
a polar plot of the angular distribution for ωc/a = 2π and ωc/a � 1. Identify the multipole character
of the radiation in the latter case.

(c) Repeat part (b) when the current in the upper loop is I cosωt and the current in the lower loop is
−I cosωt .

20.16 Radiation from a Square Loop A square loop of wire in the x-y plane is centered at the origin with its
edges (each of length 2a) parallel to the axes. Current flows counterclockwise around the loop as viewed
from the positive z-axis. The time-dependence of the current is

I (t) =
⎧⎨
⎩

0 t < 0,
I0t/τ 0 < t < τ,

I0 τ < t,

where τ > 2a
/
c.

(a) Show that the radiation vector α(r, t) = ŷα(r, θ, t) when r = r cos θ ẑ + r sin θ x̂.
(b) Compute α(t) and make a careful graph of this function for fixed r and θ .

20.17 Linear Antenna Radiation Let the current density in a linear antenna of length h be

j(r, t) =
{
I (z, t)δ(x)δ(y)ẑ −h ≤ z ≤ h,

0 |z| > h.

(a) Find Erad(r, t) for the current I (z, t) = Aδ(t).Your answer will have two terms. Determine the apparent
origin of each term and give an argument for the time delay between the two. Make a polar plot centered
on the antenna and regard each ray as a time axis in units of t /τ where h = cτ. For each of the two
terms above, draw a closed, dashed curve which indicates when the signals arrive at each angle. At a
few representative angles, draw solid dots on the dashed curves to indicate the relative magnitude of
Erad at that angle.

(b) Repeat part (a) for the traveling-wave current I (z, t) = Ā δ(t − z/c).
(c) Show that a uniform current I (z, t) = A exp(−iωt) radiates total power P where

P ∼
{
ω2τ 2 ωτ � 1,

ωτ ωτ � 1.

(d) Show that the traveling-wave current I (z, t) = Ā exp i(kz − ωt) radiates total power P̄ where

P̄ ∼
{
ω2τ 2 ωτ � 1,

ln(ωτ ) ωτ � 1.

Some useful integrals are∫
dx

sin2 x

x
= 1

2
ln x − 1

2
Ci(2x)

∫
dx

sin2 x

x2
= − 1

2x
+ cos 2x

2x
+ Si(2x),

where Ci(x) is the cosine integral and Si(x) is the sine integral.
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20.18 Radiation from a Filamentary Current

(a) Find the potentials and the fields produced by a current I (t) = I0�(t) that turns on abruptly at t = 0 in
a neutral, filamentary wire coincident with the entire z-axis.

(b) Show that the electric and magnetic fields approach their expected values as t → ∞.

z0

R
( )I t

20.19 Crossed and Oscillating Electric Dipoles Two point electric dipoles are crossed in the x-y plane as
shown below (at left). Both oscillate at frequency ω but with a π/2 phase difference.

(a) Sketch the time evolution of the instantaneous angular distribution of power in the x-y plane at several
representative times between t = 0 and t = 2πω.

(b) Show that the radiation emitted along the z-axis is circularly polarized. Is the polarization the same for
+z as it is for −z?

(c) Show that two crossed dipoles oscillating at frequency ω with no phase difference between them also
emit circular polarized radiation along the z-axis if they are displaced by λ/4 as shown below (at right).
Is the polarization the same for z as it is for −z?

z z

4

yy

20.20 An Uncharged Rotor Two equal and opposite charges are attached to the ends of a rod of length s. The
rod rotates counterclockwise in the x-y plane with angular speed ω = ck. The electric dipole moment of
the system at t = 0 has the value p0 = qsx̂.

x

y

2s
q

q 2s

(a) Show that the electric field in the radiation zone is

Erad(r, θ, φ, t) = k2p0

4πε0

(
cos θ θ̂ + iφ̂

) ei(kr−ωt+φ)

r
.

Explain why the observer’s azimuthal angle φ appears in the phase.
(b) Write out the (real) electric field on the positive x-, y-, and z-axes. Identify the state of polarization

observed in each case and make a physical argument why each might be expected.
(c) Find the time-averaged rate at which energy is radiated per unit solid angle and the total rate at which

energy is radiated to infinity.
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20.21 Pulsar Radiation The pulsar SGR1806-20 has a period T = 7.5 sec and a “spindown” rate of
|Ṫ | = 10−11. Estimate the maximum magnetic field strength |B| at the surface of this pulsar by assum-
ing that the rotational kinetic energy (M = 3 × 1030 kg and R = 103 m) is dissipated by magnetic dipole
radiation.

20.22 Neutron Radiation Apply a magnetic field B = B ẑ to a neutron with its spin (assign a “classical”
magnitude S = −h/2 to the spin) oriented initially along the +y-axis. Show that, because the pre-
cessing magnetic moment m radiates energy, the (polar) orientation angle of the moment decays to
zero as

�(t) ≈ cos−1

[
tanh

t

τ

]
where

1

τ
= 8m5B3

3πε0c5−h4 .

Hint: Neglect d�
/
dt compared to the precession frequency when you compute the radiated power. Derive

a condition on the parameters of the problem which justifies this approximation.

20.23 Radiation Interference Let the origin of coordinates be centered on a compact, time-harmonic source of
electromagnetic radiation. The time-averaged power radiated into a differential element of solid angle d�
centered on an observation point r has the form

dP

d�
∝ |r̂ × α|.

The vector α = p0 if the source has a time-dependent electric dipole moment p(t) = p0 cosωt . The vector
α = m0 × r̂ if the source has a time-dependent magnetic dipole moment m(t) = m0 cosωt . For this problem,
consider a source where p(t) and m(t) are present simultaneously.

(a) Show that the time-averaged angular distribution of power generally exhibits interference between the
two types of dipole radiation. Under what conditions is there no interference?

(b) Show that the time-averaged total power emitted by the source does not exhibit interference.

20.24 Wire Radiation A very long (infinite) wire with a very small cross sectional area A is coincident with the
z-axis. The wire carries a current I (t) = I exp(−iωt).
(a) Use the Poynting vector to determine the dependence of the radiation fields on the variable ρ (cylindrical

coordinates) which measures the distance perpendicular to the wire.
(b) The radiation magnetic field from a time-dependent point electric dipole p(t) at the origin is

cBrad(r, t) = −μ0

4π

r̂
r

× d2p(t − r/c)

dt2
.

Explain why the radiation magnetic field from the wire can be regarded as a superposition of fields like
the one above.

(c) Carry out the superposition and confirm the answer you got in part (a). Simplify the integral you get
by assuming that z � ρ (even if it appears not to be justified) and then justify the approximation
afterwards.

20.25 A Charged Rotor Two identical point charges q are fixed to the ends of a rod of length 2� which rotates
with constant angular velocity 1

2ω in the x-y plane about an axis perpendicular to the rod and through its
center.

(a) Calculate the electric dipole moment p(t). Is there electric dipole radiation?
(b) Calculate the magnetic dipole moment m(t). Is there magnetic dipole radiation?

(c) Show that the electric quadrupole moment is Q(t) = 1
2q�

2

⎡
⎣ 1 + cosωt sinωt 0

sinωt 1 − cosωt 0
0 0 0

⎤
⎦ .
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x

y

q

q

(d) Show that the time-averaged angular distribution of radiated power is〈
dP

d�

〉
= μ0

4π

q2ω6�4

32πc3

(
1 − cos4 θ

)
,

where θ is the polar angle measured from the z-axis.

20.26 Rotating-Triangle Radiation Three identical point charges q are glued to the corners of an equilateral
triangle that lies in the x-y plane. The charges rotate with constant angular velocity ω around the z-axis,
which passes through the center of the triangle. Find the angular distribution of electric dipole, magnetic
dipole, and electric quadrupole radiation (treated separately) produced by this source.

20.27 Collision Radiation Two point particles with massesm1 andm2 and charges q1 and q2 move slowly toward
one another. For what choices of mass and charge is this motion not accompanied by dipole radiation?

20.28 Radiation of Linear Momentum

(a) Compare the conservation laws for energy and linear momentum for a spherical volume. Use this to
define an angular distribution of the rate at which electromagnetic waves radiate linear momentum,
dPEM/dt d�, by analogy with the definition of the angular distribution of the rate at which electromag-
netic waves radiate energy, dP/d�.

(b) Express dP/d� and dPEM/dt d� entirely in terms of Erad.
(c) Show that the relation between the two quantities computed in part (b) is consistent with the mechanical

properties of electromagnetic plane waves.

20.29 Angular Momentum of Electric Dipole Radiation A collection of N charges lies inside a volume V .
With respect to a fixed origin, the angular momentum of the charges and the electromagnetic fields they
produce within V is

L = ε0

∫
V

d 3r {r × (E × B)} +
N∑
i=1

ri × pi .

(a) Let S be the surface which bounds V . The text used a general conservation law to establish that

dL
dt

= ε0

∫
S

dS · {cB(r × cB) + E(r × E)} + 1

2
ε0

∫
S

dS × r
{
E2 + c2B2

}
.

Derive this expression using the expression for L stated just above, the Maxwell equations, and the
Lorentz force law.

(b) Suppose that the N charges generate a time-dependent electric dipole moment p(t). Compute dL/dt
when V is chosen as a spherical volume (centered at the origin) so large that only the radiation fields
due to p(t) have any significant magnitude on S. Does the answer surprise you?

(c) Now use the exact fields associated with p(t) and recalculate dL/dt keeping only those terms which
survive in the limit when the sphere radius goes to infinity. Show that

dL
dt

= μ0

4π

1

2πc

∫
S

d� ([p̈]ret × r̂) (r̂ · [ṗ]ret) ,

where [p]ret = p(t − r/c).
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(d) Carry out the integral and confirm that

dL
dt

= μ0

6πc
[p̈ × ṗ]ret.

20.30 Dipole Moment of the Slotted Sphere Find the electric dipole moment of the slotted sphere discussed in
Section 20.8.1.
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21 Scattering and Diffraction

The solution of this problem presents mathematical difficulties
which arise from the necessity of taking into account the

geometrical shape of the obstacles on which the wave is falling.
Vladimir Fock (1948)

21.1 Introduction

An incident electromagnetic wave is said to scatter or diffract from a sample of matter when the field
produced by the sample cannot be described using Fresnel’s theory of reflection and refraction from
a flat interface (Section 17.3). In this chapter, we focus on the class of problems where this occurs
because the wavelength of the incident monochromatic field is not small compared to the curvature
of a material boundary. From a Fresnel point of view, the total field in these cases results from the
interference of many different “reflected” and “refracted” waves propagating in different directions.
We will encounter other points of view as we proceed. Figure 21.1 shows some typical geometries
of interest. There is no universal naming practice, but many authors say that “scattering” occurs from
objects with smooth boundaries and “diffraction” occurs from objects with sharp edges.

The physics which produces scattering and diffraction is identical to the physics which produces
the Fresnel equations. An incident electromagnetic wave sets the charged particles of a medium into
motion. Each accelerated charge produces a retarded field which is felt by, and thus affects the motion
of, every other charge in the medium. The motion of every charge and the field it produces must
be consistent with the total field each charge experiences. The sum of the fields produced by all the
particles of the medium is called the “scattered field” and the total field at any point (inside or outside
the object) is the sum of the incident field and the scattered field:

E = Einc + Escatt. (21.1)

The same phenomenon viewed from a macroscopic perspective treats the moving charged particles
as an induced current. This current is the source of Escatt. Bearing in mind the constitutive relation of
the matter, the actual current density is the one which ensures that (21.1) satisfies the boundary (or
matching) condition at the surface of the scattering medium. The complexities of the problem all arise
from the shape of the scatterer.

The proper treatment of scattering and diffraction has consistently attracted the attention of mathe-
matical physicists of the first rank. The names Fresnel, Helmholtz, Rayleigh, and Kirchhoff are closely
associated with a scalar theory developed for acoustics and optics. After Maxwell folded optics into
electromagnetism, vector field calculations of lasting influence were performed by Debye, Mie, and
Sommerfeld. The problems of radar engaged the quantum pioneers Fock and Schwinger, both of
whom made profound contributions to the classical theory of electromagnetic scattering and diffrac-
tion. New insights appear today in contexts as diverse as the rainbow, laser propagation, and near-field
microscopy.
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Figure 21.1: Four situations where a plane wave approaches an object with a sharp edge or a surface curvature
which is large compared to the incident wavelength. Figure adapted from Toraldo di Francia (1953).

Induced
current

Figure 21.2: A plane wave with polarization vector ê0 propagating in the k̂0 direction induces currents in a
sample of matter. The scattering amplitude f(k) transverse to the local plane wave propagation direction k̂
characterizes the strength of the field radiated in that direction.

The diversity of scattering and diffraction problems, and the diversity of the mathematical techniques
developed to treat them, is very great. For that reason, the aim of this chapter is less to teach quantitative
scattering theory than to expose the reader to some of the basic ideas and to present a selection of
representative results. To that end, we begin with scattering from small objects and thereby make
immediate contact with the theory of electric and magnetic dipole radiation. Higher-order contributions
become increasingly important as the size of the scattering object increases and an exact partial wave
analysis is possible for cylinders and spheres. Most real scattering problems cannot be solved exactly,
so we describe the Born and physical optics approximations as examples of what can be done without
extensive numerical work. Our approach to diffraction focuses on the classic problem of a plane wave
incident on an aperture in a plane screen. This leads us to discuss the electromagnetic version of optical
principles like Huygens’ principle and Babinet’s principle. The example of wave transmission through
a sub-wavelength aperture serves to demonstrate that scattering and diffraction are far from exhausted
as topics for contemporary research.

21.2 The Scattering Cross Section

The cartoon in Figure 21.2 shows a conducting or dielectric object which scatters an incident plane
wave with polarization vector ê0 and propagation vector k̂0. The figure of merit for this process is
called the differential cross section for scattering. Up to a factor of r2, this is the radial component of
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the time-averaged Poynting vector of the radiation field Erad (the long-distance part of Escatt) divided
by the magnitude of the time-averaged Poynting vector of the incident field Einc:

dσscatt

d�
= scattered power radiated into a unit solid angle

incident power per unit area
= r2r̂ · 〈S rad 〉

|〈S inc 〉| . (21.2)

A convenient form for (21.2) follows from the general characteristics of Erad outlined in Section 20.5
for a compact, three-dimensional, time-harmonic source. First, it is an outgoing spherical wave with
radial dependence exp(ikr)/r . Second, the spherical wave front flattens out (locally) into a plane
wave front with propagation vector k = kr̂. Third, the field direction is transverse to the propagation
direction. A scattering amplitude f(k) ⊥ k is commonly used to describe the vector and angular
behavior of the scattered radiation field. Combining all this information permits us to write the
asymptotic (r → ∞) total field (21.1) in the form

lim
r→∞ E = Einc + Erad = E0

[
ê0e

ik0·r + eikr

r
f(k)

]
e−iωt . (21.3)

All the wave fields in (21.3) propagate in vacuum, so k = k0 = ω/c.
Comparing (21.2) with (20.81) shows that the differential cross section is a normalized version of

the time-averaged angular distribution of radiated power. Making use of (20.120) and (21.3),

dσscatt

d�
= 〈dP/d�〉

1
2ε0cE

2
0

= r2 |Erad|2
|E0|2 = |f(k)|2. (21.4)

If our interest is a scattered electric field with a particular polarization ε, (21.4) generalizes to1

dσscatt

d�

∣∣∣∣
ε

= r2 |ε∗ · Erad|2
|E0|2 = |ε∗ · f(k)|2. (21.5)

The results of Section 20.5.6 relate Erad to the time-harmonic current density j(r|ω) exp(−iωt)
induced in the scatterer by the incident field:

Erad = − ik

4πε0c
k̂ ×

[
k̂ ×

∫
d 3r ′ j(r′|ω) exp(−ik · r′)

]
exp[i(kr − ωt)]

r
. (21.6)

Then, because |k̂ × k̂ × v|2 = |k̂ × v|2 for any vector v, substituting (21.6) into (21.4) gives

dσscatt

d�
=
(

k

4πε0E0c

)2 ∣∣∣∣k̂ ×
∫

d 3r ′ j(r′|ω) exp(−ik · r′)
∣∣∣∣2 . (21.7)

The integral over all space of the differential cross section is called the total cross section for scattering:

σscatt =
∫

d�
dσscatt

d�
. (21.8)

The dimensions of σscatt are length squared, which makes it convenient to compare (21.8) with the
geometric cross section, σgeom, defined as the projected area of the scattering object intercepted by the
incident plane wave.

21.3 Thomson Scattering

Thomson scattering occurs when an electromagnetic plane wave interacts with a single free electron.
Classically, we model the electron as a point particle with charge −e and mass m which responds

1 Let εk be a complete set of polarization vectors. Then |Erad|2 = |∑k(ε∗
k · Erad)ε|2 = ∑

k |ε∗
k · Erad|2.
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to Einc = ê0E0 exp[i(k0 · r − ωt)] and cBinc = k̂0 × Einc. We showed in Section 16.10.1 that the
magnetic Lorentz force may be neglected compared to the electric Coulomb force when the field
strength is weak. Therefore, with ê0 ‖ ẑ, the equation of motion for the trajectory r0(t) of the electron
is

mr̈0 = −eE0 exp[i(k0 · r0 − ωt)]ê0. (21.9)

This motion produces the time-harmonic current density

j(r, t) = −eż0(t)δ(r − r0)ê0 = ie2E0

mω
exp[i(k0 · r0 − ωt)]δ(r − r0)ê0. (21.10)

Because ê0 · ê∗
0 = 1, using (21.10) with r0 = 0 to evaluate (21.7) gives the Thomson scattering cross

section,2

dσThom

d�
=
(

e2

4πε0mc2

)2

|k̂ × ê0|2 ≡ r2
e

(
1 − |k̂ · ê0|2

)
. (21.11)

This formula is valid for all choices of ê0, whether real (for linear polarization) or complex (for circular
or elliptical polarization).

The magnitude of the frequency-independent Thomson cross section is set by a length called the
classical electron radius,

re = e2

4πε0mc2
≈ 2.82 × 10−15 m. (21.12)

This is the radius of a charged sphere whose Coulomb self-energy is equal to the rest energy of the
electron. Alternately, re = αλc = α2aB, where aB ≈ 5.3 × 10−11 m is the Bohr radius, α ≈ 1/137 is
the fine structure constant, and λc = αaB is the Compton wavelength of the electron.

The absence of scattering along the direction of the electric field (k ‖ ê0) and the angular dependence
of (21.11) are reminiscent of the behavior of dipole radiation shown in Figure 20.17 of Section 20.7.1.
This is not an accident. From (21.10), the motion of the oscillating point charge produces an electric
dipole moment,

p(t) = −ez(t) = −e2E0

mω2
ê0 exp(−iωt) = p exp(−iωt), (21.13)

which in turn produces an electric dipole radiation field (20.160),

Erad = −μ0

4π
ω2[k̂ × (k̂ × p)]

ei(kr−ωt)

r
. (21.14)

Comparing (21.14) to (21.3) gives f = (μ0e
2/4πm)[ê0 − (k̂ · ê0)k̂], and inserting this into the far

right-hand side of (21.4) reproduces the Thomson cross section (21.11).
It is useful to introduce the coordinate system shown in Figure 21.3 where ê1 = ê⊥ and ê2 = ê‖ are

orthogonal unit vectors which lie perpendicular and parallel to the scattering plane defined by k̂0 and
k̂. For example, suppose we substitute first p = pê⊥ and then p = pê‖ into (21.14). Using Figure 21.3,
we deduce that Erad shares the polarization of the incident wave in the sense of being polarized either
perpendicular or parallel to the scattering plane.

Equation (21.11) is the cross section for scattering when the incident plane wave has fixed polariza-
tion ê0. To find the cross section for an unpolarized incident wave (a random mixture of waves with

2 The time-independent choice r0 = 0 implies that the displacement of the electron away from the origin may be
neglected in (21.7). This is a long-wavelength, low-velocity approximation.
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Figure 21.3: Orthogonal linear polarization vectors ê1 and ê2. The latter lies in the scattering plane defined by
k0 and k.

any two orthogonal polarization vectors, ê1 and ê2), we perform a statistical average of (21.11) over
the two polarizations:

dσThom

d�

∣∣∣∣
unpol

= 1

2

2∑
m=1

r2
e (1 − |k̂ · êm|2). (21.15)

Using the polarization vectors defined in Figure 21.3 to evaluate the contributions to (21.15), we find
immediately that

dσ⊥
d�

= r2
e and

dσ‖
d�

= r2
e cos2 θ. (21.16)

Therefore,

dσThom

d�

∣∣∣∣
unpol

= 1

2

[
dσ⊥
d�

+ dσ‖
d�

]
= 1

2
r2
e

(
1 + cos2 θ

)
. (21.17)

Unlike (21.11), the cross section (21.17) for scattering unpolarized waves is non-zero at every scattering
angle. The total Thomson cross section is the integral of (21.17) over all these angles:

σThom =
∫

d�
dσThom

d�

∣∣∣∣
unpol

= 8π

3
r2
e . (21.18)

The information in (21.16) also leads naturally to a definition for the degree of polarization of the
scattered radiation. This is

%(θ ) =
dσ⊥
d�

− dσ‖
d�

dσ⊥
d�

+ dσ‖
d�

= sin2 θ

1 + cos2 θ
. (21.19)

The plots of (21.17) and (21.19) in Figure 21.4 show that the electric dipole scattering of unpolarized
waves peaks in the forward (θ = 0) and backward (θ = π ) directions and that the radiation is 100%
linearly polarized for scattering at right angles (θ = π/2) to the direction of incidence.

Example 21.1 Evaluate (21.15) in a coordinate-system-independent way using the fact that ê1, ê2,
and k̂0 form an orthonormal triad [see (16.48)].

Solution: The stated information means that the vectors in question satisfy a completeness relation.
We write the latter in both abstract and component form as

|ê1〉〈ê1| + |ê2〉〈ê2| + |k̂0〉〈k̂0| = 1 or ê1i ê
∗
1j + ê2i ê

∗
2j + k̂0i k̂0j = δij .
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Figure 21.4: Angular dependence of the cross section (dashed curve) and degree of polarization (solid curve)
for Thomson (and Rayleigh) scattering.

Using the second of these,

2∑
m=1

|k̂ · êm|2 = k̂i k̂j êmi ê
∗
mj = k̂i k̂j

(
δij − k̂0i k̂0j

) = 1 − (k̂ · k̂0)2.

Therefore, because k̂0 · k̂ = cos θ , (21.15) becomes

dσThom

d�

∣∣∣∣
unpol

= 1

2
r2
e

[
2 − (

1 − cos2 θ
)] = 1

2
r2
e

(
1 + cos2 θ

)
.

Example 21.2 Show that the cross section for monochromatic plane wave scattering from a col-
lection of N electrons with fixed positions rk is proportional to the absolute square of the spatial
Fourier transform of the electron density n(r) = ∑N

k=1 δ(r − rk).

Solution: In the presence of a time-harmonic plane wave, the current density for all N electron is
the sum of terms like (21.10), except that the particles are located at positions rk rather than at the
origin. The space part of this density is

j(r|ω) = − ie2E0

mω
exp(ik0 · r)ê0

N∑
k=1

δ(r − rk).

Substituting the foregoing into (21.7) shows that the cross section for scattering from the electron
ensemble is proportional to the cross section for scattering from a single electron:

dσ

d�

∣∣∣∣
ensemble

= dσThom

d�
×
∣∣∣∣∣
N∑
k=1

exp[i(k0 − k) · rk]

∣∣∣∣∣
2

.

On the other hand, the Fourier transform of the electron density is

n(q) =
∫

d 3r n(r) exp(−iq · r) =
N∑
k=1

∫
d 3r δ(r − rk) exp(−iq · r)

=
N∑
k=1

exp(−iq · rk) = n∗(−q).
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If we define a scattering wave vector q = k0 − k, the two preceding equations give the advertised
result:

dσ

d�

∣∣∣∣
ensemble

= dσThom

d�
× |n(q)|2 = dσThom

d�
×

N∑
k=1

N∑
j=1

exp[iq · (rk − rj )].

This cross section formula underpins the theory of X-ray scattering, and the double sum is called a
form factor in that context. X-ray scattering is sensibly regarded as an energy-conserving, elastic
process for valence electrons whose binding energies are small compared to the energy of an
incident X-ray. This implies that |k0| = |k|, in which case Figure 21.2 shows that q = 2k sin( 1

2θ ).

Application 21.1 The Polarization of Cosmic Microwave Radiation

Figure 16.5 shows that the background microwave radiation received from the cosmos is linearly
polarized. The origin of this polarization is Thomson scattering and a small spatial anisotropy in the
temperature of the radiation itself. The cartoons in Figure 21.5 tell the story by focusing on the radiation
seen by an observer on the positive z-axis. Figure 21.5(a) shows linearly polarized plane waves incident
on an electron at the origin from the ±x and ±y directions. Because Thomson scattering preserves
polarization and is maximal at right angles to the incident wave polarization (see Figure 20.17), the
waves incident from the ±x directions scatter into y-polarized waves on the z-axis and the waves
incident from the ±y directions scatter into x-polarized waves on the z-axis. Thus, the observed
radiation is unpolarized. This conclusion does not change if we add incoming z-polarized waves from
the ±x and ±y directions (so all the incident radiation is unpolarized) because their cross section for
scattering into the z-direction is zero.

(a) (b) (c)x x x

y y y

z z z

Figure 21.5: Cartoon of linearly polarized planes waves incident from ±x and ±y which scatter from an
electron at the origin into the +z-direction of observation. The horizontal bars indicate the direction of
polarization of each wave. The thickness of the bars indicates the intensity of the wave. The spatial
distribution of the incident wave intensity is (a) isotropic; (b) dipole anisotropic; and (c) quadrupole
anisotropic. The observed radiation is (a) unpolarized; (b) unpolarized; and (c) linearly polarized. Figure
adapted from Dodelson (2003). Copyright Elsevier 2003.

Figure 21.5(b) introduces a dipole anisotropy by making the wave amplitude bigger (smaller) than
the average for plane waves incident from the +x (−x) direction. A dipole anisotropy in the blackbody
radiation temperature would have this effect. There is no change in the unpolarized radiation observed
on the z-axis because the altered waves scatter into the +z-direction (preserving both polarization and
amplitude) and simply superpose to give y-polarized waves on the z-axis with the average intensity of
the waves scattered from the ±y-axes. Finally, Figure 21.5(c) introduces a quadrupole anisotropy by
making the wave amplitude bigger (smaller) than the average for plane waves incident from the ±x
(±y) directions. This produces the desired result: a net linear polarization of the waves scattered into
the direction of the observer. This is consistent with independent measurements which confirm that
the large-scale spatial isotropy of the blackbody temperature of the microwave radiation is perturbed
by a small quadrupole anisotropy. �
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21.4 Rayleigh Scattering

Rayleigh scattering occurs when an electromagnetic plane wave impinges on a small dielectric or
conducting object. By small, we mean that all characteristic linear dimensions of the object are small
compared to the wavelength λ = 2π/k0 of the plane wave. Under these conditions, we showed in
Section 20.7 that the first few terms of a Cartesian multipole expansion of the radiation fields are
sufficient to extract the physics. The incident E and B fields are nearly constant over the object’s
volume and the far-zone field is dominated by the radiation produced by the time-harmonic electric
and magnetic dipole moments induced in the object. We compute the cross section from (21.4) by
adding the magnetic dipole electric field (20.176) to the electric dipole electric field (21.14):

dσRay

d�
=
(

k2
0

4πε0E0c

)2 ∣∣k̂ × m + k̂ × (k̂ × cp)
∣∣2 . (21.20)

Let a be the largest linear dimension of the scattering object. The condition k0a � 1 implies that
the plane wave fields are nearly uniform over its volume and a quasistatic approximation is sufficient
to calculate the induced moment(s). The simplest example is a non-magnetic dielectric object with
electric polarizability α where the electric dipole moment is

p = αε0E0ê0. (21.21)

The corresponding cross section is

dσRay

d�
=
(
k2

0α

4π

)2 (
1 − |k̂ · ê0|2

)
. (21.22)

On dimensional grounds alone, the polarizability scales with the object volume, which is of the order
of a3. Therefore, the total Rayleigh scattering cross section, σRay, obtained by integrating (21.22) over
all angles, is much smaller that the geometric cross section of the object:

σRay ∼ a2(k0a)4 � a2. (21.23)

The electric dipole Rayleigh cross section (21.22) and the Thomson cross section (21.11) have
exactly the same angular dependence. Therefore, the discussion leading to the 1 + cos2 θ dependence
in (21.20) for an unpolarized incident wave remains valid for electric dipole Rayleigh scattering. The
same is true for the discussion leading to the degree of polarization (21.19). This means that Figure 21.4
applies to Rayleigh scattering as well as to Thomson scattering. Indeed, the strong linear polarization
observed for skylight is a powerful indicator that dipole scattering dominates the interaction of the
Sun’s rays with the atmosphere.

21.4.1 Atmospheric Color
The striking λ−4 dependence of (21.22) is the origin of the blue color of the daylight sky and the red
color of the setting Sun.3 Looking away from the Sun during the day, we see sunlight scattered into
our eyes by the molecules of the atmosphere. Because λblue < λred, (21.23) implies that blue light is
the dominant component of the scattered light. We see red light looking directly at the Sun at sunset
because the blue light has been scattered out of our line of sight. This argument is appealing precisely
because it is so simple. On the other hand, it glosses over some subtleties.4

One subtlety is that the incoherent scattering argument presented above is not obviously relevant
when (as is usual) N � 1 molecules lie inside a typical volume V ∼ λ3 of the visible sky. It could be

3 See the cover of this volume.
4 See Sources, References, and Additional Reading for more details.
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that destructive interference wipes out the incoherent scattering intensity altogether. A proper coherent
calculation requires that we perform the double sum over N quoted at the end of Example 21.2.
There are two ways to do this, provided some information is supplied about the spatial correlations
of the molecules within the volume. The first method (due to Rayleigh) is a brute-force sum over the
molecular positions in V . The second method (due to Smoluchowski and Einstein) divides V into
smaller sub-volumes and rearranges the sum to show that fluctuations (deviations) from the mean
number of molecules in each sub-volume are essential to avoid destructive interference. The two
methods are equivalent and give the same answer, namely, that the incoherent scattered intensity
survives: the scattering intensity from all the molecules in V is simply N times the scattering intensity
from a single molecule.

Another subtlety is that the Sun radiates as a T = 6000 K blackbody with a spectral radiance which
decreases with wavelength in the visible.5 Under these conditions, the λ−4 argument more naturally
predicts a violet sky than a blue sky. This is not what you see because the human brain assigns a
color to incoming light based on the stimulus it receives from photoreceptive cells in the eye called
cones. It happens that there are three types of cones, each with its own sensitivity to different visible
wavelengths. An average observer reports that the daylight sky is blue because that color (rather than
violet) represents the combined response of all three cone types to the spectral radiance of the Sun
weighted by the Rayleigh λ−4 factor.

21.5 Two Exactly Solvable Problems

The scattering cross section can be computed exactly for objects with very simple shapes. In this
section, we derive the exact cross section for scattering from a conducting cylinder and discuss the
exact cross section for scattering from a dielectric sphere. We do this (i) to discover some generic
features of scattering from extended distributions of matter; (ii) for later use in assessing the quality
of approximate calculations; and (iii) because cylinders and spheres are good models for wires and
raindrops (among other things).

The calculations are possible because a plane wave can be expressed as a sum of elementary solutions
of the Helmholtz equation with either cylindrical or spherical symmetry. If the scattered field (produced
by the object) is written as a similar sum with unknown expansion coefficients, the coefficients can be
determined from the condition that the total field satisfies appropriate boundary or matching conditions
at the surface of the object. The final solutions take the form of infinite sums of special functions which
are amenable to numerical evaluation and thus to the identification of trends over large ranges of the
parameters. Special analytic techniques valid for limited ranges of the parameters provide insight into
the mechanisms of scattering. Indeed, the latter are practically essential for interpreting the results of
numerical scattering calculations for both conducting and dielectric bodies.

21.5.1 Scattering from a Conducting Cylinder
Figure 21.6 shows a plane wave propagating in the +x-direction toward a perfectly conducting
cylinder of radius a aligned with the z-axis. The polarization (electric field) vector lies in the y-z
plane and it is sufficient to compute the scattered field separately for E ‖ ẑ and E ⊥ ẑ. The results for
these two cases can be superposed to treat the general case. Polarization parallel to the cylinder axis
induces surface currents in the ẑ-direction only. The associated vector potential points along ẑ also,
so Bz = (∇ × A)z = 0. On the other hand, Ez = −∂zϕ − ∂tAz �= 0. This is the only field component
needed because cBφ = −Ez in the radiation zone where the cross section is defined. Polarization

5 Figure 19.19 is a graph of spectral radiance T = 2.73 K.
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y

xak
φ

ρ

Figure 21.6: A plane wave approaches an infinite cylinder at normal incidence.

perpendicular to the cylinder axis induces surface currents in the φ̂ direction. The corresponding
circumferential vector potential has only x- and y-components. Then, because translational invariance
guarantees that no physical quantity can depend on the z-coordinate, Ez = −∂zϕ − ∂tAz = 0. The
magnetic field component of interest in this case is Bz, because Eφ = cBz in the radiation zone.

A monochromatic plane wave with frequency ω induces time-harmonic currents and thus a time-
harmonic scattered field. Outside the cylinder, the electric and magnetic fields satisfy the wave equation.
Therefore, the space parts of Ez and Bz satisfy the Helmholtz equation (see Section 16.6),[

∇2 + ω2

c2

]
u = 0. (21.24)

Writing out (21.24) in cylindrical coordinates, we drop the z-derivatives and let k = ω/c to get

1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+ 1

ρ2

∂2u

∂φ2
+ k2u = 0. (21.25)

Separation of variables assumes that u(ρ, φ) = R(ρ)G(φ). Inserting this into (21.25) and choosing p2

as a separation constant gives G(φ) = exp(±ipφ) and shows that R(ρ) satisfies Bessel’s differential
equation with x = kρ:

d2R

dx2
+ 1

x

dR

dx
+
(

1 − p2

x2

)
R = 0. (21.26)

The full angular range of φ is relevant, so p = m is a non-negative integer. In Section 7.8.1, we
discussed the linearly independent Bessel function solutions Jm(x) and Nm(x). Here, the scattered
field must behave like an outgoing cylindrical wave when ρ → ∞. Therefore, the relevant solution is
the Hankel function, H (1)

m (x) = Jm(x) + iNm(x), which has the asymptotic form

lim
x→∞H (1)

m (x) =
√

2

πx
exp{i[x − (2m+ 1)π/4]}. (21.27)

We consider ‖ polarization first and write the scattered field, Ez(scatt), as a sum of elementary solu-
tions H (1)

m (kρ) exp(imφ) with expansion coefficients Am. The incident field is Ez(inc) = E0 exp(ikx).
Because x = ρ cosφ in Figure 21.6, we can use the two-dimensional plane wave expansion (C.52),

Ez(inc) = E0 exp(ikρ cosφ) = E0

∞∑
m=−∞

imJm(kρ) exp(imφ), (21.28)

and write the total field outside the cylinder as

Ez = Ez(inc) + Ez(scatt) = E0

∞∑
m=−∞

[
imJm(kρ) + AmH

(1)
m (kρ)

]
exp(imφ). (21.29)
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The boundary condition Ez(ρ = a) = 0 uniquely determines the Am. Therefore,

Ez(ρ, φ) = E0 exp(ikρ cosφ) − E0

∞∑
m=−∞

im
Jm(ka)

H
(1)
m (ka)

H (1)
m (kρ) exp(imφ). (21.30)

The ⊥ polarization case is similar except that cBz(inc) = E0 exp(ikx) and the condition that the
tangential component of the electric field vanish at the cylinder boundary reads

Eφ(ρ = a) = c

k

∂Bz

∂ρ

∣∣∣∣
ρ=a

= 0. (21.31)

Using a prime to indicate a derivative with respect to the argument, the final result for ⊥ polarization
is

cBz(ρ, φ) = E0 exp(ikρ cosφ) − E0

∞∑
m=−∞

im
J ′
m(ka)

H
′(1)
m (ka)

H (1)
m (kρ) exp(imφ). (21.32)

For this two-dimensional problem, the definition of the differential scattering cross section differs
slightly from that given earlier. In place of (21.7), we have

dσ

dφ
= ρρ̂ · 〈Srad 〉

1
2E

2
0ε0c

, (21.33)

where the time-averaged Poynting vector in the radiation zone is (cf. Section 20.5.1)

〈Srad 〉‖ = ρ̂

2
ε0c|Ez(rad)|2 and 〈Srad 〉⊥ = ρ̂

2

c

μ0
|Bz(rad)|2. (21.34)

The radiation field is the ρ → ∞ part of the scattered field. Therefore, we use the asymptotic formula
(21.27) in (21.30) and (21.32), insert the radiation fields into (21.34), and evaluate the cross section
expression (21.33) for parallel and perpendicular polarization. The result of these steps is

dσ‖
dφ

= 2

πk

∣∣∣∣∣
∞∑

m=−∞

Jm(ka)

H
(1)
m (ka)

exp(imφ)

∣∣∣∣∣
2

(21.35)

dσ⊥
dφ

= 2

πk

∣∣∣∣∣
∞∑

m=−∞

J ′
m(ka)

H
′(1)
m (ka)

exp(imφ)

∣∣∣∣∣
2

.

These cross sections have dimensions of length (rather than area) because they measure the relative
power radiated to infinity per unit length of cylinder, i.e., the power radiated through the boundary of
a large circle coaxial with the cylinder.

Integrating each expression in (21.35) over φ gives the total scattering cross sections,

σ‖ = 4

k

∞∑
m=−∞

J 2
m(ka)

J 2
m(ka) +N2

m(ka)
and σ⊥ = 4

k

∞∑
m=−∞

J ′2
m (ka)

J ′2
m (ka) +N ′2

m (ka)
. (21.36)

Figure 21.7 plots σ‖ and σ⊥ as a function of ka. Our first observation is that both cross sections
approach a common value when ka → ∞. This is not surprising because geometrical optics becomes
valid in the short-wavelength limit. However, instead of approaching the geometricvalue σgeom = 2a,
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Figure 21.7: The total scattering cross section for plane wave scattering from an infinitely long conducting
cylinder (radius a) at normal incidence. σ‖ and σ⊥ correspond to E parallel and perpendicular to the cylinder
axis, respectively. The curves are normalized by the geometric cross section, σgeom = 2a.

the limiting value seen in Figure 21.7 is actually twice this value. This is called the extinction paradox
and we will find an explanation for it in Section 21.7.

The low-frequency, long-wavelength behaviors of σ‖ and σ⊥ are strikingly different:

lim
ka→0

σ‖ = π2

k ln2

(
1

ka

) and lim
ka→0

σ⊥ = 3

4
π2a(ka)3. (21.37)

The k3 behavior of σ⊥ is the signature of Rayleigh scattering (Section 21.4) in two dimensions. An
electric field oriented perpendicular to the cylinder axis drives an electric dipole whose size cannot
exceed the diameter of the cylinder. By contrast, no natural length scale limits the surface currents
induced along the length of the cylinder when an electric field is oriented parallel to the cylinder axis.
That being said, the 1/k divergence of σ‖ in (21.37) is an artifact of the assumed infinite length of
the cylinder. For a cylinder with length �, our two-dimensional results apply for observation points
(away from the ends) where a2/λ � ρ � �2/λ. A reasonable approximation for the cross section in
this regime is6

σ‖(�) ≈ k�2

π
σ‖(∞). (21.38)

Equation (21.38) decreases as ka decreases and crosses over smoothly to three-dimensional Rayleigh
scattering when r � �2/λ and the finite size of the cylinder becomes apparent.

An application of these results is shown in Figure 21.8 where a planar and parallel array of perfectly
conducting wires acts as a polarizer for plane electromagnetic waves. When the wire spacing d satisfies
a � d � λ, waves polarized parallel to the wires are reflected and waves polarized perpendicular to
the wires are transmitted. The transmission of ⊥ waves follows immediately from the vanishingly
small interaction between a long-wavelength ⊥ wave and each wire predicted by Figure 21.7. Long-
wavelength ‖ waves are reflected because, in the limit considered, the longitudinal currents set up in
the grid are indistinguishable from the currents set up when a plane wave strikes (and is reflected from)
a flat conducting plate.

6 See Ruck (1970) in Sources, References, and Additional Reading.
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Figure 21.8: A wire-grid polarizer reflects (transmits) waves with E parallel (perpendicular) to the direction of
the wires in the grid.

21.5.2 Mie Scattering from a Dielectric Sphere
The solution to the electromagnetic problem of plane wave scattering by a dielectric sphere is usually
attributed to Gustav Mie.7 His method was to expand the incident field and the scattered field in an
infinite set of vector spherical waves and use the dielectric matching conditions at the surface of the
sphere to determine the expansion coefficients. In this section, we outline only the basic steps of this
calculation and focus on the results and their interpretation. The key observation is that the incident
wave breaks the symmetry of the sphere and makes the matching conditions impossible to satisfy
unless the electromagnetic field is written as a linear combination of TE and TM vector spherical
waves.

Assume a time dependence exp(−iωt) and putω = ck. We showed in Section 16.8 that the Maxwell
equations have TE and TM vector spherical wave solutions of the form

E = ∇ × (ru) − i

k
∇ × [∇ × (rw)]

cB = −∇ × (rw) − i

k
∇ × [∇ × (ru)],

(21.39)

where u(r) and w(r) are solutions of the scalar Helmholtz equation,

[∇2 + k2]ψ(r) = 0. (21.40)

We also showed that the separated-variable solutions to (21.40) in spherical coordinates are spherical
Bessel radial functions multiplied by spherical harmonic angular functions. However, for the sake of
consistency with the majority of the optical, chemical, and atmospheric literature of Mie scattering,
we will write sines and cosines for the φ dependence and associated Legendre polynomials for the θ
dependence [cf. (C.18)].

Beginning with the plane wave identity (C.53), it is an exercise in the use of recurrence relations to
show that Einc = E0 exp(ikz)x̂ can be written in the form (21.39) with{

uinc

winc

}
= E0

∞∑
�=1

i�
2�+ 1

�(�+ 1)
j�(kr)P 1

� (cos θ )

{
sinφ
cosφ

}
. (21.41)

The representation of the scattered field inside the sphere also has the form (21.39) with the expansion
(21.41) except that k → nk (where n is the index of refraction of the sphere) and each term in
the sum for uin (win) includes an expansion coefficient c� (d�). The representation of the scattered
field outside the sphere is again (21.39) with the expansion (21.41) except that the spherical Hankel
function h(1)

� (kr) replaces the spherical Bessel function j�(kr) and each term in the sum for uout (wout)

7 Mie published his solution in 1908. An identical solution was published by Ludvig Lorenz in 1890. See the box at the
end of the section for more about Lorenz.
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Figure 21.9: The cross section for plane wave scattering from a dielectric sphere with the index of refraction of
water: numerical evaluation of exact Mie theory (solid curve); analytic approximation (21.45) (dashed curve).
The curves are normalized by the geometric cross section, σgeom = 4πR2.

includes an expansion coefficient a� (b�). The Hankel function ensures that the exterior field behaves
asymptotically like the outgoing spherical wave in (21.3).

The (complex) expansion coefficients a�, b�, c�, and d� are determined by imposing the four matching
conditions at r = R:

r̂ × (Einc + Eout) = r̂ × Ein and r̂ × (Hinc + Hout) = r̂ × Hin. (21.42)

The coefficients turn out to be quite complicated, even for non-magnetic spheres. Here, we use a prime
to denote differentiation with respect to the argument and display only

a� = − j�(nkR)[xj�(x)]′x=kR − j�(kR)[xj�(x)]′x=nkR
j�(nkR)[xh(1)

� (x)]′x=kR − h
(1)
� (kR)[xj�(x)]′x=nkR

(21.43)

b� = − j�(kR)[xj�(x)]′x=nkR − n2j�(nkR)[xj�(x)]′x=kR
h

(1)
� (kR)[xj�(x)]′x=nkR − n2j�(nkR)[xh(1)

� (x)]′x=kR
.

The total scattering cross section is

σMie = 2π

k2

∞∑
�=1

(2�+ 1)
{|a�|2 + |b�|2

}
. (21.44)

The solid curve in Figure 21.9 is a numerical evaluation of the Mie cross section (21.44) for a sphere
with the dielectric constant of water (n = 1.33). The dominant features are a sharp rise to a global
maximum followed by a quasi-periodic damped oscillation toward an asymptotic value equal to twice
the geometric cross section, σgeom = πR2. The latter is another of example of the “extinction paradox”
mentioned in connection with Figure 21.7. The oscillations come from interfering plane wave rays
which accumulate different amounts of phase as they pass through the sphere at different impact
parameters. Specifically, if � = 2R(kin − k) = 2kR(n− 1) is the difference in phase accumulated by
a plane wave traversing the sphere diameter and a plane wave propagating in vacuum, the dashed
curve in Figure 21.9 is the prediction of an approximate cross section formula we will derive in
Application 21.2 of Section 21.7.1:

σapprox = 2πR2

[
1 − 2

�
sin�+ 2

�2
(1 − cos�)

]
. (21.45)
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Tunneling

Figure 21.10: Ray-optic representation of the coupling between an incident wave and a normal mode of a
spherical dielectric resonator. The radial boundaries are the inner and outer turning points of the effective
potential in Figure 19.24 at the energy of the mode. Figure after Guimarães and Nussenzveig (1992). Copyright
1992, with permission from Elsevier.

The high-frequency, non-periodic “ripples” which decorate the damped oscillation in Figure 21.9
persist out to arbitrarily large values of kR and are extraordinarily sensitive to changes in the index n
and the sphere radius R. Each ripple is a resonance in the cross section which occurs when the incident
wave transiently couples to one of the electromagnetic normal modes of the dielectric sphere. To
understand this, we recall from Section 19.7 that these modes can be described as virtual bound states
trapped by the centrifugal barrier of the �-dependent effective potential sketched in Figure 19.24. By
analogy with the quantum theory of potential scattering, we identify � = bk as the angular momentum
of a ray with impact parameter b. If b < R, the ray simply refracts into the sphere in the usual way. If
b � R, there is virtually no interaction between the ray and the sphere. In between, there is a range of
impact parameters where the ray can tunnel through the barrier and resonantly excite a normal mode.8

Figure 21.10 represents the mode by a ray which propagates inside the sphere in the annular volume
defined by the inner turning point of the potential at r = b/n and the outer turning point at r = R.
Eventually, the ray tunnels back out and rejoins the original ray.

The Great Dane

Eighteen years before Gustav Mie published his analysis of what we call “Mie” scattering, the
entire problem was solved and published by the Danish physicist Ludvig Lorenz (1829-1891).
Remarkably, this is only one of several instances where Lorenz’ precedence in the solution of an
electromagnetic problem went unrecognized by his peers and forgotten by history. For most of
the last century, he was remembered only for the Lorentz-Lorenz equation, which generalizes the
Clausius-Mossotti relation of static dielectric theory and relates the index of refraction n(ω) of a
gas of molecules with density N to the molecular polarizability, α(ω):

n2(ω) − 1

n2(ω) + 2
= Nα(ω)

3ε0
.

The pairing of Lorenz with the Dutch physicist Hendrik Lorentz is particulary ironic because
the familiar electromagnetic gauge choice,

∇ · A + 1

c2

∂ϕ

∂t
= 0,

has long been incorrectly attributed to Lorentz. In fact, this gauge constraint first appeared in 1867
when Lorenz introduced the concept of the retarded potential into electrodynamics in a paper

8 The “tunneling” wave is an evanescent wave of the sort discussed in Section 17.3.7.
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entitled “On the identity of the vibrations of light with electrical currents”. Lorenz generalized a
quasistatic theory of Kirchhoff to include retardation and developed a theory which (in retrospect)
was practically identical to Maxwell’s. Lorenz went to some trouble to insist that the concept of
the aether was superfluous.

A third example of neglect dates from 1860, when Lorenz extended Fresnel’s theory of refraction
to account for a thin “transition layer” between two bulk media where the dielectric properties
interpolate smoothly between the two bulk values. The elliptical polarization of the reflected light
induced by the presence of this layer became the diagnostic tool of “ellipsometry” 40 years later
when Drude re-derived Lorenz’ results using Maxwell theory.

It is puzzling that Lorenz’ work was forgotten so quickly. His most important papers were
quickly translated from Danish and all of his work could be read in German, French, or English by
1896, when his collected Works were published. On the other hand, Lorenz was an autodidact who
did not correspond much with other physicists. He did not travel widely and spent his entire career
as a physics teacher for army cadets at a military high school outside Copenhagen. For a man born
in the Danish city of Elsinore (the setting for Shakespeare’s Hamlet), it would be altogether fitting
if the ghost of his achievements walked again among contemporary scientists.

21.6 Two Approximation Schemes

Modern computers can generate essentially exact solutions to most electromagnetic scattering prob-
lems. Nevertheless, one always gains intuition from less exact methods if they are based on physically
well-motivated approximations. This section treats two such schemes. The Born approximation applies
to objects which are only weakly polarizable, magnetizable, or conducting, but where the ratio of the
object size to the wavelength (a/λ) can have any value. The physical optics approximation applies to
highly conducting objects in the limit when a/λ � 1.

21.6.1 The Born Approximation
The Born approximation presumes that the total field E inside a weakly dielectric or weakly conducting
scattering medium does not differ significantly from the incident field Einc. If we use the language
of polarization (rather than conductivity), this means that the current induced in the object by a
monochromatic plane wave is

j = ∂P
∂t

= −iωε0χeE ≈ −iωε0χeEinc = −iωε0χe ê0E0 exp[(ik0 · r − ωt)]. (21.46)

Substituting (21.46) into (21.7) gives the approximate cross section

dσscatt

d�

∣∣∣∣
Born

=
(
k2

0

4π

)2

|k̂ × ê0|2
∣∣∣∣
∫

d 3r ′ χe(r, ω) exp[i(k0 − k) · r′]
∣∣∣∣2 . (21.47)

The angular factor |k̂ × ê0|2 in (21.47) is familiar from (21.11) and all the remarks made there about
averaging this quantity for an unpolarized incident wave apply here also.

A low-frequency application of (21.47) applies to a dielectric object with volume V and uniform
electric susceptibility χe. When k0a � 1, the exponential may be neglected in the integral and (21.47)
reduces to

dσscatt

d�

∣∣∣∣
Born

=
(
k2

0

4π

)2

(V χe)
2|k̂ × ê0|2. (21.48)
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The polarizability of this object is α = ε0Vχe. Therefore, (21.48) reproduces the Rayleigh scattering
formula (21.22), as expected.

A high-frequency application of (21.47) applies to a Drude plasma where (see Section 18.5.1)

χe(ω) = ε(ω)

ε0
− 1 =

(
1 − ω2

p

ω2

)
− 1 = − nq2

ω2mε0
. (21.49)

Generalizing to a particle density n(r) which varies with position, substituting (21.49) into (21.47)
gives

dσscatt

d�

∣∣∣∣
Born

=
(

q2

4πε0mc2

)2

|k̂ × ê0|2
∣∣∣∣
∫

d 3r ′ n(r′) exp[i(k0 − k) · r′]
∣∣∣∣2 . (21.50)

If the mobile particles of the plasma are electrons, where q = −e, (21.50) reproduces the Thom-
son scattering results of Section 21.3 multiplied by a form factor which reproduces the results of
Example 21.2.

Example 21.3 Find the Born approximation to the differential cross section for scattering from
a uniform and lossless dielectric sphere with radius R. Plot the cross section for an unpolarized
incident beam with k0R = 15/2.

Solution: The susceptibility χe is constant inside the sphere and zero outside the sphere. We make
no assumptions about the magnitude of k0R. With q = k − k0, (21.47) becomes

dσscatt

d�

∣∣∣∣
Born

=
(
k2

0χe

4π

)2

|k̂ × ê0|2
∣∣∣∣
∫

d 3r ′ exp(iq · r′)
∣∣∣∣2 .

The integral to be evaluated is

I =
∫

d 3r ′ exp(iq · r′) = 2π

1∫
−1

du

R∫
0

dr ′r ′2 exp(iqru) = 4π

q

R∫
0

dr ′r ′ sin(qr ′) = 4πR3 j1(qR)

qR
,

where j1(x) = sin(x)/x2 − cos(x)/x is the spherical Bessel function of order one. The scattering
is elastic, so the remark at the end of Example 21.2 tells us that q = 2k0 sin(θ/2). Finally, (21.20)
shows that |k̂ × ê0|2 = 1

2 (1 + cos2 θ ) for an unpolarized incident wave. We conclude that the Born
cross section for the sphere is

dσscatt

d�

∣∣∣∣
Born

= R2

4
(k0R)2χ2

e

1 + cos2 θ

2

j 2
1 [2k0R sin(θ/2)]

sin2(θ/2)
.

Figure 21.11 compares the Born approximation (solid line) to the differential scattering cross
section with the exact Mie cross section (dashed curve) for a dielectric sphere with index of
refraction n = 1.05 and radius R = (15/4π )λ. The majority of the scattering is near the forward
direction, as one might expect from a sphere whose dielectric properties are so weak that the field
inside the sphere is indistinguishable from the incident field. The zeroes of the Born cross section
(which come from the zeroes of the spherical Bessel function) are replaced by local minima in
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the Mie cross section. Physically, the zeroes (minima) come from wave interferences of the sort
discussed in Section 21.5.2.

0

10

dσ
Ωd

1

10−2

10−4

10−6

10−8

10−10

2

Born

Mie

n=1.05

π π

θ

Figure 21.11: Differential cross section (in arbitrary units) for scattering from a uniform dielectric sphere
with index of refraction n = 1.05 and radius R = (15/4π )λ. The exact Mie result is the dashed curve. The
Born approximation is the solid curve.

21.6.2 The Physical Optics Approximation
Geometrical optics is the natural starting point for scattering situations where the wavelength of the
incident wave is very small compared to the characteristic feature size of a target object. Such objects
are called electrically large. For a plane wave incident on a conductor, the frequency-independent
physics of geometrical optics is simply specular reflection of a parallel set of rays from the illuminated
portions of the target object. The points on the surface shadowed from the incident wave by other parts
of the body play no role.

The physical optics approximation is a physically motivated correction to geometrical optics which
simplifies the radiation fields computed from Maxwell’s equations. The key idea, due to Macdonald
(1912), is to assign a current density K to every illuminated surface point as if that point were part of
a flat and infinite conducting plane oriented tangent to the surface at that point. Zero surface current
density is assigned to surface points which are shadowed. From Section 19.3.1, we know that specular
reflection of a plane wave incident on a conducting plane annuls the tangential component of the
surface electric field and doubles the tangential component of the surface magnetic field. Hence, the
physical optics approximation for the current density induced on the surface of a conducting object by
the incident wave is

μ0K(r, t) =
{

2n̂ × Binc(r, t) at illuminated surface points,
0 at shadowed surface points.

(21.51)

If S is the illuminated part of the surface and Binc = B0 exp[i(k0 · r − ωt)] is the magnetic field of
the incident plane wave, substituting (21.51) into the vector potential expression (20.118) to evaluate
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Figure 21.12: Left panel: a parabolic reflector antenna. Middle panel: geometrical optics ray tracing of an
incoming bundle of parallel rays. Right panel: physical optics prediction for the gain, G(θ), which is the angular
distribution of power received by this reflector, normalized by the total power received. The vertical scale
(decibels) is logarithmic. Figure adapted from Imbriale (2003).

the electric field in (20.119) gives

Erad(r, t) ≈ iω

2π

exp[i(kr − ωt)]

r
k̂ ×

⎧⎨
⎩k̂ ×

∫
S

dS ′ (n̂′ × B0) exp[i(k0 − k) · r′]

⎫⎬
⎭ . (21.52)

A common use of (21.52) is to calculate the angular distribution of radiation transmitted or received
(they are the same) by an electrically large antenna.9 For example, the reflector-type radio antenna
shown in the leftmost panel of Figure 21.12 is part of the NASA Deep Space Network. The middle
panel of the figure shows the geometrical optics prediction that parallel rays received from space are
focused by the main parabolic reflector onto a sub-reflector which reflects them onto a collector. The
rightmost panel shows the physical optics prediction for the gain function (the angular distribution
normalized by the total power) at 7.2 GHz for the particular 32 m diameter antenna shown in the
leftmost panel. The polar angle θ is measured with respect to the symmetry axis of the main reflector
paraboloid. Because the vertical scale (decibels) is logarithmic, the physical optics gain function
confirms the geometrical optics expectation that most of the received power is confined to a very small
angular range around the symmetry axis. Discussion of the side lobes in G(θ ) is best postponed until
Section 21.8 when we take up the subject of diffraction.

21.7 The Total Cross Section

We have so far neglected the possibility that the scatterer in Figure 21.2 could absorb some of the
energy carried by the incident monochromatic plane wave. To account for this, we invoke conservation
of energy and evaluate the Poynting theorem for a volume V which includes the scatterer:∫

V

d 3r ∇ · S + d

dt
UEM = −

∫
V

d 3r j · E. (21.53)

9 See the footnote which accompanies (20.124).
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The total energy term in (21.53) drops out after averaging over one period of a time-harmonic field.
Therefore, ∫

S

dA n̂ · 〈S〉 = −
∫
V

d 3r 〈j · E〉. (21.54)

The right side of (21.54) is the rate at which field energy is absorbed by the particles of the scatterer.
This motivates us to define the total cross section for absorption, σabs, as the ratio of the time-averaged
absorption rate to the time-averaged rate at which the incident beam supplies energy per unit area:

σabs = 1

|〈S inc 〉|
∫
V

d 3r 〈j · E〉 = − 1

|〈S inc 〉|
∫
S

dA n̂ · 〈S〉. (21.55)

The total cross section is the sum of the cross sections for scattering and absorption:

σtot = σscatt + σabs. (21.56)

21.7.1 The Optical Theorem
The optical theorem is an exact relation which relates the total cross section (21.56) to the amplitude of
the electromagnetic field scattered in the forward direction (the propagation direction of the incident
wave). To derive it, we choose the closed integration surface S in (21.55) as a sphere (centered on the
scatterer) whose surface lies entirely in the radiation zone. Then, because the flux of the incident plane
wave in (21.3) is |〈S inc 〉| = 1

2ε0cE
2
0 , we can rewrite the leftmost and rightmost members of (21.55) as

−σabs = 1

E2
0

Re
∫

d� r2r̂ · [(Einc + Erad)∗ × c(Binc + Brad)
]
. (21.57)

The integral in (21.57) which involves E∗
inc × Binc is zero because S inc is uniform in space. From

(21.4), the integral which involves E∗
rad × Brad is σscatt. The cross terms which remain can be evaluated

using (21.3) and cB = k̂0 × Einc + r̂ × Erad.
Because r̂ · f = 0, the remarks just above render (21.57) in the form

−σabs = σscatt + Re
∫

d� (ê∗
0 · f) exp(−ik0 · r) r exp(ikr)

+ Re
∫

d�
[
(r̂ · k̂0)(ê0 · f∗) − (r̂ · ê0)(k̂0 · f∗)

]
exp(ik0 · r) r exp(−ikr). (21.58)

We evaluate the integrals in (21.58) using the asymptotic identity:

lim
k0r→∞

exp(ik0 · r) = 2πi

[
exp(−ik0r)

k0r
δ(r̂ + k̂0) − exp(ik0r)

k0r
δ(r̂ − k̂0)

]
. (21.59)

The reader can derive (21.59) by substituting the spherical harmonic addition theorem (C.23) into the
plane wave expansion formula (C.53) to get

exp(ik0 · r) = 4π
∞∑
�=0

i�j�(k0r)
�∑

m=−�
Y ∗
�m(k̂0)Y�m(r̂). (21.60)

After inserting the large-argument form of the spherical Bessel function (C.46) into (21.60), the
inversion symmetry (C.24) and completeness (C.20) of the spherical harmonics produces (21.59).

Substituting (21.59) into (21.58) eliminates one integral because the factor r̂ · ê0 vanishes when
r̂ = ±k̂0. Otherwise, we note that r̂ = k̂0 is the θ = 0 forward direction and r̂ = −k̂0 is the θ = π
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backward direction. Therefore, because k = k0, the remaining integrals and (21.56) reduce (21.58) to

−σtot = −4π

k
Re

[
ê∗

0 · f(k0) − ê0 · f∗(k0)

2i
− ê∗

0 · f(−k0)ei2kr + ê0 · f∗(−k0)e−i2kr

2i

]
. (21.61)

The first (second) term in square brackets in (21.61) is purely real (imaginary). Therefore, (21.61)
reduces to our desired result, the optical (or forward scattering) theorem:

σtot = 4π

k
Im

[
ê∗

0 · f(k0)
]
. (21.62)

Because (21.62) was derived from (21.55), conservation of energy is the physical principle which
underlies the optical theorem. The flow of energy is determined by the interference between the
incident wave and the wave created by the excitation of the scatterer. This interference happens at all
points in space, but only the amplitude of the radiated wave in the forward direction appears in the
final statement of the theorem.

Two points are worth noting. First, our proof of (21.62) assumed an incident (plane) wave with
infinite extent in the transverse direction. The theorem does not apply to a beam-like wave if its
transverse width is smaller than the size of the scatterer. Second, the theorem is exact and therefore
easy to violate when approximate expressions are used for σtot or f(k0). An example is the Thomson
scattering calculation performed in Section 21.3. We found σscatt = (8π/3)r2

e , yet ê∗
0 · f(k0) was purely

real. This is not consistent with (21.62).
To identify the problem, we use (21.55) and (21.56) and write the theorem in the form

4π

k
Im

[
ê∗

0 · f(k0)
] = σscatt + 1

2|〈S inc 〉| Re

[∫
d 3r j∗ · Einc +

∫
d 3r j∗ · Erad

]
. (21.63)

Equation (21.63) splits σabs into two terms. For Thomson scattering, the contribution
∫
d 3r j∗ · Einc = 0

because a single electron has no internal dynamics to dissipate energy. On the other hand,
∫
d 3r j∗ ·

Erad �= 0 because the radiation field does work on the electron. This is the phenomenon of radiation
reaction, which we neglected when writing the equation of motion (21.9) but which contributes an
imaginary part to f(k0) when it is taken into account.10 This omission is justified as far as the particle
dynamics is concerned. It is not justified when we study conservation of energy as reflected in the
optical theorem.

Application 21.2 Approximate Mie Scattering

This Application uses the optical theorem to derive the approximate cross section formula (21.45)
for wave scattering from a sphere with index of refraction n. The idea is to replace the asymptotic
electric field (21.3) by a scalar wave with the same form and mimic the partial-wave expansion of
the scattering amplitude f (θ ) which appears, e.g., in the quantum theory of potential scattering. This
expansion uses a set of phase shifts, δ�, to parameterize the scattering:

f (θ ) = 1

2ik

∞∑
�=0

(2�+ 1)P�(cos θ )
[
exp(i2δ�) − 1

]
. (21.64)

Following the ray optics discussion at the end of Section 21.5.2, we use � = bk to replace the angular
momentum index in (21.64) by the impact parameter b = R cosα shown in Figure 21.13. A straight-
line ray with this impact parameter accumulates a phase shift 2δ� = � sinα with respect to a wave in
vacuum where � = 2R(kin − kout) = 2kR(n− 1).

10 See Section 23.6.
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We evaluate (21.64) in a continuum approximation where

∞∑
�=0

→ k

R∫
0

db = kR

π/2∫
0

dα sinα. (21.65)

Figure 21.13: A ray passes through a dielectric sphere with impact parameter b.

Therefore, because P�(1) = 1 and 2�+ 1 ≈ 2kR cosα, the forward scattering amplitude becomes

f (0) = −ikR2

π/2∫
0

dα sinα cosα
[
exp(i� sinα) − 1

]
. (21.66)

The substitution x = sinα and an integration by parts yields

f (0) = ikR2

[
1

2
− exp(i�)

i�
− exp(i�) − 1

�2

]
. (21.67)

Replacing ê∗
0 · f by f in the optical theorem (21.62) gives the cross section (21.45):

σapprox = 2πR2

[
1 − 2

�
sin�+ 2

�2
(1 − cos�)

]
. (21.68)

�

21.7.2 The Extinction Paradox
Consider an object of linear size a which does not absorb energy. In the short-wavelength limit
when ka � 1, our experience with optics suggests that σtot = σscatt will approach the geometric cross
section σgeom.11 However, both Figure 21.7 for a conducting cylinder and Figure 21.9 for a dielectric
sphere show, instead, that σscatt approaches twice this value. These are examples of a more general
high-frequency result, called the extinction paradox, which is valid even when σabs �= 0, namely,
σtot → 2σgeom when ka � 1.

We resolve this paradox (at least qualitatively) by paying careful attention to the scattered field in
(21.1). The key is the Ewald-Oseen extinction theorem (see Section 20.9.1), which can be interpreted
as dividing Escatt into three parts. The first part annihilates the incident wave inside the object; the
second part forms the entire wave field inside the object; the final part superposes with the incident
field to form the entire wave field outside the object. With these in mind, we consider two objects: one
perfectly conducting and one perfectly absorbing. In both cases, the short-wavelength limit ka � 1
implies that a dark and sharply defined shadow forms behind the object.

For the perfect conductor, σabs = 0 and the entire effect comes from σscatt. One contribution to
σscatt comes from the incident wave power which is reflected from the illuminated face of the object.
By definition, this piece has magnitude σgeom. Another contribution comes from the power in the

11 See the last line of Section 21.2 for the definition of σgeom.
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2λ 2λ

2λ

Figure 21.14: A plane wave incident from the left diffracts at the edge of a conducting half-plane (vertical black
line). The electric field points out of the plane of the diagram. Left panel: electric field intensity; right panel: lines
of the Poynting vector. Both panels are two wavelengths on a side. Figure from Berry (2001).

scattered wave which forms the shadow. This also has magnitude σgeom because complete destructive
interference requires that Escatt = −Einc in the shadow region. The final result is σscatt = 2σgeom. For
the perfect absorber, σabs = σgeom because the field created inside the object now contains all the power
which was reflected in the previous case. On the other hand, σscatt = σgeom because the formation of
the shadow still requires that the sources inside the sphere annihilate the incident field in the shadow
region. This gives σtot = 2σgeom as a consequence of (21.56).

So far, we have relied on the presence of a sharp shadow (and thus the large-object limit ka � 1)
to explain the extinction paradox. However, numerical studies by Berg et al. (2011) show that σtot →
2σgeom even for scattering from semi-transparent dielectric spheres where no shadow forms because
ka is not large. If we generalize the definition of � in Application 21.2 to

� = 2kaRe(n− 1), (21.69)

a summary of the numerical results for a sphere is

lim
��1

σtot = 2σgeom. (21.70)

Some insight into (21.70) comes from studying the integration over angles of dσtot/d� for spheres
with a complex index of refraction. When this integration is carried out over the illuminated part of the
sphere’s surface alone, the result is very nearly 2σgeom for all values of �. Continuing the integration
over the non-illuminated part of the surface drives the integral away from this value except when
� � 1. In that case, σtot remains equal to 2σgeom because either (i) the contributions from every part
of the non-illuminated surface are negligibly small (the shadow-forming conductor case) or (ii) the
contributions from different parts of the non-illuminated surface vary rapidly in phase and cancel one
another out (the non-shadow-forming dielectric case). It remains an open question to prove (21.70)
rigorously for an arbitrary scatterer.

21.8 Diffraction by a Planar Aperture

Wave scattering from an object with a sharp edge is called diffraction. The first solution of the Maxwell
equations for a true diffraction problem appeared in 1896, when Sommerfeld published his tour de
force analysis of a plane wave incident on a semi-infinite conducting plane. Figure 21.14 illustrates
some features of Sommerfeld’s solution. The vertical dark line at the center of the each panel is
the half-plane, which extends infinitely in three directions: downward, toward the reader, and away
from the reader. The plane wave propagates from left to right with the electric vector E oriented
perpendicular to the page. The shading in the left panel is darkest (lightest) in regions of highest
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z

Figure 21.15: A monochromatic plane wave incident on an aperture (A) cut out of a plane screen (S). The
dashed curve # is the surface of the volume �.

