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Hand SC, Denlinger DL, Podrabsky JE, Roy R. Mechanisms of animal
diapause: recent developments from nematodes, crustaceans, insects, and fish. Am
J Physiol Regul Integr Comp Physiol 310: R1193–R1211, 2016. First published
April 6, 2016; doi:10.1152/ajpregu.00250.2015.—Life cycle delays are beneficial
for opportunistic species encountering suboptimal environments. Many animals
display a programmed arrest of development (diapause) at some stage(s) of their
development, and the diapause state may or may not be associated with some
degree of metabolic depression. In this review, we will evaluate current advance-
ments in our understanding of the mechanisms responsible for the remarkable
phenotype, as well as environmental cues that signal entry and termination of the
state. The developmental stage at which diapause occurs dictates and constrains the
mechanisms governing diapause. Considerable progress has been made in clarify-
ing proximal mechanisms of metabolic arrest and the signaling pathways like
insulin/Foxo that control gene expression patterns. Overlapping themes are also
seen in mechanisms that control cell cycle arrest. Evidence is emerging for
epigenetic contributions to diapause regulation via small RNAs in nematodes,
crustaceans, insects, and fish. Knockdown of circadian clock genes in selected
insect species supports the importance of clock genes in the photoperiodic response
that cues diapause. A large suite of chaperone-like proteins, expressed during
diapause, protects biological structures during long periods of energy-limited stasis.
More information is needed to paint a complete picture of how environmental cues
are coupled to the signal transduction that initiates the complex diapause pheno-
type, as well as molecular explanations for how the state is terminated. Excellent
examples of molecular memory in postdauer animals have been documented in
Caenorhabditis elegans. It is clear that a single suite of mechanisms does not
regulate diapause across all species and developmental stages.
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THE ABILITY OF ANIMALS TO delay development and enter arrested
states is widespread across animal groups and provides many
advantages for dealing with inconsistent, ephemeral environ-
ments. Virtually all major animal phyla have representative
species that show some form of dormancy during their life
cycles, the primary exception being Echinodermata (78). The
focus of this review will be specifically on one type of
dormancy termed diapause. Diapause is a programmed arrest
of development that is controlled by endogenous physiological
factors and may or may not involve a substantial depression of
metabolism (41, 42, 44, 46, 70, 72, 78, 79, 109, 115, 148, 162,
172, 182). Depending on the developmental stage, diapause
may be hormonally regulated and may occur in response to
signaling cues (e.g., photoperiod) that are predictive of forth-

coming environmental change. Animals enter diapause under
conditions that are conducive to normal growth and develop-
ment; in other words, the diapause state often precedes the
onset of adverse environmental challenges (although in some
species, entry can be a direct response to stress). Diapause is
generally distinguished from quiescence, which also is a dor-
mant state but is directly imposed on the organism by an
unfavorable and acute change in environmental conditions
(e.g., anoxia, desiccation).

The biological advantages of diapause are diverse and de-
pend on the species and habitat. Diapausing egg banks in
freshwater and marine sediments are beneficial for reestablish-
ing future populations (68, 71, 72, 119). Resting propagules
can aid in transport and dissemination of the species to new
locations or serve to synchronize favorable environmental
conditions with the actively feeding or growing stage of the
organism (35). Certainly, entering the state of diapause is a
very common mechanism for overwintering; diapause can be
entered in response to food limitation or crowding. Ultimately
survival of deleterious environmental conditions is improved
markedly by diapause.
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As will be apparent from this review, the diverse experi-
mental models offer unique advantages (or in some cases
disadvantages) for investigating various aspects of diapause;
typically, all facets cannot be tackled conveniently with a
single diapausing form. For example, the power of molecular
genetics and mutant strains offered with Caenorhabditis el-
egans has been useful in providing a clear picture of signaling
pathways during dauer formation. Mechanistic investigations
of metabolic arrest and mitochondrial bioenergetics during
diapause can be addressed particularly well with embryos of
the brine shrimp, which display the most profound degree of
metabolic depression ever measured during diapause. Differ-
ences in obligate vs. facultative diapause, as well as insights
into diapause across multiple developmental stages, have been
highlighted from work on insect species. The diapause pheno-
type in annual killifish allows resolution of divergent develop-
mental trajectories that provide novel insights into vertebrate
developmental plasticity. Such advantages of alternative ani-
mal models in research bring to mind the quote of the Danish
comparative physiologist August Krogh (105): “For such a
large number of problems there will be some animal of choice
or a few such animals on which it can be most conveniently
studied.”

Across all model species evaluated here, one emerging
theme in common is the use of small RNAs for diapause
regulation. Others include chromatin/histone modifications
(brine shrimp embryos, nematodes), reliance on insulin/FoxO
signaling (nematodes, insects), and cell cycle arrest by cyclin-
dependent kinases (some insect species, embryos of the brine
shrimp). Chaperone-like activity appears very important for
stabilizing macromolecules during diapause when synthesis of
new maromolecules often can be downregulated for extended
periods. This review summarizes advancements in understand-
ing diapause that have emerged from experiments on nema-
todes, crustaceans, insects, and fish. These groups contain the
best physiologically characterized examples of animal dia-
pause currently available.

Nematodes

Ecological role for nematode diapause. The Nematoda pos-
sess various diapause-like states that greatly facilitate their
ability to occupy niches of varying extremes. Perhaps the best
characterized of these stages is the dauer larva, which is an
obligate phase in the life cycle of many parasitic nematodes as
they transit through harsh environments. Regardless of the
species, execution of dauer development is associated with
numerous morphological and physiological changes, many of
which improve the biological barriers between the parasite and
its host. This allows the larva to survive in environmental
conditions where other organisms could never thrive, allowing
them to inhabit niches that range from equatorial rainforests to
Antarctica.

This developmental adaptation is not exclusive to the para-
sitic nematode, and it is found in at least some free-living
nematode species, including C. elegans. Many of the charac-
teristics involved in the execution, maintenance, and recovery
from the dauer stage have been genetically characterized in this
organism and have provided more than two decades of insight
regarding organismal adaptation to environmental duress (161,

162). In the sections that follow, the majority of functional
studies have been performed with C. elegans.

Signaling pathways for the dauer stage. Animals form dauer
larvae during periods of suboptimal growth conditions follow-
ing an assessment of resources and population density (Fig. 1).
Three independent genetic pathways that are regulated by
cGMP, TGF-�, and insulin-like signals act in parallel to
determine whether a larva will undergo continuous develop-
ment or exit this pathway and execute the dauer stage. Neural
inputs are paramount to this decision, as the ligands responsi-
ble for signaling this decision are all expressed in head neu-
rons, ultimately ensuring that environmental sensing is linked
to the adaptive changes that occur at the organismal level (33,
99, 159).

These three signaling pathways converge on a vitamin D
receptor-like nuclear hormone receptor called DAF-12 (Dauer
Formation abnormal) (7). Unliganded DAF-12 triggers the
developmental changes associated with dauer development
through its transcriptional modification of a suite of genes
required for the associated morphological and behavioral
changes that occur in the dauer stage (57). In addition, DAF-12
must also modify genes that impinge on the metabolic program
to enable the dauer larva to survive long durations (4–6 mo)
without eating (191).

Histone modifications, small RNAs, MicroRNAs. Transit
through the dauer stage does not have dramatic consequence on
postdauer morphology nor does it adversely affect fitness,
although certain features distinguish animals that experienced
the dauer stage from those that developed otherwise. Exami-
nation of histone modifications associated with various states
of gene expression indicate that the genomic distribution of

Fig. 1. A molecular summary of dauer and its consequences in Caenorhabditis
elegans. The diapause-like dauer stage is regulated by signal transduction
pathways that control the decision between continuous or dauer development.
Key effectors of each of these pathways are indicated: DAF-2, an insulin-like
receptor; DAF-11,-a guanylyl cyclase transmembrane receptor required for
chemosensory signaling and the cGMP regulatory branch of dauer formation;
and DAF-7, a TGF-�-like molecule. Execution of dauer development results in
a change in gene expression that is mediated by transcription factors that adjust
gene expression to mediate developmental and physiological modification.
Upon recovery, the dauer genome is altered compared with nondauer larvae,
which is reflected in the modified distribution of chromatin marks and the
small RNA population. These changes likely change the genomic ground state,
allowing for the correction of specific mutant phenotypes. Precisely how these
effects on gene expression and metabolism impinge on brood size and lifespan
remain to be elucidated.
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these marks is dramatically different compared with the same
histone/chromatin signatures in animals that did not transit
through dauer development (75). Curiously, levels of both
acetylated and methylated H3K4, histone modifications that
are generally associated with euchromatin, are significantly
lower in postdauer animals and correlate with gene expression
data, while levels of H3K9 methylation and H3K36 trimethy-
lation, marks that often correlate with heterochromatin, remain
relatively unchanged (refer to Crustaceans, Arrest of the cell
cycle, transcription, and protein synthesis). Reproducible
changes in differentially expressed transcripts (clustered by
several gene ontogeny terms) are observed, potentially confer-
ring some adaptive advantage. Consistent with this, postdauer
adult life span is extended, while animals that transit through
dauer also produce more progeny (75).

