84 2. FOUR IMPORTANT LINEAR PDE

THEOREM 6 (Finite propagation speed). If u = u; = 0 on B(zo,ty) x
{t =0}, then u = 0 within the cone K (zo, o).

In particular, we see that any “disturbance” originating outside B (x0,t0)
has no effect on the solution within & (%0,t0) and consequently has finite
propagation speed. We already know this from the representation formulas
(31) and (38), at least assuming g = u and h = u; on R” x {t = 0} are suf-
ficiently smooth. The point is that energy methods provide a much simpler
proof.

Proof. Define the local energy

1
el —/ ul(z,t) + |Dulz, )2 de (0 <t < to).
2 B(zo,to—t)
Then
1
= / wpgy + Du - Dut dx — —/ uf + |Du(2 ds
B(zo,to— t) 8B(I0,t0—t)
/ ut(uy — Au) dz
(46) B(ﬂﬂo,to t) au .
+/ —ugdS — —/ u? + |Dul?dS
8B(zg,t0 t) ov 8B(z0,to—1)
1 1
— — ~|Dul? ds.
/B(xoto t BV e — 2 2| |
Now
ou 1 1
(47) ’%ut < |ug]|Du| < 5“? + 5[Du|2,

by the Cauchy-Schwarz and Cauchy inequalities (§B.2). Inserting (47) into
(46), we find é(t) < 0; and so e(t) < e(0) = 0 for all 0 < ¢ < t;. Thus ug,
Du =0, and consequently u = 0 within the cone K (zq, to). O

A generalization of this proof to more complicated geometry appears
later, in §7.2.4. See also §12.1 for a similar calculation for a nonlinear wave
equation.

2.5. PROBLEMS

In the following exercises, all given functions are assumed smooth, unless
otherwise stated.
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(@]

Write down an explicit formula for a function u solving the initial-
value problem

u+b-Du+cu=0 inR" x (0,00)
u=g onR"x {t=0}.

Here ¢ € R and b € R™ are constants.
Prove that Laplace’s equation Au = 0 is rotation invariant; that is, if
O is an orthogonal n x n matrix and we define

v(z) :=u(Ozx) (z€R"™),

then Av = 0.

Modify the proof of the mean-value formulas to show for n > 3 that

UO:% gds+i/ <__‘_ ‘>fdx,
( ) J 8B(0,r) n(n—Q)(y(n)‘ B(O,r) mn—z rn—2

provided
—Au=f in B°(0,7)
u=g on JdB(0,r).

Give a direct proof that if u € C?(U) N C(U) is harmonic within a
bounded open set U, then

max ¥ = max u.
U ou

(Hint: Define u. := u 4+ £|z|? for € > 0, and show u. cannot attain its
maximum over U at an interior point.)

We say v € C?(U) is subharmonic if

—Av <0 inU.

(a) Prove for subharmonic v that

v(z) < 7[ vdy for all B(z,r) C U.
B(z,r)

(b)  Prove that therefore maxg v = maxsy v.

(¢) Let ¢ : R — R be smooth and convex. Assume wu is harmonic
and v := ¢(u). Prove v is subharmonic.

(d)  Prove v := |Du|? is subharmonic, whenever u is harmonic.



86 2. FOUR IMPORTANT LINEAR PDE
6. Let .U be a bounded, open subset of R™. Prove that there exists a
constant C', depending only on U, such that
<C
max |u| < C(max |g| +max|f])
whenever u is a smooth solution of
—Au=f inU
u=g ondU.
(Hint: —A(u —1—'%)\) <0, for A := maxg |f|.)
(s Use Poisson’s formula for the ball to prove
el n—2_ " +lz|
e T £ < —u(0
e
whenever u is positive and harmonic in B%(0,7). This is an explicit
form of Harnack’s inequality. -
8. Prove Theorem 15 in §2.2.4. (Hint: Since u = 1 solves (44) for g = 1,
the theory automatically implies
[ Kyase) =
8B(0,1)
for each z € B%(0,1).)
9. Let u be the solution of
Au=0 inR7}
u=g onJdRY}
given by Poisson’s formula for the half-space. Assume ¢ is bounded
and g(x) = |z| for € OR", |z| < 1. Show Du is not bounded near
z = 0. (Hint: Estimate M)
10.  (Reflection principle)

