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For Stanley, who asked me to write it.



If you want to build a ship, don’t drum up people to collect wood and don’t assign them tasks
and work, but rather teach them to long for the endless immensity of the sea.

 
—ANTOINE DE SAINT EXUPÉRY



Foreword

IN LATE 2007, AN AUDIENCE MEMBER AT A TALK I gave handed me
a 25-page typewritten document called A Mathematician’s Lament, saying
he thought I might like it. Written by a mathematics teacher called Paul
Lockhart, the essay had been circling somewhat erratically through the
mathematics education community since its author first wrote it in 2002, but
it had never been published. The audience member’s prediction turned out
to be an understatement. I loved it, and felt that the words of this Paul
Lockhart—whoever he was—deserved a much wider audience. And so I
did something I have never done before, and probably never will again:
after tracking down the essay’s author—not entirely straightforward since
the essay bore no contact information—and securing his permission, I
devoted an entire issue of my monthly online column “Devlin’s Angle” on
the Mathematical Association of America’s web-zine MAA Online
(www.maa.org) to reproducing the entire essay in its original form. It was
the quickest and most effective way I knew to get it in front of the
mathematics and mathematics education communities.

When A Mathematician’s Lament appeared in my March 2008 column, I
introduced it with these words:

It is, quite frankly, one of the best critiques of current K-12 mathematics
education I have ever seen.

I was expecting a strong response. What ensued was a firestorm. Paul’s
words struck a very, very loud chord that resonated around the world. In
addition to many emails expressing appreciation, requests flooded in—
many to me, since by agreement I did not publish Paul’s contact
information—for reproduction and translation rights. (The volume you have
in your hands arose in precisely this way.)

It wasn’t that Paul was saying something that countless mathematicians
and math teachers have not said before. Nor were the points he raised new
to those in the sometimes divided world of mathematics education who
wrote to disagree with much if not all of what he wrote. What was different
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was the eloquence of his words and the obvious passion he injected into
them. This was not just good writing; this was great writing, coming right
from the heart.

Make no mistake about it, A Mathematician’s Lament, and this greatly
expanded book version, is an opinion piece. Paul has strong views on how
mathematics should be taught, and he argues forcefully for his approach,
and against much of the status quo in today’s world of school mathematics
education. What singles him out, besides his personal and captivating
writing style, is that he brings to the thorny and much-debated issues of
mathematics education a perspective that few others are able to draw upon.
Paul is one of those very rare birds who began as an accomplished
professional research mathematician, teaching students in universities, and
then realized his true calling was in K-12 teaching, which is the career he
has followed for many years now.

In my view, this book, like the original essay it came from, should be
obligatory reading for anyone going into mathematics education, for every
parent of a school-aged child, and for any school or government official
with responsibilities toward mathematics teaching. You may not agree with
everything Paul says. You may think his approach to teaching is not one
that every teacher could successfully adopt. But you should read what he
says and reflect on his words. A Mathematician’s Lament is already a
recognized landmark in the world of mathematics education that cannot and
should not be ignored. I am not going to tell you how I think you should
respond. As Paul himself would agree, that is for every individual reader to
do. But I will tell you this. I would have loved to have had Paul Lockhart as
my school mathematics teacher.

KEITH DEVLIN
Stanford University



PART I

Lamentation

A MUSICIAN WAKES FROM A TERRIBLE NIGHTMARE. In his dream
he finds himself in a society where music education has been made
mandatory. “We are helping our students become more competitive in an
increasingly sound-filled world.” Educators, school systems, and the state
are put in charge of this vital project. Studies are commissioned, committees
are formed, and decisions are made—all without the advice or participation
of a single working musician or composer.



Since musicians are known to set down their ideas in the form of sheet
music, these curious black dots and lines must constitute the “language of
music.” It is imperative that students become fluent in this language if they
are to attain any degree of musical competence; indeed, it would be
ludicrous to expect a child to sing a song or play an instrument without
having a thorough grounding in music notation and theory. Playing and
listening to music, let alone composing an original piece, are considered
very advanced topics and are generally put off until college, and more often
graduate school.

As for the primary and secondary schools, their mission is to train
students to use this language—to jiggle symbols around according to a
fixed set of rules: “Music class is where we take out our staff paper, our
teacher puts some notes on the board, and we copy them or transpose them
into a different key. We have to make sure to get the clefs and key
signatures right, and our teacher is very picky about making sure we fill in
our quarter-notes completely. One time we had a chromatic scale problem
and I did it right, but the teacher gave me no credit because I had the stems
pointing the wrong way.”

In their wisdom, educators soon realize that even very young children can
be given this kind of musical instruction. In fact it is considered quite
shameful if one’s third-grader hasn’t completely memorized his circle of
fifths. “I’ll have to get my son a music tutor. He simply won’t apply himself
to his music homework. He says it’s boring. He just sits there staring out the
window, humming tunes to himself and making up silly songs.”

In the higher grades the pressure is really on. After all, the students must
be prepared for the standardized tests and college admissions exams.
Students must take courses in scales and modes, meter, harmony, and
counterpoint. “It’s a lot for them to learn, but later in college when they
finally get to hear all this stuff, they’ll really appreciate all the work they
did in high school.” Of course, not many students actually go on to
concentrate in music, so only a few will ever get to hear the sounds that the
black dots represent. Nevertheless, it is important that every member of
society be able to recognize a modulation or a fugal passage, regardless of
the fact that they will never hear one. “To tell you the truth, most students
just aren’t very good at music. They are bored in class, their skills are
terrible, and their homework is barely legible. Most of them couldn’t care



less about how important music is in today’s world; they just want to take
the minimum number of music courses and be done with it. I guess there
are just music people and non-music people. I had this one kid, though, man
was she sensational! Her sheets were impeccable—every note in the right
place, perfect calligraphy, sharps, flats, just beautiful. She’s going to make
one hell of a musician someday.”

 
Waking up in a cold sweat, the musician realizes, gratefully, that it was

all just a crazy dream. “Of course,” he reassures himself, “no society would
ever reduce such a beautiful and meaningful art form to something so
mindless and trivial; no culture could be so cruel to its children as to
deprive them of such a natural, satisfying means of human expression. How
absurd!”

Meanwhile, on the other side of town, a painter has just awakened from a
similar nightmare . . .

 
. . . I was surprised to find myself in a regular school classroom—no

easels, no tubes of paint. “Oh we don’t actually apply paint until high
school,” I was told by the students. “In seventh grade we mostly study
colors and applicators.” They showed me a worksheet. On one side were
swatches of color with blank spaces next to them. They were told to write in
the names. “I like painting,” one of the students remarked. “They tell me
what to do and I do it. It’s easy!”

After class I spoke with the teacher. “So your students don’t actually do
any painting?” I asked. “Well, next year they take Pre-Paint-by-Numbers,”
the teacher replied. “That prepares them for the main Paint-by-Numbers
sequence in high school. So they’ll get to use what they’ve learned here and
apply it to real-life painting situations—dipping the brush into paint, wiping
it off, stuff like that. Of course we track our students by ability. The really
excellent painters—the ones who know their colors and brushes backwards
and forwards—they get to the actual painting a little sooner, and some of
them even take the Advanced Placement classes for college credit. But
mostly we’re just trying to give these kids a good foundation in what



painting is all about, so when they get out there in the real world and paint
their kitchen they don’t make a total mess of it.”

“Um, these high school classes you mentioned . . .”

“You mean Paint-by-Numbers? We’re seeing much higher enrollments
lately. I think it’s mostly coming from parents wanting to make sure their
kid gets into a good college. Nothing looks better than Advanced Paint-by-
Numbers on a high school transcript.”

“Why do colleges care if you can fill in numbered regions with the
corresponding color?”

“Oh, well, you know, it shows clear-headed logical thinking. And of
course if a student is planning to major in one of the visual sciences, like
fashion or interior decorating, then it’s really a good idea to get your
painting requirements out of the way in high school.”

“I see. And when do students get to paint freely, on a blank canvas?”

“You sound like one of my professors! They were always going on about
expressing yourself and your feelings and things like that—really way-out-
there abstract stuff. I’ve got a degree in painting myself, but I’ve never
really worked much with blank canvasses. I just use the Paint-by-Numbers
kits supplied by the school board.”

Sadly, our present system of mathematics education is precisely this kind
of nightmare. In fact, if I had to design a mechanism for the express purpose
of destroying a child’s natural curiosity and love of pattern-making, I
couldn’t possibly do as good a job as is currently being done—I simply
wouldn’t have the imagination to come up with the kind of senseless, soul-
crushing ideas that constitute contemporary mathematics education.

Everyone knows that something is wrong. The politicians say, “We need
higher standards.” The schools say, “We need more money and equipment.”
Educators say one thing, and teachers say another. They are all wrong. The
only people who understand what is going on are the ones most often



blamed and least often heard: the students. They say, “Math class is stupid
and boring,” and they are right.



Mathematics and Culture

THE FIRST THING TO UNDERSTAND IS THAT MATHEMATICS is an
art. The difference between math and the other arts, such as music and
painting, is that our culture does not recognize it as such. Everyone
understands that poets, painters, and musicians create works of art, and are
expressing themselves in word, image, and sound. In fact, our society is
rather generous when it comes to creative expression; architects, chefs, and
even television directors are considered to be working artists. So why not
mathematicians?

Part of the problem is that nobody has the faintest idea what it is that
mathematicians do. The common perception seems to be that
mathematicians are somehow connected with science—perhaps they help
the scientists with their formulas, or feed big numbers into computers for
some reason or other. There is no question that if the world had to be
divided into the “poetic dreamers” and the “rational thinkers” most people
would place mathematicians in the latter category.

Nevertheless, the fact is that there is nothing as dreamy and poetic,
nothing as radical, subversive, and psychedelic, as mathematics. It is every
bit as mind-blowing as cosmology or physics (mathematicians conceived of
black holes long before astronomers actually found any), and allows more
freedom of expression than poetry, art, or music (which depend heavily on
properties of the physical universe). Mathematics is the purest of the arts, as
well as the most misunderstood.

So let me try to explain what mathematics is, and what mathematicians
do. I can hardly do better than to begin with G. H. Hardy’s excellent
description:

A mathematician, like a painter or poet, is a maker of patterns. If his
patterns are more permanent than theirs, it is because they are made with
ideas.

So mathematicians sit around making patterns of ideas. What sort of
patterns? What sort of ideas? Ideas about the rhinoceros? No, those we



leave to the biologists. Ideas about language and culture? No, not usually.
These things are all far too complicated for most mathematicians’ taste. If
there is anything like a unifying aesthetic principle in mathematics, it is
this: simple is beautiful. Mathematicians enjoy thinking about the simplest
possible things, and the simplest possible things are imaginary.

For example, if I’m in the mood to think about shapes—and I often am—
I might imagine a triangle inside a rectangular box:

I wonder how much of the box the triangle takes up—two-thirds maybe?
The important thing to understand is that I’m not talking about this drawing
of a triangle in a box. Nor am I talking about some metal triangle forming
part of a girder system for a bridge. There’s no ulterior practical purpose
here. I’m just playing. That’s what math is—wondering, playing, amusing
yourself with your imagination. For one thing, the question of how much of
the box the triangle takes up doesn’t even make any sense for real, physical
objects. Even the most carefully made physical triangle is still a hopelessly
complicated collection of jiggling atoms; it changes its size from one
minute to the next. That is, unless you want to talk about some sort of
approximate measurements. Well, that’s where the aesthetic comes in.
That’s just not simple, and consequently it is an ugly question that depends
on all sorts of real-world details. Let’s leave that to the scientists. The
mathematical question is about an imaginary triangle inside an imaginary
box. The edges are perfect because I want them to be—that is the sort of
object I prefer to think about. This is a major theme in mathematics: things
are what you want them to be. You have endless choices; there is no reality
to get in your way.

On the other hand, once you have made your choices (for example I
might choose to make my triangle symmetrical, or not) then your new
creations do what they do, whether you like it or not. This is the amazing



thing about making imaginary patterns: they talk back! The triangle takes
up a certain amount of its box, and I don’t have any control over what that
amount is. There is a number out there, maybe it’s two-thirds, maybe it
isn’t, but I don’t get to say what it is. I have to find out what it is.

So we get to play and imagine whatever we want and make patterns and
ask questions about them. But how do we answer these questions? It’s not at
all like science. There’s no experiment I can do with test tubes and
equipment and whatnot that will tell me the truth about a figment of my
imagination. The only way to get at the truth about our imaginations is to
use our imaginations, and that is hard work.

In the case of the triangle in its box, I do see something simple and
pretty:

If I chop the rectangle into two pieces like this, I can see that each piece
is cut diagonally in half by the sides of the triangle. So there is just as much
space inside the triangle as outside. That means that the triangle must take
up exactly half the box!

This is what a piece of mathematics looks and feels like. That little
narrative is an example of the mathematician’s art: asking simple and
elegant questions about our imaginary creations, and crafting satisfying and
beautiful explanations. There is really nothing else quite like this realm of
pure idea; it’s fascinating, it’s fun, and it’s free!

