THEOREM 6 (Finite propagation speed). If $u \equiv u_t \equiv 0$ on $B(x_0, t_0) \times \{t = 0\}$, then $u \equiv 0$ within the cone $K(x_0, t_0)$.

In particular, we see that any "disturbance" originating outside $B(x_0, t_0)$ has no effect on the solution within $K(x_0, t_0)$ and consequently has finite propagation speed. We already know this from the representation formulas (31) and (38), at least assuming g = u and $h = u_t$ on $\mathbb{R}^n \times \{t = 0\}$ are sufficiently smooth. The point is that energy methods provide a *much* simpler proof.

Proof. Define the local energy

$$e(t) := \frac{1}{2} \int_{B(x_0, t_0 - t)} u_t^2(x, t) + |Du(x, t)|^2 dx \quad (0 \le t \le t_0).$$

Then

$$\dot{e}(t) = \int_{B(x_0, t_0 - t)} u_t u_{tt} + Du \cdot Du_t \, dx - \frac{1}{2} \int_{\partial B(x_0, t_0 - t)} u_t^2 + |Du|^2 \, dS$$

$$= \int_{B(x_0, t_0 - t)} u_t (u_{tt} - \Delta u) \, dx$$

$$+ \int_{\partial B(x_0, t_0 - t)} \frac{\partial u}{\partial \nu} u_t \, dS - \frac{1}{2} \int_{\partial B(x_0, t_0 - t)} u_t^2 + |Du|^2 \, dS$$

$$= \int_{\partial B(x_0, t_0 - t)} \frac{\partial u}{\partial \nu} u_t - \frac{1}{2} u_t^2 - \frac{1}{2} |Du|^2 \, dS.$$

Now

(47)
$$\left| \frac{\partial u}{\partial \nu} u_t \right| \le |u_t| |Du| \le \frac{1}{2} u_t^2 + \frac{1}{2} |Du|^2,$$

by the Cauchy–Schwarz and Cauchy inequalities (§B.2). Inserting (47) into (46), we find $\dot{e}(t) \leq 0$; and so $e(t) \leq e(0) = 0$ for all $0 \leq t \leq t_0$. Thus u_t , $Du \equiv 0$, and consequently $u \equiv 0$ within the cone $K(x_0, t_0)$.

A generalization of this proof to more complicated geometry appears later, in $\S7.2.4$. See also $\S12.1$ for a similar calculation for a nonlinear wave equation.

2.5. PROBLEMS

In the following exercises, all given functions are assumed smooth, unless otherwise stated.

1.

2. P

3. N

bo

4.

(H ma

(a)

(b)

(1)

(d)

 t_0) ite las

uf-

ler

1. Write down an explicit formula for a function u solving the initial-value problem

$$\begin{cases} u_t + b \cdot Du + cu = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = g & \text{on } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

Here $c \in \mathbb{R}$ and $b \in \mathbb{R}^n$ are constants.

2. Prove that Laplace's equation $\Delta u = 0$ is rotation invariant; that is, if O is an orthogonal $n \times n$ matrix and we define

$$v(x) := u(Ox) \quad (x \in \mathbb{R}^n),$$

then $\Delta v = 0$.

3. Modify the proof of the mean-value formulas to show for $n \geq 3$ that

$$u(0) = \int_{\partial B(0,r)} g \, dS + \frac{1}{n(n-2)\alpha(n)} \int_{B(0,r)} \left(\frac{1}{|x|^{n-2}} - \frac{1}{r^{n-2}} \right) f \, dx,$$

provided

$$\begin{cases}
-\Delta u = f & \text{in } B^0(0, r) \\
u = g & \text{on } \partial B(0, r).
\end{cases}$$

4. Give a direct proof that if $u \in C^2(U) \cap C(\bar{U})$ is harmonic within a bounded open set U, then

$$\max_{\bar{U}} u = \max_{\partial U} u.$$

(Hint: Define $u_{\varepsilon} := u + \varepsilon |x|^2$ for $\varepsilon > 0$, and show u_{ε} cannot attain its maximum over \bar{U} at an interior point.)

5. We say $v \in C^2(\bar{U})$ is subharmonic if

$$-\Delta v < 0$$
 in U .

(a) Prove for subharmonic v that

$$v(x) \le \int_{B(x,r)} v \, dy$$
 for all $B(x,r) \subset U$.