(lowest) electric field strength. The appearance of non-zero field intensity in the geometric shadow of
the screen is one of the characteristic signatures of diffraction by a sharp edge.

The right panel of Figure 21.14 shows streamlines of the Poynting vector S = E × H during edge
diffraction. Several of these paths for energy flow bend around the edge and into the geometrical
shadow. Other lines of S illustrate the reflection of the incident wave from the conducting surface.
The small closed circle on the illuminated side of the plane is centered at one of many isolated points
(actually lines perpendicular to the page) where the electric field vanishes. This may be compared
to the parallel lines (or planes perpendicular to the page) of zero electric field which occur in the
standing wave which forms when a plane wave falls with normal incidence on an infinite (rather than
semi-infinite) conducting plane (see Section 19.3.1).

Broadly viewed, edge diffraction by a semi-infinite plane is a special case of electromagnetic
diffraction from an aperture cut out of a flat screen. This more general problem—with screens made
from different materials and single or multiple apertures shaped like circles, rectangles, or long narrow
slits—has long attracted the attention of physicists, microscopists, and astronomers. We follow tradition
and analyze this situation first using scalar diffraction theory. We then solve the problem in a manner
that is fully consistent with the Maxwell equations.

21.8.1 Scalar Diffraction Theory
Figure 21.15 shows a monochromatic plane wave incident on an aperture (A) cut out of a planar
screen (S) at z = 0. Scalar diffraction theory treats the plane wave as a scalar field and seeks the
unique solution to the wave equation which propagates into the z > 0 half-space subject to suitable
boundary conditions on the screen and at infinity. The guess u(r) exp(−iωt) implies that u(r) satisfies
Helmholtz’ equation (21.24), and the Green function method is particularly well suited to our task. If
k0 = ω/c, the Green function of interest satisfies[∇2 + k2

0

]
G(r, r′) = −δ(r − r′). (21.71)

The key step uses u(r) and G(r′, r) to write out Green’s second identity (1.80) for the volume �

enclosed by the surface # indicated in Figure 21.15. � comprises the entire z > 0 half-plane when
we let the radius of the hemisphere go to infinity.

The identity in question reads∫
�

d 3r ′ [u(r′)∇′2G(r′, r) −G(r′, r)∇′2u(r′)] =
∫
#

dS′ · [u(r′)∇′G(r′, r) −G(r′, r)∇′u(r′)].

(21.72)
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For r ∈ �, (21.24) and (21.71) reduce (21.72) to

u(r) =
∫
#

dS′ · [G(r′, r)∇′u(r′) − u(r′)∇′G(r′, r)
]
. (21.73)

Our previous experience with Green functions suggests that we impose boundary conditions on (21.71)
so one of the two terms in (21.73) vanishes. We choose a Dirichlet condition on the planar surface
z = 0+ and an outgoing spherical wave condition at infinity:

G(r′, r) = 0 when z′ = 0+

and

r ′
(
∂G

∂r ′ − ik0G

)
= 0 when r ′ → ∞. (21.74)

The second of these guarantees that the integral over the large hemispherical part of # vanishes.
Therefore, because the outward normal to � along the screen is −ẑ, (21.73) simplifies to

u(r) =
∫

z′=0+

dS ′u(r′)
∂

∂z′G(r′, r). (21.75)

We now need an explicit expression for G(r′, r). A good starting point is the free-space Green
function (20.53), which satisfies both (21.71) and the outgoing wave condition (see Section 20.3.3):

G0(r, r′) = exp
(
ik0|r − r′|)

4π |r − r′| . (21.76)

Using (21.76) and the method of images (Section 8.3), it is straightforward to construct a Green
function which vanishes when z′ = 0+, in accordance with (21.8.1). Because R = (x ′ − x)x̂ + (y ′ −
y)ŷ + (z′ − z)ẑ and R� = (x ′ − x)x̂ + (y ′ − y)ŷ + (z′ + z)ẑ are image points with respect to z′ = 0,
the Green function we seek is

G(r′, r) = exp(ik0R)

4πR
− exp(ik0R

�)

4πR�
. (21.77)

Now, the z′-derivative of (21.77) evaluated at z′ = 0 is proportional to the z-derivative of (21.76)
evaluated at z′ = 0. Therefore, if s2 = (x ′ − x)2 + (y ′ − y)2 + z2, using (21.77) to evaluate (21.75)
gives what is often called the Rayleigh-Sommerfeld diffraction integral:

u(r) = −2
∫

z′=0

dS ′ u(r′) ẑ · ∇G0 = − 1

2π

∫
z′=0

dS ′ u(r′)
∂

∂z

[
exp(ik0s)

s

]
. (21.78)

The integral equation (21.78) relates the unique solution of the scalar Helmholtz equation (21.24) in
the z > 0 half-space to its boundary values u(x, y, 0). Of course, the latter are generally not known.

The name Kirchhoff is associated with an approximation which transforms (21.78) into a formula
for u(r). Let u0(r) be the incident plane wave. In Figure 21.15, the idea is to set u(x, y, 0) = 0 on
the screen and u(x, y, 0) = u0(x, y, 0) in the aperture. We thereby restrict the integration in (21.78)
to the aperture. This is a high-frequency, small-wavelength approximation which performs best when
the majority of the field in the aperture is far from the perturbation induced by the boundary of the
aperture, in other words, when λ/a � 1 where λ is the wavelength and a is the smallest characteristic
dimension of the aperture. This is the usual domain of optics, which was the class of problems of
interest to Kirchhoff.

The name Fraunhofer is associated with the far-field limit of (21.78) where k0r � 1. In that case,
the z-derivative in (21.78) may be approximated by the multiplicative factor ik0 and the rightmost
integral in (21.78) becomes a mathematical expression of Huygens’ principle: a wave incident on an
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aperture propagates into the far field as if every element of the aperture is the source of a spherical
wave with an amplitude and phase given by the incident wave. If, in addition, the aperture size is small
and we restrict ourselves to observation points not far from the z-axis, it is common to define a variable
p = k0r̂, use the far-field limit of ∇G0 [see (21.97)], and ignore the angular factor ẑ · r̂ to write

u(r) ≈ − ik0

2π

exp(ik0r)

r

∫
aperture

dS ′u0(r′) exp(−ip · r′). (21.79)

The subject of Fourier optics exploits the conclusion from (21.79) that the far-zone field field u(x, y, z)
is proportional to the two-dimensional Fourier transform of the aperture field u0(x, y, 0).

Further progress requires that we relate the scalar field u(r) to a specific electromagnetic quantity.
The Cartesian components of E(r) and B(r) are natural choices because each one individually satisfies
(21.24) in the z > 0 half-space. Unfortunately, the fields obtained by solving the integral equation
(21.78) exactly for each component do not generally satisfy the Maxwell equations.12 This fact
notwithstanding, widespread practice simply compares |u(r)|2 with the measured intensity of the field.
Figure 21.16 is an example which compares experiment (left side) with the prediction of (21.78) using
Kirchhoff’s approximation (right side) for a plane wave that diffracts from a circular aperture (radius
a) in a plane screen at normal incidence.

The three panels plot the field intensity in planes parallel to the screen for different values of
F = a2/λz. When F is an integer and λ/a � 1 (as is the case here) the diffraction pattern in each
plane has F maxima and F − 1 minima. These features arise from the constructive and destructive
interference of waves that arrive at the observation plane from different points in the aperture. The
same interference produces oscillating intensity maxima and minima on the symmetry axis (r = 0)
as a function of F . The agreement between experiment and scalar diffraction theory in Figure 21.16
is remarkable and various explanations of this fact have been offered. All of these draw on the vector
theory of electromagnetic diffraction, to which we turn next.13

21.8.2 Vector Diffraction Theory
Vector diffraction theory treats the incident field in Figure 21.15 as an electromagnetic plane wave and
seeks the unique solution to the Maxwell equations which propagates into the z > 0 half-space subject
to suitable boundary conditions on the screen and at infinity. There is more than one way to do this.
One approach, indicated schematically on the left side of Figure 21.17, exploits the angular spectrum
of plane waves (Section 16.6.1) to represent the field at every point in the aperture as an appropriate
linear combination of plane waves. The interference of these waves in the near zone (close to the
aperture) evolves, in the far zone, to a radiation field determined by the single plane which propagates
in the direction r of observation.

The right side of Figure 21.17 illustrates a different approach to the vector diffraction problem.
Here, one generalizes the Huygens’ principle idea mentioned in the paragraph preceding (21.79) and
regards each point in the aperture as the source of a single vector spherical wave. The field at all
distances reflects the interference among all the sources. The plane wave and spherical wave points of
view provide complementary intuition about the phenomenon of diffraction. In this section, we begin
with the plane wave method and describe how it is used to calculate the electric field diffracted by a
planar aperture. However, rather than using it to analyze any particular aperture geometry, wesum over

12 The Sommerfeld half-plane problem (Figure 21.14) has enough symmetry that complete knowledge of one particular
field component is sufficient (through the Maxwell equations) to determine all the other components. In that case,
u(r) may be identified with that one particular component.

13 We discuss the apparent success of scalar diffraction theory seen here in Section 21.8.3 below.
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Figure 21.16: Normal-incidence diffraction from a circular aperture of radius a for different values of
F = a2/λz. Left: Measured field intensity. Right: |u(ρ, z)|2 calculated using (21.78) and Kirchhoff’s
approximation. The dashed rectangle is the geometrical optics approximation. Figure from Siegman (1986).

Discrete
elements

Spectrum
of plane
waves

r
r

Figure 21.17: Two representations of the field diffracted by an aperture. Left: angular spectrum of plane waves.
Right: Huygens’ effective sources. Figure from Smith (1997).

the spectrum of plane waves to derive an expression for the diffracted electric field which manifestly
illustrates Huygens’ principle. Using the latter, we rationalize the success of scalar diffraction theory
in Figure 21.16 and calculate the vector fields diffracted by a circular aperture.

Assume that all fields vary as exp(−iωt) and let ω = ck0. The angular-spectrum approach to
diffraction from a planar aperture at z = 0 superposes plane wave solutions of the vector Helmholtz
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equation,

(∇2 + k2
0)E = 0, (21.80)

in such a way that the sum converges for z ≥ 0. For a representative plane wave, exp(ik · r), these two
conditions constrain the wave vector k = kx x̂ + ky ŷ + kzẑ, so

kz =

⎧⎪⎨
⎪⎩
√
k2

0 − k2
x − k2

y k2
x + k2

y ≤ k2
0,

i
√
k2
x + k2

y − k2
0 k2

x + k2
y ≥ k2

0 .
(21.81)

The plane waves with kz real in (21.81) propagate with undiminished amplitude as z increases; the
waves with kz imaginary are evanescent and decay exponentially as z increases. In all that follows, it
is important to interpret every appearance of the variable kz (either explicitly or as a component of k)
as a shorthand for (21.81).

It is straightforward to construct a sum over plane waves for E(x, y, z ≥ 0) which satisfies ∇ · E = 0
automatically. The key is to make the expansion coefficients the Cartesian components of a two-
dimensional vector function E(kx, ky) = Ex(kx, ky)x̂ + Ey(kx, ky)ŷ. Doing this, an expression with
manifestly zero divergence is

E(x, y, z ≥ 0) = 1

(2π )2

∞∫
−∞

dkx

∞∫
−∞

dky

[
E − 1

kz
(k · E) ẑ

]
exp(ik · r). (21.82)

It is essential to the completeness of the Fourier representation that (21.82) includes the evanescent
waves in (21.81). It does not matter that these waves never reach the far zone. What matters is that their
presence in (21.82) influences the amplitudes of the propagating waves in the sum which do reach the
radiation zone. Now, let k⊥ = kx x̂ + ky ŷ and r⊥ = xx̂ + yŷ. Equation (21.82) shows that the x- and
y-components of the electric field evaluated at z = 0 are

Ex,y(r⊥, z = 0) = 1

2π2

∫
d 2k⊥Ex,y(k⊥) exp(ik⊥ · r⊥). (21.83)

Equation (21.83) is a two-dimensional Fourier transform. Therefore, the expansion coefficients we
seek are determined by the inverse Fourier transform. Dropping the explicit z = 0 on the left side of
(21.83), the result is

Ex,y(k⊥) =
∫

d 2r ′
⊥Ex,y(r′

⊥) exp(−ik⊥ · r′
⊥). (21.84)

Substituting (21.84) into (21.82) expresses E(x, y, z ≥ 0) in terms of its transverse components eval-
uated at z = 0. If the solution of this integral equation can be found (or approximated), the associated
magnetic field follows from ∇ × E = iωB.

Practical diffraction calculations using the angular-spectrum method require (i) a guess for the
(generally unknown) values of Ex,y(x, y, z = 0); (ii) evaluation of the integral (21.84) to find the
expansion coefficients; and (iii) evaluation of the field integral (21.82). The reader may wish to
explore this approach for specific aperture geometries. Our choice is to bypass such calculations and,
instead, transform the sum over plane waves (21.82) into a sum over spherical waves. The calculation
proceeds most smoothly if we replace (21.83) by

ẑ × E(x, y, z = 0) = 1

(2π )2

∫
d 2k⊥ [ẑ × E(k⊥)] exp(ik⊥ · r). (21.85)
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The associated inverse Fourier transform replaces (21.84):

ẑ × E(k⊥) =
∫

d 2r ′
⊥ [ẑ × E(r′

⊥)] exp(−ik⊥ · r′
⊥). (21.86)

Our strategy is to exploit (21.86) and a brief, explicit calculation confirms that (21.82) is identical
to

E(x, y, z ≥ 0) = i

(2π )2
∇ ×

∫
d 2k⊥

[
ẑ × E(k⊥)

kz

]
exp(ik · r). (21.87)

Substituting (21.86) into (21.87) gives the key intermediate result,

E(r⊥, z ≥ 0) = ∇ × 2
∫

d 2r ′
⊥ [ẑ × E(r′

⊥)]

{
i

8π2

∫
d 2k⊥
kz

exp[ik⊥ · (r − r′) + ikzz]

}
. (21.88)

The quantity in curly braces in (21.88) may be rewritten using Weyl’s identity,14

exp(ik0r)

4πr
= i

8π2

∫
d 2k⊥
kz

exp(ik⊥ · r⊥ + ikz|z|). (21.89)

Therefore, because the left side of (21.89) is the free-space Green function (21.76), (21.88) becomes
Smythe’s formula for the diffracted electric field,15

E(r⊥, z ≥ 0) = ∇ × 2
∫

z′=0

d 2r ′
⊥ [ẑ × E(r′

⊥)]G0(r, r′
⊥). (21.90)

Equation (21.90) is the vector analog of the scalar integral equation (21.78). The associated magnetic
field follows from ∇ × E = iωB. A precisely analogous calculation gives

B(r⊥, z ≥ 0) = ∇ × 2
∫

z′=0

d 2r ′
⊥ [ẑ × B(r′

⊥)]G0(r, r′
⊥), (21.91)

with an electric field given by ∇ × B = −iωE/c2.
A glance back at Application 16.2 of Section 16.9.2 shows that (21.90) and (21.91) are superpositions

of the fields (16.183) and (16.184) with harmonic time dependence and different choices for the
direction of the constant vector ŝ in the plane of the screen. Taken together, the results of this section
show that it is sufficient to know the tangential components of E(x, y, z = 0) or B(x, y, z = 0) to
compute both fields in the z ≥ 0 half-space. This is consistent with the uniqueness theorem for time-
dependent fields (Application 15.1 of Section 15.4.1). It remains only to explore the approximations
and limits needed to evaluate (21.90) and (21.91) for practical calculations of the fields diffracted by
an aperture in a planar screen.

21.8.3 The Kirchhoff Approximation
The boundary values of ẑ × E and ẑ × B in (21.90) and (21.91) are generally not known. To make
progress, the Kirchhoff approximation for this vector problem puts F = E in (21.90), F = B in (21.91),

14 The Weyl identity, which makes use of (21.81), can be established by (i) Fourier transforming (21.71) with r′ = 0;
(ii) solving the resulting algebraic equation for G(k); and (iii) performing the kz integration of the inverse Fourier
transform by contour integration. For a method which avoids the complex plane, see A.S. Marathay, “Fourier
transform of the Green function for the Helmholtz equation”, Journal of the Optical Society of America 65, 964
(1975).

15 See W.R. Smythe, “The double current sheet in diffraction”, Physical Review 72, 1066 (1947), and Section 12.18 of
W.R. Smythe, Static and Dynamic Electricity, 3rd edition (McGraw Hill, New York, 1969).
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and supposes that

ẑ × F ≈ 0 on the screen S
(21.92)

ẑ × F ≈ ẑ × Finc in the aperture A.

This approximation is used for screens of all types in the high-frequency (optical) limit when the
wavelength is small compared to the aperture size. As mentioned earlier, this is the regime where the
perturbation to the field in the aperture by the aperture boundary should be negligible.16

The first line of the Kirchhoff approximation in (21.92) limits the domain of integration in (21.90) and
(21.91) to the aperture. This and the spherical wave character of G0(r, r′) in (21.76) show that (21.89)
and (21.90) reflect the Huygens’ principle point of view illustrated on the right side of Figure 21.17,
namely, that each point in the aperture is the origin of a spherical wave with a phase and amplitude
determined by the incident field.

It is worth noting that, whether one uses n̂ × E data or n̂ × B data, one of the two Kirchhoff boundary
conditions is always exact when the screen is an infinitely thin perfect conductor. In that case,

ẑ × E = 0 on the screen S
(21.93)

ẑ × B = ẑ × Binc in the aperture A.

The first condition is familiar from all our previous work with perfect conductors. The second follows
from the surface current density matching condition, n̂2 × [B1 − B2] = μ0K, and the invariance
of the screen with respect to reflection in the z = 0 plane. The latter implies that ẑ × Bind(0+) =
−ẑ × Bind(0−), where Bind is the field produced by the currents induced in the screen by the incident
field. We conclude that ẑ × Bind(0±) ∝ K. The current density is zero in the aperture, so only the
incident plane wave contributes to ẑ × B(0+).

We now return to Figure 21.16. The Kirchhoff approximation to scalar diffraction theory was used
to compute the “theory” half of that figure and our vector diffraction theory will help rationalize
the agreement between that theory and experiment. The first step is to perform the curl operation in
(21.90). This puts Smythe’s formula in the form

E(r⊥, z ≥ 0) = −2
∫

z′=0

d 2r ′
⊥ [ẑ × E(r′

⊥)] × ∇G0(r, r′
⊥). (21.94)

The second step writes out the cross products in (21.94) to get

E(r) = −2
∫

z′=0

d 2r ′
⊥ E ẑ · ∇G0 + 2 ẑ

∫
z′=0

d 2r ′
⊥ E · ∇G0. (21.95)

Comparing (21.95) to (21.78) shows that the latter reproduces the former exactly for the field com-
ponents Ex(r) and Ey(r), but fails to do this for Ez(r). Therefore, the scalar theory should predict
experimental field intensities well when Ez is negligible. This is true when the angle of incidence is
near normal and the observation points are not far from the symmetry axis (except when z < λ). These
conditions happen to be satisfied for the data shown in Figure 21.16.

21.8.4 Fraunhofer Diffraction
The term Fraunhofer diffraction is used when the distance from the aperture to the observation point
is large compared to the wavelength and large compared to the size of the aperture. The exact electric

16 The Kirchhoff approximation can be used to study scattering from a two-dimensional scatterer like a disk or a strip
by regarding the plane of the scatterer as “mostly aperture”.
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Figure 21.18: Diffraction of a plane wave by a circular aperture.

field expression (21.94) simplifies considerably in this limit. If R = r − r′, a brief calculation confirms
that the gradient of the free-space Green function (21.76) is

∇G0 = (ik0R − 1)
G0(R)

R
R̂. (21.96)

The stated conditions imply that k0R � 1 and r � r ′. Therefore,

∇G0 ≈ ik0r̂
exp(ik0r)

4πr
exp(−ik0r̂ · r′). (21.97)

Substituting (21.97) into (21.94) gives the Fraunhofer limit of Smythe’s formula as

Erad(r⊥, z ≥ 0) = ik0
exp(ik0r)

2πr
r̂ ×

∫
z′=0

d 2r ′
⊥
[
ẑ × E(r′

⊥)
]

exp(−ik0r̂ · r′
⊥). (21.98)

As expected for a radiation field, Erad is transverse to r̂ and decreases as 1/r . The asymptotic (r → ∞)
magnetic field calculated from B = (∇ × E)/iω also has the anticipated radiation zone form,

cBrad = r̂ × Erad. (21.99)

As an example, we consider the Kirchhoff approximation to (21.98) when a normal-incidence plane
wave with Einc = E0 exp(ik0z)ŷ strikes a conducting screen with a circular aperture. The screen in
Figure 21.18 occupies z = 0 and the origin-centered aperture has radius a. The z-axis is normal to the
aperture, so r = r sin θ cosφ x̂ + r sin θ sinφ ŷ + r cos θ ẑ defines a spherical coordinate system. In
the plane of the aperture (θ = π/2), we write r⊥ = ρ cosφ x̂ + ρ sinφ ŷ. Using these and the formulae
in Section 1.2.3,

r̂ × [ẑ × Einc]z=0 = −E0(sinφ θ̂ + cosφ cos θ φ̂) and r̂ · r′ = ρ ′ sin θ cos(φ − φ′). (21.100)

Therefore,

E = −ik0E0
exp(ik0r)

2πr
(sinφ θ̂ + cosφ cos θ φ̂)

a∫
0

dρ ′ρ ′
2π∫

0

dφ′ exp[−ik0ρ
′ sin θ cos(φ − φ′)].

(21.101)
The symmetry of a circle implies that all the φ dependence of the diffracted field is carried by the
vector pre-factor in (21.101). Therefore, we can set φ = 0 inside the φ integral and use

2π∫
0

dφ′ exp[−ik0ρ
′ sin θ cosφ′] = 4

π/2∫
0

dφ′ cos[k0ρ
′ sin θ cosφ′]. (21.102)

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-21 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 7:48

806 SCATTERING AND DIFFRACTION: WAVES ALTERED BY CURVED BOUNDARIES, SHARP EDGES

1.0

0.1

0.01

k0a = 5π

−π/2 π/20

θ

⏐E(θ,0)⏐
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Figure 21.19: Angular dependence of the electric field magnitude diffracted by a circular aperture with
k0a = 5π . Figure from Smith (1997).

The final result takes a convenient form if we combine (21.102) with an integral representation of
the zero-order Bessel function,

J0(u) = 2

π

π/2∫
0

dφ cos(u cosφ), (21.103)

and the definite integral,

z∫
0

du uJ0(u) = zJ1(z), (21.104)

namely,

E(r, θ, φ) = − i

2
E0(k0a)2 exp(ik0r)

k0r

[
2J1(k0a sin θ )

k0a sin θ

]
(sinφ θ̂ + cosφ cos θ φ̂). (21.105)

Figure 21.19 plots the normalized magnitude of the diffracted electric field (21.105) in the φ = 0 plane
for an electrically large aperture with k0a = 5π . The vertical scale is logarithmic, so the vast majority
of the diffracted field is contained in the central lobe around the forward (θ = 0) direction. The number
of side lobes and interference zeroes increases as k0a increases because they are determined by the
zeroes of J1.

The secondary maxima and minima occur in Figure 21.19 for the same reason they occur in
Figure 21.16: constructive and destructive interference among Huygens’ wavelets emanating from
different points in the aperture. Indeed, a scalar diffraction calculation leads to the same integral that
appears in (21.101). For this particular problem, the full Maxwell formalism adds only the vector
post-factor in (21.105). On the other hand, the alert reader will have noticed the distinct similarity
between the circular aperture diffraction pattern in Figure 21.19 and the radiation pattern for the circular
reflector shown in the rightmost panel of Figure 21.12. This is so because the plane represented by
the straight line in the middle panel of Figure 21.12 may be regarded as the “aperture” in a “screen”
which happens to be made of vacuum. The field reflected from the concave dish onto this circular
aperture serves as the “incident” field in a Kirchhoff/Fraunhofer approximation to the field radiated
by the reflector.

We conclude with a brief historical remark. Lord Rayleigh famously used the scalar version of
(21.105) to determine the resolving power of a telescope or microscope with a circular aperture. He
suggested that two point sources are just resolvable if their angular separation θ is such that the first
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Figure 21.20: Plane wave scattering from an aperture in a conducting screen (left panel) and from a
complementary conducting plate (right panel).

minimum of the diffraction pattern of one source coincides with the central maximum of the diffraction
pattern of the other source. Since x1 = 3.832 is the first zero of J1(x), we set k0a sin θ = x1 and use
λ = 2π/k0 to write the Rayleigh criterion as

sin θ = 0.6
λ

a
. (21.106)

21.9 Generalized Optical Principles

Before Maxwell, the laws of optics were developed using a scalar field (the light intensity or its square
root) as the fundamental quantity. After Maxwell, the optical laws were generalized to be consistent
with the vector field theory of electromagnetism. The previous section presented an example: a
Huygens-like principle for the electric and magnetic fields diffracted by an aperture cut out of an
infinite planar sheet. In this section, we specialize to an aperture cut out of a conducting sheet and
prove an electromagnetic version of Babinet’s principle. We then return to Huygens’ principle and
prove a vector version of the principle for the electric and magnetic fields diffracted by an arbitrary
scatterer.

21.9.1 Babinet’s Principle for Vector Fields
Babinet’s principle elegantly relates the scattering produced by the two complementary objects shown
in Figure 21.20. One is a flat, infinitely large, infinitesimally thin, and perfectly conducting sheet with
an aperture cut out. The other is a flat, infinitesimally thin, and perfectly conducting plate with the
exact size and shape of the aperture. The incident plane waves in the two cases are not identical.
Rather,

E′
inc = −cBinc and cB′

inc = Einc. (21.107)

The total fields in each case are the sum of the incident fields shown and the field scattered by each
conductor. Thus,

B = Binc + Bscatt and E = Einc + Escatt, (21.108)

and similarly for the primed fields. Babinet’s principle asserts that the electromagnetic fields of these
complementary scattering problems are related by

E′
scatt = cB and cB′

scatt = −E. (21.109)
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We prove (21.109) by writing out the time-harmonic (ω = ck0) Maxwell equations and the boundary
conditions satisfied by (E,B) and by (E′

scatt,B′
scatt). For the aperture problem, the total field in the

z > 0 half-space satisfies

∇ × E = ik0(cB) and ∇ × (cB) = −ik0E. (21.110)

We repeat from (21.93) the boundary conditions for the total field at z = 0 :

ẑ × E = 0 off the aperture
(21.111)

ẑ × B = ẑ × Binc on the aperture.

For the plate problem, the scattered field in the z > 0 half-space satisfies

∇ × E′
scatt = ik0(cB′

scatt) and ∇ × (cB′
scatt) = −ik0E′

scatt. (21.112)

The boundary conditions for the scattered field at z = 0 are

ẑ × (cB′
scatt) = 0 off the plate

(21.113)
ẑ × E′

scatt = ẑ × (cBinc) on the plate.

The first condition in (21.113) is true for the same reason that the second condition in (21.111) is true.
The second condition in (21.113) follows from ẑ × (E′

scatt + E′
inc) = 0 and (21.107). This is all we

need. Babinet’s principle (21.109) is the statement that (21.112) and (21.113) transform to (21.110)
and (21.111) when we make the duality substitutions E′

scatt → cB and cB′
scatt → −E.17 We emphasize

that Babinet’s principle (21.109) is an exact result which applies to both the near-field and far-field
limits of the scattered fields.

A straightforward application of Babinet’s principle relates the diffraction pattern produced by a
circular hole in a conducting sheet to the diffraction pattern produced by a conducting disk which just
fills the hole. Because (k̂,Erad,Brad) forms a right-handed orthogonal triad of vectors and |E| = c|B|
in the radiation zone, the cross product of k̂ with (21.109) evaluated in the radiation zone gives

k̂ × Erad(disk) = k̂ × cBrad(hole) =⇒ cBrad(disk) = −Erad(hole)
(21.114)

k̂ × cBrad(disk) = −k̂ × Erad(hole) =⇒ Erad(disk) = cBrad(hole).

Consequently,

|Erad(disk)| = |Erad(hole)| and |Brad(disk)| = |Brad(hole)|. (21.115)

This tells us that, apart from the difference in incident field polarization implied by (21.107), the
far-field diffraction patterns produced by a circular aperture and a conducting disk are the same. For
normal incidence, that pattern is Figure 21.19 when the Kirchhoff approximation is valid. The latter
replaces the true field by the incident field in the hole, so this will be true only for electrically large
apertures where the perturbation from the hole’s perimeter can be tolerated.

Application 21.3 Sub-Wavelength Apertures and Near-Field Optics

This application uses Babinet’s principle and the physics of the angular-spectrum representation to
analyze the diffraction of a plane wave by a sub-wavelength aperture (a � λ) in a conducting sheet. In
the far field, we will confirm the expectation from Section 21.8.3 that Kirchhoff’s approximation fails
for an electrically small aperture. In the near field, we will learn how to “beat the diffraction limit” set
by the Rayleigh criterion (21.106).

17 See Section 15.2.2 for the duality of free electromagnetic fields.
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Our statement about the far field is true because Babinet’s principle (see Section 21.9.1) guarantees
that the fields transmitted through the aperture into z > 0 are related by duality to the fields diffracted
into z > 0 by a perfectly conducting, two-dimensional object which just fills the hole. But according
to Section 21.4, an electrically small object produces Rayleigh scattering with its characteristic λ−4

variation of the cross section. This disagrees with the Kirchhoff prediction that σscatt ∝ λ−2 because the
quantity in square brackets in (21.105) approaches one when k0a � 1. In words, the transmission of
a plane wave through a very small aperture in a perfect conductor is very much less than the Kirchhoff
approximation predicts.

The Babinet argument implies that the differential cross section for scattering by a small aperture
in a conducting sheet is given by (21.20) if we can compute the electric and magnetic dipole moments
induced in the apertured conductor when a long-wavelength plane wave strikes it. Using a quasistatic
approximation appropriate toλ � a, we leave it as an exercise for the reader to show that these moments
can be calculated directly using the aperture geometry, or indirectly using Babinet’s principle and the
dipole moments calculated for the flat, conducting object shaped like the aperture.18 Here, we content
ourselves with a qualitative discussion for a plane wave incident on a circular aperture from an arbitrary
angle of incidence, as shown in Figure 21.15.

Consider the polarization where B0 lies parallel to the screen. The conductor boundary condition
n̂ · B|S = 0 ensures that the field line pattern very near the hole looks something like the left panel of
Figure 21.21. In the far field, the magnetic field line pattern for z > 0 is the same as that produced by
a magnetic dipole at the center of the hole oriented anti-parallel to the long-wavelength field incident
from z < 0. The electric field for this polarization has components both parallel to the screen and
perpendicular to the screen. However, the conductor boundary condition n̂ × E|S = 0 ensures that the
field line pattern very near the hole looks something like the right panel of Figure 21.21. In the far field,
the electric field line pattern for z > 0 is the same as that produced by an electric dipole at the center
of the hole oriented parallel to the long-wavelength field incident from z < 0. The other polarization
has E0 parallel to the screen and produces only a magnetic dipole response in the far field.

B E

m p

Figure 21.21: Uniform fields induce dipole moments in a metal sheet with an aperture. Left panel:
magnetic dipole moment m. Right panel: electric dipole moment p. Figure adapted from Drezet, Woehl,
and Huant (2002).

There is more to learn about the near field in the immediate vicinity of a very small aperture
than Figure 21.21 suggests. To see this, we exploit the angular-spectrum representation (21.82) of
the field diffracted into z > 0 by the aperture. The restriction (21.81) is crucial. If a plane wave
with k2

x + k2
y > ω2/c2 contributes to the transmitted field, kz is a positive imaginary number and the

plane wave in question does not propagate into the far zone. It is evanescent and decays exponen-
tially as z increases.19 The key observation is that evanescent waves contribute more and more to

18 For an “elementary” derivation of the dipole moments induced in a conducting disk, see R. Friedberg, “The electro-
statics and magnetostatics of a conducting disk”, American Journal of Physics 61, 1084 (1993).

19 Section 17.3.7 reviews the properties of evanescent waves.
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the sum (21.82) as the aperture size becomes smaller. This can be understood from our discussion
of the complementarity inequality, �x�kx ≥ 1

2 , which connects the spatial size of a wave packet in
the x-direction to the spread in wave vectors needed for its Fourier synthesis (see Section 16.5.3). For
the present problem, we identify �x�y with the area of an electrically small aperture and conclude
that the angular spectrum of any wave it transmits must contain many evanescent waves with large
values of kx and ky .

The mere fact that far fewer propagating waves contribute to the radiation zone of an electrically
small aperture compared to an electrically large aperture is one way to understand the much reduced
intensity of Rayleigh scattering compared to Kirchhoff scattering. Similarly, the Rayleigh criterion
(21.106) applies only to images formed from propagating waves. It says nothing about the resolution
possible for an object which lies so close to a sub-wavelength aperture that it is illuminated principally
by evanescent waves. In that case, the main issue is the exponential decay of the waves and a spatial
resolution d � λ can be achieved simply by locating the object within a distance d of the aperture.
This is the operating principle behind the field of near-field optics. �

21.9.2 Huygens’ Principle for Vector Fields
Let the surface S in Figure 21.22 completely enclose an arbitrary scattering or diffracting object. We
take this to mean that the volume � contains one or more sources of a time-harmonic electromagnetic
field. In this section, we generalize the results of Section 21.8.2 and prove that the scattered or diffracted
fields in the volume V outside S can be represented by a set of spherical wave sources distributed
over S. The source strengths are determined by the tangential components of E and B on S. This is a
generalized Huygens’ principle for electromagnetic fields.

Among the several ways to proceed, we avoid dyadic Green functions and excessive algebra by
exploiting a fairly unfamiliar identity of vector calculus.20 If ψ(r′) is a scalar function, E(r′) is a vector
function, and n̂′ is the unit normal to S that points into V ,∫

V

d 3r ′ [ψ∇′×(∇′ × E) + E∇′2ψ + (∇′ · E)∇′ψ
]

= −
∫
S

dS ′ [ψ n̂′ × (∇′ × E) + (n̂′ × E) × ∇′ψ + (n̂′ · E)∇′ψ
]
. (21.116)

For our application, the vector E(r′) is the space part of a time-harmonic electric field with frequency
ω = ck0. In V , this quantity satisfies ∇′ · E = 0, ∇′ × E = iωB, and ∇′ × ∇′ × E = k2

0E. The scalar
ψ(r′) = G0(r, r′) is the free-space Green function (21.76). The latter satisfies (21.71) and goes to zero
when either argument goes to infinity. Substituting all this information into (21.116) and choosing r
to lie in the complementary volume � gives

E(r ∈ �) = 0. (21.117)

Choosing r ∈ V gives a formula where only integrals over the surface S appear:

E(r ∈ V ) = iω

∫
S

dS ′ [n̂′ × B(r′)]G0(r, r′) +
∫
S

dS ′ [n̂′ × E(r′)] × ∇′G0(r, r′)

(21.118)
+
∫
S

dS ′ [n̂′ · E(r′)]∇′G0(r, r′).

20 A one-page paper with a straightforward proof of (21.116) is H. Unz, “Scalar-vector analog of Green’s theorem”,
IRE Transactions on Antennas and Propagation, 6, 300 (1958).
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Figure 21.22: Geometry used to discuss Huygens’ principle for electromagnetic fields.

A similar calculation replaces E by B in (21.116) and uses ∇′ · B = 0, ∇′ × B = −iωE/c2, and
∇′ × ∇′ × B = k2

0B. The result is B(r ∈ �) = 0 and

B(r ∈ V ) = −i(k0/c)
∫
S

dS ′ [n̂′ × E(r′)]G0(r, r′) +
∫
S

dS ′ [n̂′ × B(r′)] × ∇′G0(r, r′)

(21.119)
+
∫
S

dS ′ [n̂′ · B(r′)]∇′G0(r, r′).

Equations (21.118) and (21.119) are called the Stratton-Chu formulae. They are important for
situations where the compact volume � contains the charge and current and it is necessary to know
the details of the fields in the much larger volume V . A typical calculation uses a numerical method
to find the solution in � and on S, and then substitutes the latter into the Stratton-Chu formulae to
get the solution in V . For conceptual purposes, we transform (21.118) and (21.119) as follows: (i) use
∇′G0 = −∇G0 to bring the gradient operators outside the integrals; (ii) take the curl of each equation;
and (iii) use a Maxwell curl equation to eliminate the curl on the left side of each. These operations
generate what are called the Franz formulae:

E(r ∈ V ) = ∇ ×
∫
S

dS ′ [n̂′ × E(r′)]G0(r, r′) + ic2

ω
∇ × ∇ ×

∫
S

dS ′ [n̂′ × B(r′)]G0(r, r′)

B(r ∈ V ) = ∇ ×
∫
S

dS ′ [n̂′ × B(r′)]G0(r, r′) − i

ω
∇ × ∇ ×

∫
S

dS ′ [n̂′ × E(r′)]G0(r, r′).

(21.120)

The Franz formulae are interesting, not least because they require more information than strictly
should be necessary. Each involves both n̂ × E|S and n̂ × B|S , while the uniqueness theorem (men-
tioned at the end of Section 21.8.2) tells us that only n̂ × E|S or n̂ × B|S should be needed. That being
said, the only geometry known where an explicit formula exists to compute the fields in a volume
when only one tangential field component is known on the boundary is the planar aperture to which
(21.90) and (21.91) apply. For all other geometries, both surface quantities must be known or approx-
imated. An example is the physical optics expression (21.52). This may be derived by substituting
n̂ × E|S = 0 and (21.51) into the right side of (21.120) and then passing to the radiation zone using
(21.97) to evaluate the interior curl operation and ∇ → ik to evaluate the exterior curl operation.

The physics represented by the Franz formulae becomes clear when we recall (from Section 20.4)
the fields produced by an origin-centered point electric dipole with moment p(t),

B(r, t) = ∇ × μ0

4π

ṗret

r
and E(r, t) = ∇ × ∇ × 1

4πε0

pret

r
, (21.121)

and the fields produced by an origin-centered point magnetic dipole with moment m(t),

E(r, t) = −∇ × μ0

4π

ṁret

r
and B(r, t) = ∇ × ∇ × μ0

4π

mret

r
. (21.122)
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We are concerned with time-harmonic sources, so pret = p(t − r/c) = p exp[i(k0r − ωt)] and mret =
m(t − r/c) = m exp[i(k0r − ωt)]. In that case, a direct comparison of (21.121) and (21.122) with
(21.120) shows that the latter are exactly the fields of a surface S endowed with point electric and
magnetic dipoles with areal densities21

dp
dS

= i

ωμ0
[n̂ × B]S and

dm
dS

= − i

ωμ0
[n̂ × E]S . (21.123)

The presence of the free-space Green functions in (21.120) embodies the Huygens’-principle idea that
the fields in V may be thought of as produced by effective spherical wave sources distributed over S.

Example 21.4 Show that (21.120) reduces to (21.90) and (21.91) when the volume V in Fig-
ure 21.22 is the z > 0 half-space. Hint: Compare the fields at r = (x, y, z > 0) with the fields at
the image point r̄ = (x, y,−z).

Solution: The given V identifies the surface S as the z = 0 plane and the normal n̂′ = ẑ. Using the
hint and (21.117), the left side of (21.120) vanishes when the right side is evaluated at the image
point r̄, which lies in �. Accordingly, the electric field equation reads

0 = ∇ ×
∫
S

dS ′ [ẑ × E(r′)]G0(r̄, r′) + ic2

ω
∇ × ∇ ×

∫
S

dS ′ [ẑ × B(r′)]G0(r̄, r′).

Each curl operation refers to the observation point. Therefore, the z-derivative of the gradient
operator introduces a minus sign when it acts on G0(r̄, r′). Moreover, G0(r̄, r′) = G0(r, r′) when
z′ = 0. Therefore, the z-component of the first term of the equation just above has the same sign
as the corresponding component of (21.120) while the x- and y-components have the opposite
sign. Similarly, the z-component of the second term of the null equation has the opposite sign
as the corresponding component of (21.120) while the x- and y-components have the same sign.
Therefore, adding the z-components of the two equations and subtracting the x- and y-components
of the two equations gives the advertised result,

E(x, y, z > 0) = ∇ × 2
∫
S

dS ′ [ẑ × E(r′)]G0(r, r′).

A similar argument reduces the magnetic field equation in (21.120) to (21.91).

�
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current of (fictitious) magnetic charge.
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in The Second International Conference on Singular Optics, edited by M.S. Soskin and M.V. Vasnetsov,
Proceedings of the SPIE, vol. 4403 (2001), pp. 1-12.

Most optics textbooks (including Sommerfeld above) discuss scalar diffraction theory in more or less detail.
Goodman is the standard reference for the role of the Fourier transform in far-field diffraction. Figure 21.16 comes
from Siegman.

J. Goodman, Introduction to Fourier Optics, 3rd edition (Roberts and Company, Greenwood Village, CO,
2005).

A.E. Siegman, Lasers (University Science Books, Sausalito, CA, 1986), Section 18.4.

Our treatment of vector diffraction theory follows Smith (see Section 21.1), which is also the source of Figure 21.17
and Figure 21.19.
Section 21.9 Our proof of Babinet’s principle is due to Smith (see Section 21.1). Bethe is the author of the classic
paper on diffraction by small apertures. Hecht et al. provide a very readable overview of the field of near-field
optics. Figure 21.21 was adapted from Drezet et al.

H.A. Bethe, “Theory of diffraction by small holes”, Physical Review 66, 163 (1944).

B. Hecht, B. Sick, U.P. Wild, et al., “Scanning near-field optical microscopy with aperture probes: Fundamentals
and applications”, Journal of Chemical Physics 112, 7761 (2000).

A. Drezet, J.C. Woehl, and S. Huant, “Diffraction by a small aperture in a conical geometry”, Physical Review
E 65, 46611 (2002).

Our discussion of Huygens’ principle and the Franz formulae benefitted from Tai. Example 21.4 comes from the
mathematically rigorous monograph by Jones.

C.-T. Tai, “Kirchhoff theory: Scalar, vector, or dyadic?”, IEEE Transactions on Antennas and Propagation 20,
114 (1972).

D.S. Jones, The Theory of Electromagnetism (Macmillan, New York, 1964).

Problems
21.1 Scattering from a Bound Electron Find the total scattering cross section when a circularly polarized

wave scatters from an electron bound to a point in space by a spring with spring constant k. Assume that
the amplitude of the incident wave is not large.

21.2 Scattering from a Hydrogen Atom Let q = k0 − k be the scattering vector defined in Example 1.2. If aB

is the Bohr radius, show that the cross section for plane wave scattering from a hydrogen atom is proportional
to the factor [1 + (qaB/2)2]−4.

21.3 Double Scattering A long-wavelength, left circularly polarized, monochromatic plane wave scatters into
the direction k̂1 from a uniform dielectric sphere with radius a and polarizability α. The scattered wave
travels a distance r1 � a and scatters from an identical sphere into the direction k̂2. Find the twice-scattered
electric field at a distance r2 � a from the second sphere. Express your answer using polarization vectors
which are (i) transverse to k̂2 and (ii) parallel and perpendicular to the plane of the diagram.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-21 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 7:48

Problems 815

21.4 Rayleigh Scattering à la Rayleigh In one of his papers devoted to the color of skylight, Lord Rayleigh
used physical reasoning and dimensional analysis to deduce the wavelength dependence of the intensity of
light scattered by a particle in the atmosphere. Invent Rayleigh’s argument, beginning with his assumption
that the ratio of the scattered field amplitude to the incident field amplitude could depend on (i) the volume
of the particle, (ii) the distance from the particle to the observation point, (iii) the wavelength of the scattered
light, and (iv) the speed of light.

21.5 Rayleigh Scattering from a Conducting Sphere

(a) Place a perfectly conducting sphere with radius a in a uniform electric field E0 and let an origin-
centered electric dipole field represent the field produced by the sphere. Use this information to deduce
that p = 4πε0a

2E0 is the dipole moment induced in the sphere.
(b) Place the sphere in a uniform magnetic field B0 and let an origin-centered magnetic dipole field represent

the field produced by the sphere. Use this information to deduce that m = −(2πa3/μ0)B0 is the dipole
moment induced in the sphere.

(c) Let θ be the angle between the incident wave vector k0 and the scattered wave vector k. If ka � 1,
show that the differential cross section for scattering of an unpolarized plane wave by the perfectly
conducting sphere is 〈

dσ

d�

〉
unpol

= a2(ka)4

[
5

8
(1 + cos2 θ ) − cos θ

]
.

(d) Compare the answer in (c) with the cross section when the incident plane wave is circularly polarized.

21.6 Scattering from a Molecular Rotor A linearly polarized, monochromatic plane wave scatters from a
polar molecule by exerting a torque which sets the molecule into motion. Treat the molecule as an electric
dipole with moment p and moment of inertia I . Ignore terms quadratic in the (very slow) angular velocity
� of the molecule and average over all orientations of p to show that the total scattering cross section is
σscatt = μ2

0p
4/9πI 2. Hint: A rotating dipole moment satisfies ṗ = � × p.

21.7 Preservation of Polarization I A linearly polarized plane wave with electric field amplitude E0 is incident
on a small, perfectly conducting sphere. Use the dipole moment information provided in Problem 21.5 and
find the angle between the scattering wave vector k and the incident wave vector k0 where the radiated
electric field points in the same direction as E0.

21.8 Scattering and Absorption by an Ohmic Sphere A low-frequency, plane electromagnetic wave Rayleigh
scatters from a sphere with radius a and conductivity σ . Assume that the skin depth δ � a.

(a) Find the electric dipole moment induced in the sphere by the incident wave.
(b) Calculate the absorption cross section of the sphere.
(c) Show that the optical theorem is satisfied by the absorption cross section (alone) and the electric dipole

scattering amplitude.
(d) Rationalize the result of part (c) with the fact that the scattering cross section is not zero.

21.9 Scattering from a Dielectric Cylinder The symmetry axis of an infinitely long dielectric cylinder with
radius a and permittivity ε coincides with the z-axis. A monochromatic wave with wave vector k0 is normally
incident on the cylinder as shown below. Find the electric field everywhere if the incident wave is polarized
in the z-direction.
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21.10 Preservation of Polarization II A monochromatic plane wave with electric field amplitude E0 is incident
on a perfectly conducting object with an arbitrary shape. Prove that the electric field radiated in the backward
direction is parallel to E0 in the physical optics approximation.

21.11 Scattering from a Conducting Strip A thin and infinitely long, perfectly conducting strip occupies the
area 0 ≤ x ≤ w of the y = 0 plane. A monochromatic plane wave polarized along +z scatters from the strip
as shown below. Assume specular reflection and let ω = ck = ck0.

(a) Find the physical optics surface current density.
(b) Perform the z′ integration in the exact vector potential produced by KPO(r, t) and use the Hankel function

identity,

iπH
(1)
0 (x) =

∞∫
−∞

dη
exp(i

√
x2 + η2)√

x2 + η2
,

to show that

A(r, t) = ẑ
iμ0E0

2Z0
sinφ0

w∫
0

dx ′H (1)
0 (k|ρ − ρ ′|) exp(−ikx ′ cosφ0) exp(−iωt).

(c) Evaluate A(ρ, φ) in the far zone and show that the two-dimensional differential cross section for
scattering is

dσ

dφ
= 2

πk
sin2 φ0

sin2
[

1
2kw(cosφ + cosφ0)

]
(cosφ + cosφ0)2

.

Hint: Do not completely neglect the dependence of |ρ − ρ ′| on x ′ when approximating a phase factor
in the far zone.

21.12 Physical Optics Backscattering

(a) Let S be the illuminated portion of a conductor. If n̂ is the local unit normal vector to S and k = k0k̂
is the propagation direction of the backscattered wave, show that the cross section for backscattering in
the physical optics approximation is

σR = k2
0

4π 2

∣∣∣∣∣∣
∫
S

dS ′ k̂ · n̂′ exp(−2ik · r′)

∣∣∣∣∣∣
2

.

(b) Specialize to a flat, rectangular plate with negligible thickness that lies in the z = 0 plane. The side
parallel to the x-axis has length a and the side parallel to the y-axis has length b. If the center of the
plate coincides with the origin of spherical coordinates and the plate area is A, show that

σR = A2

λ2
cos2 θ

[
sin(k0a sin θ cosφ)

k0a sin θ cosφ
× sin(k0b sin θ sinφ)

k0b sin θ sinφ

]2

.

21.13 Born Scattering from a Dielectric Cube A plane wave E0 exp[i(k0 · r − ωt)] scatters from a dielectric
cube with volume V = a3 and electric susceptibility χe � 1. Two cube edges align with k0 and E0.

(a) Calculate the differential scattering cross section in the Born approximation.
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(b) Show that σBorn ≈ 1
4k

2a4χ 2
e when ka � 1. Hint: The near-forward direction dominates the scattering

when ka � 1.
(c) The weak scattering assumed by the Born approximation implies that |Erad|/|E0| � 1 for all q, even

when r ≈ a. Deduce from this that the ka � 1 result of part (b) is valid only when σBorn � χea
2.

21.14 Scattering from a Short Conducting Wire A monochromatic plane wave scatters from a perfectly
conducting wire where a � h. Assume that both the propagation vector and the electric field of the incident
wave lie in the y-z plane as shown below.

z

(a) In the Rayleigh limit when k0h � 1, the scattering is dominated by a z-directed electric dipole moment
p = ε0α(ẑ · E0)ẑ. Assume an induced surface current density,

K(z) = I0

2πa

[
1 − (z/h)2

]
ẑ,

and determine the parameter I0 by imposing the perfect-conductor condition, [Escatt + E0] · ẑ = 0, at
a single point: the origin of coordinates at the center of the wire. Specifically, calculate Escatt from a
near-zone expansion of the retarded potentials and show that

I0 = −iπωh2

{[ln(2h/a) − 1][1 − 1
2 (kh)2] + i 2

9 (kh)3} ẑ · E0.

(b) Drop the terms of order (k0h)2 and (k0h)3 from the expression for I0, compute the induced electric
dipole moment, and use this to find the total scattering cross section.

(c) Show that the terms dropped in part (b) must be retained in the radiation zone forward scattering
amplitude to satisfy the optical theorem with the cross section computed in part (b).

21.15 Absorption Cross Section for a Microscopic Object Show that σabs = (ω/c)Imα is the
frequency-dependent absorption cross section for a microscopic object (atom, molecule, or nucleus) with
polarizability α.

21.16 Absorption Sum Rule for a Lorentz Oscillator A monochromatic plane wave scatters from a Lorentz
atom where a bound electron obeys the classical equation of motion r̈ + γ ṙ + ω2

0r = 0. Assume that the
electron displacement and damping are both very small. If re = e2/4πε0mc

2 is the classical electron radius,
show that the integrated total absorption cross section is independent of the damping constant:

∞∫
0

dω σabs(ω) = 2π 2rec.

21.17 The Optical Theorem in Two Dimensions

(a) Integrate the differential cross sections derived in the text to find the total scattering cross sections σ‖
and σ⊥ for an infinitely long and perfectly conducting cylinder with Einc oriented, respectively, parallel
and perpendicular to the cylinder axis.

(b) In two dimensions, the scattering amplitude f(k) = f(k, φ) is defined by the asymptotic electric field

Erad(ρ, φ) = E0

√
i

k
f(k)

exp(ikρ)√
ρ

.
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Use the results of part (a) for either polarization to confirm that the optical theorem in two dimensions
is

σtot =
√

8π

k
Im[ê∗

0 · f(k, 0)].

21.18 The Optical Theorem for Pedestrians A unit-amplitude, monochromatic plane wave of a scalar field
ψ(r) scatters from an origin-centered obstacle of finite size. Apart from a factor of exp(−iωt), the field
takes the asymptotic form

ψ(r, θ, φ) ≈ exp(ikz) + exp(ikr)

r
f (θ, φ).

Focus on the almost-forward direction where θ � 1 and suppose that a flat screen with a radius R � z/k

collects the energy of the wave at a distance z � R from the origin. Show that∫
screen

dS |ψ |2 ≈ πR2 − 4π

k
Imf (0),

where f (0) is the scattering amplitude evaluated on the z-axis. Use this result to argue that

σtot = σscatt + σabs = 4π

k
Imf (0).

21.19 Total Cross Section Sum Rule An incident plane wave ê0E0 exp[i(k0 · r − ωt)] scatters from a target
with amplitude f(k). One can prove that f(k0) · ê∗

0/k
2 is a causal response function of the sort discussed in

Section 18.7. Use this information to prove the wavelength sum rule,

lim
λ→∞

Re [f(λ,k0) · ê∗
0] = 1

πλ2

∫ ∞

0
dλ′ σtot(λ

′).

21.20 The Index of Refraction Let Einc = e0E0 exp[i(kz − ωt)] be the electric field of a plane wave propagating
in a homogeneous dielectric medium. The wave vector k = nk0 = nω/c, where n is the index of refraction
of the medium. Suppose that the number density of scatters increases from N to N + δN in a thin layer of
the medium between z = 0 and z = δt . Because δt is infinitesimal, Einc scatters once from every extra atom
in the layer. Therefore, if the atomic scattering amplitude is f(θ, φ), the extra electric field produced at the
distant observation point z � δt is

Erad(z) = δNE0δt

∫
layer

d 2r
exp(ikR)

R
f(θ, φ).

z

(a) Change variables to η = R/z, integrate by parts, and compare the original integral to the new integral
in the limit kz � 1. Note that f(0) ≡ f(θ = 0, φ) does not depend on φ and establish that

Erad(z) = 2πi

k
δNE0δt exp(ikz) f(0) kz � 1.

(b) Construct E(z) = Einc(z) + Erad(z) from the results of part (a) and argue that your expression remains
valid at z = δt . Derive from this fact an expression for δk/δN , the change in wave vector induced by
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the density perturbation. Integrate and conclude that the index of refraction of the unperturbed medium
satisfies

n2 = 1 + 4πN

k2
0

ê∗
0 · f(0).

21.21 Radiation Pressure from Scattering An object scatters an incident plane wave with Einc(r, t) =
ê0E0 exp[i(k0 · r − ωt)]. Use the Maxwell stress tensor formalism to show that the time-averaged force
on the object can be written in terms of the incident wave intensity Iinc, the total cross section σtot, and the
differential cross section for scattering dσscatt/d� as

〈F〉 = Iinc

c

[
σtotk̂0 −

∫
d� r̂

dσscatt

d�

]
.

The projection of this force on the direction k̂0 is often called the radiation pressure due to scattering. Hint:
Integrate the stress tensor over the surface of an enormous sphere in the radiation zone.

21.22 A Backscatter Theorem Theorem: A monochromatic plane wave incident on a body with ε(r) = μ(r)
produces zero scattered field intensity in the far zone in the backward direction if the direction of incidence
is an axis of symmetry where rotation by 90◦ leaves the body unchanged. To prove this,

x

z

y

E k

H0

0
0

ε(r) = μ(r)

(a) Begin with the Maxwell equations for matter with a spatially varying permittivity and permeability.
Show that E(r) and H(r) satisfy the same generalized wave equation when ε(r) = μ(r).

(b) Let Escatt be the exact electric field produced by the body. Show that

Hscatt(x, y, z) = −Escatt
y (y,−x, z)x̂ + Escatt

x (y,−x, z)ŷ + Escatt
z (y,−x, z)ẑ.

(c) Use the results of part (a), part (b), and a consideration of the Poynting vector in the radiation zone to
prove the theorem.

21.23 The Angular Spectrum of Plane Waves in Two Dimensions Consider time-harmonic electromagnetic
fields in the domain z ≥ 0 of the form

E(x, z ≥ 0, t) = E(x, z, ω) exp(−iωt) B(x, z ≥ 0, t) = B(x, z, ω) exp(−iωt).
(a) Let ŷ · ETE(x, z = 0, t = 0) = Ēy(x). Determine the scalar function �TE(kx) and the vector function

�T E(kx) so that

ET E(x, z, ω) = ŷ
∞∫

−∞

dkx

2π
�TE(kx) exp(ik · r)

BT E(x, z, ω) =
∞∫

−∞

dkx

2π
�TE(kx) exp(ik · r)

solve Maxwell’s equations in free space. The wave vector k = x̂ kx + ẑ kz is two-dimensional. Explain
why there is no integral over kz.
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(b) Let x̂ · ETM(x, z = 0, t = 0) = Ēx(x). Determine the scalar function �TM (kx) and the vector function
"TM (kx) so that

BTM (x, z, ω) = ŷ
∞∫

−∞

dkx

2πc

k0

kz
�TM (kx) exp(ik · r)

ETM (x, z, ω) =
∞∫

−∞

dkx

2π
"TM (kx) exp(ik · r)

solve Maxwell’s equations in free space. The factor k0 = ω/c.
(c) Represent a general z ≥ 0 field as E = ETE + ETM and B = BTE + BTM. If S is the Poynting vector,

show that the time-averaged power transmitted down the z-axis is

Pz =
∞∫

−∞

dx < S · ẑ >= 1

4π

√
ε0

μ0

k0∫
−k0

dkx

{
|�TM |2 k0

kz
+ |�TE |2 kz

k0

}
.

What is the physical origin of the limits of integration on the kx integral?

21.24 Weyl’s Identity This problem outlines a contour integration method to prove that

exp(ik0r)

4πr
= i

8π 2

∫
d 2k⊥
kz

exp(ik⊥ · r⊥ + ikz|z|),

where

kz =

⎧⎪⎪⎨
⎪⎪⎩
√
k2

0 − k2
x − k2

y k2
x + k2

y ≤ k2
0,

i
√
k2
x + k2

y − k2
0 k2

x + k2
y ≥ k2

0 .

(a) The left side of the Weyl identity is the free-space Green function, G0(r), which satisfies (∇2 +
k2

0)G0(r) = −δ(r). Fourier transform this differential equation and show that

G0(r) = 1

(2π )3

∫
d 3k

exp(ik · r)

k2 − k2
0

.

(b) Use contour integration to perform the integral over kz in part (a). Assume that k0 has a small positive
imaginary part to establish the location of the poles and to decide how to close the contour.

21.25 Radiation from an Open Waveguide The a × b rectangular aperture of an infinite conducting plane is
illuminated by the TE10 mode of a rectangular waveguide with the same cross sectional shape as the aperture.
Evaluate the radiated electric field at the point (r, θ, φ) with respect to an origin at the center of the aperture
using Kirchoff’s approximation to the Fraunhofer-Smythe formula (21.98).

z

21.26 Diffraction from a Slit A plane wave propagating in the +x-direction with electric field E0 strikes a thin
metal screen at x = 0 and diffracts from a long and narrow horizontal slit (width a) cut out of the screen. The
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scattering vector k lies in the x-y plane (perpendicular to the long direction of the slit) at an angle φ from
the forward direction. Evaluate Smythe’s formula (21.90) using Kirchoff’s approximation and the far-field
limit of the free-space Green function in two dimensions, G(2)

0 (ρ, ρ ′) = (i/4)H (1)
0 (k|ρ − ρ ′|), to show that

the diffracted electric field is

E(ρ, φ) = −a

2
k × (x̂ × E0)

√
2

πkρ
exp[i(kρ − π/4)]

sin( 1
2ka sinφ)

1
2ka sinφ

.

21.27 Diffraction of a Beam by a Large Aperture

(a) Consider the electric field diffracted by a circular aperture of radius a using a Kirchoff approximation
where Einc = E0 exp(−ρ2/w2)ŷ in the plane of the aperture. Show that the far-zone field still has a
Gaussian profile when the beam waist w � a.

(b) Repeat the calculation for a square aperture with side length a in the same limit and compare to part (a).

21.28 Effective Aperture Dipoles I Let z = 0 be a perfect conductor except for an aperture whose size is very
small compared to the wavelength of a plane wave incident from z < 0. Perform a multipole expansion of
the far-zone limit of Smythe’s formula and find the effective electric and magnetic dipole moments of the
aperture in the terms of E‖, the component of the exact electric field in the plane of the aperture. Are your
results consistent with Figure 21.21?

21.29 Effective Aperture Dipoles II A monochromatic plane wave with fields E0 and B0 scatters from a thin
conducting disk of radius a. In the long-wavelength limit, the scattered field is described by electric and
magnetic dipole radiation fields with moments

pd = −16

3
a3ε0n̂ × (n̂ × E0) and md = − 8

3μ0
a3(n̂ · B0)n̂.

The unit vector n̂ points in the direction of the incident wave propagation vector when the latter is normal
to the plane of the disk. Use Babinet’s principle to deduce the effective dipole moments which characterize
the diffracted field when a circular hole of radius a in a flat conducting plane is illuminated by a plane wave
with aperture fields Ea and Ba. Do not assume normal incidence for the diffraction problem.

21.30 Kirchhoff’s Approximation for Complementary Scatterers A monochromatic plane wave polarized
along ŷ is normally incident from z < 0 onto a two-dimensional conducting scatterer confined to the z = 0
plane. Use Kirchoff’s approximation but do not use the Fraunhofer approximation.

(a) Let the scatterer be a conducting disk of radius a. Find Edisk(0, 0, z > 0).
(b) Let the scatterer be an infinite conducting sheet with a circular aperture of radius a centered on the

z-axis. Find Eaperture(0, 0, z > 0).
(c) Confirm that Eaperture(0, 0, z > 0) = Einc − Edisk(0, 0, z > 0). Explain why Babinet’s principle is not the

reason this is true.
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22 Special Relativity

The special theory of relativity owes its origin to Maxwell’s
equations of the electromagnetic field.

Albert Einstein (1949)

22.1 Introduction

Special relativity is the theory of how different observers, moving at constant velocity with respect
to one another, report their experience of the same physical event.1 This description is completely
accurate, but it conceals the fact that special relativity radically altered physicists’ conceptions of
space and time. It also obscures the deep connection between special relativity and electromagnetism,
a connection Albert Einstein chose to emphasize in the opening paragraph of his ground-breaking
paper on the subject (1905):

It is well known that Maxwell’s electrodynamics—as usually understood at the present time—when
applied to moving bodies, leads to asymmetries which do not appear to be inherent in the phenomena.
Take, for example, the reciprocal action of a magnet and a conductor. The observable phenomenon here
depends only on the relative motion of the conductor and the magnet, whereas the customary view draws a
sharp distinction between the two cases in which either the one or the other of these bodies is in motion.

The issue that concerned Einstein was the perceived difference between “transformer” EMF and
“motional” EMF when a conductor and a magnet move relative to one another (see Section 14.4.1).
From the point of view of the conductor, the moving magnet produces an electric field at every point
in space, including within the body of the conductor, where it induces a current. From the point of
view of the magnet, no electric field appears anywhere and the magnetic Lorentz force is responsible
for the current flow. Einstein found the unquestioning acceptance of this asymmetry intolerable for the
description of a single physical phenomenon. He was also concerned with a paradox that had vexed
him since the age of 16:2

If I pursue a beam of light with the velocity c, I should observe such a beam of light as a spatially
oscillatory electromagnetic field at rest. However, there seems to be no such thing, whether on the basis of
experience or according to Maxwell’s equations.

Einstein’s contemplation of these matters led him to the concept of the relativity of simultaneity
and to a theory of space and time which forced him to abandon Newtonian dynamics. Indeed, special

1 General relativity addresses the same issue for observers whose relative motion is completely arbitrary.
2 See “Autobiographical notes”, in Albert Einstein: Philosopher-Scientist, 3rd edition, edited by P.A. Schilpp (Open

Court, La Salle, IL, 1969), Volume I.
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Figure 22.1: Two reference frames in a “standard configuration” where the coordinate axes are oriented
identically, the origins coincide at t = t ′ = 0, and their relative motion occurs along one axis.

relativity is a conceptually subtle subject precisely because the relativity of simultaneity does not
comport with intuitive notions based on Newton’s laws. Some of these subtleties are the source of
“paradoxes” which confound the inexpert and the unwary (and even the expert and the wary). Paradoxes
have great value for those who wish to delve deeply into a subject, but they do not figure prominently
in our presentation of special relativity. Our focus is to acquaint the reader with the language, principal
consequences, and contemporary applications of the theory, particularly as they bear on classical
electromagnetism.

Our discussion begins with the physical postulates of relativity, the Lorentz transformation, and some
of the simpler consequences of the Lorentz transformation. We treat the kinematics and dynamics of
point particles quite briefly and do not discuss spin at all. A central topic is the transformation laws
for electromagnetic quantities like charge density, current density, the electromagnetic potentials, and
the electromagnetic fields. Using these, we revisit the physics of moving point charges and plane
electromagnetic waves. We then introduce the concept of the Lorentz tensor and derive manifestly
covariant representations for the Maxwell equations and for the conservation laws of electrodynamics.
An application of the latter to an isolated electromagnetic pulse provides insight into this system that
is otherwise difficult to deduce. The chapter concludes with some consequences of special relativity
for dielectric and magnetic matter in motion.

22.2 Galileo’s Relativity

Before special relativity was formulated, the fundamental laws of physics were understood to obey
Galileo’s principle of relativity. The key concept is the reference frame, which we define as an
oriented system of coordinates in three-dimensional space equipped with rulers and clocks to perform
measurements of position and time. The latter permit us to define an event as an occurrence at a fixed
point in space and time (x, y, z, t). Newton gave special attention to a class of frames where objects
move with constant velocity if they are not acted on by external forces. These are called inertial frames
and it follows that every inertial frame moves with constant velocity with respect to any other inertial
frame. Newton also emphasized the universal nature of time, in the sense that the clocks in all inertial
frames tick at the same rate, independent of all external influences. Among other things, the concept
of universal (or absolute) time implies that two events judged to be simultaneous in one inertial frame
are presumed to be simultaneous in all other inertial frames.

22.2.1 Particle Motion
Galileo’s relativity principle states that the laws of bodily motion are the same in all inertial frames.
Consider, for example, the inertial frames K and K ′ shown in Figure 22.1. The frames are arranged
in a “standard configuration” where their coordinate axes are similarly oriented, their origins O and
O ′ coincide in space when t = t ′ = 0, and their relative motion occurs with constant speed v along
the parallel axes z and z′. Often, we will say that K is the “laboratory frame”. In this frame, Newton’s
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second law reads

m
d 2r
dt2

= F. (22.1)

Consider now the frame K ′. Newton’s assumption of universal time guarantees that t ′ = t . Combin-
ing this with the vector addition indicated in Figure 22.1 gives the complete Galilean transformation
as

r′ = r − vt and t ′ = t. (22.2)

Because v is constant (by assumption), (22.2) implies that d 2r′/dt ′2 = d 2r/dt2. Therefore, if the mass
does not depend on velocity, the rule F′ = F brings Newton’s law into accord with Galileo’s relativity
principle because (22.1) transforms to

m
d 2r′

dt ′2
= F′. (22.3)

22.2.2 Wave Motion
Unlike single-particle motion, sound waves and water waves do not behave identically in all inertial
frames. This is the common observation of, say, a body surfer who rides along with a wave rather than
allowing it to wash over him. To see this explicitly, consider a scalar field which satisfies the wave
equation in frame K with speed c: [

∇2 − 1

c2

∂2

∂t2

]
f (r, t) = 0. (22.4)

The wave f (r, t) in frameK becomes a wave f ′(r′, t ′) in frameK ′ and its time evolution is determined
by the wave operator in (22.4) transformed into primed variables. Using (22.2), the chain rule gives
the derivatives we need as

∂

∂r
= ∂r′

∂r
· ∂

∂r′ + ∂t ′

∂r
∂

∂t ′
= ∂

∂r′ (22.5)

and

∂

∂t
= ∂r′

∂t
· ∂

∂r′ + ∂t ′

∂t

∂

∂t ′
= ∂

∂t ′
− v · ∂

∂r′ . (22.6)

Using (22.5) and (22.6) to compute the second derivatives in (22.4) gives the propagation equation in
K ′ as [

∇′2 − 1

c2

∂2

∂t ′2
+ 2

c2
(v · ∇′)

∂

∂t ′
− 1

c2
(v · ∇′)2

]
f ′(r′, t ′) = 0. (22.7)

Comparing (22.4) to (22.7) shows that the Galilean transformation (22.2) does not preserve the form
of the wave equation (as it does Newton’s second law) because classical waves propagate relative to
any uniform motion of the host medium (water, air, etc.). For example, let v = vẑ and consider waves
propagating in the +z-direction. If g(s) is an arbitrary function of one variable, direct substitution
confirms that a plane wave solution to (22.7) is

f ′(x ′, y ′, z′, t ′) = h(z′ − ct ′ + vt ′). (22.8)

If v = c, the solution (22.8) tells us that an observer at rest in frameK ′ sees no wave propagation at all,
only a static displacement of the particles of the medium. Wave motion is not invariant to a Galilean
transformation.
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22.3 Einstein’s Relativity 825

Figure 22.2: Top: Alice and Bob use a flash of light from a source at the midpoint between them to synchronize
their clocks. Bottom: Chris sees Alice, Bob, and the light source in uniform motion and concludes that their
clocks are not synchronized.