(a) Let U™ denote the open half-ball {z € R" | |z| < 1, z, >
0}. Assume u € C?(U") is harmonic in U™, with v = 0 on
oUt N {z, = 0}. Set

o(z) = { u(x) ifx, >0

—u(Z1,.. .y Tn_1,—2Zy) fz, <0

for z € U = BY(0,1). Prove v € C%(U) and thus v is harmonic
within U.
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11

12.

13.

14.

(b) Now assume only that u € C2(U+) N C(U¥). Show that v is
harmonic within U. (Hint: Use Poisson’s formula for the ball.)

(Kelvin transform for Laplace’s equation) The Kelvin transform Ku =
% of a function v : R® — R is

a(x) = u(@)|z"? = w(z/lz))e|*"  (z#£0),

where Z = z/|z|?. Show that if u is harmonic, then so is 4.

(Hint: First show that D,z(D,z)” = |z|*I. The mapping * — T is
conformal, meaning angle preserving.)

Suppose u is smooth and solves u; — Au = 0 in R” x (0, 00).

(a)  Show wuy(z,t) := u(Az, A\%t) also solves the heat equation for
each A € R.

(b)  Use (a) fo show v(x,t) := x- Du(x, )+ 2tus(z, t) solves the heat
equation as well.

Assume n =1 and u(z,t) = U(_\}i)
(a)  Show
Ut = Ugy
if and only if
() o+ 2o = 0.

Show that the general solution of (x) is
v(z) = (:/ e~ /4ds +d.
Jo

(b) Differentiate u(x,t) = l(\iﬁ) with respect to x and select the
constant ¢ properly, to obtain the fundamental solution ® for
n = 1. Explain why this procedure produces the fundamental
solution. (Hint: What is the initial condition for u? )

Write down an explicit formula for a solution of
u—Au+cu=f inR" x (0,00)
u=g onR"x {t=0},
where ¢ € R.

Given g : [0,00) — R, with g(0) = 0, derive the formula

/I: 2

e 1 =
U(I,t) — \/4_/0 mﬁ“’ 5)g(S) ds
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for a solution of the initial/boundary-value problem
U — Uge = 0 in Ry x (0,00)
u= 0 onRyx{t=0}
u= g on {z=0}x][0,00). ‘ !
1
(Hint: Let v(x,t) = u(z,t) — g(t) and extend v to {z < 0} by odd
reflection.) i 1 M A
16. Give a direct proof that if U is bounded and u € C3(Ur) N C(Ur) i ti
solves the heat equation, then [ o
max u = max u.
UT Er
|
(Hint: Define u, := u — et for € > 0, and show u. cannot attain its “ H
maximum over Ur at a point in Ur.) S
17.  We say v € C#(Ur) is a subsolution of the heat equation if ] s
v—Av <0 in Up. 3 R .
(a) Prove for a subsolution v that
1 |z —yl?
v(z,t) £ — // v(y, s dyds
4rm E(z,t;r) ) (t - 5)2
for all E(z,t;r) C Ur.
(b)  Prove that therefore maxy, v = maxr; v.
(c) Let ¢:R — R besmooth and convex. Assume u solves the heat i
equation and v := ¢(u). Prove v is a subsolution.
(d) Prove v := |Du|? 4+ u? is a subsolution, whenever u solves the
heat equation.
18.  (Stokes’ rule) Assume u solves the initial-value problem
{ up — Au =0 in R™ x (0,00)
u=0, uy=h onR"x {t=0}. = L
o1
Show that v := u; solves ' ta
{ v —Av=0 in R™ x (0,00) ' ;3]
v=h, =0 onR"x {t=0}
This is Stokes’ rule.
19. (a) Show the general solution of the PDE ugy =0 1is S

u(z,y) = F(z) + G(y)
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20.