In addition to these altered chromatin marks, the population
of small RNAs (endo siRNAs) present in the postdauer recov-
ered adult animals also seems to be distinct from the small
RNA repertoire identified in animals that did not transit
through dauer (76). It is currently thought that these small
RNAs generally act as beacons for appropriate chromatin
writers to mark genomic regions for expression or silencing.
Compromise of the key effectors of these RNA-mediated
effects alter the epigenetic landscape by changing the genomic
distribution of histone modifications associated with gene ex-
pression.

It is presently unclear whether these dauer-specific modifi-
cations confer changes in brood size and whether this provides
some long-term adaptive fitness advantage to postdauer repro-
ductive adults or to subsequent generations. Nevertheless,
these small RNAs, along with changes in the distribution of
histone modifications that occur postdauer, provide a molecu-
lar genetic account of the animal’s experience in the dauer
state.

The molecular memory that accompanies postdauer animals
reflects changes in the ground state of the expressed genome.
There are two well-documented situations where this phenom-
enon has surprising functional consequences and may indeed
be linked to the above-mentioned dauer-specific molecular
modifications.

The C. elegans heterochronic mutants, best known for their
microRNA-mediated genetic regulatory hierarchy, exhibit de-
fects in the temporal sequencing of stage-specific events, such
as cell division and fate specification (163). These develop-
mental abnormalities often result in visible defects in the
hypodermal stem cell lineage and also during vulval formation
in the growing animal. The vulval phenotypes are both pene-
trant and heritable, and yet if the mutant animals execute dauer
development, they are significantly suppressed following re-
covery. The changes in vulva development are dependent on an
inherent developmental plasticity that allows the vulval cells to
become reprogrammed and, therefore, competent to develop-
mental cues following dauer recovery (54). Maintenance of
this capacity is dependent on the C. elegans FoxO transcription
factor DAF-16, a factor involved in maintaining pluripotency
in higher organisms (96, 203) (refer to Insects, How to gener-
ate the diverse phenotype of diapause).

Independent of these studies, investigators involved in char-
acterization of the C. elegans LSD1 demethylase orthologue
spr-5 showed that genetic compromise of demethylation results
in abnormal levels of methylation at both H3K4 and H3K9 that

caused a progressive transgenerational extinction of the germ-
line over multiple generations (66, 97). Surprisingly, this
progressive sterility could be reset if the animals passed
through the dauer stage (97).

Both of these dauer-suppressible phenotypes suggest that as
the animal transits through dauer, the various pathways that are
active during this state affect gene activity in an unprecedented
manner; by altering the global genomic readout of the animal.
In specific contexts, passage through dauer is sufficient to
reestablish correct physiological/developmental homeostasis,
potentially through the same dauer-specific changes that alter
the chromatin marks and the small RNA repertoire, although
this remains to be demonstrated. The mechanisms associated
with this effect have not been fully characterized, but they must
act downstream of all three genetic pathways that control dauer
entry, as the suppression has not been shown to be pathway-
specific.

AMPK as a downstream effector. Just as DAF-12 is pivotal
for dauer entry, AMPK is likely to be the critical downstream
effector for each of these dauer formation pathways to ensure
that the appropriate allocation of energy resources occurs
following the commitment to nonfeeding (137). Through its
regulatory phosphorylation of key protein substrates that are
involved in both anabolic and catabolic processes, in addition
to its effects on nonmetabolic targets, AMPK enhances the
levels of available cellular energy to maintain the appropriate
function of essential cellular processes (87). In most organisms
AMPK signaling is essential (24, 108, 187); however, in C.
elegans null mutations that remove all AMPK signaling are
viable. This provides a unique means of evaluating the role of
this critical protein kinase in various physiological and devel-
opmental contexts, including dauer development.

A dominant negative variant of the AMPK catalytic subunit
aak-2 that disrupts most AMPK signaling in mutants was
isolated in a genetic screen designed to identify regulators of
germline stem cell quiescence during the dauer diapause (137).
These animals are viable, form dauer larvae, and are fertile if
not subjected to stress during growth and development. How-
ever, during the dauer stage, the germ cell lineage undergoes
significant hyperplasia, almost quadrupling its germ cell num-
bers during diapause when all cell divisions should be arrested.
Some AMPK mutant animals show defects in dauer entry and
maintenance (8), while insulin-signaling defective dauer larvae
that lack AMPK are incapable of enduring long periods in this
stage without feeding and expire after �10 days (138). This
premature dauer-dependent lethality is due to the untimely
exhaustion of triglyceride stores that act as a long-term energy
source to fuel cellular reactions during the extended period
without feeding. During dauer entry AMPK phosphorylates a
rate-limiting triglyceride lipase called ATGL-1 to block it from
rapidly breaking down the accumulating triglyceride so it can
conserve energy resource for long durations. In the absence of
AMPK, the animals exhaust their fuel reserves prematurely,
compromising energy-dependent organ systems leading to ex-
piration (138).

AMPK, therefore, plays an important, if not essential, role
during the dauer stage, and while DAF-12 readjusts gene
expression to accommodate the dauer-specific developmental
changes, AMPK will alternatively drive the appropriate phys-
iological and metabolic modifications necessary to survive the

Review

R1195MECHANISMS OF ANIMAL DIAPAUSE

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00250.2015 • www.ajpregu.org



stress of dauer (refer to Crustaceans, A role for pHi or
AMPK?).

Other resting stages. Although the dauer stage is the most
thoroughly studied diapause stage in C. elegans, several other
periods of postembryonic developmental arrest have been de-
scribed as additional diapause-like states. C. elegans transits
through four molts before achieving reproductive maturity.
Progression beyond each of these developmental interruptions
is contingent on sensing or access to adequate environmental
resources to support the stage-specific processes that will be
engaged once committed to development through the larval
stage. Lack of food following the L2, L3, or the L4 molt will
result in extended periods of developmental arrest that are
dependent upon stage-specific gene activities (168).

If late fourth larval stage animals are starved, they will molt
to the adult stage but preempt the formation of embryos and
execute an adult reproductive diapause (6). If starvation is
prolonged, the germ line undergoes a dramatic shrinkage,
while the numbers of germ cell nuclei are also reduced due to
caspase-dependent programmed cell death. Despite these ma-
jor changes in morphology, the germ line retains its totipotent
capacity, and when the animal begins to feed again, the germ
line is quickly restored to its wild-type stature. Fitness is,
however, affected as brood size is reduced significantly as a
function of the duration of starvation (6).

As animals emerge from the embryo, the resulting hatch-
lings, or by convention the L1 larvae, are capable of surviving
for up to 2–3 wk without food. During this period the animals
are motile but the postembryonic developmental program is
never executed without satisfying a nutrient/energy contin-
gency. Transcriptional levels are low and no cell divisions
occur until the animals begin to eat, which sets in motion the
first features of the postembryonic developmental program (13,
59). This period of cell cycle/developmental arrest is referred
to as the L1 diapause and is likely a critical adaptive feature in
the wild, where animals are more likely to be born into
nutrient-depleted rather than nutrient-abundant environments.

Analysis of the transcriptional state of the RNA polymerase
II complex during this period indicates that the transcriptional
complex appears bound near transcriptional start sites similar
to developmentally regulated genes in Drosophila (12, 106).
The expression of genes involved in various stress or starvation
responses tend to be “paused” in a postinitiated/preelongation
state, whereas genes that are associated with growth and
development are in a postrecruitment “docked” state (121).

Although this diapause-like state is seemingly very different
than formation of the dauer, DAF-16/FoxO also plays a critical
role during this arrest. DAF-16/FoxO activates the expression
of cki-1, a p27-like cyclin-dependent kinase inhibitor protein
that ensures cell cycle quiescence during this period (11, 13).
In addition to DAF-16/FoxO, the microRNA miR-71 also
regulates cki-1 during the L1 diapause, but in contrast to
DAF-16/FoxO, it blocks cki-1 function to activate cell cycle
progress through a DAF-16/FoxO-independent mechanism
(203). The role of miR-71 extends beyond simple cell cycle
control: it is required for survival of the L1 diapause. Loss of
function mutations in miR-71 demonstrate postembryonic de-
fects in developmental timing and vulval patterning that are
exacerbated with extended durations in the L1 diapause (203)
(refer to Crustaceans, Arrest of the cell cycle, transcription,
and protein synthesis; Fish, Maternal versus embryonic con-

trol of entrance into diapause II; for insects, see Perspectives
and Significance).

Survival of the L1 diapause is dramatically reduced in
animals that lack AMPK signaling, in line with its role in
adjusting energy reserves to address the stress associated with
starvation. The mutant larvae die prematurely, and they all
exhibit supernumerary primordial germ cell divisions, suggest-
ing that as in the dauer stage, AMPK ensures that germline
stem cells do not divide during periods when inadequate
resources are available to fuel critical cellular processes (13,
59, 60). The fitness consequences of these extra divisions are
not clear, but resolving how the targets of this important
protein kinase maintain cell cycle arrest in the context of the
germ line may provide valuable insight in our understanding of
how stem cells maintain their arrest in diverse physiological
contexts.