22.3 Einstein’s Relativity

Special relativity appeared at a time when scientists were struggling to understand the absence of
Galilean relative-motion effects (see Section 22.2.2) in light-propagation experiments. Einstein’s beam-
of-light thought-experiment (quoted in the Introduction) makes this point explicitly. Most proposed
solutions either questioned the validity of Maxwell’s equations or postulated special properties for
the “aether”, the presumptive host medium for light waves. Einstein resolved the conceptual issues
associated with the electrodynamics of moving bodies by rejecting the universal validity of Newton’s
laws and embracing the universal validity of Maxwell’s laws. His famous and highly readable 1905
paper on the subject frames the solution using two postulates:

I. The laws of physics take the same form in every inertial frame.
II. The speed of light in vacuum is the same in every inertial frame.

Postulate I is a generalization of Galileo’s relativity principle to include Maxwell’s laws of elec-
trodynamics. Postulate II explained the failure to detect relative motion between light and the aether
by the simple expedient of making the aether superfluous. We will show below that Einstein’s two
postulates (and the tacit assumptions that empty space is isotropic and spatially homogeneous) are
sufficient to construct the entire edifice of special relativity.3 Part of the program is to discover the
transformation laws which preserve the forms of the wave equation and the Maxwell equations, and to
discover the dynamical law of motion which replaces Newton’s laws. An equally important part of the
program is to discover the physical consequences of the postulates. We begin with the most important
of the physical consequences.

22.3.1 The Relativity of Simultaneity
Special relativity destroyed Newton’s concept of absolute time, and with it the previously unquestioned
concept of universal temporal simultaneity for all observers. To make this clear, Figure 22.2 presents
a thought-experiment where Alice and Bob wish to synchronize their clocks. They do this by agreeing
to start their clocks when each observes a flash of light from a source located at the midpoint between
them. In this way, each reasonably concludes that their flash observations were simultaneous events.

Now consider the same scenario from the point of view of an observer, Chris, who sees Alice, Bob,
and the light source all moving uniformly to the right with speed v. Because Chris knows that light

3 Einstein’s actual supposition was that the speed of light is “independent of the state of motion of the emitting body”.
Our postulate II is a consequence of this statement and postulate I.
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travels at speed c, he recognizes that the light reaches Bob sooner than it reaches Alice, and concludes
that Bob starts his clock before Alice starts hers. If Chris saw Alice and Bob moving in the opposite
direction, he would conclude that Alice starts her clock before Bob. Quantitatively, Chris computes
that the two clocks are out of synchronization by an amount

�T = L/2

c − v
− L/2

c + v
= L

c

v/c

1 − v2/c2
. (22.9)

This number is very small if v � c, and thus goes unnoticed for all but the most precise human
applications.

We learn from this thought-experiment that two inertial observers will not necessarily agree that
two events are simultaneous, nor even that one event precedes the other! This conclusion has profound
consequences for the concept of causality (see Section 22.4.3) and for Newton’s concept of an absolute
time. The latter, in particular, is revealed to be an approximation which breaks down when the relative
velocity between frames approaches the speed of light. The tale of Alice and Bob makes clear that
time is the personal, experiential property of every inertial observer.

Application 22.1 The Global Positioning System

The Global Positioning System is a network of 24 Earth-orbiting satellites used to determine the
position of a receiver on the Earth’s surface with a spatial resolution of 1 m2. Each satellite carries a
highly stable atomic clock synchronized (before launch) to all the other clocks. In orbit, each satellite
broadcasts a synchronous radio-frequency signal every millisecond, tagged with the position and time
of the transmission. The satellite network is distributed in space so any receiver on the surface of the
Earth is always in direct line of sight of four satellites.

Let (x, y, z, t) be the event where an observer simultaneously receives the transmission data
(xk, yk, zk, tk) from each of four satellites (k = 1, 2, 3, 4). Because the speed of light is the same
for all inertial observers, the observer’s position, r = (x, y, z) is determined by solving the four
simultaneous one-way signal propagation equations

|r − rk| = c(t − tk) k = 1, 2, 3, 4. (22.10)

The magnitude of the speed of light (c = 299 792 458 m/s) implies that a timing error of 1 ns leads to
a positioning error of the order of 30 cm.

Equation (22.10) is correct only if the four transmitting satellites are inertial with respect to the
observer. To make this as true as possible, a combination of special and general relativistic corrections
are applied to take account of the centripetal acceleration of the satellites, the effect of the Earth’s
gravitational field, the eccentricity of the satellite orbits, and the rotation of the Earth during the transit
time of the signals.4 It is even possible to use the GPS to test special relativity itself. �

22.4 The Lorentz Transformation

The renunciation of absolute time required by the relativity of simultaneity (Section 22.3.1) implies
that the Galilean transformation (22.2) between two inertial reference frames cannot be exact. On the
other hand, everyday experience shows that Galileo’s relativity works very well if the relative speed
v between the frames is very small compared to the speed of light. In this section, we reconcile these
statements using two observations of a single optical event to deduce the exact transformation law
between inertial frames.

4 See Ashby and Spilker, Jr. (1995) in Sources, References, and Additional Reading.
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22.4 The Lorentz Transformation 827

The different perception of time by different inertial observers leads us to treat space and time on
an equal footing and to locate events in a venue called space-time. The most general transformation
law between two inertial frames K and K ′ in space-time is

x ′ = x ′(x, y, z, t) y ′ = y ′(x, y, z, t) z′ = z′(x, y, z, t) t ′ = t ′(x, y, z, t ′). (22.11)

The functions in (22.11) are very restricted if we assume that the properties of space are homogeneous
and do not vary from point to point or as a function of time. In particular, the infinitesimal displacement

dx ′ = ∂x ′

∂x
dx + ∂x ′

∂y
dy + ∂x ′

∂z
dz + ∂x ′

∂t
dt (22.12)

cannot be an explicit function of (x, y, z, t). This tells us that the partial derivatives in (22.12) are
constants. The same is true for the three other functions in (22.11). Therefore, the transformation
laws are linear functions of their arguments. It is a preview of future notation when we let rμ (with
μ = 1, 2, 3, 4) stand for x, y, z, ct and write our deduction for the transformation law to this point in
the form

r ′
μ = Lμνrν + aμ. (22.13)

22.4.1 Boosting the Standard Configuration
The right side of (22.13) contains 20 parameters. This number drops to a handful if we assume that (i)
the coordinate axes in frame K are aligned with their counterparts in frame K ′; (ii) the origins of the
two frames coincide when t = t ′ = 0; and (iii) the velocity vector which “boosts” frame K to frame
K ′ is v = vẑ. This returns us to the “standard configuration” of Figure 22.1, where the most general
transformation law consistent with the rotational invariance of isotropic free space is

x ′ = Cx y ′ = Cy z′ = Az + Bt t ′ = Dz + Et. (22.14)

Our task is to determine the constants A, B, C, D, and E. We make a few remarks about more general
Lorentz transformations at the end of the section.

Our first deduction is that B = −vA. This follows from (22.14) because the standard configuration
requires z′ = 0 to coincide with z = vt . By symmetry, x = Cx ′ and y = Cy ′ supplement (22.14)
because C cannot depend on the direction of motion of one frame with respect to the other. C = 1 is
the only reasonable conclusion. We now adopt Einstein’s original method and consider a point source
of light which emits a spherical wave at t = 0 from the origin of K . Such a wave propagates radially
at speed c and reaches the observation point (x, y, z) at a time t such that

x2 + y2 + z2 − c2t2 = 0. (22.15)

According to postulate II of Section 22.3, the same event viewed from frameK ′ of Figure 22.1 satisfies

x ′2 + y ′2 + z′2 − c2t ′2 = 0. (22.16)

Our strategy is to substitute (22.14) into (22.16) (with B = −vA and C = 1) and insist that the result
reproduce (22.15). This procedure generates three constraints on the coefficients:

A2 − c2D2 = 1 (22.17)

E2 − v2

c2
A2 = 1 (22.18)

vA2 + c2DE = 0. (22.19)

The remaining steps are straightforward. First, we use (22.17) and (22.19) to eliminate D and
derive a relation between E2 and A2. Combining this relation with (22.18) to eliminate A2 produces
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E2 = 1/(1 − v2/c2). With this information, (22.18) shows that A2 = E2. In fact, A = E =
1/
√

1 − v2/c2, because we must recover the Galilean limit (22.2) as c → ∞. Finally, we insert
these values into (22.19) to get D = −v/c2

√
1 − v2/c2. Therefore, the Lorentz transformation from

inertial frame K to inertial frame K ′ in Figure 22.1 is

x ′ = x y ′ = y z′ = z − vt√
1 − v2

c2

t ′ = t − vz/c2√
1 − v2

c2

. (22.20)

The conclusion v < c follows immediately from (22.20) because the real numbers (x, y, z, t) must
transform into the real numbers (x ′, y ′, z′, t ′). In words, the speed of light is greater than the speed
which can be achieved by any inertial frame. By extension, no material particle or object at rest in an
inertial frame can be accelerated to the speed of light.

It is standard practice in special relativity to define the symbols

β = v

c
< 1 and γ = 1√

1 − β2
> 1. (22.21)

Using (22.21), we write (22.20) in the form

x ′ = x y ′ = y z′ = γ (z − βct) ct ′ = γ (ct − βz). (22.22)

We derive the reverse transformation from K ′ to K by solving the linear equations in (22.22) for the
functions z(z′, t ′) and t(z′, t ′). By symmetry, we get the same answer by exchanging the primed and
unprimed variables in (22.22) and letting v → −v:

x = x ′ y = y ′ z = γ (z′ + βct ′) ct = γ (ct ′ + βz′). (22.23)

Example 22.1 Frame A moves at constant velocity sẑ with respect to frame B. Frame B moves at
constant velocity wẑ with respect to frame C. Find the velocity u = uẑ at which frame A moves
with respect to frame C. Figure 22.3 shows all three frames in standard configurations.

Figure 22.3: Three standard-configuration inertial frames moving uniformly with respect to one another.

Solution: Using (22.22) twice,

zA = γ (s)[zB − stB ] tA = γ (s)(tB − szB/c
2)

and

zB = γ (w)[zC − wtC] tB = γ (w)(tC − wzC/c
2).

By direct substitution,

zA = γ (s)γ (w)(zC − wtC − stC + swzC/c
2) = γ (s)γ (w)(1 + sw/c2)

[
zC − s + w

1 + sw/c2
tC

]
.
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Comparing the square brackets just above to the square brackets in the first two equations suggests
that the composition law for parallel boost velocities is

u = s + w

1 + sw

c2

.

If so, consistency demands that the factor in front of the square brackets is γ (u). A bit of algebra
confirms this because the quantity 1/γ 2(u) is equal to

1 − u2/c2 = 1 − 1

c2

(
s + w

1 + sw/c2

)2

= 1 + s2w2/c4 − s2/c2 − w2/c2

(1 + sw/c2)2

=
[

1

γ (s)γ (w)(1 + sw/c2)

]2

.

Very similar manipulations show that the same value of u correctly generates tA from xC and tC .
Finally, we note that the identity proved by the preceding equation is often used in problem-solving,
particularly when it is written in the form

γ (u) = γ (s)γ (w)
(

1 + sw

c2

)
.

22.4.2 Time Dilation and Length Contraction
The mixing of space and time implied by the Lorentz transformation produces a variety of non-
intuitive predictions. Consider, for example, two arbitrary events, (x1, y1, z1, t1) and (x2, y2, z2, t2),
and the difference variables, �x = x1 − x2, �y = y1 − y2, �z = z1 − z2, and �t = t1 − t2. For the
geometry of Figure 22.1, the linearity of (22.22) and (22.23) imply that

�z′ = γ (�z − βc�t) c�t ′ = γ (c�t − β�z) (22.24)

and

�z = γ (�z′ + βc�t ′) c�t = γ (c�t ′ + β�z′). (22.25)

The phenomenon of time dilation reveals itself when we identify the two events as two readings
of a clock at rest in K ′. The clock does not move in this frame, so �z′ = 0. We make no attempt to
measure �z, but the elapsed time in K ′ is �t ′ = T ′. Therefore, using (22.25),

T = �t = γ�t ′ = T ′√
1 − v2

c2

> T ′. (22.26)

The observer in the laboratory reports a longer elapsed time than does the observer in the moving
frame. He/she concludes that “clocks in uniform motion tick more slowly than stationary clocks”.
Experimental evidence for time dilation comes from the radioactive decay of cosmic ray muons. These
particles carry their own clock in the sense that a non-zero muon lifetime guarantees that an initial
population of muons decays exponentially as time goes on. Experiments that compared the downward
flux of velocity-selected muons at the top of a mountain to the downward flux of muons at sea level
found that many more muons survived than predicted by the known muon lifetime, τ ′ ≈ 2.2 μsec.5

5 See, for example, D.H. Frisch and J.H. Smith, “Measurement of relativistic time dilation using μ-mesons”, American
Journal of Physics 31, 342 (1963).
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Instead, the measured flux was consistent with a muon population

N (t) = N (0) exp(−t/τ ), (22.27)

with τ = γ τ ′ and γ computed from (22.21) and the measured mean speed of the muons. The effective
lifetime τ � τ ′ is exactly what we predict if the time-dilation formula (22.26) is correct.

The phenomenon of length contraction reveals itself when we identify the two events introduced at
the beginning of this section as sightings of the two end points of a rod at rest in K ′. The time lapse
�t ′ needed to measure the length L′ = �z′ is irrelevant in the rest frame of the rod. By contrast, the
only sensible way to measure the “length” of a moving rod is to perform the sightings of its end points
simultaneously in the lab frame (�t = 0) when we establish that L = �z. Using (22.24), we conclude
that L′ = �z′ = γ�z = γL. Therefore,

L = �z = 1

γ
�z′ = L′

√
1 − v2

c2
< L′. (22.28)

The observer in the laboratory reports a shorter length than does the observer in the moving frame.
He/she concludes that “moving rods contract in their direction of motion”. Because x = x ′ and
y = y ′ in (22.20), there is no length contraction in the direction transverse to the direction of
motion.

Experimental evidence for length (or Lorentz) contraction is less direct than for time dilation.
One example is the behavior of a particle beam in a linear accelerator. The particles in such a beam
inevitably have a small velocity component transverse to the direction of acceleration. However,
the total transverse spread of the beam at the end of the accelerator is never very large. This can
be understood by transforming to the rest frame of a typical relativistic particle in the beam. From
this perspective, the apparent length of the accelerator is greatly contracted compared to its labora-
tory length.6 The beam cannot spread very much if the distance traveled by every particle is very
small.

It is important to appreciate that length contraction is a kinematic effect in the sense that no forces
of any kind are involved. Length contraction does not occur because motion induces some sort of
longitudinal compressive stress. After all, an observer in the rest frame of the rod detects no motion
at all. Rather, the operational definition of length given above identifies the inescapable relativity of
simultaneity as the ultimate source of the contraction effect.

Application 22.2 Heavy Ion Collisions and the Quark Gluon Plasma

Current theories of the immediate aftermath of the Big Bang place all matter in a highly excited
state called a quark-gluon plasma (QGP). As the Universe expanded and cooled, it is suggested
that the plasma underwent a phase transition to a state where the quarks and gluons condensed into
baryons and mesons. The nuclei of ordinary matter formed later from the condensation of protons
and neutrons. A glimpse into this exotic physics can now be gained in the laboratory because recent
experiments strongly suggest that a QGP forms (transiently) when two heavy atomic nuclei are
collided at relativistic energies. As we will see, length contraction plays an important role in QGP
formation.

6 Wangler (2008) estimates that the SLAC linear accelerator appears only 0.25 m long to a particle accelerated from 40
Mev to 40 GeV over the 3 km laboratory length of the device.
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Figure 22.4: Simulation of the collision of two Au nuclei at 200 GeV per nucleon pair. Left:
Lorentz-contracted nuclei approach one another. Middle: the nuclei overlap and create a region of very
high energy density. Right: a quark-gluon plasma expands into the volume between the separating nuclei.
Images courtesy of Hannah Petersen (Duke University) and the MADAI collaboration.

Figure 22.4 shows three snapshots from a relativistic nuclear fluid-dynamics computer simulation of
the collision of two Au nuclei with velocities of 99.9995% of the speed of light. The left panel shows
that the approaching nuclei are Lorentz contracted (γ ∼ 100) into pancakes in the center-of-mass
frame. The middle panel shows the region of maximum nuclei overlap where the energy density is
highest. The right panel shows the situation after the QGP has formed and it expands and cools. After
the temperature has fallen below the critical temperature, the plasma recombines into hadrons which
can be measured by particle detectors. The overall time scale of the collision process is about 30 fm/c,
where 1 fm/c = 3.33 × 10−24 s.

It takes about 0.14 fm/c for the two length-contracted nuclei to reach full overlap. The quarks
and gluons in the two nuclei equilibrate and the QGP forms about 0.6 fm/c after the onset of the
collision. However, if Lorentz contraction of the nuclei did not occur, it would take at least 7 fm/c
to reach full overlap and the equilibration time would be approximately 14 fm/c. This is more than
one order of magnitude larger than what is observed when the results of simulations like the one
shown in Figure 22.4 are compared to experimental data. The Lorentz contraction of the colliding
nuclei is also important for the angular distribution of emitted particles. In both experiment and the
simulations, this emission is confined to the reaction plane (defined by the beam direction and the
impact parameter). When non-relativistic, spherical nuclei collide, the emission of particles occurs
primarily perpendicular to the reaction plane. �

22.4.3 The Invariant Interval
A relativistic (or Lorentz) invariant quantity takes the same numerical value in every inertial frame.
Invariants play a special role in relativity, beginning with Einstein’s postulate (Section 22.3) that the
speed of light is a relativistic invariant. Another relativistic invariant is electric charge. There is no
experimental evidence that the charge of an electron (or proton or neutron) depends on its speed. In
this section, we introduce a third invariant called the interval and use it to distinguish past events from
future events and causes from effects.

Using the variables defined at the beginning of Section 22.4.2, the square of the interval between
the two events is defined as

(�s)2 = (�x)2 + (�y)2 + (�z)2 − (c�t)2. (22.29)

The interval combines a distance in space, d =
√

(�x)2 + (�y)2 + (�z)2, with a distance (or lapse)
in time, �t , into a single quantity. Like d, the interval is invariant to rotations and translations in space.
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Like �t , the interval is invariant to translations in time. Most importantly, �s is invariant to a Lorentz
transformation. To prove this, we use the standard configuration (Figure 22.1) and (22.24) to write the
interval evaluated in K ′ in terms of the coordinates defined in K . This gives

(�s ′)2 = (�x)2 + (�y)2 + γ 2(�z − βc�t)2 − γ 2(c�t − β�z)2, (22.30)

or

(�s ′)2 = (�x)2 + (�y)2 + γ 2(1 − β)2
[
�z2 − c2�t2

]
. (22.31)

However, because γ 2(1 − β2) = 1,

(�s ′)2 = (�x)2 + (�y)2 + (�z)2 = (�s)2. (22.32)

This proves that (�s)2 takes the same value in all inertial frames.
Special relativity exploits the invariance of the interval in various ways. A first observation is that

(�s)2 can be positive, negative, or zero. The three cases differ in the nature of the “separation” between
the events:

(�s)2 > 0 space-like separation
(�s)2 = 0 null separation
(�s)2 < 0 time-like separation.

(22.33)

A pair of events with null separation can be connected by a signal traveling at the speed of light. An
example is the null separation between the origin and every point on the expanding spherical wave
front described by (22.15). For a pair of events with a space-like separation [(�s)2 > 0], the distance
in space is greater than the distance c�t that can be covered by a light beam in the time �t . For such
events, it is always possible to perform a Lorentz transformation to an inertial frame where the event
pair are simultaneous. If we call the latter frame K ′, and locate both events on the z′ axis,

(�s ′)2 = (�z′)2 − (c�t ′)2 = (�z′)2. (22.34)

The last equality in (22.34) follows from the �t ′ = 0 condition for simultaneity in K ′ and shows why
the label “space-like” is used for this case. We deduce from (22.24) that

�t ′ = 0 ⇒ β = c�t

�z
. (22.35)

However, |c�t/�z| < 1 because (22.29) is space-like and �x = �y = 0. This shows that the boost
required to make �t ′ = 0 has β < 1, which is indeed physically realizable. A similar demonstration
shows that a pair of events with a time-like separation [(�s)2 < 0] can always be made to occur at a
single point in space (�z′ = 0). For such events, the distance in space is less than the distance c�t
that can be covered by a light beam in the time �t .

We are now in a position to reconcile the concept of causality with the relativity of simultaneity.
Figure 22.5 is a space-time or “Minkowski” diagram where the x- and y-axes are represented by a
single axis ρ where ρ2 = x2 + y2. An event labeled O occupies the origin of space-time. The two
“light cones” drawn in Figure 22.5 are defined by the equation ρ2 + z2 = c2t2. Therefore, the interval
(22.29) between O and any event on the surface of either cone is zero. From (22.33), the corresponding
interval is space-like for events which lie outside both cones and time-like for events which lie inside
either cone.

The event labeled S in Figure 22.5 is space-like with respect to O. This event, and all other events
outside the light cones, are “absolutely distant” from O because their Euclidean distance from the
origin can never be reduced to zero without violating the condition (�s)2 > 0 for a space-like interval.
Moreover, these events cannot be said to be earlier or later than the event at O because the time interval
between them can have different signs for different observers. For example, if �t > 0, we can make
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light cone

light cone

Elsewhere Elsewhere

Past

Future ct

z
s

O

ρ

T

Figure 22.5: A Minkowski diagram where past and future light cones separate space-time into space-like
intervals and time-like intervals with respect to an event O at the origin. The dashed curve is the “world line” of a
particle moving with non-uniform velocity.

�t ′ < 0 in (22.24) by choosing the boost speed so |c�t/�z| < β < 1. The possibility of this sign
inversion implies that a cause-and-effect relationship cannot exist between two space-like events. This
is consistent with the impossibility of transforming these events to the same point in space, which
would be needed to compare their clocks.

The event labeled T in Figure 22.5 is time-like with respect to O. We say that T lies in the “future
light cone” of O because it occurs later in time than O in all inertial frames. An event which lies lies
inside the complementary “past light cone” of O occurs earlier in time than O in all inertial frames.
These statements are true because�t ′ in (22.24) has the same sign as�t for all time-like intervals. This
is true, in turn, because the criteria for it not to be true is |β| > |c�t/�z|, which is impossible because
(�s)2 < 0 implies that |c�t/�z| > 1 when �x = �y = 0 in (22.29). We conclude that causality is a
meaningful concept for events with a time-like separation.

22.4.4 Proper Time
The proper time is an invariant measure of the motion of a particle along its trajectory in space-time.
A definition for proper time follows naturally if we define the “world line” of a particle as the locus of
points in space-time which describes the trajectory in question. The dashed curve in Figure 22.5 is a
typical world line for a particle with non-uniform velocity u(t) = dr/dt . All world lines lie inside the
light cone because the particle speed is always less than the speed of light.

Focus now on the interval between two points on the world line which lie infinitesimally close to
each other. Using (22.30), this is the time-like quantity

(ds)2 = (dr)2 − (cdt)2 = −(cdt)2

[
1 − u2(t)

c2

]
. (22.36)

Dividing (22.36) by the speed of light produces another invariant. This leads us to define a differential
element of the invariant proper time in an inertial frame K as

dτ =
√

− (ds)2

c2
=
√

1 − u2(t)

c2
dt = dt

γ (u)
. (22.37)

The invariance of dτ means that (22.37) has the same numerical value in any other inertial frame K ′

where u′ �= u, t ′ �= t , and dt ′ �= dt . This fact will provide a natural way to define Lorentz invariant
time derivatives in what follows.
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We close with two points. First, the last equality in (22.37) generalizes the meaning of γ in (22.21) so
the argument can be a particle speed rather than merely the speed of a Lorentz boost from one inertial
frame to another. Second, the definition of dτ tells us that the “proper time” is the time measured by
a clock in its own rest frame.

22.4.5 Boosting a General Configuration
The most general Lorentz transformation between two inertial frames differs from the standard con-
figuration transformation (22.22) in two ways.7 First, the boost velocity v need not lie along one of the
coordinate axes as it does in the standard configuration of Figure 22.1. Second, the Cartesian axes of
frame K ′ may not be aligned with the Cartesian axes of frame K . For a boost (without a rotation), we
decompose r into its components r‖ and r⊥ which lie parallel and perpendicular to β = v/c. Using
these variables, the Lorentz transformation and its inverse take the form

r′
⊥ = r⊥ r⊥ = r′

⊥
r′
‖ = γ (r‖ − βct) r‖ = γ (r′‖ + βct ′)

ct ′ = γ (ct − β · r‖) ct = γ (ct ′ + β · r′
‖).

(22.38)

For a rotation (without a boost), the Euler angle transformation law between the rotated variables
(x, y, z) and the un-rotated variables (x ′, y ′, z′) is derived in every textbook of classical mechanics and
in every discussion of the quantum theory of angular momentum.

The general case when boosts and rotations occur together lies beyond the needs of this book.
Here, we simply state without proof that a general Lorentz transformation between a frame K and a
frame K ′ can be decomposed into either (i) a pure boost followed by a pure rotation or (ii) a pure
rotation followed by a pure boost. However, the boost velocities and the rotation angles in the two
decompositions are not generally the same. A related observation is that successive Lorentz boosts in
different directions are equivalent to a single boost accompanied by a pure rotation. The latter fact is
used to understand the phenomenon of Thomas precession in atomic physics.8

22.5 Four-Vectors

Einstein’s first postulate of relativity (Section 22.3) states that the mathematical laws of physics have
the same form in every inertial frame. In this section, we introduce the four-vector as the first step
toward a formalism that will make this form-invariance (or covariance) self-evident. Our immediate
aim is the physics that can be learned directly from the manipulation of individual four-vectors.
Later, we will exploit the four-vector (and its generalizations) to facilitate covariance and streamline
calculations.

Let a = (a1, a2, a3) and b = (b1, b2, b3) be three vectors in Euclidean space. The scalar product of
two three-vectors is invariant to translations and rotations of the coordinate system. In other words, if
K and K ′ are two such systems,

a · b = akbk = a′
kb

′
k = a′ · b′. (22.39)

The invariance of the norm
√

a · a is a special case of (22.39).
We denote a four-vector in Minkowski space by

�a = (a1, a2, a3, a4). (22.40)

7 We continue to restrict ourselves to homogeneous transformations where aμ = 0 in (22.13).
8 See, for example, G.P. Fisher, “ The Thomas precession”, American Journal of Physics 40, 1772 (1972).
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To justify calling (22.40) a “vector”, we similarly require the scalar product of two four-vectors be
invariant to translations, rotations, and Lorentz boosts from one inertial frame to another. In other
words,9

�a · �b = aμbμ = a′
μb

′
μ = �a′ · �b′. (22.41)

A special case is the invariance of

aμaμ = a′
μa

′
μ. (22.42)

By analogy with (22.33), it is common to say that a four-vector is null, space-like, or time-like
depending on whether (22.42) is zero, positive, or negative.

The prototype of a four-vector in special relativity is the space-time coordinate,

�r = (x, y, z, ict) = (r, ict). (22.43)

The fourth component of (22.43) is a pure imaginary number.10 This choice ensures that (22.42)
produces the appropriate minus sign when we write (22.15) as �r · �r = 0 and the invariant interval
(22.29) as (�s)2 = ��r ·��r . It was precisely the assumed invariance of these quantities which led us
to the standard-configuration Lorentz transformation (22.22) and its inverse (22.23). Using (22.43),
matrix representations for these transformations are

r ′
μ =

[
∂r ′

μ

∂rν

]
rν = Lμνrν and rμ =

[
∂rμ

∂r ′
ν

]
r ′
ν = L−1

μν r
′
ν, (22.44)

where

L =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 γ iβγ

0 0 −iβγ γ

⎤
⎥⎥⎦ L−1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 γ −iβγ
0 0 iβγ γ

⎤
⎥⎥⎦ . (22.45)

Inspection of (22.45) shows that L is an orthogonal matrix where LT = L−1. Hence,

LμλLνλ = δμν. (22.46)

The determinant of these transformation matrices is one:

|L| = |L−1| = 1. (22.47)

By definition, the components of an arbitrary four-vector �a transform exactly like �r . Hence, a1, a2,
and a3 are often called the “space components” of �a, and a4 is called the “time component” of �a. More
precisely, �a is a four-vector if

a′
μ = Lμνaν. (22.48)

Referring back to (22.38), (22.48) is equivalent to

a′
⊥ = a⊥ a⊥ = a′

⊥
a′

‖ = γ (a‖ + iβa4) a‖ = γ (a′
‖ − iβa′

4)
a′

4 = γ (a4 − iβ · a‖) a4 = γ (a′
4 + iβ · a′

‖).
(22.49)

9 It is customary to use a repeated Greek index (μ, ν, σ, . . .) to sum over the four components of a four-vector and a
repeated Latin index (i, j, k, . . .) to sum over the three components of a three-vector.

10 Furry (1969), Veltman (1994), and ’t Hooft (2001) all note the virtues of an imaginary time component when
discussing special relativity only. Appendix D discusses the use of four-vectors with all real components and a
diagonal metric tensor to evaluate the scalar product.
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We leave it as an exercise for the reader to check that the transformation rules (22.49) guarantee that
the scalar product of two four-vectors is invariant as indicated in (22.41).

22.5.1 The Four-Velocity and Four-Acceleration
The four-velocity �U is another prototype four-vector. In this section, we use �U to illustrate the
construction logic and general usefulness of all four-vectors. The creative task is to identify a quantity
which is closely related to the three-velocity u = dr/dt of a particle, yet has the Lorentz transformation
properties of the four-vector �r defined in (22.43). The natural solution is to divide the four-vector d�r
by a differential element of proper time, which is a Lorentz invariant scalar (see Section 22.4.4). This
prescription gives

�U = d�r
dτ

= γ (u)
d

dt
(r, ict) = γ (u)

(
dr
dt
, ic

)
= γ (u) (u, ic) ≡ (U, U4) . (22.50)

Regardless of its three-velocity, (22.50) shows that �U is a time-like four-vector because it defines the
Lorentz invariant scalar

�U · �U = U · U + U 2
4 = u · u − c2

1 − u2/c2
= −c2. (22.51)

This is sensible because the discussion in Section 22.4.3 implies that we can always find an inertial
frame where u is (instantaneously) zero.

It is instructive to Lorentz transform the four-velocity (22.50) to deduce the more complicated
transformation law obeyed by the three-velocity. For that purpose, let u′ be the velocity of a particle in
the inertial frame K ′ in Figure 22.1. A particle at rest in this frame has speed v = βc along the z-axis
when viewed from the lab frame K . The four-vector �U transforms like (22.49), so

U ′
1 = U1 U ′

2 = U2 U ′
3 = γ (v)(U3 + iβU4) U ′

4 = γ (v)(U4 − iβU3). (22.52)

Dividing the components of U′ in (22.52) by U ′
4 gives

U ′
1

U ′
4

= U1

γ (v)(U4 − iβU3)

U ′
2

U ′
4

= U2

γ (v)(U4 − iβU3)

U ′
3

U ′
4

= U3 + iβU4

U4 − iβU3
. (22.53)

Finally, use the identity U/U4 = u/ic to eliminate all the four-velocity components in (22.53) in favor
of three-velocity components. The result is the desired transformation law,

u′
x = ux

γ (v)(1 − uzv/c2)
u′
y = uy

γ (v)(1 − uzv/c2)
u′
z = uz − v

1 − uzv/c2
. (22.54)

The inverse of (22.54) is the same formula with u and u′ interchanged and v → −v:

ux = u′
x

γ (v)(1 + u′
zv/c

2)
uy = u′

y

γ (v)(1 + u′
zv/c

2)
uz = u′

z + v

1 + u′
zv/c

2
. (22.55)

As it must, (22.55) reduces to the Galilean velocity addition formula, u = u′ + v, when v/c � 1.
The special case u′

x = u′
y = 0 merits attention also. First, it confirms our earlier conclusion that c

is a limiting velocity because uz → c when the boost velocity v → c.11 Second, we can return to
Figure 22.3 of Example 22.1 and re-interpret the inertial reference frame A as a “particle” which
moves with uniform speed u′

z = s with respect to an inertial frame K ′ = B. Because the latter moves
with uniform speed v = w with respect to the lab frame K = C, the far left member of (22.55)
reproduces the law for parallel boost velocities derived in the Example.

11 This conclusion does not change when u′
x and u′

y are non-zero.
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A natural definition for the four-acceleration of a particle is

�A = d �U
dτ

= γ (u)
d

dt

(u, ic)√
1 − u2/c2

≡ (A,A4). (22.56)

With a = du/dt , the time derivative in (22.56) gives

A = a
1 − u2/c2

+ u(u · a)/c2

(1 − u2/c2)2
and A4 = i(u · a)/c

(1 − u2/c2)2
. (22.57)

An interesting property of �A is its orthogonality with the four-velocity �U . This follows immediately
from �U · �U = −c2 in (22.51) because

�U · �A = �U · d
�U

dτ
= 1

2

d

dτ

(
�U · �U

)
= 0. (22.58)

22.5.2 The Four-Momentum and Energy
The four-momentum �p plays a central role in relativistic particle dynamics. Given the four-velocity
in (22.50), we define �p using a scalar E and a three-vector p:

�p = m �U = m(U, U4) = (p, iE/c). (22.59)

The mass m in (22.59) must be a Lorentz invariant scalar if we require �p to be a four-vector like �U .12

Our main task is to identify E and p, and extract the physics from the component equations

E/c = −imU4 = γ (u)mc and p = mU = γ (u)mu. (22.60)

The meaning of E becomes clear when we Taylor expand γ (u)mc in (22.60) for u � c to get

E = mc2√
1 − u2/c2

= mc2 + 1

2
mu2 + 3

8
m
u4

c2
+ · · · . (22.61)

The second term on the far right side of (22.61) is the familiar low-velocity kinetic energy. The first term
is a constant which may sensibly be called the rest energy. The total energy is E and the impossibility
of accelerating a massive particle to speed c appears here as the impossibility of accelerating a particle
to infinite energy. The exact kinetic energy is

T = E −mc2 = mc2

[
1√

1 − u2/c2
− 1

]
. (22.62)

The meaning of p in (22.60) emerges similarly from a Taylor expansion of γ (u)mu for u � c. The
result,

p = mu√
1 − u2/c2

= mu
[

1 + 1

2

u2

c2
+ 3

8

u4

c4
+ · · ·

]
, (22.63)

shows that p reduces to the ordinary Newtonian linear momentum, mu, when the particle velocity is
very small compared to the speed of light.

Using (22.51), the Lorentz invariant length of the energy-momentum four-vector (22.59) is

�p · �p = m2 �U · �U = −m2c2. (22.64)

12 The numerical value of m is what older textbooks call the rest mass, m0. We do not introduce the latter quantity in
this book.
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On the other hand, evaluating the norm of �p using is own components gives

�p · �p = p · p − E2

c2
= p2 − E2

c2
. (22.65)

Combining (22.64) with (22.65) expresses the total energy in terms of the mass and three-momentum
of a particle:

E =
√
c2p2 +m2c4. (22.66)

Eliminating γ (u) from the left and right sides of (22.60) relates the three-velocity to the three-
momentum and the total energy:

u = c2p
E

. (22.67)

Experiment shows that (22.66) and (22.67) remain valid for zero-mass particles. The m = 0 limits
of these formulae are

E = cp and u = c
p
p
. (22.68)

The energy-momentum four-vector (22.59) in this case is �p = (p, ip). This shows that there is no
frame of reference where p = 0 unless E = 0, in which case the “particle” does not exist. Photons and
neutrinos have no rest frame.

Finally, with the relativistic momentum (22.63) in hand, it is natural to suppose that the equation of
motion for a particle with charge q and mass m in an arbitrary electromagnetic field is

dp
dt

= d

dt

[
mu√

1 − u2/c2

]
= q(E + u × B). (22.69)

We will confirm the correctness of (22.69) in Example 22.5 below. We will also confirm that the time
rate of change of the work done on the particle by the Coulomb force is equal to the time rate of change
of the kinetic energy of the particle:

dT

dt
= d

dt

(
E −mc2

) = dE
dt

= u · dp
dt

= qu · E. (22.70)

This is a familiar statement of the conservation of power.

Application 22.3 Charged Particle Motion in a Plane Wave

In this Application, we integrate the relativistic equation of motion (22.69) exactly for a particle
with charge q and mass m in the field of a monochromatic plane wave. The results confirm the non-
relativistic conclusion from Section 16.10.1 that a single plane wave cannot impart a net acceleration to
a charged particle. On the other hand, the method we present can be used to study relativistic charged
particle motion in more complex electromagnetic wave fields (like the focus of a laser beam) where
net particle acceleration can be achieved.

Consider an elliptically polarized plane wave propagating in the +z-direction. If ϕ = kz − ωt is the
phase and ω = ck is the wave frequency, the fields are

E = x̂E1 cosϕ − ŷE2 sinϕ and cB = x̂E2 sinϕ + ŷE1 cosϕ. (22.71)

The assumed initial conditions for the particle are r(0) = u(0) = 0. Using (22.71), the Cartesian
components of (22.69) are

dpx

dt
= qE1 cosϕ

(
1 − uz

c

) dpy

dt
= qE2 sinϕ

(uz
c

− 1
) dpz

dt
= q

u
c

· E. (22.72)
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The time derivative of the phase at the position of the particle is

dϕ

dt
=
(uz
c

− 1
)
ω. (22.73)

Therefore, the first first two equations in (22.72) can be rewritten as

dpx

dt
= −qE1

ω
cosϕ

dϕ

dt
and

dpy

dt
= qE2

ω
sinϕ

dϕ

dt
. (22.74)

Integrating (22.74) and imposing the initial conditions gives

px = −qE1

ω
sinϕ and py = qE2

ω
(1 − cosϕ) . (22.75)

Comparing the last equation of (22.72) to (22.70) shows that we can integrate the pz equation in
(22.72) also. The initial condition for the total energy is E(0) = mc2. Therefore, this integration gives

cpz = E −mc2. (22.76)

Squaring both sides of (22.76) and using (22.66) gives the desired final result:

pz = p2
x + p2

y

2mc
= 1

2mc

{[
qE1

ω
sinϕ

]2

+
[
qE2

ω
(1 − cosϕ)

]2
}
. (22.77)

The first step to find the trajectory equations inserts (22.76) into (22.67):

u = cp
pz +mc

. (22.78)

Next, combine (22.73) with (22.78) to get

dr
dϕ

= dr
dt

dt

dϕ
= u

ω(uz/c − 1)
= c2p

ω(uz − c)(pz +mc)
= − p

ωm
. (22.79)

Finally, integrate (22.79) using (22.75) and (22.77). Imposing the initial conditions gives the particle
trajectory in terms of the phase, ϕ = kz − ωt :

x = qE1

mω2
(1 − cosϕ)

y = qE2

mω2
(sinϕ − ϕ) (22.80)

z = q2

8m2ω3c

[
(E2

1 − E2
2 ) sin(2ϕ) − (2E2

1 + 6E2
2 )ϕ + 8E2

2 sinϕ
]
.

Equation (22.80) predicts that the charged particle moves in closed orbit around an origin which
drifts at constant velocity. The non-relativistic special case discussed in Section 16.10.1 corresponds to
E2 = 0 and kd � 1, where d = qE1/mω

2. In that case, the replacementϕ → ωt in (22.80) reproduces
both the equations of motion discussed in that section and the figure-eight particle trajectories shown
in Figure 16.16. �

22.6 Electromagnetic Quantities

Special relativity explains why different inertial observers interpret the same electromagnetic phe-
nomenon in different ways. The most elegant discussions of this subject exploit the manifestly covari-
ant formulation of electromagnetism (see Section 22.7). In this section, we offer a more pedestrian
approach which, if only by contrast, will make the power, elegance, and economy of the covariant
approach all the more impressive.
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Our first task is to discover how derivatives with respect to space and time transform under a Lorentz
transformation. Using (22.38), the answer is

∂

∂r′
‖

= ∂r‖
∂r′

‖
· ∂

∂r‖
+ ∂r⊥

∂r′
‖

· ∂

∂r⊥
+ ∂t

∂r′
‖

∂

∂t
= γ

(
∂

∂r‖
+ β

c

∂

∂t

)
∂

∂r′
⊥

= ∂

∂r⊥
(22.81)

∂

∂t ′
= ∂r‖

∂t ′
· ∂

∂r‖
+ ∂t

∂t ′
∂

∂t
= γ

(
cβ · ∂

∂r‖
+ ∂

∂t

)
.

Because ∇ = ∂/∂r, comparing (22.81) with (22.49) shows that we are fully justified in defining the
four-vector operator

�∇ =
(

∇, ∂

∂(ict)

)
. (22.82)

The invariant length associated with (22.82) is the wave equation operator

�∇ · �∇ = ∇2 − 1

c2

∂2

∂t2
. (22.83)

Equation (22.83) implies that waves which propagate at the speed of light in one inertial frame
propagate at the speed of light in all inertial frames. This is an important consistency check because
we derived the Lorentz transformation assuming precisely this behavior for a spherical wave of light
(Section 22.4.1).

22.6.1 The Continuity Equation
Einstein’s first postulate states that the laws of electromagnetism are valid in every inertial frame. An
example is the conservation of charge, which we represent using the continuity equation,

∇ · j + ∂ρ

∂t
= 0. (22.84)

Because ∇ · j is the scalar product of two three-vectors, and the gradient and time derivative are
components of the four-vector (22.82), it is natural to inquire whether (22.84) is the scalar product
(22.41) of two four-vectors. Indeed, if we guess

�j = (j, icρ), (22.85)

(22.84) assumes the frame-independent form

�∇ · �j = 0. (22.86)

The left-hand side of this equation—the scalar product of the four-gradient (22.82) with a four-vector—
is called a four-divergence.

To confirm that (22.85) is a four-vector, consider a bit of electric charge dq ′ = ρ ′dx ′dy ′dz′ at rest in
the inertial frameK ′ of Figure 22.1. When viewed from the lab frameK , the charge is dq = ρdxdydz

and dz = dz′/γ because the volume element is contracted like (22.28) along the direction of motion.
On the other hand, the invariance of electric charge mentioned at the beginning of Section 22.4.3
requires that dq = dq ′. To make this so, the relation between the charge densities observed in K and
K ′ must be ρ = γρ ′:

dq = ρdxdydz = [γρ ′]dx ′dy ′
[
dz′

γ

]
= ρ ′dx ′dy ′dz′ = dq ′. (22.87)
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The “charge density dilation” [cf. (22.26)] implied by (22.87) follows immediately if (22.85) is
indeed a four-vector with its law of transformation:

j′‖ = γ (j‖ − ρv) j′⊥ = j⊥ ρ ′ = γ (ρ − v · j/c2). (22.88)

Specifically, since j = ρv in the laboratory frame K , the last member of (22.88) confirms that

ρ ′ = γ (ρ − jv/c2) = γ (1 − β2)ρ = ρ

γ
. (22.89)

Example 22.2 Use delta function representations for the charge density and current density of
a collection of point particles to prove that �j = (j, icρ) is a four-vector. Hint: Introduce a delta
function and an integral over time.

Solution: A collection of particles with charges qk and positions rk(t) have charge density and
current density

ρ(r, t) =
∑
k

qkδ[r − rk(t)] and j(r, t) =
∑
k

qk ṙk(t)δ[r − rk(t)].

Let �r = (x, y, z, ict) and define �rk(t) = [xk(t), yk(t), zk(t), ictk(t)] where tk(t) = t . Using these,
the candidate four-vector,

�j (�r) =
∑
k

qk
d�rk(t)
dt

δ[r − rk(t)],

is the same as �j = (j, icρ). To prove that �j (�r) is indeed a four-vector, introduce the four-dimensional
delta function

δ4[�r − �rk(t)] = δ(x − xk)δ(y − yk)δ(z − zk)δ(ict − ictk)

and rewrite the candidate vector as an integral over a time variable s:

�j (�r) =
∫

ds
∑
k

qkδ
4[�r − �rk(s)]d�rk(s)

ds
.

The differentials ds cancel and can be replaced by the proper time differential dτ :

�j (�r) =
∫

dτ
∑
k

qkδ
4[�r − �rk(τ )]

d�rk(τ )

dτ
.

On the right-hand side, �rk(τ ) is a four-vector and dτ and qk are Lorentz scalars. Therefore, �j (�r) is
a four-vector if δ4[�r − �rk(τ )] is a Lorentz scalar. Two facts make this so. First, if K and K ′ are two
inertial frames, we know from (1.118) that

|J(�r, �r ′)|δ4[�r − �rk)(τ )] = δ4[�r ′ − �r ′
k(τ )].

Second, (22.44) and (22.47) show that the Jacobian matrix J is exactly the unit determinant Lorentz
transformation matrix L.

Example 22.3 (a) A charge distribution is characterized by an electric dipole moment p′ in its
own rest frame. Find the electric dipole moment p reported by a laboratory observer who sees
the distribution move with constant velocity v.13 (b) A current distribution with magnetic dipole
moment m′ moves with constant velocity v in the laboratory. Show that an observer in the laboratory
perceives that the distribution has an electric dipole moment p = v × m′/c2.

13 The electric dipole moment p in this Example should not be confused with the linear momentum three-vector p defined
in Section 22.5.2.
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Solution: (a) The inverse of (22.88) expresses lab-frame quantities in terms of rest-frame quantities.
Moreover, like the volume element in (22.87), all lengths parallel to the boost direction suffer a
Lorentz contraction. Therefore, because j′ = 0, the dipole moment in the laboratory is

p =
∫

d 3r rρ =
∫

d 3r ′

γ

[
r′
⊥ + r′

‖
γ

]
γρ ′ = p′

⊥ + p′
‖
γ
.

(b) If β̂ = v/v, the quantity in square brackets immediately above says that r = r′ + (γ−1 − 1)β̂β̂ ·
r′. Hence, because ρ ′ = 0 in this case,

p� =
∫

d 3r ρ r� =
∫

d 3r ′

γ

γ vkj
′
k

c2

[
r ′
� +

(
1

γ
− 1

)
β�βj r

′
j

]
.

The integral needed here is not new. From (11.11),∫
d 3r ′ j ′

kr
′
� = εki�m

′
i ,

where the rest-frame magnetic dipole moment is

m′ = 1

2

∫
d 3r ′ r′ × j′.

Therefore, because v and β are parallel,

p� = vk

c2
εki�m

′
i ⇒ p = v

c2
× m′.

In the lab frame, a uniformly moving magnetic dipole moment appears to acquire an electric dipole
moment. A uniformly moving electric dipole moment similarly appears to acquire a magnetic
dipole moment m = p × v (see the last paragraph of Section 14.2.2). Unfortunately, one cannot
deduce this merely by mimicking the method used here because the magnetic moment definition
m = 1/2

∫
d3rr × j assumes ∇ · j = 0 (see Section 11.2), which is not true for a moving electric

dipole.

22.6.2 Lorenz Gauge Potentials
The gauge freedom enjoyed by the scalar potential ϕ(r, t) and the vector potential A(r, t) imply
that these quantities possess no intrinsic transformation properties when we change inertial frames.
However, they acquire quite specific transformation properties if we choose a gauge constraint that is
preserved by a Lorentz transformation. Using (22.84) as a model, the Lorenz gauge condition,

∇ · A + 1

c2

∂ϕ

∂t
= 0, (22.90)

has this property if we can define the four-vector

�A = (A, iϕ/c) (22.91)

and use (22.82) to write (22.90) as an invariant four-divergence:

�∇ · �A = 0. (22.92)

To confirm that (22.91) is indeed a four-vector, we recall that the electromagnetic potentials in the
Lorenz gauge satisfy the inhomogeneous wave equations (see Section 15.3.3)[

∇2 − 1

c2

∂2

∂t2

]
ϕ = −ρ/ε0 and

[
∇2 − 1

c2

∂2

∂t2

]
A = −μ0j. (22.93)
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With the judicious insertion of a factor of i on both sides of the scalar potential equation, a row-vector
representation of both equations in (22.93) is[

∇2 − 1

c2

∂2

∂t2

]
(A, iϕ/c) = −μ0(j, icρ). (22.94)

Combining (22.94) with the Lorentz invariance of the wave operator (22.83) and the four-current
character of (22.85) shows that the transformation properties on the left and right sides of (22.94) will
not be the same unless (22.91) is indeed a four-vector.

22.6.3 Field Transformation Laws
Observers in different inertial frames can disagree about the origin of a given electromagnetic phe-
nomenon because the concepts of “electric field” and “magnetic field” are intrinsically observer-
dependent. This conclusion—which resolves at a stroke the “asymmetry” pointed out by Einstein
in the paragraph quoted at the beginning of the chapter—is not surprising once we accept the
observer-dependent meaning of charge density and current density implied by (22.88). Indeed, if
c = c‖ + c⊥ partitions a three-vector into components parallel and perpendicular to the velocity v = cβ

at which a frame K ′ moves with respect to a frame K (see Figure 22.1), we will show in this section
that

E′
‖ = E‖ E′

⊥ = γ (E + β × cB)⊥ E⊥ = γ (E′ − β × cB′)⊥ (22.95)

B′
‖ = B‖ cB′

⊥ = γ (cB − β × E)⊥ cB⊥ = γ (cB′ + β × E′)⊥. (22.96)

These transformation laws show that the pre-relativity concepts of a purely electric field and a purely
magnetic field do not survive the transition to Einstein’s relativity. A boost from one inertial frame to
another generally mixes the fields together. We note in passing that a field null (E = B = 0) in one
frame is a field null in every frame.

Our strategy to deduce (22.95) and (22.96) exploits

B = ∇ × A, E = −∇ϕ − ∂A
∂t

, (22.97)

and the transformation rule (22.49) for the four-vectors �∇ in (22.82) and �A in (22.91).
We begin with the magnetic field, where the key equation is

B′ = ∇′ × A′ = (∇′
‖ + ∇′

⊥) × (A′
‖ + A′

⊥). (22.98)

Because ∇′
‖ × A′

‖ = 0, the parallel and perpendicular components of B′ are

B′
‖ = (∇′ × A′)‖ = ∇′

⊥ × A′
⊥ (22.99)

and

B′
⊥ = (∇′ × A′)⊥ = ∇′

‖ × A′
⊥ + ∇′

⊥ × A′
‖. (22.100)

The three-vectors ∇′
⊥ and A′

⊥ are both transverse components of the space part of a four-vector.
Therefore, both are invariant under a Lorentz transformation [see (22.49)] and we conclude from
(22.99) that

B′
‖ = B‖. (22.101)

A bit more work is needed to evaluate (22.100) because ∇′
‖ and A′

‖ are not Lorentz invariant.
Substituting from (22.49) gives

B′
⊥ = γ

(
∇‖ + v

c2

∂

∂t

)
× A⊥ + ∇⊥ × γ

(
A‖ − v

c2
ϕ
)
, (22.102)

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-22 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 8:37

844 SPECIAL RELATIVITY: SIMULTANEITY, TRANSFORMATION, AND COVARIANCE

Figure 22.6: A point charge at rest at the origin of frame K ′ is observed to move with uniform velocity v = cβ

in the laboratory frame K .

which may be rearranged to

B′
⊥ = γ

(∇‖ × A⊥ + ∇⊥ × A‖
)+ γ

c2

[
v × ∂A⊥

∂t
− ∇⊥ × (vϕ)

]
. (22.103)

The structure of (22.100) and the fact that v is a constant vector permit us to rewrite (22.103) as

B′
⊥ = γB⊥ − γ

c2
v ×

(
−∂A⊥

∂t
− ∇⊥ϕ

)
. (22.104)

Finally, the definition of E in (22.97) simplifies (22.104) to

B′
⊥ = γ

(
B⊥ − v

c2
× E⊥

)
= γ

(
B − v

c2
× E

)
⊥
. (22.105)

This is the expression on the right side of (22.96).
The electric field formulae in (22.95) require even more algebra to prove. Using (22.49) and the

four-vector definitions in (22.82) and (22.91), we transform E′
‖ = −∇′

‖ϕ
′ − ∂A′

‖/∂t
′ to

E′
‖ = −γ

(
∇‖ + v

c2

∂

∂t

)
γ (ϕ − v · A) − γ

(
∂

∂t
+ v · ∇

)
γ
(

A‖ − v
c2
ϕ
)
. (22.106)

The right side of (22.106) generates eight terms. Two of these are ±(v/c2)∂ϕ/∂t , which cancel.
Because v is a constant vector, the terms (v · ∇)A‖ and −∇‖(v · A) cancel also. The four terms which
remain can be manipulated to read

E‖ = −γ 2

[
∇‖ϕ + ∂A‖

∂t

]
(1 − v2/c2). (22.107)

This confirms the left side of (22.95) because γ 2(1 − β2) = 1 and

E′
‖ = −∇‖ϕ − ∂A‖

∂t
= E‖. (22.108)

We leave the derivation of the transformation law for E′
⊥ [the right side of (22.95)] as an exercise for

the reader.

22.6.4 A Point Charge in Uniform Motion
The electromagnetic field produced by a point charge in uniform motion can be calculated by transform-
ing the field produced by the charge in its own rest frame K ′ to the laboratory frame K . Accordingly,
the left panel of Figure 22.6 shows q at rest at the origin of K ′. The right panel shows q moving with
constant velocity v in the laboratory frame K . The observation point is called r in K and r′ in K ′.
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The field of the point charge in its own frame is entirely electrostatic:

E′ = q ′

4πε0

r′

r ′3 = q ′

4πε0

[
r′
‖

(r′
‖ · r′

‖ + r′
⊥ · r′

⊥)3/2
+ r′

⊥
(r′

‖ · r′
‖ + r′

⊥ · r′
⊥)3/2

]
= E′

‖ + E′
⊥. (22.109)

This means that the rest-frame magnetic field B′ = 0. The key assumption is that frame K ′ moves with
velocity v with respect to frame K . Therefore, the transformations on the far right sides of (22.95) and
(22.96) tell us that the laboratory fields are

E = γE′
⊥ + E′

‖ and cB = β × γE′
⊥. (22.110)

The fields in (22.110) are functions of the rest-frame variables. However, the Lorentz transformation
permits us to write them as functions of the laboratory-frame variables. We do this using (22.38) and
the invariance of electric charge (q ′ = q). The resulting laboratory electric field is

E = q

4πε0

γ r′
⊥ + r′

‖
(r′

‖ · r′
‖ + r′

⊥ · r′
⊥)3/2

= q

4πε0

γ r⊥ + γ (r‖ − vt)
[γ (r‖ − vt) · γ (r‖ − vt) + r⊥ · r⊥]3/2

. (22.111)

Equation (22.111) simplifies using the K-frame vector R = r − vt (see Figure 22.6) which points
from the instantaneous position of the charge to the observation point. R also defines an angle θ such
that v̂ · R̂ = cos θ . Then, because R‖ = r‖ − vt and R⊥ = r⊥, we find

E = q

4πε0

γR

(γ 2R2
‖ + R2

⊥)3/2
= q

4πε0

γR
γ 2R3(cos2 θ + sin2 θ/γ 2)3/2

. (22.112)

A final simplification exploits γ 2(1 − β2) = 1 to write (22.112) in the form

E = q

4πε0

R̂
R2

1 − β2

(1 − β2 sin2 θ )3/2
. (22.113)

The corresponding magnetic field from (22.110) is

B = v
c2

× γE′
⊥ = v

c2
× E⊥ = v

c2
× E. (22.114)

These fields agree with those found by a different method and discussed in Application 20.1 at the end
of Section 20.2. They will appear again in the next chapter as a special case of the Liénard-Wiechert
fields of a point charge in arbitrary motion.

22.6.5 Plane Waves
Special relativity provides interesting insight into various common optical phenomena. For example,
let a monochromatic plane wave propagate in vacuum with speed c = ω/k in a reference frame K .
The electromagnetic fields in this frame are

E(r, t) = E0 exp[i(k · r − ωt)] and cB = k̂ × E. (22.115)

The Lorentz invariance of the wave operator (Section 22.6) implies that the plane wave (22.115) has
exactly the same form when observed in a frame K ′ which moves with uniform speed v with respect
to K:

E′(r′, t ′) = E′
0 exp[i(k′ · r′ − ω′t ′)] and cB′ = k̂′ × E′. (22.116)

Our deduction that special relativity transforms one plane wave into another plane wave suggests
an alternative to writing down (22.116) directly: simply Lorentz transform (22.115) from K to the
moving frame K ′. We begin with the field amplitudes and use (22.95) to relate the components

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-22 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 8:37

846 SPECIAL RELATIVITY: SIMULTANEITY, TRANSFORMATION, AND COVARIANCE

of E′
0 to the components of E0 and B0. Assuming this is done, the electric field (22.115) becomes

E′(r, t) = E′
0 exp[i(k · r − ωt)]. (22.117)

Next, use (22.38) to eliminate the variables r and t in (22.117) in favor of the variables r′ and t ′. This
gives

E(r′, t ′) = E′
0 exp

[
ik · {r′

⊥ + γ (r′
‖ + βct ′)} − iωγ (t ′ + β · r′

‖/c)
]
. (22.118)

Comparing (22.118) to (22.116) produces the final result that

k′
⊥ = k⊥ k′

‖ = γ (k‖ − βω/c) ω′ = γ (ω − v · k‖). (22.119)

Equation (22.119) is significant because comparison with (22.49) shows that the frequency and wave
vector of a plane wave are the components of a four-vector,

�k = (k, iω/c). (22.120)

An immediate consequence of (22.120) is that the phase of a plane wave is a Lorentz invari-
ant scalar. This is so because the phase can be written as the scalar product (22.41) of two four-
vectors:

φ(r, t) = k · r − ωt = �k · �r. (22.121)

The invariant length of (22.120) is zero (�k · �k = 0) becauseω = c|k| for vacuum waves. Otherwise, the
transformation properties of �k generate two well-known optical effects when there is relative motion
between a source of waves and a detector of waves: the Doppler effect and stellar aberration. The
Doppler effect refers to the fact that the frequency of the observed waves differs from the frequency
of the emitted waves. Stellar aberration refers to the shift in the apparent position of a star because
the direction of the observed light’s wave vector differs from the direction of the emitted light’s wave
vector. Application 22.4 discusses some aspects of the Doppler effect. We leave aberration as a topic
for the reader to explore as an exercise.

Application 22.4 Reflection from a Moving Mirror

In his original paper on relativity, Einstein discussed the reflection of a monochromatic plane wave
from a moving mirror. Here, we consider normal-incidence reflection from a large mirror in the x-y
plane which moves with velocity v = vẑ (Figure 22.7). In the laboratory, the incident wave fields with
wave vector ki = ki ẑ are

Ei = x̂Ei exp [i(ki · r − ωit)] and cBi = ẑ × Ei. (22.122)

Figure 22.7: A plane wave reflects at normal incidence from a plane mirror moving with velocity v.
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The incident wave fields in the rest frame of the mirror are

E′
i = x̂E′

i exp
[
i(k′

i · r′ − ω′
it

′)
]

and cB′
i = ẑ × E′

i. (22.123)

Using (22.95) and (22.119), the wave parameters in (22.123) are related to those in (22.122) by

ω′
i = γ (ωi − v · ki) = γ (1 − β)ωi =

√
1 − β

1 + β
ωi = ck′

i

k′
i = γ (ki − vωi/c

2) = γ (1 − β)kiẑ =
√

1 − β

1 + β
kiẑ = k′

i ẑ (22.124)

E′
i = γ (Ei − vBi) = γ (1 − β)Ei =

√
1 − β

1 + β
Ei.

The factor γ in the frequency formula is a relativistic correction to the Doppler effect formula
of Newtonian physics. The correction is small when v � c, but it produces the entire transverse
Doppler effect (ω′

i = γωi) when v · ki = 0. This transverse effect has no counterpart in Newtonian
physics.

In the rest frame of the mirror, the reflected fields have wave vector k′
r = −k′

i and oscillate at
frequency ω′

r = ω′
i . The electric field amplitude changes sign upon reflection. Therefore, with E′

r =
−E′

i , the wave fields in the rest frame of the mirror are

E′
r = x̂E′

r exp
[
i(k′

r · r′ − ω′
rt

′)
]

and cB′
r = −ẑ × E′

r. (22.125)

The wave vector k′
r is anti-parallel to v. Therefore, the transformation back to the laboratory frame

produces a plane wave with fields

Er = x̂Er exp [i(kr · r − ωrt)] and cBr = −ẑ × Er, (22.126)

where

ωr = γ (ω′
r + v · k′

r) = γ ck′
i (1 − β) =

(
1 − β

1 + β

)
ωi < ωi

kr = γ (k′
r + vω′

r/c
2) = −γ k′

i (1 − β)ẑ = −
(

1 − β

1 + β

)
ki (22.127)

Er = γ (E′
r − vB ′

r) = γ (1 − β)E′
r = −

(
1 − β

1 + β

)
Ei.

The first line of (22.127) shows that the reflected wave frequency is “red shifted” compared to
the incident wave frequency for the receding mirror situation shown in Figure 22.7. A “blue shift”
(ωr > ωi) occurs when the mirror approaches the incident wave and β → −β in (22.127). The last
line of (22.127) shows that the energy and momentum densities of the reflected wave decrease and
increase similarly (compared to the incident wave) because they are proportional to the square of the
field amplitude (see Section 16.3.4):

uEM = ε0|E|2 cg = uEMk̂. (22.128)

The force of radiation pressure (Section 17.4) mediates the exchange of energy and momentum between
the plane wave and the moving mirror. No violation of conservation of energy or linear momentum
occurs because an external agent maintains the constant speed of the mirror. �
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Example 22.4 Let UEM and PEM be the total energy and total linear momentum of the portion of
a monochromatic plane wave that lies inside a finite volume V which moves with the wave. Prove
that UEM/ω is a Lorentz invariant.

Solution: Let (22.122) be the plane wave in the lab frame K . The first and last lines of (22.124)
show that the wave frequency and electric field amplitude in a standard configuration frame K ′

which moves with velocity v = vẑ are

ω′ = γ (1 − β)ω and E′
i = γ (1 − β)Ei.

Using the leftmost equation in (22.128), the energy density in K ′ is

u′
EM = ε0E

′2
i = ε0γ

2(1 − β)2E2
i = γ 2(1 − β)2uEM.

We are interested in the total energy UEM contained in a finite volume of space which moves with
the wave at the speed of light. No Lorentz transformation can bring this volume to rest. Therefore,
we temporarily reduce the speed of the volume and suppose that it moves with velocity uẑ when
viewed from K and velocity u′ẑ when viewed from K ′ (see Figure 22.8). If V0 is the rest volume,
length contraction implies that observers in K and K ′ measure the size of the moving volume to be

Figure 22.8: A finite and arbitrarily shaped volume of space moves with velocity uẑ when viewed from a
frame K and with velocity u′ẑ when viewed from a frame K ′. K ′ moves with velocity vẑ with respect to K .

V = V0

√
1 − u2/c2 = V0/γ (u) and V ′ = V0

√
1 − u′2/c2 = V0/γ (u′).

However, comparison with Figure 22.8 and the last equation in Example 22.1 of Section 22.4.1
shows that

γ (u) = γ (v)γ (u′)(1 + vu′/c2).

Noting that γ = γ (v), we take u′ → c at the end to get

V ′ = γ (u)

γ (u′)
V = γ (1 + vu′/c2)V = γ (1 + vu′/c2)V → γ (1 + β)V.

Combining all the above demonstrates the suggested invariance because

U ′
EM

ω′ = u′
EMV

′

ω′ = γ 2(1 − β)2uEMγ (1 + β)V

γ (1 − β)ω
= uEMV

ω
= UEM

ω
.

A similar result holds in quantum theory for a “box of photons” because UEM = N−hω where N is
the number of photons contained in the box.

22.7 Covariant Electrodynamics

The equations of electrodynamics take the same form in every inertial frame. Unfortunately, it is quite
tedious to demonstrate this covariance explicitly using the transformation rules derived earlier for
partial derivatives, charge and current density, and the electric and magnetic fields. This motivates the
search for a representation of the Maxwell equations which makes covariance more obvious.
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The clue we need to construct a transparently covariant electrodynamics comes from the fact
that ∇ · B = 0 and ∇ · E = ρ/ε0 are scalar equations and the two curl-type Maxwell equations are
vector equations. This structure guarantees that the Maxwell equations are form-invariant to rotations
and translations in space because these are the defining characteristic of scalars and vectors. The
components of ∇, E, B, and j change when rotations and translations are performed, but their three-
vector character does not change. Therefore, to show that electrodynamics is similarly covariant, it
is sufficient to show that the fundamental equations of the subject can be written entirely in terms of
Lorentz tensors whose components change under a Lorentz boost, but whose essential tensor character
does not change. This is called writing Maxwell’s theory in manifestly covariant form.

22.7.1 Lorentz Tensors
Lorentz tensors are defined in complete analogy with the rotational Cartesian tensors discussed in
Section 1.8. Thus, a Lorentz tensor of rank 0 is what we have previously called a Lorentz scalar: a
one-component quantity which is invariant to a change of inertial frame:

c′ = c. (22.129)

A Lorentz tensor of rank 1 is what we have previously called a four-vector: an object whose four
components transform according to the Lorentz transformation matrix (22.45):

a′
μ = Lμνaν. (22.130)

A Lorentz tensor of rank 2 is an object whose sixteen components transform according to the rule

s ′
μν = LμαLνβsαβ . (22.131)

Lorentz tensors of higher rank are defined similarly.
Two theorems are noteworthy for the role they play in the manipulation of Lorentz tensors. Consider

a rank 1 tensor bμ and a rank 2 tensor Wμν . An example of the contraction theorem states that
multiplying the two together and contracting (summing over) the common index μ produces an object
dν which is a rank 1 tensor:

bμWμν = dν. (22.132)

Conversely, suppose that dν in (22.132) is a specified rank 1 tensor and bμ is an arbitrary rank 1 tensor.
In that case, the quotient theorem states that Wμν is a rank 2 tensor.

Finally, three expressions derived earlier in the chapter will serve to illustrate the use of Lorentz
tensors to achieve manifest covariance. These are the continuity equation (22.86), the Lorenz gauge
condition (22.92), and the inhomogeneous wave equation for the Lorenz gauge potentials (22.94):

∂μjμ = 0, ∂μAμ = 0, and ∂μ∂μAν = jν. (22.133)

The first two of these are covariant because their structure is “zero-rank tensor = zero-rank tensor”.
The last is covariant because its structure is “first-rank tensor = first-rank tensor”.