- (b) Prove that therefore $\max_{\bar{U}} v = \max_{\partial U} v$.
- (c) Let $\phi : \mathbb{R} \to \mathbb{R}$ be smooth and convex. Assume u is harmonic and $v := \phi(u)$. Prove v is subharmonic.
- (d) Prove $v := |Du|^2$ is subharmonic, whenever u is harmonic.

 $u_t,$

ars

ave

ess

11.

12.

13.

14.

15.

(b

6. Let U be a bounded, open subset of \mathbb{R}^n . Prove that there exists a constant C, depending only on U, such that

$$\max_{\bar{U}} |u| \le C(\max_{\partial U} |g| + \max_{\bar{U}} |f|)$$

whenever u is a smooth solution of

$$\begin{cases} -\Delta u = f & \text{in } U \\ u = g & \text{on } \partial U. \end{cases}$$

(Hint: $-\Delta(u + \frac{|x|^2}{2n}\lambda) \le 0$, for $\lambda := \max_{\bar{U}} |f|$.)

7. Use Poisson's formula for the ball to prove

$$r^{n-2} \frac{r - |x|}{(r + |x|)^{n-1}} u(0) \le u(x) \le r^{n-2} \frac{r + |x|}{(r - |x|)^{n-1}} u(0)$$

whenever u is positive and harmonic in $B^0(0,r)$. This is an explicit form of Harnack's inequality.

8. Prove Theorem 15 in §2.2.4. (Hint: Since $u \equiv 1$ solves (44) for $g \equiv 1$, the theory automatically implies

$$\int_{\partial B(0,1)} K(x,y) \, dS(y) = 1$$

for each $x \in B^0(0,1)$.)

9. Let u be the solution of

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^n_+ \\ u = g & \text{on } \partial \mathbb{R}^n_+ \end{cases}$$

given by Poisson's formula for the half-space. Assume g is bounded and g(x) = |x| for $x \in \partial \mathbb{R}^n_+$, $|x| \le 1$. Show Du is not bounded near x = 0. (Hint: Estimate $\frac{u(\lambda e_n) - u(0)}{\lambda}$.)

- 10. (Reflection principle)
 - (a) Let U^+ denote the open half-ball $\{x \in \mathbb{R}^n \mid |x| < 1, x_n > 0\}$. Assume $u \in C^2(\overline{U^+})$ is harmonic in U^+ , with u = 0 on $\partial U^+ \cap \{x_n = 0\}$. Set

$$v(x) := \begin{cases} u(x) & \text{if } x_n \ge 0 \\ -u(x_1, \dots, x_{n-1}, -x_n) & \text{if } x_n < 0 \end{cases}$$

for $x \in U = B^0(0,1)$. Prove $v \in C^2(U)$ and thus v is harmonic within U.

E

a

d

1

C

- (b) Now assume only that $u \in C^2(U^+) \cap C(\overline{U^+})$. Show that v is harmonic within U. (Hint: Use Poisson's formula for the ball.)
- 11. (Kelvin transform for Laplace's equation) The Kelvin transform $\mathcal{K}u = \bar{u}$ of a function $u : \mathbb{R}^n \to \mathbb{R}$ is

$$\bar{u}(x) := u(\bar{x})|\bar{x}|^{n-2} = u(x/|x|)|x|^{2-n} \qquad (x \neq 0).$$

where $\bar{x} = x/|x|^2$. Show that if u is harmonic, then so is \bar{u} .

(Hint: First show that $D_x \bar{x}(D_x \bar{x})^T = |\bar{x}|^4 I$. The mapping $x \to \bar{x}$ is conformal, meaning angle preserving.)