Although these diapause states may be specialized for the C.
elegans life cycle, it is quite plausible that similar regulatory
contingencies are conserved among other species, even if the
developmental switch to a diapause stage per se may not be.
The dauer stage is an obligate life cycle phase in many parasitic
nematodes, while it seems to have evolved environmental
triggers in free-living species. The L1 diapause seems to be
mirrored by a similar nutrient/energy-dependent arrest that
occurs in Drosophila (19). This developmental “checkpoint”
maintains arrest in the emergent larva until conditions are
adequate to support the rapid growth phases associated with the
early stages of larval development in the fly. Whether this is
conserved beyond these two organisms remains to be demon-
strated.

The suppression of reproduction typical of adult reproduc-
tive diapause of C. elegans may be a more common phenom-
enon that is shared across species from C. elegans to humans,
probably as a means of protecting germ lineages from potential
defects associated with ongoing cell division during periods of
energy or nutrient stress. Characterization of how these impor-
tant developmental decisions are triggered and how the gene
products involved impinge on the appropriate physiological
effectors in each of these situations will undoubtedly contribute
to our understanding of how cells transduce environmental
information to effect cellular and organismal processes from
stem cell biology to metabolic regulation: both of which may
have multiple future applications in both biotechnology and
medicine.

Crustaceans

This section begins by emphasizing the considerable diver-
sity of diapause states among crustacean species and the
various environmental conditions under which diapause is
induced. While mechanistic inferences can be gleaned from
these wide-ranging studies, most molecular, biochemical, and
physiological data addressing diapause mechanisms for crus-
taceans have utilized developmental stages of the brine shrimp
Artemia franciscana. Consequently, the biology of this organ-
ism is concisely reviewed, and the enormous biomass of
diapausing animals seen in nature is underscored. The extreme
bioenergetic transition observed in the embryos of this species
is evaluated and the implications for apoptosis are considered.
Mechanisms for the arrest of the cell cycle and transcription
and protein synthesis are reviewed, as is the protection and
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longevity of biological macromolecules during diapause. Fi-
nally, effectors and cues promoting diapuase are briefly con-
sidered. Open questions still remaining are interwoven within
these topics.

Diversity of diapause among crustaceans. As pointed out by
Hairston and Kearns (72), it has been known for almost 140
years that freshwater crustaceans produce diapausing eggs.
Indeed, most species of limnic zooplankton produce a resting
stage at some point during their life cycle, a process that has
been well studied among copepods and branchiopods (58, 69,
71–73, 78, 156). Prolonged egg diapause is observed in 62% of
crustacean species living in inland water habitats (72). Fresh-
water calanoid copepods alternate between production of subi-
taneous (immediately hatching) and diapausing eggs. Subitane-
ous eggs are carried by females until they hatch in a few days,
whereas diapausing eggs are held for 2 or 3 days and then
released to the bottom of the pond where they remain devel-
opmentally arrested until hatching the following year (74). In
the majority of cases, production of diapausing eggs is envi-
ronmentally cued by short photoperiod and declining temper-
ature, with crowding and food availability occasionally exert-
ing some influence (69). In contrast, eggs of freshwater cyclo-
poid copepods are all subitaneous (34), and the arrest occurs
later in the life cycle at the copepodite stages (51). Among
freshwater cladocerans (water fleas), parthenogenetic eggs can
be produced for several generations that hatch exclusively into
females. Males (parthenogenetically derived) are usually
needed for the fertilization and production of diapausing eggs
(69). In genera like Daphnia, diapausing eggs are protected by
an envelope termed an ephippium that is derived from the walls
of the adult carapace. As with freshwater copepods, the most
commonly reported cues that induce diapause in cladocerans
are photoperiod, temperature, and crowding (69). Finally, ma-
rine calanoid copepods are also noted for their abilities to
produce diapausing eggs (53, 119, 120, 167); as summarized
by Engel and Hirche (53), resting eggs have been reported for
49 species of marine and estuarine calanoid copepods. Marine

copepods can exhibit diapause at various stages of the life
cycle depending on the species (68, 88, 117). Temperature,
photoperiod and deoxygenated water have all been implicated
in the maintenance and/or release from diapause (117, 118).

For crustaceans a majority of studies on physiological and
molecular mechanisms of metabolic and developmental arrest
have used embryos of the brine shrimp Artemia (Bran-
chiopoda: Anostraca), due largely to the commercial availabil-
ity of encysted, anhydrobiotic embryos (78). More importantly
in the context of diapause, enormous quantities of hydrated,
diapausing embryos can be readily collected from the surface
of hypersaline waters like the Great Salt Lake (Utah) (Fig. 2),
the fourth or fifth largest terminal saline basin in the world
(14). Diapausing cysts must be collected in the hydrated state,
because drying is one cue that serves to break the diapause
state (see below). Annual biological production of embryos
from the lake has been estimated at �4,500 metric tons of cyst
dry mass, of which the commercially harvested fraction can
range from 21% to more than 40% (199). During an above-
average year in 1996, 2,500 metric tons of dried cysts were
harvested (refer to Ref. 199). These dried cysts serve as a ready
source of free-swimming nauplius larvae for the fish aquacul-
ture industry and tropical fish hobbyists.

In autumn ovigerous females of the brine shrimp A. francis-
cana shift from ovoviviparous reproduction (eggs hatched
internally; live bearing of young), where free-swimming nau-
plius larvae are released directly into the water column, to
oviparous reproduction (eggs develop and hatch outside ma-
ternal body), where encysted embryos at the late gastrula stage
(15) are released in diapause (29, 32, 46, 78, 107). For the
Great Salt Lake (Utah) population, it is clear that photoperiod
is the overriding cue that shifts the mode of reproduction to
oviparity and diapause (136). For a detailed diagram of the A.
franciscana life cycle, please see Ref. 148. The diapausing
embryo serves as an overwintering stage during which devel-
opment ceases and metabolism is severely depressed (30, 142).
Some of the diapausing embryos are blown toward the shore-

Fig. 2. A: aerial view of diapausing embryos of Artemia
franciscana floating in wind-blown “streaks” on the
Great Salt Lake, Utah, in autumn. The streaks of em-
bryos typically are kilometers long. B: kilogram quan-
tities of diapausing embryos are easily collected from
these streaks on the lake surface.
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line in wind rows (streaks; Fig. 2A) where they accumulate on
the bank and desiccate, while others remain in the lake and
overwinter in the hydrated state (c.f., 142).

Bioenergetics. In this and subsequent sections, the majority
of functional studies has been restricted to Artemia franciscana
thus far; whether findings are broadly applicable to other
crustaceans is not clear at present. Details of the proximal
mechanisms by which metabolism is downregulated during
diapause in A. franciscana have been reviewed recently (148).
Briefly, one major contributor to metabolic arrest is the
blocked delivery of carbon substrates to the mitochondrion.
During preemergence development of A. franciscana, the pri-
mary fuel for the embryos is the sugar trehalose (23, 25, 49, 52,
133). Inhibition of several enzymatic steps in the catabolism of
trehalose and its delivery to the TCA cycle occurs during the
metabolic arrest that is spread over a period of days (142).
These enzymes are trehalase, hexokinase, pyruvate kinase, and
pyruvate dehydrogenase (PDH), and the restricted metabolic
steps were identified by comparing product to substrate ratios
that were determined by quantitative measurement of pathway
intermediates in diapausing versus post-diapause embryos
(Fig. 3). The molecular explanation for inhibition at each step
has not been determined, but phosphoryation of PDH occurs
with a time course virtually identical to the severe arrest of
embryo respiration during diapause entry. This phosphoryla-
tion event is known to be associated with strong inhibition of
PDH from many sources (see Ref. 142 for details). During the
first few days after release of diapausing embryos from ovi-
gerous females, oxygen consumption by embryos plummets,

eventually reaching values �1% of the active state after
2–3 wk (30, 142). This metabolic arrest is the most extreme
ever reported for a diapausing animal measured under nor-
moxia, euthermia, and full hydration. Indeed, Clegg and Jack-
son (31) argue persuasively that metabolism eventually may be
brought to a reversible standstill during diapause, based on
unchanged carbohydrate reserves during 17 mo of diapause.
By comparison, a meta-analysis for 15 marine copepod species
has shown that metabolism in diapausing copepodid stages is
reduced to about one-fourth of that measured for actively
growing copepods (116).