21.

22,

for arbitrary functions F, G.

(b) Using the change of variables £ = =z +¢, n = z —t, show
ut — Uz = 0 if and only if ug, = 0.

(¢) Use (a) and (b) to rederive d’Alembert’s formula.

(d)  Under what conditions on the initial data g, h is the solution u
a right-moving wave? A left-moving wave?

Assume that for some attenuation function o = a(r) and delay func-

tion § = B(r) > 0, there exist for all profiles ¢ solutions of the wave

equation in (R™ — {0}) x R having the form

u(z,t) = a(r)o(t — B(r)).

Here r = |z| and we assume £(0) = 0.
Show that this is possible only if n = 1 or 3, and compute the form of
the functions «, 3.
(T. Morley, SIAM Review 27 (1985), 69-71)
(a) Assume E = (E', E% E3) and B = (B', B2, B3) solve Maxwell’s
equations
E; =curlB, B; = —curlE
divB =divE = 0.

Show

Ey - AE=0, By — AB=0.

(b)  Assume that u = (u!,u? u3) solves the evolution equations of
linear elasticity

uy — pAu— (A + p)D(divu) =0  in R? x (0, 00).
Show w := divu and w := curlu each solve wave equations,
but with differing speeds of propagation.
Let u denote the density of particles moving to the right with speed
one along the real line and let v denote the density of particles moving
to the left with speed one. If at rate d > 0 right-moving particles
randomly become left-moving, and vice versa, we have the system of
PDE \
w4+ uy = d(v —u)
v — Uy = d(u — v).

Show that both w := u and w := v solve the telegraph equation

Wy + 2dwg — wepe = 0.
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23.  Let S denote the square lying in R X (0, c0) with corners at the points
(0,1),(1,2),(0,3),(—1,2). Define
—1 for (z,t) e SN{t>x+2}
Flm,£) = 1 for (z,t) e SN{t <z +2}
0 otherwise.
Assume u solves
{ Ut — Ugz = f in R x (0, 00)
u=0,uy =0 onR x {t=0}.
Describe the shape of u for times t > 3.
(J. G. Kingston, SIAM Review 30 (1988), 645-649)
24.  (Equipartition of energy) Let u solve the initial-value problem for the

wave equation in one dimension:
Ut — Ugy =0 inRx (0.’)0)
u=g,us=h onRx{t=0}.
Suppose g,h have compact support. The kmetic energy is k( ) =

3 /70 ui(w,t) dz and the potential energy is p(t) := 3 LI dzx.
Prove

(a)  k(t) + p(t) is constant in ¢,
(b)  k(t) = p(t) for all large enough times ¢.

2.6. REFERENCES

Section 2.2 A good source for more on Laplace’s and Poisson’s equations

is Gilbarg-Trudinger [G-T, Chapters 2-4]. The proof of an-
alyticity is from Mikhailov [M]. J. Cooper helped me with
Green’s functions.

Section 2.3 See John [J2, Chapter 7] or Friedman [Frl] for further in-

formation concerning the heat equation. Theorem 3 is due
to N. Watson (Proc. London Math. Society 26 (1973), 385
417), as is the proof of Theorem 4. Theorem 6 is taken from
John [J2], and Theorem 8 follows Mikhailov [M]. Theorem 11
is from Payne [Pa, §2.3].

Section 2.4  See Antman (Amer. Math. Monthly 87 (1980), 359-370) for

a careful derivation of the one-dimensional wave equation as
a model for a vibrating string. The solution of the wave
equation presented here follows Folland [F1], Strauss [St2].