Now where did this idea of mine come from? How did I know to draw
that line? How does a painter know where to put his brush? Inspiration,
experience, trial and error, dumb luck. That’s the art of it, creating these
beautiful little poems of thought, these sonnets of pure reason. There is
something so wonderfully transformational about this art form. The
relationship between the triangle and the rectangle was a mystery, and then



that one little line made it obvious. I couldn’t see, and then all of a sudden I
could. Somehow, I was able to create a profound simple beauty out of
nothing, and change myself in the process. Isn’t that what art is all about?

 
This is why it is so heartbreaking to see what is being done to

mathematics in school. This rich and fascinating adventure of the
imagination has been reduced to a sterile set of facts to be memorized and
procedures to be followed. In place of a simple and natural question about
shapes, and a creative and rewarding process of invention and discovery,
students are treated to this:

Triangle Area Formula: A = ½ b h

“The area of a triangle is equal to one-half its base times its height.”
Students are asked to memorize this formula and then “apply” it over and
over in the “exercises.” Gone is the thrill, the joy, even the pain and
frustration of the creative act. There is not even a problem anymore. The
question has been asked and answered at the same time—there is nothing
left for the student to do.

Now let me be clear about what I’m objecting to. It’s not about formulas,
or memorizing interesting facts. That’s fine in context, and has its place just
as learning a vocabulary does—it helps you to create richer, more nuanced
works of art. But it’s not the fact that triangles take up half their box that
matters. What matters is the beautiful idea of chopping it with the line, and
how that might inspire other beautiful ideas and lead to creative
breakthroughs in other problems—something a mere statement of fact can
never give you.

By removing the creative process and leaving only the results of that
process, you virtually guarantee that no one will have any real engagement
with the subject. It is like saying that Michelangelo created a beautiful



sculpture, without letting me see it. How am I supposed to be inspired by
that? (And of course it’s actually much worse than this—at least it’s
understood that there is an art of sculpture that I am being prevented from
appreciating).

By concentrating on what, and leaving out why, mathematics is reduced
to an empty shell. The art is not in the “truth” but in the explanation, the
argument. It is the argument itself that gives the truth its context, and
determines what is really being said and meant. Mathematics is the art of
explanation. If you deny students the opportunity to engage in this activity
—to pose their own problems, to make their own conjectures and
discoveries, to be wrong, to be creatively frustrated, to have an inspiration,
and to cobble together their own explanations and proofs—you deny them
mathematics itself. So no, I’m not complaining about the presence of facts
and formulas in our mathematics classes, I’m complaining about the lack of
mathematics in our mathematics classes.

 
If your art teacher were to tell you that painting is all about filling in
numbered regions, you would know that something was wrong. The culture
informs you —there are museums and galleries, as well as the art in your
own home. Painting is well understood by society as a medium of human
expression. Likewise, if your science teacher tried to convince you that
astronomy is about predicting a person’s future based on their date of birth,
you would know she was crazy—science has seeped into the culture to such
an extent that almost everyone knows about atoms and galaxies and laws of
nature. But if your math teacher gives you the impression, either expressly
or by default, that mathematics is about formulas and definitions and
memorizing algorithms, who will set you straight?

The cultural problem is a self-perpetuating monster: students learn about
math from their teachers, and teachers learn about it from their teachers, so
this lack of understanding and appreciation for mathematics in our culture
replicates itself indefinitely. Worse, the perpetuation of this “pseudo-
mathematics,” this emphasis on the accurate yet mindless manipulation of
symbols, creates its own culture and its own set of values. Those who have
become adept at it derive a great deal of self-esteem from their success. The
last thing they want to hear is that math is really about raw creativity and



aesthetic sensitivity. Many a graduate student has come to grief when they
discover, after a decade of being told they were “good at math,” that in fact
they have no real mathematical talent and are just very good at following
directions. Math is not about following directions, it’s about making new
directions.

And I haven’t even mentioned the lack of mathematical criticism in
school. At no time are students let in on the secret that mathematics, like
any literature, is created by human beings for their own amusement; that
works of mathematics are subject to critical appraisal; that one can have and
develop mathematical taste. A piece of mathematics is like a poem, and we
can ask if it satisfies our aesthetic criteria: Is this argument sound? Does it
make sense? Is it simple and elegant? Does it get me closer to the heart of
the matter? Of course there’s no criticism going on in school—there’s no art
being done to criticize!

Why don’t we want our children to learn to do mathematics? Is it that we
don’t trust them, that we think it’s too hard? We seem to feel that they are
capable of making arguments and coming to their own conclusions about
Napoleon. Why not about triangles? I think it’s simply that we as a culture
don’t know what mathematics is. The impression we are given is of
something very cold and highly technical, that no one could possibly
understand—a self-fulfilling prophesy if there ever was one.

It would be bad enough if the culture were merely ignorant of
mathematics, but what is far worse is that people actually think they do
know what math is about—and are apparently under the gross
misconception that mathematics is somehow useful to society! This is
already a huge difference between mathematics and the other arts.
Mathematics is viewed by the culture as some sort of tool for science and
technology. Everyone knows that poetry and music are for pure enjoyment
and for uplifting and ennobling the human spirit (hence their virtual
elimination from the public school curriculum), but no, math is important.

SIMPLICIO: Are you really trying to claim that mathematics offers
no useful or practical applications to society?

 



SALVIATI: Of course not. I’m merely suggesting that just because
something happens to have practical consequences doesn’t mean
that’s what it is about. Music can lead armies into battle, but that’s
not why people write symphonies. Michelangelo decorated a ceiling,
but I’m sure he had loftier things on his mind.

 

SIMPLICIO: But don’t we need people to learn those useful
consequences of math? Don’t we need accountants and carpenters
and such?

 

SALVIATI: How many people actually use any of this “practical
math” they supposedly learn in school? Do you think carpenters are
out there using trigonometry? How many adults remember how to
divide fractions, or solve a quadratic equation? Obviously the
current practical training program isn’t working, and for good
reason: it is excruciatingly boring, and nobody ever uses it anyway.
So why do people think it’s so important? I don’t see how it’s doing
society any good to have its members walking around with vague
memories of algebraic formulas and geometric diagrams, and clear
memories of hating them. It might do some good, though, to show
them something beautiful and give them an opportunity to enjoy
being creative, flexible, open-minded thinkers—the kind of thing a
real mathematical education might provide.

SIMPLICIO: But people need to be able to balance their
checkbooks, don’t they?

 

SALVIATI: I’m sure most people use a calculator for everyday
arithmetic. And why not? It’s certainly easier and more reliable. But
my point is not just that the current system is so terribly bad, it’s that
what it’s missing is so wonderfully good! Mathematics should be
taught as art for art’s sake. These mundane “useful” aspects would
follow naturally as a trivial by-product. Beethoven could easily
write an advertising jingle, but his motivation for learning music
was to create something beautiful.



 

SIMPLICIO: But not everyone is cut out to be an artist. What about
the kids who aren’t “math people”? How would they fit into your
scheme?

 

SALVIATI: If everyone were exposed to mathematics in its natural
state, with all the challenging fun and surprises that that entails, I
think we would see a dramatic change both in the attitude of
students toward mathematics, and in our conception of what it
means to be good at math. We are losing so many potentially gifted
mathematicians—creative, intelligent people who rightly reject what
appears to be a meaningless and sterile subject. They are simply too
smart to waste their time on such piffle.

 

SIMPLICIO: But don’t you think that if math class were made more
like art class that a lot of kids just wouldn’t learn anything?

 

SALVIATI: They’re not learning anything now! Better to not have
math classes at all than to do what is currently being done. At least
some people might have a chance to discover something beautiful
on their own.

 

SIMPLICIO: So you would remove mathematics from the school
curriculum?

 

SALVIATI: The mathematics has already been removed! The only
question is what to do with the vapid, hollow shell that remains. Of
course I would prefer to replace it with an active and joyful
engagement with mathematical ideas.

 



SIMPLICIO: But how many math teachers know enough about their
subject to teach it that way?

 

SALVIATI: Very few. And that’s just the tip of the iceberg . . .



Mathematics in School

THERE IS SURELY NO MORE RELIABLE WAY TO KILL enthusiasm
and interest in a subject than to make it a mandatory part of the school
curriculum. Include it as a major component of standardized testing and you
virtually guarantee that the education establishment will suck the life out of
it. School boards do not understand what math is; neither do educators,
textbook authors, publishing companies, and, sadly, neither do most of our
math teachers. The scope of the problem is so enormous I hardly know
where to begin.

Let’s start with the “math reform” debacle. For many years there has
been a growing awareness that something is rotten in the state of
mathematics education. Studies have been commissioned, conferences
assembled, and countless committees of teachers, textbook publishers, and
educators (whatever they are) have been formed to “fix the problem.” Quite
apart from the self-serving interest paid to reform by the textbook industry
(which profits from any minute political fluctuation by offering up “new”
editions of their unreadable monstrosities), the entire reform movement has
always missed the point. The mathematics curriculum doesn’t need to be
reformed, it needs to be scrapped.

All this fussing and primping about which “topics” should be taught in
what order, or the use of this notation instead of that notation, or which
make and model of calculator to use, for god’s sake —it’s like rearranging
the deck chairs on the Titanic! Mathematics is the music of reason. To do
mathematics is to engage in an act of discovery and conjecture, intuition
and inspiration; to be in a state of confusion—not because it makes no sense
to you, but because you gave it sense and you still don’t understand what
your creation is up to; to have a breakthrough idea; to be frustrated as an
artist; to be awed and overwhelmed by an almost painful beauty; to be alive,
damn it. Remove this from mathematics and you can have all the
conferences you like; it won’t matter. Operate all you want, doctors: your
patient is already dead.



The saddest part of all this “reform” are the attempts to “make math
interesting” and “relevant to kids’ lives.” You don’t need to make math
interesting—it’s already more interesting than we can handle! And the glory
of it is its complete irrelevance to our lives. That’s why it’s so fun!

Attempts to present mathematics as relevant to daily life inevitably
appear forced and contrived: “You see, kids, if you know algebra then you
can figure out how old Maria is if we know that she is two years older than
twice her age seven years ago!” (As if anyone would ever have access to
that ridiculous kind of information, and not her age.) Algebra is not about
daily life, it’s about numbers and symmetry—and this is a valid pursuit in
and of itself:

Suppose I am given the sum and difference of two numbers. How can I
figure out what the numbers are themselves?

Here is a simple and elegant question, and it requires no effort to be made
appealing. The ancient Babylonians enjoyed working on such problems,
and so do our students. (And I hope you will enjoy thinking about it too!)
We don’t need to bend over backwards to give mathematics relevance. It
has relevance in the same way that any art does: that of being a meaningful
human experience.

In any case, do you really think kids even want something that is relevant
to their daily lives? You think something practical like compound interest is
going to get them excited? People enjoy fantasy, and that is just what
mathematics can provide—a relief from daily life, an anodyne to the
practical workaday world.

A similar problem occurs when teachers or textbooks succumb to
cutesiness. This is where, in an attempt to combat so-called “math anxiety”
(one of the panoply of diseases which are actually caused by school), math
is made to seem “friendly.” To help your students memorize formulas for
the area and circumference of a circle, for example, you might invent a
whole story about Mr. C, who drives around Mrs. A and tells her how nice
his two pies are (C = 2πr) and how her pies are square (A = πr2) or some
such nonsense. But what about the real story? The one about mankind’s
struggle with the problem of measuring curves; about Eudoxus and
Archimedes and the method of exhaustion; about the transcendence of pi?
Which is more interesting—measuring the rough dimensions of a circular



piece of graph paper, using a formula that someone handed you without
explanation (and made you memorize and practice over and over), or
hearing the story of one of the most beautiful, fascinating problems and one
of the most brilliant and powerful ideas in human history? We’re killing
people’s interest in circles for god’s sake!

Why aren’t we giving our students a chance to even hear about these
things, let alone giving them an opportunity to actually do some
mathematics, and to come up with their own ideas, opinions, and reactions?
What other subject is routinely taught without any mention of its history,
philosophy, thematic development, aesthetic criteria, and current status?
What other subject shuns its primary sources—beautiful works of art by
some of the most creative minds in history—in favor of third-rate textbook
bastardizations?

 
The main problem with school mathematics is that there are no problems.

Oh, I know what passes for problems in math classes, these insipid
“exercises.” “Here is a type of problem. Here is how to solve it. Yes it will
be on the test. Do exercises 1-35 odd for homework.” What a sad way to
learn mathematics: to be a trained chimpanzee.

But a problem, a genuine honest-to-goodness natural human question—
that’s another thing. How long is the diagonal of a cube? Do prime numbers
keep going on forever? Is infinity a number? How many ways can I
symmetrically tile a surface? The history of mathematics is the history of
mankind’s engagement with questions like these, not the mindless
regurgitation of formulas and algorithms (together with contrived exercises
designed to make use of them).

A good problem is something you don’t know how to solve. That’s what
makes it a good puzzle, and a good opportunity. A good problem does not
just sit there in isolation, but serves as a springboard to other interesting
questions. A triangle takes up half its box. What about a pyramid inside its
three-dimensional box? Can we handle this problem in a similar way?