Proton conductance across the inner membrane of the mito-
chondrion does not change during diapause versus the active
state (142). Consequently, it would be anticipated that both the
�pH and �� dissipate (Fig. 4). This loss of proton-motive
force during diapause has major implictions for ATP metabo-
lism (142, 148), because it is possible that the F1Fo ATP
synthase could reverse under such conditions and become an
ATPase. What makes this possibility particularly troubling is
that the adenine nucleotide translocator (ANT) could also
reverse, thereby importing ATP into the matrix from the
cytoplasm (Fig. 4). Directionality of the ANT normally de-
pends on the presence of ��, due to the difference in charge
between the two molecules exchanged (ATP4�, ADP3�). If the
�� is compromised, directionality then only depends on the
respective concentration gradients. Thus, ATP entering from
the cytoplasm could be continuously cleaved by the ATPase.
One possible mechanism that might serve to prevent the
reversal of the ATP synthase would be binding of IF1 protein

Fig. 3. Product-to-substrate ratios for dia-
pausing embryos (open bars) of Artemia
franciscana compared with postdiapause
embryos (shaded bars). The significantly
lower values seen in diapause indicate inhi-
bition at the trehalase (A), hexokinase (B),
pyruvate kinase (C), and pyruvate dehydro-
genase (D) reactions in the pathway for tre-
halose catabolism. Values are expressed as
means � SE for n � 4 samples in A–C and
n � 6 for D. *Statistical significance with
P 	 0.0001. [Modified from Patil Y, Marden
B, Brand MD, SC. “Metabolic downregula-
tion and inhibition of carbohydrate catabo-
lism.” Physiol Biochem Zool 86: 111–113,
2013, published by the University of Chi-
cago; Ref. 142].
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that is known to block ATPase activity under conditions when
the matrix pH falls (refer to 10, 56, 63). Under such conditions,
the IF1 from mammalian sources can depolymerize from inac-
tive tetramers into active dimers. Whether the IF1 protein is
involved in potentially slowing the drop in ATP during dia-
pause, and if so how, remain open questions.

Compared with postdiapause embryos, ATP drops signifi-
cantly during diapause in A. franciscana embryos but substan-
tial quantities of ATP remain (142). The ATP:ADP ratio in
fully hydrated, diapausing embryos is 1.31 � 0.04 (means �
SE) vs. 7.3 � 0.28 for postdiapause embryos. In another report
of adenylate values purportedly for diapausing embryos of A.
franciscana (207), the cysts were allowed to dry for 2 wk at
25°C prior to analysis; this treatment routinely breaks the
diapause state and disrupts adenylate status. Not surprisingly,

the reported ATP:ADP ratio was extremely low. Likewise the
ATP:ADP ratios for postdiapause embryos were low (207)
compared with other published values (e.g., 3, 142), likely due
to the lack of tissue freeze-clamping in liquid nitrogen during
extraction. Declining ATP is a classic signal that often initiates
intrinsic apoptosis as documented for a number of mammalian
cell lines (refer to Refs. 65 and 81). The intrinsic pathway,
which involves mitochondrial signaling, is a response to mod-
erate perturbation of intracellular homeostasis by various cel-
lular stresses. Some of the mechanisms thought to contribute to
avoidance of cell death during this energy-limited state have
been reviewed previously for A. franciscana embryos (81,
126). Of note here is that mitochondria of these embryos are
refractory to signals that typically open the mitochondrial
permeability transition pore (MPTP), leading to release of
proapoptotic factors into the cytoplasm. The lack of a MPTP
and the lack of cytochrome-c effects on caspase activation
(127) are likely significanct for avoiding unwanted cell death
during diapause in these embryos. It should be noted that
nothing is known presently about the existence in A. francis-
cana embryos of the Bax/Bak mechanism for mitochondrial
outer membrane permeabilization, which is a second mech-
anism for release of proapoptotic factors and initiating
intrinsic apoptosis (104). These observations certainly do
not preclude apoptosis in these embryos, because the extrin-
sic pathway to apoptosis, activated through ligation of death
receptors located in the plasma membrane, frequently serves
as a mechanism to eliminate cells during development,
differentiation, and tissue remodeling, as tissues are removed
and replaced (81). Under certain experimental conditions with
selective protein knockdown, terminal deoxynucleotidyl trans-
ferase dUTP nick end labeling assays have shown apoptosis to
occur in developing embryos of A. franciscana (110, 202, 204).
It is, nevertheless, interesting that during energy-limited states
like diapause and anoxia, these embryos survive for months to
years without apoptosis.

Arrest of the cell cycle, transcription, and protein synthesis.
Once environmental cues have signaled expression of the
oviparous developmental pathway (29, 32, 46, 107), cell divi-
sion ceases in diapausing embryos (134, 135, 141) at the late
grastrula stage (15) at about 4,000 cells (134, 140). Even after
diapause is terminated and development is reinitiated, the cell
cycle remains arrested throughout preemergence development
(PED), i.e., until the embryo begins to emerge from the cyst to
eventually form the free-swimming nauplius. Thus during
PED, there is cell differentiation without cell division or DNA
synthesis (for review, see Ref. 29). The precise point in the cell
cycle at which arrest occurs is still a matter of some uncer-
tainty, but recent information suggests G2/M phase during PED
(40).

Global mechanisms that integrate the environmental cues
with cell cycle and metabolic arrest during diapause in Artemia
embryos are lacking. Some progress has been made regarding
the proximal signaling pathways that may govern induction
and maintenance of mitotic arrest during diapause and PED.
The phosphorylation state of Polo-like kinase 1 (Plk1) has been
reported to decline during diapause in Artemia parthenoge-
netica, rendering the enzyme inactive, but its phosphorylation
increases again when mitosis returns in nauplius larvae (110).
Knockdown of Plk1 in developing embryos disrupts mitosis
and leads to formation of “pseudo-diapause” cysts. The impact

Fig. 4. Aspects of mitochondrial energetics during active metabolism (A) vs.
the diapause state (B), as predicted for embryos of Artemia franciscana. A: the
TCA cycle and electron transport system (ETS) are active with high oxygen
consumption measurable. Under this condition, a large �pH and �� would be
predicted with an alkaline pH present in the matrix. The F1Fo ATP synthase
(ComplexV) operates in the direction of ATP production, and the adenine
nucleotide translocator (ANT) and phosphate carrier would run in their typical
directions. Alkaline conditions in the matrix could potentially foster the
tetrameric (inactive) state of the inhibitor protein IF1. B: during diapause,
carbon delivery to the mitochondrion is arrested and the TCA cycle, ETS, and
respiration are depressed, which would be predicted to result in loss of
membrane potential and proton gradient, because proton conductance is known
not to change during diapause compared with the active state in mitochondria
from A. francicana. Consequently, the F1Fo ATP synthase and ANT could
potentially reverse, leading to consumption of cellular ATP stores. Proton leak
would promptly cease due to loss of �pH. However, under the more acidic
conditions in the matrix, one might hypothesize that the IF1 protein could
depolymerize to active dimers and bind to the F1Fo ATP synthase, thereby
preventing reversal of Complex V.
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of Plk1 during active mitosis was concluded to be inhibition of
p90 ribosomal S6 kinase 1 (RSK1; i.e., Ar-RSK1) via blockage
of its upstream activation pathway, MEK-ERK (mitogen/ex-
tracellular signal-regulated kinase; extracellular signal-regu-
lated kinase). This linkage between Ar-RSK1 and the MEK-
ERK signaling pathway required reevaluation when it was
discovered that Ar-RSK1 does not possess a docking site for
ERK (48). Rather, a second RSK protein was found in A.
franciscana embryos (Ar-RSK2) that does possess the docking
site. The current model is that Ar-RSK2 is downregulated
during diapause, which promotes mitotic arrest. In actively
developing embryos, knockdown of Ar-RSK2 led to decreased
levels of cyclin D3 and phosphorylated histone H3, and the
production of pseudo-diapause cysts. Phosphorylation of Ar-
RSK1 is now thought to block meiosis in A. franciscana
oocytes (48). Most recently, expression patterns of microRNAs
have been reported for A. parthenogenetica (205). Evidence
indicates that miR-100 and miR-34 are involved in cell cycle
arrest during diapause. Specifically, miR-100 and miR-34
target Plk1, which leads to activation of the MEK-ERK-
ArRSK2 pathway and cyclin K, respectively. RNA polymerase
II activity is suppressed as a result (refer to sections on
Nematodes, Other resting stages; Fish, Maternal versus em-
bryonic control of entrance into diapause II; for insects, see
Perspectives and Significance).

Histone modification during diapause has not been thor-
oughly studied to this point in brine shrimp. Changes in histone
acetylation have been reported during entry and exit from
diapause in embryos of A. parthenogenetica (206). Specifi-
cally, acetylation of lysine 56 in histone H3 (H3K56ac) in-
creases during diapause entry and declines during diapause
termination. H3K56ac remains at basal levels throughout sub-
sequent embryo development. From these data alone, it is not
possible to definitively conclude that this acetylation event
promotes cell cycle arrest during diapause, because, as previ-
ously discussed, cell cycle arrest continues after diapause
breakage through the end of PED; yet, H3K56ac returns to
basal levels after diapause termination. Treatment of develop-
ing embryos during PED with nicotinamide (a deacetylase
inhibitor) increases H3K56ac and promotes a temporary de-
velopmental arrest immediately before emergence; at emer-
gence, cell division is required to proceed onward to larval
stages. More work is needed to clarify the molecular nature of
the respective cell cycle arrests seen in diapause versus post-
diapause embryos to resolve the role of histone acetylation.
Finally, changes in histone methylation apparently occur dur-
ing development of Artemia sinica based on the recent char-
acterization of a protein arginine N-methyltransferase 1; any
specific role in diapause has yet to be evaluated (93) (refer to
Nematodes, Histone Modifications, Small RNAs, MicroRNAs).

