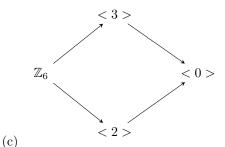
Universidad de la República Facultad de Ciencias Centro de Matemática

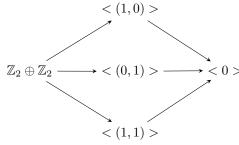
Soluciones - Práctico 2

1. (a) $\mathbb{Z}_4 \rightarrow <2> \rightarrow <0>$

(b)
$$\mathbb{Z}_5 \rightarrow <0>$$



(d) $\mathbb{Z}_8 \rightarrow <2> \rightarrow <4> \rightarrow <0>$



(e) \mathbb{Z}_4 y $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ no son isomorfos porque el primero es cíclico, mientras que el segundo no.

$2. \qquad \bullet \ \, HK < G \Longleftrightarrow HK = KH$

 \Rightarrow) Sea $hk \in HK$. Como es subgrupo, $(hk)^{-1} \in HK$. Pero $(hk)^{-1} = k^{-1}h^{-1} \in KH$. Finalmente, como todo elemento de HK es opuesto de algún otro elemento, se deduce que $HK \subset KH$. Para la otra inclusión, tomar $kh \in KH$, entonces $kh = (h^{-1}k^{-1})^{-1}$, que es el inverso de un elemento de HK. Por tanto, $KH \subset HK$.

 \Leftarrow) $e \in HK$, veamos que es cerrado por la operación del grupo. Si $hk, h'k' \in HK$, entonces $hkh'k' = hh''k''k' \in HK$, donde usamos que kh' = h''k'' por ser iguales HK = KH. Por tanto $hkh'k' \in HK$

• Probar que $HK \subset KH \Rightarrow HK = KH$ Sea $kh \in KH$. Entonces $h^{-1}k^{-1} \in HK \subset KH$. Esto implica que KH es cerrado bajo la operación del grupo, es decir, es subgrupo (el neutro pertence). Entonces de la parte anterior tenemos que HK = KH.

3. Ejercicio de Entrega

4. Por ejercicio 8 del práctico 1, |gf| = |g||f|. Además,

$$\langle f, g \rangle = \{ f^a g^b : 0 \le a \le |f| \cdot 0 \le b \le |g| \}$$
 (1)

que tiene a lo sumo |g||f| elementos; luego $< fg> \subset < f,g>$ y ambos tienen la misma cantidad de elementos. Por tanto fg genera < f,g>

- 5. (a) $G_0 < G \times F$, $F_0 < G \times F$ trivial de las definiciones. Los mapas $\phi_G : G \to G_0, g \mapsto (g, 1)$ y $\phi_F : F \to F_0, f \mapsto (f, 1)$ son los isomorfismos buscados, y las propiedades $G_0 \cap F_0 = \{1\}, G_0F_0 = G \times F$ son inmediatas.
 - (b) Como G = HK, ϕ es sobreyectiva. Para probar inyectividad: $hk = h'k' \Leftrightarrow h'^{-1}h = k'k^{-1} \Leftrightarrow h'^{-1}h, k'k^{-1} \in H \cap K = \{1\}$, por tanto h = h'.k = k'.
- 6. Ídem a ejercicio 4. Usamos (1, 1, 1, ..., 1) como generador.
- 7. $\phi \in Aut(G) \Leftrightarrow G$ abeliano $fg = \phi(f^{-1})\phi(g^{-1}) = \phi(f^{-1}g^{-1}) = gf$, por tanto G abeliano.
- 8. Sea g tal que $G = \langle g \rangle$. Consideremos $\langle \phi(g) \rangle \langle G$. Como ϕ morfismo, $\phi(\langle g \rangle) = \langle \phi(g) \rangle$, por tanto la ecuación anterior resulta $\phi(G) \langle G \rangle$. Al ser automorfismo, es sobreyectiva; luego $\phi(G) = G$. Esto implica que $\phi(g)$ es generador.

Recíprocamente, sea f otro generador. Definimos $\phi(1) = 1, \phi(g) = f$, y se cumplen las ecuaciones. anteriores.

- 9. $Aut\mathbb{Z} \simeq \mathbb{Z}_2$: sea $\phi \in Aut\mathbb{Z}$. Por ejercicio anterior, $\phi(1)$ debe ser generador. Como los únicos generadores son 1, -1 tenemos dos posibilidades. Basta ver que $\phi(1) = -1$ da lugar a un morfismo, y esto último es claro por el ejercicio 7.
 - $Aut\mathbb{Z}_n = \mathbb{Z}_n^{\times}$: $\phi(1)$ debe ser generador (pues 1 lo es), así que $\phi(1) = r$, con r coprimo con n (pues son números para los que el conjunto $\{r, 2r, 3r, ...nr\}$ es un conjunto completo de restos para n). Notemos por ϕ_r al morfismo que asocia $\phi(1) = r$. Entoces, veamos que $\phi_r \mapsto r \in \mathbb{Z}_n^{\times}$ es un morfismo biyectivo:
 - $-\phi_1(1)=1$, así que es la identidad: $\phi_1(n)=n\phi_1(1)=n$.
 - $-\phi_r(\phi_s(1)) = \phi_r(s) = rs = \phi_{rs}(1)$, pues recordar que si r, s son coprimos con n, entonces rs también lo es.