22.7.2 The Maxwell Equations
The path to writing the Maxwell equations in manifestly covariant form begins with the observation
that the four-gradient ∂μ = (∂1, ∂2, ∂3, ∂4) = (∇, ∂/∂(ict)) from (22.82) and the four-potential Aμ =
(A1, A2, A3, A4) = (A, iϕ/c) from (22.91) are sufficient to write out the two equations in (22.97)
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explicitly. The magnetic field components are

Bx = ∂

∂y
Az − ∂

∂z
Ay = ∂2A3 − ∂3A2

By = ∂

∂z
Ax − ∂

∂x
Ay = ∂3A1 − ∂1A3 (22.134)

Bz = ∂

∂x
Ay − ∂

∂y
Ax = ∂1A2 − ∂2A1

and the electric field components are

iEx

c
= ∂Ax

∂(ict)
− ∂

∂x

(
iϕ

c

)
= ∂4A1 − ∂1A4

iEy

c
= ∂Ay

∂(ict)
− ∂

∂y

(
iϕ

c

)
= ∂4A2 − ∂2A4 (22.135)

iEz

c
= ∂Az

∂(ict)
− ∂

∂z

(
iϕ

c

)
= ∂4A3 − ∂3A4.

Equations (22.134) and (22.135) show that the Cartesian components of E and B are components
of a second-rank Lorentz tensor with the form of a “generalized curl”:

Fμν = ∂μAν − ∂νAμ. (22.136)

The electromagnetic field-strength tensor Fμν has only 6 (rather than 16) independent components
because it is asymmetric (Fμν = −Fνμ) and the diagonal elements (μ = ν) are zero. In matrix form,

F =

⎡
⎢⎢⎣

0 Bz −By −iEx/c

−Bz 0 Bx −iEy/c

By −Bx 0 −iEz/c

iEx/c iEy/c iEz/c 0

⎤
⎥⎥⎦ , (22.137)

and we see that

Ek = icFk4 and Bk = 1
2εk�mF�m. (22.138)

The reader can confirm that the tensor transformation rule (22.131) applied to Fμν reproduces the field
transformation formulae (22.95) and (22.96) derived earlier. Also noteworthy is the Lorentz invariant
scalar function,

FαβFαβ = 2(B · B − E · E/c2). (22.139)

For present purposes, the importance of Fμν is that the two inhomogeneous Maxwell equations are
contained in the manifestly covariant equation

∂νFμν = μ0jμ. (22.140)

This equation is of the type “first-rank tensor = first-rank tensor” because the indicated sum over the
(second) index of the second-rank field tensor Fμν leaves an object which transforms like a first-rank
tensor. Theμ = 4 component of (22.140) written out in (22.141) is Gauss’ law, ∇ · E = ρ/ε0, because
j4 = icρ and μ0ε0c

2 = 1:

iμ0cρ = ∂μF4μ = ∂

∂x

(
iEx

c

)
+ ∂

∂y

(
iEy

c

)
+ ∂

∂z

(
iEz

c

)
+ 0. (22.141)
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Similarly, theμ = 1, 2, 3 components of (22.140) are the x-, y-, z components of the Ampère-Maxwell
equation, ∇ × B = μ0j + c−2∂E/∂t . For example, μ = 1 gives

μ0jx = ∂μF1μ = 0 + ∂

∂y
Bz + ∂

∂z

(−By

)+ ∂

∂(ict)

(
− iEx

c

)
, (22.142)

or

μ0jx = [∇ × B]x − 1

c2

∂Ex

∂t
. (22.143)

The homogeneous Maxwell equations can be written in terms of Fμν also. To see this, consider a
third-rank Lorentz tensor expression where a cyclic permutation of the indices (no summation) relates
one term to the next:

∂λFμν + ∂μFνλ + ∂νFλμ = 0. (22.144)

Because Fμμ = 0 and Fλμ = −Fμλ, the left-hand side of (22.144) is zero if any two indices are equal.
However, setting λ = 1, μ = 2, and ν = 3 in (22.144) gives

0 = ∂1F23 + ∂2F31 + ∂3F12 = ∂Bx

∂x
+ ∂By

∂y
+ ∂Bz

∂z
= ∇ · B. (22.145)

Similarly, setting λ = 4, μ = 1, and ν = 2 in (22.144) gives

0 = ∂4F12 + ∂1F24 + ∂2F41 = ∂Bz

∂(ict)
+ ∂

∂x

(
− iEy

c

)
+ ∂

∂y

(
iEx

c

)
= −i

[
∂B
∂t

+ ∇ × E
]
z

.

(22.146)

The remaining choices for the indices in (22.144) generate the other Cartesian components of Faraday’s
law.

The inelegant appearance of (22.144) provides an opportunity to point out that (22.137) is not
the only way to embed E and B in a second-rank Lorentz tensor. This is so because the Lorentz
transformation formulae (22.95) and (22.96) are invariant to the duality transformation B → −E/c
and E/c → B (see Section 15.2.2). As a result, the same discrete symmetry operation applied to the
elements of Fμν produces an independent second-rank Lorentz tensor we will call Gμν . The matrix
form of this dual tensor is

G =

⎡
⎢⎢⎣

0 −Ez/c Ey/c −iBx

Ez/c 0 −Ex/c −iBy

−Ey/c Ex/c 0 −iBz

iBx iBy iBz 0

⎤
⎥⎥⎦ . (22.147)

The reason for definingGμν is compelling, and straightforward to confirm: the homogeneous Maxwell
equations ∇ · B = 0 and ∇ × E = −∂B/∂t are contained in the single manifestly covariant equation

∂νGμν = 0. (22.148)

To facilitate calculations, it is useful to know that

FμνGμν = −4E · B/c (22.149)

is a Lorentz invariant. Finally,

Gμν = 1
2 iεμναβFαβ, (22.150)

where εμναβ is a four-dimensional generalization of the Levi-Cività symbol defined in (1.34).14

14 Thus, εμναβ takes the value +1 if (μναβ) is an even permutation of (1234), it takes the value −1 if (μναβ) is an odd
permutation of (1234), and it takes the value 0 if any two indices are equal.
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Example 22.5 Derive a manifestly covariant equation of motion for a object with charge q and
mass m in an arbitrary electromagnetic field. Use it to confirm (22.69) and (22.70).

Solution: Newton’s equation of motion for a mass point m with charge q and linear momentum
mu is

d

dt
mu = q(E + u × B) (non-relativistic).

A covariant generalization may be expected to replace the ordinary time interval dt by the proper
time interval dτ from (22.37), the three-velocity u by the four-velocity Uμ from (22.50), and the
field vectors E and B by the field tensor Fμν from (22.137). Because the four-momentum from
(22.59) is pμ = mUμ, the first-rank Lorentz tensor equation which results is

dpμ

dτ
= qUνFμν.

Using the definition of p in (22.63), the space components of this equation written in three-vector
form give the equation of motion for the point charge in any inertial frame as

dp
dt

= d

dt

[
mu√

1 − u2/c2

]
= q(E + u × B) (relativistic).

Using (22.62) to add zero to the time component of our proposed covariant equation gives

dT

dt
= d

dt

(
E −mc2

) = dE
dt

= qu · E.

These equations confirm the guesses (22.69) and (22.70) made in Section 22.5.2.

22.7.3 Conservation Laws
Covariant notation provides a powerful way to express and organize the conservation laws of electro-
magnetism. In this section, we use results from earlier in this chapter to write the conservation laws
for energy, linear momentum, and angular momentum in manifestly covariant form. The following
section uses this representation to extract new physics about free fields which are non-zero only in
finite regions of space. Chapter 24 revisits conservation laws from a Lagrangian point of view.

Energy and Linear Momentum
We begin with the expressions for jμ in (22.85) and Fμν in (22.137). A brief computation confirms that
the Coulomb-Lorentz force density, f = ρE + j × B, is the space part of a force density four-vector
defined by15

fμ = jνFμν = (f, ij · E/c). (22.151)

Our strategy is to mimic Section 15.5.1 and try to express the first-rank tensor fμ as the four-divergence
of a suitably defined second-rank tensor by eliminating the sources in favor of the fields.

The first step substitutes (22.140) into (22.151) to get

μ0fμ = Fμν∂σFνσ = ∂σ (FμνFνσ ) − Fνσ ∂σFμν. (22.152)

15 To simplify notation, we write f in place of the symbol fmech defined just before (15.54).
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Next, use the anti-symmetry of Fμν and an exchange of the dummy indices ν and σ to rewrite the last
term in (22.152) as

Fνσ ∂σFμν = Fσν∂σFνμ = Fνσ ∂νFσμ. (22.153)

The first and last members of (22.153), and the covariant form (22.144) of the homogeneous Maxwell
equations, show that

Fνσ ∂σFμν = 1
2Fνσ

(
∂σFμν + ∂νFσμ

) = − 1
2Fνσ ∂μFνσ = − 1

4∂μ (FνσFνσ ) . (22.154)

Substituting (22.154) into (22.152) gives

μ0fμ = −∂σ (FμνFσν) + 1
4∂μ(FαβFαβ ). (22.155)

It is interesting to note that the invariant (22.139) appears in the last term in (22.155). Otherwise,
we achieve our goal because by defining the symmetric, second-rank, electromagnetic stress-energy
tensor,

�μσ = 1

μ0

[
FμνFσν − 1

4δμσFαβFαβ
] = �σμ, (22.156)

(22.155) takes the desired form:

∂σ�σμ = −fμ. (22.157)

An immediate consequence of (22.151) and (22.157) is that a free electromagnetic field (a propagating
field detached from its sources) has a divergence-free stress-energy tensor16

∂σ�σμ = 0. (22.158)

Let us display the elements of �μσ in one inertial frame. Using (22.139), and our convention
that a Latin index like k runs over the space components only, �44 simplifies to the negative of the
electromagnetic density uEM defined in (15.32):

�44 = 1

μ0

[
F4kF4k − 1

2

(
B · B − E · E/c2

)] = − 1
2ε0

[
E · E + c2B · B

] = −uEM. (22.159)

The off-diagonal elements �4k are proportional to the Cartesian components of the electromagnetic
linear momentum density g defined in (15.50):

�4k = 1

μ0
F4jFkj = i

μ0c
(E × B)k = icgk. (22.160)

A bit of algebra confirms that the space-space components �ij are the negative of the components of
Maxwell stress tensor Tij defined in (15.47):

�ij = −Tij = −ε0
[
EiEj + c2BiBj − 1

2δij (E2 + c2B2)
]
. (22.161)

Putting all this together gives the matrix of �μσ as

 =

⎡
⎢⎢⎣

−Txx −Txy −Txz icgx
−Txy −Tyy −Tyz icgy
−Tzx −Tyz −Tzz icgz
icgx icgy icgz −uEM

⎤
⎥⎥⎦ . (22.162)

16 If we neglect gravity, a divergence-free condition like (22.158) applies to the total stress-energy tensor of any closed
system composed of matter and electromagnetic fields. This tensor is tot = em + mat, where em is the
electromagnetic stress-energy tensor discussed in this section and mat is the stress-energy tensor contributed by the
matter.
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The electromagnetic stress-energy tensor is traceless because

�μμ = −uEM − ε0

3∑
k=1

[
E2
k + c2B2

k − 1
2 (E2 + c2B2)

] = 0. (22.163)

With the representation (22.162) in hand, it is straightforward to confirm that (22.157) contains two
conservation laws in differential form. Equation (22.151) and S = c2g (see Section 15.4.1) show that
the time component of (22.157) is the Poynting’s theorem statement (15.33) of the conservation of
energy:

− j · E = ∇ · S + ∂uEM

∂t
. (22.164)

Similarly, if ∂kTkj ≡ [∇ · T]j , the space components of (22.157) give the law (15.54) for the conser-
vation of linear momentum:

− f = ∇ · (−T) + ∂g
∂t
. (22.165)

Angular Momentum and Center of Energy
Given the Lorentz force density four-vector (22.151), it is natural to study the properties of a second-
rank Lorentz torque density tensor defined by

Nμν = rμfν − rνfμ. (22.166)

The structure of this anti-symmetric tensor in one inertial frame is

N =

⎡
⎢⎢⎣

0 (r × f)z −(r × f)y N14

−(r × f)z 0 (r × f)x N24

(r × f)y −(r × f)x 0 N34

N41 N42 N43 0

⎤
⎥⎥⎦ , (22.167)

where r × f is the mechanical torque density (15.65) and

Nk4 = −N4k = i [rk(j · E)/c − ctfk] . (22.168)

Analogous to (22.157), it is possible to write the second-rank torque density tensor as the four-
divergence of a third-rank Lorentz tensor:

Mσμν = �σμrν −�σνrμ = −Mρνμ. (22.169)

In detail, we use (22.157), (22.169), and the symmetry of the stress-energy tensor (�μν = �νμ) to
write (22.166) in the form

Nμν = rν∂σ�σμ − rμ∂σ�σν = ∂σMσμν − (�νμ −�μν) = ∂σMσμν. (22.170)

The anti-symmetry of Mρνμ with respect to its last two indices implies that only 24 of its 43 = 64
components are independent. We focus first on the 12 components Mσij where ij = 12, 23, 31. Of
these, the reader can check that the nine with σ = 1, 2, 3 are exactly the components of the second-
rank tensor of angular momentum current density, M = T × r, defined in Section 15.6.1. The three
components M4ij are similarly the components of the vector density of field angular momentum,
−icr × g. With this information, it is not difficult to confirm that the three independent components of
(22.170) withμν = 12, 23, 31 can be collected into the continuity-like equation for angular momentum
written previously in (15.72):

∂

∂t
(r × g) + ∇ · (T × r) = −r × f. (22.171)
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The three independent components of (22.170) which remain haveμν = 14, 24, 34. Using (22.168),
these can be collected into the vector equation17

∂

∂t

(
ruEM − c2t g

)+ c2∇ · (gr + T) = c2tf − (j · E)r. (22.172)

Because j · E = j · f (the Lorentz magnetic force does no work on charged particles) and the Poynt-
ing vector S = c2g, (22.172) is the same as the previously derived (15.82). The latter was used in
Section 15.7 to define the center of energy for sources and fields confined to a volume where the
divergence term in (22.172) disappears after integrating over a volume. The next section revisits this
question from a covariant perspective.

22.7.4 Particle-Like Properties of Free Fields
Free electromagnetic fields behave like relativistic particles in the sense that their energy and linear
momentum transform like the energy-momentum four-vector of a particle. In this section, we prove
this for (i) any finite volume of the radiation field produce by a localized source and (ii) any localized
electromagnetic wave packet. Both are free in the sense that their fields are detached from their sources
and propagate at the speed of light.

Monochromatic Radiation Fields
The portion of the radiation field produced by a localized current source which lies inside a finite
volume V increasingly resembles the propagating electromagnetic field of a plane wave when V is
chosen farther and farther away from the source (see Section 20.5.4). Here, we apply this observation
to a monochromatic radiation field of frequency ω and let UEM be the total electromagnetic energy
contained in V . These choices make Example 22.4 applicable and we conclude that the ratio UEM/ω

is a Lorentz invariant scalar.
For the single, transverse plane wave of interest, the rightmost equation in (22.128) and ω = ck give

the total linear momentum contained in V as

PEM = gV = uEM

c
V k̂ = uEM

ω
V k =

(
UEM

ω

)
k̂. (22.173)

Moreover,

i
UEM

c
=
(
UEM

ω

)
i
ω

c
. (22.174)

Therefore, becauseUEM/ω is a Lorentz scalar and (k, iω/c) is a four-vector, (22.173) and (22.174) tell
us that (PEM, iUEM/c) is a four-vector also. Comparison with the four-vector (p, iE/c) for a relativistic
particle with linear momentum p and total energy E [see (22.59)] establishes the similarity between a
volume of propagating radiation and a relativistic particle. In quantum theory, the same result follows
by treating radiation as a collection of relativistic particles with zero mass (photons).

Localized Wave Packets
A localized wave packet or electromagnetic pulse is an electromagnetic wave with the property that
E(r, t) and B(r, t) fall to negligible values outside a finite volume of space. Pulses of this kind are
created by turning on and off a flashlight or a laser. In what follows, we use a manifestly covariant
method to prove that (PEM, iUEM/c) is a four-vector when PEM andUEM are the total linear momentum
and total energy of the pulse. We begin with a bit of mathematics.

17 The dyadic expression ∇ · (gr) = ∇kgkr.
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Figure 22.9: A four-dimensional volume � in Minkowski space. The ellipses are “endcaps” which represent
three-dimensional volumes at fixed times.

The left member of (22.175) is the usual statement of the divergence theorem for a vector Z. V is
a three-dimensional Euclidean volume and dS is a vector which points outward from V and has the
magnitude of a differential element of the two-dimensional surface S which bounds V :∫

V

d 3r ∂kZk =
∫
S

dSkZk

∫
�

d 4r ∂μZμ =
∫
#

dSμZμ. (22.175)

The right member of (22.175) is the divergence theorem for a four-vector Zμ. � is a four-dimensional
Minkowski volume and dSμ is a four-vector which points outward from � and has the magnitude of
a differential element of the three-dimensional “surface” # which bounds �.18

Figure 22.9 is a cartoon of a four-dimensional “volume” � in Minkowski space where time flows
in the direction perpendicular to the elliptical planes, each of which represents three-dimensional
Euclidean space at a fixed time in some inertial frame. The surface of � is composed of a tubular part
#0 and two endcaps, #1 and #2. We assume that an electromagnetic pulse lies entirely inside � and
that its sources (jμ) lie entirely outside �. In light of (22.158), this means that

∂ν�μν = 0 in �. (22.176)

Now, let aμ be a constant four-vector and integrate the four-divergence of bν = aμ�μν over �. This
integral is zero by (22.176). Therefore, when we apply the four-divergence theorem in (22.175), the
assumed localized nature of the fields of the pulse eliminates the integral over #0. Accordingly,

0 =
∫
�

d 4r ∂νbν =
∫
#0

dSνbν +
∫
#1

dSνbν +
∫
#2

dSνbν =
∫
#1

dSνbν +
∫
#2

dSνbν. (22.177)

A key observation is that the integrand dSνbν in (22.177) is a Lorentz invariant scalar. Therefore, the
#1 and #2 integrals can be evaluated in any desired frame of reference. For example, let us evaluate
both integrals in a frame K whose time coordinate ct is shown in Figure 22.9. The diagram makes
clear that the endcaps correspond to t = t1 and t = t2 and that dSμ = (0, 0, 0,±i d 3r) for the two
caps. Hence, (22.177) is equivalent to ∫

t=t1

d 3r b4 =
∫
t=t2

d 3r b4. (22.178)

Since aμ is arbitrary and does not depend on space or time, we learn from (22.178) that the three-
dimensional volume integral∫

d 3r �4μ is a time-independent constant. (22.179)

18 See C. Møller, The Theory of Relativity (Clarendon, Oxford, 1952) for a detailed proof.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-22 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 8:37

22.7 Covariant Electrodynamics 857

A glance back at (22.162) for μ = 1, 2, 3, 4 shows that the constants in questions are the total field
energy and the total field linear momentum:∫

d 3r �44 = −UEM and
∫

d 3r �4i = icPEM,i . (22.180)

We now return to (22.177) and modify the previous calculation by evaluating the #2 integral in a
frame K ′ with the coordinate ct ′ shown in Figure 22.9. This replaces (22.178) by the statement that a
particular volume integral takes the same numerical value in two different inertial frames:∫

t=t1

d 3r b4 =
∫

t ′=t ′2

d 3r ′ b′
4. (22.181)

In other words,

aμ

∫
d 3r �4μ is a Lorentz invariant scalar. (22.182)

Then, because aμ is an arbitrary four-vector, and the entire expression in (22.182) is a Lorentz scalar,
the quotient theorem (22.132) tells us that the integral is itself a four-vector. Using (22.162) as before,
the four-vector in question is

Pμ = − i

c

∫
d 3r �4μ = (PEM, iUEM/c). (22.183)

As noted in the paragraph following (22.174), (22.183) has exactly the same structure as the energy-
momentum four-vector of a relativistic particle, pμ = (p, iE/c).

Let us investigate the similarity between an electromagnetic pulse and a relativistic particle a bit
more. When there are no sources in �, the torque density tensor Nμν = 0 in (22.166) and (22.170)
implies that

∂σMσμν = 0 in �. (22.184)

This equation is similar to (22.176) and the same method used to derive (22.179) from (22.176) implies
that ∫

d 3r M4μν is a time-independent constant. (22.185)

From the discussion of (22.171) and (22.172), the conserved quantities implied by (22.185) are the
total field angular momentum of the pulse,

LEM =
∫

d 3r r × g, (22.186)

and ∫
d 3r (ruem − c2tg) =

∫
V

d 3r ruem − c2PEM. (22.187)

Following the example of Section 15.7, we define the center of energy as

RE =

∫
V

d 3r ruEM∫
V

d 3r uEM
. (22.188)

The denominator of (22.188) is the total field energy UEM. Therefore, (22.187) can be put in the form

REUEM − c2tPEM = constant vector. (22.189)

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-22 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 8:37

858 SPECIAL RELATIVITY: SIMULTANEITY, TRANSFORMATION, AND COVARIANCE

From (22.179), we know that UEM and PEM are constants of the motion of the pulse. This suggests
that we take the time derivative of (22.189) and define the velocity of the center of energy as

vE = dRE

dt
= c2PEM

UEM
. (22.190)

Equation (22.190) has the same structure as (22.67) for a relativistic particle. Putting (22.190) together
with (22.183), we conclude that a propagating “pulse” of electromagnetic radiation and a relativistic
particle are really very similar, at least as far as energy and momentum are concerned.

22.8 Matter in Uniform Motion

The extension of Einstein’s theory of relativity to material media was achieved by Hermann Minkowski
in 1908. His theory is worth our attention, not because the acceleration of bodies of matter to relativistic
speeds is conceivable in principle, but because the low-velocity limit of the theory provides a reliable
and unambiguous basis for predicting the fields produced when such bodies move through external
electromagnetic fields at non-relativistic speeds. We begin by reminding the reader that the extension
of vacuum electromagnetism to polarizable, magnetizable, and conducting matter (Section 2.4) uses
the polarization P and magnetization M to define the auxiliary fields

D = ε0E + P and B = μ0(H + M). (22.191)

With (22.191) in hand, the Maxwell equations in matter supplement the homogeneous Maxwell
equations

∇ · B = 0 and ∇ × E = −∂B
∂t

, (22.192)

with inhomogeneous equations where the free charge density ρf and free current density jf are the
field sources:

∇ · D = ρf and ∇ × H = jf + ∂D
∂t

. (22.193)

22.8.1 Minkowski Electrodynamics
Minkowski assumed that (22.192) and (22.193) are valid in every inertial frame. Of course, (22.148)
is already a manifestly covariant expression of (22.192). Otherwise, (i) the substitutions D → ε0E
and H → B/μ0 convert the field terms in (22.193) to the field terms in the corresponding vacuum
Maxwell equations; and (ii) free charge and current density transform like total charge and current
density. Therefore, with the stated substitutions, (22.137) is a manifestly covariant expression of
(22.193). Making the same substitutions in (22.95) and (22.96) gives the desired transformation laws
for D and H. We write these here with the rest-frame values on the right-hand side:

D‖ = D′
‖ D⊥ = γ

[
D′ − v

c2
× H′

]
⊥

(22.194)

and

H‖ = H′
‖ H⊥ = γ [H′ + v × D′]⊥. (22.195)

The transformation rules for polarization and magnetization follow immediately from (22.191) as

P‖ = P′
‖ P⊥ = γ

[
P′ + v

c2
× M′

]
⊥

(22.196)
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and

M‖ = M′
‖ M⊥ = γ [M′ − v × P′]⊥. (22.197)

We note in passing that (22.197) reproduces the result from Section 14.2.2 that a body with rest-frame
values M′ = 0 and P′ �= 0 is observed to have magnetization M = P′ × v when it moves with uniform
velocity v in the laboratory.

It remains only to derive laboratory-frame constitutive equations for matter in uniform motion. For
this purpose, we assume that D′ = εE′ and B′ = μH′ in the rest frame and eliminate all the primed
variables using the transformation laws. The result of this algebra is

D + v
c2

× H = ε(E + v × B)
(22.198)

B − v
c2

× E = μ(H − v × D).

Alternatively, we can use (22.191) and the electric and magnetic susceptibilities defined by
χeε0 = ε − ε0 and χmμ0 = μ− μ0 to write (22.198) in the form

P = ε0χe(E + v × B) + v
c2

× M
(22.199)

M = χm(H − v × D) − v × P.

Substituting each equation in (22.198) into the other eliminates B from the first equation and D from
the second. The resulting fully relativistic constitutive relations have the form D[E,H] and B[E,H].
For uncharged conducting matter which obeys Ohm’s law in its rest frame, the reader can show that
the total current density in the laboratory is

j = γ σ (E + v × B). (22.200)

Finally, moving matter modifies the interface conditions we derive from the Maxwell equations.
From (2.49) and (2.57), the matching conditions in the rest frame K ′ are

n̂′
2 · [D′

1 − D′
2] = σ ′

f n̂′
2 · [B′

1 − B′
2] = 0

n̂′
2 × [H′

1 − H′
2] = K′

f n̂′
2 × [E′

1 − E′
2] = 0.

(22.201)

The matching conditions in the laboratory frame K follow when we rewrite (22.201) using the
transformation laws for the fields, for the surface charge and current densities, and for the unit normal
to the interface. The latter two are not very familiar and the calculation is rather tedious.19 Therefore,
we merely quote the results when the interface moves with velocity v as viewed from K . The normal
components of B and D remain continuous and [cf. (2.50)]

n̂2 × [E1 − E2] = (n̂2 · v)[B1 − B2]
(22.202)

n̂2 × [H1 − H2] = −(n̂2 · v)[D1 − D2].

There is no correction to the original matching conditions when an interface moves parallel to itself.

19 See Section 1.9, Section 3.4, and Section 5.1 of Van Bladel (1984).
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22.8.2 Slowly Moving Matter
We specialize now to the low-velocity limit when v � c. This leads us to drop the terms proportional
to v2/c2 in the constitutive relations D[E,H] and B[E,H] mentioned after (22.199). The result is

D = εE +
{
με − 1

c2

}
v × H

(22.203)

B = μH +
{

1

c2
− με

}
v × E.

The low-velocity form of (22.199) is (22.203) with D → P, εE → ε0χeE, B → M, and μH →
μ0χmH. Now, dielectric bodies tend to be only weakly magnetic and magnetic bodies tend to be only
weakly dielectric. Therefore, when the motion of a polarizable body through an electric field induces
a magnetic field [as predicted by (22.197)], it is often possible to approximate (22.203) by

D = εE and B = μH +
{

1

c2
− με

}
v × E. (22.204)

Similarly, and more commonly, when the motion of a magnetizable body through a magnetic field
induces an electric field [as predicted by (22.196)], it is common to approximate (22.203) by

B = μH and D = εE +
{
με − 1

c2

}
v × H. (22.205)

Example 22.6 A non-magnetic, dielectric cylinder moves parallel to its symmetry axis at constant
velocity v = vẑ in a uniform magnetic field B = −B0ŷ. Find the electric field everywhere and the
polarization of the cylinder. Neglect end effects.

Solution: The magnetic field is time-independent in every inertial frame. This reduces the right
member of (22.192) to ∇ × E = 0, from which we deduce that E = −∇ϕ. Using this in the right
member of (22.205) with μ = μ0 gives

∇ · D = ρf = ε∇ · E + (ε − ε0)∇ · (v × B),

or

∇2ϕ = −ρf

ε
+ ε − ε0

ε
∇ · (v × B).

Both terms on the right side of the preceding equation are zero because (i) there is no free volume
charge and (ii) the velocity and magnetic field are uniform. Therefore, ∇2ϕ = 0 inside and outside
the cylinder. From the right member of (22.205) and the absence of free surface charge, the matching
conditions at the cylinder surface, ρ = a, are

ϕin = ϕout

and

0 = σf = ρ̂ · (Dout − Din) = −
[
ε0
∂ϕout

∂ρ
− ε

∂ϕin

∂ρ

]
ρ=a

− (ε − ε0)ρ̂ · (v × B).

Because ρ̂ = cosφx̂ + sinφŷ, the latter is[
ε
∂ϕin

∂ρ
− ε0

∂ϕout

∂ρ

]
ρ=a

= (ε − ε0)vB0 cosφ.
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Our experience with potential theory (Section 7.9) permits us to write down the solution by
inspection:

ϕ(ρ, φ) = ε − ε0

ε + ε0
vB0 cosφ ×

⎧⎪⎨
⎪⎩
ρ ρ ≤ a,

a2

ρ
ρ ≥ a.

The associated electric field is

Ein = −ε − ε0

ε − ε0
vB0 x̂

Eout = ε − ε0

ε + ε0
vB0

a2

ρ2

[
cosφρ̂ + sinφφ̂

]
.

Finally, we extract P by combining D = ε0E + P with the right member of (22.205) with μ = μ0.
The result is

P = (ε − ε0)(Ein + v × B) = 2ε0vB0
ε − ε0

ε + ε0
x̂.

Application 22.5 The Electric Field outside a Pulsar

A pulsar is an astrophysical object which emits polarized radiation in bursts with a period that can
range from 1 msec to 10 sec. The simplest model of a pulsar is a rapidly rotating neutron star which
emits magnetic dipole radiation in a narrow beam. As shown in Figure 22.10, the rotation axis and the
magnetic dipole axis are not aligned. Distant observers detect pulses because a rotating beam produces
a “lighthouse effect”. The interior and exterior of a pulsar are thought to be good conductors, but the
origin of the pulsar’s magnetic dipole field is not known.

Rotation axis

   Beamed
radiation

Magnetic
field

Neutron
star

Figure 22.10: A cartoon model of a pulsar as a rotating, magnetized, neutron star.

In this Application, we model a pulsar as a sphere with radius R and uniform magnetization M′.
For simplicity, we align M′ with the angular velocity vector ω = ωẑ and suppose that only the interior
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of the sphere is a good conductor. Our goal is to show that, in the vacuum space outside of itself, the
pulsar produces an electric quadrupole field in addition to its magnetic dipole field. Inside the pulsar,
we assume that the magnitude of the linear velocity v = ω × r is everywhere small compared to the
speed of light. Therefore, we will consistently ignore the factor γ = 1/

√
1 − v2/c2 when we transform

fields from the non-rotating rest frame of the sphere to the laboratory frame where the sphere rotates.
The sphere is a conductor, so the electric vectors in its rest frame vanish everywhere:

E′ = D′ = P′ = 0. (22.206)

A sphere with volume V and uniform magnetization M′ = M0ẑ was the subject of Application 13.1.
The fields we found were

H′ =

⎧⎪⎪⎨
⎪⎪⎩

−1

3
M′ r < R,

V

4π

{
3(r̂ · M′)r̂ − M′

r3

}
r > R,

(22.207)

and

B′ =
⎧⎨
⎩

2

3
μ0M′ r < R,

μ0H′ r > R.

(22.208)

It is not immediately clear how to transform these fields to the laboratory frame because every point
of a rotating sphere experiences centripetal acceleration. Fortunately, when terms of order v2/c2 can
be neglected, the general relativistic formulae which transform fields in a rotating frame K ′ to fields
in a non-rotating frame K reduce to the special relativistic formulae (22.95), (22.194), and (22.196)
with γ = 1.20 Therefore, in terms of the cylindrical coordinate ρ = r sin θ , the electric vectors in the
laboratory are

Ein = −v × B′
in = −2

3
μ0ωM0ρρ̂

Din = − v
c2

× H′
in = ω

3c2
M0ρρ̂ (22.209)

Pin = v
c2

× M′ = ω

c2
M0ρρ̂.

The physical origin of the inward-directed field Ein becomes clear when we note from (22.96) that
Bin = B′

in. Therefore, the first line of (22.209) tells us that charge redistributes inside the pulsar until
mechanical equilibrium is established and Ein + v × Bin = 0. Although the sphere is a conductor, a
non-zero electric field develops so the electric Coulomb force balances the magnetic Lorentz force at
every interior point. This electric field is not uniform in space, but satisfies Ein · Bin = 0 everywhere
inside the pulsar.

The electric field outside the pulsar satisfies ∇ · Eout = 0 and ∇ × Eout = 0. The first condition
follows from the assumed absence of charge outside the pulsar. The second follows because the
alignment of the rotation axis with the magnetic dipole axis guarantees that Bout is equal to the time-
independent field B′

out in (22.208). We conclude that ∇2ϕout = 0 where Eout = −∇ϕout. The boundary
conditions are ϕout → 0 as r → ∞ and continuity of the tangential component of the electric field at
the sphere boundary r = R [see (22.202)]. Because ρ̂ · θ̂ = cos θ , the latter condition reads

θ̂ · Eout(R, θ ) = θ̂ · Ein(R, θ) = −2

3
μ0ωM0R sin θ cos θ. (22.210)

20 See Ridgley (1998) in Sources, References, and Additional Reading.
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We now draw on our knowledge of the solutions of Laplace’s equation for problems with azimuthal
symmetry (Section 7.6). The unique potential outside the pulsar is

ϕout = −2

9
μ0ωM0R

5P2(cos θ )

r3
= −1

9
μ0ωM0R

5 3 cos2 θ − 1

r3
, (22.211)

because

Eout = −∇ϕout = −μ0ωM0R
5

3r4

[
(3 cos2 θ − 1)r̂ + 2 sin θ cos θ θ̂

]
(22.212)

satisfies the boundary condition (22.210). As advertised, the exterior potential (22.211) and field
(22.212) are those of an electric quadrupole. This conclusion survives in more realistic models of the
electrodynamics of pulsars.

The reader may wish to check that the sources of Eout are volume and surface densities of free
charge (which derive from the divergence of D) and volume and surface densities of polarization
charge (which derive from the divergence of P). The total charge of the pulsar is zero. It is also worth
noting that (22.211) implies that a potential difference exists between two points on the sphere with
different latitudes. Hence, a current would flow through a wire whose ends touched the sphere at
these points. This shows that the steady-state electrodynamics of a pulsar is closely related to the
electrodynamics of the Faraday disk generator studied in Application 14.2. The main difference is that
a pulsar rotates through its own magnetic field rather than through an external magnetic field. �

�

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is taken from “Autobiographical notes”, Einstein’s contribution to
P.A. Schilpp, Albert Einstein, Philosopher-Scientist (Library of Living Philosophers, Evanton, IL, 1949).

Section 22.1 The quotation in the first paragraph is the opening three sentences from the English translation
of Einstein’s original article [Annalen der Physik 17, 891 (1905)] on special relativity:

A. Einstein, “On the electrodynamics of moving bodies”, The Collected Papers of Albert Einstein, translated
by A. Beck and P. Havas (University Press, Princeton, 1989), Volume 2.

Textbooks of electrodynamics with good discussions of special relativity include
L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, 2nd edition (Addison-Wesley, Reading, MA,
1962).

E.J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981).

J.D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1999).

There are a great many monographs devoted exclusively to relativity. This chapter benefitted particularly from
C. Møller, The Theory of Relativity (Clarendon, Oxford, 1952).

W.G.V. Rosser, An Introduction to the Theory of Relativity (Butterworths, London, 1964).

V.A. Ugarov, Special Relativity (Mir, Moscow, 1979).

Section 22.2 A discussion of both Galilean relativity and special relativity from the point of view of fundamental
symmetries appears in

N. Doughty, Lagrangian Interaction (Westview, New York, 1990).

Section 22.3 Miller is the gold standard for the history of the development of special relativity. Among other
things, he provides section-by-section commentary on Einstein’s 1905 paper. The thought-provoking book by
Galison contains no equations.

A.I. Miller, Albert Einstein’s Special Theory of Relativity (Addison-Wesley, Reading, MA, 1981).

P. Galison, Einstein’s Clocks and Poincaré’s Maps (Norton, New York, 2003).
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Figure 22.2 and the deduction of the relativity of simultaneity from it come from
D.F. Comstock, “The principle of relativity”, Science 31, 767 (1910).

The physics of the Global Positioning System is reviewed in
N. Ashby and J.J. Spilker, Jr., “Introduction to relativistic effects on the global positioning system”, in Global
Positioning System: Theory and Applications, edited by B.W. Parkinson and J.J. Spilker, Jr. (American Institute
of Aeronautics and Astronautics, Washington, DC, 1995).

Section 22.4 A critical appraisal of different derivations of the Lorentz transformation appears in
J.R. Lucas and P.E. Hodgson, Spacetime and Electromagnetism (Clarendon, Oxford, 1990).

The source of the length-contraction estimate in the footnote at the end of Section 22.4.2 is
T. P. Wangler, RF Linear Accelerators, 2nd edition (Wiley-VCH, Weinheim, Germany, 2008), Chapter 7.

Prof. Steffen Bass (Duke University) kindly provided the prose for Application 22.2. His associate, Dr. Hannah
Petersen, provided the simulation results shown in Figure 22.4. The MADAI collaboration develops visualization
tools for very large scale simulations. For an overview of the physics, see

M.J. Tannenbaum, “Recent results in relativistic heavy ion collisions: From a new state of matter to the perfect
fluid”, Reports on Progress in Physics 69, 2005 (2006).

A fascinating topic we do not treat is discussed with great clarity in
V.F. Weisskopf, “The visual appearance of rapidly moving objects”, Physics Today 13(9), 24 (1960).

Section 22.5 Lorentz et al. includes the 1908 article where Minkowski introduced the idea of four-dimensional
space-time. Pauli is the English translation of the still-authoritative encyclopedia article he wrote in 1921 at the
age of 21.

H.A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The Principle of Relativity (Dover, New York, 1952).

W. Pauli, Theory of Relativity (Dover, New York, 1958).

Authors who endorse the use of ict when treating special relativity only include
W.H. Furry, “Examples of momentum distributions in the electromagnetic field and in matter”, American
Journal of Physics 37, 621 (1969).

M. Veltman, Diagrammatica: The Path to Feynman Rules (University Press, Cambridge, 1994), Chapter 1 and
Appendix F.

G. ’t Hooft, Introduction to General Relativity (Rinton Press, Princeton, N.J., 2001).

Application 22.3 was taken from
S. Acharya and A.C. Saxena, “The exact solution of the relativistic equation of motion of a charged particle
driven by an elliptically polarized electromagnetic wave”, IEEE Transactions on Plasma Science 21, 257 (1993).

Section 22.6 A particularly thorough discussion of relativistic electrodynamics at the advanced undergraduate
level is

W.G.V. Rosser, Classical Electromagnetism via Relativity (Plenum, New York, 1968).

Examples 22.2, 22.3, and 22.4 come from Weinberg, Fisher, and Becker, respectively. Leonhardt and Piwnicki
provide a novel perspective on relativistic effects in optics.

S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), Chapter 2.

G. P. Fisher, “The electric dipole moment of a moving magnetic dipole”, American Journal of Physics 39, 1528
(1971).

R. Becker, Electromagnetic Fields and Interactions (Dover, New York, 1982), Volume I, Section 84.

U. Leonhardt and P. Piwnicki, “Light in moving media”, Contemporary Physics 41, 308 (2000).

Section 22.7 Konopinski (see Section 22.1 above) was the main source for this section. A recent textbook which
introduces covariant methods early and uses them often is

C. A. Brau, Modern Problems in Classical Electrodynamics (University Press, Oxford, 2004).

Section 22.7.4 was adapted from Møller (see Section 22.1 above) and Pauli (see Section 22.5 above). We do
not treat the angular momentum of particles. A good discussion of this topic and the related issues of Thomas
precession and a covariant equation for spin precession can be found in Jackson (see Section 22.1 above).
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Section 22.8 Our discussion of Minkowski’s theory of matter in uniform motion benefitted from the treatment
in Landau and Lifshitz (see Section 22.1 above). The transformation laws needed to derive the matching conditions
at a moving interface may be found in Van Bladel. The title of this excellent book should not deter the reader from
consulting this goldmine of problems where special relativity is used as a practical tool. Example 22.6 comes from
Jefimenko.

J. Van Bladel, Relativity and Engineering (Springer, Berlin, 1984).

O.D. Jefimenko, Electricity and Magnetism (Appleton-Century-Crofts, New York, 1966).

Application 22.5 combines elements of

C.T. Ridgely, “Applying relativistic electrodynamics to a rotating medium”, American Journal of Physics 66,
114 (1998).

A. Baños, Jr. and R. K. Golden, “The electrodynamic field of a rotating uniformly magnetized sphere”, Journal
of Applied Physics 23, 1294 (1952).

F.C. Michel and H. Li, “Electrodynamics of neutron stars”, Physics Reports 318, 227 (1999).

Problems
22.1 Low-Velocity Limit Let �z and �t be the difference between the space coordinates and the time coor-

dinates of a pair of events. Show that, for at least some pairs of events, a Lorentz transformation of these
differences does not reduce to a Galilean transformation in the limit of very low boost speed. Are the events
in question space-like or time-like?

22.2 Linearity of the Lorentz Transformation The text exploits the homogeneity of space to conclude that
the Lorentz transformation must be linear. Some authors state that this conclusion also follows if we demand
that uniform rectilinear motion in K corresponds to uniform rectilinear motion in K ′. Show, to the contrary,
that the same property is a consequence of the non-linear transformation law

x ′
i = Aijxj + bi

cj xj + d
i = 1, 2, 3, 4.

Examine the points which transform to infinity and, using this information, invent a physical argument
which forces cj = 0. Hint: It is convenient to set x4 = ct so v4 = dx4/dt = c.

22.3 Velocity Addition Let u = dr/dt be the velocity of a particle observed in an inertial frame K . The same
quantity observed in an inertial frame K ′ moving with velocity v with respect to K is u′ = dr′/dt ′.

(a) Use the transformation properties of dt , r‖, and r⊥ directly to derive the velocity addition rule,

u‖ = dr‖
dt

= u′
‖ + v

1 + v · u′
‖

c2

and u⊥ = dr⊥
dt

= u′
⊥

γ (v)

[
1 + v · u′

‖
c2

] .
(b) Let v define a polar axis with polar coordinates u = (u, θ) and u′ = (u′, θ ′) for the particle velocities

as measured in K and K ′. Write the transformation laws in part (a) in the form u = u(u′, θ ′) and
θ = θ (u′, θ ′).

(c) Use the results of (b) to show that u → c when v → c.

22.4 Invariance of the Scalar Product Let �a = (a, a4) and �b = (b, b4) be two four-vectors. Show that the
scalar product �a · �b = a · b + a4b4 is a Lorentz invariant scalar. It will be convenient to write a = a‖ + a⊥
and similarly for b.

22.5 The Quotient Theorem for a Four-Vector Let �A be a four-vector and let (B1, B2, B3, B4) be an ordered
set of four variables with unknown properties. Prove that this set constitutes a four-vector �B if AμBμ is a
Lorentz invariant scalar for any choice of �A.
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22.6 Transformation Law for E⊥ Use the transformation properties of the four-vectors �A and �∇ directly to
prove that

E′
⊥ = γ [E + v × B]⊥.

22.7 Transformation of Force A cylindrical column of electrons has uniform charge density ρ0 and radius a.

(a) Find the force on an electron at a radius a < r .
(b) A moving observer sees the column as a beam of electrons, each moving with uniform speed v. What

force does this observer report is felt by an electron in the beam at a radius a < r?

22.8 A Charged, Current-Carrying Wire The charged particles of an infinitely long and filamentary wire
produce a linear charge density λ′ and a current I ′. Let the vector I′ = I ′ẑ indicate the direction of current
flow.

(a) What is the current I and linear charge density λ measured in the laboratory frame when the wire moves
with velocity v = vẑ in that frame?

(b) Show that, by an appropriate choice of inertial frame, one can reduce the magnetic field of the wire
to zero or one can reduce the electric field of the wire to zero. In the first case, find the linear charge
density responsible for the remaining electric field. In the second case, find the current responsible for
the remaining magnetic field. Why is only one of these choices possible?

22.9 Poynting in the Wrong Direction? A static charge distribution ρ(r) generates an electric field E(r) in the
frame K ′. Set the distribution into motion with velocity v = vx̂ as viewed from the laboratory frame K .

(a) Let uEM be the electromagnetic energy density. Show that ∂uEM/∂t
′ = 0. Use this fact to show that

∇ · S0 + ∂uEM/∂t = 0 in K where S0 = uEMv.
(b) Show that the Poynting vector, S = E × B/μ0, is not equal to S0, but that ∇ · S = ∇ · S0.

22.10 Boost the Electromagnetic Field For some event, observer A measures E = (α, 0, 0) and B =
(α/c, 0, 2α/c) and observer B measures E′ = (E′

x, α, 0) and B′ = (α/c, B ′
y, α/c). Observer C moves with

velocity vx̂ with respect to observer B. Find (a) the fields E′ and B′ measured by observer B; and (b) the
fields E′′ and B′′ measured by observer C.

22.11 Covariance of the Maxwell Equations Establish the covariance of the four vacuum Maxwell equations the
“hard way” by using the transformation properties of the derivatives, the fields, and the charge and current
density. Let the boost be in an arbitrary direction β = v/c. Hint: Each equation does not immediately
transform into itself.

22.12 Transformations of E and B

(a) Use the transformation laws for E and B to show that E · B is a Lorentz invariant.
(b) Find the boost velocity v from K to K ′ so that the field is purely electric or purely magnetic in K ′ if

E⊥ B and E �= cB in S.
(c) Static fields E = E0ŷ and cB = E0(ŷ cos θ + ẑ sin θ ) exist in some inertial frame S. Find the boost

velocities from K to K ′ which make E′ either parallel or anti-parallel to B′ in K ′. For both cases, find
the θ dependence of the magnitudes of E′,B′, and the boost velocity.

22.13 Covariant Charge and Current Density Show by explicit calculation that the formulae for the charge
and current densities of a collection of point charges,

ρ(r, t) =
N∑
k=1

qkδ(r − rk(t)) and j(r, t) =
N∑
k=1

qkvk(t) δ(r − rk(t)),

have exactly the same form when we boost from frame K to frame K ′ by a velocity v0.
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Hint: Show first that δ[r′ − r′
k(t

′)] = γ (1 − v0 · vk/c2)δ[r − rk(t)] by evaluating the Jacobian determinant
in the volume element transformation d3R = |J(R, r′)|d 3r ′ where R = r − rk(t).

22.14 A Relativistic Particle in a Constant Electric Field A point particle with charge q and mass m moves in
response to a uniform electric field E = Eẑ. The initial energy, linear momentum, and velocity are E0, p0,
and u(0) = u0ŷ. Find r(t) and show that eliminating t gives the particle trajectory

z = E0

qE
cosh

(
qEy

cp0

)
.

Check the non-relativistic limit.

22.15 A Charged Particle in Uniform Motion Revisited

(a) Boost from the laboratory frame K to the rest frame K ′ to find the vector potential A(r, t) and the scalar
potential ϕ(r, t) for a charged particle q which moves with constant velocity v when viewed from the
laboratory.

(b) Find E and B in the laboratory frame using the potentials computed in part (a).
(c) Let r = r⊥ + r‖ be the decomposition of the position vector into components perpendicular and parallel

to v. In the limit when v → c, show that the fields you computed in part (b) reduce to

E(r, t) = 1

2πε0

r⊥
r2
⊥
qδ(ct − r‖) and B(r, t) = μ0

2π

v × r⊥
r2
⊥

qδ(ct − r‖) .

Interpret your result in terms of the Lorentz contraction.
(d) Compare and contrast the fields in part (c) with the radiation fields produced by a compact time-

dependent source.

22.16 The Four-Potential

(a) Use the four-vector character of �∇ and the Lorentz transformation laws for B and E to deduce that the
scalar and vector potentials form a four-vector (A, iϕ/c). This reverses the methodology followed in
the text.

(b) Show that the spherical equipotentials of a stationary point charge distort to ellipsoids when the charge
is in uniform rectilinear motion with velocity v. Plot a cross sectional view of one equipotential on the
same graph for v = 0.3c, 0.5c, 0.7c, and 0.9c.

22.17 A Moving Current Loop

(a) A small current loop moves with constant velocity v0 as viewed in the laboratory frame. Find the vector
potential A(r) and the scalar potential ϕ(r) in the lab frame. It may be convenient to introduce the vector
R = r − v0t .

(b) Take the limit v0 � c in your formulae and deduce that the moving loop possesses both a magnetic
dipole moment and an electric dipole moment.

22.18 Transformation of Dipole Moments Use the inertial-frame transformation laws for the polarization P
and magnetization M to deduce the electric dipole moment p and magnetic dipole moment m observed in
the laboratory for a body that moves with velocity v. Assume that the body has non-zero values for both
these moments in its own rest frame.

22.19 TE and TM Modes of a Waveguide Show that a TE (TM) waveguide mode remains a TE (TM) waveguide
mode for a Lorentz boost along the propagation direction of a straight waveguide.

22.20 Stellar Aberration The position of a star in the heavens is determined by the direction of the propagation
vector of the light it emits. Let inertial frame K ′ move with velocity v with respect to K . If k · v = kv cos θ
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and k′ · v = k′v cos θ ′, show that

tan θ = sin θ ′

γ (cos θ ′ + β)
.

22.21 Reflection from a Rotating Mirror Surprisingly good astronomical mirrors can be constructed from a
rotating dish of liquid mercury. Consider a ray of light incident on such a mirror at an arbitrary angle. Treat
the mirror surface as locally flat but moving with a linear velocity v at the point of reflection. Show that,
when observed in the lab frame, the reflected ray suffers no Doppler shift of its wavelength and no Doppler
aberration of its angle of reflection.

22.22 Reflection from a Moving Mirror Revisited A plane wave in vacuum with electric field E0 =
x̂E0 exp[i(k0z − ω0t)] reflects at normal incidence from a mirror which moves at constant speed vẑ. Derive
the results found in Application 22.4 for the frequency and electric field amplitude of the reflected wave
using a method which never leaves the laboratory frame.

22.23 Transformation of Phase and Group Velocity

(a) Consider a wave with dispersion relation ω(k). Show that the group velocity u = ∇kω transforms under
a Lorentz transformation exactly like a particle velocity.

(b) Show that the phase velocity up = (ω/k)k̂ transforms under a Lorentz transformation exactly like a
particle velocity when ω = c|k|.

22.24 The Invariance of UEM/ω Revisited A flat-screen photodetector continuously absorbs energy from a
plane wave (frequency ω) when the wave strikes the screen (area A) at normal incidence. Use the lab frame
(where the detector is at rest) and a frame moving uniformly in the direction of the wave to study the total
energy UEM absorbed by the detector in a finite time interval. Deduce thereby that the ratio UEM/ω is a
Lorentz invariant scalar.

22.25 Conservation of Energy-Momentum The scalar pμpμ = −m2c2 is Lorentz invariant because it is the
magnitude of a four-vector. Use the covariant equation of motion for a point charge in an electromagnetic
field to prove, independently, that pμpμ is a constant, independent of proper time.

22.26 Gauge Freedom and Lorentz Invariance The scalar and vector potentials satisfy the homogeneous wave
equation in free space. Often, we choose ϕ = 0 and require that the polarization vector e of the vector
potential be transverse to its wave vector: e · k = 0. This is not a Lorentz invariant requirement. However,
consider a plane wave solution Aν = eν exp(ikσ rσ ) of the wave equation, ∂μ∂μAν = 0 which satisfies the
Lorenz gauge constraint, ∂μAμ = 0.

(a) Use covariant notation and show that a change of gauge does not affect the field tensor Fμν .
(b) Suppose that a Lorentz boost destroys the transverse property of the polarization. Show that it is always

possible to choose a gauge function � (consistent with the Lorenz gauge constraint) which restores the
transverse property.

22.27 Covariant Properties of a Plane Wave For a monochromatic plane wave, the vectors (E,B, k) form a
right-handed orthogonal triad. Prove that this is a Lorentz invariant statement because GμνFμν is a Lorentz
scalar and kμFμν is a four-vector.

22.28 A Stress-Energy Invariant Evaluate the Lorentz invariant θμνθμν in an arbitrary inertial frame. Identify a
type of electromagnetic field where this invariant is zero.

22.29 Diagonalize the Stress-Energy Tensor At a single space-time point, it is always possible to orient the
space axes so Ez = Bz = 0 and E · B = EB cos θ .

(a) Under these conditions, diagonalize �μν and show that the two distinct eigenvalues are

λ = ± 1

4μ0

√
(FμνFμν)2 + (FμνGμν)2 = ±1

2
ε0

√
E4 + c4B4 + 2E2B2c2 cos(2θ).
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(b) Show that part (a) implies that the electromagnetic energy density at the space-time point in question is
either zero or no less than |λ| in every inertial frame.

22.30 Stress-Energy Tensor for Matter A set of particles has charges qk , masses mk , and positions rk(t). Let
�s = (x, y, z, ict) be the space-time four-vector and define �rk = (xk, yk, zk, ict) = (rk, ict). The components
of the stress-energy tensor for this system are the sum of the density and current density of energy-momentum
of the individual particles:

�mat
αβ (s, t) =

∑
k

pk,α

drk,β

dt
δ[s − rk(t)].

(a) Prove that �mat
αβ = �mat

βα .
(b) Prove that ∂β�mat

αβ = νFαν . This divergence is the negative of the divergence of the electromagnetic
stress-energy tensor. Therefore, ∇ · ( + mat) = 0. Hint: Begin with the space divergence ∂i�mat

αi .
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23 Fields from Moving Charges

I have been looking for a tolerably simple way of expressing
the radiation at a distance from an electron.

Oliver Heaviside (1904)

23.1 Introduction

The electromagnetic fields produced by point charges in motion play some role in practically every
sub-discipline of physics. The key issues are not new because retardation and radiation were the
main subjects of Chapter 20. Indeed, all the topics studied in this chapter could have been treated
immediately after Section 20.3.4 when we wrote down the retarded integrals for the electromagnetic
potentials in the Lorenz gauge. The value added by delaying the discussion until now is that the
methods and insights of special relativity simplify calculations and help build intuition.

The first section below derives the potentials and fields produced by a point charge which moves
along a specified trajectory. Subsequent sections look into the details for simple trajectories with and
without particle acceleration. We will be particulary interested in the changes which occur when the
particle speed increases from non-relativistic to ultra-relativistic values. The experimentally important
frequency spectrum of emitted power emerges when we Fourier analyze the time dependence of
the emitted fields. The emission of radiation implies energy loss by a moving particle and thus some
perturbation of its trajectory. We treat this problem using the concept of radiation reaction. The chapter
concludes with a brief introduction to Cherenkov radiation.

23.2 The Liénard-Wiechert Problem

Figure 23.1 shows the trajectory r0(t) of a point charge q. The instantaneous velocity of the charge
is v(t) = dr0(t)/dt . Our task is to compute the exact electromagnetic fields associated with this
moving charge. Following the original approach of Liénard and Wiechert (circa 1900), we calculate
the electromagnetic potentials first and then pass to the fields using

E = −∇ϕ − ∂A
∂t

and B = ∇ × A. (23.1)

The potentials are sufficiently important that we discuss them from three points of view: an
explicit evaluation of retarded integrals, a heuristic argument, and a derivation based on relativistic
covariance.

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-23 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 8:52

23.2 The Liénard-Wiechert Problem 871

Origin

Observation
point

Figure 23.1: The trajectory r0(t) of a point charge q.

23.2.1 The Liénard-Wiechert Potentials
The retarded electromagnetic potentials in the Lorenz gauge are (see Section 20.3.4)

ϕ(r, t) = 1

4πε0

∫
d 3r ′ ρ(r′, t − |r − r′|/c)

|r − r′| (23.2)

and

A(r, t) = μ0

4π

∫
d 3r ′ j(r′, t − |r − r′|/c)

|r − r′| . (23.3)

The charge density and current density of the moving point charge in Figure 23.1 are

ρ(r, t) = qδ(r − r0(t)) and j(r, t) = qv(t)δ(r − r0(t)). (23.4)

We will also need the length R(t) and a unit vector n̂(t) defined by

R(t) = r − r0(t) = R(t)n̂(t). (23.5)

Substituting (23.4) into (23.2) and (23.3) produces some challenging integrals. To make progress,
we focus on the scalar potential and temporarily complicate (23.2) by introducing an integration over
a dummy variable t ′ and a delta function to enforce the time-retardation of the charge density:

ϕ(r, t) = 1

4πε0

∫
d 3r ′

∫
dt ′

ρ(r′, t ′)
|r − r′| δ(t ′ − t + |r − r′|/c). (23.6)

Inserting the charge density in (23.4) into (23.6) and performing the space integral leaves

ϕ(r, t) = q

4πε0

∫
dt ′

δ(t ′ − t + R(t ′)/c)

R(t ′)
. (23.7)

We evaluate (23.7) using the identity (see Section 1.5.1)

δ[g(x)] =
∑
n

1

|g′(xn)|δ(x − xn) where g(xn) = 0, g′(xn) �= 0. (23.8)

When the particle speed v < c, the argument of the delta function in (23.7) is zero at one unique
time. This is the retarded time, tret, defined by

tret = t − R(tret)

c
. (23.9)

If β = v/c, the derivative which appears in the denominator in (23.8) is the Doppler-like factor

g(t ′) = d

dt ′
[
t ′ − t + R(t ′)/c

] = 1 + 1

c

d

dt ′
√

R(t ′) · R(t ′) = 1 − β(t ′) · n̂(t ′) > 0. (23.10)
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This derivative is strictly positive because v < c. Using (23.8) and (23.10) to evaluate (23.7) gives the
Liénard-Wiechert scalar potential,

ϕ(r, t) = 1

4πε0

[
q

R(t)g(t)

]
t=tret

= 1

4πε0

[
q

R − β · R

]
ret

. (23.11)

The subscript “ret” indicates that all quantities inside the brackets are evaluated at the retarded time.
An entirely similar evaluation of (23.3) using the current density in (23.4) gives the Liénard-Wiechert
vector potential,

A(r, t) = μ0

4π

[
qv(t)

R(t)g(t)

]
t=tret

= μ0

4π

[
qv

R − β · R

]
ret

. (23.12)

23.2.2 A Heuristic Discussion
The Liénard-Wiechert potentials (23.11) and (23.12) differ in two ways from the electromagnetic
potentials derived in Example 14.3 for a slowly moving point charge,

ϕ(r, t) = 1

4πε0

q

|r − r0(t)| and A(r, t) = μ0

4π

qv(t)

|r − r0(t)| . (23.13)

The first difference is that the quasistatic potentials in (23.13) are evaluated at the present time,
while the exact potentials are evaluated at the retarded time. This is straightforward to understand:
electromagnetic information is transmitted at the speed of light rather than instantaneously.

The second difference between the Liénard-Wiechert potentials and the quasistatic potentials is the
appearance of the factor g(tret) = 1 − β(tret) · n̂(tret) in the denominator of the exact potentials. This
is a more subtle effect and, as suggested just before (23.10), amounts to a Doppler-like correction
associated with the motion of the charge. The argument is best made using an “information-collecting
shell” interpretation of the retarded scalar potential (23.2). A very similar argument applies to the
retarded vector potential (23.3). The idea is that a source point r′ contributes to the integral when it lies
on the surface of a spherical shell of radius R = |r − r′| centered at the observation point r. However,
the integrand involves the charge density at the retarded time, tret = t − |r − r′|/c, rather than at the
time t of observation. Therefore, the contribution to ϕ(r, t) from r′ is counted correctly if the shell
collapses radially at speed c and passes through r′ at precisely tret.

Focus now on the volume element labeled dV in Figure 23.2. If the charge distribution is stationary,
the information-collecting shell encounters a charge dq = ρretdV = ρretR

2dRd� as it collapses a
radial distance dR toward the observation point. However, the density of charge in dV is not static
if the particles which carry the charge move. Qualitatively, the collapsing shell encounters a charge
dq > ρretdV when the particles have a net inward radial velocity and a charge dq < ρretdV when the
particles have a net outward radial velocity.

To be quantitative, let the charge in dV have velocity v and note that this motion causes a current
dI = [ρv]ret · dS to flow through the outward surface element dS in Figure 23.2. It takes a time dR/c
for the sphere to sweep through dV , so the actual charge encountered is

dq = ρretdV − dI
dR

c
= [

ρdV − ρβ · R̂R2dRd�
]

ret = [
1 − β · R̂

]
ret ρretdV . (23.14)

Equation (23.14) shows that the integral (23.2) can be evaluated by replacing ρretdV in the integrand
by dq/

[
1 − β · R̂

]
ret. Performing the integral for a point charge reproduces the Liénard-Wiechert

scalar potential (23.11).
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23.2 The Liénard-Wiechert Problem 873

Figure 23.2: Concentric circular arcs are snapshots of an information-collecting sphere as it collapses onto an
observation point (black dot) at the speed of light. The charge in the volume V moves at the velocity v.

23.2.3 A Covariant Derivation
According to Hermann Minkowski—the inventor of the four-dimensional formulation of Einstein’s
special theory of relativity—the Liénard-Wiechert potentials provided “perhaps the most striking
example” of the advantages afforded by his approach.1 To see this, let R2 = (x − x0)2 + (y − y0)2 +
(z − z0)2 be the distance in (23.9) between an observer at the present space-time point (r, ict) and a
moving point charge at the retarded space-time point (r0, ictret).

Just at the retarded time, perform a Lorentz transformation from the laboratory frame to a frame
where the velocity v of the charge is momentarily zero. In that frame, the electromagnetic potentials
at r(t) are

ϕ = 1

4πε0

q

R
and A = 0. (23.15)

Our goal is to find a manifestly covariant expression for the four-potential (A, iϕ/c) which reduces to
(23.15) in the rest frame of the charge. Evaluating Aν in a frame where v is not zero should yield the
Liénard-Wiechert potentials. For this to happen, the four-velocity of the particle, Uν = γ (v)(v, ic),
must enter our expression for Aν . Another four-vector which should enter is the difference between
(r, ict) and (r0, ictret):

Rν = (r − r0, ic(t − tret)). (23.16)

A crucial observation is that the two events which define Rν are connected by a signal traveling at the
speed of light. This means that the events have null separation (see Section 22.4.3) and Rν has zero
length. In other words,

RνRν = R2 − c2(t − tret)
2 = 0 ⇒ Rν = (R, iR). (23.17)

The charge q is a relativistic invariant. Therefore, the only four-vector Aν = (A, iϕ/c) which
reproduces (23.15) in the rest frame where Uμ = (0, ic) is2

Aν = − q

4πε0

Uν

cRσUσ

. (23.18)

Writing out the components of (23.18) gives

ϕ = − 1

4πε0

qc

v · R − c2(t − tret)
and A = − 1

4πε0

qv/c
v · R − c2(t − tret)

. (23.19)

1 See Minkowski’s article, “Space and time”, in H.A. Lorentz, A. Einstein, and H. Minkowski, The Principle of
Relativity (Dover, New York, 1952), pp. 75-91.

2 Because RσRσ = 0, RσUσ is the only scalar available for the denominator of (23.17).
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However, because the event (r0, ictret) involves the retarded time, v and R must all be evaluated at that
time. This information and R = c(t − tret) reduce (23.19) to the Liénard-Wiechert expressions,

ϕ(r, t) = 1

4πε0

[
q

R − β · R

]
ret

and A(r, t) = μ0

4π

[
qv

R − β · R

]
ret

. (23.20)

The reader may wonder why the steps used here to derive (23.20) are valid when the particle velocity
is not uniform. The answer is that the transformation and evaluation are performed instantaneously and
apply only at the moment when the particle has the non-zero velocity of interest. In other words, the
calculation in this section exploits a sequence of independent Lorentz transformations, each performed
at a different point and at a different time along the particle trajectory.

23.2.4 The Liénard-Wiechert Fields
Evaluating (23.1) with the Liénard-Wiechert potentials generates the electric and magnetic fields
produced by a point charge with a specified trajectory r0(t). This can be done using (23.20), but the
calculation is simpler if we use the scalar potential (23.7) and the corresponding integral for the vector
potential. The electric field is

E(r, t) = − q

4πε0
∇
∫

dt ′
δ(t ′ − t + R(t ′)/c)

R(t ′)
− μ0q

4π

∂

∂t

∫
dt ′

v(t ′)δ(t ′ − t + R(t ′)/c)

R(t ′)
. (23.21)

The definition of R in (23.5) shows that ∇R = n̂ and ∇(1/R) = −R/R3. The first of these, and the
chain rule, give

∇δ(t ′ − t + R(t ′)/c) = − ∂

∂t
δ(t ′ − t + R(t ′)/c)

n̂
c
. (23.22)

Therefore,

E(r, t) = q

4πε0

[∫
dt ′δ(t ′ − t + R(t ′)/c)

n̂
R2

+ ∂

∂t

∫
dt ′δ(t ′ − t + R(t ′)/c)

n̂ − β

cR

]
. (23.23)

Both integrals in (23.23) are like the integral (23.7). Therefore, the logic which led to (23.11) applies
here as well. We conclude from this that

E(r, t) = q

4πε0

[
n̂

gR2

]
ret

+ q

4πε0

d

dt

[
n̂ − β

gcR

]
ret

, (23.24)

where g = 1 − β · n̂ is the Doppler factor defined in (23.10) and discussed in Section 23.2.2. A very
similar calculation gives the corresponding magnetic field as

B(r, t) = μ0q

4π

[
v × n̂
gR2

]
ret

+ μ0q

4π

d

dt

[
v × n̂
gcR

]
ret

. (23.25)

The fields (23.24) and (23.25) are exact, but not particularly useful in the form given. To make
progress, we need a few derivative relations. First, combine (23.9) with [see (23.10)]

dR

dt
= −n̂ · cβ (23.26)

to get

dt

dtret
= 1 + 1

c

dRret

dtret
= [1 − β · n̂]ret = gret. (23.27)

Second, differentiate n̂ = R/R directly and use (23.26) to deduce that

dn̂
dt

= c

R
n̂ × (n̂ × β). (23.28)
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Finally, use the definition in (23.27) to get

dg

dt
= −

[
dn̂
dt

· β + n̂ · dβ

dt

]
. (23.29)

Return now to the electric field (23.24) and use (23.27) to replace d/dt by d/dtret. All variables are
now retarded, and carrying out the indicated derivatives produces

E(r, t) = q

4πε0

[
n̂

gR2
+ 1

cgR

(
dn̂
dt

− dβ

dt

)
− (n̂ − β)

cg2R2

(
dg

dt
R + g

dR

dt

)]
ret

. (23.30)

Apart from the dimensionless acceleration β̇ = dβ/dt , the time derivatives in (23.30) are given by
(23.26), (23.28), and (23.29). Using these, only a bit of algebra is needed to find the Liénard-Wiechert
electric field:

E = q

4πε0

[
(n̂ − β)(1 − β2)

g3R2
+ n̂ × {

(n̂ − β) × β̇
}

cg3R

]
ret

= Ev + Ea. (23.31)

The second equality in (23.31) decomposes the electric field into a velocity field, Ev, and an acceleration
field, Ea . The velocity field does not contain β̇ and varies in space as 1/R2. This field remains “attached”
to the source charge in the sense of the near field in Figure 20.5. The acceleration field goes to zero as
β̇ → 0 and varies in space as 1/R. This field propagates to infinity (see below).

The reader can carry out very similar steps beginning with (23.25) and confirm that the Liénard-
Wiechert magnetic field is

B = μ0q

4π

[
(v × n̂)(1 − β2)

g3R2
+ (β × n̂)(β̇ · n̂) + gβ̇ × n̂

g3R

]
ret

= Bv + Ba. (23.32)

Like the electric field, (23.32) decomposes naturally into a velocity magnetic field, Bv, and an accel-
eration magnetic field, Ba. Comparing (23.31) to (23.32) demonstrates that

cBv = n̂ret × Ev and cBa = n̂ret × Ea. (23.33)

Adding the two equations in (23.33) shows that the total Liénard-Wiechert fields satisfy

cB = n̂ret × E. (23.34)

We deduce from (23.33) that B · E = 0, B · n̂ret = 0, and c|B| ≤ |E|. These relations hold for the total
fields and (separately) for the velocity and acceleration fields. On the other hand, it is straightforward
to check that Ev · n̂ret �= 0. We leave it as an exercise for the reader to show that the separation of the
Liénard-Wiechert electromagnetic field into a velocity part and an acceleration part is relativistically
invariant.