The best experimental evidence for arrest of nucleic acid
synthesis during diapause in A. franciscana embryos comes
from quantifying the incorporation of radiolabeled precursors
into the nucleic acid fraction of diapause versus activated
embryos (30). Incorporation into nucleic acid was strongly
depressed in diapause embryos, which indicates cessation of
DNA and RNA synthesis (for review of earlier literature, see
Ref. 175). It is important to note that severe depression of
nucleic acid synthesis was not seen in diapausing embryos that
were recently released from the females (i.e., after 0–3 days),
but only for embryos 2 wk postrelease. This pattern mirrors the

asymptotic depression of metabolic rate described earlier and is
likely a result of time-dependent arrest of RNA synthesis. A
cyclin K-dependent mechanism that may decrease transcription
during diapause in A. parthenogenetica has been reported
(204). Briefly, cyclin K is a regulatory subunit of the positive
transcription elongation factor b (P-TEFb). P-TEFb is known
to positively impact transcription by phosphorylating the large
subunit of RNA polymerase II (RNAPII), which fosters the
transition toward productive elongation, a critical step in the
regulated expression of most genes (144). Whether cyclin K
functions similarly to cyclin T in DNA transcription in vivo is
debatable (see references in Ref. 204). Western blots indicate
that cyclin K protein is downregulated during diapause entry
and upregulated upon return to development (204). Knock-
down of cyclin K eliminated phosphorylation of RNAPII (at
Ser-2 of the COOH-terminal domain of the large subunit).
Thus, a case can be made for a potential role of cyclin K in
downregulation of transcription during diapause.

Very low rates of protein synthesis also have been demon-
strated during diapause in A. franciscana embryos (30). The
temporal pattern for depression of protein synthesis is quite
similar to that seen for the downregulation of both respiration
and nucleic acid synthesis. Clearly, the initial cessation of
development and cell cycle arrest in diapausing embryos that
occur simultaneously with their formation and storage in the
ovisac is temporally offset from the metabolic depression,
which is only completed many days after embryo release into
the water column.

Longevity of macromolecules during diapause. The depres-
sion of RNA and protein synthesis during diapause suggests
that turnover of macromolecules should be similarly depressed.
While considerable literature exists on the stabilization of
proteins and mRNA during anoxia-induced quiescence in em-
bryos of A. franciscana (3–5, 26, 27, 50, 85, 180, 184, 185),
fewer measurements are reported for diapause. Clegg et al. (30)
observed little evidence of protein degradation in diapausing
embryos and argued that pathways for macromolecular degra-
dation were brought to a standstill during diapause. There are
many chaperone-like proteins present at high titer in diapause
embryos, most notably p26, artemin, ArHsp21, ArHsp22, and
group 1 and 3 late-embryogenesis abundant (LEA) proteins
(28, 82, 102, 155). This suite of proteins likely contributes
markedly to the stability of macromolecules in the diapause
state. The 
-crystallin stress protein p26 has been characterized
extensively (e.g., 92, 177, 186, 194). The protein is specifically
synthesized in diapause-destined embryos and is degraded after
embryonic stages. It possesses chaperone activity (111), and
when transfected into mammalian cells, p26 improves desic-
cation tolerance (113) and inhibits apoptosis during drying and
rehydration (186). Artemin is a ferritin homolog that is dia-
pause-specific and exhibits ATP-independent chaperone activ-
ity (90, 103). Knockdown studies with artemin indicate that the
decrease in artemin extends the time required for release of
complete broods of diapausing embryos by the female (103), in
addition to reducing the tolerance to desiccation and freezing.
Artemin-like and p26-like proteins are expressed in various
developmental stages of the freshwater fairy shrimp Strepto-
cephalus dichotomus (Anostraca) (132), including the diapaus-
ing embryo. Two additional small heat shock proteins (sHSP)
have been characterized from A. franciscana embryos. Ar-
HSP21 protein is detected in diapause-destined embryos, in-
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creases in titer until cyst release, and is absent in second instar
larvae and adults (153). ArHSP22 is also synthesized in dia-
pause-destined embryos and degrades during post-diapause
development (154). In contrast to the cytoplasmic ArHSP2,
ArHSP22 is located in nuclei. Both inhibit heat-induced dena-
turation of citrate synthase; thus, they likely contribute to
protein stability during diapause. Hsp22 was recently shown to
be elevated in diapausing copepodids of Calanus finmarchicus
(9), as was ferritin (181). Finally, numerous LEA proteins from
groups 1 and 3 are expressed in diapausing and post-diapause
embryos of A. franciscana (16–18, 80, 84, 125, 169, 183, 192,
193). Characterization of these proteins indicates chaperone-
like activity and localization to multiple intracellular compart-
ments. In addition to stabilizing proteins against desiccation
stress, the group 3 LEA proteins in A. franciscana have been
shown recently to stabilize lipid bilayers (131).

A role for pHi or AMPK? At present, it is unclear whether
there exists a regulatory role for acidification of intracellular
pH (pHi) during the entry into diapause in embryos of A.
franciscana. Previous work has convincingly supported a “pHi

switch” for downregulation of metabolism during anaerobic
quiescence in these embryos (21, 22; for reviews, see Refs. 32,
37, 78, 79, 83); pHi drops rapidly from �7.9 (normoxia) to 6.8
within 60 min of anoxic exposure, and further to 6.3 after 24 h.
A key and somewhat surprising finding came from 31P-NMR
measurements of diapause embryos of A. franciscana taken
very soon after their release from females, which showed that
pHi was alkaline (�7.9), i.e., identical to activated post-
diapause embryos under normoxia (47). Consequently, it ap-
peared that acidification did not play any role in depression of
diapause metabolism. However, as reviewed above, it was later
discovered that the severe metabolic depression characterizing
Artemia diapause is delayed and requires up to 2 wk or more
for completion. Clegg and colleagues (28, 31, 32) have made
the case that there could be an influence of pHi acidification on
metabolic depression observed during diapause. What is
needed are time-course data that follow the pHi of diapausing
embryos across several days after release from the female, so
that these values can be compared with the profile for meta-
bolic depression.

AMPK is often considered the metabolic fuel gauge for the
cell and acts as a sensitive sensor of cellular energy due to its
allosteric stimulation by elevated AMP:ATP ratio, as well as
activation through covalent modification (86, 87). When acti-
vated, AMPK initiates metabolic and genetic events that re-
store cellular adenylate status (164). Witt et al. (195) showed
that AMPK could be enriched from both diapause and post-
diapause embryos of A. franciscana and that the enzyme is
positively regulated by phosphorylation based on assays of
enzyme activity, yet there is no detectable difference in phos-
phorylation state between the two conditions as judged by
Western blots (Witt T, Menze M, and Hand S, unpublished
data), a pattern reported by Zhu et al. (207). Thus, despite its
apparent role as a master regulator for coordinating numerous
catabolic and anabolic pathways, current evidence suggests
AMPK is not differentially activated during entry into diapause
in A. franciscana embryos. Perhaps, it coordinates metabolic
processes later in development (refer to Nematodes, AMPK as
a downstream effector).

Environmental cues and other effectors for diapause
termination. A thorough review of the descriptive literature on
termination cues for crustacean diapause is provided by Lavens
and Sorgeloos (107), a review that includes information for
anostracans (fairy shrimp, brine shrimp), notostracans (tadpole
shrimp), conchostracans (clam shrimp), cladocerans (water
fleas), and copepods. Even if one simply focuses on the case
for embryos of A. franciscana, there are several environmental
cues and laboratory treatments that are effective for terminat-
ing (breaking) diapause, and they differ depending on the
specific population evaluated (31, 46, 107). Environmentally
relevant cues include various degrees of desiccation, exposure
to low temperature, and exposure to light after drying. In-
creased levels of CO2, alkaline-buffered NH4Cl, oxidants like
3% hydrogen peroxide have been used experimentally in the
laboratory to terminate diapause. Combinations of these ap-
proaches often enhance their effectiveness. How these agents
operate to break diapause in crustaceans is unknown.

Insects

Seeking common mechanisms regulating diapause. Are
there mechanisms common to the regulation of diapause in
insects? And, might such mechanisms be evident in other
animals as well? Perhaps, but the overwhelming observation is
that diapause has evolved independently multiple times during
the evolutionary history of insects, even within different spe-
cies in the same genus (e.g., larval, pupal, and adult diapauses
all within the genus Drosophila, and egg, larval, and adult
diapauses in the mosquito genus Anopheles). Yet, to achieve a
dormant state, such as diapause requires a number of distinct
features that likely have a common core.

