Universidad de la República Facultad de Ciencias Centro de Matemática

Álgebra Lineal II Segundo semestre 2022

Práctico 2

En este repartido todos los espacios son de dimensión finita.

- 1. Sea $T \in \mathcal{L}(\mathbb{R}^2)$ definida por T(x,y) = (x+4y, 3x+2y).
 - a) Probar que $\lambda = 5$ es un valor propio de T.
 - b) Probar que v = (4, -3) es un vector propio de T.
 - c) Probar que T es diagonalizable y hallar su forma diagonal.
- 2. Sean $T \in \mathcal{L}(V)$ y $v \in V$ un vector propio de T correspondiente a un valor propio λ . Para cada entero positivo m, probar que v es un vector propio de $T^m := T \underbrace{\circ \cdots \circ}_{} T$ correspondiente al valor propio λ^m .
- 3. Sea $T \in \mathcal{L}(V)$. Probar.
 - a) El operador T es invertible si y solo si 0 no es valor propio de T
 - b) Si T es invertible, entonces λ es un valor propio de T si y solo si λ^{-1} es un valor propio de T^{-1} .
 - c) Si $T \in \mathcal{L}(V)$ es invertible, probar que T es diagonalizable si y solo si lo es T^{-1} .
- 4. Un operador T se dice nilpotente si existe algún $n \in \mathbb{Z}^+$ tal que $T^n = 0$.
 - a) Probar que si un operador T es nilpotente y λ es un valor propio de T, entonces $\lambda = 0$.
 - b) Probar que si un operador T es diagonalizable y nilpotente, entonces T=0.
- 5. Se consideran las siguientes transformaciones lineales.
 - a) $T \in \mathcal{L}(\mathbb{R}^2)$, T(x, y) = (x + 2y, 3x + 2y).
 - b) $T \in \mathcal{L}(\mathbb{R}^3)$, T(x, y, z) = (-2y 3z, -x + y z, 2x + 2y + 5z).
 - c) $T \in \mathcal{L}(\mathbb{R}_2[x]), T(p(x)) = p(0) + p(1)(x + x^2).$

Para cada una de ellas se pide.

- a) Hallar los valores propios y los vectores propios correspondientes.
- b) Probar que T es diagonalizable.
- c) Hallar una base del espacio formada por vectores propios de T y escribir la forma diagonal de T.
- 6. En los casos siguientes, determinar si $T \in \mathcal{L}(V)$ es diagonalizable y en caso afirmativo hallar una base \mathcal{B} de V tal que la matriz $[T]_B$ es diagonal.
 - a) $V = \mathbb{R}_2[x]$, $T(ax^2 + bx + c) = cx^2 + bx + a$.
 - b) $V = \mathbb{R}_3[x], T(p(x)) = p'(x) + p''(x).$

Decimos que un operador es *invertible* si tiene inverso, lo cual equivale a ser biyectivo. También se le llama *isomorfismo*.

7. Para cada una de las matrices A siguientes, determinar si el operador $T = L_A \in \mathcal{L}(\mathbb{R}^3)$ es diagonalizable y en caso afirmativo hallar una base \mathcal{B} de \mathbb{R}^3 tal que la matriz $[T]_B$ es diagonal.

$$A = \left(\begin{array}{ccc} 7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3 \end{array}\right), \quad A = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{array}\right), \quad A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{array}\right), \quad A = \left(\begin{array}{cccc} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{array}\right).$$

- 8. Sea $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ el operador que asigna a cada matriz su traspuesta: $T(A) = A^t$.
 - a) Probar que sus únicos valores propios son 1 y -1. Sugerencia: observar que vale $T^2=\mathrm{Id}$ y recordar el ejercicio 2.
 - b) Hallar los subespacios propios correspondientes.
 - c) Probar que T es diagonalizable y hallar su forma diagonal.
- 9. Sea $T \in \mathcal{L}(V)$ un operador. Probar que T es una proyección si y solo si T es diagonalizable y todo valor propio de T es 0 o 1. Sugrencia: para el directo, recordar que vale $V = \text{Ker}(T) \oplus \text{Im}(T)$.
- 10. Sean $T \in \mathcal{L}(V)$ un operador diagonalizable y $W \neq \{0\}$ un subespacio T-invariante de V, es decir un subespacio que verifica $T(W) \subset W$. Notar que la restricción $T|_W : W \to W$ es un operador en W.
 - a) Sean v_1, \ldots, v_k vectores propios de T correspondientes a valores propios distintos. Probar por inducción en k que si $v_1 + \cdots + v_k \in W$, entonces $v_i \in W$ para todo i.
 - b) Probar que $T|_W$ es diagonalizable.
- 11. Sean $T, S \in \mathcal{L}(V)$. Se dice que T y S son *simultáneamente diagonalizables* si existe una base \mathcal{B} de V tal que $[T]_{\mathcal{B}}$ y $[S]_{\mathcal{B}}$ son diagonales. Probar.
 - a) Si T y S son simultáneamente diagonalizables, entonces T y S conmutan, es decir $T \circ S = S \circ T$.
 - b) Si T y S son diagonalizables y conmutan, entonces T y S son simultáneamente diagonalizables. Sugerencia: mostrar que para todo valor propio λ de T, el subespacio propio $E_{\lambda,T}$ es S-invariante y aplicar el ejercicio anterior para obtener una base de $E_{\lambda,T}$ formada por vectores propios de S.