The acceleration field is particularly important because (n̂ret,Ea,Ba) is an orthogonal triad of vectors
with c|B| = |E|:

Ea = cBa × n̂ret Ea · n̂ret = 0 Ba · n̂ret = 0. (23.35)

Combining (23.35) with the 1/R spatial variation of Ea and Ba shows that the acceleration field of
a moving charged particle has all the characteristics of a radiation field (see Section 20.5). This is
consistent with our earlier conclusion (Section 20.5.5) that particle acceleration is necessary (but not
sufficient) to produce radiation.
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Figure 23.3: Electric field lines for a point (negative) charge that is abruptly accelerated from rest (at point O) to
at state of uniform speed at point P. Figure from Purcell (1965).

EdR

E

c

O

R

c

Figure 23.4: Side view of an annular ring whose radius R expands at the speed of light. The annulus of
thickness dR (shaded) collects flux from the part of the Liénard-Wiechert electric field in Figure 23.3 which is
transverse to the radius vector R.

Interesting qualitative physics lies behind (23.35) and the observation that an accelerating charge
generates electromagnetic field vectors with components which are transverse to n̂ret. To understand
this, we follow J.J. Thomson (the discover of the electron) and plot the electric field produced by a
point charge which undergoes a short burst of acceleration.

Figure 23.3 shows the field lines of E for a point charge which was at rest at point O until it was
abruptly accelerated to the velocity β = 0.2 at time t = 0. Thereafter, the charge moved at constant
velocity and reached the point P at time t .

Everywhere outside a sphere of radius R = t/c centered at O, the field lines point radially inward
to O. This is expected because the “news” of the abrupt acceleration has not yet reached these distant
points. The field in this outer region comes from the velocity term in (23.31). Everywhere inside the
same sphere, the field lines point directly toward the charge. This is also expected because a point
charge moving at constant speed drags a Coulomb-like field along with it (see Section 20.1). This
is also a velocity field. However, because all field lines are continuous, the two patterns must knit
together in the thin spherical shell which separates them. The field in this region is, by necessity, nearly
tangential to the shell and comes primarily from the acceleration term in (23.31). This agrees with
the middle equation in (23.35) because the unit vector n̂ret points radially outward from O. A similar
graphical analysis can be carried out for the magnetic field.3

TheR-dependence of the acceleration electric field in (23.31) can be understood using the expanding
annulus shown in side view in Figure 23.4. The annulus is centered at the point O in Figure 23.3
and is concentric with the particle trajectory. The radius R of the annulus increases at the speed

3 See Ohanian (1980) in Sources, References, and Further Reading.
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of light and the annular width dR is large enough to capture all the flux from the field lines in
Figure 23.3 which are transverse to the vector R. This group of field lines also moves outward at
the speed of light. The total electric flux captured by the ring is Ea2πRdR and, by construction,
this value does not change as R increases. Therefore, Ea(R) ∝ 1/R. We conclude that an impulsive
acceleration event causes a charged particle to launch a pulse of radiation (a kink in its electric
field line pattern) which propagates away from the retarded position of the charge at the speed of
light. The reader can compare this with the time-domain analysis of antenna radiation presented in
Section 20.6.2.

Example 23.1 A linearly polarized, time-harmonic plane wave propagating in the +z-direction
with polarization ε̂i and electric field Ei scatters from a moving electron. This Thomson scattering
event (see Section 21.3) leaves the electron with velocity β and acceleration β̇. A convenient
measure of the polarization of the scattered field is

p (ε̂i , ε̂f ) = |ε̂f · Ef |2
|ε̂i · Ef |2 .

The Liénard-Wiechert fields and the relativistic equations of motion for a point charge make
it possible to write p in a form which does not explicitly contain the acceleration β̇. Consider
backscattering only and find p as a function of β = (β, θ, φ) when ε̂i = x̂ and ε̂f = ŷ. Use this
result to identify situations when p = 0 and when p � 1. Polarization analysis of this kind is used
in diagnostic studies of relativistic electron beams.

Solution: The backscattered electric field Ef in the far zone is the acceleration electric field in
(23.31) with n̂ret ≈ −ẑ. To eliminate β̇ from Ef , we write the relativistic equations of motion for
a particle with charge q (Section 22.5.2):

d

dt
(γmv) = q(Ei + v × Bi) and

d

dt
(γmc2) = qEi · v.

Combining these two with the incoming plane wave relation, cBi = ẑ × Ei , leads without difficulty
to

β̇ = q

γmc
[(1 − β · ẑ)Ei + (β · Ei)(ẑ − β)] .

Using this formula for β̇ and g = [1 − n̂ · β]ret ≈ 1 + βz, the projection of the backscattered Ef

onto any unit vector ε̂ ⊥ ẑ is

ε̂ · Ef = μ0q
2

4πγmg3R

[
2(β · Ei)(ε̂ · β) + (β2

z − 1)(ε̂ · Ei)
]
.

Therefore,

p (x̂, ŷ) = |ŷ · Ef |2
|x̂ · Ef |2 =

(
2β2 sin2 θ sinφ cosφ

2β2 sin2 θ cos2 φ + β2 cos2 θ − 1

)2

.

This formula says that the polarization of the backscattered radiation is the same as the polarization
of the incident radiation if the scattering event leaves the charge at rest (β = 0) or if β is aligned
exactly with the x-, y-, or z-axes. Conversely, because

lim
β→1

p = tan2(2φ),

the field backscattered by an ultra-relativistic (v ≈ c) electron is nearly cross-polarized with respect
to the incident field when v = (vx,±vx, 0).
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Application 23.1 The Fields of a Point Charge in Uniform Motion II

The electromagnetic fields produced by a point charge with constant velocity were calculated in
Application 20.1 (by solving the inhomogeneous wave equation) and again in Section 22.6.4 (by
Lorentz transformation of the field of a static point charge). This situation produces no radiation, but
the phenomenon of retardation did not play an obvious role in either calculation. We shed light on
this issue here by transforming the retarded-time formulae (23.31) and (23.33) into observation-time
formulae for the special case when β̇ = 0.

The point charge q in Figure 23.5 moves uniformly with velocity v = cβ. The black dot labels the
position of the charge at the time, t , when the fields are observed at the point C. The point labeled A is
the position of the charge at the retarded time, tret. We begin with the electric field and, because β̇ = 0,
only the first (velocity) term in (23.31) requires our attention:

Ev = q

4πε0

[
(n̂ − β)(1 − β2)

g3R2

]
ret

. (23.36)

Our first task is to prove that

[n̂ − β]ret = R
Rret

. (23.37)

This requires the implicit equation (23.9) for the retarded time, which we use to compute the vector
�s which points from the retarded-time position of the charge to the observation-time position in
Figure 23.5:

�s = v(t − tret) = βRret. (23.38)

On the other hand, the geometry of Figure 23.5 shows that

βRret + R = Rret = Rretn̂ret. (23.39)

Combining (23.38) with (23.39) gives the advertised formula (23.37). Inserting the latter into (23.36)
gives

Ev(r, t) = q

4πε0

R(1 − β2)

[gR]3
ret

. (23.40)

Figure 23.5: A point charge q with uniform velocity v = cβ. The location of the charge at the retarded
time is labeled A. The observation point is labeled C.

To make further progress, we note that the distance AB = βRret · n̂ret is the projection of the vector
βRret onto the direction n̂ret. In that case, the definition of gret from (23.27) tells us that the distance

BC = Rret(1 − n̂ret · β) = [gR]ret. (23.41)

Finally, the geometry of Figure 23.5 shows that

BC
2 + β2R2

ret sin2 α = R2 and Rret sinα = R sin θ. (23.42)
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Together, (23.41) and (23.42) give [gR] = R(1 − β2 sin2 θ )1/2. Substituting this into (23.40) gives the
desired final result,

Ev(r, t) = q

4πε0

R
R3

1 − β2

(1 − β2 sin2 θ )3/2
. (23.43)

This is the electric field we found in our earlier treatments of this problem. Using (23.37) to evaluate
(23.33) gives a magnetic field expression we have also seen before:

Bv = n̂ret

c
× Ev = 1

c

[
β + R

Rret

]
× Ev = v

c2
× Ev. (23.44)

�

23.2.5 The Heaviside-Feynman Fields
Heaviside (1904) and Feynman (1963) published formulae for the Liénard-Wiechert fields which
differ entirely from (23.31) and (23.33). Three identities are needed to reproduce their results. The
first follows from (23.27) and (23.9):

1

gret
= dtret

dt
= 1 − 1

c

dRret

dt
. (23.45)

The second uses (23.45) to replace d/dtret by d/dt :

βret = −1

c

dRret

dtret
= −gret

c

dRret

dt
. (23.46)

Finally, (23.28) is valid using either all present-time variables or all retarded-time variables. Choose
the latter but use (23.45) to replace the retarded-time derivative with a present-time derivative. This
leads immediately to the third identity:

n̂ret × dn̂ret

dt
=
[
c

gR
β × n̂

]
ret

. (23.47)

Now, return to the electric field in the form (23.24). Using (23.45) and (23.46) to eliminate the
factors [1/g]ret and [β/g]ret gives

E(r, t) = q

4πε0

{
n̂ret

R2
ret

(
1 − 1

c

dRret

dt

)
+ 1

c

d

dt

[
n̂ret

Rret

(
1 − 1

c

dRret

dt

)
+ 1

cRret

dRret

dt

]}
. (23.48)

Writing R = Rn̂ in the last term, the derivatives in (23.48) produce some internal cancellation and,
ultimately, the Heaviside-Feynman formula for the electric field of a point charge with a specified
trajectory:

E(r, t) = q

4πε0

{[
n̂
R2

]
ret

+ Rret

c

d

dt

[
n̂
R2

]
ret

+ 1

c2

d2n̂ret

dt2

}
. (23.49)

For the magnetic field, we use (23.47) in both terms of (23.25) to get

B(r, t) = μ0q

4π

{[
n̂
R

]
ret

× dn̂ret

dt
+ n̂ret

c
× d2n̂ret

dt2

}
. (23.50)

Comparing (23.50) to (23.49) confirms (23.33):

cB(r, t) = n̂ret × E(r, t). (23.51)
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Heaviside and Feynman pointed out many interesting features of (23.49) and (23.50). For example,
using (23.9) and (23.27) in (23.49) shows that

E(r, t) = q

4πε0

{[
n̂
R2

]
ret

+ (t − tret)

c

d

dtret

[
n̂
R2

]
ret

1

gret
+ 1

c2

d2n̂ret

dt2

}
. (23.52)

On the other hand, a Taylor series expansion gives

n̂
R2

(t) = n̂
R2

(tret + Rret/c) ≈
[

n̂
R2

]
ret

+ (t − tret)

c

d

dtret

[
n̂
R2

]
ret

+ · · · . (23.53)

If the particle speed is non-relativistic (so β � 1 and gret ≈ 1) and the particle trajectory is such that
the higher-order derivatives in the Taylor expansion can be neglected, comparing (23.53) to (23.52)
shows that

E(r, t) ≈ q

4πε0

n̂
R2

+ μ0q

4π

d2n̂ret

dt2
. (23.54)

In words, the observed electric field is approximately the quasistatic (instantaneous) Coulomb field plus
a second derivative (in time). The latter must be the radiation electric field because our approximations
do not preclude acceleration of the charge. We will exploit this fact to analyze synchrotron radiation
in Section 23.5.

23.3 Radiation in the Time Domain

The energy radiated to infinity by a moving charged particle is determined by the acceleration fields
Ea(r, t) and Ba(r, t) in (23.31) and (23.32). These are radiation fields because they fall off as 1/R
and form an orthogonal triad with the retarded line-of-sight unit vector, n̂ret. The associated Poynting
vector,

S(t) = 1

μ0
Ea × Ba = ε0cE

2
a n̂ret = ε0c

(
q

4πε0

)2
∣∣∣∣∣ n̂ × [

(n̂ − β) × β̇
]

cg3R

∣∣∣∣∣
2

ret

n̂ret, (23.55)

determines the rate at which energy flows through a solid angle d� of a distant enclosing sphere of
radius R:

dP (t)

d�
= dU

dtd�
= R2S(t) · n̂ret. (23.56)

A subtlety associated with (23.56) is that the energy detected in a time interval dt measured by a
distant observer is generally not equal to the energy emitted in a time interval dtret measured by a
nearby observer. Quantitatively, the detection rate dUrad/dt differs from the emission rate dUrad/dtret

by a factor of dt/dtret = (1 − β · n̂)ret = gret [see (23.27)]. The presence of the factor gret shows that
the physics is closely related to the phenomenon described in Figure 23.2 and is most pronounced for
relativistic particles. The emission rate is more fundamental—it is a property of the charge itself—so
we multiply (23.56) by gret and focus on the angular distribution of emitted power,

dP (tret)

d�
= dU

dtretd�
= gretR

2S(t) · n̂ret = q2

16π2ε0c

∣∣n̂ × [
(n̂ − β) × β̇

]∣∣2
(1 − n̂ · β)5

∣∣∣∣∣
ret

. (23.57)

The leftmost and rightmost members of (23.57) are now both functions of the emission time, which
we may consider the proper time measured by the particle itself. Much of the rest of this chapter is
devoted to a variety of limiting cases, special cases, and applications of (23.57). We will sometimes
drop the subscript “ret” in what follows, but the reader should assume that all variables are evaluated
at the retarded time unless stated otherwise.
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a

Figure 23.6: Angular distribution of radiation emitted by a slowly moving (v � c) point charge with
acceleration a.

23.3.1 Non-Relativistic Motion
When the particle acceleration a = cβ̇ does not vanish, the β = 0 limit of (23.57) is a good approxi-
mation to the angular distribution of radiation emitted by a slowly moving (v � c) point charge. We
choose the position of the charge as the origin of a spherical coordinate system and align the z-axis
with the instantaneous acceleration a. In that case, n̂ = r̂ and (23.57) simplifies to a formula derived
in Section 20.5.5:

dP

d�
= μ0q

2

16π2c
|n̂ × (n̂ × a)| = μ0q

2

16π2c
|r̂ × a|2 = μ0q

2a2

16π2c
sin2 θ. (23.58)

Figure 23.6 repeats Figure 20.8 and shows the donut-shaped emission pattern predicted by (23.58).
There is no radiation along ±a and the emission is largest in the “broadside” direction perpendicular
to a. Section 20.7.1 offered an interpretation of (23.58) as a dipole radiation formula.

23.3.2 Acceleration ‖ Velocity
Equation (23.57) simplifies considerably when the acceleration a is parallel to the velocity v. The
radiation pattern has azimuthal symmetry around their common direction and thus depends only on
the angle θ defined by n̂ · β = (v/c) cos θ . Remembering that all quantities refer to the (retarded) time
of emission, the angular distribution of emitted radiation is

dP

d�

∣∣∣∣
‖

= μ0q
2

16π2c

a2 sin2 θ

(1 − β cos θ )5
. (23.59)

The dependence of (23.59) on a2 shows that the same radiation pattern occurs whether the charge
accelerates or decelerates. The German word bremsstrahlung for “braking radiation” is often used for
the decleration case. Figure 23.7 shows that the radiated power vanishes when θ = 0, and takes the
same value, independent of β, when θ = ±π/2. Otherwise, the diagram demonstrates that the β = 0
broadside lobes progressively narrow and bend toward the forward direction as β increases.

The most interesting case is the ultra-relativistic limit where β ≈ 1 and the denominator of (23.59)
nearly vanishes when θ = 0. This leads us to combine cos θ ≈ 1 − 1

2θ
2 with

1 − β = 1 − β2

1 + β
= 1

γ 2(1 + β)
≈ 1

2γ 2
(β ≈ 1) (23.60)

to get

1 − β cos θ ≈ 1 + γ 2θ2

2γ 2
(β ≈ 1, θ � 1). (23.61)

Substituting (23.61) in (23.59) gives the ultra-relativistic expression

dP

d�

∣∣∣∣
‖

≈ 2μ0q
2a2

π2c

γ 8(γ θ )2

[1 + (γ θ )2]5
(γ � 1, θ � 1). (23.62)
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Figure 23.7: Angular distribution of radiation from a moving charge with v ‖ a for several values of β = v/c.
The diagram is rotationally symmetric around the v axis.

Maximizing (23.62) as a function of γ θ shows that the γ � 1 angular distribution is dominated by two
intense (γ 8) peaks at θ = ±θpeak ∼ ±1/2γ . Both peaks have an angular width of �θ ∼ 1/γ . In other
words, when β ≈ 1, almost all the radiated power is emitted very near θ = 0. This is the mathematical
limit of the trend seen in Figure 23.7.

A highly relativistic and accelerating charged particle “beams” its radiation into the near-forward
direction as a consequence of the Doppler effect. To see this, consider a plane wave emitted in
the laboratory with wave vector k and frequency ω = ck. Because (k, iω/c) is a four-vector, the
transformation law (22.49) relates these plane wave variables to the corresponding primed variables
in an inertial frame that moves with the instantaneous velocity v of the moving charge:

k‖ = γ (k′
‖ + βω′/c) and k⊥ = k′

⊥. (23.63)

Using these, we deduce that

cot θ = k‖
k⊥

= γ k′ cos θ ′ + γβk′

k′ sin θ ′ = γ

(
cot θ ′ + β

sin θ ′

)
. (23.64)

According to (23.64), a plane wave emitted broadside (θ ′ = π/2) in the rest frame of the charge
propagates in the laboratory frame at the angle θ = tan−1(1/γβ). When β ≈ 1 and γ � 1, θ ∼ 1/γ ,
as predicted by (23.62).

23.3.3 Acceleration ⊥ Velocity
Figure 23.8 shows a point charge moving along a circular arc in the x-z plane. The charge has velocity v
and acceleration a ⊥ v at the moment when it passes through the origin of coordinates O. The angular
distribution of radiation (23.57) for this situation is more complex than the a ‖ v case (Section 23.3.2)
because both the polar angle θ and the azimuthal angle φ are needed for a complete description.

Substituting v = vẑ, a = ax̂, and n̂ret ≈ sin θ cosφx̂ + sin θ sinφŷ + cos θ ẑ into (23.57) leads (after
some algebra) to

dP

d�

∣∣∣∣
⊥

= μ0q
2a2

16π2c

1

(1 − β cos θ )3

[
1 − sin2 θ cos2 φ

γ 2(1 − β cos θ )2

]
. (23.65)

The non-relativistic limit (β → 0) of (23.65) has the angular dependence 1 − sin2 θ cos2 φ. This
distribution, shown on the left side of Figure 23.9, is exactly the low-velocity cyclotron radiation
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z

Figure 23.8: A point charge moves along a curved trajectory in the x-z plane.

Figure 23.9: Angular distribution of radiation from a point charge moving along a circular arc. Left side:
cyclotron radiation for β � 1. Only half the pattern is shown for clarity. Right side: synchrotron radiation for
β ≈ 1. Note the large change in scale between the two. Figure courtesy of Prof. Dr. Klaus Wille (Technical
University of Dortmund)

pattern shown in Figure 23.6.4 Once again, the interesting limit of (23.65) is β → 1 because the
denominator nearly vanishes when θ = 0. This is the γ � 1 ultra-relativistic regime of synchrotron
radiation where (23.61) is valid and the angular distribution simplifies to

dP

d�

∣∣∣∣
⊥

≈ μ0q
2a2

16π2c

8γ 6

(1 + γ 2θ2)3

[
1 − 4γ 2θ2 cos2 φ

(1 + γ 2θ2)2

]
(γ � 1). (23.66)

The quantity in square brackets in (23.66) is equal to one at θ = 0. Therefore, the fact that γ � 1
implies that the emitted radiation is concentrated in a narrow beam (�θ ∼ 1/γ ) pointed in the forward
(θ = 0) direction of particle motion. This beaming is apparent on the right side of Figure 23.9 and [as
explained in the paragraph which contains (23.63) and (23.64)] is best understood as a consequence of
the relativistic Doppler effect. The same physics explains why the β � 1 emission into the backward
hemisphere virtually disappears when β → 1. A tiny vestige of this emission survives, but it is too
weak to see on the scale of the right side of Figure 23.9. The reader can also check that (23.65) is
identically zero only when φ = 0 and θ = ±θ0, where cos θ0 = β.

4 Note that the angle θ is defined differently in (23.58) and (23.65).
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23.3.4 Larmor’s Formula Generalized
The total amount of energy radiated by a moving charge with β ≈ 1 is much greater than the total
energy radiated when β � 1. The truth of this statement is apparent from Figure 23.7 and Figure 23.9.
Our task here is to prove and rationalize it. The first step is to recall from Section 20.5.5 that integrating
(23.58) over all angles yields Larmor’s formula for the instantaneous rate at which a slowly moving
particle radiates energy:

P = 1

4πε0

2q2|aret |2
3c3

. (23.67)

The generalization of (23.67) to situations where the charge is not moving slowly follows similarly by
integrating the exact angular distribution of emitted power (23.57) over all angles. The integration is
straightforward, but tedious, and gives

P = 1

4πε0

2q2

3c3
γ 6

[
a2 −

(
v × a
c

)2
]

ret

. (23.68)

A quite different way to derive (23.68) exploits the fact that the emitted power P (t) is a Lorentz
scalar. To prove this, we use the fact that both (r, ict) and (Prad, iUrad/c) are four-vectors.5 The
argument begins in an inertial frame K ′ where the moving charge is instantaneously at rest and the
emission pattern looks like the left panel of Figure 23.9. The symmetry of this pattern (and the fact that
no preferred direction can be defined) guarantees that dP′

rad = 0 is the momentum radiated in a time
dt ′. Similarly, dr′ = 0 because the velocity v′ = dr′/dt ′ = 0. Using the transformation law (22.49),
a Lorentz boost to a frame K where the charge has instantaneous velocity v shows that the radiated
power is indeed the same in the two frames:

P = dUrad

dt
= γ (dU ′

rad + v · dP′
rad)

γ (dt ′ + v · dr′/c2)
= dU ′

rad

dt ′
= P ′. (23.69)

A similar boost of the space-like components of (Prad, iUrad/c) shows that the rate at which a moving
charge radiates linear momentum is proportional to the rate at which it radiates energy:

dPrad

dt
= γ (dP′

rad + v dU ′
rad/c

2)

γ (dt ′ + v · dr′/c2)
= v

c2

dU ′
rad

dt ′
= v

c2

dUrad

dt
. (23.70)

Now, Larmor’s formula (23.67) is exact in the rest frame of the charge K ′. Therefore, we follow the
logic used in Section 23.2.3 to derive the Liénard-Wiechert potentials, and seek a manifestly covariant
expression for the power which reduces to (23.67) when evaluated in K ′. A natural choice replaces
the three-acceleration a by the four-acceleration Aμ = dUμ/dτ , where Uμ = γ (v, ic) is the four-
velocity and τ = t/γ is the proper time. For later use, we recall the momentum-energy four-vector,
pμ = mUμ = (p, iE/c), and write the equivalent expressions:

P = 1

4πε0

2q2

3c3
AμAμ = 1

4πε0

2q2

3m2c3

dpμ

dτ

dpμ

dτ
. (23.71)

The remaining task is to evaluate (23.71) in an inertial frame where the instantaneous particle
velocity is β. Using E = γmc2 and p = γmv, the scalar product of interest is

dpμ

dτ

dpμ

dτ
= dp

dτ
· dp
dτ

− 1

c2

(
dE
dτ

)2

= (mcγ )2

[
d(γβ)

dt
· d(γβ)

dt
−
(
dγ

dt

)2
]
. (23.72)

5 See Section 22.7.4 and Teitelboim (1970) in Sources, References, and Additional Reading.
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Moreover,

dγ

dt
= γ 3β · β̇ and

d(γβ)

dt
= γ β̇ + γ 3(β · β̇)β. (23.73)

After inserting (23.73) into (23.72), the identity γ 2 = 1/(1 − β2) and a few lines of algebra are
sufficient to show that (23.71) is equivalent to

P = 1

4πε0

2q2

3c
γ 6
[
β̇2 − (β × β̇)2

]
ret . (23.74)

This expression is the same as (23.68) and correctly reduces to (23.67) in the (instantaneous) proper
frame of reference where β = 0 and γ = 1.

For fixed magnitudes of v and a, (23.74) predicts that linear acceleration (a ‖ v) produces radiation
at a rate P‖ ∝ γ 6a2 while centripetal acceleration (a ⊥ v) produces radiation at a rate P⊥ ∝ γ 4a2. The
factors of γ 6 and γ 4 account for the large size of the emission lobes in Figure 23.7 and Figure 23.9.
Our derivation of (23.74) shows that they arise from the Lorentz transformation properties of energy
and time.

Example 23.2

(a) A unit length of a linear accelerator increases the energy of a charged particle by an amount
dE/dx. Show that the rate at which the particle radiates energy is

P‖ = q2c

6πε0

1

(mc2)2

(
dp

dt

)2

= q2c

6πε0

1

(mc2)2

(
dE
dx

)2

.

(b) A circular accelerator with radius R raises the energy of a charged particle to an energy E .
Show that the rate at which the particle radiates energy is

P⊥ = q2c

6πε0

γ 2

(mc2)2

(
dp

dt

)2

= q2c

6πε0

β4

(mc2)4

E4

R2
.

Solution:

(a) For linear motion, (dp/dt) · (dp/dt) = (dp/dt)2. Moreover, E2 = c2p2 +m2c4 and β = cp/E
(see Section 22.5.2) imply that

dp = E
c2p

dE = dE
v
.

Using this information in the leftmost equation in (23.72), together with dτ = dt/γ and
γ 2(1 − β2) gives

dpμ

dτ

dpμ

dτ
= γ 2

[(
dp

dt

)2

− 1

c2

(
dE
dt

)2
]

=
(
dp

dt

)2

= 1

v2

(
dE
dt

)2

.

Finally, because dx = vdt is valid in any frame, (23.71) gives the advertised result,

P‖ = q2c

6πε0

1

(mc2)2

(
dE
dx

)2

.

(b) For circular motion, the particle speed does not change, so p = γmv implies that dp/dt =
γmdv/dt . Therefore, (23.68) says that

P⊥ = q2

6πε0c3
γ 6a2(1 − β2) = q2c

6πε0

γ 2

(mc2)2

(
dp

dt

)2

.
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On the other hand, the centripetal acceleration is a = v2/R and the total energy is E = γmc2.
Therefore,

P⊥ = q2

6πε0c3
γ 4a2 = q2c

6πε0

(γβ)4

R2
= q2c

6πε0

β4

(mc2)4

E4

R2
.

Remark: The paragraph following (23.74) compares two situations with the same magnitude
of imposed acceleration. The present Example is more relevant in practice because it compares
two situations with the same magnitude of applied force (change in momentum). The fact that
P⊥/P‖ = γ 2 for the same value of dp/dt implies that much more machine power is needed to
overcome relativistic radiation losses in a circular accelerator than in a linear accelerator. This is so
because a linear machine accelerates particles rather quickly to near the speed of light. Thereafter,
very little acceleration (and thus radiation loss) occurs and the applied “acceleration force” works
mainly to increases the total energy of the particle.

By contrast, the particles in a circular machine undergo continuous centripetal acceleration (and
radiation loss) merely to retain their circular orbits. Circular machines are popular nevertheless
because, unlike in a linear machine, particles pass through each accelerator element many times and
multiple opportunities exist for particles to collide with one another. Radiation losses are reduced
in a circular machine by increasing the orbit radius R, but the amount of real estate (and money)
consumed becomes prohibitive as the energy E increases.

23.4 Radiation in the Frequency Domain

The history of physics abounds with important discoveries based on the spectral analysis of electromag-
netic radiation. The discrete spectra of atoms and the continuous spectrum of the cosmic microwave
background are familiar examples. In this section, we study the continuous frequency spectrum of
radiation produced by a charged particle which follows an arbitrary (but specified) trajectory. The key
step is to use Fourier’s theorem to resolve the time dependence of the radiated electric field into its
frequency components.

23.4.1 The Angle-Resolved Frequency Spectrum
Consider a time-dependent electric field E(t) and its frequency-dependent Fourier transform Ê(ω).
The two are related by (Section 1.6)

E(t) = 1

2π

∞∫
−∞

dω Ê(ω) exp(−iωt) Ê(ω) =
∞∫

−∞
dt E(t) exp(iωt). (23.75)

From (23.55) and (23.56), the amount of energy radiated per unit time into a unit solid angle at a large
distance r from the moving charge is

dP (t)

d�
= d 2Urad

dtd�
= ε0cr

2|Erad(t)|2. (23.76)

The key result we will establish is that the amount of energy radiated per unit frequency into a unit
solid angle is proportional to |Êrad(ω)|2.
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The proof begins by integrating (23.76) over all time to get the total energy radiated into a unit solid
angle:

dUrad

d�
=

∞∫
−∞

dt
dP (t)

d�
= ε0cr

2

∞∫
−∞

dt |Erad(t)|2. (23.77)

Next, use Parseval’s theorem (Section 1.6.1) to deduce that

∞∫
−∞

dt |Erad(t)|2 = 1

2π

∞∫
−∞

dω |Êrad(ω)|2. (23.78)

The reality condition E(t) = E∗(t) applied to (23.75) implies that Ê(ω) = Ê∗(−ω). Therefore, (23.78)
transforms (23.77) to

dUrad

d�
= ε0c

π
r2

∞∫
0

dω |Êrad(ω)|2. (23.79)

Finally, the integral of d 2Urad/dωd� over all positive frequencies must also be the total energy radiated
into a unit solid angle:

dUrad

d�
=

∞∫
0

dω
d 2Urad

dωd�
≡

∞∫
0

dω
dI (ω)

d�
. (23.80)

Comparing (23.80) to (23.79) gives the advertised result for the angle-resolved spectrum of radiated
energy:

dI (ω)

d�
= d 2Urad

dωd�
= ε0c

π
r2|Êrad(ω)|2. (23.81)

The integral of (23.81) over all angles is the frequency spectrum of the total radiated energy,

I (ω) =
∫

d�
dI (ω)

d�
. (23.82)

A slightly different analysis is most natural when the trajectory of the charged particle is periodic
and the radiated electric field satisfies Erad(r, t) = Erad(r, t + T ). In this case, the spectrum is discrete
rather than continuous and the only frequencies which occur are harmonics (integer multiples) of the
fundamental frequency ω0 = 2π/T . In place of (23.75) we write

E(r, t) =
∞∑

m=−∞
Êm(r) exp(−imω0t) Êm(r) = ω0

2π

2π/ω0∫
0

dt E(r, t) exp(imω0t), (23.83)

and in place of (23.77) we study the angular distribution of the average power radiated into the various
harmonics during one period of the motion:

〈
dP

d�

〉
= 1

T

T∫
0

dt
dP

d�
=

∞∑
m=1

dPm

d�
. (23.84)

We will learn in Section 23.5 how relativistic retardation effects redistribute spectral weight from the
fundamental frequency (which dominates for slowly moving particles) to higher harmonics.
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23.4.2 The Spectrum of an Arbitrary Current Density
As a prelude to the point charge problem, we derive here a formula for the radiation spectrum associated
with an arbitrary time-dependent current density, j (r, t). The ingredients come from Section 20.5.6,
namely, a relation between the frequency-domain electric field and the frequency-domain vector
potential,

Erad(r|ω) = −iω r̂ × [r̂ × Arad(r|ω)] , (23.85)

and a relation between Arad(r|ω) and the space-and-time Fourier transform of the current density,

Arad(r|ω) = μ0

4π

eikr

r

∫
d 3r ′ j (r′ |ω)e−ik·r′ ≡ μ0

4π

eikr

r
ĵ (k|ω). (23.86)

Substituting these into (23.81) gives the angular frequency spectrum as [cf. (20.120)]

dI (ω)

d�
= ε0c ω

2

π
r2|r̂ × Arad(ω)|2 = μ0ω

2

16π3c
|r̂ × ĵ (k|ω)|2. (23.87)

This expression specifies the amount of energy radiated into a unit solid angle in the direction of
k = (ω/c)r̂ in a unit frequency interval centered on ω.

23.4.3 The Spectrum of a Moving Point Charge
The current density for a point charge moving on the trajectory r0(t) with velocity v(t) = ṙ0(t) is
j (r, t) = qv0(t)δ(r − r0(t)). The Fourier transform of this quantity in space and time is

ĵ (k|ω) =
∞∫

−∞
dt

∫
d 3r j (r, t) exp[−i(k · r − ωt)] = q

∞∫
−∞

dt v(t) exp[−i(k · r0(t) − ωt)]. (23.88)

Substituting (23.88) into (23.87) gives the radiation spectrum produced by a moving point charge:

dI (ω)

d�
= μ0q

2ω2

16π3c

∣∣∣∣∣∣r̂ ×
∞∫

−∞
dt v(t) exp[−i(k · r0(t) − ωt)]

∣∣∣∣∣∣
2

. (23.89)

The special case v = constant provides a consistency check because a particle which never accel-
erates also never radiates (see Section 23.1). Taking v out of the integral in (23.89) leaves an integral
which is proportional to the delta function, δ(ω[1 − r̂ · β]). This correctly gives dI/dω = 0 because
β < 1 and the argument of the delta function is never zero (except at ω = 0 which is not germane
to radiation). Another special case is the dipole limit where k · r0(t) � 1 and (23.89) simplifies to
formulae which require only the Fourier transform of the particle velocity v(t) or acceleration a(t):

dI (ω)

d�
= μ0q

2ω2

16π3c
|v̂(ω)|2 = μ0q

2

16π3c
|â(ω)|2 . (23.90)

The reader may wish to derive (23.90) directly from the non-relativistic Larmor formula (23.58).
Returning to (23.89), subtleties can arise in connection with the behavior of v(t) when t → ±∞.

This will become clear in the next section when we derive it again by a different method. The key
is to be alert to the convergence of the integral, particulary when simple models for the trajectory
function are used. Finally, we leave it as an exercise for the reader to show that the case of a periodic
trajectory where (23.84) applies leads to an analogous formula for the average power radiated into the
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q

r0(tret)
Rret = R(tret)nret

r P

ˆ

Figure 23.10: The approximations n̂ret ≈ r̂ and R(tret) ≈ r − r0 · r̂ apply when the observation point P is very
far from the regions of particle acceleration.

mth harmonic:

dPm

d�
= μ0q

2m2ω4
0

32π4c

∣∣∣∣∣∣r̂ ×
2π/ω0∫
0

dt v(t) exp{−imω0[r̂ · r0(t)/c − t]}
∣∣∣∣∣∣
2

. (23.91)

23.4.4 The Liénard-Wiechert Spectrum
It is instructive to re-derive (23.89) using the Liénard-Wiechert acceleration electric field in (23.31).
This field is evaluated at the retarded time, so we use (23.9) and (23.27) to change the integration
variable in (23.75) from the observation time t to the retarded time tret. Doing this, the angular
distribution of radiation (23.81) takes the form

dI (ω)

d�
= μ0cq

2

16π3

∣∣∣∣∣∣
∞∫

−∞
dtret

n̂ × [
(n̂ − β) × β̇

]
(1 − β · n̂)2

exp {iω[tret + R(tret)/c]}
∣∣∣∣∣∣
2

. (23.92)

In practice, the observation point is almost always very far from the regions of space where β̇ �= 0. If
so, we are justified in writing (see Figure 23.10)

R(tret) =
√
r2 − 2r0(tret) · r + r2

0 (tret) ≈ r − r̂ · r0(tret). (23.93)

Substituting (23.93) into (23.92) and making the change of variable tret → τ gives

dI (ω)

d�
= μ0cq

2

16π3

∣∣∣∣∣∣
∞∫

−∞
dτ

n̂ × [
(n̂ − β) × β̇

]
(1 − β · n̂)2

exp {iω[τ − n̂ · r0(τ )/c]}
∣∣∣∣∣∣
2

. (23.94)

Finally, because R = Rn̂, our radiation zone approximation is consistent with n̂ret ≈ r̂. It is with this
understanding that we use (23.94) and its variations to follow. An important virtue of the widely used
formula (23.94) is that the integrand vanishes whenever the particle acceleration vanishes. This is
always the case for scattering and open-orbit problems where the charge feels a field of force for only
a limited amount of time.

To make contact with (23.89), we recall that n̂ = r̂ is a constant vector in our approximation. In that
case, the identity

n̂ × [
(n̂ − β) × β̇

]
(1 − β · n̂)2

= d

dτ

[
n̂ × (n̂ × β)

1 − n̂ · β

]
(23.95)

permits us to integrate (23.94) by parts. With k = ω/c and φ(τ ) = ωτ − k · r0(τ ), the result is

dI (ω)

d�
= μ0cq

2

16π3

∣∣∣∣∣∣
n̂ × (n̂ × β)

1 − n̂ · β
exp(iφ)

∣∣∣∣τ=∞

τ=−∞
− iω

∞∫
−∞

dτ [n̂ × (n̂ × β)] exp(iφ)

∣∣∣∣∣∣
2

. (23.96)
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When the integrated term vanishes, e.g., when the particle velocity vanishes at τ = ±∞, (23.96)
simplifies to

dI (ω)

d�
= μ0cq

2ω2

16π3

∣∣∣∣∣∣
∞∫

−∞
dτ [n̂ × (n̂ × β)] exp[−i(k · r0(τ ) − ωτ )]

∣∣∣∣∣∣
2

. (23.97)

This expression is the same as (23.89) because n̂ ≈ r̂ is a constant vector which comes outside the
integral and |r̂ × (r̂ × s)|2 = |r̂ × s|2 for any vector s.

Application 23.2 A Collinear Acceleration Burst

This Application calculates the radiation spectrum when a point charge q with uniform velocity v0

accelerates briefly in the direction parallel to its motion. This is the scenario analyzed graphically in
Figure 23.3. To simplify the calculation, we assume a square-pulse acceleration burst (left panel of
Figure 23.11) during which the particle velocity changes from v0 to vf = v0 +�v. In the interval 0 ≤
τ ≤ �t when the integrand in (23.94) is not zero, we approximate the trajectory function as r0(τ ) ≈ v̄τ ,
where v̄ = 1

2 (v0 + vf ). The estimates β ≈ β̄ = v̄/c and β̇ ≈ �v/c�t apply also. Therefore,

dI (ω)

d�
≈ μ0q

2

16π3c

∣∣∣∣∣∣
n̂ × (n̂ ×�v)

(1 − β̄ · n̂)2�t

�t∫
0

dτ exp[iω(1 − n̂ · β̄)τ ]

∣∣∣∣∣∣
2

. (23.98)

Evaluating the integral in (23.98) with n̂ · v̄ = v̄ cos θ gives the final result,

dI (ω)

d�
≈ μ0q

2

16π3c

(�v)2 sin2 θ

(1 − β̄ cos θ )4

sin2 x

x2
where x = 1

2
ω�t(1 − β̄ cos θ ). (23.99)

The explicit variation with θ on the left side of (23.99) is very similar (if not quite identical) to
the angular distribution of power dP/d�|‖ computed in Section 23.3.2. The variable x carries all the
frequency dependence and some additional angle dependence through the function sin2 x/x2 plotted
in the right panel of Figure 23.11. This function is largest at x = 0, decreases monotonically to zero
at x = π , and is negligibly small when x > π . The same general behavior is found when the square
pulse in Figure 23.11 is replaced by a more realistic model for the acceleration burst, namely, that
dI/d� goes to zero very rapidly when x exceeds some characteristic value.

Figure 23.11: Left panel: The model acceleration burst. Right panel: The function which appears in
(23.99) with x = 1

2ω�t(1 − β̄ cos θ ).

In the low-velocity limit, x = 1
2ω�t and the frequency dependence of (23.99) is the same for every

value of θ . From Figure 23.11, radiation emitted in the interval 0 ≤ τ ≤ �t has almost all of its spectral
weight in the frequency range 0 ≤ ω ≤ ωC , where ωC = 2π/�t . The inverserelation between �t and
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the characteristic frequency ωC is an example of the complementarity between Fourier transform pair
variables encountered earlier in connection with wave packets (see Section 16.5.3).

The relativistic limit is more interesting because the frequency spectrum is not the same at all angles
of observation. When γ � 1, we already know from Section 23.3.2 that the emission is most intense
in the neighborhood of θ ≈ ±1/2γ . The approximation (23.61) is valid in this limit, so

x ≈ ω�t

4γ̄ 2

(
1 + γ̄ 2θ2

)
. (23.100)

Setting (23.100) equal to π shows that the radiation spectrum in the ultra-relativistic limit extends
from zero frequency to

ωC ≈ 4π

�t

γ̄ 2

1 + γ̄ 2θ2
. (23.101)

In the angular region where maximum emission occurs, (23.101) predicts that the ultra-relativistic
spectrum extends to a frequency that is γ̄ 2 larger than the corresponding non-relativistic cutoff
frequency. �

23.4.5 The Heaviside-Feynman Spectrum
The Heaviside-Feynman expression for the electric field of a moving point charge (see Section 23.2.5)
leads to a formula for the angle- and frequency-resolved spectrum of radiation which differs from both
(23.89) and (23.92). The radiation part of this field is

Erad(t) = μ0q

4π

d 2n̂ret

dt2
. (23.102)

Substituting (23.102) into (23.81), integrating by parts twice, and discarding the t = ±∞ boundary
terms gives

dI (ω)

d�
= μ0q

2r2

16π3c

∣∣∣∣
∫ ∞

−∞
dt

d 2n̂ret

dt2
exp(iωt)

∣∣∣∣2 = μ0q
2r2ω4

16π3c

∣∣∣∣∣∣
∞∫

−∞
dt n̂ret exp(iωt)

∣∣∣∣∣∣
2

. (23.103)

This expression relates the radiation spectrum to the Fourier transform of the unit vector which points
from the (retarded) position of the moving charge to the observation point (see Figure 23.10). We will
make use of (23.103) in the next section.

23.5 Synchrotron Radiation

We showed in Section 23.3.3 that a charged particle moving on a circular arc near the speed of light
emits synchrotron radiation in the form of a narrow and intense beam directed tangent to the arc (see
Figure 23.9). This implies that a fixed observer sees a brief flash or pulse of radiation every time
the particle moves directly toward him/her. In this section, we use the Liénard-Wiechert electric field
to study the polarization and time evolution of such a pulse. Later, we use the Heaviside-Feynman
electric field to study the transition from cyclotron radiation to synchrotron radiation and the frequency
spectrum of the latter.

The extra attention to these topics is well warranted. Besides its importance to circular accelerators
for particle physics, the synchrotron radiation produced by the ∼75 electron storage ring “light sources”
around the world is used for a wide range of spectroscopic and imaging purposes by physicists,
chemists, biologists, and materials scientists. Moreover, the detection of astrophysical synchrotron
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radiation is a powerful indicator of the presence of magnetic fields and particle acceleration mechanisms
near pulsars and black holes.

23.5.1 The Electric Field Pulse
The properties of a typical pulse of synchrotron radiation are most easily studied using a scaling form
of its electric field. To derive this form, we begin with the acceleration part of the Liénard-Wiechert
electric field produced by the generic moving particle in Figure 23.10:

Erad(r, t) = q

4πε0

[
n̂ × {

(n̂ − β) × β̇
}

cg3R

]
ret

. (23.104)

The subscript “ret” reminds us that the trajectory function r0(t) in R(t) = r − r0(t) and all the other
quantities inside the square brackets are evaluated at the retarded time tret defined by

tret = t − R(tret)/c. (23.105)

Specialize now to a point charge moving relativistically in a circle of radius a with frequency ω0.
Our goal is to write the most intense part of (23.104) using suitably scaled time and observation-
angle variables. Accordingly, return to Figure 23.8 and assume that the charge passes the origin of
coordinates at times tret = 0, 2π/ω0, . . . The trajectory function in that case is

r0(tret) = a[1 − cos(ω0tret)]x̂ + a sin(ω0tret)ẑ. (23.106)

Our interest is the ultra-relativistic limit when γ = 1/
√

1 − β2 � 1 and

β = 1 − ε ≈ 1 − 1

2γ 2
. (23.107)

The corresponding ultra-relativistic emission pattern (23.66) depends only weakly on the angle φ.
Therefore, we locate the observer in the y-z plane (φ = π/2) of Figure 23.8 and write

r = r sin θ ŷ + r cos θ ẑ. (23.108)

The first order of business is to evaluate R(tret) = |r − r0(tret)| in the radiation zone where r � a.
Using (23.106), we find

R(tret) =
√
r2 − 2ar cos θ sin(ω0tret) + 2a2[1 − cos(ω0tret)] ≈ r − a cos θ sin(ω0tret). (23.109)

The further approximation R(tret) ≈ r is sufficient for direct use in the denominator of (23.104).
However, to compute gret, we insert (23.109) into (23.105) and use the definition (23.27) to get

gret = dt/dtret = 1 − β cos θ cos(ω0tret). (23.110)

Because β = aω0/c, (23.110) is consistent with gret = (1 − β · n̂)ret [see (23.27)] provided we adopt
the radiation-zone approximation for n̂ret made just before (23.65), namely,

n̂ret ≈ n̂ = r̂ = sin θ ŷ + cos θ ẑ. (23.111)

Now, the right side of Figure 23.9 makes clear that the radiation emitted by an ultra-relativistic
orbiting charge most nearly resembles the pencil-like beam of a rotating searchlight or lighthouse.
This means that a distant observer located very close to the z-axis (θ � 1) is periodically illuminated
by brief pulses of radiation in the immediate vicinity of tret = 0, 2π/ω0, 4π/ω0, . . . Therefore, we
specialize to tret ≈ 0 and Taylor expand (23.110) in both θ and tret to get

gret ≈ ε + 1
2θ

2 + 1
2ω

2
0t

2
ret + · · · . (23.112)
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Motivated by this expansion, we define scaled angle and retarded time variables

� = θ√
2ε

= θγ and τret = tret
ω0γ√
1 +�2

, (23.113)

and write (23.112) in the form

gret ≈ ε
(
1 +�2 )( 1 + τ 2

ret

)
. (23.114)

For the numerator of (23.104), we use tret ≈ 0 to neglect the x̂-component of (23.106) and differ-
entiate the ẑ-component to compute βret and β̇ ret. Using these and (23.111), a few lines of algebra
confirm that

n̂ × [(n̂ − βret) × β̇ ret] ≈ ω0β {[β cos θ − cos(ω0tret)]x̂ + sin θ sin(ω0tret)(x̂ × n̂)} . (23.115)

The final steps are to expand (23.115) to second order in θ and tret, replace the latter by the scaling
variables in (23.113), and substitute the result into (23.104). Because x̂ × n̂ = −θ̂ when φ = π/2 [see
(1.23)], we obtain the desired scaling form for the electric field pulse near tret = 0:

E(r, t) ≈ − q

4πε0

ω0

cr

1

(1 +�2)3

1

(1 + τ 2
ret)3

1

ε2

[
(1 − τ 2

ret)(1 +�2)x̂ + 2τret�
√

1 +�2 θ̂
]
. (23.116)

23.5.2 Polarization and Temporal Shape
Synchrotron radiation is polarized predominantly in the plane of the orbiting particle. This follows
immediately from (23.116) and the fact that � = θγ is the (scaled) angle of observation above that
plane. In Figure 23.8, the radiation is polarized entirely along x̂ for � = 0 observations where the
emission is most intense. A smaller out-of-plane component appears when � �= 0. We will make this
statement more quantitative when we turn to the frequency spectrum in Section 23.5.4.

To discover the temporal shape of a synchrotron radiation pulse, we must express the electric field
(23.116) as a function of observer time rather than retarded time. To that end, use (23.109) to expand
(23.105) to second order in θ and to third order in tret:

t − r/c = tret − (a/c)
(
1 − 1

2θ
2 + · · · )(ω0tret − 1

6ω
3
0t

3
ret + · · · ) . (23.117)

The approximation ω0a/c = β ≈ 1, (23.107), and (23.113) permit us to write (23.117) as

t − r/c ≈
(

1 − β + 1

2
θ2

)
tret + 1

6
ω2

0t
3
ret ≈

√
2

ω0
ε3/2(1 +�2)3/2

(
τret + 1

3τ
3
ret

)
. (23.118)

With a scaled observer time τ defined as6

τ = (t − r/c)
ω0√

2
ε−3/2(1 +�2)−3/2, (23.119)

(23.118) simplifies to the cubic equation

τ ≈ τret + 1
3τ

3
ret. (23.120)

It remains only to solve (23.120) to find τret as a function of τ and insert the latter into (23.116) to
express (23.116) as a function of scaled observer time. We will do this exactly in Section 23.5.4. Here,
proceed approximately and note from (23.120) that τret ≈ τ when |τret| � 1 and τret ≈ (3τ )1/3 when
|τret| � 1. Knitting these two limiting cases together produces the qualitative curve of τret(τ ) sketched
in the left panel of Figure 23.12. The right panel of Figure 23.12 shows the corresponding behavior of
Ex(τ ) and Eθ (τ ) for � = 1. This choice of polar angle corresponds to the “edge” of the synchrotron

6 Notice that the definitions of the scaled variables τ and τret in terms of t and tret are not exactly the same.
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Figure 23.12: Left panel: approximate solution for the function τret(τ ) which satisfies (23.120). Right panel: the
electric field from a pulse of synchrotron radiation as a function of scaled observer time. The observation point is
� = 1 in the y-z plane of Figure 23.8.

beam where Eθ is relatively large but the total emission intensity is an order of magnitude smaller than
its value at the center of the beam (� = 0), where Eθ = 0 and Ex is largest.

23.5.3 The Cyclotron-Synchrotron Transition
In this section and the next, we use the Heaviside-Feynman electric field (23.102) to gain further insight
into synchrotron radiation. For example, because Erad ∝ n̈ret, we see immediately that the polarization
lies entirely in the x-z plane of Figure 23.8 when θ = 0 and acquires an out-of-plane component when
θ �= 0. The latter is always very small in the relativistic limit of synchrotron radiation because the
emission is negligible when θ > 1/γ � 1.

An especially interesting issue is the evolution of the radiation field as a function of the velocity of
the circulating charge. Using (23.106), (23.108), and (23.109), n̂ret = [r − r0(tret)]/Rret in the radiation
zone is

n̂ret = a[cos(ω0tret) − 1]x̂ + r sin θ ŷ + [r cos θ − a sin(ω0tret)]ẑ
r − a cos θ sin(ω0tret)

. (23.121)

If we limit ourselves to an observer in the θ = 0 plane, the z-component of (23.121) has no time
dependence and does not contribute to the electric field (23.102). This is consistent with the fact that
all radiation fields are transverse. Moreover, it is sufficient to retain only the factor r in the denominator
of the x-component of n̂ret. Substituting the latter into (23.102) and using β = aω0/c, the radiation
electric field can be written in the form

Erad = −μ0q

4πr

c

ω0

d 2�

dt2
x̂ where � = 1 − β cos(ω0tret). (23.122)

A graphical method due to Feynman et al. (1963) reveals the behavior of the Erad as a function of
the observer’s time. The idea is to pair (23.122) with (23.105) because the latter relates the retarded
time to the observer time. In light of (23.109), the θ = 0 limit of (23.105) is

t − r/c = tret − (a/c) sin(ω0tret). (23.123)

If we reset the clock of the fixed observer by r/c, (23.123) is equivalent to

ω0t = ω0tret − β sin(ω0tret). (23.124)

Two observations complete the story. First, the equations

� = 1 − β cos(ω0tret) and ω0t = ω0tret − β sin(ω0t) (23.125)

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-23 CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 8:52

23.5 Synchrotron Radiation 895

Figure 23.13: The curvature of �(ω0t) is proportional to the radiation electric field E(t) observed at a fixed
point in the plane of a charge moving uniformly in a circle with frequency ω0. The three curves correspond to
three values of the particle speed, v = cβ.

are a parametric representation (with parameter tret) of a planar curve �(ω0t) called a curtate cycloid.
This is the curve traced out by a dot painted at a radius β < 1 on a wheel of unit radius which rolls
with angular velocity ω0. Second, the curvature (second derivative with respect to t) of �(ω0t) is
proportional to the electric field Ex(t).

Figure 23.13 shows plots of�(ω0t) for three values of β = v/c. The non-relativistic (β = 0.1) curve
is a low-amplitude sinusoid with frequency ω0. The second derivative is also a low-amplitude sinusoid
with frequency ω0. Invoking (23.122), we conclude that this situation corresponds to cyclotron radia-
tion, where the electric field oscillates at the fundamental frequencyω0. The amplitude of the cyclotron
radiation electric field modulates only slightly over each period of the charge’s motion. A glance back
at the fairly isotropic emission pattern on the left side of Figure 23.9 makes this very plausible.

By contrast, the ultra-relativistic (β ≈ 1) curve is a full cycloid with sharp cusps which repeat with
a period T = 2π/ω0. The corresponding curvature function implies that the electric field consists of
a sequence of very short and very intense pulses observed once per revolution of the charge. This is
synchrotron radiation, which must have a very broad frequency spectrum because many terms in a
Fourier series are needed to represent the second derivative of a function with cusps. The shape of
the moderately relativistic (β = 0.6) curve in Figure 23.13 suggests how the transition from cyclotron
radiation to synchrotron radiation occurs as β increases.

23.5.4 The Continuous Spectrum
A single charge moving relativistically on a circular arc emits synchrotron radiation over a wide range
of frequencies. Qualitatively, this broadband character of synchrotron radiation may be inferred from
the fact that the dominant Ex component in Figure 23.12 has a pulse width of τ ∼ 1. Then, combining
(23.107) and (23.119) with the reciprocal Fourier relation between variances in time and frequency
(see Section 16.5.3), we predict that there is significant emission of radiation with frequencies between
ω0 and T −1 ∼ ω0γ

3. The latter is very much larger than the fundamental frequency ω0 in the ultra-
relativistic limit when γ � 1.

Alternatively, we can exploit the sweeping-searchlight picture of synchrotron radiation implied by
the right side of Figure 23.9 and let t(1) and t(2) be the times when a distant observer first sees the
leading and trailing edges of the emission beam. This radiation was emitted at times tret(1) and tret(2),
respectively. Now, we learned in the paragraph following (23.66) that the angular width of the beam
is �θ ∼ 1/γ . Therefore, using (23.27) and (23.107), the time �t = t(2) − t(1) required for the beam
to sweep past the distant observer is

�t = �tret
dt

dtret
= �θ

ω0
(1 − β · n̂)ret ∼ 1

γω0
(1 − β) ∼ 1

ω0γ 3
. (23.126)
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Schott (1912) and Schwinger (1949) derived analytic expressions for the frequency spectrum of
synchrotron radiation.7 The exact result is a sequence of delta functions at integer multiples of the
fundamental frequency ω0. A continuous approximation which passes smoothly through the intensity
predicted for each harmonic can be computed by evaluating the function (23.97). The latter used the
Liénard-Wiechert electric field (23.104) as input. Here, we exploit the methodology of Section 23.5.3
and derive the same result using the Heaviside-Feynman spectrum function (23.103).

Following Section 23.5.1, we focus on small polar angles near θ = 0 and a single synchrotron pulse
emitted near tret = 0. This permits us to expand (23.121) to first order in a/r , first order in θ , and
second order in tret. Keeping only the time-dependent terms gives

n̂ret ≈ a

r

[− 1
2ω

2
0t

2
retx̂ + θω0tretŷ

]
. (23.127)

At this point, it is convenient to introduce the variables

ω� = 3
2γ

3ω0 η = 3γ 3(1 + γ 2θ2)−3/2ω0t ξ = ω

2ω�
(1 + γ 2θ2)3/2. (23.128)

The first of these is the characteristic frequency derived qualitatively just above. The second and third
satisfyω0t = ξη. Consequently, inserting (23.127) and (23.128) into (23.103) and using β = aω0/c ≈
1 gives the frequency spectrum in the form

dI (ω)

d�
= 1

4πε0

q2

4π2c

ω2

ω2
0

∣∣∣∣∣∣ξ
∞∫

−∞
dη

[
1
2ω

2
0t

2
retx̂ + θω0tretŷ

]
exp(iξη)

∣∣∣∣∣∣
2

. (23.129)

The integration in (23.133) requires the variable tret expressed as a function of t (or η). We did this
in Section 23.5.2 (for the relevant case when both θ and tret are near zero) and obtained the cubic
equation on the far left side of (23.118). Dropping the factor r/c as explained following (23.123), this
equation reads

(ω0tret)
3 + 3γ−2(1 + γ 2θ2)(ω0tret) − 6ω0t = 0. (23.130)

The exact (real) solution to (23.130) is

ω0tret = γ−1
√

1 + γ 2θ2

[(√
η2 + 1 + η

)1/3
−
(√

η2 + 1 − η
)1/3

]
. (23.131)

Substituting (23.131) into (23.129) and using8

∞∫
0

dη

[(√
η2 + 1 + η

)1/3
−
(√

η2 + 1 − η
)1/3

]2

cos(ξη) = 2√
3

1

ξ
K2/3(ξ )

(23.132)∞∫
0

dη

[(√
η2 + 1 + η

)1/3
−
(√

η2 + 1 − η
)1/3

]
sin(ξη) = − 1√

3

1

ξ
K1/3(ξ )

gives the angular spectrum for a single burst of synchrotron radiation in terms of modified Bessel
functions. Using � = γ θ from (23.113), this distribution is

dI (ω)

d�
= 1

4πε0

3q2γ 2

4π2c

( ω

ω�

)2 (
1 +�2

) [(
1 +�2

)
K2

2/3(ξ ) +�2K2
1/3(ξ )

]
. (23.133)

7 See Sources, References, and Additional Reading.
8 The integrals in (23.132) are derived from closely related integrals in Section 3.775 of I.S. Gradeshteyn and I.M.

Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1980). See Wang (1993) for the details.
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Figure 23.14: The angle-integrated spectrum of synchrotron radiation as a function of x = ω/ω�. Left panel:
log-log plot of F (x). Right panel: log-log plot of F (log x). Figure from Condon and Ransom (2010).

The K2
2/3 term in (23.133) comes from Ex in Figure 23.12. This is the component of the radiated field

parallel to the plane of the particle motion. The K2
1/3 term comes from Eθ in Figure 23.12. This is the

radiated electric field component perpendicular to the plane of the particle motion.
The frequency spectrum of synchrotron radiation is the integral of (23.133) over all angles. The

result is9

I (ω) = 1

4πε0

√
3q2γ

c
F (ω/ω�) where F (x) = x

∞∫
x

dξ K5/3(ξ ). (23.134)

The left side of Figure 23.14 shows the universal function F (x) defined in (23.134) on a log-log
scale. This common way of plotting the spectrum function clearly shows its power-law variation when
ω � ω�. We have also indicated the exponential decay of the spectrum when ω � ω�. However,
because I (ω) is the power emitted per unit frequency rather than the power emitted per unit log
(frequency), this log-log representation obscures the fact that most of the power is radiated very near
ω = ω�. We remedy this with the graph of F (log x) on the right side of Figure 23.14. This figure
makes it more plausible that the total power emitted with ω < ω� is exactly equal to the total power
emitted with ω > ω�. Another interesting quantity is the ratio of the power radiated with the field
polarized parallel to the plane of the particle trajectory to the power radiated with the field polarized
perpendicular to the particle trajectory. A detailed calculation shows that this ratio of powers is

P‖
P⊥

= 7, (23.135)

compared to the non-relativistic limit of cyclotron radiation whereP‖/P⊥ = 3. In practice, polarization
information of this kind is used to identify synchrotron radiation in the non-thermal emission observed
from nebulae and supernovas.

23.5.5 The Discrete Spectrum
The spectrum function (23.134) applies to a single pulse of synchrotron radiation like the one shown
in Figure 23.12. Such a pulse is produced whenever a relativistic charge traverses even a very small

9 See Wiedemann (2003) for the details.
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Δt
T

Figure 23.15: A periodic array of electric field pulses of synchrotron radiation produced by a charge moving
relativistically in a circle with period T .

segment of circular arc. For a fixed observer, a relativistic charge moving in a circular orbit produces
a sequence of these pulses separated by the period T of the orbit. Figure 23.15 is a cartoon time-trace
for this situation, which may be regarded as the second derivative of the β ≈ 1 curve in Figure 23.13.

The goal of this section is to show that the frequency spectrum of the function sketched in Fig-
ure 23.15 is discrete and to relate it to the continuous function (23.134). The key to the calculation is
that the total electric field at any time can be written

Etot(t) =
∞∑

k=−∞
E(t − kT ), (23.136)

where E(t) is the electric field of a single pulse. The expression (23.136) is intuitively reasonable
when �t � T and the pulses in Figure 23.15 do not overlap in time. However, a moment’s reflection
shows that the strict periodicity of the motion (and hence of the electric field) implies that (23.136) is
correct even for non-relativistic speeds when �t ∼ T .

We now define the function10

�T (t) =
∞∑

k=−∞
δ(t − kT ) (23.137)

and use it to write (23.136) in the form

Etot =
∞∫

∞
dt ′

∞∑
k=−∞

δ(t − t ′ − kT )E(t ′) =
∞∫

−∞
dt ′�T (t − t ′)E(t ′). (23.138)

The rightmost member of (23.138) is a convolution integral. Therefore, the convolution theorem
(Section 1.6.2) guarantees that the Fourier transforms of Etot, �T (t), and E(t) satisfy

Êtot(ω) = �̂T (ω)Ê(ω). (23.139)

On the other hand, using T = 2π/ω0 and the Fourier series derived in Example 1.6, the function
�̂T (ω) is

�̂T (ω) =
∞∫

−∞
dt

∞∑
k=−∞

δ(t − kT ) exp(iωt) =
∞∑

k=−∞
exp(iωkT ) = ω0

∞∑
n=−∞

δ(ω − nω0). (23.140)

Substituting (23.140) into (23.139) gives the spectrum of the periodic train of electric field pulses in
Figure 23.15 as

Êtot(ω) = ω0

∞∑
n=−∞

Ê(nω0)δ(ω − nω0). (23.141)

10 The names “Dirac comb” and “Shah function” are sometimes used for (23.137).
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β = 0.8

Ê(nω0)

ω/ω0

40 50

Figure 23.16: The weights Ê(nω0) of the delta functions in the spectrum function (23.141). The envelope of
these weights defines the continuous function Ê(ω) (dashed curve).

Equation (23.141) confirms our statement that the radiation spectrum is discrete for a point charge
moving in uniform circular motion. The frequencies which occur are harmonics of the fundamental
orbital frequency ω0. The relative weight of each harmonic is determined by the Fourier transform of
the single-pulse function evaluated at the harmonic frequency. This is shown in Figure 23.16. Similar
remarks apply to the spectrum of radiated power I (ω) ∝ |Êtot(ω)|2.

Example 23.3 N identical point particles, each with charge q, are spaced uniformly around a ring
of radius a. All move with the same constant speed v around the ring. Describe the frequency
spectrum of the emitted radiation. Explain why the radiation disappears in the limit when N → ∞
and q → 0 while Nq remains finite. Do the conclusions change if the charges are distributed
randomly around the ring?

Solution: The orbit period T = 2π/ω0 = 2πa/v is common to all the charges. This makes T/N
the period of motion for the entire configuration and we predict from (23.83) that radiation occurs
only at frequencies which are integer multiples ofNω0. The suppression of all the lower harmonics
is an interference effect. The lowest radiation harmonic is pushed to higher and higher frequency
as N increases and, in the proposed limit, we expect no radiation at all. What remains is the static
electric field produced by a ring with total charge Nq and the static magnetic field produced by
a ring with steady current I = Nqω0/2π . These conclusions fail when the charges are randomly
distributed because the period of motion reverts back to 2π/ω0. Even when N → ∞, the resulting
current density is not time-independent and radiation should be expected.

23.6 Radiation Reaction

The emission of radiation irreversibly changes the trajectory of a charged particle. A vivid example
was sketched by Niels Bohr in his first paper on the quantum theory of atomic spectra:11

11 See Sources, References, and Additional Reading.
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The inadequacy of classical electrodynamics to account for the properties of atoms from a model like
Rutherford’s appears very clearly . . . if we consider the effect of the energy of radiation. The electron no
longer describes stationary orbits. The whole system loses energy . . . and the electron approaches the
nucleus describing orbits of smaller and smaller dimensions.

The electromagnetic force responsible for the spiralling motion described by Bohr comes from the
electron’s radiation field and is called radiation reaction. Similarly, a source which radiates linear
momentum non-isotropically must recoil to conserve total linear momentum.

In this section, we derive the electromagnetic force which a radiating system exerts on itself. The
magnitude of this force is generally negligible for macroscopic distributions of current. This contrasts
with the effect of radiation reaction on the microscopic current distribution envisioned by Bohr. Indeed,
Example 23.2 at the end of this section estimates the lifetime of an excited atomic electron from the
effect of radiation reaction on the arguably “better” classical atomic model of a point charge bound
harmonically to a fixed nucleus. Along the way, we derive the famous Lorentz-Abraham equation of
motion for an electron for the main purpose of replacing it by a more physically acceptable alternative.

23.6.1 Background
The concept of radiation reaction was developed around 1900 by Planck, Abraham, and Lorentz. A
major motivation was to derive an equation of motion for the electron, which these classical physicists
regarded as an electromagnetic object. The advent of quantum theory mooted these efforts, but various
aspects of the problem have continued to attract interest for over a century.

Our first task is to understand why it has been possible to ignore radiation reaction up to this point.
An instructive case is an electron which emits synchrotron radiation as it moves in a circle with speed
v ≈ c and period T = 2πR/v under the influence of a uniform magnetic field B. The Lorentz force
provides the centripetal acceleration, so γmv2/R = evB. Using part (b) of Example 23.2, the energy
lost by the electron during one complete orbit is

�Erad = P⊥T = e2c(γβ)4

6πε0R2

2πR

v
≈ e2γ 4

3ε0c

v

R
= e3γ 3B

3ε0cm
. (23.142)

Comparing (23.142) to the electron’s total energy, γmc2, we conclude that radiation reaction is
important for this problem if

γ 2B >∼
3ε0m

2c3

e3
= 3

4πα
Bc ≈ 1011 T, (23.143)

where α = e2/4πε0
−hc ≈ 1/137 is the fine structure constant and Bc = m2c2/e−h is the critical mag-

netic field for vacuum polarization in quantum electrodynamics (see Section 2.5.2). To avoid the
appearance of strong-field quantum effects, it turns out we should combine (23.143) with two addi-
tional restrictions:12

B <∼ 107 T and γ >∼ 200. (23.144)

It is not easy to satisfy (23.143) and (23.144) simultaneously. Therefore, radiation reaction can be
safely ignored for most problems where charges move in external magnetic fields. Circular accelerators
and storage rings are important exceptions, but a considerable effort is made in those cases to preserve
the integrity of the charged particle orbits by using external sources to replenish the energy loss per
orbit (23.142).

12 See R.W. Nelson and I. Wasserman, “Synchrotron radiation with radiation reaction”, The Astrophysical Journal 371,
265 (1991).
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For the hydrogen atom which motivated Bohr, the electric field of the proton generates the centripetal
acceleration of the electron. Glancing back at (23.142), it is not difficult to calculate the energy lost by
the electron during one complete orbit at the Bohr radius aB. The electron speed in the ground state is
v = αc, so

�Erad = e2c(γβ)4

6πε0R2

2πR

v
≈ e2

3ε0

α3

aB
= 8π

3
α3 Ry, (23.145)

where Ry = e2/8πε0aB is the Rydberg energy. The binding energy of the electron is 1 Ry, so (23.145)
implies that radiation reaction has a very small effect per orbit. Nevertheless, with no source of energy
to replace (23.145), the electron is doomed to spiral into the proton, albeit after a very large number
of orbit periods. A general conclusion is that radiation reaction may be ignored except for situations
(like orbit stability) when even extremely small trajectory perturbations cannot be tolerated.