Section 2.5 J. Goldstein contributed Problem 24.
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and

(14) |l 2 o.r;m20vy) < CllallzzomH2))

for an appropriate constant C. In addition, @’ € L*(0,T; L2(V)), with the
estimate

(15) 19| 22y < ClW 22wy

This follows if we consider difference quotients in the t-variable, remember
the methods in §5.8.2, and observe also that E is a bounded linear operator
from L2(U) into L2(V).,

9. Assume for the moment that u is smooth. We then compute

d / o
\E(/VIDﬁIQd:c)\ =2l/VDﬁ~Du da| :2l/VAuu da|
< C(lalZpwy + 10122 y)-

There is no boundary term when we integrate by parts, since the extension
§ — Eu has compact support within V. Integrating and recalling (14), (15),
it follows that

(16) Oglt@?;XTHU(t)l\Hl(U) < C(lallp2o,r;H2W)) o'\l L2022 0)))-

We obtain the same estimate if u is not smooth, upon approximating by
¢ := 1. * u, as before. As in the previous proofs, it also follows that
u e C([0,T]; H'(U))-

3. In the general case that m > 1, we let a be a multiindex of order
|a| < m and set v = D%u. Then

v € L2(0,T; HA(U)), v/ € L*(0, T; L2(U)).

We apply estimate (16), with v replacing u, and sum over all indices |a| < m,
to derive (13). O

5.10. PROBLEMS

In these exercises U always denotes an open subset of R, with a smooth
boundary OU. As usual, all given functions are assumed smooth, unless
otherwise stated.

g Suppose k € {0,1,... },0 <~y < 1. Prove Ck7(U) is a Banach space.
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2. Assume 0 < 3 < v < 1. Prove the interpolation inequality
=3 =5
||u”COv‘r’(U) < lull 0.8(U) HUHCO,I(U)-
3. Denote by U the open square {z € R? | |z1| < 1, |z2| < 1}. Define
1—x if oy > 0, |:L’2| <
1+x ifz; <O, |£L‘2| < -1
u(z) = .
1—xz9 ifzy>0, |21] <2
1+xy ifae <0, |21] < —mo.
For which 1 < p < oo does u belong to WP (U)?
4.  Assumen =1 and u € W'P(0,1) for some 1 < p < oo.
(a) Show that u is equal a.e. to an absolutely continuous function
and v’ (which exists a.e.) belongs to L”(0,1).
(b) Prove that if 1 < p < oo, then
1 1 1/p
o) —ulw)l <o =o' ([ P
0
for a.e. z,y € [0,1].
5. Let U, V be open sets, with V. CC U. Show there exists a smooth
function ¢ such that ¢ = 1 on V, ( = 0 near 9U. (Hint: Take
V cCc W cC U and mollify x,,.)
6.  Assume U is bounded and U CC Ufil V;. Show there exist C'°
functions ¢; (i = 1,..., N) such that
{ 0<G<1 sptGCVi (i=1,...,N)
SN ¢G=1 onU.
The functions {¢;}Y., form a partition of unity.
7. Assume that U is bounded and there exists a smooth vector field

such that a - v > 1 along U, where v as usual denotes the outward
unit normal. Assume 1 < p < co.

Apply the Gauss-Green Theorem to [y [u[Pa - v dS, to derive a new
proof of the trace inequality

/ |ulPdS < C'/ |Dul? + |ulP dx
ou U

for all u € CY(U).

o

10.

11

13.

14

Su

Fi




SPACES

Define

function

. smooth
t: Take

kist C*°

: field @
putward

€ a new

5.10. PROBLEMS 307

10.

11.

12.

14.

15.

Let U be bounded, with a C! boundary. Show that a “typical” func-
tion u € LP(U) (1 < p < 00) does not have a trace on OU. More
precisely, prove there does not exist a bounded linear operator

T: LP(U) — LP(3U)

such that Tu = u|gy whenever u € C(U) N LF(U).
Integrate by parts to prove the interpolation inequality:

1/2 1/2
| Dullz2 < Cllul[25%)| D?ull}

for all u € C>*(U). Assume U is bounded, U is smooth, and prove
this inequality if u € H2(U) N HL(U).
(Hint: Take sequences {v;}2, C C°(U) converging to u in Hy(U)
and {wg}2, C C=(U) converging to u in H%(U).)
(a) Integrate by parts to prove
[Dullze < Offull |1 D*ullLs’

for 2 < p < oo and all u € C°(U).