I can understand the idea of training students to master certain techniques
—I do that too. But not as an end in itself. Technique in mathematics, as in
any art, should be learned in context. The great problems, their history, the



creative process—that is the proper setting. Give your students a good
problem, let them struggle and get frustrated. See what they come up with.
Wait until they are dying for an idea, then give them some technique. But
not too much.

So put away your lesson plans and your overhead projectors, your full-
color textbook abominations, your CD-ROMs and the whole rest of the
traveling circus freak show of contemporary education, and simply do
mathematics with your students! Art teachers don’t waste their time with
textbooks and rote training in specific techniques. They do what is natural
to their subject—they get the kids painting. They go around from easel to
easel, making suggestions and offering guidance:

STUDENT: I was thinking about our triangle problem, and I noticed
something. If the triangle is really slanted then it doesn’t take up half its
box! See, look:

TEACHER: Excellent observation! Our chopping argument assumes that
the tip of the triangle lies directly over the base. Now we need a new idea.

 

STUDENT: Should I try chopping it a different way?

 

TEACHER: Absolutely. Try all sorts of ideas. Let me know what you come
up with!

So how do we teach our students to do mathematics? By choosing engaging
and natural problems suitable to their tastes, personalities, and levels of
experience. By giving them time to make discoveries and formulate
conjectures. By helping them to refine their arguments and creating an
atmosphere of healthy and vibrant mathematical criticism. By being flexible



and open to sudden changes in direction to which their curiosity may lead.
In short, by having an honest intellectual relationship with our students and
our subject.

Of course what I’m suggesting is impossible for a number of reasons.
Even putting aside the fact that statewide curricula and standardized tests
virtually eliminate teacher autonomy, I doubt that most teachers even want
to have such an intense relationship with their students. It requires too much
vulnerability and too much responsibility—in short, it’s too much work!

It is far easier to be a passive conduit of some publisher’s “materials” and
to follow the shampoo-bottle instruction—lecture, test, repeat—than to
think deeply and thoughtfully about the meaning of one’s subject and how
best to convey that meaning directly and honestly to one’s students. We are
encouraged to forego the difficult task of making decisions based on our
individual wisdom and conscience, and to get with the program. It is simply
the path of least resistance:

TEXTBOOK PUBLISHERS : TEACHERS ::
a. pharmaceutical companies : doctors
b. record companies : disc jockeys
c. corporations : congressmen
d. all of the above

The trouble is that math, like painting or poetry, is hard creative work.
That makes it very difficult to teach. Mathematics is a slow, contemplative
process. It takes time to produce a work of art, and it takes a skilled teacher
to recognize one. Of course it’s easier to post a set of rules than to guide
aspiring young artists, and it’s easier to write a VCR manual than to write
an actual book with a point of view.

Mathematics is an art, and art should be taught by working artists, or if
not, at least by people who appreciate the art form and can recognize it
when they see it. It is not necessary that you learn music from a
professional composer, but would you want yourself or your child to be
taught by someone who doesn’t even play an instrument and has never
listened to a piece of music in their lives? Would you accept as an art
teacher someone who has never picked up a pencil or set foot in a museum?
Why is it that we accept math teachers who have never produced an original
piece of mathematics, know nothing of the history and philosophy of the



subject, nothing about recent developments, nothing in fact beyond what
they are expected to present to their unfortunate students? What kind of a
teacher is that? How can someone teach something that they themselves
don’t do? I can’t dance, and consequently I would never presume to think
that I could teach a dance class (I could try, but it wouldn’t be pretty). The
difference is I know I can’t dance. I don’t have anyone telling me I’m good
at dancing just because I know a bunch of dance words.

Now I’m not saying that math teachers need to be professional
mathematicians—far from it. But shouldn’t they at least understand what
mathematics is, be good at it, and enjoy doing it?

 
If teaching is reduced to mere data transmission, if there is no sharing of

excitement and wonder, if teachers themselves are passive recipients of
information and not creators of new ideas, what hope is there for their
students? If adding fractions is to the teacher an arbitrary set of rules, and
not the outcome of a creative process and the result of aesthetic choices and
desires, then of course it will feel that way to the poor students.

Teaching is not about information. It’s about having an honest intellectual
relationship with your students. It requires no method, no tools, and no
training. Just the ability to be real. And if you can’t be real, then you have
no right to inflict yourself upon innocent children.

In particular, you can’t teach teaching. Schools of education are a
complete crock. Oh, you can take classes in early childhood development
and whatnot, and you can be trained to use a blackboard “effectively” and
to prepare an organized lesson plan (which, by the way, insures that your
lesson will be planned, and therefore false), but you will never be a real
teacher if you are unwilling to be a real person. Teaching means openness
and honesty, an ability to share excitement, and a love of learning. Without
these, all the education degrees in the world won’t help you, and with them
they are completely unnecessary.

It’s perfectly simple. Students are not aliens. They respond to beauty and
pattern, and are naturally curious like anyone else. Just talk to them. And
more important, listen to them!



SIMPLICIO: All right, I understand that there is an art to
mathematics and that we are not doing a good job of exposing
people to it. But isn’t this a rather esoteric, highbrow sort of thing to
expect from our school system? We’re not trying to create
philosophers here, we just want people to have a reasonable
command of basic arithmetic so they can function in society.

 

SALVIATI: But that’s not true! School mathematics concerns itself
with many things that have nothing to do with the ability to get
along in society—algebra and trigonometry, for instance. These
studies are utterly irrelevant to daily life. I’m simply suggesting that
if we are going to include such things as part of most students’ basic
education, that we do it in an organic and natural way. Also, as I said
before, just because a subject happens to have some mundane
practical use does not mean that we have to make that use the focus
of our teaching and learning. It may be true that you have to be able
to read in order to fill out forms at the DMV, but that’s not why we
teach children to read. We teach them to read for the higher purpose
of allowing them access to beautiful and meaningful ideas. Not only
would it be cruel to teach reading in such a way—to force third-
graders to fill out purchase orders and tax forms—it wouldn’t work!
We learn things because they interest us now, not because they
might be useful later. But this is exactly what we are asking children
to do with math.

 

SIMPLICIO: But don’t we need third-graders to be able to do
arithmetic?

SALVIATI: Why? You want to train them to calculate 427 plus 389?
It’s just not a question that very many eight-year-olds are asking.
For that matter, most adults don’t fully understand decimal place-
value arithmetic, and you expect third-graders to have a clear
conception? Or do you not care if they understand it? It is simply
too early for that kind of technical training. Of course it can be done,
but I think it ultimately does more harm than good. Much better to
wait until their own natural curiosity about numbers kicks in.



 

SIMPLICIO: Then what should we do with young children in math
class?

 

SALVIATI: Play games! Teach them chess and Go, Hex and
backgammon, Sprouts and nim, whatever. Make up a game. Do
puzzles. Expose them to situations where deductive reasoning is
necessary. Don’t worry about notation and technique; help them to
become active and creative mathematical thinkers.

 

SIMPLICIO: It seems like we’d be taking an awful risk. What if we
de-emphasize arithmetic so much that our students end up not being
able to add and subtract?

 

SALVIATI: I think the far greater risk is that of creating schools
devoid of creative expression of any kind, where the function of the
students is to memorize dates, formulas, and vocabulary lists, and
then regurgitate them on standardized tests—“Preparing tomorrow’s
work-force today!”

 

SIMPLICIO: But surely there is some body of mathematical facts of
which an educated person should be cognizant.

 

SALVIATI: Yes, the most important of which is that mathematics is
an art form done by human beings for pleasure! All right, yes, it
would be nice if people knew a few basic things about numbers and
shapes, for instance. But this will never come from rote
memorization, drills, lectures, and exercises. You learn things by
doing them and you remember what matters to you. We have
millions of adults wandering around with “negative b plus or minus
the square root of b squared minus 4ac all over 2a” in their heads,
and absolutely no idea whatsoever what it means. And the reason is



that they were never given the chance to discover or invent such
things for themselves. They never had an engaging problem to think
about, to be frustrated by, and to create in them the desire for
technique or method. They were never told the history of mankind’s
relationship with numbers—no ancient Babylonian problem tablets,
no Rhind Papyrus, no Liber Abaci, no Ars Magna. More important,
no chance for them to even get curious about a question; it was
answered before they could ask it.

 

SIMPLICIO: But we don’t have time for every student to invent
mathematics for themselves! It took centuries for people to discover
the Pythagorean theorem. How can you expect the average child to
do it?

 

SALVIATI: I don’t. Let’s be clear about this. I’m complaining about
the complete absence of art and invention, history and philosophy,
context and perspective from the mathematics curriculum. That
doesn’t mean that notation, technique, and the development of a
knowledge base have no place. Of course they do. We should have
both. If I object to a pendulum being too far to one side, it doesn’t
mean I want it to be all the way on the other side. But the fact is,
people learn better when the product comes out of the process. A
real appreciation for poetry does not come from memorizing a
bunch of poems, it comes from writing your own.

 

SIMPLICIO: Yes, but before you can write your own poems you
need to learn the alphabet. The process has to begin somewhere.
You have to walk before you can run.

 

SALVIATI: No, you have to have something you want to run
toward. Children can write poems and stories as they learn to read
and write. A piece of writing by a six-year-old is a wonderful thing,
and the spelling and punctuation errors don’t make it less so. Even



very young children can invent songs, and they haven’t a clue what
key it is in or what type of meter they are using.

 

SIMPLICIO: But isn’t math different? Isn’t math a language of its
own, with all sorts of symbols that have to be learned before you can
use it?

SALVIATI: Not at all. Mathematics is not a language, it’s an
adventure. Do musicians speak another language simply because
they choose to abbreviate their ideas with little black dots? If so, it’s
no obstacle to the toddler and her song. Yes, a certain amount of
mathematical shorthand has evolved over the centuries, but it is in
no way essential. Most mathematics is done with a friend over a cup
of coffee, with a diagram scribbled on a napkin. Mathematics is and
always has been about ideas, and a valuable idea transcends the
symbols with which you choose to represent it. As Carl Friedrich
Gauss once remarked, “What we need are notions, not notations.”

 

SIMPLICIO: But isn’t one of the purposes of mathematics
education to help students think in a more precise and logical way,
and to develop their quantitative reasoning skills? Don’t all of these
definitions and formulas sharpen the minds of our students?

 

SALVIATI: No, they don’t. If anything, the current system has the
effect of dulling the mind. Mental acuity of any kind comes from
solving problems yourself, not from being told how to solve them.

 

SIMPLICIO: Fair enough. But what about those students who are
interested in pursuing a career in science or engineering? Don’t they
need the training that the traditional curriculum provides? Isn’t that
why we teach mathematics in school?

 



SALVIATI: How many students taking literature classes will one
day be writers? That is not why we teach literature, nor why
students take it. We teach to enlighten everyone, not to train only the
future professionals. In any case, the most valuable skill for a
scientist or engineer is being able to think creatively and
independently. The last thing anyone needs is to be trained.



The Mathematics Curriculum

THE TRULY PAINFUL THING ABOUT THE WAY MATHEMATICS is
taught in school is not just what is missing—the fact that there is no actual
math being done in our math classes—but what is there in its place: the
confused heap of destructive disinformation known as “the mathematics
curriculum.” It is time now to take a closer look at exactly what our
students are up against—what they are being exposed to in the name of
mathematics, and how they are being harmed in the process.

The most striking thing about this so-called mathematics curriculum is its
rigidity. This is especially true in the later grades. From school to school,
city to city, and state to state, the exact same things are being said and done
in the exact same way and in the exact same order. Far from being disturbed
and upset by this Orwellian state of affairs, most people have simply
accepted this standard model math curriculum as being synonymous with
math itself.

This is intimately connected to what I call the “ladder myth”—the idea
that mathematics can be arranged as a sequence of “subjects” each being in
some way more advanced, or “higher,” than the previous. The effect is to
make school mathematics into a race—some students are “ahead” of others,
and parents worry that their child is “falling behind.” And where exactly
does this race lead? What is waiting at the finish line? It’s a sad race to
nowhere. In the end you’ve been cheated out of a mathematical education,
and you don’t even know it.

Real mathematics doesn’t come in a can—there is no such thing as an
Algebra II idea. Problems lead you to where they take you. Art is not a
race. The ladder myth is a false image of the subject, and a teacher’s own
path through the standard curriculum reinforces this myth and prevents him
or her from seeing mathematics as an organic whole. As a result, we have a
math curriculum with no historical perspective or thematic coherence, a
fragmented collection of assorted topics and techniques, united only by the
ease with which they can be reduced to step-by-step procedures.



In place of discovery and exploration, we have rules and regulations. We
never hear a student saying, “I wanted to see if it could make any sense to
raise a number to a negative power, and I found that you get a really neat
pattern if you choose it to mean the reciprocal.” Instead we have teachers
and textbooks presenting the “negative exponent rule” as a fait accompli
with no mention of the aesthetics behind this choice, or even that it is a
choice.

In place of meaningful problems, which might lead to a synthesis of
diverse ideas, to uncharted territories of discussion and debate, and to a
feeling of thematic unity and harmony in mathematics, we have instead
joyless and redundant exercises, specific to the technique under discussion,
and so disconnected from each other and from mathematics as a whole that
neither the students nor their teacher have the foggiest idea how or why
such a thing might have come up in the first place.