23.6.2 The Force on a Slowly Varying Source
Let E and B be the retarded fields produced by a spatially extended and radiating source with charge
and current densities ρ and j. The radiation reaction force FRR = ∫

d 3r (ρE + j × B) accounts for
the energy lost by radiation because it degrades the current density by performing work on it. The
existence of this force does not contradict our previous understanding that static and quasistatic sources
do not exert forces on themselves because these fields are not retarded. In this section, we focus on
sources which vary slowly enough in time that a low-order multipole expansion is sufficient to find
the radiation reaction.

A trick introduced by Dirac (1938) makes it straightforward to identify the terms in the multipole
expansion which contribute to FRR. The idea is to compare the retarded potentials in (23.2) and (23.3)
with their advanced counterparts (see Section 20.3.3). The retarded fields radiate outgoing waves and
decrease the system energy. The advanced fields radiate incoming waves and increase the system
energy. Therefore, we need only isolate the terms in the multipole expansions which distinguish
the advanced solution from the retarded solution and use the retarded one. The other terms cannot
contribute a net force on the source.

The fields responsible for FRR lie firmly in the near zone. Hence, the multipole expansion needed
is precisely the one performed in Example 20.4 at the end of Section 20.7.1 to derive Larmor’s
radiation formula. If a plus/minus subscript identifies an advanced/retarded potential, the low-order
terms derived there imply that

A±(r, t) = μ0

4π

∫
d 3r ′ j (r′, t)

|r − r′| ± μ0

4πc

d

dt

∫
d 3r ′ j (r′, t) + · · · (23.146)

and

φ±(r, t) = 1

4πε0

[∫
d 3r ′ ρ(r′, t)

|r − r′| ± 1

c

d

dt

∫
d 3r ′ ρ(r, t)

+ 1

2c2

d 2

dt2

∫
d 3r ′ ρ(r′, t)|r − r′| (23.147)

± 1

6c3

d 3

dt3

∫
d 3r ′ ρ(r′, t)|r − r′|2 + · · ·

]
.

A third-order expansion of the scalar potential is needed because the time derivative of the total charge
in (23.147) vanishes by conservation of charge. If p(t) is the electric dipole moment of the source,
Dirac’s argument instructs us to read off the radiation reaction potentials from (23.146) and (23.147)
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as

ARR(r, t) = − μ0

4πc

d

dt

∫
d 3r ′ j (r′, t) = − μ0

4πc

d 2p(t)

dt2
(23.148)

and

φRR(r, t) = − μ0

24πc

d 3

dt3

∫
d 3r ′ ρ(r′, t)|r − r′|2. (23.149)

The radiation reaction fields follow from BRR = ∇ × ARR, ERR = −∇φRR − ∂ARR/∂t , and ∇|r −
r′|2 = 2(r − r′):

ERR(t) = μ0

6πc

d 3p(t)

dt3
and BRR = 0. (23.150)

Using (23.150), the retardation-induced force which acts back on, say, a collection of radiating particles
with charges qk is

FRR(t) =
∑
k

qkERR(t) =
∑
k

μ0qk

6πc

d 3p(t)

dt3
. (23.151)

An interesting feature of (23.151) is that the net reaction force on a neutral source is zero despite the
non-zero force felt by each of its constituent charges. Higher-order terms in the expansions (23.146)
and (23.147) generate magnetic dipole and electric quadrupole contributions to the radiation reaction.

We complete the connection to Example 20.4 by computing the rate at which the reaction force
(23.151) does work on the particles of the source. Because p(t) = ∑

k qkrk(t) is the electric dipole
moment,

dW

dt
=
∑
k

qkErr · vk = μ0

6πc
ṗ · ...

p = μ0

6πc

[
d

dt
(ṗ · p̈) − |p̈|2

]
. (23.152)

An interesting quantity is the average of (23.152) over a time interval T :

〈Ẇ 〉 = μ0

6πc

1

T

T∫
0

dt

[
d

dt
(ṗ · p̈) − |p̈|2

]
. (23.153)

If the total derivative term in (23.153) vanishes for any reason, e.g., p(t) is periodic with period T ,
(23.153) simplifies to

〈Ẇ 〉 = − μ0

6πc
〈|p̈|2 〉. (23.154)

The work (23.154) is exactly the negative of the average of the rate (20.158) at which energy is carried
to infinity by electric dipole radiation (see Section 20.7.1). This shows how conservation of energy
works (on average) for one important class of charge/current distributions.

23.6.3 The Lorentz-Abraham Equation
Let us apply the results of the previous section to find the equation of motion for a radiating point
particle with charge e and mass m. For simplicity, assume that an external force Fext causes the particle
to accelerate and move slowly through the origin of coordinates at time t = 0. In that case, the motion-
induced electric dipole moment p = qr(t) permits us to evaluate the reaction force FRR in (23.151)
and add it to Fext in Newton’s second law. The Lorentz-Abraham equation which results is

ma = Fext +mτ0ȧ, (23.155)
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where τ0 is (approximately) the time required for light to travel a distance equal to the classical electron
radius re:

τ0 = μ0e
2

6πmc
= 2

3

re

c
. (23.156)

The radiation reaction force in (23.155) is proportional to a time derivative of acceleration. This
is unusual in physics and has many unusual consequences. Not least, (23.155) predicts changes in
acceleration when Fext = 0.

The general solution of (23.155) is

a(t) = exp(t/τ0)

⎡
⎣b − 1

mτ0

t∫
−∞

dt ′ Fext(t
′) exp(−t ′/τ0)

⎤
⎦ , (23.157)

where b is a constant vector. This constant does not occur in a typical Newton’s law trajectory
problem because the initial conditions r(0) and ṙ(0) specify the solution uniquely for an equation
which is second order in time. Equation (23.155) written in terms of r(t) is third-order in time and
extra information must be supplied. As an example, let a constant external force turn on at t = 0 by
choosing Fext(t) = f�(t). Inserting this into (23.157) gives

a(t) = exp(t/τ0)

{
b − f

m

[
1 − exp(−t/τ0)

]
�(t)

}
. (23.158)

This solution is pathological. Unless b has a very special value, (23.158) predicts a “runaway” solution
where a(t) ∼ b exp(t/τ0). This is surely unphysical and we are entitled to ask: what has gone wrong
and what can be done to correct it?

The problems with (23.155) reach back to the observation in Section 3.6 that the electrostatic self-
energy of a point charge is infinite. The relevance of this becomes clear when we use Example 14.3
at the end of Section 14.5 to write the quasistatic vector potential when a point charge with uniform
velocity v moves slowly through r = 0 at t = 0:

A(r, t = 0) = μ0ev
4πr

. (23.159)

Any change in the velocity δv induces a change in the vector potential δA. There is a corresponding
change in the magnetic field and, by Lenz’ law, a force from the Faraday’s law electric field acts back
on the charge to oppose the change. Put another way, the force is a consequence of conservation of
total linear momentum for a point charge and its velocity and acceleration fields. Either way, there is
a reaction force

FL = −e ∂A
∂t

= −
[

e2

4πε0c2r

dv
dt

]
r=0

. (23.160)

The force (23.160) diverges at the position of the point charge. To make sense of this, we introduce
a cutoff at the classical electron radius and write FL in terms of an electromagnetic energy Uem and an
equivalent electromagnetic mass mem:

FL ≈ − e2

4πε0re

1

c2

dv
dt

≡ −Uem

c2

dv
dt

≡ −mema. (23.161)

This force (23.161) supplements Fext + FRR when we use Newton’s second law to find the acceleration
of our particle. Presumably, the latter has some “bare” mass m0 > 0 of non-electromagnetic origin.
Therefore, the equation of motion for the particle is

m0a = Fext +mτ0ȧ −mema. (23.162)
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Comparing (23.162) to (23.155) shows that we should interpret m = m0 +mem in the latter as a
renormalized mass. Moreover, FL did not show up when we used Dirac’s trick to compute FRR in
(23.151) because FL contributes to the inertia of the charge rather than to a net force on it. By contrast,
the entire right side of (23.162) shows up explicitly when one computes the Coulomb-Lorentz self-
force exerted on a spherical source of characteristic size re using the retarded potentials in (23.146)
and (23.147) with all the terms in the multipole expansion retained.13

In the next section, we connect the ideas of cutoff and mass renormalization to the problem of
runaway solutions. First, however, it is instructive to generalize (23.155) to situations where the point
charge moves at relativistic speeds. If Fμ is an external four-force, the fact that Aμ = U̇μ is the
four-acceleration suggests the covariant equation of motion,14

mAμ = Fμ +mτ0Ȧμ (wrong). (23.163)

Unfortunately, (23.163) cannot be correct because AμUμ = 0 [see (22.58)] implies that any true four-
force (of whatever origin) must satisfy FμUμ = 0 and a brief calculation confirms that UμȦμ �= 0.
On the other hand, any term we add to the right side of (23.163) must vanish when the particle speed
vanishes. This is necessary to recover (23.155) in that limit. Therefore, we replace Ȧμ in (23.163) by
Ȧμ + pUμ wherep is a Lorentz scalar. Applying the condition (Ȧμ + pUμ)Uμ = 0 andUμUμ = −c2

[see (22.51)] determines p and we get the Lorentz-Abraham-Dirac equation:15

mAμ = Fμ +mτ0

(
δμν + UμUν

c2

)
Ȧν = Fμ +mτ0

(
Ȧμ − AνAν

c2
Uμ

)
. (23.164)

Dirac (1938) derived (23.164) by computing the flux of electromagnetic energy-momentum through
an infinitesimally narrow tube surrounding the world line of a point charge. He proposed to eliminate
runaway solutions by imposing the condition that Aμ → 0 as t → ∞.

23.6.4 The Landau-Lifshitz Equation
It is possible to derive an effective equation of motion for a point charge which includes radiation
reaction but which does not have runaway solutions like (23.158). The key observation is that the
Lorentz-Abraham equation (23.155) does not have universal validity. To see this, we note that all
derivations of (23.155) implicitly let some length scale R → 0 (either the particle size or the distance
to a point particle). On the other hand, the discussion surrounding (23.162) shows that mass renormal-
ization introduces an electromagnetic energy e2/4πε0R which cannot exceed mc2 if the bare mass m0

is to be positive.16 Therefore, R > cτ0 [see (23.156)] is the shortest length scale where the theory can
be valid and (23.155) will have cutoff-induced corrections of the order of mτ0äR/c ≈ mτ 2

0 ä. In other
words, if T = a/ȧ is a typical time over which the acceleration changes, a physically more meaningful
way to write the Lorentz-Abraham equation is

a = 1

m
Fext + τ0ȧ +O(τ 2

0 /T
2). (23.165)

Our discussion shows that (23.155) becomes unphysical when the last term in (23.165) cannot be
neglected. The implication that the radiation reaction force FRR must always remain small compared
to Fext motivated Landau and Lifshitz (1962) to replace (23.165) by its first iterate. Their calculation

13 This is the method presented by Jackson (1999).
14 A dot over a Lorentz tensor means a derivative with respect to proper time.
15 The second equality in (23.164) is true because AμUμ = 0 implies that ȦμUμ + AμU̇μ = 0.
16 We do not follow authors who permit mem → ∞ and m0 → −∞.
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begins with the observation that the leading-order version of (23.165) is

a = 1

m
Fext +O(τ0/T ). (23.166)

Taking the time derivative of (23.166) and substituting back into (23.165) gives

a = 1

m
Fext + τ0

m
Ḟext +O(τ 2

0 /T
2). (23.167)

This equation is just as accurate as (23.165) but, because there is no ȧ term, it has no runaway solutions
or other pathologies of the sort which plague (23.165). These conclusions are supported by more
rigorous mathematical analysis than we have presented here.17

We conclude that the trajectory of a slowly moving point charge which includes the effect of
radiation reaction is best described using the Landau-Lifshitz equation,

mv̇ = Fext + τ0Ḟext = Fext + τ0
∂Fext

∂t
+ τ0(v · ∇)Fext. (23.168)

The second equality in (23.168) recognizes that the total time variation of Fext(r, t) experienced by a
moving particle is the convective derivative defined in Section 1.3.3. We leave it as an exercise for the
reader to derive the covariant analog of (23.168) beginning with the Lorentz-Abraham-Dirac equation
(23.164).

Example 23.4 Solve the Landau-Lifshitz equation for a non-relativistic electron in an excited
state of an atom modeled as a harmonic oscillator with natural frequency ω0 damped by radiation
reaction. Discuss the resonance characteristics of the spectrum of emitted radiation.

Solution: Let r(t) be the displacement of the oscillator from equilibrium. The external force is
Fext = −mω2

0r for an electron of mass m. With this choice, the Landau-Lifshitz equation (23.168)
reads

mr̈ = −mω2
0r −mτ0ω

2
0 ṙ.

The guess r(t) = r0 exp(−i�t) is a solution if �2 + iτ0ω
2
0�− ω2

0 = 0 and we deduce that

� = −i 1
2ω

2
0τ0 ± ω0

√
1 − (ω0τ0/2)2 ≈ −i 1

2ω
2
0τ0 ± ω0 +O(τ 2

0 ).

We cannot retain the square root in the equation above because (23.168) is reliable only to first
order in τ0. Therefore, with " = ω2

0τ0,

r(t) = r0 exp(−i�t)�(t) = r0 exp(− 1
2"t) exp(−iω0t)�(t).

The spectrum of emitted radiation (23.90) requires the Fourier transform of the electron velocity
v(t) = ṙ(t). Specifically

v̂(ω) = −i�r0

∞∫
0

dt exp[−i(�− ω)t] = �

ω −�
r0 ≈ ω0 − i"/2

ω − ω0 + i"/2
r0,

and the spectrum function is

dI (ω)

d�
= μ0q

2ω2

16π3c
|v̂(ω)|2 ∝ ω2

0 + ("/2)2

(ω − ω0)2 + ("/2)2
.

17 See H. Spohn, Dynamics of Charged Particles and Their Radiation Field (University Press, Cambridge, 2004).
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This a called a Lorentzian line shape. Its intensity is largest at the resonance frequency ω0 and falls
to half its maximum value at the frequencies ω0 ± "/2. For that reason, " = ω2

0τ0 is called the
radiative linewidth. Lorentzian line shapes are the rule when radiative decays occur in Nature.

23.7 Cherenkov Radiation

A charged particle moving at constant speed v > c/n through a medium with index of refraction n

emits a characteristic blue light called Cherenkov radiation. From a microscopic point of view, it is
clear from Application 23.1 that the moving particle itself does not emit the radiation. The source is
rather the time-dependent polarization of the medium induced by the motion of the particle. On the
other hand, a particle moving at any speed through a medium induces transient accelerations of the
particles of the medium. Therefore, subtle interference must be at work to restrict the generation of
Cherenkov radiation to situations where the particle speed exceeds the phase velocity of light in the
medium.

Notwithstanding these remarks, it is convenient from a macroscopic point of view to regard the
moving charge as the source of the radiation. This makes the following elementary discussion sufficient
to reveal its basic characteristics and practical importance. Figure 23.17(a) shows a point charge (black
dot) moving at constant speed v > c/n through a dielectric medium. The small open circles represent
the position of the charge at earlier, equally spaced moments in time. The large circles indicate the
outer limit of the spherical wave fronts emitted by the particle at those times. The geometry shows
that the expanding radiation front is the surface a cone which is tangent to all the spherical fronts and
which has its apex at the position of the charge. The phrase “Mach cone” is often used because the
Cherenkov wave front is analogous to the conical wave front formed behind an airplane when it flies
at supersonic speeds. The geometry shows that the cone angle θC is

sin θC = c/n

v
. (23.169)

Particle physicists have long exploited (23.169) to measure the speed of charged particles passing
through a detector. When combined with an independent measurement of momentum, (22.66) and
(22.67) permit the mass and energy of the particle to be determined. More recently, arrays of imaging
Cherenkov telescopes have been used by astrophysicists to turn the Earth’s atmosphere into a detector
for very high-energy gamma rays. The gamma rays create a secondary shower of high-energy charged
particles when they strike the atmosphere and the telescopes detect the Cherenkov light produced by
the shower.

23.7.1 Potentials and Fields
An analytic approach to Cherenkov radiation recognizes that the retarded potentials (23.2) and (23.3)
remain valid as long as we replace ε0, μ0, c, and β = v/c by ε, μ,

cn = c

n
, and βn = v

cn
(23.170)

wherever they occur. Therefore, the modified Lı́enard-Wiechert potentials (23.11) and (23.12) appro-
priate to the Cherenkov problem are18

ϕ(r, t) = 1

4πε

[
q

R − βn · R

]
ret

and A(r, t) = μ

4π

[
qv

R − βn · R

]
ret

. (23.171)

18 This problem seems ideally suited for solution by Lorentz transformation from the rest frame of the charge.
Unfortunately, the calculation is less simple than when the charge moves in vacuum. See Nag and Sayied (1956) in
Sources, References, and Additional Reading.
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23.7 Cherenkov Radiation 907

(a) (b)

Figure 23.17: The Cherenkov effect for a charged particle (black dot) moving at constant speed. (a) Spherical
waves are emitted at previous positions of the particle (small open circles) and expand at speed c/n. (b) When the
particle speed v > c/n, two information-collecting shells collapse onto every observation point (star) inside the
Mach cone at the same observation time. Figure from Ohanian (1995).

Rret

v(t–tret)

R

θ

Figure 23.18: The present-time position (black dot) and retarded-time position (small white circle) of a charge
moving with constant velocity v. R and Rret point to the observation point.

The interesting feature of these equations is that the equation which determines the retarded time,

tret − t = R(tret)

cn
, (23.172)

has two solutions when the observation point lies inside the Mach cone and no solutions when it lies
outside the cone. We can demonstrate this graphically using the concept of the “information-collecting
shell” introduced in Section 23.2.2.

Figure 23.17(b) shows an observation point (star) inside the Mach cone of a charge moving at
constant velocity. Also shown are two views of an information-collecting shell which collapses at speed
cn and arrives at the star at time t . The moving charge enters the volume enclosed by the shell at time
t1 < t and exits that volume at time t2 where t > t2 > t1. Both of these are legitimate “retarded
times” when v > cn. By contrast, the trajectory r0(t) of the charge never enters or exits the volume
when the observation point lies outside the Mach cone. There is no retarded time and the field is
zero at such points. To be more quantitative, we refer to Figure 23.18 and note that the square of
Rret = |R + v(t − tret)| is a quadratic equation for t − tret with the solutions

t − tret = −v · R ±√
(v · R)2 − (v2 − c2

n)R2

v2 − c2
n

≥ 0. (23.173)

If v > cn, the positivity condition on the far right side of (23.173) imposes two conditions:

v · R < 0 and (v · R)2 > (v2 − c2
n)R2. (23.174)

With the definition of θC in (23.169), the left and right sides of (23.174) respectively imply that
solutions to (23.173) exist if

θ >
π

2
and sin θ ≤ sin θC = 1/βn. (23.175)

The conditions (23.175) define the volume inside the Mach cone in Figure 23.17(a).
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We leave it as an exercise for the reader to confirm that the two retarded solutions in (23.173) make
identical contributions to the denominators in (23.171). In that case,

ϕ(r, t) = 1

2πε

q

R(1 − β2
n sin2 θ )1/2

�(cos θC − cos θ ) (23.176)

and

A(r, t) = μ

2πε

qv
R(1 − β2

n sin2 θ )1/2
�(cos θC − cos θ ). (23.177)

Using

∇�(cos θC − cos θ ) = sin θ

R
δ(cos θC − cos θ )θ̂ (23.178)

and

∂

∂t
�(cos θC − cos θ ) = v sin2 θ

R
δ(cos θC − cos θ ), (23.179)

the electromagnetic fields E = −∇ϕ − ∂A/∂t and B = ∇ × A are

E = − q

2πε

(β2
n − 1)R̂

R2(1 − β2
n sin2 θ )3/2

�(cos θC − cos θ )

(23.180)

+ q

2πε0

√
β2
n − 1

R2βn(1 − β2
n sin2 θ )1/2

δ(cos θC − cos θ )

and

B = v
c2
n

sin θ (−θ̂ × E). (23.181)

The fields (23.180) have a number of peculiar characteristics. One of these is that the electric field
at observation points inside the Mach cone points directly toward the moving charge rather than away
from it. This would contradict the integral form of Gauss’ law for a point charge except that the
(singular) electric field on the cone itself points away from the charge. Gauss’ law is properly satisfied
when both contributions to the electric field are considered. The mere fact that the fields are singular
at θ = θC is troubling until we learn (see below) that the frequency spectrum of Cherenkov radiation
is continuous. Combining this with the fact (see Chapter 18) that the index of refraction of any real
medium is a function of frequency tells us that we should have let n = n(ω) from the start. Roughly
speaking, frequency dispersion combined with (23.169) implies that there is a different θC for every
frequency. This blurring of the cone edge is enough to smooth out the delta function singularity into a
large and narrow maximum which constitutes the Cherenkov “signal”.

23.7.2 The Frequency Spectrum
A stationary observer located outside the Mach cone sees no electromagnetic field until the motion of
the charge causes the cone surface to sweep over the observer’s position. The abrupt appearance of
the short-lived Cherenkov “signal” (see just above) implies (through the reciprocal relation between
�t and �ω in a Fourier transform) that the spectral width of the observed radiation is large. If we
set ourselves the goal to find this spectrum function, Section 23.4.1 directs us to focus on the Fourier
transform Ê(ω) of the electric field E(t).

To calculate E(t), it is convenient to fix the origin of a polar coordinate system at the position of
the charge q. This origin moves as the charge moves, so the polar coordinates of a stationary observer
change as a function of time. Let us assume that the surface of the Mach cone passes over the observer
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23.7 Cherenkov Radiation 909

c0t
υt

Figure 23.19: The polar coordinates of a stationary laboratory observer change as a function of time (small
white circles) when they are referred to coordinate axes centered at the position of a moving point charge (black
dot). Figure adapted from Smith (1997).

at t = 0. In that case, Figure 23.19 shows that the polar coordinates of the observer are (R(0), θC).
A short time later, the observer finds him/herself inside the cone with polar coordinates (R(t), θ(t))
where θ (t) = θC +�θ . This information, and the assumptions that R(0) ≈ R(t) � vt and �θ � 1,
will permit us to write the Cherenkov electric field (23.180) as an explicit function of time.

Using (23.169) and βn = v/cn = nv/c, we infer from the geometry of Figure 23.19 that

�θ ≈ vt
sin θC

R(0)
(23.182)

and

cos θC − cos θ (t) = cos θC − cos(θC +�θ ) ≈ sin θC�θ = cnt

βnR(0)
. (23.183)

Then, because β2
n sin2 θC = 1,

1 − β2
n sin2 θ (t) ≈ −2β2

n cos θC sin θC�θ = 2cnt
√

1 − β2
n

R(0)
. (23.184)

Substituting these results into (23.180) gives the electric field as

E(t) ≈ q(β2
n − 1)1/4

(2cn)3/2πε
√
R(0)

[
δ(t)√
t

− �(t)

2t3/2

]
R̂(0). (23.185)

The Fourier transform Ê(ω) follows by substituting (23.185) into the rightmost integral in (23.75).
Integrating the delta function by parts, we find

Ê(ω) = − iωq(β2
n − 1)1/4

(2cn)3/2πε
√
R(0)

R̂(0)

∞∫
0

dt t−1/2 exp(iωt) = q(β2
n − 1)1/4ω1/2

4
√
πεc

3/2
n

√
R(0)

(1 − i)R̂(0). (23.186)

The fact that E(t) and Ê(ω) vary as 1/
√
R(0) tells us that we are dealing with a two-dimensional

cylindrical wave rather than a three-dimensional spherical wave.19 This motivates us to alter slightly
the analysis of Section 23.4.1 and evaluate the energy radiated per unit area per unit frequency [cf.
(23.80)]:

d 2Urad

dωdA
= εcn

π
|Ê(ω)|2. (23.187)

The literature of Cherenkov radiation typically transforms (23.187) into a spectral distribution per unit
path length �. This the energy per unit frequency which passes through a unit length of a cylinder of

19 See the discussion surrounding (20.86).
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radius ρ centered on the trajectory of the moving particle. A glance back at Figure 23.19 shows that
this quantity is

d 2Urad

dωd�
= 2πρ[ρ̂ · (−θ̂ )]

d 2Urad

dωdA
. (23.188)

Using (23.186) to evaluate (23.187) and (23.188) gives the final result,

d 2Urad

dωd�
= −2πR(0) sin θC cos θC

d 2Urad

dωdA
= μq2

4π

(
1 − c2

v2n2

)
ω. (23.189)

Cherenkov radiation appears blue to the naked eye because (23.189) is an increasing function of
frequency.20 A more reliable statement requires the generalization of (23.189) to a medium with
frequency-dependent index of refraction n(ω):

d 2Urad

dωd�
= μ(ω)q2

4π

(
1 − c2

v2n2(ω)

)
ω. (23.190)

Consider the graph of n(ω) for SiO2 glass in Figure 18.5. This curve, which is typical of transparent
dielectrics, confirms our conclusion that Cherenkov light is blue because n(ω) does not vary much in
the visible part of the spectrum. On the other hand, Figure 18.5 predicts that there will be no Cherenkov
emission at frequencies beyond the near-ultraviolet because n(ω) < 1 there and it is not possible to
satisfy (23.169) with a real angle θC. This is confirmed by experiment.

�

Sources, References, and Additional Reading
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Problems
23.1 Smith-Purcell and Undulator Radiation

(a) The side view to the left below shows an electron with velocity v = vẑ skimming over a diffraction
grating composed of a periodic array of metal strips with periodicity L. Explain why radiation is
produced. Use a constructive interference argument to show that the radiation is observed at an angle
θ above the horizontal at the wavelengths λn = (c/v − cos θ )L/n where n is a positive integer. This is
called Smith-Purcell radiation.

(b) The side view to the right below shows an electron with average velocity v = vẑ skimming over the
surface of a periodic array of permanent magnets with periodicity L. Explain why radiation is produced.
Why does the radiation observed at an angle θ above the horizontal occur at the same wavelengths as
in part (a)? This is called undulator radiation.

Hint: You may assume that the electron speed is relativistic.

NN SS

vv

L

L

23.2 Gauss’ Law for a Moving Charge Show by direct integration (in the laboratory frame) that the electric
field of a point charge q moving with constant speed v in the x-direction satisfies Gauss’ law in integral
form.

23.3 The Retarded Time A point charge q moves along a specified trajectory r0(t) with velocity v(t) = ṙ0(t).
For each choice of t , show that the equation [t ] = t − |r − r0([t ])|/c has exactly one solution for the
retarded time [t ], provided |v(t)| < c.

23.4 The Direction of the Velocity Field Prove that the “velocity” part of the Liénard-Wiechert electric field
points to the observer from the “anticipated position” of the moving point charge. The latter is the position
the charge would have moved to if it retained the velocity vret from t = tret to the present time of observation.

23.5 Inverting the Retarded Field This problem reconstructs the trajectory r0(t) of a charged particle from
observations of the fields produced by the particle at observation points where the magnetic field does not
vanish.

(a) Use cB = n̂ret × E to deduce that

n̂ret · E = q

|q|
√
E2 − c2B2.

Hint: The Liénard-Wiechert electric field determines the factor q/|q|.
(b) Use the information in part (a) to show that

n̂ret = E × B + E(q/|q|)√E2 − c2B2

E2
.
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(c) Evaluate the formula for cB in part (a) using the Heaviside-Feynman electric field, solve for Rret, and
use the result of part (b) to conclude that

Rret = q n̂retB · (n̂ × ṅ)ret

4πε0c2B2 − (q/c)B · (n̂ · ¨̂n)ret

.

(d) Part (b) and (c) express R = Rn̂ = r − r0 at the retarded time entirely in terms of the fields at the
present time. Show that we also have enough information to express tret entirely in terms of present-time
quantities.

23.6 The Covariant Liénard-Wiechert Field

(a) Calculate Fμν = ∂μAν − ∂νAμ from the Liénard-Wiechert potential Aμ. Express the result in terms of
Rμ, the four-velocityUμ, and the four-acceleration ∂Uμ/∂τ . Hint: It will be useful to evaluate ∂μ(RσRσ )
in order to show that ∂μτ = Rμ/(RσUσ ).

(b) Show that the splitting of Fμν into a velocity part and an acceleration part is relativistically invariant.
(c) Find E and B when v = 0 (but v̇ �= 0) by evaluating appropriate components of Fμν in the rest frame of

the charge.

23.7 N Charges Moving in a Circle I N identical point particles, each with charge q, move in a circle of radius
a. Each particle moves with the same constant speed v around the ring. Show that the Liénard-Wiechert
electric field is static everywhere on the symmetry axis.

23.8 Energy Loss from Gyro-Radiation A particle with charge q and mass m moves in a uniform external
magnetic field B. Find the total rate at which the particle loses energy by radiation when its motion is
relativistic.

23.9 The Path of Minimum Radiation A non-relativistic charged particle begins at rest, moves in a straight
line, and then comes back to rest. The total journey of distance d takes a time T to complete.

(a) Find the total amount of energy radiated if the particle accelerates at a constant rate for half the journey
and decelerates at a constant rate for half the journey.

(b) Find the acceleration function a(t) so the journey radiates the least amount of energy.

23.10 Radiation Energy Loss from Coulomb Repulsion A non-relativistic particle with charge q, mass m,
and initial speed v0 collides head-on with a fixed field of force. The force is Coulombic with potential
V (r) = Ze2/r . Integrate Larmor’s formula to show that the total energy lost by the particle to radiation is
�E = 2mv5

0/45πε0Zc
3.

23.11 Frequency of Dipole Radiation A non-relativistic particle with charge q follows a trajectory
r0(t) = R[x̂ cos(ω1t) cos(ω2t) + ŷ sin(ω2t)]. Identify the frequencies at which dipole radiation occurs.

23.12 Larmor’s Formula with Fields Displayed Write Larmor’s formula for the power radiated by a charged
particle in a manifestly covariant form which explicitly displays the electromagnetic field experienced by
the particle. Evaluate this formula in an inertial frame where the particle has velocity cβ.

23.13 Emission Rates by Lorentz Transformation An electron enters and exits a capacitor with parallel-plate
separation d through two small holes. The electron velocity vẑ is parallel to the capacitor electric field E and
the change in the electron velocity is small. Calculate the total energy �U ′

EM and linear momentum �P ′
EM

radiated by the electron in its (momentary) rest frame and Lorentz transform to the laboratory frame to find
�UEM and �PEM.

23.14 Emission Rates by Explicit Integration

(a) Use direct integration to show that a radiating charge q emits energy at the rate

dUEM

dt
=
∫
A

dA · g S = 2γ 6

3c3

q2

4πε0

[|a|2 − |a × β|2] .
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In this expression, S is the Poynting vector, β = v/c, a = v̇, g = 1 − n̂ · β, and γ = 1/
√

1 − β2. The
integration is carried out over the surface A of an enormously large sphere. Hint: Show first that

I =
∫

d�

(1 − n̂ · β)3
= 4π

(1 − β2)2

and then show that

Ji =
∫

nid�

(1 − n̂ · β)4
= 1

3

∂I

∂βi
and Kij =

∫
ninjd�

(1 − n̂ · β)5
= 1

4

∂Ji

∂βj
.

(b) Use direct integration to show that a radiating charge q emits linear momentum at the rate

dPEM

dt
= −

∫
A

dA · gT = β

c

dUEM

dt
.

In this expression, Tij = ε0

{
EiEj + c2BiBj − 1

2 δij (E2 + B2)
}

is the electromagnetic stress tensor.
Hint: Show first that

M =
∫

d�

(1 − n̂ · β)2
= 4π

1 − β2
,

and use successive differentiation to derive other integrals you need.

23.15 The Radiated Power Spectrum of a Linear Oscillator A point charge oscillates with the trajectory
r0(t) = a cos(ω0t)ẑ. Find the angular distribution of power radiated into the m th harmonic, dPm/d�,
during one period of the motion. Which harmonics dominate in the non-relativistic limit? Two Bessel
function identities will be useful:

Jm(x) = im

2π

2π∫
0

dφ exp[i(mφ − x cosφ)] and Jm+1(x) + Jm−1(x) = (2m/x)Jm(x).

23.16 The Radiation Spectrum of Beta Decay Model the beta decay reaction n → p + e + ν̄e as the abrupt
creation of an electron at t = 0 with constant velocity v = cβ.

(a) Find the angular distribution of energy radiated per unit frequency, dI/d�. Use θ for the angle between v
and the observation point. Hint: Consider the use of a convergence factor if you encounter an ill-behaved
integral.

(b) Show that the total energy radiated per unit frequency is

I (ω) = μ0q
2c

4π 2

[
1

β
ln

(
1 + β

1 − β

)
− 2

]
.

(c) The fact that dI/d� and I (ω) are independent of frequency implies that the total amount of energy
radiated is infinite. How must our model of beta decay be corrected to eliminate this unphysical behavior?

23.17 Energy Loss and Electric Field Spectrum A charged particle produces an electric field E(r, t) as it
passes by an isolated atom. Model a bound electron in the atom as a damped harmonic oscillator with
natural frequency ω0 and damping constant ". Assume that the electric field induces small-amplitude, non-
relativistic motion of the bound electron near the origin of coordinates. If Ê(ω) is the Fourier transform of
E(r = 0, t), show that the energy transferred to the bound electron from the field is

�E = e2

mπ

∞∫
0

dω |Ê(ω)|2 ω2"

(ω2 − ω2
0)2 + ω2"2

.

What is �E as " → 0?

23.18 Angular Distribution of Radiated Frequency Harmonics A particle with charge q follows a periodic
trajectory where r0(t) = r0(t + T ). If ω0 = 2π/T , prove that the angular distribution of the average power
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radiated into the m th harmonic during one period of the motion is

dPm

d�
= μ0q

2m2ω4
0

32π 4c

∣∣∣∣∣∣r̂ ×
2π/ω0∫
0

dt v(t) exp{−imω0[r̂ · r0(t)/c − t]}
∣∣∣∣∣∣
2

.

23.19 N Charges Moving in a Circle II N identical point particles, each with charge q, move in a circle of
radius a. The angular position of the j th particle is φj (t) = ω0(t − t0) + θj .

(a) Prove that the power spectrum satisfies

dPm

d�

∣∣∣∣
N

=
∣∣∣∣∣∣
N∑
j=1

exp(−imθj )

∣∣∣∣∣∣
2

dPm

d�

∣∣∣∣
1

.

(b) Specialize to the case in which the charges are equally spaced around the circle at all times. Use part
(a) to prove that this configuration radiates only at the frequencies kNω0 where k is a positive integer.

(c) Show that dPm/d�|N ∼ N when the charges are distributed randomly around the ring.

23.20 Covariant Radiation of Energy-Momentum Construct a covariant expression for the rate at which a
moving charged particle loses total energy-momentum Pμ = (Prad, iUrad/c). Evaluate your expression in an
arbitrary inertial frame as a check.

23.21 Lorentz Transformation of dP/d� Show that the angular distribution of power emitted by a moving
point charge transforms like

dP

d�
= γ 2(1 + β cos θ ′)3 dP

′

d�′ = 1

γ 4(1 + β cos θ )3

dP ′

d�′ .

Hint: Use the fact that (Prad, iUrad/c) is a four-vector for a finite volume of radiation.

23.22 Cyclotron Motion with Radiation Reaction A non-relativistic particle with charge q performs circular
cyclotron motion in a uniform magnetic field B = B ẑ. Include the radiation reaction force mτ0v̈ in the
equation of motion and solve it assuming that the motion remains approximately circular. Find the time
constant for the decay of the particle velocity when the reaction is weak.

23.23 Radiation Pressure Due to Radiation Reaction An electron is scattered by an electromagnetic plane
wave E0 exp[i(k · r − ωt)]. Show that radiation reaction induces a small, time-averaged, self Lorentz force
on the electron which may be interpreted as radiation pressure exerted by the wave. Express the force is
terms of the Thomson scattering cross section σT.

23.24 Angular Momentum Decay by Radiation Reaction Consider a classical atom where a particle with
mass m and charge q orbits a fixed charge Zq non-relativistically. If Lz is the component of the angular
momentum L which characterizes the orbit, show that the radiation reaction force mτ0v̈ causes the energy
and angular momentum of the “atom” to decay together such that

dLz

dE
= 1

2

Lz

|E| .

Hint: The force of radiation reaction is much smaller than the force between q and Zq.

23.25 Covariant Landau-Lifshitz Equation An electromagnetic fieldFμν accelerates a relativistic particle with
charge e and mass m. Show that the covariant Landau-Lifshitz equation for this situation is

mU̇μ = eUαFμα − e2τ0

m
UαFαβFμβ + eτ0UβUα∂αFμβ − e2τ0

c2
(FβαUα)2Uμ.
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24 Lagrangian and Hamiltonian
Methods

Larmor had an intense, almost mystical devotion to the principle
of least action . . .

To [him] it was the ultimate natural principle—the mainspring of
the Universe.

Arthur Eddington (1942)

24.1 Introduction

This chapter provides an introduction to the use of Lagrangian and Hamiltonian methods in classical
electrodynamics. Our goal is to demonstrate that the powerful variational methods developed to derive
the equations of motion and conservation laws for conventional mechanical systems can be extended
to describe electrodynamics. By its nature, the material in this chapter is rather formal and most of
our attention focuses on deriving the Maxwell equations and the Coulomb-Lorentz force law from
a single Lagrangian or Hamiltonian. The new physics we will encounter bears principally on the
gauge invariance of the theory. At the Lagrangian level, we will show that gauge invariance implies
conservation of charge and vice versa. At the Hamiltonian level, we will show that electrodynamics
is an example of a constrained dynamical system and that the maintenance of the constraints exploits
gauge invariance in an essential way.

Our main theoretical tool is Hamilton’s principle of stationary action. Originally conceived in the
context of geometrical optics—and then extended to include mechanical systems—Hamilton’s princi-
ple determines the equations of motion for any system where generalized coordinates can be sensibly
defined. In the most familiar examples, a small number of degrees of freedom are sufficient to charac-
terize the system of interest. The method becomes applicable to Maxwell’s theory when we regard the
electromagnetic field and/or the electromagnetic potentials at every point in space as independent gen-
eralized coordinates. These are treated on an equal footing with the coordinates of mobile charged parti-
cles. Among other things, the connection between conservation laws and the invariance properties of the
Lagrangian known for simple mechanical systems survives the generalization to Maxwell’s field theory.

This chapter passes freely back and forth between non-covariant and covariant notation. The former
helps fix ideas and makes immediate contact with most readers’ previous experience with variational
methods. The latter is the natural language of the relativistic field theories developed in the second
half of the 20th century as generalizations of electromagnetic field theory.

24.2 Hamilton’s Principle

Let a closed mechanical system be described by a set of generalized coordinates and generalized
velocities,

q1(t), q2(t), . . . , qN (t) and q̇1(t), q̇2(t), . . . , q̇N (t). (24.1)
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24.2 Hamilton’s Principle 917

Classical mechanics teaches us that a scalar functionL[qk(t), q̇k(t)] called the Lagrangian1 determines
the dynamical behavior of each generalized coordinate via Lagrange’s equations,

d

dt

(
∂L

∂q̇k

)
= ∂L

∂qk
. (24.2)

For example, the Lagrangian for many mechanical systems is the kinetic energy minus the potential
energy because (24.2) written out for

L = T − V = 1
2

∑
k

mkq̇
2
k − V (q1, q2, . . .) (24.3)

reproduces Newton’s equations of motion,

mq̈k = − ∂V

∂qk
. (24.4)

One way to derive (24.2) focuses on a functional of the generalized coordinates called the action,

S[qk(t)] =
t2∫

t1

dt L[qk(t), q̇k(t)]. (24.5)

Hamilton’s principle states that, among all the trajectories qk(t) which take fixed values at t1 and
t2, the particular trajectory which occurs in Nature is the one which produces a stationary (usually
minimum) value for S[qk(t)]. A mathematical expression of Hamilton’s principle follows when we
permit variations of the trajectory qk(t) → qk(t) + δqk(t) subject to the restriction that δqk(t1) =
δqk(t2) = 0. These variations induce variations of the velocities, δq̇k , and a corresponding variation of
the action:

δS =
∫ t2

t1

dt δL =
∫ t2

t1

dt {L[qk(t) + δqk(t), q̇k(t) + δq̇k(t)] − L[qk(t), q̇k(t)]} . (24.6)

Expanding (24.6) to first order in the infinitesimal variations gives

δS =
∫ t2

t1

dt

[
∂L

∂qk
δqk + ∂L

∂q̇k
δq̇k

]
. (24.7)

Substituting the identity (see Example 24.1)

δq̇k = δ

(
dqk

dt

)
= d

dt
(δqk) (24.8)

into (24.7) and integrating by parts, we find

δS =
∫ t2

t1

dt

[
∂L

∂qk
− d

dt

∂L

∂q̇k

]
δqk + ∂L

∂q̇k
δqk

∣∣∣∣t2
t1

. (24.9)

The stationary action condition identified by Hamilton’s principle is δS = 0. Moreover, the last term
of (24.9) vanishes from the assumed end-point restrictions on qk(t). Consequently,∫ t2

t1

dt

[
∂L

∂qk
− d

dt

∂L

∂q̇k

]
δqk = 0. (24.10)

The key observation is that the variations δqk are arbitrary. Therefore, (24.10) vanishes only if the
bracketed quantity in the integrand vanishes. This establishes Lagrange’s equations (24.2).

1 The Lagrangian for an isolated system can be chosen to not depend on time explicitly.
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918 LAGRANGIAN AND HAMILTONIAN METHODS

Two points are worth noting. First, the Lagrangian is not unique. As an example, let �[qm(t), t] be
any scalar function of time and the generalized coordinates. The Lagrangian L[qm(t), q̇m(t)] produces
exactly the same dynamics as the Lagrangian

L[qm(t), q̇m(t)] + d�[qm(t), t]

dt
, (24.11)

because the total derivative term does not alter Lagrange’s equations. Specifically, the change in the
left side of (24.2),

d

dt

∂�̇

∂q̇k
= d

dt

∂

∂q̇k

(
∂�

∂qm
q̇m + ∂�

∂t

)
= d

dt

∂�

∂qk
= ∂�̇

∂qk
, (24.12)

is equal to the change in the right side of (24.2).
Second, it will be useful for later work if we define a set of canonical momenta,

pk = ∂L

∂q̇k
, (24.13)

and write (24.2) in the form

dpk

dt
= ∂L

∂qk
. (24.14)

Equation (24.14) shows that a particular canonical momentum is a constant of the motion if the
Lagrangian does not depend explicitly on the corresponding generalized coordinate.

Example 24.1 Prove (24.8).

Solution: Let the infinitesimal ε and the function ηk(t) parameterize the variation δqk(t) = εηk(t).
If q ′

k(t) stands for the generalized coordinate qk(t) after the variation is performed,

δqk(t) = q ′
k(t) − qk(t) = εηk(t).

The derivative of interest is

d

dt
(δqk) = d

dt
(εηk) = εη̇k.

On the other hand,

δ

(
dqk

dt

)
= dq ′

k

dt
− dqk

dt
= εη̇k.

The rightmost members of the two expressions just above are equal. Therefore,

d

dt
(δqk) = δ

(
dqk

dt

)
= δq̇k.

24.3 Lagrangian Description

We establish in this section that the Lagrangian for a closed system of non-relativistic point particles
and the electromagnetic fields they produce is

LEM = 1
2

∑
k

mkv
2
k + ∫

d 3r (j · A − ρϕ) + 1
2ε0

∫
d 3r (E · E − c2B · B). (24.15)
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24.3 Lagrangian Description 919

Figure 24.1: A tale of three Lagrangians. Left panel: particle trajectories are determined by the
Coulomb-Lorentz force exerted by an external field with specified potentials (A0, ϕ0). Middle panel: a field
(E1,B1) evolves according to the source-free Maxwell equations. Right panel: a field (E,B) evolves according to
the Maxwell-equations with the particles as the source of charge and current. The Coulomb-Lorentz force
exerted by this field acts back on the particles and determines their trajectories.

The crucial test is that the Lagrange equations associated with (24.15) correctly reproduce the Maxwell
equations for the fields and Newton’s second law with the Coulomb-Lorentz force law for the particles.

Two strategies are used to establish (24.15). One approach acknowledges that we already know
the equations of motion. Hence, it may be possible to derive LEM simply by “working backwards”.
This exercise is worthwhile because (i) it is not obvious that LEM exists and (ii) knowledge of the
Lagrangian produces insights not immediately apparent from the equations of motion. An alternative
approach aims to deduce the field-dependent terms in (24.15) from nearly first principles. The main
assumption is that each term in the corresponding action (24.5) is a Lorentz invariant scalar. Thereafter,
the “construction” process is guided by (i) respect for the other symmetries of the problem; (ii) an
aesthetic desire that LEM be as simple as possible; and (iii) an appeal to minimal experimental data.
The last of these recognizes that “the form of the [electromagnetic] action . . . cannot be fixed on the
basis of general considerations alone”.2

Once it is known, LEM provides a direct route to the equations of motion and the conservation laws.
The experience gained from this approach to LEM proves useful when the time comes to construct
Lagrangians for problems where the dynamics is not known. In this section, we incorporate elements
of both the “working backward” and deductive approaches.

24.3.1 A Look Ahead
The mathematics of the Lagrangian method has the potential to obscure the physics. To combat this,
we rationalize the logic followed in the next three subsections and state the final results now. The
key point is that LEM in (24.15) is the sum of three terms. These are a particle Lagrangian Lp, a
particle-field interaction Lagrangian Lpf (A, ϕ), and a field Lagrangian Lf (E,B):

LEM = Lp + Lpf (A, ϕ) + Lf (E,B). (24.16)

Because Lp is simply the Lagrangian for a free particle, we include particle-field interactions and
derive the auxiliary Lagrangian L0 = Lp + Lpf first. We then derive the free-field Lagrangian Lf .
The sum of these is the total Lagrangian, LEM = L0 + Lf . Figure 24.1 summarizes the (possibly)
surprising result we will find that L0, Lf , and LEM each describe a distinct and physically realizable
situation.

2 L.D. Landau and E.M. Lifshitz, , The Classical Theory of Fields, 2nd edition (Addison-Wisley, Reading, MA, 1962),
Section 16.
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The left panel of Figure 24.1 indicates the physics described by the auxiliary Lagrangian L0 =
Lp + Lpf (A0, ϕ0). We show in Section 24.3.2 that Lagrange’s equations derived from L0 determine
the particle trajectories from Newton’s second law and the Coulomb-Lorentz force exerted on the
particles by an external field (illustrated by a plane wave in the panel) described by the potentials
(A0, ϕ0). The time dependence of these external potential functions must be specified ahead of time.
This Lagrangian completely neglects the fields produced by the particles themselves. For that reason,
L0 may be relevant to situations where the particle density is very low.

The middle panel of Figure 24.1 indicates the physics described by the free-field Lagrangian
Lf (E1,B1). There are no particles present and the time dependence of the field is not specified ahead
of time. Instead, the fields evolve according to Lagrange’s equations for Lf , which turn out to be
the source-free Maxwell equations (see Section 24.3.3). The example sketched in Figure 24.1 is a
beam-like solution of these equations (see Section 16.7).

The right panel of Figure 24.1 indicates the physics described by the total LagrangianLEM in (24.16).
This a closed system and Lagrange’s equations derived in Section 24.3.5 from LEM describe the field
dynamics and particle dynamics simultaneously and self-consistently. The potentials (A, ϕ) are the
source of the Coulomb-Lorentz force on the particles and the particles produce the charge density
and current density in the Maxwell equations which determine how the fields E = ∇ϕ − ∂A/∂t and
B = ∇ × A evolve in time. To include the effect of an external field on the particle motion (e.g., the
field in left panel), we need only add A0 to A and ϕ0 to ϕ in Lpf .

Comparing (24.15) and (24.16) shows that Lp is the non-relativistic kinetic energy of the particles.
The second term, Lpf , couples the scalar potential and the vector potential, respectively, to the charge
and current densities,

ρ(r, t) =
∑
k

ekδ[r − rk(t)] and j(r, t) =
∑
k

ekvkδ[r − rk(t)]. (24.17)

The scalar potential term in (24.15) is reminiscent of the negative of a quasi-electrostatic potential
energy and the entire interaction term Lpf would have the T−V structure of a mechanical Lagrangian
if the magnetic vector potential term could be interpreted as a form of kinetic energy. Conversely, a
similar interpretation of the minus sign in the field LagrangianLf would associate electric energy with
kinetic energy and magnetic energy with potential energy. A more correct inference is that the field
dynamically exchanges electric energy and magnetic energy in the same way that a simple mechanical
system dynamically exchanges kinetic energy and potential energy.

In the sections to follow, we derive the constituent pieces of (24.15) and confirm that the corre-
sponding Lagrange equations produce the behavior summarized above. Later in the chapter, we relate
the electromagnetic conservation laws for charge, energy-momentum, and angular momentum to the
gauge invariance, translational invariance, and rotational invariance of the total Lagrangian.

24.3.2 A Charged Particle in a Specified Field
In this section, we show that the Lagrangian L0(r, v) for a single particle with charge e and mass m
moving with velocity v(t) = ṙ(t) in a specified electromagnetic field is the sum of the particle and
particle-field interaction terms in (24.16). Our method is to work backwards from the Coulomb-Lorentz
equation of motion,

m
dv
dt

= e[E(r, t) + v × B(r, t)]. (24.18)
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24.3 Lagrangian Description 921

More precisely, we deduce L0 after manipulating (24.18) into the form of Lagrange’s equation (24.2)
for this problem:

d

dt

(
∂L0

∂v

)
= ∂L0

∂r
= ∇L0. (24.19)

The gradient operator on the right side of (24.19) suggests that we write the Maxwell fields in terms
of the scalar potential ϕ(r, t) and vector potential A(r, t):

B = ∇ × A E = −∇ϕ − ∂A
∂t

. (24.20)

The velocity v(t) is not a function of position, so (24.20) and the vector identity

∇(v · A) = v × (∇ × A) + A × (∇ × v) + (v · ∇)A + (A · ∇)v (24.21)

transform (24.18) to

m
dv
dt

= −e
[
∇ϕ + ∂A

∂t
+ (v · ∇)A − ∇(v · A)

]
. (24.22)

We recall now from Section 1.3.3 that the term (v · ∇)A in (24.22) accounts for the variation of A
due to the motion of the charged particle in the definition of the total (convective) time derivative:

dA
dt

= ∂A
∂t

+ (v · ∇)A. (24.23)

Inserting (24.23) into (24.22) and rearranging terms gives

d

dt
(mv + eA) = e∇(v · A − ϕ). (24.24)

Comparing (24.24) to (24.19) shows that the latter produces the former if the Lagrangian for a charged
particle in an external electromagnetic field is

L0(r, v) = 1
2mv

2 + ev · A(r, t) − eϕ(r, t). (24.25)

Substituting (24.17) into the second term of (24.15) and comparing to (24.16) confirms our statement
that (24.25) is the sum L0 = Lp + Lpf .

We conclude with two remarks. First, with L0 in hand, (24.13) identifies

p = ∂L0

∂v
= mv + eA (24.26)

as the canonical momentum for this problem. This formalizes the interpretation of eA given in
Section 15.5.3 as the linear momentum stored in an electromagnetic field which can be exchanged
with the kinetic momentum mv of a charged particle when external forces [the right side of (24.24)]
act. If we write Newton’s second law as F = mv̇, the reader will recognize (24.24) as the instantaneous
rest-frame (v = 0) expression (15.38) from our discussion of conservation of total linear momentum
in Section 15.5.

Second, a “working backward” argument similar to the one used in this section can be used to
generalize (24.25) to the case of particles moving at relativistic speeds. We leave it as an exercise for
the reader to show that Lagrange’s equation (24.19) evaluated using

L0(r, v) = −mc2

γ
+ ev · A(r, t) − eϕ(r, t) (24.27)

produces the relativistic equation of motion (22.69) deduced in Section 22.5.2. It is interesting to note
that the first term on the right side of (24.27) is not the relativistic kinetic energy, T = mc2(γ − 1).
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922 LAGRANGIAN AND HAMILTONIAN METHODS

Example 24.2 A neutral and point-like particle possesses an electric dipole moment p(t) and a
magnetic dipole moment m.

(a) Use (24.15) to evaluate L0 = Lp + Lpf in (24.16) and show that a suitable Lagrangian for this
object moving in specified electric and magnetic fields E(r, t) and B(r, t) is

L = 1
2mv

2 + m · B + p · (E + v × B).

(b) Show that the force on the particle predicted byL is the same as the one found in Section 15.9.1:

F = d

dt
(p × B) + ∇ [p · (E + v × B)] + ∇(m · B).

Hint: A moving polarization P produces a magnetization M = P × v (see Section 14.2.2).

Solution:

(a) The Lagrangian

Lpf =
∫

d 3r Lpf =
∫

d 3r (j · A − ρϕ)

requires the charge density ρ and current density j of an electric and magnetic point dipole
with trajectory r0(t). Using the hint,

ρ = −∇ · P = −∇ · [pδ(r − r0)]

and

j = ∂P
∂t

+ ∇ × M = ṗδ(r − r0) + ∇ × [mδ(r − r0) + pδ(r − r0) × v] .

Because v(t) = ṙ(t), writing out the divergence and curl operations gives

ρ = −p · ∇δ(r − r0)

and

j = ṗδ(r − r0) − m × ∇δ(r − r0) + p(v · ∇)δ(r − r0) − v(p · ∇)δ(r − r0).

Substituting ρ and j into the Lagrangian Lpf and integrating by parts (when necessary) to
eliminate terms like ∇δ(r − r0) localizes every function of position at r = r0. We simplify
the notation by dropping the subscript from r0 to simplify the notation. Hence, because
B = ∇ × A,

Lpf = ṗ · A + m · B + p · (v × B) − p · ∇ϕ.
Adding the non-relativistic particle Lagrangian Lp = 1

2mv
2 to Lpf and using E = −∇ϕ − Ȧ

permits us to write the sum L = Lp + Lpf as

L = 1

2
mv2 + d

dt
(p · A) + m · B + p · (v × B) + p · E.

This differs from the proposed Lagrangian by a total time derivative. From (24.11) and (24.12),
both Lagrangians produce the same equation of motion for the particle.

(b) Dropping the total time derivative term from L, the left side of Lagrange’s equation (24.2) is

dp
dt

= d

dt

∂L

∂v
= d

dt
[mv + B × p] .
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The right side of (24.2) is

∂L

∂r
= ∇ [p · (E + v × B) + m · B] .

Setting these two expressions equal gives the advertised force from Newton’s second law,

d

dt
mv̇ = d

dt
(p × B) + ∇ [p · (E + v × B)] + ∇ (m · B) .

24.3.3 The Free Electromagnetic Field
The conservation laws developed in Chapter 15 established that an electromagnetic field behaves like
a mechanical system capable of exchanging energy, linear momentum, and angular momentum with
charged particles. A typical “motion” of this system is a redistribution of the fields in space and time as
dictated by the Maxwell equations. A Lagrangian description becomes possible when we generalize
the idea of a “dynamical variable” to include the Cartesian components of the electromagnetic field at
every point in space.

Consider a free electromagnetic field with no charged particles present. If the discrete index k runs
over x, y, and z and the continuous index r runs over every point in space, the preceding suggests
that Ek(r, t) represents 3 × ∞ dynamically independent electric field variables. Similarly, Bk(r, t)
represents 3 × ∞ dynamically independent magnetic field variables. From this point of view, the
field-only part of the Lagrangian can be at most a combination of these variables summed over both
the discrete and continuous indices. This is exactly what we find in the last term of (24.15) and
designated in the last term of (24.16) as the free-field Lagrangian,

Lf = 1
2ε0

∫
d 3r (E · E − c2B · B) = ∫

d 3r Lf . (24.28)

The rightmost member of (24.28) defines the free-field Lagrangian densityLf and a deductive approach
to this quantity aims to establish the particular form shown in the middle member of (24.28) from
first principles. For guidance, we use the fact that Lagrange’s equations derived from this Lagrangian
should produce the Maxwell equations for a free electromagnetic field.

The absence of sources suggests that Lf depends on E and B alone. Otherwise, the form of Lf

is constrained by three facts. First, we expect the generalized coordinates and velocities to be linear
functions of E and B (see Section 24.3.4 below). Second, Lagrange’s equation (24.2) involves only
first derivatives of the coordinates and velocities. Third, the Maxwell equations are linear in the fields.
These observations imply that Lf can be at most quadratic in the field amplitudes. Moreover, Lf must
be a scalar. Therefore, if a, b, and g are constants, we conclude that the Lagrangian density must have
the form

Lf = aE · E + gE · B + bB · B. (24.29)

The fact that the Lagrangian density Lf and the energy density uEM have the same dimensions permits
us to infer that a ∝ ε0, g ∝ ε0c, and b ∝ ε0c

2.
An issue with (24.29) is that its three terms do not transform identically under the parity operation

where r → −r. A glance back at Section 15.2.1 shows that E is odd under parity and B is even under
parity. Therefore, we have the choice in (24.29) of discarding the E · B term (g = 0) or discarding
both the E · E and B · B terms (a = b = 0). We rule out the latter by the additional requirement that
Lf apply to electrostatic (B = 0) and magnetostatic (E = 0) situations separately. Therefore, g = 0
and we conclude that there is no E · B term in the free-field Lagrangian density.

This is as far as we can go using non-relativistic heuristics. The best way to check that the specific
values a = ε0/2 and b = −ε0c

2/2 quoted in (24.28) are correct is to confirm that the corresponding
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Lagrange equations produce the free-field Maxwell equations. We skip this step here because we
will perform the analogous calculation in Section 24.3.5 using the complete Lagrangian (24.15). The
results we get will confirm the correctness of (24.28) a posteriori.

24.3.4 The Lagrange Equations for Fields
It is necessary to generalize Lagrange’s equations (24.2) before we can derive the Maxwell equations
from the total electromagnetic Lagrangian (24.15). This is so because the Lagrangian offers E(r, t),
B(r, t), A(r, t), and ϕ(r, t) as possible generalized coordinates and these are functions of time and
space rather than functions of time alone. In this section, we make a choice of coordinates and then
derive the generalized Lagrange equation needed to discover how they evolve in time.

One modus of Lagrangian electrodynamics uses all four of the functions displayed above as inde-
pendent generalized coordinates. We leave this approach as an exercise for the reader. Here, we proceed
differently and retain only the vector potential and the scalar potential as generalized coordinates. Our
main reason for doing this is familiar from previous work. The representation of the fields in terms of
the potentials in (24.20) implies that the homogeneous Maxwell equations

∇ · B = 0 and ∇ × E + ∂B
∂t

= 0 (24.30)

are satisfied automatically and require no further attention. This permits us to focus on using the
Lagrangian formalism to derive the inhomogeneous Maxwell equations, Gauss’ law, and the Ampère-
Maxwell law. It also means we must write the Lagrangian (24.15) entirely in terms of the potentials:

LEM = 1
2

∑
k

mkv
2
k + ∫

d 3r (j · A − ρϕ) + 1
2ε0

∫
d 3r

[
(∇ϕ + ∂A/∂t)2 − c2 (∇ × A)2

]
. (24.31)

Apart from the integration over space, the action associated with (24.31) differs from (24.5) because
the Lagrangian contains not only the generalized velocity ∂A/∂t but also the derivatives ∇ϕ and
∇ × A. This suggests we should derive Lagrange’s equations for an action which includes space
derivatives of the generalized coordinates:

S =
t2∫

t1

dt

∫
d 3r L [qk(r, t), q̇k(r, t), ∂iqk(r, t)] . (24.32)

The variation of (24.32) generalizes (24.7) to

δS =
∫ t2

t1

dt

∫
d 3r

[
∂L
∂qk

δqk + ∂L
∂q̇k

δq̇k + ∂L
∂(∂iqk)

δ(∂iqk)

]
. (24.33)

Using δ(∂iqk) = ∂i(δqk), the integrand of (24.33) may be written as

∂L
∂qk

δqk + d

dt

(
∂L
∂q̇k

δqk

)
− d

dt

(
∂L
∂q̇k

)
δqk + ∂i

{
∂L

∂(∂iqk)
δqk

}
− ∂i

{
∂L

∂(∂iqk)

}
δqk. (24.34)

Following Section 24.2, we eliminate the integral over the second and fourth (total derivative) terms
in (24.34) by constraining the variations of the position-dependent generalized coordinates so

δqk(r, t1) = δqk(r, t2) = 0
(24.35)

δqk(r, t) = 0 when r → ∞.

The terms that remain produce the net variation

δS =
∫ t2

t1

dt

∫
d 3r

[
∂L
∂qk

− d

dt

(
∂L
∂q̇k

)
− ∂i

{
∂L

∂(∂iqk)

}]
δqk. (24.36)
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Again following Section 24.2, the variation δqk is arbitrary, so δS = 0 is guaranteed only if

d

dt

(
∂L
∂q̇k

)
= ∂L

∂qk
− ∂i

∂L
∂(∂iqk)

. (24.37)

24.3.5 The Coulomb-Lorentz and Maxwell Equations
We are now in a position to derive the equations of motion for both the particles and the fields from the
total electromagnetic Lagrangian LEM in (24.31). The first step notes that the free-field part of LEM is
independent of the positions and velocities of the charged particles. Therefore, Lagrange’s equation
for each coordinate rk is exactly the same as the equation of motion derived from the Lagrangian
L0(rk, vk) recorded in (24.27). Transcribing from (24.24) gives

d

dt
[mkvk + ekA(rk)] = ek∇k [vk · A(rk) − ϕ(rk)] , (24.38)

and following the steps backward from (24.24) to (24.18) gives the Coulomb-Lorentz equations of
motion for the charged particles:

mk

dvk
dt

= ek[E(rk, t) + vk × B(rk, t)]. (24.39)

Turning to the fields, we remind the reader that our use of the potentials in (24.31) establishes the
homogeneous Maxwell equations in (24.30) as identities based on (24.20). Therefore, if we begin with
the generalized coordinate A(r, t), the left side of (24.37) is the time derivative of a position-dependent
canonical momentum density π (r, t) defined by (24.13) and the generalized velocity Ȧ ≡ ∂A/∂t . The
latter appears only in the free-field part of the total Lagrangian density LEM and we find

π = ∂LEM

∂Ȧ
= ε0

(∇ϕ + Ȧ
) = −ε0E. (24.40)

The corresponding Lagrange equation for each Cartesian component of π is

dπk

dt
= ∂LEM

∂Ak

− ∂i
∂LEM

∂(∂iAk)
. (24.41)

However, ∂LEM/∂Ak = (∂/∂Ak)(j · A) = jk and

∂

∂(∂iAk)

[
1

2μ0
(∇ × A)2

]
= 1

μ0

∂

∂(∂iAk)
(Bjεj�m∂�Am) = 1

μ0
Bjεjik. (24.42)

Therefore, (24.41) reads

dπk

dt
= jk − 1

μ0
εkij ∂iBj . (24.43)

Using (24.40), we identify (24.43) as the Ampère-Maxwell law,

∇ × B = μ0j + 1

c2

∂E
∂t

. (24.44)

The generalized coordinate ϕ(r, t) is distinguished by the fact that its “velocity” ϕ̇(r, t) does not
appear anywhere in the Lagrangian (24.31). This means that the associated canonical momentum
vanishes,

π0(r, t) = ∂LEM

∂ϕ̇
= 0, (24.45)

and the corresponding Lagrange equation is

0 = ∂LEM

∂ϕ
− ∂i

∂LEM

∂(∂iϕ)
. (24.46)

However, ∂L/∂ϕ = (∂/∂ϕ)(−ρϕ) = −ρ and

∂

∂(∂iϕ)

[ε0

2
(∇ϕ + Ȧ)2

]
= −ε0

∂

∂(∂iϕ)

[
Ek(∂kϕ + Ȧk)

] = −ε0Ei. (24.47)
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Therefore, (24.46) reads

0 = −ρ + ε0∂iEi. (24.48)

This is Gauss’ law,

∇ · E = ρ/ε0. (24.49)

Several remarks are in order. First, our evaluation of Lagrange’s equations (24.37) produced first-
order (Maxwell) equations for the fields rather than second-order equations for the potentials equivalent
to those derived in Section 15.3. This happened because we substituted from (24.20) at an early stage
of each calculation. Second, the consequence of (24.45) that there is no true equation of motion for
ϕ(r, t) is consistent with the “initial condition” status afforded to Gauss’ law in (2.89) at the end of
Chapter 2.

Finally, it is rather remarkable that a complete description of charged particles interacting with
their fields follows from the Lagrangian LEM in (24.31). After all, we “derived” LEM as the sum
of a Lagrangian L0 for charged particles moving in an external field and a Lagrangian Lf for free
fields in the absence of charges. This implies that the matter-field interaction term e(v · A − ϕ) which
accounts for the effect of an electromagnetic field on charged particles also accounts for the creation
of electromagnetic fields by charged particles.

24.3.6 Covariant Formulation
Covariant forms for the total electromagnetic action and its Lagrange equation follow straightforwardly
from the work we have done so far. For the action, we replace the non-relativistic kinetic energy in
(24.15) by the relativistic particle Lagrangian in (24.27) and exploit the invariants jμAμ = j · A −
ρϕ and FμνFμν = 2(B · B − E · E/c2) [see (22.139)]. The action is the time-integral of the total
Lagrangian, so

S =
∫

dt

{
−mc2

γ
+
∫

d 3r

[
jμAμ − 1

4μ0
FμνFμν

]}
. (24.50)

The principle of relativity tells us that Hamilton’s principle must produce the same physics in every
inertial frame. An immediate consequence is that the action S must be a Lorentz invariant scalar. The
expression (24.50) satisfies this requirement because both the proper time dτ = dt/γ and the four-
dimensional volume element d 4r = dxdydzd(ct) are Lorentz invariant scalars. Indeed, this argument
and the Lorentz scalar nature of jμAμ and FμνFμν are central to the “deductive” approach to deriving
LEM mentioned in Section 24.3.1.

The Lagrange equations follow from (24.50) by a direct application of Hamilton’s principle. Alterna-
tively, the structure of the four-gradient ∂μ = [∇, ∂/∂(ict)] shows that the equation of motion (24.37)
for the generalized coordinate Aα can be written in the manifestly covariant form

∂μ
∂L

∂(∂μAα)
= ∂L

∂Aα

. (24.51)

A Brief History of Electromagnetic Lagrangians

The action principle was embraced by many 19th scientists as a central organizing principle for
the mechanistic world. Therefore, it is not surprising that Maxwell devotes an entire chapter of
his Treatise on Electricity and Magnetism (1873) to an account of the equations of Lagrange and
Hamilton. On the other hand, his actual use of these equations to develop his theory is rather
sparing. It was left to Helmholtz to challenge his contemporaries to discover a single Lagrangian
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from which one could derive both Maxwell’s system of field equations and the Coulomb-Lorentz
force law for moving charges. Helmholtz’ own solution of this problem was complicated and has
largely been forgotten.

An important step forward was made by Lorentz in 1892. Although he used virtual-work
arguments, the translation of his work into Lagrangian language by Darrigol (2000) permits us to
conclude that Lorentz was the first person to write the Lagrangian L0 in (24.25) and use it to derive
the force F = q(E + v × B). Lorentz also (essentially) wrote the free-field Lagrangian (24.28) and
used it to derive Faraday’s law by treating E as a generalized coordinate. On the other hand, he did
not derive either Gauss’ law or the Ampère-Maxwell law from a dynamical principle.

The Lagrangian LEM in (24.15) and the idea that one should use the vector and scalar potentials
alone as generalized coordinates is due to Karl Schwarzchild (1903). The content of our Sec-
tion 24.3.5 is essentially his derivation of the Maxwell equations and the Coulomb-Lorentz force
law from the corresponding Lagrange equations. Today, Schwarzchild is best remembered as the
first person to obtain an exact solution (the non-rotating black hole) of Einstein’s equations of
general relativity.