Although a few insect diapauses are hard-wired and are
entered into at a specific developmental stage regardless of the
prevailing environmental cues (obligate diapause), the onset of
most diapauses in temperate latitudes is programmed by the
seasonal pattern of daylength (facultative diapause). Most
frequently, the short days of late summer and early autumn
provide the environmental cue used by the insect to program its
developmental arrest in advance of the upcoming winter.
Reliance on this token signal from the seasonal environment
enables the insect to anticipate the upcoming unfavorable
season, accumulate lipid reserves needed to bridge the many
months when food sources are absent, and seek a protected site
that will be buffered from the full onslaught of winter. Dia-
pause implies a cell cycle arrest, and depending on the species,
can also be accompanied by depression of metabolism, essen-
tial for conserving energy reserves. Stress and immune re-
sponses are usually elevated during diapause, and mechanisms
that protect against cold injury are commonly invoked. How is
it that these diverse features are shared by diverse species and
in diapauses occurring in different developmental stages? Do
these features of the diapause phenotype share a common basis
at the level of transcription or do these different diapauses
simply converge on the same traits by diverse molecular
mechanisms?

Sufficient molecular analyses of diapause have now been
completed, allowing us to tentatively suggest that very few
transcripts are upregulated in common among different dia-
pausing species. For example, a comparison of diapause up-
regulated transcripts in the flesh fly Sarcophaga crassipalpis
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(pupal diapause), Drosophila melanogaster (weak adult dia-
pause), and the nematode Caenorrhabditis elegans (dauer
state) identified only 10 transcripts that were upregulated in
common among these three diverse species (157). More
closely related species would likely reveal more common
expression patterns, but the overriding story is that very few
specific transcripts are likely shared across species during
diapause. That being said, these different species still generate
a similar phenotype, but they do so by different molecular
mechanisms. For example, the cell cycle is arrested during
diapause in diverse taxa, but how that arrest is achieved differs
among species. Arrest in brains of the flesh fly pupae appears
to be a consequence of downregulation of proliferating cell
nuclear antigen (179), but in several other species, the cell
cycle is arrested during diapause by blocking expression of
other key cell cycle regulators such as cyclins and cyclin-
dependent kinases (178). Thus, with a multitude of inputs that
contribute to most features of the diapause syndrome, it is not
too surprising that different molecular mechanisms could be
used to generate the diapause phenotype.

This component of the review focuses on major molecular
pathways that appear to operate in regulating diapause in
several insect species. Although the specific check points in the
systems may vary with species, the overall involvement of
these pathways seems to be common to at least several species.
Specifically, this component of the review examines the role of
clock genes in programming insect diapause, discusses a recent
body of data suggesting a role for insulin/FoxO signaling in
generating the downstream phenotype, and identifies a number
of missing links whose identity will be essential if we hope to
eventually trace the pathway from photoreception to generation
of the diapause phenotype.

Sensing the seasonal environment. In temperate latitudes,
daylength is a nearly universal seasonal signal used by insects
to program the onset of diapause (165, 182). This implies a
mechanism to distinguish short days from long days, the ability
to store this information within the brain, and then to respond
to this acquired information at the appropriate time to bring
about an arrest in development. Insects and other animals
already have a precise timekeeping mechanism used on a daily
basis to maintain daily (circadian) rhythms, and one might very
well assume that, with such a mechanism in place, insects
would tap into this system for the seasonal clock that distin-
guishes the annual change in daylength (photoperiodism), an
idea proposed by Edwin Bünning many years ago (20).

But, the jury is not completely in on this issue. Experiments
showing that null mutants of the clock gene period are arrhyth-
mic yet still can enter diapause (166) suggest that this photo-
periodic response may, at least in some cases, be operating
with a mechanism distinct from the circadian clock (64, 129).
But, the independent evolution of diapause in diverse insect
groups suggests the possibility that different insect taxa may
link their circadian and photoperiodic clocks in different fash-
ions.

Experiments with the bean beetle Riptortus pedestris (91)
and the mosquito Culex pipiens (130) provide some of the
strongest evidence that the circadian clock mechanism is es-
sential for this photoperiodic response. In R. pedestris, knock-
ing down the clock genes period and cryptochrome2 disrupts
both the circadian rhythm of cuticle deposition, as well as the
diapause response, causing diapause to be averted in short-day

beetles that would normally enter diapause. In contrast, knock-
ing down the clock genes cycle or Clock causes the opposite
effect: beetles programmed by long days to avert diapause
enter a diapause-like state. In Cx. pipiens, knocking down the
negative circadian regulators period, timeless, and crypto-
chrome2 causes females reared under short-day conditions to
avert diapause, while knocking down pigment dispersing fac-
tor, a circadian-associated gene, causes the opposite effect,
resulting in the diapause phenotype (Fig. 5). Thus, at least for
some insect species, it is apparent that an intact and functional
circadian clock is essential for eliciting the diapause response.
This mechanism is the first critical step in sensing the status of
the seasonal environment by evaluating the length of the day
and, thereby, determining the correct time to prepare for an
overwintering diapause.

How to generate the diverse phenotype of diapause. The
next challenge is how to translate the seasonal information on
day length into the developmental program we recognize as
diapause. Diapause is a complex phenotype comprising traits
as diverse as seeking protected habitats, altering food prefer-
ences, accumulating fat reserves, halting development, sup-
pressing metabolism, enhancing stress responses, among oth-
ers. For example, in the mosquito Cx. pipiens, exposure to
short daylength causes the diapause-destined adult to avoid
blood feeding and instead to feed exclusively on nectar
sources, seek protection in caves or other buffered under-
ground sites, accumulate huge fat reserves, halt ovarian devel-
opment, turn on immune response genes, and genes encoding
antioxidants, and extend their life span by 9–10 mo, while
those reared under long daylength readily seek blood meals
from avian hosts, quickly convert those protein-rich meals into
eggs, remain active, and then die shortly after laying their eggs,
and show a distinctly different profile of gene expression.

Fig. 5. Knock-down experiments targeting the clock genes shown in this figure
suggest that suppression of period (per), timeless (tim), or cryptochrome2
(cry2) leads to elevation of pigment dispersing factor (pdf) and, consequently,
the nondiapause phenotype in the mosquito Culex pipiens. By contrast,
knocking down pdf in females reared under long daylengths generates the
diapause phenotype. These observations suggest that per, tim, and cry2
transcripts are elevated under short-day, diapause-inducing conditions and that
pdf is elevated under long day, diapause-averting conditions. Two additional
clock elements shown here, clock (clk) and cycle (cyc), remain to be tested.
[Based on results discussed in Refs. 129 and 130].
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Like other cases of adult diapause (44), the diapause of Cx.
pipiens is prompted by a failure of the corpus allatum to
produce juvenile hormone (JH) (158, 176), and this shut-down
of the corpus allatum is, at least in part, the consequence of a
failure of the brain to synthesize and release allatotropin (95),
a neuropeptide that stimulates the corpus allatum to synthesize
JH. More recently, this shutdown in ovarian development
during diapause was also linked to a shutdown in insulin
signaling (IS). Both the IS and JH signaling pathways (Fig. 6)
contribute to regulation of the transcription factor, FoxO (170,
171). FoxO, in turn, regulates a diverse network of gene
pathways that can result in the many and diverse aspects of the
diapause program (173). In Cx. pipiens, at least 72 genes have
FoxO consensus binding sites, a collection of genes with
wide-ranging effects on metabolism, development, cell signal-
ing, transcription, translation, and stress responses. Many of
the FoxO targets can be linked to genes with functions that are
likely to be important for the success of diapause. Thus far,
genes identified and verified as being both FoxO-regulated and
upregulated during diapause are linked to overwintering stress
tolerance, pathways leading to energy storage and utilization,
lifespan extension, cell cycle, development regulation, and a
circadian clock gene. Through this single transcription factor it
is possible to generate a complex phenotype that has many of
the characteristics of diapause.

Certainly, this is not likely to be the only gene pathway to be
essential for the diapause phenotype, but the fact that activation
of FoxO can trigger numerous downstream genes with func-
tions critical for diapause suggests that it is a major conduit for
generating the diverse characteristics that define the diapause
syndrome (refer to Nematodes, Histone modifications, small
RNAs, microRNAs).

Unanswered questions. An ambitious, but hopefully attain-
able, goal for understanding diapause in insects and other
organisms is to be able to trace, in detail, the pathway from
perception of daylength to the execution of the diapause
program. At this time, we have fairly comprehensive insights
on several segments of this regulatory cascade: the clock
mechanism, the hormonal cues, and a downstream gene path-

way (FoxO) that can account for at least some of the diverse
manifestations of diapause. But, we are not yet able to link all
of these components, especially the clock and the downstream
enactment of the hormonal signaling pathways. (e.g., the clock
mechanism shown in Fig. 5 and the insulin signaling pathway
shown in Fig. 6). How is the environmental information stored
in the brain? Diapause is an anticipated response frequently
enacted long after the photoperiodic cues have been received.
The brain is the site of this storage (43), but how is such
information actually stored and then acted upon at a later time
during development? Links between the clock mechanism and
the downstream signaling pathways essential for diapause are
missing and critically needed.

