Facultad de Ciencias Centro de Matemática

Prueba 2, parte teórica (15 puntos). 04/06/22.

- 1. (5 puntos). En los casos que siguen se pide dar la fórmula y explicar cómo se llega a ella.
 - a) Ecuación del plano que pasa por el punto $P = (x_0, y_0, z_0)$ y es ortogonal al vector no nulo n = (a, b, c).
 - b) Ecuación del plano que pasa por el punto $P = (x_0, y_0, z_0)$ y es paralelo a los vectores no colineales $u = (u_1, u_2, u_3)$ y $v = (v_1, v_2, v_3)$.

Alcanza con que en cada caso den una ecuación, no tienen que dar todas las ecuaciones posibles.

2. (5 puntos).

- a) En cada caso, dar un ejemplo una matriz 3×3 no nula que sea
 - 1) triangular superior;
 - 2) simétrica;
 - 3) diagonal.
- b) Indicar si cada una de las afirmaciones siguientes es verdadera o falsa, justificando la respuesta.
 - 1) Si $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ entonces $A^t = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$.
 - 2) Si $A = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}$ entonces $A^t = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}$.

En lo anterior A^t es la traspuesta de A.

- 3. (5 puntos). En este ítem las matrices son cuadradas.
 - a) Sean A, B matrices 2×2 . Indicar si cada una de las afirmaciones siguientes es verdadera o falsa, justificando la respuesta.
 - 1) $\det(A+B) = \det(A) + \det(B).$
 - 2) $\det(2A) = 4\det(A)$.
 - b) Definir matriz invertible y probar que si A es invertible, entonces la matriz B que verifica AB = BA = I es única.