- 12. Suppose u is smooth and solves $u_t \Delta u = 0$ in $\mathbb{R}^n \times (0, \infty)$.
 - (a) Show $u_{\lambda}(x,t) := u(\lambda x, \lambda^2 t)$ also solves the heat equation for each $\lambda \in \mathbb{R}$.
 - (b) Use (a) to show $v(x,t) := x \cdot Du(x,t) + 2tu_t(x,t)$ solves the heat equation as well.
- 13. Assume n=1 and $u(x,t)=v(\frac{x}{\sqrt{t}})$.
 - (a) Show

$$u_t = u_{xx}$$

if and only if

$$v'' + \frac{z}{2}v' = 0.$$

Show that the general solution of (*) is

$$v(z) = c \int_0^z e^{-s^2/4} ds + d.$$

- (b) Differentiate $u(x,t) = v(\frac{x}{\sqrt{t}})$ with respect to x and select the constant c properly, to obtain the fundamental solution Φ for n=1. Explain why this procedure produces the fundamental solution. (Hint: What is the initial condition for u?)
- 14. Write down an explicit formula for a solution of

$$\begin{cases} u_t - \Delta u + cu = f & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = g & \text{on } \mathbb{R}^n \times \{t = 0\}, \end{cases}$$

where $c \in \mathbb{R}$.

15. Given $g:[0,\infty)\to\mathbb{R}$, with g(0)=0, derive the formula

$$u(x,t) = \frac{x}{\sqrt{4\pi}} \int_0^t \frac{1}{(t-s)^{3/2}} e^{\frac{-x^2}{4(t-s)}} g(s) ds$$

20.

21.

for a solution of the initial/boundary-value problem

$$\begin{cases} u_t - u_{xx} = 0 & \text{in } \mathbb{R}_+ \times (0, \infty) \\ u = 0 & \text{on } \mathbb{R}_+ \times \{t = 0\} \\ u = g & \text{on } \{x = 0\} \times [0, \infty). \end{cases}$$

(Hint: Let v(x,t) := u(x,t) - g(t) and extend v to $\{x < 0\}$ by odd reflection.)

16. Give a direct proof that if U is bounded and $u \in C_1^2(U_T) \cap C(\bar{U}_T)$ solves the heat equation, then

$$\max_{\bar{U}_T} u = \max_{\Gamma_T} u.$$

(Hint: Define $u_{\varepsilon} := u - \varepsilon t$ for $\varepsilon > 0$, and show u_{ε} cannot attain its maximum over \bar{U}_T at a point in U_T .)

17. We say $v \in C_1^2(U_T)$ is a *subsolution* of the heat equation if

$$v_t - \Delta v < 0$$
 in U_T .

(a) Prove for a subsolution v that

$$v(x,t) \le \frac{1}{4r^n} \iint_{E(x,t;r)} v(y,s) \frac{|x-y|^2}{(t-s)^2} \, dy ds$$

for all $E(x,t;r) \subset U_T$.

- (b) Prove that therefore $\max_{\bar{U}_T} v = \max_{\Gamma_T} v$.
- (c) Let $\phi : \mathbb{R} \to \mathbb{R}$ be smooth and convex. Assume u solves the heat equation and $v := \phi(u)$. Prove v is a subsolution.
- (d) Prove $v := |Du|^2 + u_t^2$ is a subsolution, whenever u solves the heat equation.
- 18. (Stokes' rule) Assume u solves the initial-value problem

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = 0, \ u_t = h & \text{on } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

Show that $v := u_t$ solves

$$\begin{cases} v_{tt} - \Delta v = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ v = h, \ v_t = 0 & \text{on } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

This is Stokes' rule.

19. (a) Show the general solution of the PDE $u_{xy} = 0$ is

$$u(x,y) = F(x) + G(y)$$

for arbitrary functions F, G.

- (b) Using the change of variables $\xi = x + t$, $\eta = x t$, show $u_{tt} u_{xx} = 0$ if and only if $u_{\xi\eta} = 0$.
- (c) Use (a) and (b) to rederive d'Alembert's formula.
- (d) Under what conditions on the initial data g, h is the solution u a right-moving wave? A left-moving wave?
- 20. Assume that for some attenuation function $\alpha = \alpha(r)$ and delay function $\beta = \beta(r) \geq 0$, there exist for *all* profiles ϕ solutions of the wave equation in $(\mathbb{R}^n \{0\}) \times \mathbb{R}$ having the form

$$u(x,t) = \alpha(r)\phi(t - \beta(r)).$$

Here r = |x| and we assume $\beta(0) = 0$.

Show that this is possible only if n = 1 or 3, and compute the form of the functions α, β .

