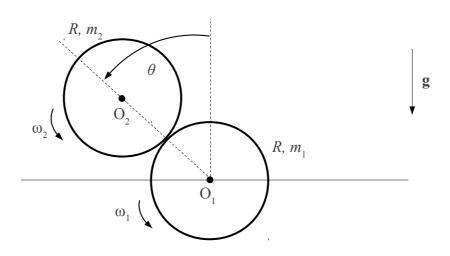

Mecánica clásica

Segundo parcial 1/7/2013

Ejercicio 1 (12)

Un disco, de radio R y masa m, y una placa rectangular de base a, altura 4R y masa M, están apoyados sobre un plano horizontal y en contacto liso el uno con el otro. El contacto entre el disco y el piso es rugoso con coeficiente de rozamiento infinito, mientras que el contacto entre la placa y el piso es rugoso con coeficiente de rozamiento μ .

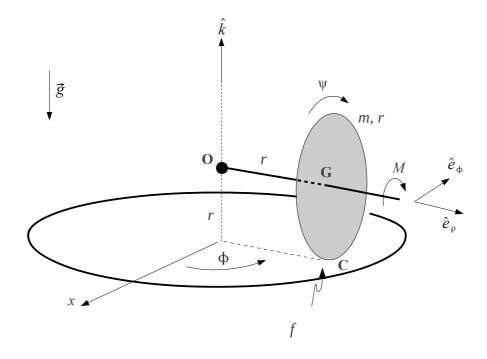


Si en el centro del disco se aplica una fuerza horizontal constante F dirigida hacia la placa, determine para qué valores de a y μ habrá equilibrio.

Ejercicio 2 (24)

El cilindro 1 en la figura, de masa m_1 y radio R, puede rotar libremente en torno a su centro O_1 , el cual permanece fijo. El cilindro 2, de masa m_2 e igual radio R, rueda sin deslizar sobre el 1. El ángulo θ es el que forma la recta O_1O_2 con la vertical y ω_1 y ω_2 son las velocidades angulares de los cilindros.

- a) Determine la relación que existe entre ω_1 , ω_2 y $\dot{\theta}$. (6)
- b) i) Escriba las ecuaciones de movimiento del sistema. (6)
- ii) Muestre que $\dot{\omega}_1$ y $\dot{\omega}_2$ son proporcionales. (3)
- c) Si inicialmente $\theta = 0$ y $\dot{\theta} \simeq 0$, halle la reacción normal que ejerce el cilindro 1 sobre el cilindro 2 en términos del ángulo θ para el movimiento posterior. (9)



Ejercicio 3 (24)

El disco de masa m y radio r de la figura rueda sin deslizar sobre el piso con el que tiene un coeficiente de rozamiento estático f. El eje OG, de masa despreciable y con OG = r, se une en el punto O a un eje vertical a través de una articulación esférica lisa de modo que OG quede horizontal. Suponga que en t=0 el disco se encuentra en movimiento con $\dot{\psi}(0)=\dot{\psi}_0$ y se le aplica a partir de ese instante un momento $\vec{M}=-M\,\hat{e}_0$ con M>0.

- a) Determine la relación entre $\phi(t)$ y $\psi(t)$ para t > 0. (6)
- b) Halle el momento angular del disco respecto al punto O en términos de los ángulos $\phi(t)$ y $\psi(t)$. (9)
- c) ¿Qué condición debe cumplir M, en términos de $\dot{\Psi}_0$ y los demás parámetros, para que el disco efectivamente ruede sin deslizar para t > 0? (9)

Nota: Suponga que la fuerza de rozamiento entre el disco y el piso es según \hat{e}_{ϕ} .