Additional layers of diapause regulation are likely. The
environmental inputs (182) and hormonal signals (44) involved
in diapause termination are reasonably well understood, yet
physiological processes that capacitate the insect to terminate
diapause (i.e., the processes of diapause development) remain
poorly understood. Cross talk between the brain and fat body in
regulating diapause is a dimension only recently recognized
(200), and new discoveries in epigenetics (112, 160) portend
important revelations for further understanding the complexi-
ties of regulating diapause in insects and other animals as well.

Fish

Diversity of vertebrate diapause. Embryonic diapause is not
common among the vertebrates, but it is phylogenetically
widespread and has almost certainly evolved multiple times
(55, 89, 122). In mammals, diapause typically takes the form of
delayed implantation at the blastocyst stage (122). Some spe-
cies of reptiles may arrest development at up to three stages of
development: one during early preoviposition development, a
second (and most common) during late gastrulation, and per-
haps a third in a prehatching embryo (55). Shark diapause
occurs in early embryos at the blastodisc stage (190). Among
the teleosts, diapause has been reported in autumn-spawning
bitterling (98), and in the annual killifishes (197, 198). Mech-
anistic work on diapause in vertebrate lineages is far less
advanced compared with what is known for the invertebrate
lineages described above. For practical reasons, most of the
physiological and biochemical work on vertebrate diapause has
been conducted on embryos of annual killifishes, and thus the
rest of this section will focus on advances gained from these
studies.

Diapause in the annual killifishes is arguably the best known
and most studied among the examples of vertebrate diapause.
Arrest of development may occur at three possible stages of
development known as diapause I, II, and III (197, 198).
Diapause I may occur in pregastrula-stage embryos during a
phase of development unique to annual killifishes where the
embryonic blastomeres disperse over the yolk in an apparently
random fashion prior to reaggregating to form the embryonic
axis 4–8 days later (189, 196). Diapause II occurs about
midway through development in an embryo that possesses the
foundations of the central nervous system and special senses, a
functional tubular heart, and a near-full complement of somites
(146, 198). Diapause III occurs in the late prehatching embryo
in an essentially fully formed precocial larva that has con-
sumed the bulk of the yolk reserves (146, 198). Most studies of
diapause in annual killifishes have focused on bioenergetics of

Fig. 6. Model depicting a role for the insulin/FoxO signaling pathway in
diapause regulation of the mosquito Culex pipiens. A: in response to the long
daylengths of early summer, insulin signaling leads to juvenile hormone (JH)
synthesis and ovarian development and the concurrent suppression of the
transcription factor Foxo. B: in response to short daylengths of autumn, insulin
signaling is shut down, allowing the activation of FoxO, which, in turn, is
hypothesized to generate many features of the diapause phenotype. [Based on
results discussed in Refs. 170 and 172].
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the profound metabolic dormancy and impressive stress toler-
ance associated with diapause in this lineage (148, 150, 151).
Only recently have tools become available to address regula-
tion of diapause and stress tolerance at the molecular level.
Below, two aspects of some ongoing work are discussed in
which new insights are currently being made with respect to
the molecular biology of diapause in annual killifish. First, we
discuss a proposed model for the control of entrance into
diapause via maternal programming. Second, we address pos-
sible molecular mechanisms that support survival and normal
development in the face of potentially lethal or teratogenic
levels of environmental stress.

Maternal vs. embryonic control of entrance into diapause II.
Entrance into diapause II is an alternative developmental path-
way in annual killifishes that can be controlled by maternal
inputs during oogenesis (61, 145). However, the embryonic
incubation environment can alter this initial programming, and,
for example, a 5°C increase in incubation temperature can
force 100% of the embryos to bypass diapause II and develop
directly to diapause III (145). The molecular mechanisms that
control maternal influences on diapause II appear to be related
to the age of the female at the time of oviposition and not
environmental cues, and may be regulated by maternal steroid
hormone levels (152). How hormonal cues may alter gene
expression during oogenesis, and what exactly is packaged into
the oocytes are still open questions. However, evidence is
mounting that maternally packaged proteins and perhaps RNAs
may play key roles in the maternal regulation of entrance into
diapause. Recent evidence from comparative studies of closely
related species of killifish that differ in their production of
diapause II embryos suggest that microRNAs may play a
pivotal role in the regulation of diapause (152). However,
mechanistic studies have yet to be reported to support the
importance of these findings. On the basis of what we know
about the physiology of development and diapause in embryos
of the annual killifish, Austrofundulus limnaeus, the mecha-
nism for maternal control of entrance into diapause must have
the following characteristics: 1) it must be relatively stable in
the developing embryo for at least 10–12 days and through
many rounds of cell division, 2) zygotic signaling mechanisms
must be able to interact with and alter the initial programming,
and 3) the system must be responsive to light and temperature
experienced by the embryo. Although there are many conceiv-
able routes that would meet all of these requirements, we feel
that the maternal packaging of a diapause-specific mRNA is
the most likely route. RNAs are known to be specifically
packaged into developing oocytes of fish (143) and can be
stable for many days postfertilization. In this scenario, envi-
ronmental exposure during development could lead to produc-
tion of a specific microRNA to target and silence the expres-
sion of the maternally packaged mRNA, similar to the role that
mir-430s play in the maternal to zygotic transition in zebrafish
(62). This model (Fig. 7) readily allows for maternal provi-
sioning and embryonic alteration of the initial signal and is
currently under investigation in embryos of A. limnaeus (Rom-
ney AL and Podrabsky JE, personal observation). Interestingly,
a miR-430 microRNA has been reported to be underexpressed
in lineages that produce diapausing embryos, when diapausing
embryos are compared with a roughly equivalent stage in
nondiapausing embryos (45) (refer to Nematodes, Other rest-
ing stages; Crustaceans, Arrest of the cell cycle, transcription

and protein synthesis; for insects, see Perspectives and Signif-
icance). While this is an interesting observation that seems to
support the mechanism proposed above, there are issues with
the experimental design that prevent solid conclusions from
being drawn with respect to the role of miR-430 in regulating
diapause in annual killifish. First, it may be impossible to find
equivalent developmental stages to diapause for comparison in
lineages that do not produce diapausing embryos. Second, once
embryos enter diapause, the decision has already been made,
and thus, the role of a miR-430 in preventing diapause cannot
really be evaluated. Lastly, miR-430 family microRNAs are
diverse and have many developmental roles. Thus, while these
data support a role for miR-430 in the regulation of diapause in
annual killifish, further experiments within a species will be
needed to confirm such a role.

Tolerance of environmental stress. Embryonic diapause
serves two main ecological purposes. First, it synchronizes the
production of young with environmental conditions conducive
to survival and growth. Second, in free-living embryos, it often
serves to help individuals survive harsh environmental condi-
tions that are lethal or teratogenic to developing embryos. This
tolerance of environmental stress is often extreme and some-
times far exceeds conditions that the embryos must actually
face in their environment (84). As highlighted above, a great
deal of attention has been paid to the accumulation of stabi-
lizing agents during diapause, such as heat shock proteins and
other molecular chaperones, as well as small-molecule pro-
tectants, such as trehalose (36, 80, 101, 103, 114, 115, 125,
149, 183). These agents undoubtedly help protect and stabilize
the cellular macromolecules, membranes, and organelles in
dormant embryos. In addition, it appears that avoidance of
programmed cell death in response to potentially damaging

Fig. 7. A proposed model for the environmental alternation of maternally
programmed diapause in embryos of the annual killifish Austrofundulus
limnaeus. In this model, embryos are programmed to enter into diapause II
through the provisioning of specific maternal mRNA transcripts during oogen-
esis. In response to the correct environmental signals, such as increases in
incubation temperature or exposure to long-day photoperiods, the developing
embryo expresses specific miR-430 microRNAs that clear the maternal mR-
NAs and favor direct development. Preliminary data suggest overexpression of
miR-430 RNAs in embryos that bypass diapause II due to increased incubation
temperature (Romney AL and Podrabsky J, personal observation).
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stress is also of central importance to survival of dormant
embryos (81, 124, 127, 128, 188). However, relatively little
attention has been focused on maintenance of genome integrity
during embryonic diapause, and how DNA damage may affect
survival of dormant embryos. This is an important concept to
explore, especially considering that some believe accumulated
DNA damage may limit the life span of dormant anhydrobiotic
organisms, such as tardigrades (139), despite their ability to
withstand rather massive doses of UV radiation (2).