(T. Morley, SIAM Review 27 (1985), 69–71)

21. (a) Assume $\mathbf{E} = (E^1, E^2, E^3)$ and $\mathbf{B} = (B^1, B^2, B^3)$ solve Maxwell's equations

$$\begin{cases} \mathbf{E}_t = \operatorname{curl} \mathbf{B}, & \mathbf{B}_t = -\operatorname{curl} \mathbf{E} \\ \operatorname{div} \mathbf{B} = \operatorname{div} \mathbf{E} = 0. \end{cases}$$

Show

$$\mathbf{E}_{tt} - \Delta \mathbf{E} = 0, \quad \mathbf{B}_{tt} - \Delta \mathbf{B} = 0.$$

(b) Assume that $\mathbf{u} = (u^1, u^2, u^3)$ solves the evolution equations of linear elasticity

$$\mathbf{u}_{tt} - \mu \Delta \mathbf{u} - (\lambda + \mu) D(\operatorname{div} \mathbf{u}) = \mathbf{0} \text{ in } \mathbb{R}^3 \times (0, \infty).$$

Show $w := \operatorname{div} \mathbf{u}$ and $\mathbf{w} := \operatorname{curl} \mathbf{u}$ each solve wave equations, but with differing speeds of propagation.

22. Let u denote the density of particles moving to the right with speed one along the real line and let v denote the density of particles moving to the left with speed one. If at rate d>0 right-moving particles randomly become left-moving, and vice versa, we have the system of PDE

$$\begin{cases} u_t + u_x = d(v - u) \\ v_t - v_x = d(u - v). \end{cases}$$

Show that both w := u and w := v solve the telegraph equation

$$w_{tt} + 2dw_t - w_{xx} = 0.$$

23. Let S denote the square lying in $\mathbb{R} \times (0, \infty)$ with corners at the points (0,1), (1,2), (0,3), (-1,2). Define

$$f(x,t) := \begin{cases} -1 & \text{for } (x,t) \in S \cap \{t > x + 2\} \\ 1 & \text{for } (x,t) \in S \cap \{t < x + 2\} \\ 0 & \text{otherwise.} \end{cases}$$

Assume u solves

$$\begin{cases} u_{tt} - u_{xx} = f & \text{in } \mathbb{R} \times (0, \infty) \\ u = 0, u_t = 0 & \text{on } \mathbb{R} \times \{t = 0\}. \end{cases}$$

Describe the shape of u for times t > 3.

(J. G. Kingston, SIAM Review 30 (1988), 645–649)

24. (Equipartition of energy) Let u solve the initial-value problem for the wave equation in one dimension:

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{in } \mathbb{R} \times (0, \infty) \\ u = g, u_t = h & \text{on } \mathbb{R} \times \{t = 0\}. \end{cases}$$

Suppose g,h have compact support. The kinetic energy is $k(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x,t) dx$ and the potential energy is $p(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x,t) dx$. Prove

- (a) k(t) + p(t) is constant in t,
- (b) k(t) = p(t) for all large enough times t.

2.6. REFERENCES

- Section 2.2 A good source for more on Laplace's and Poisson's equations is Gilbarg—Trudinger [G-T, Chapters 2-4]. The proof of analyticity is from Mikhailov [M]. J. Cooper helped me with Green's functions.
- Section 2.3 See John [J2, Chapter 7] or Friedman [Fr1] for further information concerning the heat equation. Theorem 3 is due to N. Watson (Proc. London Math. Society 26 (1973), 385–417), as is the proof of Theorem 4. Theorem 6 is taken from John [J2], and Theorem 8 follows Mikhailov [M]. Theorem 11 is from Payne [Pa, §2.3].
- Section 2.4 See Antman (Amer. Math. Monthly 87 (1980), 359–370) for a careful derivation of the one-dimensional wave equation as a model for a vibrating string. The solution of the wave equation presented here follows Folland [F1], Strauss [St2].
- Section 2.5 J. Goldstein contributed Problem 24.

NC

3.1 Con

3.2 Ch

3.3 Int

3.4 Int

3.5 Pro

3.6 Ref

In the

where x

is given

NOTA

for $p \in \mathbb{N}$ we substitu

and

to a

, WE

equal-

id hy-

eorem

open,

spondsection,

(14)
$$\|\bar{\mathbf{u}}\|_{L^2(0,T;H^2(V))} \le C \|\mathbf{u}\|_{L^2(0,T;H^2(U))},$$

for an appropriate constant C. In addition, $\bar{\mathbf{u}}' \in L^2(0,T;L^2(V))$, with the estimate

(15)
$$\|\bar{\mathbf{u}}'\|_{L^2(0,T;L^2(V))} \le C\|\mathbf{u}'\|_{L^2(0,T;L^2(U))}.$$

This follows if we consider difference quotients in the t-variable, remember the methods in §5.8.2, and observe also that E is a bounded linear operator from $L^2(U)$ into $L^2(V)$.