In place of a natural problem context in which students can make
decisions about what they want their words to mean, and what notions they
wish to codify, they are instead subjected to an endless sequence of
unmotivated and a priori definitions. The curriculum is obsessed with
jargon and nomenclature, seemingly for no other purpose than to provide
teachers with something to test the students on. No mathematician in the
world would bother making these senseless distinctions: 2½ is a “mixed
number,” while is an “improper fraction.” They’re equal, for crying out
loud. They are the exact same numbers, and have the exact same properties.
Who uses such words outside of fourth grade?

Of course it is far easier to test someone’s knowledge of a pointless
definition than to inspire them to create something beautiful and to find
their own meaning. Even if we agree that a basic common vocabulary for
mathematics is valuable, this isn’t it. How sad that fifth-graders are taught
to say “quadrilateral” instead of “four-sided shape,” but are never given a
reason to use words like “conjecture” and “counterexample.” High school
students must learn to use the secant function, ‘sec x,’ as an abbreviation for
the reciprocal of the cosine function, ‘1 / cos x,’ a definition with as much
intellectual weight as the decision to use ‘&’ in place of “and.” That this
particular shorthand, a holdover from fifteenth-century nautical tables, is
still with us (whereas others, such as “versine,” have died out) is mere
historical accident, and is of utterly no value in an era when rapid and



precise shipboard computation is no longer an issue. Thus we clutter our
math classes with pointless nomenclature for its own sake.

In practice, the curriculum is not even so much a sequence of topics, or
ideas, as it is a sequence of notations. Apparently mathematics consists of a
secret list of mystical symbols and rules for their manipulation. Young
children are given ‘+’ and ‘÷.’ Only later can they be entrusted with ‘√,’ and
then ‘x’ and ‘y’ and the alchemy of parentheses. Finally, they are
indoctrinated in the use of ‘sin,’ ‘log,’ ‘f(x),’ and if they are deemed worthy,
‘d’ and ‘∫.’ All without having had a single meaningful mathematical
experience.

This program is so firmly fixed in place that teachers and textbook
authors can reliably predict, years in advance, exactly what students will be
doing, down to the very page of exercises. It is not at all uncommon to find
second-year algebra students being asked to calculate [ f(x + h) - f(x) ] / h
for various functions f, so that they will have “seen” this when they take
calculus a few years later. Naturally no motivation is given (nor expected)
for why such a seemingly random combination of operations would be of
interest, although I’m sure there are many teachers who try to explain what
such a thing might mean, and think they are doing their students a favor,
when in fact to them it is just one more boring math problem to be gotten
over with. “What do they want me to do? Oh, just plug it in? OK.”

Another example is the training of students to express information in an
unnecessarily complicated form, merely because at some distant future
period it will have meaning. Does any middle school algebra teacher have
the slightest clue why he is asking his students to rephrase “the number x
lies between three and seven” as |x - 5| < 2 ? Do these hopelessly inept
textbook authors really believe they are helping students by preparing them
for a possible day, years hence, when they might be operating within the
context of a higher-dimensional geometry or an abstract metric space? I
doubt it. I expect they are simply copying each other decade after decade,
maybe changing the fonts or the highlight colors, and beaming with pride
when a school system adopts their book and becomes their unwitting
accomplice.

 



Mathematics is about problems, and problems must be made the focus of
a student’s mathematical life. Painful and creatively frustrating as it may be,
students and their teachers should at all times be engaged in the process—
having ideas, not having ideas, discovering patterns, making conjectures,
constructing examples and counterexamples, devising arguments, and
critiquing each other’s work. Specific techniques and methods will arise
naturally out of this process, as they did historically: not isolated from, but
organically connected to, and an outgrowth of, their problem-background.

English teachers know that spelling and pronunciation are best learned in
a context of reading and writing. History teachers know that names and
dates are uninteresting when removed from the unfolding backstory of
events. Why does mathematics education remain stuck in the nineteenth
century? Compare your own experience of learning algebra with Bertrand
Russell’s recollection:

I was made to learn by heart: “The square of the sum of two numbers is
equal to the sum of their squares increased by twice their product.” I had
not the vaguest idea what this meant and when I could not remember the
words, my tutor threw the book at my head, which did not stimulate my
intellect in any way.

Are things really any different today?

SIMPLICIO: I don’t think that’s very fair. Surely teaching methods
have improved since then.

 

SALVIATI: You mean training methods. Teaching is a messy
human relationship; it does not require a method. Or rather I should
say, if you need a method you’re probably not a very good teacher.
If you don’t have enough of a feeling for your subject to be able to
talk about it in your own voice, in a natural and spontaneous way,
how well could you understand it? And speaking of being stuck in
the nineteenth century, isn’t it shocking how the curriculum itself is
stuck in the seventeenth? To think of all the amazing discoveries and
profound revolutions in mathematical thought that have occurred in
the last three centuries! There is no more mention of these than if
they had never happened.



 

SIMPLICIO: But aren’t you asking an awful lot from our math
teachers? You expect them to provide individual attention to dozens
of students, guiding them on their own paths toward discovery and
enlightenment, and to be up on recent mathematical history as well?

 

SALVIATI: Do you expect your art teacher to be able to give you
individualized, knowledgeable advice about your painting? Do you
expect her to know anything about the last three hundred years of art
history? But seriously, I don’t expect anything of the kind, I only
wish it were so.

 

SIMPLICIO: So you blame the math teachers?

 

SALVIATI: No, I blame the culture that produces them. The poor
devils are trying their best, and are only doing what they’ve been
trained to do. I’m sure most of them love their students and hate
what they are being forced to put them through. They know in their
hearts that it is meaningless and degrading. They can sense that they
have been made cogs in a great soul-crushing machine, but they lack
the perspective needed to understand it, or to fight against it. They
only know they have to get the students “ready for next year.”

SIMPLICIO: Do you really think that most students are capable of
operating on such a high level as to create their own mathematics?

 

SALVIATI: If we honestly believe that creative reasoning is too
“high” for our students, and that they can’t handle it, why do we
allow them to write history papers or essays about Shakespeare? The
problem is not that the students can’t handle it, it’s that none of the
teachers can. They’ve never proved anything themselves, so how
could they possibly advise a student? In any case, there would
obviously be a range of student interest and ability, as there is in any



subject, but at least students would like or dislike mathematics for
what it really is, and not for this perverse mockery of it.

 

SIMPLICIO: But surely we want all of our students to learn a basic
set of facts and skills. That’s what a curriculum is for, and that’s why
it is so uniform—there are certain timeless, cold, hard facts we need
our students to know: one plus one is two, and the angles of a
triangle add up to 180 degrees. These are not opinions, or mushy
artistic feelings.

 

SALVIATI: On the contrary. Mathematical structures, useful or not,
are invented and developed within a problem context and derive
their meaning from that context. Sometimes we want one plus one to
equal zero (as in so-called ‘mod 2’ arithmetic) and on the surface of
a sphere the angles of a triangle add up to more than 180 degrees.
There are no facts per se; everything is relative and relational. It is
the story that matters, not just the ending.

 

SIMPLICIO: I’m getting tired of all your mystical mumbo-jumbo!
Basic arithmetic, all right? Do you or do you not agree that students
should learn it?

 

SALVIATI: That depends on what you mean by “it.” If you mean
having an appreciation for the problems of counting and arranging,
the advantages of grouping and naming, the distinction between a
representation and the thing itself, and some idea of the historical
development of number systems, then yes, I do think our students
should be exposed to such things. If you mean the rote
memorization of arithmetic facts without any underlying conceptual
framework, then no. If you mean exploring the not-at-all obvious
fact that five groups of seven is the same as seven groups of five,
then yes. If you mean making a rule that 5 × 7 = 7 × 5, then no.
Doing mathematics should always mean discovering patterns and
crafting beautiful and meaningful explanations.



 

SIMPLICIO: What about geometry? Don’t students prove things
there? Isn’t high school geometry a perfect example of what you
want math classes to be?



High School Geometry: Instrument of the Devil

THERE IS NOTHING QUITE SO VEXING TO THE AUTHOR of a
scathing indictment as having the primary target of his venom offered up in
his support. And never was a wolf in sheep’s clothing as insidious, nor a
false friend as treacherous, as high school geometry. It is precisely because
it is school’s attempt to introduce students to the art of argument that makes
it so very dangerous.

Posing as the arena in which students will finally get to engage in true
mathematical reasoning, this virus attacks mathematics at its heart,
destroying the very essence of creative rational argument, poisoning the
students’ enjoyment of this fascinating and beautiful subject, and
permanently disabling them from thinking about math in a natural and
intuitive way.

The mechanism behind this is subtle and devious. The student-victim is
first stunned and paralyzed by an onslaught of pointless definitions,
propositions, and notations, and is then slowly and painstakingly weaned
away from any natural curiosity or intuition about shapes and their patterns
by a systematic indoctrination into the stilted language and artificial format
of so-called “formal geometric proof.”

All metaphor aside, geometry class is by far the most mentally and
emotionally destructive component of the entire K-12 mathematics
curriculum. Other math courses may hide the beautiful bird, or put it in a
cage, but in geometry class it is openly and cruelly tortured. (Apparently I
am incapable of putting all metaphor aside.)

What is happening is the systematic undermining of the student’s
intuition. A proof, that is, a mathematical argument, is a work of fiction, a
poem. Its goal is to satisfy. A beautiful proof should explain, and it should
explain clearly, deeply, and elegantly. A well-written, well-crafted argument
should feel like a splash of cool water, and be a beacon of light—it should
refresh the spirit and illuminate the mind. And it should be charming.



There is nothing charming about what passes for proof in geometry class.
Students are presented a rigid and dogmatic format in which their so-called
“proofs” are to be conducted—a format as unnecessary and inappropriate as
insisting that children who wish to plant a garden refer to their flowers by
genus and species.

 
Let’s look at some specific instances of this insanity. We’ll begin with the

example of two crossed lines:

Now the first thing that usually happens is the unnecessary muddying of
the waters with excessive notation. Apparently, one cannot simply speak of
two crossed lines; one must give elaborate names to them. And not simple
names like ‘line 1’ and ‘line 2,’ or even ‘a’ and ‘b.’ We must (according to
high school geometry) select random and irrelevant points on these lines,
and then refer to the lines using the special “line notation.”

You see, now we get to call them and . And god forbid you should
omit the little bars on top—‘AB’ refers to the length of the line  (at least I
think that’s how it works). Never mind how pointlessly complicated it is,
this is the way one must learn to do it. Now comes the actual statement,
usually referred to by some absurd name like:



 
PROPOSITION 2.1.1.

Let  and  intersect at P.

Then ∠APC ≅ ∠BPD.

In other words, the angles on both sides are the same. Well, duh! The
configuration of two crossed lines is symmetrical for crissake. And as if this
weren’t bad enough, this patently obvious statement about lines and angles
must then be “proved.”

 
Proof:

STATEMENT REASON

1, m∠APC + m∠APD 180 m∠BPD +
m∠APD = 180

1. Angle Addition
Postulate

2. m∠APC + m∠APD = m∠BPD +
m∠APD

2. Substitution Property

3. m∠APD = m∠APD 3. Reflexive Property of
Equality

4. m∠APC = m∠BPD 4. Subtraction Property of
Equality



5. ∠APC ≅ ∠BPD 5. Angle Measurement
Postulate

Instead of a witty and enjoyable argument written by an actual human
being, and conducted in one of the world’s many natural languages, we get
this sullen, soulless, bureaucratic form-letter of a proof. And what a
mountain being made of a molehill! Do we really want to suggest that a
straightforward observation like this requires such an extensive preamble?
Be honest: did you actually even read it? Of course not. Who would want
to?

The effect of such a production being made over something so simple is
to make people doubt their own intuition. Calling into question the obvious,
by insisting that it be “rigorously proved” (as if the above even constitutes a
legitimate formal proof), is to say to a student, “Your feelings and ideas are
suspect. You need to think and speak our way.”

Now there is a place for formal proof in mathematics, no question. But
that place is not a student’s first introduction to mathematical argument. At
least let people get familiar with some mathematical objects, and learn what
to expect from them, before you start formalizing everything. Rigorous
formal proof only becomes important when there is a crisis—when you
discover that your imaginary objects behave in a counterintuitive way;
when there is a paradox of some kind. But such excessive preventative
hygiene is completely unnecessary here—nobody’s gotten sick yet! Of
course if a logical crisis should arise at some point, then obviously it should
be investigated, and the argument made more clear, but that process can be
carried out intuitively and informally as well. In fact it is the soul of
mathematics to carry out such a dialogue with one’s own proof.

So not only are most kids utterly confused by this pedantry—nothing is
more mystifying than a proof of the obvious—but even those few whose
intuition remains intact must then retranslate their excellent, beautiful ideas
back into this absurd hieroglyphic framework in order for their teacher to
call it “correct.” The teacher then flatters himself that he is somehow
sharpening his students’ minds.