Recently, we have quantified the tolerance of developing
and diapausing embryos of A. limnaeus to DNA damage
caused by UV-C radiation. UV-C radiation induces the forma-
tion of cyclobutane pyrimidine dimers and 6-4 pyrimidine-
pyrimidone photoproducts (6-4) in DNA that can lead to cell
death or cell cycle arrest if not repaired (174, 201). Not
surprisingly, diapause II embryos have an extremely high
tolerance of UV radiation-induced DNA damage that is 16-fold
higher than other fish embryos (188). This tolerance is quite
impressive compared with other vertebrates and invertebrates,
including dauer larvae from a number of species of nematodes
(67). Unfortunately, comparable data for UV radiation toler-
ance of C. elegans dauer larvae do not appear to be available
in the literature. In contrast, diapausing embryos of Artemia
exhibit orders of magnitude higher tolerance of UV light due,
in large part, to UV shielding provided by the egg shell (180).
Survival of UV radiation in A. limnaeus embryos is not
supported by accumulation of compounds that shield the em-
bryos from damage, but rather from a high capacity for repair
of DNA lesions. If allowed to recover in full-spectrum white
light following UV-C irradiation, embryos can effectively and
efficiently repair the DNA damage within 48 h (188). How-
ever, if kept in the dark, the DNA lesions are not repaired,
suggesting an active role for photolyase-mediated DNA repair
in these embryos. While survival of diapause II embryos is
initially near 100%, even after excessively high doses of UV-C
(almost 5,000 J/m2), after 3 wk in the dark, more than 60% of
the embryos perished (Fig. 8; Ref. 188). These data support the
conclusion that DNA damage itself does not immediately lead
to cell death, but rather the loss of genome integrity eventually
leads to failures in gene expression or loss of critical regulatory
processes within the cell. Thus, the highly depressed rates of
gene expression observed in diapausing embryos (30, 147) and
withdrawal from the cell cycle in the G1 phase (38, 123) may
actually contribute to the excessive stress tolerance observed
during diapause simply because the DNA is not being actively
transcribed or replicated. Eventually, cell damage and death
would be caused by errors or interruptions in transcription due
to unrepaired DNA damage that impedes the transcriptional
machinery. Work in mammalian and yeast model systems
supports an intimate connection between DNA damage and
areas of active transcription playing a critical role in genome
stability and disease progression (1, 77). This model would
predict delayed mortality in developing embryos exposed to
lethal doses of ultraviolet light in the presence of transcrip-
tional inhibitors; these studies are the logical next step in
evaluating the role of transcription in mediating cell damage or
death due to DNA damage.

Another fascinating aspect of stress tolerance during dia-
pause in annual killifishes is the ability of the dispersed cell
phases of development to act as a buffer against irreparable

cellular damage or even cell death. Diapause I can occur during
the dispersed cell phases of development, a stage where the
embryonic blastomeres are randomly dispersed across the yolk
surface. Cell division and proliferation continue during the
dispersed cell phase, although cells spend a significant amount
of time migrating around the yolk mass (196). The tolerance of
these embryos to UV-C-induced DNA damage is higher than in
other teleost embryos, but not by a large margin (188). Despite
a lack of increased tolerance, UV-C radiation does not cause
abnormal development in embryos allowed to recover in the
light or the dark, even in embryos exposed to what are known
to be teratogenic levels of DNA damage in developing em-
bryos (Fig. 9). Instead, development is delayed for several
days, and surviving embryos develop normally. It is not clear
at this point whether the delayed development is due to a pause
in cell proliferation, as cells repair the damaged DNA, or if the
cells are lost and then replaced by cell proliferation. However,
there is no evidence for an increase in apoptotic cell death in
UV-irradiated embryos (188). Thus, while the tolerance to
DNA damage is not high during the dispersed cell phases,
mechanisms are in place to allow for normal development
despite major damage or cell loses. This ability of dispersed
cell phase embryos to incur significant DNA damage and yet
avoid abnormal development is unique, and to our knowledge,
it is the first example of a developmental stage that is able to
buffer against cellular damage or loss during development.
Molecular evidence suggests that pluripotency factors, such as
oct-4 are expressed in dispersed cells, while expression of
genes associated with gastrulation and formation of the em-
bryonic axis is delayed until after the cells reaggregate (189).
Thus, an extended period of pluripotency and delay of cellular
differentiation may be critical to the ability of dispersed cell
phase embryos to develop normally despite receiving poten-
tially teratogenic levels of DNA damage.

Fig. 8. Initial survival is high in diapause II embryos of Austrofundulus
limnaeus exposed to UV-C light at 254 nm and allowed to recover in the dark.
However, after several weeks, embryos begin to die, and even more embryos
die during postdiapause II development after diapause is experimentally
broken. Symbols are means � SE (n � 3) *Significantly different from control
levels (*P 	 0.05, ***P ;	 0.001). Wk � weeks of recovery in the dark. Final
� final survival of embryos that developed to diapause III 31 days after
diapause II was experimentally broken. [Modified from Wagner JT, Podrabsky
JE. “Extreme tolerance and developmental buffering of UV-C-induced DNA
damage in embryos of the annual killifish Austrofundulus limnaeus.”J Exp
Zool A Ecol Genet Physiol 323A: 10–30, 2015; Published by John Wiley and
Sons; Ref. 188].
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Perspectives and Significance

A comprehensive picture of diapause that couples environ-
mental cues to signal transduction and then to the molecular
and physiological characteristics of the diapause phenotype is
still incomplete. However, new findings for clock genes in
insects and their importance in the photoperiodic response that
cues diapause are helping to fill gaps. Because of the range of
developmental stages across which diapause is expressed and
the multiple times the phenotype has evolved across phyla, it is
clear that a single suite of mechanisms will not apply to all
cases. That is not to say overlapping themes are absent—
notably, chromatin/histone modifications in brine shrimp em-
bryos and nematodes, reliance on insulin/FoxO signaling for
regulation of gene pathways in C. elegans and insects, and cell
cycle arrest by cyclin-dependent kinases in some insect species
and embryos of the brine shrimp. As with diapause entry, a
clear explanation of how diapause is terminated is also incom-
plete. In crustaceans, it is challenging to conceive of a unifying
mechanism that would explain the action of diverse effectors
that break diapause like desiccation, cold exposure, oxidants,
high CO2 or NH4Cl. What is it that these agents have in
common? Is each disrupting a key macromolecular interaction
that initiates a series of physiological signaling events? For
example, knockdown of the small heat shock protein p26 in

Artemia embryos has demonstrated the importance of this
protein in maintaining the diapause state until appropriate cues
are received by cysts; in the absence of p26, spontaneous
termination of diapause occurs simply after prolonged incuba-
tion in seawater (100). As speculated by these authors (100),
p26 might bind proteins critical to the maintenance of dia-
pause, or perhaps sequester a signaling protein(s) important for
diapause termination. This fundamentally important issue re-
mains an open question.

Preserving the biological integrity of proteins in diapausing
animals during long stretches of energy limitation—when
protein synthesis required for replacement of macromolecules
has been downregulated to conserve energy—is critical for
recovery after diapause termination, as are mechanisms for
DNA protection and repair. The extensive types of chaperone-
like proteins expressed during diapause are major contributors
to tolerance to environmental stress during diapause, but more
work is needed to clarify the range of their functions and why
so many families and isoforms are apparently required (28, 84,
101). Similarly, additional insights about molecular safeguards
against unwanted cell death during diapause would be a pro-
ductive avenue to explore further (81, 124, 126). The dispersed
cell stage in embryos of the killifish A. limnaeus may provide
new insights here (188).

As we enter the exciting new world of microRNAs and other
small RNAs, it is also likely that new levels of diapause control
will emerge. Several papers already hint at epigenetic contri-
butions to diapause regulation in insects (112, 160), and evi-
dence of cell cycle regulation during diapause by microRNAs
has appeared for A. franciscana (205). Similar hints are ap-
pearing that microRNAs may play a role in regulation of
diapause in killifish (45). MicroRNA-mediated regulatory
pathways revealed with heterochronic mutants of C. elegans
are being shown to impact both continuous and interrupted
larval development (163). Multiple examples of histone mod-
ifications have been reported in C. elegans and two species of
Artemia. It is also likely that there will be a convergence
between molecular mechanisms of diapause and mechanisms
of lifespan extension. Diapause is, after all, an impressive form
of chronological lifespan extension that can extend the duration
of an insect’s life 10-fold or more. Are common elements
shared by diapause and lifespan extension? The building of
data sets on these two traits will be instructive in the search for
common molecular themes.
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Fig. 9. Survival (top) and proportion of abnormal embryos (bottom) of
Austrofundulus limnaeus following exposure to UV-C radiation at 254 nm.
Embryos were exposed during the dispersed cell phase (4 dpf) or after
formation of the embryonic axis (10 dpf) and allowed to recover in the light or
dark. Note the lack of abnormal embryos at 4 dpf, even at levels of irradiation
that cause significant teratogenic effects in 10 dpf embryos. [Modified from
Wagner JT, Podrabsky JE. “Extreme tolerance and developmental buffering of
UV-C-induced DNA damage in embryos of the annual killifish Austrofundulus
limnaeus.”J Exp Zool A Ecol Genet Physiol 323A: 10–30, 2015; Published by
John Wiley and Sons; Ref. 188].
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