(Hint: [, |DulP dz = Y1) [y ta,te, | DulP~? dz.)
(b)  Prove

1Dullgzs < Cllul =110l

for 1 <p < oo and all u e CX(U).

Suppose U is connected and u € WHP(U) satisfies

Du=0 a.e. inU.

Prove u is constant a.e. in U.

Show by example that if we have ||D"ul|f1(yy < C for all 0 < || <
3 dist(V,0U), it does not necessarily follow that u € wbhi(v).

Give an example of an open set U C R™ and a function u € Wh*(U),
such that u is not Lipschitz continuous on U. (Hint: Take U to be the
open unit disk in R?, with a slit removed.)

Verify that if n > 1, the unbounded function u = log log(l + \%\)
belongs to WL™(U), for U = B%(0,1).

Fix o > 0 and let U = B°(0,1). Show there exists a constant C,
depending only on n and «, such that

/qung/ | Du|? dz,
U U
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16.

17.

18.

19.

provided
Hz € Ulu(z) =0} >a, wueHYU).

(Variant of Hardy’s inequality) Show that for each n > 3 there exists
a constant C' so that

u? :
/ —zdeC/ | Dul|? da
R |.:L1} n
for all w € HY(R™).

(Hint: |Du + /\ﬁuP > 0 for each A € R.)
(Chain rule) Assume F : R — R is C!, with F’ bounded. Suppose U
is bounded and u € WP(U) for some 1 < p < co. Show

vi=F(u) € W(U) and v, = F'(wu,, (i=1,...,n).

Assume 1 < p < 0o and U is bounded.
(a)  Prove that if w € WIP(U), then |u| € W'P(U).
(b) Prove uw € WYP(U) implies u™,u™ € W'"»(U), and

Dt { Du  a.e.on {u> 0}
o a.e. on {u < 0},
{ 0 a.e. on {u >0}

D - =
" —Du a.e. on {u < 0}.
(Hint: ut = lim._¢ F:(u), for

@+ if2>0
Fe2) = {o if 2 <0)

(c)  Prove that if u € WHP(U), then

Du =0 a.e. on the set {u = 0}.

Provide details for the following alternative proof that if u € HY(U),
then
Du =0 a.e. on the set {u =0}.

Let ¢ be a smooth, bounded and nondecreasing function, such that ¢’
is bounded and ¢(z) = z if |2| < 1. Set

u(x) := ep(u/e).

5.11.
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Show that u¢ — 0 weakly in H'(U) and therefore

/ Duf - Dudx :/ ¢ (u/€)|Du)? dx — 0.
U U

Employ this observation to finish the proof.

90. Use the Fourier transform to prove that if u € H*(R™) for s > n/2,
then u € L>®°(R"), with the bound

l|ull oo mny < Cllullmsmn)

for a constant C' depending only on s and n.
21. Show that if u,v € H*(R™) for s > n/2, then uv € H*(R") and

| uv|| =@y < Cllullers@m)llvll e @n)s

the constant C' depending only on s and n.

5.11. REFERENCES

Sections 5.2-8 See Gilbarg-Trudinger [G-T, Chapter 7], Lieb-Loss [L-L],
Ziemer [Z] and [E-G] for more on Sobolev spaces.

Section 5.5 W. Schlag showed me the proof of Theorem 2.

Section 5.6 J. Ralston suggested an improvement in the proof of Theo-
rem 4.

Section 5.9  See Temam [Te, pp. 248-273].

Section 5.10 Problem 16: see Tartar [Tr, Chapter 17]. H. Brezis taught
me the trick in Problem 19.