 



As a more serious example, let’s take the case of a triangle inside a
semicircle:

Now the beautiful truth about this pattern is that no matter where on the
circle you place the tip of the triangle, it always forms a nice right angle. (I
have no objection to a term like “right angle” if it is relevant to the problem
and makes it easier to discuss. It’s not terminology itself that I object to, it’s
pointless, unnecessary terminology. In any case, I would be happy to use
“corner” or even “pigpen” if a student preferred.)

Here is a case where our intuition is somewhat in doubt. It’s not at all
clear that this should be true; it even seems unlikely—shouldn’t the angle
change if I move the tip? What we have here is a fantastic math problem! Is
it true? If so, why is it true? What a great project! What a terrific
opportunity to exercise one’s ingenuity and imagination! Of course no such
opportunity is given to the students, whose curiosity and interest is
immediately deflated by:



 
THEOREM 9.5.

Let Δ ABC be inscribed in a semicircle

with diameter .

Then ∠ABC is a right angle.

Proof:

STATEMENT REASON

1. Draw radius OB. Then OB = OC
A

1. Given

2. m∠OBC = m∠BCA m∠OBA =
m∠BAC

2. Isosceles Triangle Theorem

3. m∠ABC = m∠OBA + m∠OBC 3. Angle Sum Postulate

4. m∠ABC + m∠BCA + m∠BAC
= 180

4. The sum of the angles of a
triangle is 180

5. m∠ABC + m∠OBC + m∠OBA
= 180

5. Substitution (line 2)

6. 2 m∠ABC = 180 6. Substitution (line 3)



7. m∠ABC 90 7. Division Property of Equality

8. ∠ABC is a right angle 8. Definition of Right Angle

Could anything be more unattractive and inelegant? Could any argument
be more obfuscatory and unreadable? This isn’t mathematics! A proof
should be an epiphany from the gods, not a coded message from the
Pentagon. This is what comes from a misplaced sense of logical rigor:
ugliness. The spirit of the argument has been buried under a heap of
confusing formalism.

No mathematician works this way. No mathematician has ever worked
this way. This is a complete and utter misunderstanding of the mathematical
enterprise. Mathematics is not about erecting barriers between ourselves
and our intuition, and making simple things complicated. Mathematics is
about removing obstacles to our intuition, and keeping simple things
simple.

Compare this unappetizing mess of a proof with the following argument
devised by one of my seventh-graders:

Take the triangle and rotate it around so it makes a four-sided box inside the
circle. Since the triangle got turned completely around, the sides of the box
must be parallel, so it makes a parallelogram. But it can’t be a slanted box
because both of its diagonals are diameters of the circle, so they’re equal,
which means it must be an actual rectangle. That’s why the corner is always
a right angle.



Isn’t that just delightful? And the point isn’t whether this argument is any
better than the other one as an idea, the point is that the idea comes across.
(As a matter of fact, the idea of the first proof is quite pretty, albeit seen as
through a glass, darkly.)

More important, the idea was the student’s own. The class had a nice
problem to work on, conjectures were made, proofs were attempted, and
this is what one student came up with. Of course it took several days, and
was the end result of a long sequence of failures.

To be fair, I did paraphrase the proof considerably. The original was quite
a bit more convoluted, and contained a lot of unnecessary verbiage (as well
as spelling and grammatical errors). But I think I got the feeling of it across.
And these defects were all to the good; they gave me something to do as a
teacher. I was able to point out several stylistic and logical problems, and
the student was then able to improve the argument. For instance, I wasn’t
completely happy with the bit about both diagonals being diameters—I
didn’t think that was entirely obvious—but that only meant there was more
to think about and more understanding to be gained from the situation. And
in fact the student was able to fill in this gap quite nicely:

Since the triangle got rotated halfway around the circle, the tip must end up
exactly opposite from where it started. That’s why the diagonal of the box is
a diameter.

So a great project and a beautiful piece of mathematics. I’m not sure who
was more proud, the student or myself. This is exactly the kind of
experience I want my students to have.



 
The problem with the standard geometry curriculum is that the private,

personal experience of being a struggling artist has virtually been
eliminated. The art of proof has been replaced by a rigid step-by-step
pattern of uninspired formal deductions. The textbook presents a set of
definitions, theorems, and proofs, the teacher copies them onto the
blackboard, and the students copy them into their notebooks. They are then
asked to mimic them in the exercises. Those that catch on to the pattern
quickly are the “good” students.

The result is that the student becomes a passive participant in the creative
act. Students are making statements to fit a preexisting proof-pattern, not
because they mean them. They are being trained to ape arguments, not to
intend them. So not only do they have no idea what their teacher is saying,
they have no idea what they themselves are saying.

Even the traditional way in which definitions are presented is a lie. In an
effort to create an illusion of clarity before embarking on the typical
cascade of propositions and theorems, a set of definitions is provided so that
statements and their proofs can be made as succinct as possible. On the
surface this seems fairly innocuous; why not make some abbreviations so
that things can be said more economically? The problem is that definitions
matter. They come from aesthetic decisions about what distinctions you as
an artist consider important. And they are problem generated . To make a
definition is to highlight and call attention to a feature or structural property.
Historically this comes out of working on a problem, not as a prelude to it.

The point is you don’t start with definitions, you start with problems.
Nobody ever had an idea of a number being “irrational” until Pythagoras
attempted to measure the diagonal of a square and discovered that it could
not be represented as a fraction. Definitions make sense when a point is
reached in your argument which makes the distinction necessary. To make
definitions without motivation is more likely to cause confusion.

This is yet another example of the way that students are shielded and
excluded from the mathematical process. Students need to be able to make
their own definitions as the need arises—to frame the debate themselves. I



don’t want students saying, “the definition, the theorem, the proof,” I want
them saying, “my definition, my theorem, my proof.”

All of these complaints aside, the real problem with this kind of
presentation is that it is boring. Efficiency and economy simply do not make
good pedagogy. I have a hard time believing that Euclid would approve of
this; I know Archimedes wouldn’t.

SIMPLICIO: Now hold on a minute. I don’t know about you, but I
actually enjoyed my high school geometry class. I liked the
structure, and I enjoyed working within the rigid proof format.

 

SALVIATI: I’m sure you did. You probably even got to work on
some nice problems occasionally. Lots of people enjoy geometry
class (although lots more hate it). But this is not a point in favor of
the current regime. Rather, it is powerful testimony to the allure of
mathematics itself. It’s hard to completely ruin something so
beautiful; even this faint shadow of mathematics can still be
engaging and satisfying. Many people enjoy paint-by-numbers as
well; it is a relaxing and colorful manual activity. That doesn’t make
it the real thing, though.

 

SIMPLICIO: But I’m telling you, I liked it.

 

SALVIATI: And if you had had a more natural mathematical
experience you would have liked it even more.

 

SIMPLICIO: So we’re supposed to just set off on some free-form
mathematical excursion, and the students will learn whatever they
happen to learn?

 

SALVIATI: Precisely. Problems will lead to other problems,
technique will be developed as it becomes necessary, and new topics



will arise naturally. And if some issue never happens to come up in
thirteen years of schooling, how interesting or important could it be?

 

SIMPLICIO: You’ve gone completely mad.

 

SALVIATI: Perhaps I have. But even working within the
conventional framework, a good teacher can guide the discussion
and the flow of problems so as to allow the students to discover and
invent mathematics for themselves. The real problem is that the
bureaucracy does not allow an individual teacher to do that. With a
set curriculum to follow, a teacher cannot lead. There should be no
standards, and no curriculum. Just individuals doing what they think
best for their students.

 

SIMPLICIO: But then how can schools guarantee that their students
will all have the same basic knowledge? How will we accurately
measure their relative worth?

 

SALVIATI: They can’t, and we won’t. Just like in real life.
Ultimately you have to face the fact that people are all different, and
that’s just fine. In any case, there’s no urgency. So a person
graduates from high school not knowing the half-angle formulas.
(As if they do now!) So what? At least that person would come
away with some sort of an idea of what the subject is really about,
and would get to see something beautiful.

To put the finishing touches on my critique of the standard curriculum, and
as a service to the community, I now present the first ever completely honest
course catalog for K-12 mathematics:



THE STANDARD SCHOOL MATHEMATICS
CURRICULUM

LOWER SCHOOL MATH. The indoctrination begins. Students learn that
mathematics is not something you do, but something that is done to you.
Emphasis is placed on sitting still, filling out worksheets, and following
directions. Children are expected to master a complex set of algorithms for
manipulating Hindu-Arabic symbols, unrelated to any real desire or
curiosity on their part, and regarded only a few centuries ago as too difficult
for the average adult. Multiplication tables are stressed, as are parents,
teachers, and the kids themselves.

 
MIDDLE SCHOOL MATH. Students are taught to view mathematics as a
set of procedures, akin to religious rites, which are eternal and set in stone.
The holy tablets, or Math Books, are handed out, and the students learn to
address the church elders as “they.” (As in “What do they want here? Do
they want me to divide?”) Contrived and artificial “word problems” will be
introduced in order to make the mindless drudgery of arithmetic seem
enjoyable by comparison. Students will be tested on a wide array of
unnecessary technical terms, such as ‘whole number’ and ‘proper fraction,’
without the slightest rationale for making such distinctions. Excellent
preparation for Algebra I.

 
ALGEBRA I. So as not to waste valuable time thinking about numbers and
their patterns, this course instead focuses on symbols and rules for their
manipulation. The smooth narrative thread that leads from ancient
Mesopotamian tablet problems to the high art of the Renaissance algebraists
is discarded in favor of a disturbingly fractured, postmodern retelling with
no characters, plot, or theme. The insistence that all numbers and
expressions be put into various standard forms will provide additional
confusion as to the meaning of identity and equality. Students must also
memorize the quadratic formula for some reason.



GEOMETRY. Isolated from the rest of the curriculum, this course will
raise the hopes of students who wish to engage in meaningful mathematical
activity, and then dash them. Clumsy and distracting notation will be
introduced, and no pains will be spared to make the simple seem
complicated. The goal of this course is to eradicate any last remaining
vestiges of natural mathematical intuition, in preparation for Algebra II.

 
ALGEBRA II. The subject of this course is the unmotivated and
inappropriate use of coordinate geometry. Conic sections are introduced in a
coordinate framework so as to avoid the aesthetic simplicity of cones and
their sections. Students will learn to rewrite quadratic forms in a variety of
standard formats for no reason whatsoever. Exponential and logarithmic
functions are also introduced in Algebra II, despite not being algebraic
objects, simply because they have to be stuck in somewhere, apparently.
The name of the course is chosen to reinforce the ladder mythology. Why
Geometry occurs in between Algebra I and its sequel remains a mystery.

 
TRIGONOMETRY. Two weeks of content are stretched to semester
length by masturbatory definitional runarounds. Truly interesting and
beautiful phenomena, such as the way the sides of a triangle depend on its
angles, will be given the same emphasis as irrelevant abbreviations and
obsolete notational conventions, in order to prevent students from forming
any clear idea as to what the subject is about. Students will learn such
mnemonic devices as “SohCahToa” and “All Students Take Calculus” in
lieu of developing a natural intuitive feeling for orientation and symmetry.
The measurement of triangles will be discussed without mention of the
transcendental nature of the trigonometric functions, or the consequent
linguistic and philosophical problems inherent in making such
measurements. Calculator required, so as to further blur these issues.

 
PRE-CALCULUS. A senseless bouillabaisse of disconnected topics.
Mostly a half-baked attempt to introduce late-nineteenth-century analytic
methods into settings where they are neither necessary nor helpful.



Technical definitions of limits and continuity are presented in order to
obscure the intuitively clear notion of smooth change. As the name
suggests, this course prepares the student for Calculus, where the final
phase in the systematic obfuscation of any natural ideas related to shape and
motion will be completed.

 
CALCULUS. This course will explore the mathematics of motion, and the
best ways to bury it under a mountain of unnecessary formalism. Despite
being an introduction to both the differential and integral calculus, the
simple and profound ideas of Newton and Leibniz will be discarded in favor
of the more sophisticated function-based approach developed as a response
to various analytic crises that do not really apply in this setting, and that
will of course not be mentioned. To be taken again in college, verbatim.

And there you have it. A complete prescription for permanently disabling
young minds—a proven cure for curiosity. What have they done to
mathematics!

There is such breathtaking depth and heartbreaking beauty in this ancient
art form. How ironic that people dismiss mathematics as the antithesis of
creativity. They are missing out on an art form older than any book, more
profound than any poem, and more abstract than any abstract. And it is
school that has done this! What a sad endless cycle of innocent teachers
inflicting damage upon innocent students. We could all be having so much
more fun.

SIMPLICIO: All right, I’m thoroughly depressed. What now?

 

SALVIATI: Well, I think I have an idea about a pyramid inside a
cube . . .



PART II

Exultation

AND SO THE SENSELESS TRAGEDY KNOWN AS “mathematics
education” continues, and only grows more indefensibly asinine and corrupt
with each passing year. But I don’t really want to talk about that anymore.
I’m tired of complaining. And what’s the point? School has never been
about thinking and creating. School is about training children to perform so
that they can be sorted. It’s no shock to learn that math is ruined in school;



everything is ruined in school! Besides, you don’t need me to tell you that
your math class was a boring, pointless waste of time—you went through it
yourself, remember?

