

Práctico 1

- 1. Indique si los siguientes enunciados son verdaderos o falsos. Justifique en cada caso su respuesta:
 - a. $2839458,9=2,8394589\times10^7$
 - b. _____0,0000000467= $4,67 \times 10^{-10}$
 - c. $\frac{\left(6 \times 10^{-8}\right) \times \left(8 \times 10^{15}\right)}{\left(4 \times 10^{10}\right) \times \left(3 \times 10^{2}\right)} = 4 \times 10^{-8}$
 - d. ____A partir de la función $f(x)=2^x$, se cumple que $\frac{f(x+3)}{f(x-1)}=f(4)$.
 - e. ____ A partir de la función $f(x) = \log_a(1/x)$, se cumple que $f(a^{-1/z}) = 1/z$
 - f. ____ Las coordenadas $S_1=(x=0,y=1)$ y $S_2=(x=3,y=-17)$ son solución del siguiente sistema de ecuaciones $\begin{bmatrix} 2x^2-y=1\\ 6x+y=-1 \end{bmatrix}$.
- 2. a. Grafique las siguientes funciones:
 - i. sen(x), $x \in [0,2\pi]$
 - ii. $\cos(x), x \in [0, 2\pi]$
 - iii. $\log(x)$, $x \in [0, \infty]$
 - iv. e^x , $x \in [-\infty, \infty]$.
- b. Calcule x en los siguientes casos:
 - i. sen(x)=0, sen(x)=1
 - ii. $\cos(x)=0$, $\cos(x)=1$
 - iii. $\log_{e}(x)=2$, $\log_{10}(x)=2$
 - iv. $e^x = 1$, $e^x = 5/3$.

- 3. a. Calcule el área y perímetro de:
 - i. Un rectángulo de lados a_1 y b_1 .
 - ii. Un paralelogramo de lados a_2 y b_2 .
 - iii. Un círculo de radio r.

- b. Calcule el volumen de los siguientes cuerpos:
 - i. Un paralelepípedo con base rectangular de lados a y b, y altura h_1 .
- ii. Un paralelepípedo oblicuo de lados a,b y h₂.
- iii. Un cilindro con base circular de radio r, y altura h.
- iv. Una esfera de radio R.
- c. Indique qué dimensiones físicas tienen el perímetro, área y volumen.
- 4. La tabla siguiente muestra el registro de temperatura media diaria y presión tomadas en una estación meteorológica durante cuatro días. Complete los espacios en blanco teniendo en cuenta las unidades de medida.

Lic. en Geografía

Temperatura	Temperatura	Presión	Presión
17° C	K	1013.25 hPa	Pa
290 K	°F	760 mmHg	atm
60° F	°C	1 bar	kPa
288 K	°C	100 kPa	<u>N</u>
			$\overline{\text{m}^2}$

5. Las principales cantidades físicas estándares con las que se trabaja para hacer un análisis dimensional son [M] masa, [L] longitud y [T] tiempo. La siguiente tabla muestra las dimensiones de algunos parámetros físicos en función de dichas cantidades.

Parámetros físicos	Dimensiones	
Velocidad (v)	[L] [T]	
Aceleración (a)	$\frac{[L]}{[T]^2}$	
Fuerza (F)	$\frac{[\mathbf{M}][\mathbf{L}]}{\left[\mathbf{T}\right]^2}$	
Energía (E)	$\frac{[\mathbf{M}][\mathbf{L}]^2}{\left[\mathbf{T}\right]^2}$	
Potencia (P)	[E] [T]	
Presión (p)	$\frac{[\mathrm{F}]}{\left[\mathrm{L}\right]^2}$	
Densidad (ρ)	$\frac{[\mathbf{M}]}{{[\mathbf{L}]}^3}$	

- a. Demuestre que el producto de masa, velocidad y aceleración tiene las dimensiones de potencia.
- b. Encuentre la combinación de fuerza con una de las dimensiones fundamentales (masa, longitud y tiempo) que de como resultado dimensión de energía.
- 6. De un sondeo meteorológico se toman dos medidas de temperatura del aire, una a una altura de $10 \text{m} \ (\text{T}_1)$ y la segunda a una altura de $1500 \text{m} \ (\text{T}_2)$. La temperatura registrada a 10 m de altura fue de 15°C y la temperatura en el nivel superior fue de 3°C . Estime el *lapse rate* (Γ) en los primeros 1500 m de altura. Exprese el resultado en $^{\circ}\text{C/km}$ y en K/km .
- 7. a. Sobre una superficie cuadrada se aplica una fuerza \vec{F}_1 perpendicular a la superficie. Calcule la presión que ejerce dicha fuerza sobre la superficie si su módulo es 8N y uno de los lados de la superficie es de 10mm.

- b. Si sobre la misma superficie se aplica una segunda fuerza \vec{F}_2 , la cual forma un ángulo de inclinación de 35° con la normal a la superficie y $|\vec{F}|=5$ N. Determine el módulo de la fuerza resultante y el ángulo que forma con el plano normal a la superficie.
- c. ¿Cuánto cambió la presión al aplicar la segunda fuerza?.
- 8. a. El promedio global de la presión superficial es de 985hPa. Estime a partir de este valor de presión la masa total de la atmósfera.
- b. Aproximadamente a qué altura del nivel del mar (z_m) se encuentra la mitad de la masa de la atmósfera. Suponga una dependencia de la presión exponencial con la altura, $P(z)=P_0e^{-z/H}$, con $H=8\,km$.
- 9. Sabiendo que la presión atmosférica en superficie vale P0=101325 Pa:
- a. Estime la masa de aire presente en una columna de base 1.0m² que se extiende desde la superficie hasta la altura máxima (H) de la atmósfera.
- b. Suponiendo que la densidad del aire es uniforme con valor $\rho=1.23\,kg/m^3$, calcule la altura máxima H. Compare el valor obtenido con las alturas características de las capas atmosféricas. ¿Es razonable suponer densidad uniforme?
- c. Bajo las mismas condiciones que en b., ¿cómo podría estimar la masa de toda la atmósfera?.