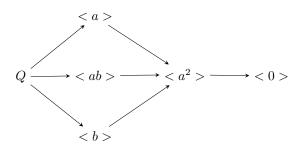
Entonces el mapa $\phi_r \mapsto r$ es un morfismo. Como la cantidad de elementos de $Aut\mathbb{Z}_n$ es la misma que la de \mathbb{Z}_n^{\times} , tenemos biyectividad.

- $Aut\mathbb{Z}_5 \simeq \mathbb{Z}_4$: basta ver que $\mathbb{Z}_5^{\times} \simeq \mathbb{Z}_4$. Para esto, observar que $\mathbb{Z}_5^{\times} = 1, 2, 3, 4$, es cíclico, generado por el 2. Luego, como todo grupo de orden 4 cíclico es isomorfo a \mathbb{Z}_4 (práctico 1), se deduce que $Aut\mathbb{Z}_5 \simeq \mathbb{Z}_4$.
- $Aut\mathbb{Z}_6 \simeq \mathbb{Z}_2$: $\mathbb{Z}_6^{\times} = \{1, 5\}$, grupo de orden 2, y por tanto \mathbb{Z}_2 .
- $Aut\mathbb{Z}_8 \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_2$: observar que $\mathbb{Z}_8 \times = \{1, 3, 5, 7\}$ no es cíclico, así que por la clasificación de grupos de orden 4 debe ser isomorfo a $\mathbb{Z}_2 \oplus \mathbb{Z}_2$
- 10. Ejercicio de Entrega
- 11. (a) $\phi: H/H \cap K \to G/K$ tal que $\phi(h(H \cap K)) = hK$ está bien definida. hK = h'K implica que $h^{-1}h' \in K$, entonces $h^{-1}h' \in H \cap K$ y por lo tanto están en la misma coclase en $H/H \cap K$, es decir, $hH \cap K = h'H \cap K$. Esto implica que está bien definida y que es inyectiva.
 - Como la función es inyectiva, entonces $Card(G/K) > Card(H/H \cap K)$, de donde se deduce el resultado.
 - (b) Basta probar que el mapa ϕ de la parte anterior es sobreyectivo sii G = HK. \Rightarrow) si ϕ sobreyectivo, entonces toda coclase es acanzada por la imagen de ϕ . Por tanto G = HK. \Leftarrow) si G = HK, cualquier coclase en G/K es de la forma hK, por tanto es alcanzado por ϕ .
- 12. (a) Tenemos $H \cap K < H, K < G$. Como [G:K] finito, entonces $[H:K \cap H] \leq [G:K]$ finito. Además, [G:H] finito. Luego, $[G:H \cap K]$ finito. Además, $[G:H \cap K] = [G:H][H:H \cap K] \leq [G:H][G:K]$.
 - (b) Vale la igualdad si y sólo si (por la parte anterior saturando la igualdad) $[H:K\cap H]=[G:K]$, y esto último por el ejercicio anterior es equivalente a G=HK.

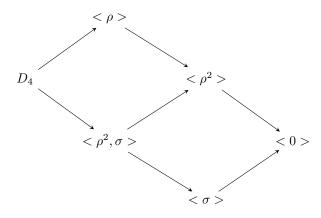
- (c) $[G:K][K:H\cap K]=[G:H\cap K]=[G:H][H:H\cap K]$, así que [G:H] y [G:K] dividen a $[G:H\cap K]$. Como son coprimos, $[G:H][G:K]|[G:H\cap K]\leq [G:H][G:K]$, por tanto vale la igualdad.
- 13. Sea G grupo de orden 4, no cíclico. Sea $g \in G$ distinto del neutro. Por el teorema de Lagrange, |g|=1,2,4, pues debe ser un divisor positivo de 4. Como el grupo no es cíclico y $g \neq e$, |g|=2. Luego, todo elemento no neutro tiene orden 2. Pr ej. 4 del práctico 1, tenemos que el grupo es abeliano. Sea h otro elemento no nulo.

Entonces, $2 = [< h > :< h > \cap < g >] \le [G :< g >] = 2$, así que vale la igualdad, y por el ejercicio anterior G = < h > < g >.

Luego, Un grupo de orden 4 no cíclio es isomorfo a $\mathbb{Z}_2\times\mathbb{Z}_2$



14.



15. Consideremos $\phi: \mathcal{M} \to \mathbb{Z}_2$ dada por $\phi(\tau) = 0$ si es directa o 1 si no es directa. Este morfismo está bien definido, gracias a las propiedades de las simetrías y la orientación de \mathbb{R}^2 . Luego, $\hat{\phi}: \mathcal{M}/\mathcal{M}_+ \to \mathbb{Z}_2$ es un automorfismo, pues es sobreyectivo y por los teoremas de isomorfismos es biyectivo (ker $\phi = \mathcal{M}_+$).

Si $G < \mathcal{M}$, tenemos que $\phi(G) < \mathbb{Z}_2$, de donde salen dos posibilidades:

- $\phi(G) = 0$, entonces $G < \ker \phi = \mathcal{M}_+$.
- $\phi(G) = \mathbb{Z}_2$, entonces $p\hat{h}i : G/G \cap \mathcal{M}_+ \to \mathbb{Z}_2$ es isomorfismo, de donde se deduce $[G: G \cap \mathcal{M}_+] = 2$.