So what I’d rather do is tell you more about what math really is and why I
love it so much. As I said before, the most important thing to understand is
that mathematics is an art. Math is something you do. And what you are
doing is exploring a very special and peculiar place—a place known as
“Mathematical Reality.” This is of course an imaginary place, a landscape
of elegant, fanciful structures, inhabited by wonderful, imaginary creatures
who engage in all sorts of fascinating and curious behaviors. I want to give
you a feeling for what Mathematical Reality looks and feels like and why it
is so attractive to me, but first let me just say that this place is so
breathtakingly beautiful and entrancing that I actually spend a good part of
my waking life there. I think about it all the time, as do most other
mathematicians. We like it there, and we just can’t stay away from the
place.

In this way, being a mathematician is a lot like being a field biologist.
Imagine that you have set up your camp on the outskirts of a tropical jungle,
let’s say in Costa Rica. Every morning you take your machete into the
jungle and explore and make observations, and every day you fall more in
love with the richness and splendor of the place. Suppose you are interested
in a particular type of animal, say hamsters. (Let’s not worry about whether
there actually are any hamsters in Costa Rica.)

The thing about hamsters is they have behavior. They do cool, interesting
things: they dig, they mate, they run around and make nests in hollow logs.
Maybe you’ve studied a particular group of Costa Rican hamsters enough
that you’ve tagged them and given them names. Maybe Rosie is black and
white and loves to burrow; maybe Sam is brown and enjoys lying in the sun.
The point is that you are watching, noticing, and getting curious.

Why do some hamsters behave differently from others? What features are
common to all hamsters? Can hamsters be classified and grouped in
meaningful and interesting ways? How do new hamsters get created from
old ones, and what traits are inherited? In short, you’ve got hamster
problems—natural, engaging questions about hamsters that you want
answered.



Well, I’ve got problems too. Only they are not located in Costa Rica, and
they don’t concern hamsters. But the feeling is the same. There’s a jungle
full of strange creatures with interesting behaviors, and I want to understand
them. For example, among my favorite denizens of the mathematical jungle
are these fantastical beasts: 1, 2, 3, 4, 5, . . .

Please don’t freak out on me here. I know you’ve probably had some
pretty miserable experiences connected with these particular symbols, and I
can feel your chest tightening already. Just relax. Everything is going to be
fine. Trust me, I’m a doctor . . . of philosophy.

First of all, forget the symbols—they don’t matter. Names never matter.
Rosie and Sam do what they do; they don’t care about your silly pet names
for them. This is a hugely important idea: I’m talking about the difference
between the thing itself and the representation of the thing. It is of
absolutely no importance whatever what words you want to use (if any) or
what symbols you wish to employ (if any). The only thing that matters in
mathematics is what things are, and more important, how they act.

So somewhere along the line people started to count (no one knows quite
when). A really big step occurred when people realized that they could
represent things by other things (e.g., a caribou by a painting of a caribou, or
a group of people by a pile of rocks). At some point (again, we don’t know
when) early humans conceived of the idea of number, of “three-ness” for
instance. Not three berries, or three days, but three in the abstract.
Throughout the millennia people have devised all sorts of languages for the
representation of numbers—markers and tokens, coins with values on them,
symbolic manipulation systems, and so on. Mathematically none of this
really matters very much. From my point of view (that of the impractical
daydreaming mathematician) a symbolic representation like ‘432’ is no
better or worse than an imaginary pile of four hundred thirty-two rocks (and
in many ways I prefer the rocks). To me the important step is not the move
from rocks to symbols, it’s the transition from quantity to entity—the
conception of five and seven not as amounts of something but as beings,
like hamsters, which have features and behavior.

For example, to an algebraist such as myself, the statement 5 + 7 = 12
does not so much say that five lemons and seven lemons make twelve
lemons (although it certainly does say that). What it says to me is that the



entities commonly known by the nicknames “five” and “seven” like to
engage in a certain activity (namely “adding”) and when they do they form
a new entity, the one we call “twelve.” And this is what these creatures do—
no matter what they are called or by whom. In particular, twelve does not
“start with a one” or “end with a two.” Twelve itself doesn’t start or end, it
just is. (What does a pile of rocks “start” with?) It is only the Hindu-Arabic
decimal place-value representation of twelve that starts with a ‘1’ and ends
with a ‘2.’ And that’s really neither here nor there. Do you get what I’m
saying?

As mathematicians we are interested in the intrinsic properties of
mathematical objects, not the mundane features of some arbitrary cultural
construct. The symbol ‘69’ may look the same upside down, but the number
sixty-nine doesn’t “look” any way at all. I hope you can see how this point
of view is a natural outgrowth of the “simple is beautiful” aesthetic. What
do I care what notation system some Arabic traders introduced into Europe
in the twelfth century? I care about my hamsters, not their names.

So let’s try to think of these numbers 1, 2, 3, et cetera, as creatures with
interesting behavior. Of course their behavior is determined by what they
are, namely sizes of collections. (That’s how we happened upon them in the
first place!) Let’s refer to them using imaginary piles of rocks:

This way we can observe them “in the wild,” so to speak, and we won’t
be distracted or misled by some accidental artifact of notation. Now one
behavior that people noticed pretty early on is that some of them (as piles of
rocks) can be arranged in two equal rows:



The numbers four, eight, and fourteen have this property, whereas three,
five, and eleven do not. And it’s not because of their names—it’s because of
who they are and what they do. So here is a behavioral distinction among
mathematical entities: some of them do this (the so-called “even” numbers)
and some do not (the “odd” ones).

For pretty obvious reasons, I tend to think of even numbers as female and
odd numbers as male. The even numbers (arranged in two equal rows) have
a nice smooth profile, whereas the odd ones are always sticking something
out:

Since pushing piles of rocks together is such a natural thing to do, it’s
also natural to wonder how the even/odd distinction is affected by addition.
(It’s like asking whether the spotted/plain trait in hamsters is inherited.) So I
play around a bit with piles of rocks and I notice a lovely pattern:

Even & Even makes Even

Even & Odd makes Odd

Odd & Odd makes Even

Do you see why? I especially like the way two odds fit together:

There’s such a wonderful “two wrongs make a right” quality to this.
Those annoying prongs just cancel each other out! And notice that this
works for all odd numbers, not just the ones I happened to choose. In other
words, this is a completely general behavior. So that’s a nice discovery. Not
that there’s anything so special about using two rows. We could also



investigate what happens when we arrange numbers into three rows, or four,
or ten. What do our hamsters do then?

Now I know none of this is terribly sophisticated, but I really want you to
get this feeling of imaginary entities and their amusing behavior. It’s
important for understanding both the attraction of the subject and its
methodology (especially in the modern era). There is, however, an
absolutely crucial difference between Costa Rican hamsters and
mathematical entities like numbers or triangles: hamsters are real. They are
part of physical reality. Mathematical objects, even if initially inspired by
some aspect of reality (e.g., piles of rocks, the disc of the moon), are still
nothing more than figments of our imagination.

Not only that, but they are created by us and are endowed by us with
certain characteristics; that is, they are what we ask them to be. Not that we
don’t build things in real life, but we are always constrained and hampered
by the nature of reality itself. There are things I might want that I simply
can’t have because of the way atoms and gravity work. But in Mathematical
Reality, because it is an imaginary place, I actually can have pretty much
whatever I want. If you tell me, for instance, that 1 + 1 = 2 and there’s
nothing I can do about it, I could simply dream up a new kind of hamster,
one that when you add it to itself disappears: 1 + 1 = 0. Maybe this ‘0’ and
‘1’ aren’t collection sizes anymore, and maybe this “adding” isn’t pushing
collections together, but I still get a “number system” of a sort. Sure, there
will be consequences (such as all even numbers being equal to zero), but so
be it.

In particular, we are free to embellish or “improve” our imaginary
structures if we see fit. For example, over the centuries it gradually dawned
on mathematicians that this collection, 1, 2, 3, et cetera, is in some ways
quite inadequate. There is actually a rather unpleasant asymmetry to this
system, in that I can always add rocks but I can’t always take them away.
“You can’t take three from two” is an obvious maxim of the real world, but
we mathematicians do not like being told what we can and cannot do. So we
throw in some new hamsters in order to make the system prettier.
Specifically, after expanding our notion of collection sizes to include zero
(the size of the empty collection), we can then define new numbers like ‘-3’
to be “that which when added to three makes zero.” And similarly for the



other negative numbers. Notice the philosophy here—a number is what a
number does.

In particular, we can replace the old-fashioned notion of subtraction by a
more modern idea: adding the opposite. Instead of “eight take away five,”
we can (if we wish) view this activity as “eight plus negative five.” The
advantage here is that we have only one operation to deal with: adding. We
have transferred the subtraction idea away from the world of operations and
over to the numbers themselves. So instead of taking off my shoe, I can
think of it as putting on my “anti-shoe.” And of course my anti-anti-shoe
would just be my shoe. Do you see the charm in this viewpoint?

Similarly, if multiplication is something you are interested in (that is,
making repeated copies of piles of rocks), you might also notice an
unpleasant lack of symmetry. What number triples to make six? Why, two
of course. But what triples to make seven? There isn’t any pile of rocks like
that. How annoying!

Of course we’re not really talking about piles of rocks (or anti-rocks).
We’re talking about an abstract imaginary structure inspired by rocks. So if
we want there to be a number which when tripled makes seven, then we can
simply build one. We don’t even have to go out to the garage and get tools
—we just “bring it into being” linguistically. We can even give it a name
like ‘7/3’ (a modified Egyptian shorthand for “that which when multiplied
by three makes seven.”) And so on. All of the usual “rules” of arithmetic are
simply the consequences of these aesthetic choices. What are so often
presented to students as a cold, sterile set of facts and formulas are actually
the exciting and dynamic results of these new creatures interacting with
each other—the patterns they play out as a result of their inborn linguistic
“nature.”

In this way we play and create and try to get closer to ideal beauty. A
famous example from the early seventeenth century is the invention of
projective geometry. Here the idea is to “improve” Euclidean geometry by
removing parallelism. Putting aside the historical motivations behind this
decision (which have to do with the mathematics of perspective), we can at
least appreciate the fact that in general two straight lines intersect at a single
point, and parallel lines break this pattern. To put it another way, two points
always determine a line, but two lines don’t always determine a point.



The bold idea was to add new points to the classical Euclidean plane.
Specifically, we create one new point “at infinity” for each direction in the
plane. All the parallel lines in that direction will now “meet” at this new
point. We can imagine the new point to be infinitely far away in that
direction. Of course, since every line goes off in two opposite directions, the
new point must lie infinitely far away in both directions! In other words, our
lines are now infinite loops. Is that a far out idea, or what?

Notice that we do get what we wanted: every pair of lines now meets at
exactly one point. If they intersected before, then they still do; if they were
parallel, they now intersect “at infinity.” (To be complete, we should also
add one more line, namely the one consisting of all the infinite points.) Now
any two points determine a unique line, and any two lines determine a
unique point. What a nice environment!

Does this sound to you like the ravings of a lunatic? I admit it takes some
getting used to. Perhaps you object to these new points on the grounds that
they’re not really “there.” But was the Euclidean plane there to begin with?

The point is that there is no reality to any of this, so there are no rules or
restrictions other than the ones we care to impose. And the aesthetic here is
very clear, both historically and philosophically: if a pattern is interesting
and attractive, then it’s good. (And if it means having to work hard to bend
your mind around a new idea, so much the better.) Make up anything you
want, so long as it isn’t boring. Of course this is a matter of taste, and tastes
change and evolve. Welcome to art history! Being a mathematician is not so
much about being clever (although lord knows that helps); it’s about being
aesthetically sensitive and having refined and exquisite taste.

In particular, contradiction is usually regarded as rather boring. So at the
very least we want our mathematical creations to be logically consistent.
This is especially an issue when making extensions or improvements to
existing structures. We are of course free to do as we wish, but usually we
want to extend a system in such a way that the new patterns do not conflict
with the old ones. (Such is the case with the arithmetic of negative numbers
and fractions, for instance.) Occasionally, this compels us to make decisions
we might otherwise not want to make, such as forbidding division by zero
(if a number such as ‘1/0’ were to exist, it would conflict with the nice



pattern that multiplication by zero always makes zero). Anyway, as long as
you are consistent, you can pretty much have whatever you want.

So the mathematical landscape is filled with these interesting and
delightful structures that we have built (or accidentally discovered) for our
own amusement. We observe them, notice interesting patterns, and try to
craft elegant and compelling narratives to explain their behavior.

At least that’s what I do. There certainly are people out there whose
approach is quite different—practical-minded people who seek
mathematical models of reality to help them make predictions or to improve
some aspect of the human condition (or at least improve the balance sheet of
their corporate sponsors). Well, I’m not one of those people. The only thing
I am interested in using mathematics for is to have a good time and to help
others do the same. And for the life of me I can’t imagine a more
worthwhile goal. We are all born into this world, and at some point we will
die and that will be that. In the meantime, let’s enjoy our minds and the
wonderful and ridiculous things we can do with them. I don’t know about
you, but I’m here to have fun.