2. Assume for the moment that $\bar{\mathbf{u}}$ is smooth. We then compute

$$\begin{split} \big| \frac{d}{dt} \big(\int_V |D\bar{\mathbf{u}}|^2 \, dx \big) \big| &= 2 \big| \int_V D\bar{\mathbf{u}} \cdot D\bar{\mathbf{u}}' \, dx \big| = 2 \big| \int_V \Delta\bar{\mathbf{u}} \, \bar{\mathbf{u}}' \, dx \big| \\ &\leq C \big(\|\bar{\mathbf{u}}\|_{H^2(V)}^2 + \|\bar{\mathbf{u}}'\|_{L^2(V)}^2 \big). \end{split}$$

There is no boundary term when we integrate by parts, since the extension $\bar{\mathbf{u}} = E\mathbf{u}$ has compact support within V. Integrating and recalling (14), (15), it follows that

(16)
$$\max_{0 \le t \le T} \|\mathbf{u}(t)\|_{H^1(U)} \le C (\|\mathbf{u}\|_{L^2(0,T;H^2(U))} + \|\mathbf{u}'\|_{L^2(0,T;L^2(U))}).$$

We obtain the same estimate if \mathbf{u} is not smooth, upon approximating by $\mathbf{u}^{\varepsilon} := \eta_{\varepsilon} * \mathbf{u}$, as before. As in the previous proofs, it also follows that $\mathbf{u} \in C([0,T]; H^1(U))$.

3. In the general case that $m \geq 1$, we let α be a multiindex of order $|\alpha| \leq m$ and set $\mathbf{v} := D^{\alpha}\mathbf{u}$. Then

$$\mathbf{v} \in L^2(0, T; H^2(U)), \ \mathbf{v}' \in L^2(0, T; L^2(U)).$$

We apply estimate (16), with \mathbf{v} replacing \mathbf{u} , and sum over all indices $|\alpha| \leq m$, to derive (13).

5.10. PROBLEMS

In these exercises U always denotes an open subset of \mathbb{R}^n , with a smooth boundary ∂U . As usual, all given functions are assumed smooth, unless otherwise stated.

1. Suppose $k \in \{0, 1, ...\}$, $0 < \gamma \le 1$. Prove $C^{k,\gamma}(\bar{U})$ is a Banach space.

2. Assume $0 < \beta < \gamma \le 1$. Prove the interpolation inequality

$$||u||_{C^{0,\gamma}(U)} \le ||u||_{C^{0,\beta}(U)}^{\frac{1-\gamma}{1-\beta}} ||u||_{C^{0,1}(U)}^{\frac{\gamma-\beta}{1-\beta}}.$$

3. Denote by U the open square $\{x \in \mathbb{R}^2 \mid |x_1| < 1, |x_2| < 1\}$. Define

$$u(x) = \begin{cases} 1 - x_1 & \text{if } x_1 > 0, & |x_2| < x_1 \\ 1 + x_1 & \text{if } x_1 < 0, & |x_2| < -x_1 \\ 1 - x_2 & \text{if } x_2 > 0, & |x_1| < x_2 \\ 1 + x_2 & \text{if } x_2 < 0, & |x_1| < -x_2. \end{cases}$$

For which $1 \le p \le \infty$ does u belong to $W^{1,p}(U)$?

- 4. Assume n = 1 and $u \in W^{1,p}(0,1)$ for some $1 \le p < \infty$.
 - (a) Show that u is equal a.e. to an absolutely continuous function and u' (which exists a.e.) belongs to $L^p(0,1)$.
 - (b) Prove that if 1 , then

$$|u(x) - u(y)| \le |x - y|^{1 - \frac{1}{p}} \left(\int_0^1 |u'|^p dt \right)^{1/p}$$

for a.e. $x, y \in [0, 1]$.