24.4 Invariance and Conservation Laws

Textbooks of classical mechanics typically point out that the total energy of a mechanical system is
conserved if its Lagrangian is not an explicit function of time. In a similar way, conservation of linear
momentum and conservation of angular momentum are related to the invariance of the Lagrangian
with respect to uniform translations and rotations in space. In this section, we generalize this idea and
show how the conservation laws of electromagnetism result when Hamilton’s principle of stationary
action (Section 24.2) is applied to infinitesimal variations of variables which reflect the fundamental
symmetries of the theory.

24.4.1 Conservation of Charge
The conservation of electric charge is a consequence of the gauge invariance of electrodynamics
and vice versa. To see this, consider the Lagrangian for a charged particle in an electromagnetic field,
L0 = 1

2mv
2 + ev · A − eϕ (see Section 24.3.2). The presence of the electromagnetic potentials tells us

thatL0 is not gauge invariant. If�(r, t) is an arbitrary scalar function, a gauge change to A′ = A + ∇�
and ϕ′ = ϕ − ∂�/∂t changes the Lagrangian from L0 to [cf. (24.23]

L′
0 = L0 + e

(
v · ∇�+ ∂�

∂t

)
= L0 + e

d�

dt
. (24.52)

On the other hand, we know from (24.11) and (24.12) that L′
0 and L0 produce exactly the same

Lagrange equation (24.2). This confirms what we already know: the Coulomb-Lorentz force law in
(24.18) depends only the gauge invariant electric and magnetic fields.

From the perspective of Hamilton’s principle (Section 24.2), the gauge invariance of Lagrange’s
equation implies that the stationary action condition δS = 0 is valid when we treat the change of
gauge as a variation. In other words, if δ� is an infinitesimal gauge function, (24.52) tells us that the
generalized coordinate variations A → A + ∇δ� and ϕ → ϕ − ∂(δ�)/∂t applied to the Lagrangian
for a collection of charged particles produces a variation in the action,

δS =
t2∫

t1

dt
∑
k

ek

{
vk · ∇[δ�(rk, t)] + ∂[δ�(rk, t)]

∂t

}
. (24.53)
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Using (24.17) to rewrite (24.53) gives the gauge invariance condition,

δS =
t2∫

t1

dt

∫
d 3r

{
j · ∇(δ�) + ρ

∂(δ�)

∂t

}
= 0. (24.54)

The key step is to rewrite (24.54) as

δS =
t2∫

t1

dt

∫
d 3r

[
∇ · (jδ�) + ∂

∂t
(ρδ�)

]
−

t2∫
t1

dt

∫
d 3r

(
∇ · j + ∂ρ

∂t

)
δ� = 0. (24.55)

The first space-time integral in (24.55) vanishes from the end-point restrictions on the variations of
the generalized coordinates ϕ and A stated in (24.35). Therefore, because δ� is otherwise arbitrary,
the gauge invariance of electrodynamics has led us to the continuity equation for electric charge,

∇ · j + ∂ρ

∂t
= 0. (24.56)

Running this argument backwards for a localized distribution demonstrates that gauge invariance is a
consequence of the conservation of charge.3

24.4.2 Noether’s Theorem
A celebrated theorem due to Noether makes a general connection between conserved quantities and the
invariance of the action with respect to variations of a continuous variable. The setting for the theorem
is a variation of the action which supplements the functional variations we have allowed so far with
infinitesimal variations of the space-time coordinates. Our interest is the covariant electromagnetic
action (24.50). Therefore, we vary an action with the general form

S = 1

c

∫
d 4r L[rα, Aα(rμ), ∂βAα(rμ)]. (24.57)

An infinitesimal transformation of the coordinates is

rμ → r ′
μ = rμ + δrμ. (24.58)

The four-potential and its derivatives vary in two ways. The first is an explicit functional variation
performed without any change of coordinates. This we have done previously. The second is an implicit
functional variation induced by the coordinate transformation (24.58). If we use the notation δ0Aα for
the first type of variation and δA for the total variation,

Aα → Aα + δAα = Aα + δ0Aα + ∂Aα

∂rμ
δrμ. (24.59)

The action varies in two ways also. One comes from the variation of the Lagrangian density with no
change of coordinates. The other comes from the variation of the integration volume element induced
by (24.58):

δS = δ

∫
d 4r L =

∫
d 4r δ0L +

∫
δ(d 4r)L. (24.60)

The variation of the Lagrangian density in (24.60) is

δ0L = ∂L
∂rμ

δrμ + ∂L
∂Aα

δ0Aα + ∂L
∂(∂μAα)

δ0(∂μAα). (24.61)

3 The boxed material in Section 15.3.1 presents Wigner’s qualitative argument for this conclusion.
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The identity δ0(∂μAα) = ∂μ(δ0Aα) implies that (24.61) is the same as

δ0L = ∂L
∂rμ

δrμ + ∂L
∂Aα

δ0Aα + ∂μ

[
∂L

∂(∂μAα)
δ0Aα

]
− ∂μ

[
∂L

∂(∂μAα)

]
δ0Aα. (24.62)

The variation of the four-dimensional volume element in (24.61) is

δ(d 4r) = d 4r ′ − d 4r = d 4rJ − d 4r = d 4r ∂μ(δrμ), (24.63)

because the Jacobian of the coordinate transformation (24.58) is (see Section 1.4.1)

J =
∣∣∣∣det

(
∂r ′

μ

∂rν

)∣∣∣∣ = |det(δμν + ∂νδrμ)| = 1 + ∂μ(δrμ) +O(δr2
μ). (24.64)

Substituting (24.62) and (24.63) into (24.60) gives the intermediate result

δS =
∫

d 4r

{
∂μ(Lδrμ) +

[
∂L
∂Aα

− ∂μ

{
∂L

∂(∂μAα)

}]
δ0Aα + ∂μ

[
∂L

∂(∂μAα)
δ0Aα

]}
. (24.65)

At this point, we pause and apply Hamilton’s principle (Section 24.2) to the variation (24.65) with
δrμ = 0. The first term in the integrand vanishes identically and the integral of the last, total derivative
term vanishes from the end-point restriction on the variations of δ0Aα discussed earlier. Combining
δS = 0 with the arbitrariness of δ0Aα leads to the conclusion that

∂L
∂Aα

− ∂μ

{
∂L

∂(∂μAα)

}
= 0. (24.66)

This is Lagrange’s equation (24.51). Henceforth, we assume that the four-potential satisfies this
equation in (24.65). In that case, (24.65) reduces to

δS =
∫

d 4r ∂μ

[
Lδrμ + ∂μ

(
∂L

∂(∂μAα)
δ0Aα

)]
. (24.67)

Noether’s theorem considers variations which leave the action invariant such as spatial and temporal
symmetry operations. This means that δS = 0 and we derive from (24.67) a conservation law in the
form of a generalized equation of continuity:

∂μ

[
Lδrμ + ∂μ

(
∂L

∂(∂μAα)
δ0Aα

)]
= 0. (24.68)

An alternative form uses (24.59) to replace δ0Aα by δAα in (24.68). The result is

∂μ

[(
Lδμν − ∂L

∂(∂μAα)
∂νAα

)
δrν + ∂L

∂(∂μAα)
δAα

]
= 0. (24.69)

24.4.3 Conservation of Energy-Momentum
Relativistic energy-momentum is conserved for an isolated system which is invariant to uniform
translations in space-time. This follows from Noether’s theorem with the choice δrμ = δεμ where δεμ
is a constant four-vector. The explicit functional change in Aα(rν) produced by this translation without
any change of coordinates is [cf. (12.122)]

δ0Aα(rν) = Aα(rν − δεν) − Aα(rν) = −∂Aα

∂rν
δεν. (24.70)

Using (24.59), the total variation δAα = 0. In other words, the translated function at the translated
coordinate position is the same as the original function at the original coordinate position. With this
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information, the arbitrary nature of the translation vector δεμ implies that (24.69) reduces to

∂μ

(
δμνL − ∂L

∂(∂μAα)
∂νAα

)
= 0. (24.71)

It is tempting to evaluate the conservation law (24.71) using the total Lagrangian density LEM.
However, the presence of the jμAμ term in (24.50) makes this impermissible because this interaction
piece of the Lagrangian density facilitates the exchange of energy-momentum between the field-
only system described by (24.72) and the matter system described by the four-current jμ(xν). A more
general conservation law would result if we took account of the matter in the Lagrangian and permitted
variations of this Lagrangian induced by variations of the matter variables.

Let us evaluate (24.71) using only the free-field Lagrangian density,

Lf = − 1

4μ0
FσβFσβ. (24.72)

The first step is to note that Fσβ = ∂σAβ − ∂βAσ and Fσβ = −Fβσ imply that

∂Lf

∂(∂μAα)
∂νAα = − 1

4μ0

[
2Fσβ

∂Fσβ

∂(∂μAα)

]
∂νAα = − 1

μ0
Fμα∂νAα. (24.73)

Therefore, using ∂νAα = Fνα + ∂αAν ,

−∂μ

(
∂Lf

∂(∂μAα)
∂νAα

)
= 1

μ0

[
∂μ(FμαFνα) + (∂μFμα)∂αAν + Fμα∂μ∂αAν

]
. (24.74)

The last term in (24.74) vanishes because Fμα = −Fαμ. The next-to-last term vanishes also from the
jμ = 0 limit of the inhomogeneous Maxwell equations [see (22.140)],

∂νFμν = 0. (24.75)

Using (24.72) for the first term of (24.71) and (24.74) for the second term, we arrive finally at the
desired conservation law, namely,

∂μ�μν = 0, (24.76)

where

μ0�μν = FμσFνσ − 1
4δμνFαβFαβ. (24.77)

This agrees with the results of Section 22.7.3 where we used (24.77) to define the electromagnetic
stress-energy tensor and found the energy-momentum conservation law ∂μ�μν = −jαFνα for a system
with sources.

24.4.4 Conservation of Angular Momentum
We showed in Section 22.7.4 that uniform motion of the center of energy and a statement of the
conservation of electromagnetic angular momentum are contained in the covariant conservation law,

∂σMσμν = 0, (24.78)

where

Mσμν = �σμrν −�σνrμ = −Mρνμ. (24.79)

These results are a consequence of rotational invariance. Therefore, we expect (24.78) to follow from
Noether’s theorem when the variations in (24.68) or (24.69) correspond to an infinitesimal rotation in
space.
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Let δω be an infinitesimal vector whose components are the Euler angles of a rigid rotation. The
change in a position vector due to this rotation is

δr = δω × r. (24.80)

An equivalent representation uses the anti-symmetric object δ�ij = −δ�ji defined by

δri = εijkδωj rk ≡ δ�ikrk. (24.81)

If we choose δr4 = 0, a four-dimensional representation of (24.81) is4

δrν = δ�μνrν. (24.82)

The same rotation (without a change of coordinates) produces a change in A(r) given by5

δ0A(r) = −(δr · ∇) · A(r) + δω × A(r), (24.83)

or

δ0Aα = −∂νAαδrν + δ�αβAβ. (24.84)

Using (24.84) in (24.59) gives the total variation including rotation of the coordinates as

δAα = δ�αβAβ. (24.85)

Equation (24.85) agrees with (24.82), as expected, because rν and Aβ transform the same way.
The conservation law (24.69) written out using (24.82), (24.85), and the derivative of the free-field

Lagrangian density computed in (24.73) is

1

μ0
δ�νσ ∂μ

[(
−1

4
δμνFσβFσβ + Fμα∂νAα

)
rσ − FμνAσ

]
= 0. (24.86)

It is not difficult to rewrite (24.86) using ∂νAα = Fνα + ∂αAν and the definition of �μν in (24.77):

δ�μν∂μ
[
�μσ rν + μ0Fμα(∂αAν)rσ − μ0FμνAσ

] = 0. (24.87)

Now write (24.87) again with the indices ν and σ exchanged, and add the result to (24.87). Because
δ�σν = −δ�νσ , we find

δ�νσ ∂μ
(
�μνrσ −�μσ rν

) = δ�νσ ∂μ
[
Fμα(∂αAν)rσ − Fμα(∂αAσ ) − FμνAσ + FμσAν

]
. (24.88)

Equation (24.75) and the anti-symmetry ofFμν are all the reader needs to show that the four-divergence
on the right side of (24.88) is zero. Therefore, because δ�νσ is arbitrary, we conclude that

∂μ
(
�μνrσ −�μσ rν

) = 0. (24.89)

This is the anticipated angular momentum conservation law (24.78).

24.5 Hamiltonian Description

Hamilton’s equations of motion are completely equivalent to Lagrange’s equations of motion
for mechanical systems of the sort usually studied in classical mechanics. In this section, we

4 The only property of δ�μν used below is δ�μν = −δ�νμ.
5 Equation (24.83) is the possibly more familiar expression δ0A(r) = R · A(R−1 · r) − A(r) evaluated with a rotation

matrix R which describes the infinitesimal rotation δω. See, e.g., Section 17.1 of O. Keller, Quantum Theory of
Near-Field Electrodynamics (Springer, Berlin, 2011).
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show that the conventional Hamiltonian method is not entirely satisfactory when applied to clas-
sical electrodynamics. There is no problem in using Hamilton’s equations to derive either the
inhomogeneous Maxwell equations or the Coulomb-Lorentz equations for the charged particles.
Inconsistency appears only when we write Hamilton’s equation for the electromagnetic scalar
potential. We outline Dirac’s solution to this problem and thereby highlight the central roles
of gauge invariance and gauge fixing in constructing a consistent Hamiltonian formulation of
electrodynamics.

We begin with the Lagrangian L(qk, q̇k, t) introduced in Section 24.2, generalized to include an
explicit dependence on time. The time derivative of this object is

dL

dt
= ∂L

∂t
+
∑
k

(
∂L

∂qk
q̇k + ∂L

∂q̇k
q̈k

)
. (24.90)

The definition (24.13) of the canonical momentum,

pk = ∂L

∂q̇k
, (24.91)

simplifies Lagrange’s equations (24.2) to

∂L

∂qk
= d

dt

(
∂L

∂q̇k

)
= dpk

dt
. (24.92)

The two preceding equations put (24.90) in the form

dL

dt
= ∂L

∂t
+
∑
k

(ṗkq̇k + pkq̈k) , (24.93)

and motivate us to define the Hamiltonian function:

H (qk, pk) =
∑
k

pkq̇k − L(qk, q̇k). (24.94)

Using (24.94) to rewrite (24.93) gives

dH

dt
= −∂L

∂t
. (24.95)

Equation (24.95) shows that the Hamiltonian is a conserved quantity whenever the Lagrangian is not
an explicit function of time.

The notation on the left side of (24.94) reflects our expectation that the Legendre transformation
(see Section 5.6.2) on the right side of (24.94) produces a function of the coordinates and momenta
only. To confirm this, we differentiate H and use (24.91) and (24.92). The result is

dH =
∑
k

(
pkdq̇k + q̇kdpk − ∂L

∂qk
dqk − ∂L

∂q̇k
dq̇k

)
=
∑
k

(q̇kdpk − ṗkdqk) . (24.96)

With this information, the rules of calculus tell us that

dH =
∑
k

(
∂H

∂pk
dpk + ∂H

∂qk
dqk

)
. (24.97)
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Comparing (24.97) to (24.96) produces Hamilton’s equations:

q̇k = ∂H

∂pk
ṗk = −∂H

∂qk
. (24.98)

These equations are first-order in time in contrast to the second-order Lagrange equations.

Example 24.3 Derive the Hamiltonian for a relativistic point charge in an external electromagnetic
field. Find the non-relativistic limit.

Solution: Since 1/γ =
√

1 − v · v/c2, the Lagrangian (24.27) for this situation is

L0(r, v) = −mc2

√
1 − v · v

c2
+ ev · A(r, t) − eϕ(r, t).

The corresponding canonical momentum is

p = ∂L0

∂v
= γmv + eA.

Therefore, the Hamiltonian is

H = p · v − L = (γmv + eA) · v + mc2

γ
− ev · A + eϕ = γmc2 + eϕ.

Finally, we use the identity γmc =
√

(γmv)2 +m2c2 to write H as a function of p rather than v:

H = c
√

(γmv)2 +m2c2 + eϕ = c
√

(p − eA)2 +m2c2 + eϕ.

The non-relativistic limit of the canonical momentum is p = mv + eA. Therefore, the correspond-
ing non-relativistic Hamiltonian is

H = c

{
m2c2

[
1 + 1

m2c2
(p − eA)2

]1/2
}

+ eϕ ≈ mc2 + (p − eA)2

2m
+ eϕ.

24.5.1 The Coulomb-Lorentz Equations
The Hamiltonian for a set of charged particles coupled to their electromagnetic fields is constructed
directly from the corresponding Lagrangian. For convenience, we recall the latter from Section 24.3.5
and write it here:

LEM = 1
2

∑
k

mkv
2
k + ∫

d 3r (j · A − ρϕ) + 1
2ε0

∫
d 3r

[
(∇ϕ + ∂A/∂t)2 − c2 (∇ × A)2

]
. (24.99)

We also recall from (24.26), (24.40), and (24.45) that LEM and its Lagrangian density LEM define the
canonical momentum associated with the particle velocity vk , and the canonical momentum densities
associated with the generalized velocities Ȧ and ϕ̇, as

pk = ∂LEM

∂vk
= mvk + eA π = ∂LEM

∂Ȧ
= −ε0E π0 = ∂LEM

∂ϕ̇
= 0. (24.100)

Using all three terms in (24.100), the definition (24.94) of the Hamiltonian generalizes to

H =
∑
k

pk · vk +
∫

d 3r
(
π · Ȧ + π0ϕ̇

)− LEM. (24.101)
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Substituting (24.99) and (24.100) into (24.101) gives the intermediate result

H =
∑
k

(mkvk + ekA) · vk +
∫

d 3r π · Ȧ

−
∑
k

[
1

2
mkv

2
k + ekvk · A(rk) − ekϕ(rk)

]
(24.102)

− 1

2
ε0

∫
d 3r

[(∇ϕ + Ȧ
)2 − c2 (∇ × A)2

]
.

The Hamiltonian formalism requires that we express (24.102) as a function of the canonical momenta.
Using (24.100) and E = −∇ϕ − Ȧ, we find without difficulty that

H =
∑
k

1

2mk

[pk − ekA(rk)]2 +
∑
k

ekϕ(rk)

−
∫

d 3r π · ∇ϕ + 1

2
ε0

∫
d 3r

[(
π

ε0

)2

+ c2 (∇ × A)2

]
. (24.103)

The Hamiltonian (24.103) is best suited to evaluate Hamilton’s equations (24.98) for the particle
degrees of freedom. The results are

drk
dt

= ∂H

∂pk

= pk − ekA(rk)
mk

= vk (24.104)

and

dpk

dt
= −∂H

∂rk
= ek

mk

[(pk − ekA) · ∇]A − ek∇ϕ = ek∇(vk · A) − ek∇ϕ. (24.105)

Comparing (24.105) to (24.24) and working backward to (24.18) shows that Hamilton’s equation of
motion reproduces the expected Coulomb-Lorentz expression,

m
dv
dt

= e[E(r, t) + v × B(r, t)]. (24.106)

24.5.2 Hamilton’s Equations For Fields
The structure of the Hamiltonian (24.103) and our experience with the Lagrangian approach to field
dynamics in Section 24.3.4 motivates us to generalize Hamilton’s equations (24.98) to situations in
which the Hamiltonian is a space integral over a Hamiltonian density with the general form

H [qk(r, t), ∂iqk(r, t), pk(r, t), ∂ipk(r, t)] . (24.107)

Our strategy is to apply Hamilton’s principle (Section 24.2) and set to zero the variation of the action

0 = δS =
∫

dt d 3r δL =
∫

dt d 3r δ[pkq̇k − H] =
∫

dt d 3r [q̇kδpk + pkδq̇k − δH] . (24.108)

Using

pkδq̇k = pk
d(δqk)

dt
= d

dt
(pkδqk) − ṗkδqk, (24.109)

and our (by now) usual argument that the total derivative in (24.109) vanishes in the action integral
from the end-point restrictions (24.35) imposed on δq, we find

0 =
∫

dt d 3r [q̇kδpk − ṗkδqk − δH] . (24.110)
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The variation of the Hamiltonian density in (24.110) is

δH = ∂H
∂qk

δqk + ∂H
∂(∂iqk)

δ(∂iqk) + ∂H
∂pk

δpk + ∂H
∂(∂ipk)

δ(∂ipk). (24.111)

Manipulating the second and fourth terms on the right side of (24.111) in a manner similar to (24.109),
and following the steps from (24.33) to (24.36) puts (24.110) in the form

0 =
∫

dt d 3r

[
q̇k − ∂H

∂pk
+ ∂i

{
∂H

∂(∂ipk)

}]
δpk

−
∫

dt d 3r

[
ṗk + ∂H

∂pk
− ∂i

{
∂H

∂(∂iqk)

}]
δqk. (24.112)

The variations δqk and δpk are independent, so (24.112) is satisfied only if the field coordinates and
momenta satisfy the generalized Hamilton’s equations

ṗk = − ∂H
∂qk

+ ∂i
∂H

∂(∂iqk) (24.113)
q̇k = ∂H

∂pk
− ∂i

∂H
∂(∂ipk)

.

24.5.3 The Maxwell Equations
Our use of the vector and scalar potentials in (24.20) establishes the homogeneous Maxwell equations
as identities:

∇ · B = 0 and ∇ × E + ∂B
∂t

= 0. (24.114)

To make further progress, and exploit the generalized Hamilton equations (24.113), it is convenient to
replace the sum over ekϕ(rk) in the Hamiltonian (24.103) by an integral over space using the charge
density ρ(r, t) in (24.17). The latter is localized, so we can integrate π · ∇ϕ by parts and discard the
surface term. These steps transform (24.103) to the Hamiltonian we will use for the remainder of this
chapter:

H =
∑
k

1

2mk

[pk − ekA(rk)]2 +
∫

d 3r ϕ (∇ · π + ρ)

+ 1

2
ε0

∫
d 3r

[(
π

ε0

)2

+ c2 (∇ × A)2

]
. (24.115)

The two inhomogeneous Maxwell equations derive from the first Hamilton equation in (24.113).
Consider the momentum π conjugate to the generalized coordinate A in (24.100). Using (24.115),

∂πj

∂t
= − ∂

∂Aj

∑
k

1

2mk

[pk − ekA(r)]2δ(r − rk) + 1

2
ε0c

2∂i
∂

∂(∂kAj )
(∇ × A)2. (24.116)

After carrying out the derivatives, the leftmost member of (24.100) and the definition of the current
density in (24.17) simplify (24.116) to

μ0
∂π

∂t
= μ0j − ∇ × (∇ × A). (24.117)

The substitutions π = −ε0E and B = ∇ × A identify (24.117) as the Ampère-Maxwell law,

− 1

c2

∂E
∂t

= μ0j − ∇ × B. (24.118)
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Gauss’ law follows similarly from the momentum density π0 = 0 conjugate to the generalized coor-
dinate ϕ in (24.100). Again using π = −ε0E,

0 = ∂π0

∂t
= − ∂

∂ϕ
[ϕ(∇ · π + ρ)] = −ε0∇ · E + ρ. (24.119)

Consider now the second Hamilton equation in (24.113). For the generalized coordinate A,

∂A
∂t

= ∂H
∂π

− ∂i
∂H

∂(∂iπ )
= π

ε0
− ∇ϕ. (24.120)

Because E = −π/ε0, (24.120) is simply a restatement of E = −∇ϕ − ∂A/∂t . However, for the
generalized coordinate ϕ, the Hamilton equation of motion is

∂ϕ

∂t
= ∂H

∂π0
= 0. (24.121)

This result is suspicious. How can the scalar potential not change with time? At the very least, (24.121)
is inconsistent with the Maxwell equations derived from the first of Hamilton’s equations.

We will see in the next section that the origin and removal of this inconsistency is closely related to
issues of gauge invariance and gauge fixing. Indeed, the issue we raise here does not appear in most
treatments of the Hamiltonian form of Maxwell’s theory precisely because a specific choice of gauge
is made at an early stage.6

24.5.4 Dirac’s Method of Constraints
Equation (24.121) is not correct. The reason becomes clear when we carry out the total derivative on
the left side of Lagrange’s equation (24.2) explicitly to get

∂2L

∂q̇k∂q̇m
q̈m = ∂L

∂qk
− ∂2L

∂q̇k∂qm
q̇m. (24.122)

The goal of Lagrangian dynamics is to solve (24.122) for the accelerations q̈m. This is straightforward
for mechanics problems of the usual sort because the matrix

Wkm = ∂2L

∂q̇k∂q̇m
= ∂pk

∂q̇m
(24.123)

has an inverse and the change of variables from L(qk, q̇k) to H (qk, pk) is one-to-one. This means that
the velocities can be expressed as unique functions of the coordinates and the momenta. The momenta
are all independent and no irregularities arise.

However, if det W = 0, the inverse matrix does not exist and not all of the conjugate momenta are
independent. The Lagrangian is said to be singular and there exist so-called Lagrangian constraints
among the variables (qk, pk). A consistent way to pass from the Lagrangian formalism to the Hamilto-
nian formalism in the singular case was given by Dirac (1964). In this section, we outline his method
far enough to expose the roles of gauge invariance and gauge fixing in the theory.

The Lagrangian of classical electrodynamics is singular because the vanishing of the canonical
momentum (24.45) associated with the scalar potential,

π0(r, t) = ∂LEM

∂ϕ̇
= 0, (24.124)

implies that the matrix elements ∂π0/∂q̇m on the far right side of (24.123) are all zero. This makes
π0(r, t) = 0 a Lagrangian constraint in precisely the sense indicated above. This is called a primary

6 The usual context for this discussion is the quantization of classical electrodynamics. See Sources, References, and
Additional Reading.
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constraint to indicate that it arises directly from the Lagrangian definition of conjugate momentum.
It follows that (24.119) is not a true equation of motion but simply a requirement that the primary
constraint be preserved in time. Gauss’ law, ∇ · π + ρ = 0, is thus an independent, so-called secondary
constraint. Could there be further constraints? To check, we demand that our secondary constraint be
preserved in time as well. Using the Ampère-Maxwell law (24.118), we find

0 = ∂

∂t
(∇ · π + ρ) = −ε0∇ · ∂E

∂t
+ ∂ρ

∂t
= ∇ · j + ∂ρ

∂t
. (24.125)

Equation (24.125) is not a new constraint because the continuity equation ∇ · j + ∂ρ/∂t = 0 follows
by direct computation from (24.17) (cf. Application 2.1).

The primary and secondary constraints we have identified restrict the variations δqk and δpk used in
(24.108) to derive Hamilton’s equations. Let us use the method of Lagrange multipliers (Section 1.10)
to enforce the constraints. This leads us to define an extended action,

SE(qk, pk, u,w) =
∫

dt d 3r [pkq̇k − H − uπ0 − w(∇ · π + ρ)] , (24.126)

and apply Hamilton’s principle (δSE = 0) with the variations δqk and δpk performed independently and
without restriction. For reasons which will become clear below, we permit extra variational freedom
in (24.126) by choosing u = u(t) and w = w(r) as arbitrary Lagrange multiplier functions rather than
as simple constants. Moreover, comparing (24.126) to (24.108) shows that we can retain the latter
equation if we replace the Hamiltonian density H by an extended Hamiltonian density,

HE = H + u(t)π0 + w(r)(∇ · π + ρ). (24.127)

Using HE in place of H in (24.113), the reader can verify that the equations of motion for r (24.104),
π (24.117), andπ0 (24.119) do not change. Thus, we reproduce the inhomogeneous Maxwell equations
derived in the previous section. The equations of motion which do change are7

dpk

dt
= ek [∇(vk · A) − ∇(ϕ + w)] , (24.128)

∂A
∂t

= π

ε0
− ∇(ϕ + w), (24.129)

and

dϕ

dt
= u. (24.130)

Equation (24.128) correctly describes charged particle motion despite the presence of the arbitrary
function w(r). To see this, use pk = mkvk + ekA and (24.129) to eliminate ∇(ϕ + w) in favor of
π/ε0 − Ȧ = −E − Ȧ. The result,

mk

dvk
dt

= ek∇(vk · A) + ek

[
∂A
∂t

− dA
dt

]
+ ekE, (24.131)

combined with (24.23) is the Coulomb-Lorentz force law in the form (24.22).
By contrast, the general solutions to the equations of motion for A(r, t) and ϕ(r, t) in (24.129) and

(24.130) depend explicitly on the arbitrary functions u(t) and w(r). The meaning of this becomes clear
when we ask for the change in the vector and scalar potentials induced by these Lagrange functions
after an infinitesimal time δt :

δA = −∇w δt and δϕ = u δt. (24.132)

7 To derive (24.128), it is simplest to write the w(r)ρ(r) term in (24.127) as a discrete sum like the ekϕ(rk) term in
(24.103).
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However, because u = u(t) and w = w(r), the changes in (24.132) are indistinguishable from the
changes

�A = −∇� and �ϕ = +∂�

∂t
(24.133)

induced by a gauge transformation with the gauge function

�(r, t) =
⎡
⎣w(r) +

t∫
∞

ds u(s)

⎤
⎦ δt. (24.134)

Hence, the only effect of the Lagrange multiplier functions is to impose a continuous sequence of
gauge transformations at every space-time point. These gauge changes have no effect on the observables
E(r, t) and B(r, t).

24.5.5 A Heuristic Approach to Gauge Fixing
The explicit gauge freedom of Maxwell’s theory on display in (24.129) and (24.130) is interesting
as a matter of principle but inconvenient for practical calculations. Dirac and others developed a
gauge fixing machinery which chooses the Lagrange multiplier functions in a manner consistent with
any particular choice of gauge. For the most common choices of gauge (Coulomb and Lorenz), this
formalism reproduces (and therefore justifies) gauge fixing schemes which had been developed long
before. We will not pursue this approach here, despite its implications for the canonical quantization
of electrodynamics.8

Our strategy in this section is to proceed heuristically and identify the true dynamical variables
from among the set (ϕ, π0,A,π ) by requiring that their equations of motion not depend on u(t) or
w(r). This procedure avoids the Lagrange multiplier functions (rather than making specific choices
for them) but amounts to fixing a gauge nonetheless because no arbitrary functions appear in the final
dynamics.

Our first step is to discard the scalar potential ϕ because (24.129) shows that it depends unavoidably
on u(t).9 This forces us to discard the corresponding conjugate momentum π0 as well. Of course,
the fact that π0 = π̇0 = 0 would induce us to do this anyway. To proceed further, we recall from
Helmholtz’ theorem (Section 1.9) that a well-behaved vector field like the vector potential can be
decomposed as A = A⊥ + A‖ where ∇ · A⊥ = 0 and ∇ × A‖ = 0. Using this fact, the equations of
motion for A (24.129) and π (24.117) separate into

∂A⊥
∂t

= π⊥
ε0

and μ0
∂π⊥
∂t

= μ0j⊥ − ∇ × ∇ × A⊥, (24.135)

and
∂A‖
∂t

= π‖
ε0

− ∇(ϕ + w) and
∂π‖
∂t

= j‖. (24.136)

The presence of w(r) in (24.136) directs us to discard A‖ and thus its conjugate momentum π‖ from
our set of dynamical variables. This leaves the canonical pair (A⊥,π⊥) as the only “true" degrees of
freedom. As advertised, no arbitrary functions appear in (24.135).

To see that this choice is sufficient, note first from (24.20) that B⊥ = ∇ × A⊥ while

E⊥ = −∂A⊥
∂t

and E‖ = −∇ϕ − ∂A‖
∂t

. (24.137)

8 Chapter 8 of Weinberg (1995) gives a very clear account of the “Dirac bracket” method and its application to
electrodynamics.

9 A “discarded” variable is not set to zero. It simply has no independent equation of motion.
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Using these, the Maxwell equations take the form

∇ × E⊥ = −∂B⊥
∂t

∇ · E‖ = ρ/ε0

∇ × B⊥ = μ0j⊥ + 1

c2

∂E⊥
∂t

∇ · B‖ = 0.
(24.138)

The equations on the left side of (24.138) confirm that A⊥ and π⊥ (or E⊥ and B⊥) are sufficient to
compute the time evolution of the fields. The equations on the right of (24.138) are satisfied for all
time if they are satisfied initially.

The procedure outlined above amounts to fixing the Coulomb gauge. To see this, we need only write
out the usual expression of this gauge, ∇ · A = 0, in the language of the Helmholtz theorem. That is,
∇ · A = ∇ · (A⊥ + A‖) = ∇ · A‖ = 0. The last equality, combined with the definition ∇ × A‖ = 0, is
equivalent to the constraint

A‖ = 0. (24.139)

Suppose we impose (24.139) as an initial condition on the dynamics. Our previous experience with
constraints directs us to demand that (24.139) be preserved in time. This leads to Ȧ‖ = 0 as a second
independent constraint on the initial data. Because (24.136) is first order in time, this is sufficient to
guarantee that A‖ remains zero at all later times. Combining these facts with the expression for E‖
in (24.137) and Gauss’ law in (24.138) yields Poisson’s equation ∇2ϕ = −ρ/ε0. This fixes the scalar
potential at every point in space-time as

ϕ(r, t) = 1

4πε0

∫
d 3r ′ ρ(r′, t)

|r − r′| . (24.140)

The Coulomb gauge assignments for A‖ (24.139) and ϕ (24.140) eliminates them (and their conjugate
momenta) as dynamical variables and thus establishes the equivalency of this gauge choice with the
heuristic argument given above.

We conclude by writing the Hamiltonian (24.115) in its Coulomb gauge form. The key step is to
recognize that π = −ε0E, combined with the Coulomb gauge formulae E = −∇ϕ and ∇2ϕ = −ρ/ε0,
imply that ∇ · π + ρ = 0. This yields the intermediate result

HC =
∑
k

1

2mk

[pk − ekA(rk)]2

+ 1

2ε0

∫
d 3r

(
π⊥ + π‖

)2 + 1

2μ0

∫
d 3r (∇ × A⊥)2 . (24.141)

However, ∫
d 3r π⊥ · π‖ = ε0

∫
d 3r π⊥ · ∇ϕ = −ε0

∫
d 3r ϕ∇ · π⊥ = 0 (24.142)

and

1

2ε0

∫
d 3r π‖ · π‖ = 1

2
ε0

∫
d 3r E‖ · ∇ϕ = 1

2

∫
d 3r ρ ϕ. (24.143)

Combining these results with (24.140) simplifies (24.141) to

HC =
∑
k

1

2mk

[pk − ekA⊥]2 + 1

8πε0

∫
d 3r

∫
d 3r ′ ρ(r, t)ρ(r′, t)

|r − r′|

+ 1

2
ε0

∫
d 3r

[(
π⊥
ε0

)2

+ c2 (∇ × A⊥)2

]
. (24.144)
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940 LAGRANGIAN AND HAMILTONIAN METHODS

The Hamiltonian (24.144) is widely applied to problems in atomic, molecular, and condensed matter
physics because the Coulomb binding energy term is already present in the matter-only Hamiltonian.

It is not so easy to identify the “true” degrees of freedom for other choices of gauge. This is true
for electrodynamics, and also for more complex field theories which share the constrained dynamics
character of electrodynamics. For these cases, Dirac’s systematic approach to gauge fixing is always
available.

�

Sources, References, and Additional Reading

The quotation at the beginning of the chapter is taken from
A.S. Eddington, Royal Society Obituaries 4, 197 (1942).

Section 24.1 Yourgrau and Mandelstam is a superb introduction to the entire subject. Podolsky and Kunz and
Konopinski are intermediate-level textbooks that discuss Lagrangian and Hamiltonian methods in electrodynamics
with particular clarity.

W. Yourgrau and S. Mandelstam, Variational Principles in Dynamics and Quantum Theory, 3rd edition (Dover,
New York, 1979).

B. Podolsky and K.S. Kunz, Fundamentals of Electrodynamics (Marcel Dekker, New York, 1969).

E.J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981).

Section 24.2 Hamilton’s principle is discussed in these textbooks of classical mechanics:
H. Goldstein, Classical Mechanics (Addison-Wesley, Cambridge, MA, 1950).

M.G. Calkin, Lagrangian and Hamiltonian Mechanics (World Scientific, Singapore, 1996).

Section 24.3 Doughty is an interesting general reference for Lagrangian dynamics. The non-relativistic approach
taken by Schwinger et al. is idiosyncratic but consistently fascinating and enlightening. Our deduction of the
Maxwell equations follows Goldstein (see Section 24.2 above).

N.A. Doughty, Lagrangian Interaction (Addison-Wesley, Reading, MA, 1990).

J. Schwinger, L.L. DeRaad, Jr., K.A. Milton, and W.-Y. Tsai, Classical Electrodynamics (Perseus, Reading, MA,
1998).

The boxed material on the history of Lagrangians in electrodynamics is based on Chapter 8 and Appendix 9 of
Darrigol. Schwarzschild is the first paper to contain the modern Lagrangian for electrodynamics.

O. Darrigol, Electrodynamics from Ampère to Einstein (University Press, Oxford, 2000).

K. Schwarzschild, “On electrodynamics”, Nachrichten von der Gesellschaft der Wissenschaften zu Götingen,
Mathematisch-Physikalische Klasse, 126 (1903).

Section 24.4 Our presentation of Noether’s theorem benefitted from the discussion in Konopinski (see Sec-
tion 24.1) as well as

A.O. Barut, Electrodynamics and Classical Field Theory of Fields and Particles (Macmillan, New York, 1964).

F. Rohrlich, Classical Charged Particles (Addison-Wesley, Reading, MA, 1965).

Section 24.5 Schwinger et al. (see Section 24.3 above) and Yourgrau and Mandelstam (see Section 24.1 above)
give complementary and non-covariant discussions of the Hamiltonian formulation of electrodynamics. Dirac and
Weinberg discuss electrodynamics as a constrained classical field theory before turning to its quantization:

P.A.M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Yeshiva University, New York, 1964).

S. Weinberg, The Quantum Theory of Fields (University Press, Cambridge, 1995), Volume I.

The Hamiltonian formulation of classical electrodynamics is given in both the Coulomb gauge and the Lorenz
gauge in

E.C.G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective (Wiley, New York, 1974).

W. Heitler, The Quantum Theory of Radiation, 3rd edition (Dover, New York, 1984).

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms (Wiley-Interscience, New York,
1997).
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Problems
24.1 Working Backward The success of the “working backward” method used in the text to find the Lagrangian

for a charged particle in an external electromagnetic field is not obvious. Helmholtz proved in 1887
that a Lagrangian description exists for a general position- and velocity-dependent force with Cartesian
components Fk = Fk(r, ṙ, t) if

∂Fi

∂ṙj
= −∂Fj

∂ṙi
and

∂Fi

∂rj
− ∂Fj

∂ri
= 1

2

d

dt

(
∂Fi

∂ṙj
− ∂Fj

∂ṙi

)
.

(a) Show that the first Helmholtz condition implies that ∂2Fi/∂ṙj ∂ṙk = 0. Integrate this equation explicitly
and deduce that F has the Coulomb-Lorentz form

Fi(r, ṙ, t) = Pi (r, t) + εijk ṙjQk (r, t) ,

where P(r, t) and Q(r, t) are arbitrary vector functions of the coordinates and time only.
(b) Show that the second Helmholtz condition implies that P and Q satisfy the homogeneous “Maxwell”

equations

∇ · Q = 0 and ∇ × P + ∂Q
∂t

= 0.

Hint: The convective derivative will play a role here.
(c) The equation of motion for a particle subject to no external forces but in a reference frame which rotates

with angular velocity ω with respect to an inertial reference frame is

mr̈ = mr × ω̇ + 2mṙ × ω +mω × (r × ω) .

The second and third terms on the right-hand side are the familiar Coriolis and centrifugal forces. Show
that the total force for this problem satisfies both Helmholtz relations. Identify the electric-like field P
and the magnetic-like field Q. Confirm by explicit calculation that these fields satisfy the homogeneous
“Maxwell” equations.

24.2 An Effective Nuclear Force An effective force between two nucleons used to analyze scattering data can
be derived from a non-relativistic Hamiltonian which depends only on the relative coordinate r = |r1 − r2|
between the nucleons and the corresponding radial momentum p:

H (r, p) = p2

2m
+ g (r) + p2f (r) .

(a) Treat r and p as canonically conjugate and derive the corresponding Lagrangian L = L (r, ṙ).
(b) Show that the effective Newton’s law force between the nucleons depends on r̈ and ṙ as well as f (r)

and g(r).

24.3 Relativistic Lagrangian Show that the Lagrangian L(r, v) = −mc2/γ + ev · A(r, t) − eϕ(r, t) predicts
the correct relativistic equation of motion for a point particle with mass m and charge e.

24.4 A Relativistic Particle Coupled to a Scalar Field The action for a relativistic point particle coupled by
a strength g to a space-time-dependent Lorentz scalar field ϕ(x) is

S = −mc
∫

ds − g

∫
ds ϕ(r(s)).

Find the equation of motion for the particle. How does the force on the particle differ from the Coulomb
force of an electric field?
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942 LAGRANGIAN AND HAMILTONIAN METHODS

24.5 The Clausius and Darwin Lagrangians In 1880, Rudolf Clausius proposed a Lagrangian for a collection
of charged particles moving in an external electromagnetic field. If rαβ = rα − rβ , the Clausius Lagrangian
is

LC = 1

2

N∑
α=1

mαv
2
α − 1

8πε0

N∑
α=1

N∑
β �=α

qαqβ

rαβ

(
1 − vα · vβ

c2

)
.

(a) Show that LC follows from the Lagrangian L0 for a collection of charges in an external field if one uses
the static forms for the scalar potential and vector potential. What choice of gauge is implied by this
construction?

(b) The Clausius approximation does not provide a consistent description of Maxwell’s electrodynamics
to O(v2/c2). To do better, Charles Darwin (grandson of the biologist) chose the Coulomb gauge so the
neglect of retardation in the scalar potential is exact. In this gauge, the vector potential is calculated using
the transverse current density j⊥(r, t) rather than the total current density j(r, t) (See Section 15.3.2).
Neglect retardation (why?) and expand the vector potential and the relativistic particle Lagrangian to
O(v2/c2) and derive thereby the Darwin Lagrangian:

LD = 1

2

N∑
α=1

mαv
2
α

(
1 + v2

α

4c2

)
− 1

8πε0

N∑
α=1

N∑
β �=α

qαqβ

rαβ

[
1 − vα · vβ + (vα · r̂αβ )(vβ · r̂αβ )

2c2

]
.

Hint: If ∇k = ∂/∂rk ,

1

4π

∫
d 3r

1

|r − rα|∇k∇m

1

|r − rβ | = 1

2

[
(rα − rβ )k(rα − rβ )m

r3
αβ

− δkm

rαβ

]
.

24.6 Equivalent Lagrangians

(a) The Lagrangians L and L+ d�/dt produce the same Lagrange equations if � = �(qk, t). What
happens if � = �(q̇k, qk, t)?

(b) Not all equivalent Lagrangians differ by a total time derivative. Find a Lagrangian which yields the
same equations of motion as L = ẋẏ − xy but does not differ from it by a total time derivative.

(c) Show that there is a class of vector functions ζ [ψ(r, t)] of a field variable ψ (r) where the equations
of motion derived from a Lagrangian density L = L[ψ(r, t), ψ̇(r, t)] do not change if L → L + ∇ ·
ζ [ψ(r, t)].

24.7 Practice with Lagrangian Densities Find the equation of motion for the scalar field φ(r, t) if the
Lagrangian density is

(a) L = 1
2 φ̇φ̇ − 1

2 |∇φ |2
(b) L = 1

2 (∂μφ)(∂μφ) − 1
2σφ

2.

24.8 One-Dimensional Massive Scalar Field A one-dimensional field theory with scalar potential ϕ (x, t) is
characterized by the action

S = 1

2

∫ ∫
dtdx

[
1

c2

(
∂ϕ

∂t

)2

−
(
∂ϕ

∂x

)2

−m2ϕ2

]
.

Find the equation of motion for ϕ (x, t) by both Lagrangian and Hamiltonian methods.

24.9 Proca Electrodynamics The free-field Lagrangian density,

LP = 1

2
ε0

[(
∇ϕ + ∂A

∂t

)2

− c2(∇ × A)2

]
− 1

2μ0�2

[
A2 − (ϕ/c)2

]
,
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with � = −h/mc, was introduced by Alexandre Proca in 1936 as an alternative to Dirac’s theory of the
positron. Today, it serves as a model for electrodynamics with a photon with mass m when matter-field
coupling is added to get the total Lagrangian density, L = j · A − ρϕ + LP .

(a) Find the effect of the Proca mass term on the Maxwell equations.
(b) Show that the Proca model violates gauge invariance because a particular choice of gauge must be made

to guarantee conservation of charge.
(c) Find the scalar potential for a static point charge q in the Proca model.

24.10 Podolsky Electrodynamics The Lagrangian density,

LP = jμAμ − 1

4μ0
FσβFσβ − a2

2μ0
(∂λFβλ)(∂ρFβρ),

was introduced by Boris Podolsky in 1942 as a generalization of Maxwell theory which preserves the linear
character of the field equations yet avoids certain unwanted divergences.

(a) Apply Hamilton’s principle and derive generalized Lagrange equations appropriate to a Lagrangian
density of the form L = L(Aα, ∂βAα, ∂μ∂νAα).

(b) Apply the result of part (a) to LP and show that the equations of motion are[
1 − a2∂μ∂μ

]
∂λFλα = 0.

(c) Write out the a �= 0 generalizations of Gauss’ law and the Ampère-Maxwell law in three-vector form.

24.11 Chern-Simons Electrodynamics A model for an electrodynamics which respects gauge invariance but
violates Lorentz invariance supplements the usual Maxwell Lagrangian with terms drawn from a four-vector
�d = (d, id0):

LCS =
∫

d 3r
[
ρϕ − j · A + 1

2

{
ε0

(
E2 − c2B2

)− ϕ (d · B/c) + d · (A × E/c) + d0A · B
}]
.

(a) Find the restrictions that must be imposed on �d to ensure that a gauge transformation does not alter the
dynamics.

(b) Assume that �d is a constant four-vector. Is this consistent with your answer to part (a)? Find the
Chern-Simons Maxwell equations which replace the usual Maxwell equations. Confirm that the theory
is gauge invariant but does not respect Lorentz invariance.

24.12 First-Order Lagrangian Treat the ten scalar functions in the set (ϕ,A,E,B) as independent generalized
coordinates in the Lagrangian density

L(ϕ,A,E,B) = j · A − ρϕ − 1
2 ε0(E2 − c2B2) − ε0E · (∇ϕ + Ȧ

)− ε0c
2B · (∇ × A).

(a) Show that the Lagrange equations produce all four Maxwell equations directly.
(b) Identify the primary constraints associated with L.

24.13 Primary Hamiltonian A system with Lagrangian L = L(q, q̇) and canonical momentum p = ∂L/∂q̇

exhibits a primary constraint � (p, q) = 0. If u(p, q) is an arbitrary function, show that the Lagrange
equation and the primary constraint together imply Hamilton’s equations for a “primary Hamiltonian”,

HP = H + u�.

Hint: Compare the total differentials of H and �.
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944 LAGRANGIAN AND HAMILTONIAN METHODS

24.14 Gauge Fixing à la Fermi Let � = ∇ · A + (1/c2)∂ϕ/∂t . Fermi showed that one can use a Lagrange
parameter λ to impose the Lorenz gauge condition � = 0 using the Lagrangian density

L = j · A − ρϕ + 1

2
ε0

(
∇ϕ + ∂A

∂t

)2

− 1

2μ0
(∇ × A)2 − λ

2μ0
�2.

(a) Show that the Lagrange equations for the potentials are modified inhomogeneous wave equations.
(b) Find the corresponding modified inhomogeneous Maxwell equations.
(c) Manipulate the equations in (a) and use conservation of charge to deduce that� satisfies a homogeneous

wave equation.
(d) Find initial conditions for the wave equation in (c) which guarantee that the Lorenz gauge condition is

always satisfied and that E and B in (b) are the physical electric and magnetic fields.
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Appendix A

List of Important Symbols

Symbol Meaning Defined in Section

A vector potential 10.5
�A,Aμ four-potential 22.6.2
�A,Aμ four-acceleration 22.5.1
A�m exterior spherical electric multipole moments 4.6.1
α polarizability 6.6
α radiation vector 20.7
B magnetic field 10.1
B�m interior spherical electric multipole moments 4.6.2
β dimensionless velocity υ/c 22.4.1
β waveguide attenuation coefficient 19.4.8
C,Cij capacitance; coefficients of capacitance 5.4
c speed of light 2.6
χ electric susceptibility 6.5
χm magnetic susceptibility 13.6
D auxiliary (electric) field 6.4.1
D particle diffusion constant 9.9
D magnetic diffusion constant 14.11
δ skin depth 17.6.2
δij , δ(x) Kronecker and Dirac delta functions 1.2.5, 1.5
e electron charge magnitude 2.1.1
E electric field 3.1
E EMF (electromotive force) 9.7
E relativistic total energy 22.5.2
ê1, ê2 polarization basis vectors 16.4.1
ε dielectric permittivity 6.5
εijk Levi-Cività symbol 1.2.5
fμ four-force density 22.7.3
Fμν electromagnetic field tensor 22.7.2
G0 free-space Green function 20.3.3
Gμν electromagnetic field dual tensor 22.7.2
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946 APPENDIX A: LIST OF IMPORTANT SYMBOLS

Symbol Meaning Defined in Section

g electromagnetic momentum density 15.5.2
g g-factor 11.2.2
g(t) relativistic Doppler factor 23.2.1
gμν metric tensor D.1
" Lorentz model damping factor 18.5.4
γ relativistic factor (1 − v2/c2)−1/2 22.4.1
H auxiliary (magnetic) field 13.5
H,H Hamiltonian and Hamiltonian density 24.5, 24.5.2
H (1,2)

m (x) Hankel functions C.2
h(1,2)
m (x) spherical Hankel functions C.3.2
I electric current 2.1.2
I light intensity 16.3.5
I (ω) frequency spectrum of radiated energy 23.4.1
dI

d�
angular spectrum of radiated energy 23.4.1

Im(x) modified Bessel function C.3.1
Jm(x) Bessel function C.3
j current density 2.1.2
jf , jM free and magnetization current density 13.2
jm(x) spherical Bessel function C.3.2
�j, jμ four-current density 22.6.1
K surface current density 2.1.2
Km(x) modified Bessel function C.3.1
k wave vector 16.3.1
κ dielectric constant 6.5
κm relative magnetic permeability 13.6
Lmech total mechanical angular momentum 15.6.1
LEM total electromagnetic angular momentum 15.6.1
L self-inductance 12.8
L,L Lagrangian and Lagrangian density 24.2, 24.3.3
Lμν Lorentz transformation matrix 22.5
�E,M

�m electric and magnetic spherical multipole moments 20.8.2
λ linear charge density 3.3
λ wavelength 16.3.4
M magnetization 13.2
M angular momentum current density 15.6.1
Mij mutual inductances 12.8.2
M�m spherical magnetic multipole moments 11.4.2
m magnetic dipole moment 11.2
m

(n)
ip...q Cartesian magnetic multipole moments 11.4.1

μ chemical potential 5.7
μ magnetic permeability 13.6
μB Bohr magneton 11.2.2
N electric torque 3.1
N magnetic torque 10.1
Nμν Lorentz torque density tensor 22.7.2
Nm(x) Neumann function C.3
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Symbol Meaning Defined in Section

n number density of particles 5.7
n index of refraction 17.2
nm(x) spherical Neumann function C.3.2
n̂ outward normal vector 1.4.2
Nμν four-torque density 22.7.3
�S solid angle 3.4.4
ωc cyclotron frequency 12.2.2.
ωL Larmor frequency 12.2.3
ωp plasma frequency 18.5.1
P electric polarization 6.2
Pmech total mechanical linear momentum 15.5
PEM total electromagnetic linear momentum 15.5.2
P power radiated 20.5.1
P�(x) Legendre polynomial C.1
P power dissipated 14.8
Pij coefficients of potential 5.4.4
dP

d�
angular distribution of radiated power 20.5.1

p electric dipole moment 4.1.1
p particle linear momentum 22.5.2
�p, pμ four-momentum 22.5.2
�E,�B electric and magnetic flux 3.3.4, 10.1.2
ϕ electric scalar potential 3.3
φ phase of a plane wave 16.3.2
π canonical momentum density 24.4.5
π e,πm electric and magnetic Hertz vector 16.9.1, 16.9.2
% degree of polarization 21.2
ψ magnetic scalar potential 10.4
Q electric charge 2.1.1.
Qij electric quadrupole moment tensor 4.1.1
Q quality factor 14.13.12
R electric resistance 9.5
R reflection coefficient 17.3.4
RE center of energy 15.7
r reflection amplitude 17.3.2
re classical electron radius 21.3
�r, rμ space-time four-vector 22.5
ρ electric charge density 2.1.1
ρ resistivity 9.5
ρf , ρP free and polarization charge density 6.2
ρ∗ fictitious magnetic charge density 13.4
S Poynting vector 15.4.1
S action 24.2
sk Stokes parameters 6.4.5
�s invariant interval 22.4.3
σ surface charge density 2.1.1
σ conductivity 9.3
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948 APPENDIX A: LIST OF IMPORTANT SYMBOLS

Symbol Meaning Defined in Section

σ ∗ fictitious magnetic surface charge density 13.4
σtot total cross section 21.7
σabs absorption cross section 21.7
σscatt scattering cross section 21.2
dσscatt

d�
differential scattering cross section 21.2

T transmission coefficient 17.3.4
T relativistic kinetic energy 22.5.2
Tij (E) electric stress tensor in vacuum 3.7
Tij (B) magnetic stress tensor in vacuum 12.5
Tij electromagnetic stress tensor 15.5.1
Tij (D) electric stress tensor in matter 6.8.5
Tij (H) magnetic stress tensor in matter 13.8.5
Tij electromagnetic stress tensor in matter 15.8.2
t transmission amplitude 17.3.2
tret retarded time 23.2.1
�(x) Heaviside step function 1.5.3
�ij traceless electric quadrupole moment tensor 4.4.1
�μν stress-energy tensor 22.73
T

(�)
ij ···m traceless Cartesian electric multipole moments 4.7

τ surface dipole moment density 4.3
τ collision time 9.3
τ proper time 22.4.4
τ0 radiation reaction time constant 23.6.3
τE quasi-electrostatic time constant 14.7.1
τM quasi-magnetostatic time constant 14.9
�U,Uμ four-velocity 22.5.1
UE electrostatic total energy 3.6
UB magnetostatic total energy 12.6
UEM electromagnetic total energy 15.4.1
uEM electromagnetic energy density 15.4.1
V voltage 9.7.1
VE electrostatic potential energy 3.5
V̂B magnetostatic potential energy for fixed currents 12.7
vd drift velocity 9.3
vg group velocity 18.6.1
vE energy velocity 17.2.1
vp phase velocity 16.3.2
W mechanical work 3.6
W work function 3.6.2
xμ, xμ contravariant and covariant four-vectors D.1
Y�m spherical harmonics C.2
Z intrinsic impedance 17.2
Zwave wave impedance 17.2.1

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-APPB CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:52

B
Appendix B

Gaussian Units

B.1 Definition
Gaussian units employ the centimeter (cm), gram (g), and second (s) as independent base units for length,
mass, and time. Unlike the SI system discussed in Section 2.6, no fourth base unit is introduced to describe
current, charge, or anything else. The electric field is defined exactly as in SI, so we transcribe (2.74) and
write the force between two point charges as

Fe = ke
q1q2

r2
= q1E. (B.1)

The magnetic field is defined using the force between two current-carrying wires, as we did for SI. However,
E and B are assigned the same dimensions by replacing (2.75) with

Fm = km
2I1I2L2

ρ
= I1L2B

c
. (B.2)

Otherwise, the Gaussian system1 makes the choices ke = 1 and km = 1/c2. Therefore, a dimensionally
correct Lorentz force law (2.76) and the Maxwell equations (2.77) and (2.78) now read

F = q
(

E + υ

c
× B

)
(B.3)

and

∇ · E = 4πρ ∇ · B = 0 (B.4)

∇ × E = −1

c

∂B
∂t

∇ × B = 4π

c
j + 1

c

∂E
∂t

. (B.5)

The Gaussian system relates the potentials to the fields by

B = ∇ × A E = −∇ϕ − 1

c

∂A
∂t

. (B.6)

1 Different choices for ke , km, and the definition of B distinguish the CGS Gaussian system from two other CGS
systems: electrostatic units (esu) and electromagnetic units (emu). The Gaussian system is often called “mixed”
because it uses esu units for ρ, j, and E and emu units for B. See Brown (1984) cited at the end of Chapter 2 for the
details, none of which affect the discussion here.
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The Poynting vector and electromagnetic energy density are similarly

S = c

4π
(E × B) uEM = 1

8π

(|E|2 + |B|2) . (B.7)

In the presence of matter,

D = E + 4πP H = B − 4πM, (B.8)

and the various constitutive relations are

D = εE B = μH jf = σE P = χeE M = χmH. (B.9)

Therefore,

ε = 1 + 4πχe μ = 1 + 4πχm, (B.10)

and E, D, B, H, P, and M all have the same dimensions in the Gaussian system.2

B.2 Coping with Conversion
Two issues arise when we convert from Gaussian units to SI units and vice versa.3 First, we must transform
numerical values of physical quantities in one unit system numerical values in the other system. Second,
we must rewrite equations and definitions in one unit system as equations and definitions in the other unit
system. Table B.1 addresses the first question by listing the units and numerical equivalents in both systems
for a collection of electromagnetic quantities.

An effective way to deal with converting equations and definitions between unit systems begins by noting
that variables with dimensions of position, time, mass, force, or energy require no conversion factors apart
from those indicated in Table B.1. Otherwise, recalling that γ is the gyromagnetic ratio,

jSI

jG
= ρSI

ρG
= ISI

IG
= QSI

QG
= PSI

PG
= EG

ESI
= ϕG

ϕSI
=
√

4πε0 (B.11)

MSI

MG
= γSI

γG
= BG

BSI
=
√

4π

μ0
(B.12)

DG

DSI
=
√

4π

ε0

HG

HSI
=
√

4πμ0
χSI

χG
= 4π. (B.13)

Beginning with an equation or definition in one unit system, use the foregoing to solve for each variable
in terms of the same variable in the other system. Substitute these into the starting expression and use
μ0ε0c

2 = 1 to simplify what remains.
As an example of Gaussian-to-SI conversion, let us check the assertion in (B.5) that the Ampère-Maxwell

equation is

∇ × BG = 4π

c
jG + 1

c

∂EG

∂t
. (B.14)

Using (B.11) and (B.12), (B.14) transforms to

∇ ×
√

4π

μ0
BSI = 4π

c

1√
4πε0

jSI + 1

c

∂

∂t

√
4πε0 ESI (B.15)

2 Nevertheless, different names are given to the units for many of these quantities.
3 This section follows the excellent treatment of A.S. Arrott, “Magnetism in SI units and Gaussian units”, in Ultrathin

Magnetic Films I, edited by J.A.C. Bland and B.Heinrich (Springer, Berlin, 1994), pp. 7-19. Arrott points out some
subtleties with unit conversion for permanent magnets which we ignore.
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Table B.1. SI-Gaussian unit conversion for electromagnetic quantities.

Quantity SI Gaussian

length d 1 meter (m) 102 centimeter (cm)
mass m 1 kilogram (kg) 103 gram (g)
time t 1 second (s) 1 second (s)
force F 1 newton (N) 105 dyne (dyn)
energy U 1 joule (J) 107 erg (erg)
capacitance C 1 farad (F) 9 × 1011 statfarad
charge Q 1 coulomb (C) 3 × 109 statcoulomb
charge density ρ 1 C/m3 3 × 103 statcoulomb/cm3

resistance R 1 ohm (�) 1
9 × 10−11 statohm

conductivity σ 1 (� · m)−1 9 × 109 (statohm-cm)−1

current I 1 ampere (A) 3 × 109 statampere = 10−1 abampere

j 1 A/m2 3 × 105 statampere/cm2

D C/m2 12π × 105 statampere/cm
E 1 volt per meter (V/m) 1

3 × 10−4 statvolt/cm
L 1 henry (H) 1

9 × 10−11 stathenry
H 1 A/m 4π × 10−3 oersted (Oe)
�B 1 weber (Wb) 108 maxwell (Mx)
B 1 Wb/m2 = 1 tesla (T) 104 gauss (G)
M 1 A/m 10−3 Oe
P C/m2 3 × 105 statvolt/cm
ϕ 1 volt (V) 1

300 statvolt

or

∇ × BSI = 1

c

√
μ0

ε0
jSI +

√
μ0ε0

c

∂ESI

∂t
. (B.16)

Since μ0ε0c
2 = 1, we get the correct SI expression,

∇ × BSI = μ0jSI + 1

c2

∂ESI

∂t
. (B.17)

As an example of SI-to-Gaussian conversion, consider the electric field (6.17) inside a sphere with uniform
polarization P:

ESI = − PSI

3ε0
. (B.18)

Using (B.11), (B.18) transforms to

EG√
4πε0

= − 1

3ε0

√
4πε0 PG, (B.19)

or

EG = −4π

3
PG. (B.20)

Our final example is the transformation of the magnetic moment expression

mSI = 1

2

∫
d 3r r × jSI. (B.21)
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The moment m does not appear in (B.11), (B.12), or (B.13). However, for conversion purposes, we regard
it as derived from the volume integral of a distribution of magnetization (see Section 13.2.3):

m =
∫

d 3r M. (B.22)

We can now use (B.12) to conclude that mSI = mG
√

4π/μ0. Therefore, (B.21) transforms to√
4π

μ0
mG = 1

2

∫
d 3r r ×

√
4πε0 jG, (B.23)

or

mG = 1

2c

∫
d 3r r × jG. (B.24)
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C
Appendix C

Special Functions

C.1 Legendre Polynomials
The real-valued Legendre polynomials, P�(x), are defined by the generating function

1√
1 − 2xt + t2

≡
∞∑
�=0

t �P� (x) |x| ≤ 1, 0 < t < 1. (C.1)

Alternatively, consider the differential equation

(1 − x2)
d 2P (x)

dx2
− 2xy

dP (x)

dx
+ �(�+ 1)P (x) = 0. (C.2)

The P�(x) are the eigenfunctions of the Sturm-Liouville eigenvalue problem defined by (C.2) on the interval
−1 ≤ x ≤ 1 with the boundary conditions that P (1) and P (−1) are finite. The index � is a non-negative
integer. The polynomials are orthogonal,

1∫
−1

dxP�(x)Pm(x) = 2

2�+ 1
δ�m, (C.3)

and complete,
∞∑
�=0

(
�+ 1

2

)
P�(x)P�(x

′) = δ(x − x ′). (C.4)

Using the Rodriguez formula,

P�(x) = 1

2��!

d�

dx�
(x2 − 1)�, (C.5)

we find

P0(x) = 1

P1(x) = x

P2(x) = 1

2
(3x2 − 1) (C.6)

P3(x) = 1

2
(5x3 − 3x)

P4(x) = 1

8
(35x4 − 30x2 + 3).
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The parity of the polynomials isP�(−x) = (−1)�P�(x). A few special values areP�(1) = 1,P�(−1) = (−1)�,
and

P�(0) =

⎧⎪⎨
⎪⎩

0 odd �,

(�− 1)!!

(−2)�/2(�/2)!
even � ≥ 2.

(C.7)

Three useful recurrence relations satisfied by the Legendre polynomials and their derivatives are

(2�+ 1)P�(x) = P ′
�+1(x) − P ′

�−1(x) (C.8)

(2�+ 1)xP�(x) = (�+ 1)P�+1(x) + �P�−1(x) (C.9)

P�(x) = P ′
�+1(x) − 2xP ′

�(x) + P ′
�−1(x). (C.10)

C.1.1 Associated Legendre Polynomials

Legendre’s differential equation is

(1 − x2)
d 2P (x)

dx2
− 2xy

dP (x)

dx
+
{
�(�+ 1) − m2

1 − x2

}
P (x) = 0. (C.11)

For integer values of |m| ≤ �, the associated Legendre polynomials Pm
� (x) are the complete and orthonormal

eigenfunctions of the Sturm-Liouville eigenvalue problem defined by (C.11) on the interval −1 ≤ x ≤ 1
with the boundary conditions that P (1) and P (−1) are finite. An explicit formula is

Pm
� (x) = (−1)m(1 − x2)m/2 dm

dxm
P�(x), (C.12)

from which we deduce that

P 0
� (x) = P�(x), P 1

� (0) = P ′
�(0), and Pm

� (1) = 0. (C.13)

Three useful identities are

d

dθ
P�(cos θ ) = −P 1

� (cos θ ) (C.14)

P 1
� (cos θ ) = (−1)�+1P 1

� (− cos θ ) (C.15)∫ π

0
dθ sin θPm

� (cos θ )Pm
�′ (cos θ ) = 2

2�+ 1

(�+m)!

(�−m)!
δ��′ . (C.16)

C.2 Spherical Harmonics
Consider the partial differential equation

1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

sin2 θ

∂2Y

∂θ 2
= −�(�+ 1)Y. (C.17)

The complex-valued spherical harmonics Y�m(θ, φ) are the eigenfunctions of the eigenvalue problem defined
by (C.17) on the sphere with boundary conditions that Y (θ, φ) be finite and single-valued. With integer
values of |m| ≤ �, these eigenfunctions can be written in terms of the associated Legendre polynomials (see
Section C.1.1) as

Y�m(θ, φ) =
√

2�+ 1

4π

(�−m)!

(�+m)!
Pm
� (cos θ )eimφ m ≥ 0, (C.18)
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with Y�,−m(θ, φ) = (−1)mY ∗
�m(θ, φ). The spherical harmonics are both orthonormal,

2π∫
0

dφ

π∫
0

dθ sin θ Y�m(θ, φ)Y ∗
�′m′ (θ, φ) = δ��′δmm′ (C.19)

and complete,

∞∑
�=0

�∑
m=−�

Y�m(θ, φ)Y ∗
�m(θ ′, φ′) = δ(cos θ − cos θ ′)δ(φ − φ′). (C.20)

With x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ , the spherical harmonic Y�m(x, y, z) is a homoge-
neous polynomial in x, y, and z of degree �. If A�m = √

(2�+ 1)(�+m)!(�−m)!/4π ,

r�Ym
� (x, y, z) = A�m

∞∑
p,q,s=1

1

p!q!s!

(
−x + iy

2

)p (
x − iy

2

)q

zs δp+q+s,� δp−q,m. (C.21)

The first few spherical harmonics are

Y00(θ, φ) = 1√
4π

Y10(θ, φ) =
√

3

4π
cos θ =

√
3

4π

z

r

Y1 ±1(θ, φ) = ∓
√

3

8π
sin θ exp(±iφ) = ∓

√
3

8π

x ± iy

r
(C.22)

Y20(θ, φ) =
√

5

16π

{
3 cos2 θ − 1

} =
√

5

16π

3z2 − r2

r2

Y2 ±1(θ, φ) = ∓
√

15

8π
sin θ cos θ exp(±iφ) = ∓

√
15

8π

z(x ± iy)

r2

Y2 ±2(θ, φ) =
√

15

32π
sin2 θ exp(±2iφ) =

√
15

32π

(x ± iy)2

r2
.

