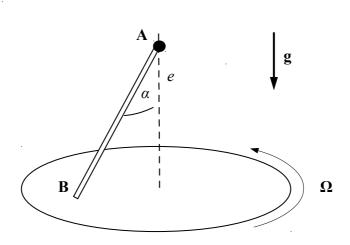

Mecánica clásica

Segundo parcial 30/6/2014

Ejercicio 1

La barra homogénea de masa M y radio 2R de la figura está unida rígidamente a un aro sin masa de radio R. El aro rueda sin deslizar sobre el piso con el que tiene un coeficiente de rozamiento estático μ . El ángulo θ mide la rotación de la barra respecto a la dirección vertical.

- a) Determine la velocidad y la aceleración del centro de masa de la barra en términos del ángulo θ .
- b) Halle la ecuación de movimiento del sistema.
- c) Si en t = 0 la barra parte del reposo desde $\theta_0 = 90^\circ$: ¿qué condición debe cumplir μ para que no haya deslizamiento inicialmente?



Ejercicio 2

Una barra AB, de masa m y largo 2l, se encuentra unida en su extremo A a un eje vertical e por medio de una articulación esférica lisa. El extremo B está apoyado sobre un plano horizontal que gira en torno al eje e con velocidad angular constante Ω , de modo tal que el ángulo α que forma AB con e vale 60° . Entre la barra y el plano hay un rozamiento dinámico de coeficiente f.

Sea ϕ el ángulo que forma el plano vertical que contiene a AB con una dirección fija.

- a) Determine las fuerzas que ejerce el plano sobre la barra en el punto B, en términos del ángulo ϕ y sus derivadas.
- b) Halle la ecuación diferencial que verifica $\phi(t)$, suponiendo que la barra siempre desliza sobre el plano.
- c) i) Halle una expresión para la función $u(\phi) = \left(\frac{d\phi}{dt}\right)^2$, suponiendo que $\dot{\phi}(0) = 0$.
- ii) ¿Qué condición debe cumplir Ω para que la barra siempre deslice sobre el plano?