- 5. Let U, V be open sets, with $V \subset\subset U$. Show there exists a smooth function ζ such that $\zeta \equiv 1$ on $V, \zeta = 0$ near ∂U . (Hint: Take $V \subset\subset W \subset\subset U$ and mollify χ_W .)
- 6. Assume U is bounded and $U \subset \subset \bigcup_{i=1}^{N} V_i$. Show there exist C^{∞} functions ζ_i $(i=1,\ldots,N)$ such that

$$\begin{cases} 0 \le \zeta_i \le 1, & \operatorname{spt} \zeta_i \subset V_i \ (i = 1, \dots, N) \\ \sum_{i=1}^N \zeta_i = 1 & \text{on } U. \end{cases}$$

The functions $\{\zeta_i\}_{i=1}^N$ form a partition of unity.

7. Assume that U is bounded and there exists a smooth vector field α such that $\alpha \cdot \nu \geq 1$ along ∂U , where ν as usual denotes the outward unit normal. Assume $1 \leq p < \infty$.

Apply the Gauss–Green Theorem to $\int_{\partial U} |u|^p \alpha \cdot \nu \, dS$, to derive a new proof of the trace inequality

$$\int_{\partial U} |u|^p dS \le C \int_{U} |Du|^p + |u|^p dx$$

for all $u \in C^1(\bar{U})$.

3.

P

9. I

(E

th

10. (a

11.

12. Sl

13. Gi

0

14. Ve

15. Finder

8. Let U be bounded, with a C^1 boundary. Show that a "typical" function $u \in L^p(U)$ $(1 \le p < \infty)$ does not have a trace on ∂U . More precisely, prove there does not exist a bounded linear operator

$$T: L^p(U) \to L^p(\partial U)$$

such that $Tu = u|_{\partial U}$ whenever $u \in C(\bar{U}) \cap L^p(U)$.

9. Integrate by parts to prove the interpolation inequality:

$$||Du||_{L^2} \le C||u||_{L^2}^{1/2}||D^2u||_{L^2}^{1/2}$$

for all $u \in C_c^{\infty}(U)$. Assume U is bounded, ∂U is smooth, and prove this inequality if $u \in H^2(U) \cap H^1_0(U)$.

(Hint: Take sequences $\{v_k\}_{k=1}^{\infty} \subset C_c^{\infty}(U)$ converging to u in $H_0^1(U)$ and $\{w_k\}_{k=1}^{\infty} \subset C^{\infty}(\bar{U})$ converging to u in $H^2(U)$.)

10. (a) Integrate by parts to prove

$$||Du||_{L^p} \le C||u||_{L^p}^{1/2}||D^2u||_{L^p}^{1/2}$$

for $2 \le p < \infty$ and all $u \in C_c^{\infty}(U)$.

(Hint:
$$\int_{U} |Du|^{p} dx = \sum_{i=1}^{n} \int_{U} u_{x_{i}} u_{x_{i}} |Du|^{p-2} dx$$
.)

(b) Prove

$$||Du||_{L^{2p}} \le C||u||_{L^{\infty}}^{1/2}||D^2u||_{L^p}^{1/2}$$

for $1 \leq p < \infty$ and all $u \in C_c^{\infty}(U)$.

11. Suppose U is connected and $u \in W^{1,p}(U)$ satisfies

$$Du = 0$$
 a.e. in U .

Prove u is constant a.e. in U.

- 12. Show by example that if we have $||D^h u||_{L^1(V)} \leq C$ for all $0 < |h| < \frac{1}{2} \operatorname{dist}(V, \partial U)$, it does not necessarily follow that $u \in W^{1,1}(V)$.
- 13. Give an example of an open set $U \subset \mathbb{R}^n$ and a function $u \in W^{1,\infty}(U)$, such that u is *not* Lipschitz continuous on U. (Hint: Take U to be the open unit disk in \mathbb{R}^2 , with a slit removed.)
- 14. Verify that if n > 1, the unbounded function $u = \log \log \left(1 + \frac{1}{|x|}\right)$ belongs to $W^{1,n}(U)$, for $U = B^0(0,1)$.
- 15. Fix $\alpha > 0$ and let $U = B^0(0,1)$. Show there exists a constant C, depending only on n and α , such that

$$\int_{U} u^2 \, dx \le C \int_{U} |Du|^2 \, dx,$$

Define

function

smooth it: Take

xist C^{∞}

field α

e a new

20.