 
Let’s go a little deeper into the jungle, shall we? Now, you have to

appreciate that people have been doing mathematics for quite some time
(and rather intensely for the last three thousand years or so) and we have
made a lot of amazing discoveries. Here is one I’ve always loved: What
happens when you add up the first few odd numbers?

1+3=4
1+3+5=9

1+3+5+7=16
1+3+5+7+9=25

To the novice this may seem like a random jumble of numbers, but the
sequence:

4, 9, 16, 25, . . .

is far from random. In fact, these are precisely the square numbers. That is,
these are just the numbers of rocks you need to make a perfect square
design:



So the square numbers stand out from the rest as having this particularly
attractive property, which is why they get a special name. The list goes on
indefinitely of course, since you could make a square design of any size.
(These are imaginary rocks and we therefore have an inexhaustible supply.)

But this is remarkable! Why should adding up consecutive odd numbers
always make a square? Let’s investigate further:

1 + 3 + 5 + 7 + 9 + 11 + 13 = 49
(which is 7 × 7)

1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 100
(which is 10 × 10)

It seems to keep happening! And it’s utterly beyond our control. Either
this is a true (and surprising and beautiful) feature of odd numbers or it
isn’t, and we simply have no say in the matter. We may have brought these
creatures into existence (and that is a serious philosophical question in
itself) but now they are running amok and doing things we never intended.
This is the Frankenstein aspect of mathematics—we have the authority to
define our creations, to instill in them whatever features or properties we
choose, but we have no say in what behaviors may then ensue as a
consequence of our choices.

Now I can’t make you be curious about this discovery; you either are or
you aren’t. But at least I can tell you why I am. For one thing, adding up
odd numbers seems like a very different sort of activity than making a
square (i.e., multiplying a number by itself). These two ideas just don’t
seem to have much to do with each other. There’s something a bit
counterintuitive about this. I am drawn in by the possibility of a connection
—a new, unforeseen relationship that will improve my intuition and perhaps
permanently change the way I think about these objects. I suppose that’s
really a key part of it for me: I want to be changed. I want to be affected in a



fundamental way. That’s maybe the biggest reason why I do mathematics.
Nothing I have ever seen or done comes close to having the transformative
power of math. My mind gets blown pretty much every day.

Another thing to notice is that the collection of odd numbers is infinite.
This always makes for awe and fascination. If in fact our pattern doesn’t
continue, how will we ever know? Checking the first million cases doesn’t
prove anything—it might conceivably fail for the very next number. And in
fact there are thousands of simple questions about whole numbers that
remain unsolved to this day—we simply don’t know if the pattern continues
or not.

So I wonder how you feel about this question of ours. Perhaps it’s simply
not your cup of tea. Still, I hope you can appreciate why I like it. Mostly I
love the abstraction of it all, the sheer simplicity. This isn’t some
complicated congressional redistricting issue, or even a question about
colliding electrons. It’s about odd numbers, for god’s sake. It’s the ethereal
purity, the “more universal than the universe” quality that is so attractive to
me. These aren’t hairy, smelly hamsters with bloodstreams and intestines;
they’re happy, free, lighter-than-air constructs of my imagination. And they
are absolutely terrifying.

Do you get what I mean here? So simple they’re scary? These aren’t
science-fiction aliens, these are aliens. And they’re up to something,
apparently. They seem to always add up to squares. But why? At this point
what we have is a conjecture about odd numbers. We have discovered a
pattern, and we think it continues. We could even verify that it works for the
first trillion cases if we wanted. We could then say that it’s true for all
practical purposes, and be done with it. But that’s not what mathematics is
about. Math is not about a collection of “truths” (however useful or
interesting they may be). Math is about reason and understanding. We want
to know why. And not for any practical purpose.

Here’s where the art has to happen. Observation and discovery are one
thing, but explanation is quite another. What we need is a proof, a narrative
of some kind that helps us to understand why this pattern is occurring. And
the standards for proof in mathematics are pretty damn high. A
mathematical proof should be an absolutely clear logical deduction, which,
as I said before, needs not only to satisfy, but to satisfy beautifully. That is



the goal of the mathematician: to explain in the simplest, most elegant and
logically satisfying way possible. To make the mystery melt away and to
reveal a simple, crystalline truth.

Now if you were my apprentice and we had more time together, I would
send you off at this point to think and struggle and see what kind of
explanation you could cobble together. (And of course if you want to stop
reading right now and get to work on it, that would be fantastic.) Since my
goal here is to give you a taste of mathematical beauty, I will instead simply
show you a nice proof and see what you think of it.

So how does one go about proving something like this? It’s not like being
a lawyer, where the goal is to persuade other people; nor is it like a scientist
testing a theory. This is a unique art form within the world of rational
science. We are trying to craft a “poem of reason” that explains fully and
clearly and satisfies the pickiest demands of logic, while at the same time
giving us goosebumps.

Sometimes I like to imagine a Two-Headed Monster of mathematical
criticism. The first head demands a logically airtight explanation, one with
absolutely no gaps in the reasoning or any fuzzy “hand-waving.” This head
is a stickler, and is utterly merciless. We all hate its constant nagging, but in
our hearts we know it is right. The second head wants to see simple beauty
and elegance, to be charmed and delighted, to attain not just verification but
a deeper level of understanding. Usually this is the more difficult head to
satisfy. Anyone can be logical (and in fact, the validity of a deduction can
even be checked mechanically) but to produce a real proof requires
inspiration and epiphany of the highest order. Similarly, it’s not that hard to
draw an accurate portrait. One can develop an eye and master the technique.
But to draw a portrait that means something, that conveys emotion and
speaks to us—that’s something else entirely. In short, our goal is to appease
the Monster.

Not that it’s so easy to get any proof off the ground. Most of us are so
frustrated with our problems that we would gladly settle for the ugliest and
clunkiest of arguments (assuming it is logically valid). At least we would
then be sure that our conjecture is right and there won’t be any
counterexamples. But it is an unsatisfactory state of affairs, and it cannot
last. As Hardy says, “there is no permanent place in the world for ugly



mathematics.” History shows that eventually (maybe centuries later)
someone will surely uncover the real proof, the one that conveys not just a
message, but a revelation.

But how do we do it? Nobody really knows. You just try and fail and get
frustrated and hope for inspiration. For me it’s an adventure, a journey. I
usually know more or less where I want to go, I just don’t know how to get
there. The only thing I do know is that I’m not going to get there without a
lot of pain and frustration and crumpled-up paper.

So let’s imagine that you’ve been playing with this problem for a while,
and then at some point you have this realization: what the pattern is saying
is that any square design can be broken into pieces which are just the odd
numbers. So you try out some chopping ideas. Your first few attempts are
successful, but have no real unity to them; they are random-seeming and do
not generalize:

Then, all of a sudden, in one breathless heart-stopping moment, the
clouds part and you can finally see:



A square is a collection of nested L-shapes, and these L-shapes contain
precisely the odd numbers. Eureka! Do you see why mathematicians jump
out of bathtubs and run naked through the streets? Do you see why this
useless, childish activity is so compelling?

The thing I want you especially to understand is this feeling of divine
revelation. I feel that this structure was “out there” all along; I just couldn’t
see it. And now I can! This is really what keeps me in the math game—the
chance that I might glimpse some kind of secret underlying truth, some sort
of message from the gods.

To me, this kind of mathematical experience goes to the heart of what it
means to be human. And I’ll go even further and say that mathematics, this
art of abstract pattern-making—even more than story-telling, painting, or
music—is our most quintessentially human art form. This is what our brains
do, whether we like it or not. We are biochemical pattern-recognition
machines and mathematics is nothing less than the distilled essence of who
we are.

Before we get too carried away, is it clear that these L-shapes do in fact
follow the pattern? Is it so obvious that each successive L-shape contains
exactly the next odd number , and that this pattern will continue forever?
(This is the kind of skepticism typical of Head #1.) We know what we think
these L-shapes are doing, and what we want them to do, but who says they
will follow our desires?

This is something that happens in mathematics all the time. If proofs are
stories, then they have parts, or episodes, like scenes in a novel. What our
explanatory arguments do is break the problem down into subproblems.
This is a big part of mathematical criticism. It’s not that our proof is wrong
or bad, we’re just examining it more carefully, putting sections of it under
the rational microscope.

So why do L-shapes make odd numbers? Of course the corner will
always contain just one rock, and the next piece will have three, no matter
how big the square is. Actually, I suppose we could entertain the possibility
that our “square” consists of only one rock. It is up to you to decide if you
want to include this sort of “trivial” case. The typical thing to do would be
to include it, since it doesn’t break the pattern: the sum of the first odd
number, namely 1, is in fact the first square, 1 × 1. (If your taste goes



further, and you want to include zero—being the sum of the first none odd
numbers, and also 0 × 0—then you might want to seriously consider
becoming a professional mathematician.) In any case, the first few L-shapes
clearly comply with our wishes.

But is it clear that the pattern will keep going beyond our ability to draw
pictures or to count? Let’s imagine a hypothetical L-shape way down the
line:

It is important to understand that I am not committing myself to any
particular size here, but keeping my mind open and arguing generally—this
is any size L-shape; the nth one if you will; the generic one. Hopefully, we
would then experience our next moment of clarity:

Any L-shape can be broken up into two “arms” and a “joint.” The two
arms are equal, so they contain the same number, and the joint adds one
more. That’s why the total is always odd! And what’s more, when we go
from one L-shape to the next, we see that each arm gets larger by exactly
one:



This means that each successive L-shape is exactly two more than the
previous. And that’s why the pattern keeps going!

So there’s an example of what it’s like to do mathematics. Playing with
patterns, noticing things, making conjectures, searching for examples and
counterexamples, being inspired to invent and explore, crafting arguments
and analyzing them, and raising new questions. That’s what it’s all about.
I’m not saying it’s vitally important; it isn’t. I’m not saying it will cure
cancer; it won’t. I’m saying it’s fun and it makes me feel good. Plus, it’s
perfectly harmless. And how many human activities can you say that about?

Let me make a couple of important points. First of all, notice that once we
know why something is true, then in particular we know that it is true. A
trillion instances tells us nothing; when it comes to infinity, the only way to
know what is to know why. Proof is our way of capturing an infinite amount
of information in a finite way. That’s really what it means for something to
have a pattern—if we can capture it with language.

Another thing I want you to appreciate is the finality of mathematical
proof. There’s nothing tentative or hypothetical here. It’s not going to turn
out later that we were wrong. The argument is completely self-contained;
we’re not awaiting any experimental confirmation.

Finally, I want to stress again that it’s not the fact that consecutive odd
numbers add up to squares that really matters here; it’s the discovery, the
explanation, the analysis. Mathematical truths are merely the incidental by-
products of these activities. Painting is not about what hangs in the museum,
it’s about what you do—the experience you have with brushes and paint.

As I see it, art is not a collection of nouns, it’s a verb—a way of life, even
(or at any rate a means of escape). To reduce the adventure that we just went



through together to a mere statement of fact would be to miss the point
entirely. The point was that we made something. We made something
beautiful and compelling and we had fun doing it. For a brief shining
moment we lifted the veil and glimpsed a timeless simple beauty. Is this not
something of value? Is humankind’s most fascinating and imaginative art
form not something worth exposing our children to? I think it is.

So let’s do some math right now! We just saw that adding consecutive
odd numbers always makes a square (and more important, we figured out
why). What happens if we add up consecutive even numbers? How about
adding up all the numbers? Is there a simple pattern? Can you explain why
it happens? Have fun!

Now hold on a minute, Paul. Are you telling me that mathematics is
nothing more than an exercise in mental masturbation? Making up
imaginary patterns and structures for the hell of it and then investigating
them and trying to devise pretty explanations for their behavior , all for the
sake of some sort of rarified intellectual aesthetic?

Yep. That’s what I’m saying. In particular, pure mathematics (by which I
mean the fine art of mathematical proof) has absolutely no practical or
economic value whatsoever. You see, practical things don’t require
explanation. Either they work or they don’t. Even if you could find a way to
put our odd number discovery to some sort of practical use (and of course
there’s lots of math out there that is indeed extremely useful) you would
have no need for our gorgeous explanation. If it works for the first trillion
numbers, then it works. Issues involving infinity simply don’t come up in
business or medicine.

Anyway, the point is not whether mathematics has any practical value—I
don’t care if it does or not. All I’m saying is that we don’t need to justify it
on that basis. We’re talking about a perfectly innocent and delightful
activity of the human mind—a dialogue with one’s own mentality. Math
requires no pathetic industrial or technological excuses. It transcends all of
those mundane considerations. The value of mathematics is that it is fun and
amazing and brings us great joy. To say that math is important because it is
useful is like saying that children are important because we can train them
to do spiritually meaningless labor in order to increase corporate profits. Or
is that in fact what we are saying?



 
Let’s quickly escape back to the jungle. Now just as hamsters occupy a

certain biological niche—plants and insects they like to eat, geographic
areas and terrain they inhabit—math problems are also situated within an
environment—a structural environment. Let me try to illustrate this idea
with another personal favorite.

Here are two points on one side of a straight line. The question is, what is
the shortest path from one point to the other that touches the line?
(Naturally, the part about touching the line is the interesting part—if we
dropped that requirement then the answer would obviously be just the
straight line connecting the two points.)

