2do Parcial

Nombre:

- **1.** Considere la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \ln(1 + x^4)$.
 - a) Encontrar el polinomio de Taylor de f de orden 8 en a = 0.
 - b) Calcular el valor aproximado de ln(1,0016) usando el polinomio hallado en el inciso a).
 - c) Considere el límite

$$\lim_{x \to 0} \frac{f(x)}{x^n},$$

donde n vale 4, 5 o 6. En cada caso, determine si el límite existe y, en caso afirmativo, calcúlelo.

2. Considere la función $g(x) = \int_0^x f(t) dt$, donde $f: [0, 9] \to \mathbb{R}$ es la función cuya gráfica es la siguiente:



- a) Determine el dominio de g, y explique en qué puntos de dicho dominio g es continua o derivable.
- b) Calcule $\int_3^7 f(x) dx$.
- c) Calcule $\int_0^9 f(x) dx$.
- 3. Considere la función definida por la integral $g(\theta) = \int_{\sin \theta}^{1} \sqrt{1 t^2} dt$.
 - a) Determinar el dominio de g (es decir, los valores de θ para los cuales la función del integrando es efectivamente integrable en el intervalo correspondiente).
 - b) Calcular $g'(\theta)$ y $g''(\theta)$.
 - c) Determinar si g admite extremos relativos y puntos de inflexión en el intervalo $(0, 2\pi)$.

Solución

1.

a) El desarrollo de Taylor de $\ln x$ en a=1 es

$$\ln x = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 + R_3(x).$$

Sustituyendo $1 + x^4$ en el lugar de la x en el desarrollo de arriba:

$$x^4 - \frac{1}{2}x^8 + (\text{términos de grados}) > 8.$$

Por lo tanto $T_8(x) = x^4 - \frac{1}{2}x^8$.

- b) $1,0016 = 1 + (0,2)^4$, o sea que x = 0,2 es el valor que hay que usar: $f(0,2) \approx (0,2)^4 \frac{1}{2}(0,2)^8$.
- c) Usando la regla de l'Hôpital:

$$\lim_{x \to 0} \frac{f(x)}{x^n} = \lim_{x \to 0} \frac{4x^3}{nx^{n-1}(1+x^4)}.$$

Si n=4, $\lim_{x\to 0} \frac{4x^3}{4x^3(1+x^4)} = \lim_{x\to 0} \frac{1}{(1+x^4)} = 1$.

Si n = 5, $\lim_{x \to 0} \frac{4x^3}{5x^4(1+x^4)} = \lim_{x \to 0} \frac{4}{5x(1+x^4)}$ que tiende a ∞ cuando $x \to 0^+$ y a $-\infty$ cuando $x \to 0^-$. Por lo tanto este límite no existe.

Por último, si n = 6, $\lim_{x \to 0} \frac{4x^3}{6x^5(1+x^4)} = \lim_{x \to 0} \frac{2}{3x^2(1+x^4)} = +\infty$.

2.

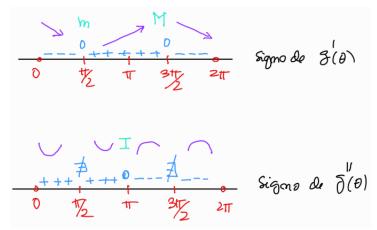
- a) El dominio de f es el mismo que el de g, o sea, [0,9]. Como f es continua en [0,9], del TFC deducimos que g es continua en [0,9] y derivable en (0,9).
- b) Mediante cálculo del área bajo el gráfico, y teniendo en cuenta los signos de f, se obtine $\int_3^5 f(x)dx = -\int_5^7 f(x)dx$, de donde se deduce $\int_3^7 f(x)dx = 0$.
- c) Teniendo en cuenta el cálculo en la parte anterior, tenemos $\int_0^9 f(x)dx = \int_0^3 f(x)dx + \int_7^9 f(x)dx = 7 5 = 2$.

3.

- a) $| \operatorname{sen} \theta | \leq 1$, por lo tanto $1 \operatorname{sen}^2 \theta \geq 0$. Entonces $\sqrt{1 t^2}$ existe y es integrable entre $t = \operatorname{sen} \theta$ y t = 1, para todo θ . Concluimos que g está definida para todo $\theta \in \mathbb{R}$.
- b) $g(\theta) = -\int_1^{\sin \theta} \sqrt{1 t^2} dt$. Por el TFC tenemos $g'(\theta) = -\sqrt{1 \sin^2 \theta} \cos \theta = -|\cos \theta| \cos \theta$. Entonces

$$g''(\theta) = -\operatorname{signo}(\cos \theta)(-\sin \theta)\cos \theta - |\cos \theta|(-\sin \theta)$$
$$= \operatorname{signo}(\cos \theta)\sin \theta\cos \theta + |\cos \theta|\sin \theta$$
$$= 2|\cos \theta|\sin \theta.$$

c) Los ceros y el signo de $g'(\theta)$ coinciden con los ceros y el signo de $-\cos\theta$. Análogamente, los ceros y el signo de $g''(\theta)$ coinciden con los ceros y el signo de $2 \sin \theta$, siendo que para $\theta = \pi/2$ y $\theta = 3\pi/2$ no existe $g''(\theta)$; ésto ocurre en donde se anula $|\cos\theta|$, ya que la función "valor absoluto" no es derivable en 0.



Conclusión: g presenta un mínimo relativo en $\pi/2$, un máximo relativo en $3\pi/2$ y un punto de inflexión en π .