21.

5.11.

Sectio

Sectio Sectio

Sectio Sectio

provided

$$|\{x \in U \mid u(x) = 0\}| \ge \alpha , \quad u \in H^1(U).$$

16. (Variant of Hardy's inequality) Show that for each $n \geq 3$ there exists a constant C so that

$$\int_{\mathbb{R}^n} \frac{u^2}{|x|^2} \, dx \le C \int_{\mathbb{R}^n} |Du|^2 \, dx$$

for all $u \in H^1(\mathbb{R}^n)$.

(Hint: $|Du + \lambda \frac{x}{|x|^2} u|^2 \ge 0$ for each $\lambda \in \mathbb{R}$.)

17. (Chain rule) Assume $F: \mathbb{R} \to \mathbb{R}$ is C^1 , with F' bounded. Suppose U is bounded and $u \in W^{1,p}(U)$ for some $1 \le p \le \infty$. Show

$$v := F(u) \in W^{1,p}(U)$$
 and $v_{x_i} = F'(u)u_{x_i}$ $(i = 1, ..., n)$.

- 18. Assume $1 \le p \le \infty$ and U is bounded.
 - (a) Prove that if $u \in W^{1,p}(U)$, then $|u| \in W^{1,p}(U)$.
 - (b) Prove $u \in W^{1,p}(U)$ implies $u^+, u^- \in W^{1,p}(U)$, and

$$Du^{+} = \begin{cases} Du & \text{a.e. on } \{u > 0\} \\ 0 & \text{a.e. on } \{u \le 0\}, \end{cases}$$
$$Du^{-} = \begin{cases} 0 & \text{a.e. on } \{u \ge 0\} \\ -Du & \text{a.e. on } \{u < 0\}. \end{cases}$$

(Hint: $u^+ = \lim_{\varepsilon \to 0} F_{\varepsilon}(u)$, for

$$F_{\varepsilon}(z) := \begin{cases} (z^2 + \varepsilon^2)^{1/2} - \varepsilon & \text{if } z \ge 0\\ 0 & \text{if } z < 0. \end{cases}$$

(c) Prove that if $u \in W^{1,p}(U)$, then

$$Du = 0$$
 a.e. on the set $\{u = 0\}$.

19. Provide details for the following alternative proof that if $u \in H^1(U)$, then

$$Du = 0$$
 a.e. on the set $\{u = 0\}$.

Let ϕ be a smooth, bounded and nondecreasing function, such that ϕ' is bounded and $\phi(z)=z$ if $|z|\leq 1$. Set

$$u^{\epsilon}(x) := \epsilon \phi(u/\epsilon).$$

e exists

pose U

that o'

Show that $u^{\epsilon} \to 0$ weakly in $H^1(U)$ and therefore

$$\int_{U} Du^{\epsilon} \cdot Du \, dx = \int_{U} \phi'(u/\epsilon) |Du|^{2} \, dx \to 0.$$

Employ this observation to finish the proof.

20. Use the Fourier transform to prove that if $u \in H^s(\mathbb{R}^n)$ for s > n/2, then $u \in L^{\infty}(\mathbb{R}^n)$, with the bound

$$||u||_{L^{\infty}(\mathbb{R}^n)} \le C||u||_{H^s(\mathbb{R}^n)}$$

for a constant C depending only on s and n.

21. Show that if $u, v \in H^s(\mathbb{R}^n)$ for s > n/2, then $uv \in H^s(\mathbb{R}^n)$ and

$$||uv||_{H^s(\mathbb{R}^n)} \le C||u||_{H^s(\mathbb{R}^n)}||v||_{H^s(\mathbb{R}^n)},$$

the constant C depending only on s and n.

5.11. REFERENCES

- Sections 5.2–8 See Gilbarg–Trudinger [**G-T**, Chapter 7], Lieb–Loss [**L-L**], Ziemer [**Z**] and [**E-G**] for more on Sobolev spaces.
- Section 5.5 W. Schlag showed me the proof of Theorem 2.
- Section 5.6 J. Ralston suggested an improvement in the proof of Theorem 4.
- Section 5.9 See Temam [Te, pp. 248–273].
- Section 5.10 Problem 16: see Tartar [Tr, Chapter 17]. H. Brezis taught me the trick in Problem 19.