If r = (r, θ, φ) and r′ = (r ′, θ ′, φ′) are defined with respect to a fixed set of coordinate axes in space, the
spherical harmonic addition theorem states that

P�(r̂ · r̂′) = 4π

2�+ 1

+�∑
m=−�

Y ∗
�m(θ ′, φ′)Y�m(θ, φ). (C.23)

Finally, the spherical harmonics transform under space inversion as

Y�m(−r̂) = (−1)�Y�m(r̂). (C.24)

C.3 Bessel Functions
Bessel’s differential equation is

d2R

dx2
+ 1

x

dR

dx
+
[

1 − m2

x2

]
R = 0. (C.25)

We restrict ourselves to x ≥ 0 and integer values for m. Linearly independent solutions of (C.25) are the
Bessel function Jm(x) = (−1)mJ−m(x) and the Neumann function

Nm(x) = Jm(x) cosmπ − J−m(x)

sinmπ
. (C.26)
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The associated Wronskian is [
Jm(x)N ′

m(x) −Nm(x)J ′
m(x)

] = 2

πx
. (C.27)

A generating function for Jm(x) is

exp

{
x

2

(
t − 1

t

)}
=

∞∑
m=0

Jm(x)tm. (C.28)

Noting Euler’s constant, γ = 0.5772 . . . , we write the small-argument forms,

lim
x→0

Jm(x) = 1

m!

(x
2

)m
(C.29)

and

lim
x→0

Nm(x) =

⎧⎪⎨
⎪⎩

− (m− 1)!

π

(x
2

)−m
m �= 0,

2

π

[
ln
(x

2

)
+ γ

]
m = 0.

(C.30)

When x ∼ m, crossover begins to the asymptotic values

lim
x→∞

Jm(x) =
√

2

πx
cos

(
x − mπ

2
− π

4

)
(C.31)

lim
x→∞

Nm(x) =
√

2

πx
sin

(
x − mπ

2
− π

4

)
.

The trigonometric behavior in (C.42) suggests the definition of the Hankel functions:

H (1)
m (x) = Jm(x) + iNm(x)

(C.32)
H (2)

m (x) = Jm(x) − iNm(x).

H (1)
m (x) behaves asymptotically like an outgoing wave. H (2)

m (x) behaves asymptotically like an incoming
wave.

The nth zero of the Bessel function Jm(x) is defined by Jm(αmn) = 0. For a finite interval, 0 ≤ ρ ≤ R,
these appear in the completeness relation,

∞∑
m=1

2

R2

Jm

(
αmn

ρ

R

)
Jm

(
αmn

ρ ′

R

)
J 2
m+1(αmn)

= 1

ρ
δ(ρ − ρ ′) 0 ≤ ρ, ρ ′ < R, (C.33)

and the orthogonality relation,

R∫
0

dρρJm

(
αmn

ρ

R

)
Jm

(
αmp

ρ

R

)
= δnp

R2

2
J 2
m+1(αmn). (C.34)

The zeroes αmn are tabulated, but we see from (C.42) that their asymptotic values are αmn = nπ +
(m− 1

2 )π/2. In this R → ∞ limit, the completeness relation (C.33) evolves to

∞∫
0

dkkJm(kρ)Jm(kρ ′) = 1

ρ
δ(ρ − ρ ′) ρ, ρ ′ > 0. (C.35)

Useful in the same limit are the Bessel analogs of Fourier transform pairs:

f (ρ) =
∞∫

0

dkkJm(kρ)g(k) g(ρ) =
∞∫

0

dρρJm(kρ)f (ρ). (C.36)
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Finally, we draw attention to two integral representations:

Jm(x) = 1

2πim

2π∫
0

dφ exp[i(x cosφ +mφ)]

(C.37)

H
(1)
0 (x) = − i

π

∞∫
∞

ds√
x2 + s2

exp
(
i
√
x2 + s2

)
.

C.3.1 Modified Bessel Functions

Real-valued Bessel functions of pure imaginary argument are defined by

Im(x) = i−mJm(ix)
(C.38)

Km(x) = π

2
im+1 [Jm(ix) + iNm(ix)] .

The associated Wronskian is

[Km(x)I ′
m(x) − Im(x)K ′

m(x)] = 1

x
. (C.39)

The limiting and asymptotic values follow immediately from (C.29) through (C.31) as

lim
x→0

Im(x) = 1

m!

(x
2

)m
(C.40)

lim
x→0

Km(x) =

⎧⎪⎨
⎪⎩

(m− 1)!

2

(x
2

)−m
m �= 0,

−
[
ln
(x

2

)
+ γ

]
m = 0,

(C.41)

lim
x→∞

Im(x) =
√

1

2πx
ex

(C.42)

lim
x→∞

Km(x) =
√

π

2πx
e−x .

C.3.2 Spherical Bessel Functions

Real-valued spherical Bessel functions and spherical Neumann functions are defined by

jm(x) =
√

π

2x
Jm+ 1

2
(x) nm(x) =

√
π

2x
Nm+ 1

2
(x). (C.43)

The associated Wronskian is

[jm(x)n′
m(x) − nm(x)j ′

m(x)] = 1

x2
. (C.44)

Explicit formulae are

jm(x) = (−x)m
(

1

x

d

dx

)m sin x

x
(C.45)

nm(x) = −(−x)m
(

1

x

d

dx

)m cos x

x
.

When the argument is small,

lim
x→0

jm(x) = xm

(2m+ 1)!!
lim
x→0

nm(x) = − (2m− 1)!!

xm+1
. (C.46)
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When the argument is large,

lim
x→∞

jm(x) = 1

x
sin(x −mπ/2)

(C.47)

lim
x→∞

nm(x) = − 1

x
cos(x −mπ/2).

Spherical Hankel functions are defined by

h(1)
m (x) = jm(x) + inm(x) h(2)

m (x) = jm(x) − inm(x)x). (C.48)

Their limiting and asymptotic behaviors follow immediately from (C.46) and (C.47). For example,

lim
x→∞

h(1)
m (x) = (−i)�+1 exp(ix)

x
and lim

x→∞
h(2)
m (x) = (−i)�+1 exp(−ix)

x
. (C.49)

The nth zero of the spherical Bessel function jm(x) is defined by jm(γmn) = 0. For a finite interval, 0 ≤ ρ ≤
R, these appear in the orthogonality relation

R∫
0

dρρ2jm(γmnρ/R)jm(γmkρ/R) = δnk
1

2
R2j 2

m+1(γmn). (C.50)

On the real line, the jm(x) are complete because

2

π

∞∫
0

dkk2jm(kr)jm(kr ′) = 1

r2
δ(r − r ′). (C.51)

C.3.3 Miscellaneous Identities

Plane wave expansions in two and three dimensions are

exp(ik · ρ) = exp(ikρ cosφ) =
∞∑

m=−∞
imJm(kρ) exp(imφ) (C.52)

exp(ik · r) = exp(ikr cos θ ) =
∞∑
�=0

(2�+ 1)i�j�(kr)P�(cos θ ). (C.53)

Let r< (r>) be the lesser (greater) of r and r ′ and let cos� = r̂ · r̂′. Then,

exp(ik|r − r′|)
|r − r′| = ik

∞∑
�=0

(2�+ 1)j�(kr<)h(1)
� (kr>)P�(cos�) (C.54)

2

π

∞∫
0

dkj�(kr)j�(kr
′) = 1

2�+ 1

r�<
r�+1
>

. (C.55)
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D
Appendix D

Managing Minus Signs in
Special Relativity

D.1 The Metric Tensor
Special relativity flows from the assumption that the quantity

(ds)2 = (dx)2 + (dy)2 + (dz)2 − (cdt)2 (D.1)

takes the same value in all inertial frames. The main text exploits the imaginary number i to handle the minus
sign in (D.1). An alternative approach represents the space-time four-vector �dx in two ways: a contravariant
form with subscripted components,

dxμ = (dx0, dx1, dx2, dx3) = (cdt, dx, dy, dz), (D.2)

and a covariant form with subscripted components,1

dxμ = (−dx0, dx1, dx2, dx3) = (−cdt, dx, dy, dz). (D.3)

With these definitions and the Einstein summation convention, (D.1) is the scalar product,

(ds)2 = d �x · d �x = dxμdx
μ = dxμdxμ. (D.4)

The contraction of a repeated index always occurs between an upper index and a lower index.
Calculations are facilitated by the introduction of a metric tensor, gμν . The metric tensor for the flat

space-time of special relativity has the matrix representation

gμν =

⎛
⎜⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ . (D.5)

We use gμν to “lower an index” and convert a contravariant vector into a covariant vector:

xμ = gμνx
ν. (D.6)

1 We follow N.A. Doughty, Lagrangian Interaction (Addison-Wesley, Reading, MA, 1990) and present the “East Coast
metric” used by most general relativists and string theorists. The “West Coast metric” used by most particle physicists
makes the time component positive and the space components negative in (D.3).
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Combining (D.6) with (D.4) permits us to write (ds)2 using contravariant components only

(ds)2 = xμgμνx
ν = gμνx

μxν. (D.7)

More generally, the scalar product of two arbitrary four-vectors is

�a · �b = aμbμ = aμgμνb
ν = gμνa

μbν. (D.8)

The inverse of gμν is written gμν and has the matrix representation

gμν =

⎛
⎜⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ (D.9)

Our rules for contraction dictate that the inverse relation produces a Kronecker delta with one index “up”
and one index “down”, namely,

gαμg
μβ = δ β

α . (D.10)

The right side of (D.10) reflects a convention: whether up or down, the left index labels the rows and the
right index labels the columns of the matrix representation. We use gμν to “raise an index” and convert a
covariant vector into a contravariant vector:

xμ = gμνxν. (D.11)

Using (D.11), the scalar product (D.8) can also be written using covariant components only

�a · �b = aνbν = aμg
μνbν = gμνaμbν. (D.12)

Finally, (D.10) facilitates an index manipulation trick used very often in calculations:

aμb
μ = gμνa

νgμαbα = aνgνμg
μαbα = aνδ α

ν bα = aνbν. (D.13)

We note in passing that the scalar products (D.8) and (D.12) remain valid in general relativity except that
components of the metric tensor generally depend on space and time.

D.2 The Lorentz Transformation
The Lorentz transformation (22.49) described a boost of the standard configuration along the z-axis for a
four-vector (a1, a2, a2, a4). Here, the four-vector is (a0, a1, a2, a3), so we boost along the x-axis to keep the
matrix of the transformation block diagonal. When the frame K ′ moves with velocity cβx̂ when viewed
from the frame K , the transformation rules are

x ′0 = γ (x0 − βx1) x ′1 = γ (x1 − βx0) x ′2 = x2 x ′3 = x3

(D.14)
x0 = γ (x ′0 + βx ′1) x1 = γ (x ′1 + βx ′0) x2 = x ′2 x3 = x ′3.

Hence, the contravariant components of a four-vector transform like

a′μ = ∂x ′μ

∂xν
aν = Lμ

νa
ν and aμ = ∂xμ

∂x ′ν a
′ν = [L−1]μνa

′ν . (D.15)

Using the leftmost equation in (D.15), the rightmost equality in the Lorentz invariance statement,

a′
σ a

′σ = a′
σ

∂x ′σ

∂xν
aν = aνa

ν, (D.16)

implies that

a′
σ

∂x ′σ

∂xν
= aν ⇒ a′

σ

∂x ′σ

∂xν
∂xν

∂x ′μ = aν
∂xν

∂x ′μ ⇒ a′
σ δ

σ
μ = aν

∂xν

∂x ′μ . (D.17)
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Therefore, the transformation rules for the covariant components of a four-vector are

a′
μ = aν

∂xν

∂x ′μ = aνL
ν
μ and aμ = a′

ν

∂x ′ν

∂xμ
= a′

ν[L−1]νμ, (D.18)

where

L =

⎡
⎢⎢⎢⎣

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ L−1 =

⎡
⎢⎢⎢⎣

γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ . (D.19)

A brief computation confirms that L, L−1, and the metric tensor matrix g satisfy

Lg = LTg = gL−1. (D.20)

The chain rule and comparison with (D.18) show that derivatives with respect to the contravariant
components of �x transform like the covariant components of a four-vector:

∂

∂x ′μ = ∂xν

∂x ′μ
∂

∂xν
or ∂ ′

μ = ∂xν

∂x ′μ ∂ν. (D.21)

Hence, the covariant and contravariant forms of the gradient four-vector differ from the space-time vectors
(D.2) and (D.3) by the sign of their time components,

∂μ =
(

∂

∂(ct)
,∇

)
and ∂μ = gμν∂ν =

(
− ∂

∂(ct)
,∇

)
. (D.22)

Accordingly,

∂μa
μ = 1

c

∂a0

∂t
+ ∇ · a and ∂μ∂

μ = ∇2 − 1

c2

∂2

∂t2
. (D.23)

Finally, we note the generalization of the foregoing for second-rank Lorentz tensors which have contravariant,
covariant, or mixed character:

A′μν = Lμ
αL

ν
βA

αβ B ′
μν = Bαβ [L−1]αμ[L−1]βν C ′μ

ν = Lμ
γC

γ
σ [L−1]σν . (D.24)

D.3 Other Lorentz Tensors
The contravariant four-vectors for velocity and energy-momentum are

Uμ = γ (c, u) and pμ = mUμ = (E/c,p). (D.25)

The corresponding Lorentz invariant scalars are

UμUμ = −c2 and pμpμ = p2 − E2

c2
= −m2c2. (D.26)

The contravariant four-vectors for the electromagnetic potential and charge-current density are

Aμ = (ϕ/c,A) and jμ = (cρ, j). (D.27)

Using (D.22), the invariant Lorenz gauge condition and continuity equation are

∂μA
μ = 0 and ∂μj

μ = 0. (D.28)

The contravariant form of the anti-symmetric electromagnetic field tensor is

Fμν = ∂μAν − ∂νAμ, (D.29)
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and it follows from (D.22), (D.27), and (D.29) that

Fμν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D.30)

The covariant form of the field tensor is

Fαβ = gαμgβνF
μν, (D.31)

and the Maxwell equations take the form

∂νF
μν = μ0j

μ and ∂σFμν + ∂μFνσ + ∂νFσμ = 0. (D.32)

In this notation, the equation of motion of a particle with charge q in an electromagnetic field is

dpμ

dτ
= qUνF

μν. (D.33)

The symmetric, electromagnetic stress-energy tensor,

�μν = 1

μ0

(
FμαF νσ gσα − 1

4g
μνFαβF

αβ
) = 1

μ0

(
FμαF ν

α − 1
4g

μνFαβF
αβ
)
, (D.34)

has the block matrix representation

 =

⎛
⎜⎝ uEM cgEM

cgEM −T

⎞
⎟⎠ . (D.35)

This tensor satisfies the energy-momentum conservation law,

∂ν�
μν = Fμαjα. (D.36)

D.3.1 Manipulating Indices

Index raising and index lowering occur frequently in covariant calculations. To illustrate this, let us confirm
(D.36) by direct evaluation of the covariant derivative. For convenience, let μ0 = 1 and use the rightmost
member of (D.34) to write

∂ν�
μν = ∂ν(FμαF ν

α − 1
4g

μνFγβF
γβ ). (D.37)

From the product rule,

∂ν�
μν = Fμα(∂νF

ν
α) + Fν

α(∂νF
μα) − 1

4g
μν(∂νFγβ )Fγβ − 1

4g
μν(∂νF γβ )Fγβ. (D.38)

The inhomogeneous Maxwell equation on the left side of (D.32), the index-raising property of gμν , and the
exchange of upper and lower repeated indices illustrated by (D.13) transform (D.38) to

∂ν�
μν = Fμαjα + Fνα(∂νFμα) − 1

4 (∂μFγβ )Fγβ − 1
4 (∂μF γβ )Fγβ. (D.39)

Now replace the repeated index pair (γβ) by (να) in the last two terms of (D.39) and exchange upper and
lower indices in one of the terms to get

∂ν�
μν = Fμαjα + 1

2 [2Fνα(∂νFμα) − (∂μF να)Fνα] . (D.40)
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Writing 2Fνα(∂νFμα) = Fνα(∂νFμα) + Fνα(∂νFμα), exchanging the dummy indices α and ν in the second
term (only), and using Fνα = −Fαν , we deduce that

∂ν�
μν = Fμαjα + 1

2Fνα(∂νFμα − ∂αFμν − ∂μF να). (D.41)

The asymmetry Fμα = −Fαμ transforms (D.41) to

∂ν�
μν = Fμαjα − 1

2Fνα(∂νF αμ + ∂αFμν + ∂μF να). (D.42)

The parenthetical term on the right side of (D.42) vanishes by virtue of the homogeneous Maxwell equation
on the right side of (D.32). Therefore,

∂ν�
μν = Fμαjα, (D.43)

which is the equation (D.36) we wished to confirm.
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Index

Abraham-Lorentz equation, 902
Abraham-Minkowski controversy,

526
absorption, 575, 588, 629, 644, 651

coefficient, 608
acceleration field of a moving charge,

875
acceleration four-vector, 836
accelerator, particle, 686, 830, 885
action

definition, 917
Lorentz invariance of, 919
total electromagnetic, 926

addition theorem, spherical
harmonics, 108, 955

adiabatic invariance, 376
advanced Green function, 722
Aepinus, F., 30
aether, 82, 586, 790, 825
Airy’s formula, 603
Airy, G., 602
Alfvén waves, 587
aluminum, reflectivity of, 633
Ampère’s formula, 34
Ampère’s law, 307
Ampère’s theorem, 345
Ampère, A.-M., 365
Ampère-Maxwell law, 36, 456
Amèrian molecular current, 409
analytic function theory, 221
anapole moment, 348
angle, solid, 71, 319
angular distribution of radiation from

a point charge in circular motion,
883

a relativistic source, 880
a slotted sphere, 756
a slowly moving charge, 736

a specified current density, 737
a wire antenna, 738
an antenna array, 742
an electric multipole source, 759
an oscillating electric dipole, 746
an oscillating electric quadrupole,

752
an oscillating magnetic dipole, 750

angular momentum
and magnetic moments, 340
conservation of, 516, 854, 930
current density of, 517
of a paraxial beam, 563
of electromagnetic fields, 516
operator, 6, 756
radiation of, 750

angular spectrum of plane waves,
558, 801

anisotropic matter, waves in, 613
anode, 140
anomalous dispersion, 635
antenna, 737

arrays, 741
dipole, 737, 739
phased-array, 743

aperture, diffraction by an, 797
Appleton model for a magnetized

plasma, 636
Appleton, E.V, 639
approximation

Born, 790
Fraunhofer, 799
Kirchhoff, 799, 803
paraxial, 559, 561
physical optics, 792

atmospheric color, 782
attenuation in conducting-tube

waveguides, 684

auxiliary field D
defined, 44
matching condition, 45

auxiliary field H
defined, 44
matching condition, 45

axial vector, 21
azimuthal symmetry

potential problems with, 209

Babinet’s principle for vector fields,
807

Barkhausen, H., 647
battery, 283
beam waist, 560
beam-like waves, 558
Bessel functions, 216, 955

modified, 957
spherical, 957

betatron, 461
biaxial crystal, 613
Big Bang, 699
Biot-Savart law, 35, 304
birefringence, 615
blue sky, Rayleigh explanation of,

782
Bohr magneton, 341
boost, Lorentz, 827, 834
Born approximation, 790
bound charge, 159
boundary conditions

and uniqueness, 199, 509
conducting waveguide, 677
Dirichlet, 199
impedance, 686
Kirchhoff, 798, 804
magnetic field of the solar corona,

386
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mixed, 199, 252
Neumann, 199, 252, 278
temporal, 721

Bragg mirror, 605
bremsstrahlung, 881
Brewster’s angle, 594

canonical momentum, 918
capacitance

cross, 137
matrix, 136
of a circular disk, 135
self, 134

capacitor, 140
fringing fields, 225
with fixed charge, 169
with fixed potential, 172

carrier wave, 556
Cartesian coordinates, 2
Cartesian multipole radiation, 743
Cartesian symmetry, potential

problems with, 203
cathode, 140
Cauchy’s theorem, 652
causality, 486, 624, 649, 651, 832
Cavendish, H., 126
cavity resonator

chaos in, 699
closed tube, 695
conducting, 693
density of modes, 697
energy exchange, 700
spherical, 696

center of energy, 519, 854, 857, 930
center of energy theorem, 520
chaos, in a resonant cavity, 699
charge

absence of magnetic, 48
and gauge invariance, 927
bound, 159
conservation of electric, 32, 501
electric, 30
invariance of, 831
inversion, 79
polarization, 159
relaxation in an ohmic medium,

473, 634
space, 274

charge density, 30
at a perfect conductor surface, 130
at a real metal surface, 40
at the surface of a conducting disk,

131
fictitious magnetic, 415
force on, 58
in crystalline silicon, 38
macroscopic versus microscopic,

44

of a point electric dipole, 95
on the surface of a

current-carrying wire, 285
polarization, 118, 159
singularity at a sharp corner or

edge, 219
torque on, 58

charged particle motion, 366
and Larmor’s formula, 735
and strong focusing, 356
in a cylindrical electron lens, 218
in a disk-loaded waveguide, 686
in a plane wave, 572, 838
in a plasma, 459
in a synchrotron, 891
in a uniform magnetic field, 366
in crossed fields, 368
in ohmic matter, 275
in the Earth’s magnetic field, 377
in time-harmonic fields, 573
Lagrangian for, 920
with radiation reaction, 899

Cherenkov radiation, 906
Child-Langmuir law, 275
chirp, 646
circuit theory

AC, 486
DC, 284

circular current loop, magnetic field
of, 304

circular-tube waveguides, 681
classical electron radius, 778, 903
Clausius-Mossotti formula, 176
closure relation, 202
coaxial transmission line, 667
Colladon, J.-D., 666
color

of the daylight sky, 782
of the setting sun, 782

complementarity, 554
complementary objects, diffraction

theory, 807
completeness of

Bessel functions, 956
complex exponentials, 12
Legendre polynomials, 107,

953
orthonormal sets of functions,

202
spherical harmonics, 108, 955

complex
dielectric function, 608
index of refraction, 608
permittivity, 608
wave impedance, 608

complex logarithm potential, 260
conducting matter

dielectric function, 608

Drude model for, 631
skin depth, 609
waves in, 607

conducting-tube waveguide, 675
absence of TEM waves, 677
boundary conditions, 677
modes, 678

conductivity
frequency-dependent, 625
static Drude, 275

conductors
boundary condition, 130
energy of a collection of, 142
force on, 143
perfect, 126, 431
permeability of, 431
real, 149
spatial dispersion, 657
surface charge density, 130
surface current density, 311

confined waves, 666
conformal mapping, 224
conservation laws

and Lagrangian invariance, 927
in covariant form, 852
in matter, 522
in vacuum, 501

conservation of
angular momentum, 516, 854, 930
charge, 32, 501, 927
energy

in dispersive matter, 627
in simple matter, 523
in vacuum, 507

energy-momentum, 852, 929
linear momentum

in matter, 524
in vacuum, 511

conservative force, 61
constitutive relations, 45

dielectric matter, 166
frequency-dispersive matter, 626
magnetic matter, 421
matter in uniform motion, 859
simple conducting matter, 607

contact resistance, 279
continuity equation, 32, 272, 456,

501, 505, 668
and gauge invariance, 928
covariant, 840

continuous symmetries, 503
contraction theorem for tensors, 849
contravariant four-vector, 959
convective derivative, 8, 458
conversion between unit systems,

950
convolution theorem, 16
coordinate four-vector, 835
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cosmic microwave background
polarization, 545, 781
spectral radiance, 699

Coulomb blockade, 142
Coulomb gauge, 321, 505, 538, 939
Coulomb’s law, 33, 48, 59

for magnetism, 435
Coulomb-Lorentz force, 29, 37, 456,

920
from Hamilton’s equations, 933
from Lagrange’s equations, 925

covariance, relativistic, 834, 848
covariant

conservation laws, 852
electrodynamics, 848
equations of particle dynamics,

852
four-vector, 959
Larmor formula, 884
Liénard-Wiechert potentials, 873
Maxwell equations, 849

Crab nebulae, 743
critical angle, 595
cross section

absorption, 793
scattering

differential (2D), 785
differential (3D), 776
total, 777

total, 793
crystal optics, 613
current

Ampèrian molecular, 409
bound, 408
displacement, 456
free, 408
in matter, 275
in vacuum, 273
polarization, 458
sheet, 309
sources, 287
steady, 272, 302

current density, 31, 272
at a perfect conductor surface, 311
convection, 273
force on, 301
four-vector, 840
magnetization, 410
of a point magnetic dipole, 343
of electromagnetic angular

momentum, 517
of electromagnetic energy, 508
of electromagnetic linear

momentum, 514
orbital magnetization, 409
polarization, 458
spin magnetization, 409
torque on, 301

current, electric, 31
cutoff in a

conducting waveguide, 674
dielectric waveguide, 691
magnetized plasma, 638

cyclotron
frequency, 366
radiation, 882
radius, 367

cylindrical coordinates, 2
cylindrical symmetry

potential problems with, 215

Debye-Hückel, 291
delta function

one dimension, 11
three dimensions, 14

demagnetization field, 418
density of modes, 697
diamagnet, 407, 422
dielectric constant, 167, 175

of a plasma, 459
of a polar liquid, 212

dielectric function for
conducting matter, 631
dielectric matter, 635
dispersive matter, 626
magnetized plasma, 637
negative-index matter, 640
silicon, 636

dielectric matter, 158
constitutive relation, 166
energy of, 178
forces on, 184
linear, 167
Lorentz model for, 635
response to fixed fields, 172
response to free charge, 169
short range forces in, 187
simple, 167
waves in, 584

dielectric permittivity, 167
frequency-dependent, 625

dielectric waveguides, 687
dielectrophoresis, 185
diffraction, 775

Babinet’s principle, 807
by a planar aperture, 797
by a sub-wavelength aperture,

808
Fraunhofer

from a circular aperture, 805
of scalar fields, 799
of vector fields, 804

free space, 556
Huygens’ principle, 810
scalar theory, 798
Smythe’s formula, 803

Sommerfeld solution for a
half-plane, 797

vector theory, 800
diffusion

analogy with electrostatics, 220
in matter, 291
magnetic, 481

dimensional analysis, 181, 243, 291,
395, 672, 730

dipole
electric, 92
magnetic, 337

dipole antenna
frequency-domain analysis, 737
time-domain analysis, 739

dipole field
electric, 96
magnetic, 343
scattered, 778
time-dependent, 728

dipole force
electric, 96

time-dependent, 527, 574
magnetic, 373

dipole moment
effective, of an aperture, 808
electric, 92

conducting sphere, 129
polarized matter, 159

magnetic, 338
of a current loop, 339
spin, 340

dipole potential
electric scalar, 92
magnetic scalar, 339
magnetic vector, 338

dipole-dipole interaction
electric, 98
magnetic, 378

Dirac’s method of constraints, 936
Dirac, P., 901
direct integration

Dirichlet Green function, 256
Dirichlet boundary conditions, 199
Dirichlet Green function, 251, 252

direct integration, 256
eigenfunction expansion, 254
magic rule, 253
method of splitting, 258

discontinuity
of macroscopic fields, 42
of potential at a dipole layer, 100

discrete symmetries, 502
disk generator, Faraday, 466
dispersion, 651

anomalous, 635
frequency, 624

classical models for, 630
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normal, 635
spatial, 656
structural, 674, 679

dispersion relation, 555, 586
dispersive matter

conservation of energy, 627
wave packets in, 641
waves in, 624

displacement current, 36, 456
divergence theorem

for a four-vector, 856
for a three-vector, 9

domain, magnetic, 443
Doppler effect, 847
double-curl equation, 323
double layer, 292
drift velocity, 275, 372
drift, E × B, 368
drift-diffusion equation, 291
Drude model

for frequency-dependent
conductivity, 631

for static conductivity, 275
duality, 49, 503, 566, 677, 808, 851
dyadic, 513

Earnshaw’s theorem, 63
Eddington, A., 916
eddy current, 483

induced force, 484, 492
induced ohmic loss, 484

eigenfunction expansion
of an arbitrary function, 202
of Dirichlet Green function, 254

Einstein relation, 291
Einstein summation convention, 4
Einstein, A., 536, 723, 782, 822
electric charge, 30

and gauge invariance, 927
bound, 159
conservation of, 32, 501
free, 159
invariance of, 831

electric current, 31
electric dipole, 92

force on a, 96
layer, 98
moment, 92

conducting sphere, 129
polarized matter, 159

point, 95
potential, 92
potential energy, 97
time-dependent, 727
torque, 97

electric dipole radiation, 744
electric field E

local, 177

matching condition, 42
near a sharp corner or edge, 219
of a charged cylinder, 68
of a charged line segment, 65
of a charged ring, 59
of a charged sheet, 69
of a charged sphere, 68
of a point charge in uniform

motion, 716, 844
of a point electric dipole, 96
of an electric dipole, 92
of polarized matter, 162
outside a current-carrying wire,

286
electric flux, 65
electric force, 58

between point charges, 33
from variation of potential energy,

74
on a dielectric interface, 188
on a dielectric sub-volume, 186
on a dipole, 96
on a quadrupole, 104
on an embedded dielectric, 189
on an isolated body, 184

electric Hertz vector, 570
electric multipole expansion

azimuthal, 112
Cartesian

primitive, 90
traceless, 116

spherical, 109
electric multipoles, 90
electric polarization, 158
electric quadrupole, 102
electric quadrupole radiation, 752
electric stress tensor, 81

for a simple dielectric, 188
electric susceptibility, 167

frequency-dependent, 625
electric torque, 58
electro-kinetic momentum, 515
electrocardiography, 290
electromagnet, iron core, 423
electromagnetic

angular momentum density, 516
dual tensor, 851
energy density, 508
field-strength tensor, 850, 961
induction, 462
linear momentum density, 513
potentials, 503
stress-energy tensor, 853, 962

electromagnetic fields
of a charge in uniform motion, 878
free, 536, 853, 855
from relativistic charges, 870
general properties, 501

non-classical, 47
of charge in arbitrary motion, 874
quasistatic, 455

electromotive force (EMF), 282, 462,
464

electron microscope, 358
electrostatic

analogy with diffusion, 220
energy of a system of conductors,

142
field, 58
induction, 126
lens, 217
potential, 60

complex, 221
multipole expansion, 90
near a sharp corner or edge, 219
of a charged line segment, 65
of a charged ring, 211
of a conducting sphere, 126
of a current source, 287
of a dipole layer, 99
of a line dipole, 260
of an electric dipole, 92
of an electric quadrupole, 102
of polarized matter, 162

potential theory
Laplace’s equation, 198
Poisson’s equation, 236

electrostatic energy
potential, 74
total, 76

electrostatics, 58
history of, 33

EMF, 464
energy

conservation of, 507, 523, 852
in matter, 588

current density, 508
density, 508
electric dipole, 97
electric dipole-dipole interaction,

98
electrostatic potential, 74, 76
exchange in lossless cavities, 700
in dispersive matter, 627
magnetic dipole, 377
magnetic dipole-dipole interaction,

378
magnetic potential, 389
magnetic total, 384
minimization (Thomson’s

theorem), 128
of a system of conductors, 142
of a wave packet, 552
of dielectric matter, 178
of electrostatic interaction, 79
of magnetic matter, 433
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energy (cont.)
relativistic, 837
transport, 593
transport by radiation, 730
velocity

of a plane wave in matter, 544
energy loss

and radiation reaction, 899
by a point particle, relativistic, 884
by electric dipole radiation, 746
by electric multipole radiation, 759
by electric quadrupole radiation,

754
by Joule heating, 280
by magnetic dipole radiation, 750
by particle accelerators, 885
by the classical Bohr atom, 900
in a conducting-tube waveguide,

684
in resistive wires, 510
in resonant cavities, 701
in simple conducting matter, 607

energy velocity
in a conducting-tube waveguide,

682
in Lorentz matter, 644

envelope of a wave packet, 556
equipartition theorem, 698
equipotential surface, 63
Euler, L., 58
evanescent plane wave, 558, 598
events, 823

separation in space-time, 832
Ewald-Oseen extinction theorem,

762
extinction paradox, 796
extinction theorem, 632, 673,

762
extraordinary ray, 615

f-sum rule, 655
Fabry-Perot geometry, 602
far zone, 728
Faraday disk generator, 466
Faraday EMF, 464
Faraday’s cage, 207
Faraday’s law, 35, 460
Faraday, M., 35, 427, 671
ferroelectric, 167
ferromagnet, 407

hard and soft, 443
permeability, 430

Fick’s law, 291
field concept, 34
field lines

charged line segment, 66
electric, 63
electric dipole, 93

for an accelerated point charge,
876

magnetic, 302
magnetic dipole, 338
point charge in a uniform field, 64,

73
refraction of, 173
topology of magnetic, 325

fission, nuclear, 113
flip coil, 464
Floquet’s theorem, 687
flux

electric, 65
magnetic, 302

flux rule, 464
flux theorem, 10, 462
Fock, V., 775
focusing

by electrostatic fields, 217
by magnetostatic fields, 356, 359
strong, 356

force
Coulomb-Lorentz, 29, 37, 920
electromagnetic on a classical

atom, 527
electromagnetic on isolated matter,

526
electrostatic, 58
magnetostatic, 301
on a charged surface, 71
on a conductor, 143
on a magnetic dipole, 373
on a polarizable particle, 574
on an electric dipole, 96
on dielectric matter, 184
on magnetic matter, 435
on particles in free fields, 571
pondermotive, 573

force density four-vector, 852
form factor, 780
four-point resistance probe, 288
four-vector

charge-current density, 840
contravariant, 959
covariant, 959
energy-momentum, 837
force density, 852
frequency-wave vector, 846
general, 834
scalar-vector potential, 842
space-time coordinate, 835
velocity, 836

Fourier analysis, 15
Fourier transform, 554
Fourier-Bessel series, 216
Franklin, B., 30
Franz formulae, 811
Fraunhofer diffraction

of scalar fields, 799
of vector fields, 804

free fields, 536
particle-like properties, 855
radiation, 730

free-space diffraction, 556
free-space Green function, 724
frequency

cyclotron, 366, 459
Larmor, 367, 381

frequency dispersion, 624
Appleton model for, 636
classical models for, 630
Drude model for, 631
Lorentz model for, 635
split-ring model for, 640

frequency spectrum
of Cherenkov radiation, 908
of Heaviside-Feynman radiation,

891
of Liénard-Wiechert radiation, 889
of radiation from an arbitrary

current distribution, 888
of synchrotron radiation, 895

Fresnel equations, 590, 762
Furry, W., 835

g-factor, 341
Galilean transformation, 824
Galvani, L., 31
gauge

Coulomb, 321, 505, 538, 725
fixing, 938
invariance, 321, 504

and conservation of charge, 927
and Dirac’s method of

constraints, 937
Lorenz, 507, 537, 715

Gauss’ law, 34, 68
Gaussian beam, 559
Gaussian units, 949
Gaussian wave packet, 554, 646
generalized coordinates, 916
generalized optical principles, 807
Gilbert, W., 30, 34, 407
Ginzburg, V., 523
global positioning system (GPS), 826
going off the axis, 211
Golden Rule, 699
gradient force

on a magnetic dipole, 373
on an electric dipole, 96

Green function
Dirichlet, 251, 252

direct integration, 256
eigenfunction expansion, 254
magic rule, 253
method of splitting, 258
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for free space, 724, 799
cylindrical representation, 256

for Poisson’s equation, 250
for the exterior of a hollow tube,

259
for the Helmholtz equation, 724
for the wave equation, 720
magic rule, 253
Neumann, 252
scalar diffraction theory, 798

Green’s identities, 9
Green’s reciprocity relation, 75, 137
Green, G., 236, 251
grounding a conductor, 135
group velocity, 555, 642

and the index of refraction, 643
dispersion, 645
in a conducting-tube waveguide,

679
in Drude matter, 643
in Lorentz matter, 644
negative, 644

guided waves, 666
Guoy phase, 561
gyromagnetic ratio, 341

Hagens-Rubens relation, 611
hairy ball theorem, 568
Hall effect, quantum, 389
Hamilton’s equations

for fields, 934
for particles, 933

Hamilton’s principle, 916
Hamiltonian

total electromagnetic, 934, 935,
939

treatment of electrodynamics, 931
Hamiltonian density, 934, 937
Hankel functions, 956
Heaviside, O., 639, 671, 870
Heaviside-Feynman fields, 879
heavy ion collisions, 830
helicity, 327, 565
Helmholtz coil, 315
Helmholtz equation, 557, 705

Green function, 724
Helmholtz theorem, 22
Helmholtz, H., 926
Hertz potentials, 725
Hertz vector, 715

electric, 570
magnetic, 569

Hertz vector, electric, 763
Hertz, H., 33, 714
Hertz,H., 731
heuristic derivation

of the Liénard-Wiechert potentials,
872

of the Maxwell equations, 51
hidden momentum, 521
homopolar generator, Faraday, 466
Hooft, G., 835
Huygens’ principle, 799, 804, 810
hyperfine interaction energy, 419
hysteresis, magnetic, 443, 446

image
dipole, 240
force, 238
method for

a conducting cylinder, 248
a conducting sphere, 245, 247
a dielectric cylinder, 249
dielectric boundaries, 240
magnetic matter, 428
multiple conducting planes, 242
one conducting plane, 237

potential, 238
potential states, 239

impedance
boundary condition, 686
in circuit theory, 487
matching, 592
of the vacuum, 585
wave, 586

complex, 608
index manipulations, 962
index of refraction, 585, 762

complex, 608
negative, 590
of silicon dioxide, 637

induced EMF method, 731
inductance, 394

mutual, 396
self, 395

induction
electromagnetic, 462
electrostatic, 126

inertial frame, 823
Infeld, L., 536
information-collecting shell, 872
inhomogeneous plane wave, 598
intensity, 544
interface matching conditions, 42
interfacial wave, 596
intermediate zone, 728
intrinsic impedance, 585
invariance

adiabatic, 376
gauge, 321, 504
rotational, 52, 68, 308, 503, 827,

834
translational, 52, 68, 308, 503, 834

invariant interval, 831
inverse distance, expansion in

spherical harmonics, 109

inverse-square force law, 33
inversion, method of, 246
inversion, space, 18, 21, 52, 502,

690
Ioffe-Pritchard geometry, 377
ionosphere, 633, 639, 666
irrotational current sources, 304

Jacobian determinant, 9
Jeans, J., 197
Jefimenko, O.D., 726
Joule heating, 280, 484, 610, 684

Kennelly, A., 639
Kirchhoff approximation

for scalar field diffraction, 799
for vector field diffraction, 803

Kirchhoff’s laws, 284
klystron, 666
Kramers-Krönig relations, 649
Kronecker symbol, 4

Lagrange multipliers, 24
Lagrange’s equations

covariant form, 926
for fields, 924
for particles, 917

Lagrangian, 916
approach to the conservation laws,

927
for a free field, 923
for a moving point dipole, 922
for a non-relativistic charge in a

field, 920
for a relativistic charge in a field,

921
singular, 936
total electromagnetic, 918, 925
treatment of electrodynamics, 918

Lagrangian density, 923
Landau-Lifshitz equation, 904
Langmuir-Child law, 275
Laplace’s equation, 174, 197

analytic function theory, 221
and multipole theory, 113
in image theory, 237, 239
in magnetostatics, 312, 417
separation of variables, 201
uniqueness of solutions, 199

Larmor frequency, 367, 747
Larmor precession, 381
Larmor’s formula, 735, 746, 747

relativistic, 884
Larmor’s theorem, 367
Larmor, J., 367
law of squares, 671
left-handed matter, 590
Legendre functions, 209
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Legendre polynomials, 107, 953
associated, 954

Legendre transformation, 145, 932
length contraction, 830
lens, electrostatic, 217
Lenz’ law, 36, 464
Levi-Cività symbol, 4
Liénard-Wiechert

fields, 874
potentials, 871

light cone, 832
light, speed of, 51
linear momentum

conservation of, 511, 524
electromagnetic, 513
electromagnetic, in matter, 526

linewidth, radiative, 906
liquid drop model, 113
local field, 177
longitudinal waves

in a Drude medium, 632
in dispersive matter, 629

Lord Rayleigh, 705
Lorentz averaging, 39
Lorentz force, 29, 37, 365, 366, 456
Lorentz invariant scalar, 831
Lorentz model

for dielectric matter, 635
for magnetization, 411
for polarization, 160
wave velocities, 644

Lorentz reciprocity, 769
Lorentz tensors, 849
Lorentz transformation

of a static Coulomb field, 844
of electromagnetic fields, 843
of four-vectors, 835, 961
of magnetization, 858
of plane wave fields, 845
of polarization, 858
of space-time coordinates, 834
standard configuration, 827

Lorentz, H., 624, 927
Lorentz-Abraham equation, 902
Lorentzian line shape, 702, 906
Lorenz gauge, 507, 537
Lorenz, L., 507, 789

macroscopic sources and fields, 44
macroscopic vs. microscopic, 38
magnetic anisotropy, 379
magnetic bacteria, 379
magnetic bottle, 377
magnetic charge

absence of physical, 48
fictitious, 415, 436, 443, 445
real, 419

magnetic diffusion, 481

magnetic dipole, 337
field lines, 338
force on a, 373
layers, 345
moment, 338
point, 343
potential energy, 377
scalar potential, 339
torque, 378
vector potential, 338

magnetic dipole moment
adiabatic invariance of, 376
of a current loop, 339
of a magnetized body, 411
of a permeable sphere, 422
of the proton, 419
orbital, 340
spin, 341

magnetic dipole radiation, 748
magnetic domain, 443
magnetic energy

potential, 389
total, 384

magnetic field B
axially symmetric, 357
matching condition, 42
of a current line, 308
of a current ring, 313
of a current segment, 307
of a current sheet, 309
of a current-carrying wire, 323
of a magnetic dipole, 338
of a point magnetic dipole, 343
of a solenoid, 305
of a torus winding, 311
of a uniformly magnetized sphere,

417
of magnetized matter, 412
of the Earth, 339
of the solar corona, 386

magnetic flux, 302, 388, 461
magnetic force, 301, 365

between steady currents, 34, 368
from variation of potential energy,

391
on a current sheet, 311
on a dipole, 373
on a magnetic interface, 441
on a magnetic sub-volume, 438
on an embedded magnet, 440
on an isolated body, 436

magnetic helicity, 327
magnetic Hertz vector, 569
magnetic hysteresis, 443, 446
magnetic matter, 407

constitutive relation, 421
energy of, 433
linear, 421

permanent, 443
simple, 421
waves in, 584

magnetic mirror, 375
magnetic monopole, 49, 302, 337
magnetic multipole expansion

for scalar potential
axial, 357
azimuthal, 351
spherical, 349

for vector potential
Cartesian, 336, 347
interior, 353
spherical, 351

magnetic multipoles, 336
magnetic permeability, 421

for a split-ring resonator, 641
frequency-dependent, 625

magnetic plasma
Appleton model for a, 636

magnetic pressure, 382
magnetic quadrupole, 356
magnetic reconnection, 325
magnetic resonance imaging, 316
magnetic response

to a fixed field, 425
to free current, 423

magnetic scalar potential, 312
and the method of images, 428
multi-valued nature of, 318
multipole expansion of, 349
of a current loop, 314
of a magnetic dipole, 339
of magnetized matter, 415
topological aspects of, 317

magnetic shielding
AC, 480
DC, 428

magnetic stress tensor, 381
for a simple magnet, 439

magnetic susceptibility, 421
frequency-dependent, 625

magnetic tension, 382
magnetic torque, 301, 365

on a dipole, 378
magnetic trapping, 377
magnetic virial theorem, 383
magnetic work, 366, 371
magnetization M

as a sum of point dipoles, 413
energy to create, 434
Lorentz model for, 411
magnetic field produced by, 412
non-uniqueness of, 412
of the vacuum, 46
orbital, 408, 409
spin, 408
total, 410
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magnetostatics, 301
history of, 34

magnetron, 666
Marconi, G., 639
mass renormalization, 904
matching conditions

at a moving interface, 43, 859
at an electric dipole layer, 100
for B, 42, 310
for D, 45, 166
for E, 42, 70
for H, 45, 420
for electrostatic potential, 62, 197
for magnetic scalar potential, 417
in ohmic matter, 277

Maxwell equations, 849
electrostatic, 58
from Hamilton’s equations, 935
from Lagrange’s equations, 925
heuristic derivation, 51
in matter, 43
in vacuum, 33
macroscopic vs. macroscopic, 39
magnetostatic, 301

Maxwell inequalities, 138
Maxwell stress tensor, 513
Maxwell, J.C., 33, 90, 584
metal cluster ionization potential, 79
metal surface, charge density at a, 40
metallic alloy, reflectivity of a, 612
method of images for

a dielectric cylinder, 249
a conducting cylinder, 248
a conducting sphere, 245, 247
dielectric boundaries, 240
magnetic matter, 428
multiple conducting planes, 242
one conducting plane, 237

method of inversion, 246
metric tensor in special relativity, 959
microscopic vs. macroscopic, 38
microstrip, 692
Mie scattering, 787

approximate, 795
Minkowski diagram, 832
Minkowski electrodynamics, 858
Minkowski, H., 835, 858
mirror, magnetic, 375
mixed boundary conditions, 199, 252
mobility, 292
modes

density of, 697
excitation of cavity, 703
for a parallel-plate transmission

line, 673
in conducting cavities, 694
in conducting-tube cavities

TE and TM, 695

in conducting-tube waveguides,
678

in dielectric waveguides, 687
in spherical cavities

TE and TM, 696
of a dielectric waveguide

hybrid, 692
radiation, 692

moment
anapole, 348
electric dipole, 92
electric quadrupole, 102
magnetic dipole, 372

momentum
canonical, 918
conservation of, 511, 524, 852,

929
electromagnetic, 513
relativistic, 837

momentum density
canonical, 925
electromagnetic, 513

momentum four-vector, 837
momentum, hidden, 521
monochromatic plane waves, 543
monopole, magnetic, 49, 302, 337
motional EMF, 464
multilayer, wave propagation in a,

604
multipole expansion

for electrostatic potential
azimuthal, 112
spherical, 109

for magnetic scalar potential
axial, 357
azimuthal, 351
spherical, 349

for radiation fields
Cartesian, 743
spherical, 755

for vector potential
Cartesian, 336, 347
interior, 353
spherical, 351

multipole moments
electromagnetic, 758
electrostatic

spherical, 110, 112
magnetostatic

azimuthal, 351
Cartesian, 347
spherical, 349

multipole radiation
Cartesian, 743
from atoms and nuclei, 761
spherical, 755

multipoles
electric, 90

magnetic, 336
mutual inductance, 396

near zone, 728
near-field optics, 810
negative

group velocity, 644
index matter, 590

split-ring model for, 640
negative refraction, 590
Nernst-Planck equation, 292
network circuits, 490
Neumann boundary conditions, 199,

278
Neumann Green function, 252
Noether’s theorem, 928
non-uniform

plane wave, 598, 672
TEM wave, 668

normal dispersion, 635
nuclear quadrupole moments, 105

Ohm’s law, 36, 275, 340, 473, 510,
607

in a moving medium, 859
Onsager, L., 177, 212
optical fiber, 687
optical theorem, 794
optical tweezers, 574
orbital magnetization, 409
orbital, magnetic moment, 340
ordinary ray, 615
orthogonality

of Bessel functions, 217, 956
of cavity modes, 694
of complex exponentials, 217
of complex vectors, 548
of Legendre polynomials, 107, 953
of sinusoids, 204
of spherical Bessel functions, 958
of spherical harmonics, 108, 213,

955
of waveguide modes, 678

orthonormal functions, 202

p-polarization, 590
parallel-plate

capacitor, 141
transmission line, 673

paramagnet, 407, 422
paraxial approximation, 559, 561
paraxial beam, angular momentum

of, 563
paraxial waves, 562
parity, 94, 348, 502, 762
Parseval’s theorem, 16
Pauli, W., 455, 835
Peierls, R., 29
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perfect
absorber, 796
conductor, 126, 431
diamagnet, 430
ferromagnet, 430
lens, 590

permanent magnet matter, 443
permeability, 421

of a ferromagnet, 430
of a perfect conductor, 431
of a superconductor, 430

permittivity, 167
complex, 608

phase of a wave, 541
phase velocity

and charged particle acceleration,
686

and Cherenkov radiation, 906
in a conducting-tube waveguide,

679
in a good conductor, 610
in a magnetized plasma, 639
in Lorentz matter, 644
in negative-index matter, 590
of a plane wave

in matter, 586
in vacuum, 541

of an Alfvén wave, 587
of an evanescent wave, 598

physical optics approximation, 792
pickup coil, 465
pinch effect, 371
Planck distribution, 698
Planck, M., 501
plane of incidence, 589
plane wave expansions, 958
plane waves

angular spectrum of, 558
evanescent, 558, 598
in anisotropic matter, 613
in conducting matter, 607
in simple matter, 584
in special relativity, 845
in vacuum, 539
mechanical properties of, 542
monochromatic, 543
non-uniform, 672
standing, 539
transverse, 539

plasma
frequency, 631
oscillation, 633
waves in a magnetized, 636

Poincaré sphere, 550
point electric dipole, 95
point magnetic dipole, 343
Poisson’s equation, 236

Green function for, 250

particular solution, 236
uniqueness of solutions, 199
vector, 321

Poisson’s formula, 162
Poisson-Boltzmann equation, 262
polar symmetry, potential problems

with, 218
polar vector, 21
polarizability, 129, 175
polarization

by reflection, 594
by Thomson/Rayleigh scattering,

779
circular, 547
ellipse, 545
elliptical, 549
linear, 546
of an electromagnetic wave, 545
of synchrotron radiation, 893
of the cosmic microwave

background, 545, 781
polarization P

as a sum of point dipoles, 164
electric field produced by, 162
energy to create, 181
Lorentz model of, 160
modern theory of, 160
of a conductor, 126
of a dielectric, 158
of the vacuum, 46

polarization charge, 159
at an interface, 170
density, 118

polarization current, 458
in ice, 459

pondermotive force, 573
potential

electromagnetic, 503
electrostatic, 60

complex, 221
matching condition for, 62
multipole expansion, 90
near a sharp corner or edge, 219
of a charged line segment, 65
of a charged ring, 211
of a conducting sphere, 126
of a current source, 287
of a dipole layer, 99
of a line dipole, 260
of an electric dipole, 92
of an electric quadrupole, 102
of polarized matter, 162

four-vector, 842
magnetic scalar, 312

of a current loop, 314
of a magnetic dipole, 339

momentum, 515
scalar

Coulomb gauge, 505
in special relativity, 842
Lorenz gauge, 724
of a point charge in arbitrary

motion, 872
of a point charge in uniform

motion, 716
of a time-dependent electric

dipole, 727
vector, 320

Coulomb gauge, 506
for radiation, 734
gauge freedom, 504
in special relativity, 842
Lorenz gauge, 724
of a charge in uniform motion,

716
of a current ring, 324
of a current-carrying wire, 322,

323
of a magnetic dipole, 338
of a magnetic dipole layer, 345
of a point charge in arbitrary

motion, 872
of a point magnetic monopole,

344
of a time-dependent electric

dipole, 727
of magnetized matter, 412
physical significance, 514

potential energy
and Green’s reciprocity, 75
barrier in an ion channel, 244
electrostatic, 74
force from variation of, 74, 391
landscape in matter, 126, 158
magnetostatic, 389
of a magnetic dipole, 377
of an electric dipole, 97
of magnetic matter, 433

potential theory
for a simple magnet, 426
for magnetic matter, 416
for simple dielectrics, 174
ohmic matter, 276
Poisson’s equation, 236
uniqueness of solutions, 199

power dissipated
by a conducting-tube waveguide,

684
by a resonant cavity, 701
by an ohmic medium, 474
in circuit theory, 486

power radiated
by a point particle, relativistic, 884
by a slowly moving point charge,

736
by a specified current source, 737
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by a wire antenna, 738
by an oscillating electric dipole,

746
by an oscillating electric

multipole, 760
by an oscillating electric

quadrupole, 754
by an oscillating magnetic dipole,

750
by at time-harmonic solenoid, 718
by particle accelerators, 885
in the frequency domain, 886
in the general case, 730

power transported
by a conducting-tube waveguide,

682
Poynting vector

and the definition of radiation, 730
at an interface, 593
field lines

for a resistive wire, 510
for a plane wave, 544
in a conducting-tube waveguide,

682
in matter, 523
in negative-index matter, 590
in vacuum, 508
of an evanescent wave, 598
uniqueness, 511

Poynting’s theorem, 507
in matter, 523
in special relativity, 854
time-averaged, 700

precession, Larmor, 381
precession, Thomas, 834
pressure, magnetic, 382
pressure, radiation, 599, 847
principal value integral, 13
proper time, 833
pseudovector, 21
pulsar, 743
Purcell, E.M, 158

Q, quality factor of
a dielectric resonator, 704
a lossy medium, 588
a resonant cavity, 702
a resonant circuit, 489

quadrupole mass spectrometer, 469
quadrupole moment tensor

of an ellipsoid, 106
of nuclei, 105
primitive, 91, 102
traceless, 103

quadrupole, electric, 102
force and torque on, 104

quantum electrodynamics, 46
quantum Hall effect, 389

quark confinement, classical model
for, 180

quark-gluon plasma, 830
quasi-electrostatics

in poor conductors, 473
in vacuum, 468

quasi-magnetostatics
in good conductors, 475
in vacuum, 471

quasi-monochromatic fields, 628
quotient theorem, 849

Rabi, I., 336
radiation, 714

angular distribution of, 730
birth of, 731
blackbody, 698
damping, 899
definition of, 730
from

a current sheet, 725
a magnetic dipole, 748
a point charge in circular

motion, 883
a relativistic source, 880
a slotted sphere, 756
a slowly moving charge, 736
a specified current density, 737
a time-harmonic solenoid, 718
a wire antenna, 738
an antenna array, 742
an electric dipole, 744
an electric multipole, 759
an electric quadrupole, 752
atoms and nuclei, 761
cyclotron motion, 882
synchrotron motion, 882, 891
the cosmic microwave

background, 699
Hertz analysis of, 731
in matter, 762
in the frequency domain, 736, 886
in the time domain, 733, 880
multipole

Cartesian, 743
spherical, 755

of angular momentum, 751, 760
pressure, 599, 847
reaction, 795, 899
resistance, 739
vector, 743
zone

summary of results, 734
radiation condition, Sommerfeld, 724
radiative linewidth, 906
Rayleigh criterion, 806
Rayleigh distance, 560
Rayleigh scattering

three dimensions, 782
two dimensions, 786

Rayleigh, Lord, 782
Rayleigh-Jeans law, 698
reciprocity

electric, 75
Lorentz, 769
magnetic, 387

reconnection
electic field lines, 732
field line

electric, 731
magnetic, 325

rectangular-tube waveguides, 680
red sun, Rayleigh explanation of, 782
reference frame, 823
reflection

amplitude, 591
coefficient, 593
from a good conductor, 611
from a moving mirror, 846
from a planar boundary, 588
of radio waves by the ionosphere,

639
polarization by, 594
total internal, 595

reflectivity, 632
of a metallic alloy, 612
of aluminum, 633
of seawater, 612

refraction
from a planar boundary, 588
index of, 762
into a good conductor, 609
of magnetic field lines, 425

refrigerator magnet, 445
relativistic covariance, 834, 848
relativistic invariance of

electric charge, 831
proper time, 833
radiated power, 884
the action, 919
the four-vector scalar product, 835
the interval, 831
the phase of a plane wave, 846
the speed of light, 831
the wave operator, 840

relativistic transformation of
a static Coulomb field, 844
electromagnetic fields, 843
four-vectors, 961
magnetization, 858
plane wave fields, 845
polarization, 858
space-time coordinates, 827, 834,

835
relativity

of simultaneity, 825
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relativity, Einstein’s, 825
relativity, special, 653, 822
remanent magnetization, 443
resistance

contact, 279
electrical, 277
four-point probe, 288

resistivity, 278
resonant cavities, 666

chaos in, 699
closed tube, 695
conducting, 693
density of modes, 697
energy exchange, 700
Q-factor of, 702
spherical, 696

response functions
analyticity of, 652
causal, 624, 649

resting potential of a cell, 291
retardation, 714, 719
retarded Green function, 722
retarded potentials, 724
retarded time, 714
right-hand rule, 10, 36, 97, 307
Ritz, W., 723
runaway solutions, 903
Rutherford, Ernest, 480

s-polarization, 590
scalar potential

Coulomb gauge, 505
electrostatic, 60

complex, 221
matching condition for, 62
multipole expansion, 90
near a sharp corner or edge, 219
of a charged line segment, 65
of a charged ring, 211
of a conducting sphere, 126
of a current source, 287
of a dipole layer, 99
of a line dipole, 260
of an electric dipole, 92
of an electric quadrupole, 102
of polarized matter, 162

in special relativity, 842
Lorenz gauge, 724
magnetic, 312

and the method of images, 428
multi-valued nature of, 318
multipole expansion of, 349
of a current loop, 314
of magnetized matter, 415

of a point charge in arbitrary
motion, 872

of a point charge in uniform
motion, 716

of a time-dependent electric
dipole, 727

scalar product of two four-vectors,
835

scattering, 775
amplitude, 777
and the blue sky, 782
and the red sun, 782
cross section

differential (2D), 785
differential (3D), 776
total, 777

form factor, 780
from a conducting cylinder, 783
from a dielectic sphere, 787
long wavelength, 777, 782
Mie, 787

approximate, 795
plane, 778
Rayleigh, 782
Thomson, 777
wave vector, 780
x-ray, 780

Schott’s formulae, 726
Schumann resonances, 666
Schwarzchild, K., 927
screening length, 149, 291, 657
screening, electrostatic, 133
seawater, reflectivity of, 612
self-inductance, 395
separation of variables

Helmholtz equation, 567
Laplace equation, 201

azimuthal symmetry, 209
Cartesian symmetry, 203
cylindrical symmetry, 215
polar coordinates, 218
spherical symmetry, 212

shielding
electrostatic, 133
magnetic AC, 480
magnetic DC, 428

SI units, 50
sign function, 14
silicon dioxide, index of refraction

of, 637
silicon, dielectric function of, 636
simple dielectric matter

defined, 167
waves in, 584

simple magnetic matter
defined, 421
waves in, 584

singular behavior
of E at a sharp corner or edge, 219
of a point electric dipole, 95
of a point magnetic dipole, 343

skin depth, 609

skin effect, 477
SLAC (Stanford linear accelerator),

686
Smoluchowski, M., 782
Smythe’s diffraction formula, 803
Snell’s law, 589
solenoid, 305

time-dependent, 718
toroidal, 312, 349, 397

solid angle, 71, 319
Sommerfeld radiation condition, 724
Sommerfeld, A., 58, 653
space charge, 274
space inversion, 18, 21, 52, 502, 690
space-time, 827
spatial dispersion, 656
special relativity, 653, 822
speed of light, 51
spherical

Bessel functions, 957
cavity resonator, 696
coordinates, 3
harmonics, 108, 213, 954
multipole radiation, 755
symmetry, potential problems

with, 212
waves, 565

spin magnetic moment, 340
spin magnetization, 408
split-ring model for negative-index

matter, 640
splitting method for Dirichlet Green

function, 258
spontaneous emission, 699
standard configuration, 823
standing wave, 539, 633, 672, 695,

737, 798
steady-current condition, 272, 284,

302, 337, 439, 475
stellar aberration, 846
step function, 13
Stokes

parameters, 549
relations, 603
theorem, 10

Stratton-Chu formulae, 811
stress tensor

electric, 81
electromagnetic (Maxwell), 513
magnetic, 381

stress-energy tensor, 853
strong focusing, 356
structural dispersion, 674, 679
sum rules, 655
superconductor

and perfect diamagnetism, 432
and zero resistance, 388
permeability of a, 430

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-IND CUUK1954/Zangwill 978 0 521 89697 9 August 10, 2012 13:25

INDEX 975

superconductor, compared to a
conductor, 407

surface charge density
defined, 30
of a perfect conductor, 130

surface current density
defined, 31
of a perfect conductor, 311

surface wave, 596
symmetry

continuous, 503
discrete, 502
dual, 503, 566
in electromagnetism, 501

symmetry arguments
to find A, 322
to find B, 307

synchrotron radiation, 882, 891
frequency spectrum, 895
polarization, 893
pulse shape, 893
transition from cyclotron radiation,

894
Système International (SI) units, 50

TE (transverse electric) modes
in conducting-tube cavities, 695
in spherical cavities, 696

TE (transverse electric) waves
guided by a transmission line, 673
in a circular waveguide, 681
in a conducting-tube waveguide,

676
in a dielectric waveguide, 690
in a rectangular waveguide, 680
in an optical fiber, 689
in Fresnel theory, 590
in vacuum, 566

telegraph equations, 669
TEM (transverse electromagnetic)

waves, 668
absence in hollow-tube

waveguides, 677
guided by a coaxial transmission

line, 667
non-uniform, 668

tensor
contraction theorem, 849
decomposition of a second rank,

338
demagnetization, 418
dual, 851
electric stress, 81
electromagnetic field strength, 850
electromagnetic stress-energy, 853
Lorentz, transformation properties,

849
magnetic stress, 381

Maxwell stress, 513
metric, in special relativity, 959
moment of inertia, 379
quadrupole moment

primitive, 91, 102
traceless, 103

quotient theorem, 849
rotational, definition, 20
torque density, 854

theorem
Ampère’s, 345
Cauchy’s, 652
center of energy, 520
convolution, 16
divergence, 9
Earnshaw’s, 63
equipartition, 698
extinction, 762
Floquet’s, 687
hairy ball, 568
Helmholtz, 22
Larmor’s, 367
magnetic virial, 383
Noether’s, 928
optical, 794
Parseval’s, 16
Poynting’s, 507
Stokes, 10
Thomson’s (electrostatics),

128
Thomson’s (magnetostatics),

303
time-averaging, 17
uniqueness, 199, 509
Whittaker’s, 539

Thomas precession, 834
Thomas-Fermi, 291
Thomson scattering, 777
Thomson’s

formula, 488
jumping ring, 492
problem, 78
theorem

of electrostatics, 128
of magnetostatics, 303

Thomson, W. (Lord Kelvin), 35, 301,
671

time dilation, 829
time reversal, 502
time-averaging theorem, 17
TM (transverse magnetic) modes

in conducting-tube cavities, 695
in spherical cavities, 696

TM (transverse magnetic) waves
in a circular waveguide, 681
in a conducting-tube waveguide,

676
in a rectangular waveguide, 680

in an optical fiber, 689
in Fresnel theory, 590
in vacuum, 566

topology and the magnetic scalar
potential, 317

topology of magnetic field lines, 325
toroidal solenoid, 312, 349, 397
torque

electric, 58
on a dipole, 97
on a quadrupole, 104

Lorentz tensor of, 854
magnetic, 301, 365

on a dipole, 378
mechanical, 517

total energy
electrostatic, 76
magnetostatic, 384
of a plane wave, 544
of a relativistic particle, 837
of a wave packet, 552
of dielectric matter, 179
of magnetic matter, 433
of the electromagnetic field, 508

total internal reflection, 595, 666,
688

transformation
Galilean, 824
Lorentz

of a static Coulomb field, 844
of electromagnetic fields, 843
of four-vectors, 835, 961
of magnetization, 858
of plane wave fields, 845
of polarization, 858
of space-time coordinates, 827,

834
standard configuration, 827

transformer EMF, 464
transmission amplitude, 591
transmission coefficient, 593
transmission line, 667

coaxial, 667
parallel-plate, 673
TEM waves guided by a, 667

transverse electric (TE) modes
in conducting-tube cavities, 695
in spherical cavities, 696

transverse electric (TE) waves
guided by a transmission line, 673
in a circular waveguide, 681
in a conducting-tube waveguide,

676
in a dielectric waveguide, 690
in a rectangular waveguide, 680
in an optical fiber, 689
in Fresnel theory, 590
in vacuum, 566
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transverse magnetic (TM) modes
in conducting-tube cavities, 695
in spherical cavities, 696

transverse magnetic (TM) waves
in a circular waveguide, 681
in a conducting-tube waveguide,

676
in a rectangular waveguide, 680
in an optical fiber, 689
in Fresnel theory, 590
in vacuum, 566

transverse waves
in a Drude medium, 632
in a magnetized plasma, 638
in dispersive matter, 629
in simple matter, 584
in vacuum, 539

triode, 140
two-dimensional potential theory

problems, 221

uniaxial crystal, 613
waves in a, 615

uniqueness theorem
for time-dependent fields, 509
Laplace’s equation, 199
Poisson’s equation, 199

Unisphere, 213
units

conversion, 950
Gaussian, 949
SI, 50
Système International (SI), 50

vacuum diode, 273
vacuum polarization, 46
vacuum tube, 140
variational principle

electrostatic, 226
for the action, 916

vector Poisson equation, 321
vector potential, 320

Coulomb gauge, 506
for radiation, 734
gauge freedom, 504
in special relativity, 842
Lorenz gauge, 724
multipole expansion

Cartesian, 336, 347
interior, 353
spherical, 351

of a charge in uniform motion, 716
of a current line, 322
of a current ring, 324
of a current-carrying wire, 322,

323
of a magnetic dipole, 338
of a magnetic dipole layer, 345

of a point charge in arbitrary
motion, 872

of a point magnetic monopole, 344
of a time-dependent electric

dipole, 727
of magnetized matter, 412
physical significance, 514

velocity
energy

in a conducting-tube waveguide,
682

in Lorentz matter, 644
of a plane wave in matter, 544

group
and the index of refraction, 643
approximation, 642
in a conducting-tube waveguide,

679
in Drude matter, 643
in Lorentz matter, 644
negative, 644
of a wave packet, 555

phase
and Cherenkov radiation, 906
in a conducting-tube waveguide,

679
in a good conductor, 610
in a magnetized plasma, 639
in charged particle acceleration,

686
in Lorentz matter, 644
in negative index matter, 590
of an Alfvén wave, 587
of an evanescent wave, 598

velocity field of a moving charge, 875
velocity four-vector, 836
Veltman, M., 835
Volta, A., 31, 272
voltage, 283
voltaic cell, 283

waist, Gaussian beam, 560
wave equation

covariant form of, 840
for E and B, 537
for the electric Hertz vector, 570
for the electromagnetic potentials,

537
for the magnetic Hertz vector, 569
Green function for the, 720
inhomogeneous, 715, 720

wave impedance, 586
wave normal, 613
wave packet

consistency with special relativity,
653

dispersion relation, 555
envelope, 556

Gaussian, 554, 646
in dispersive matter, 641
particle-like properties of a, 855
scalar, 553
synthesis, 552

wave vector, 540
waveguide

absence of TEM waves, 677
boundary conditions for, 677
conducting tube, 675
cutoff in a, 674
dielectric, 687
disk-loaded, 686
energy loss in, 684
energy velocity in, 682
general mode properties, 678
particle acceleration in, 686
phase and group velocities in, 679
structural dispersion in, 679
TE and TM waves in, 676

waves
Alfvén, 587
beam-like, 558
confined by

a cavity resonator, 693
a dielectric resonator, 704

guided by
a transmission line, 667
conducting tubes, 675
planar conductors, 672

in a Drude medium, 632
in a magnetized plasma, 638
in a multilayer, 604
in anisotropic matter, 613
in dispersive matter, 624
in simple conducting matter, 607
in simple matter, 584
in vacuum, 536
interfacial, 596
longitudinal, 629
paraxial, 562
partially polarized, 551
plane, 539
polarization of, 545
slow, 686
spherical, 565
surface, 596
TE (transverse electric)

guided by a transmission line,
673

in a circular waveguide, 681
in a conducting-tube waveguide,

676
in a dielectric waveguide, 690
in a rectangular waveguide, 680
in an optical fiber, 689
in Fresnel theory, 590
in vacuum, 566
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TEM (transverse electromagnetic),
668

TM (transverse magnetic)
in a circular waveguide,

681
in a conducting-tube waveguide,

676
in a rectangular waveguide,

680
in an optical fiber, 689

in Fresnel theory, 590
in vacuum, 566

transverse
in dispersive matter, 629
in simple matter, 584
in vacuum, 539

unpolarized, 551
whispering gallery modes, 705
whistlers, 647
Whittaker’s theorem, 539, 570

Wigner, E., 1, 505
world line, 833
Wronskian

Bessel functions, 956
modified Bessel functions, 957
spherical Bessel functions, 957

x-ray scattering, 780

Zeeman effect, 747
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