Clearly the shortest path must look something like this:

Since our path has to hit somewhere, we can’t do better than to go
straight there. The question is, where is “there”? Among all the possible
points on the line, which one gives us the shortest path? Or could it be that
they all have the same length?



What an elegant and fascinating problem! What a delightful setting in
which to exercise our creativity and ingenuity. And notice: we don’t even
have a conjecture. We have no clue what the shortest path is, so we don’t
even know what we are trying to prove! So here we will have to discover
not only an explanation for the truth, but what the truth is in the first place.

Again, the right thing for me to do as your math teacher would be
nothing. That’s a thing most teachers (and adults generally) seem to have a
hard time doing. Were you my student (and assuming this problem
interested you) I would simply say, “Have fun. Keep me posted.” And your
relationship to the problem would develop in whatever way it would.

Instead, I will use this opportunity to show you another lovely
mathematical argument, which I hope will both charm and inspire you.

So it turns out that there is in fact only one shortest path and I will tell
you how to find it. For convenience, let’s give the points names, say A and
B. Suppose we had a path from A to B that touches the line:

There’s a very simple way to tell if such a path is as short as possible. The
idea, which is one of the most surprising and unexpected in all of geometry,
is to look at the reflection of the path across the line! To be specific, let’s
take one part of the path, say from where it hits the line to where it hits the
point B, and reflect that part over the line:



We now have a new path that starts at A, crosses the line, and ends up at
the point B’, the reflection of the original point B. In this way, any path from
A to B can be transformed into a path from A to B’:

Now here’s the point: the new path has exactly the same length as the
original. Do you see why? This means that the problem of finding the
shortest path from A to B that hits the line is the same as finding the shortest
path from A to B’. But that’s easy—it’s just a straight line! In other words,
the path we’re looking for is simply the path that when reflected becomes
straight!

Is that great, or what? I only wish I could see your face—to see if your eyes
light up, and to make sure that you get the joke, so to speak. Mathematics is
fundamentally an act of communication, and I want to know if my idea got



through. (If tears aren’t streaming down your face, maybe you should read it
again.)

I want you to know that when I first saw this proof I was absolutely
shocked. The thing that got to me (and still does) is the perversity of it. The
points were both above the line. Their shortest path is also. What the hell
does this have to do with anything below the line? It was a shattering
argument for me; definitely one of my formative mathematical experiences.

So I want to use this problem to make a few comments about the way
modern mathematicians view their subject. What is this problem really
about? What are the issues here? Well the first thing to notice is the setting
—points, lines, a plane on which the action takes place, a sense of distance
or length—these are the hallmarks of geometric structure. This problem fits
into a larger category of problems concerned with spatial environments and
notions of distance. These can range from the “elementary” geometric ideas
of the classical Greeks (which were themselves inspired by earlier Egyptian
practical observations about the real world) to the most abstract and bizarre
imaginary structures—many having nothing whatever to do with anything
even vaguely resembling reality. (Not that we know what reality is, but you
get what I mean.)

Essentially, the adjective “geometric” is used by mathematicians to group
together those problems and theories that concern some sort of collection of
“points” (which may be quite arbitrary and abstract) and some sort of notion
of “distance” between them (which also may bear no resemblance to
anything familiar). For example, the “space” consisting of all red and blue
bead strings of length five can be given a geometric structure by defining
the distance between two such strings to be the number of places in the bead
sequence where the colors disagree. Thus, the distance between the points
‘RBBRB’ and ‘BBBRR’ would be 2, since they differ only in the first and
last places. Can you find an “equilateral triangle” (i.e., three points that all
have the same distances to each other) inside of this space?

Similarly, problems can be classified as having algebraic, topological, or
analytic structure, as well as many other types, and of course combinations
of the above. Some areas of mathematics, such as the theory of sets or the
study of order types, concern objects with almost no structure at all, whereas
others (e.g., elliptic curves) involve practically every structural category



under the sun. The point of this sort of framework is the same as it is in
biology: to help us understand. Knowing that hamsters are mammals (and
this is not an arbitrary classification, but a structural one) helps us make
predictions and to know what to look out for. Classifications are a guide for
our intuition. Similarly, knowing that our problem has geometric structure
may give us fruitful ideas and keep us from wasting our time on approaches
that are not in harmony with that structural world.

For example, any plan of attack on our shortest-path problem that
involves bending or twisting is almost automatically doomed to fail, since
such activities tend to distort shapes and mess up length information. We
should instead think about activities and transformations that are structure
preserving. In the case of our problem, which takes place in a Euclidean
geometric environment, the natural activities would be those that preserve
distances—namely sliding, rotating, and reflecting. From this perspective,
the use of reflection maybe doesn’t seem quite so shocking anymore; it is a
natural element of the structural framework of the problem.

But that’s not all. The thing about proofs is they always manage to prove
more than you intended. The essence of the argument is the fact that
reflection across a line preserves distances. This means that our argument
applies to any setting in which there is a notion of point, line, distance and
reflection. For instance, on the surface of a sphere there is a notion of
reflection across an equator:

This means that equators (the curves you get when you chop a sphere in
half) are the natural spherical analogs of “straight line.” And in fact it
happens to be true that the shortest path between two points on the surface



of a sphere is to follow an equator (which is why airplanes often take such
routes).

So the corresponding problem on a sphere would be: given two points on
the same side of an equator, what is the shortest path between them that
touches the equator? My point is that our exact same argument still works.
Again it is the path that when reflected is straight:

How about if we have two points in space on the same side of a plane?



What I’m saying is that proofs are bigger than the problems they come
from. A proof tells you what really matters and what is mere fluff, or
irrelevant detail; it separates the wheat from the chaff. Of course, some
proofs are better than others in this regard. Often a new argument is
discovered that shows that what was previously thought to be an important
assumption is in fact unnecessary. I suppose what I’m really trying to say
here is that mathematical structures are designed and built not so much by
us, as by our proofs.

The historical development of mathematics (especially in the past couple
of centuries) exhibits a consistent, undeniable pattern: first come the
problems, whose sources are many and varied, often inspired by the real
world. Eventually, connections are made between diverse problems, usually
due to common elements that appear in various proofs. Abstract structures
are then devised that can “carry” the kind of information that forms the
connection (the classic example being the “group” concept, which captures
abstractly the idea of a closed system of activities, e.g., algebraic operations
like addition, or systems of geometric or combinatorial transformations such
as rotation or permutation). New questions then arise concerning the
behavior of the new abstract structures—classification problems,
construction of invariants, structure of sub-objects, et cetera. And the
process continues with the discovery of new connections among the abstract
structures themselves, generating even more powerful abstractions. Thus
mathematics moves further and further away from its “naïve” origins. Some
areas of mathematics, such as logic and category theory, concern themselves
with spaces (so to speak) whose “points” are themselves mathematical
theories!

As a small example, the key idea in our path problem was reflection.
Now reflections have the amusing property that when you do them twice it’s
as if you’ve done nothing at all. Does that remind you of anything? It’s just
like our self-annihilating hamster—that new version of 1 with 1 + 1 = 0. So
here we have a connection between an algebraic structure and a geometric
one. This raises a lot of questions concerning the extent to which number
systems of various kinds can possess geometric “representations.” Can you
make up a number system that behaves like the rotations of a triangle?

All I’m really trying to say here is that as modern mathematicians we are
always on the lookout for structure and structure-preserving



transformations. This approach not only gives us a meaningful way to group
problems together and to understand what they are really “about,” but it also
helps us to narrow the search for proof ideas. If a new problem comes along
that lies in the same structural category as one we have already solved, we
may be able to use or modify our previous methods.

Ok, grab your machete. It’s back to the jungle we go! I can’t resist giving
you at least one more example of the mathematical aesthetic. This is what I
like to call the “Friends at a Party” problem: Must there always be two
people at a party who have the same number of friends there?

The first thing is to decide what we want our words to mean. What are
people? What is friendship?

What exactly is a party? How does a mathematician address these issues?
Surely we don’t want to deal with actual humans and their complicated
social lives. The aesthetic of simplicity demands that we shed all such
unnecessary complexity and get to the heart of the matter. This is not a
question about people and friendship, it’s a question about relationships in
the abstract. A party then becomes a “relationship structure” consisting of a
set of objects (it doesn’t matter what they are) together with a collection of
(presumably mutual) relationships between them.

If we wanted, we could visualize such a structure using a simple diagram:

Here is a party of five, including one stranger (no friends) and a rather
popular fellow with three friends. And it just so happens that there are two
objects with the same number of connections (namely two).

So here is a simple and beautiful class of mathematical structures (known
in the math biz as combinatorial graphs) and a natural and amusing question
about them: Does every graph possess a pair of objects with the same



number of connections? (We’re assuming of course that our graphs involve
more than one object.)

So where do math problems like these come from? Well, I’ll tell you:
they come from playing. Just playing around in Mathematical Reality, often
with no particular goal in mind. It’s not hard to find good problems—just go
to the jungle yourself. You can’t take three steps without tripping over
something interesting:

YOU: So Paul, I was thinking about what you said before about arranging
numbers in rows, and I noticed that some numbers are so awkward they
can’t be arranged evenly in any number of rows. Like thirteen—it just
doesn’t work.

 

ME: Well, you could always arrange it as one row of thirteen . . . or as
thirteen rows of one!

YOU: Yes, but that’s boring. You can do that with any number. I’m talking
about using at least two rows. So anyway, I started making a list of these
weird numbers. It goes like this:

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, . . .

and it seems to keep on going, but I haven’t found any real pattern to it.

 

ME: Well, you’ve stumbled onto something very mysterious. The truth is,
we don’t know very much about these weird numbers of yours. One thing
we do know is that they go on forever—there is an infinite supply of
numbers that can’t be arranged in rows. Maybe that would be a good thing
for you to try to prove.

 

YOU: Yes, I’d like to think about it. Anyway, the thing I noticed about my
list is the spacing between the numbers. It seems like they mostly thin out as
they get bigger, but then sometimes you get these little clumps like 17, 19
and 101, 103 where they only jump by two. Does that keep happening?

 



ME: Nobody knows! Your weird numbers are called “primes” and the ones
that come in pairs are called “prime twins.” Your question about whether
they keep occurring is known as the twin prime conjecture. It is actually one
of the most famous unsolved problems in arithmetic. Most people who have
worked on it (including myself) feel that it is probably true—prime twins
should keep happening—but nobody knows for sure. I’m hoping to see a
proof before I die, but I’m not terribly optimistic.

 

YOU: How bizarre that something so simple should turn out to be so hard!
The other thing I noticed is that after 3, 5, 7 you never seem to get three
primes in a row. Is that true?

 

ME: Prime triplets! What a terrific problem for you. Why don’t you work
on that and we’ll see what you come up with . . .

 

(A few days later)

 

YOU: I think I’ve discovered something! I was looking for prime triplets,
and what I noticed is that whenever you have three odd numbers in a row,
one of them is always a multiple of three. Like with 13, 15, 17, the middle
number is 5 × 3.

 

ME: That’s fantastic! And it certainly explains why 3, 5, 7 is the last of the
prime triplets—the only prime which is a multiple of three is three itself. So
now you just have to figure out why three odds in a row must always
contain a multiple of three.

 

YOU: Does this process ever stop? Does math ever come to an end?

 

ME: No, because solving problems always leads to new problems. For
instance, now you’ve got me wondering whether five odd numbers in a row



must always contain a multiple of five . . .

This is how math problems arise—just from sincere and serendipitous
exploration. And isn’t that how every great thing in life works? Children
understand this. They know that learning and playing are the same thing.
How sad that the grownups have forgotten. They think of learning as a
chore, so they make it into one. Their problem is intentionality.

So let me leave you with the only practical advice I have to offer: just
play! You don’t need a license to do math. You don’t need to take a class or
read a book. Mathematical Reality is yours to enjoy for the rest of your life.
It exists in your imagination and you can do whatever you want with it.
Including nothing, of course.

If you happen to be a student in school (and you have my condolences),
then try to ignore the pointless absurdity of your math class. If you want,
you can escape from the tedium by actually doing mathematics . It’s nice to
have interesting things to think about while you’re staring out the window
and waiting for the bell to ring.

And if you are a math teacher, then you especially need to be playing
around in Mathematical Reality. Your teaching should flow naturally from
your own experience in the jungle, not from some fake tourist version with a
car on tracks and the windows rolled up. So throw the stupid curriculum and
textbooks out the window! Then you and your students can start doing some
math together. And seriously, if you have no interest in exploring your own
personal imaginary universe, in making discoveries and trying to understand
them, then what are you doing calling yourself a math teacher? If you don’t
have a personal relationship to your subject, and if it doesn’t move you and
send chills down your spine, then you need to find something else to do. If
you love working with children and you really want to be a teacher, that’s
wonderful—but teach something that actually means something to you,
about which you have something to say. It’s important that we be honest
about that. Otherwise I think we teachers can do a lot of unintentional harm.

And if you are neither student nor teacher, but simply a person living in
this world and searching as we all are for love and meaning, I hope I have
managed to give you a glimpse of something beautiful and pure, a harmless
and joyful activity that has brought untold delight to many people for
thousands of years.
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