Mecánica Cuántica Curso 2022

Repartido 3. Postulados

 ${\bf 1.}\,$ Una partícula de masa m en un pozo de potencial infinito de ancho a se encuentre inicialmente en el estado

$$|\psi(0)\rangle = a_1|\varphi_1\rangle + a_2|\varphi_2\rangle + a_3|\varphi_3\rangle + a_4|\varphi_4\rangle$$

siendo φ_n el autoestado de energía $E_n = \frac{1}{2m} \left(\frac{n\pi\hbar}{a} \right)^2$.

- a) ¿Cuál es la probabilidad de medir una energía menor a $\frac{3\pi^2\hbar^2}{ma^2}$ en tiempo t=0?
- b) ¿Cuál es el valor medio y la desviación estandar de la energía en el estado $|\psi(0)\rangle$?
- c) Determina el estado a tiempo t, $|\psi(t)\rangle$. ¿Cambia algunos de los resultados anteriores al realizarlos a tiempo t?
- d) Se mide la energía y se obtiene el valor $\frac{8\pi^2\hbar^2}{ma^2}$ ¿Cuál es el estado del sistema luego de esta medición? ¿Qué resultados se pueden obtener si se vuelve a medir la energía en un tiempo posterior?
- **2.** Considere un sistema físico cuyo espacio de estados, que es tridimensional, está generado por la base ortonormal $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$. En esta base, el operador hamiltoniano H del sistema y los dos observables A y B se escriben:

$$\hat{H} = \hbar\omega_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad , \qquad A = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad , \qquad B = b \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

donde ω_0 , a y b son constantes positivas.

En
$$t=0$$
 el sistema está en el estado: $|\psi(0)\rangle=\frac{1}{\sqrt{2}}|u_1\rangle+\frac{1}{2}|u_2\rangle+\frac{1}{2}|u_3\rangle$

Suponga que todas las medidas que se realizan sobre el sistema son proyectivas.

- a) En t=0 se mide la energía del sistema, ¿qué valores pueden obtenerse y con qué probabilidades? Calcule en $|\psi(0)\rangle$ el valor esperado $\langle H\rangle$ y ΔH .
- b) Si en lugar de medir H en t=0 se mide A, ¿qué valores pueden obtenerse y con qué probabilidades? ¿cuál es el estado inmediatamente después de la medida?
- c) Calcule el estado $|\psi(t)\rangle$ del sistema en tiempo t.
- d) ¿Qué resultados pueden obtenerse al medir A o B en tiempo t?
- e) Calcule los valores medios $\langle A(t) \rangle$ y $\langle B(t) \rangle$.
- 3. Un estado de polarización para un fotón que se propaga según la dirección z está dado por:

$$|\psi\rangle = \sqrt{\frac{2}{3}}|\mathbf{x}\rangle + \frac{i}{\sqrt{3}}|\mathbf{y}\rangle,$$

donde $|x\rangle$ y $|y\rangle$ son estados de polarización (dirección del campo eléctrico) según los ejes x e y respectivamente.

- a) ¿Cuál es la probabilidad de que un fotón en este estado pase por un polarizador ideal con eje de transmisión orientado según y?
- b) ¿Cuál es la probabilidad de que un fotón en este estado pase por un polarizador ideal cuyo eje de transmisión y' forma un ángulo ϕ con el eje y?
- c) Responda las preguntas anteriores ahora con el estado de polarización:

$$|\psi'\rangle = \sqrt{\frac{2}{3}}|\mathbf{x}\rangle + \frac{1}{\sqrt{3}}|\mathbf{y}\rangle$$

4. Un sistema de N polarizadores ideales se dispone en secuencia, como se muestra en la figura 1. El eje de transmisión del primer polarizador forma un ángulo ϕ/N con el eje y. El eje de transmisión de cualquier otro polarizador forma un ángulo ϕ/N con el eje del polarizador precedente. Un haz de fotones con polarización según y incide sobre el primer polarizador.

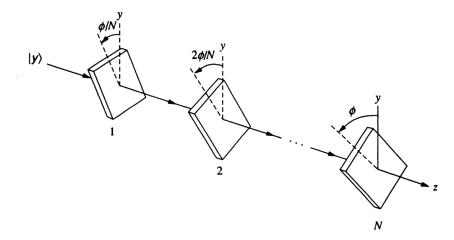


Figura 1: Arreglo de polarizadores.

- a) ¿Cuál es la probabilidad de que un fotón incidente sea transmitido por el arreglo?
- b) Evalúe la probabilidad de transmisión en el límite $N \gg 1$.
- c) Considere el caso especial $\phi = \pi/2$. Explique por qué el resultado no está en conflicto con el hecho de que $\langle x|y\rangle = 0$.
- **5.** Dos partículas (A) y (B) se mueven en una dimensión. En un instante de tiempo el sistema está en un estado representado por la función de onda $\psi(x_A, x_B)$.
 - a) ¿Cuál es la probabilidad de obtener los resultados

$$x \leq x_A \leq x + dx \tag{1}$$

$$\alpha \leq x_B \leq \beta \tag{2}$$

al medir los observables X_A y X_B respectivamente?.

- b) ¿Cuál es la probablidad de obtener el resultado (1) sin medir la partícula B?
- c) ¿Cuál es la probablidad de que al menos una de las partículas se encuentre en el intervalo (α, β) ?

- d) ¿Cuál es la probablidad de que una y sólo una de las partículas se encuentre en el intervalo (α, β) ?
- e) ¿Cuál es la probabildad de que la partícula A tenga momento entre p' y p'' y que se cumpla (2) para la partícula B.
- f) ¿Cuál es la probabilidad de obtener los resultados

$$p' \leq p_A \leq p''$$

 $p''' \leq p_B \leq p''''$

al medir el momento de las partículas A y B respectivamente?

- g) Suponga que sólo se mide el momento de la partícula A. ¿Cuál es la probablidad de que esté entre p' y p''. Deduzca el resultados a partir de e) y luego a partir de f). Compárelos.
- h) Se mide la distancia $X_A X_B$ entre ambas partículas. ¿Cuál es la probabilidad de que esté entre -d y d? ¿Cuál es el valor medio de dicha distancia?
- 6. Aplicando el teorema de Ehrenfest a una partícula libre de masa m en un estado arbitrario:
 - a) Muestre que $\langle X \rangle$ es una función lineal del tiempo y que $\langle P \rangle$ es constante.
 - b) Escriba las ecuaciones de movimiento para los valores esperados $\langle X^2 \rangle$ y $\langle XP + PX \rangle$ e integre dichas ecuaciones.
 - c) Usando lo anterior pruebe que la desviación entandar cumple

$$(\Delta X)^{2}(t) = \frac{(\Delta P)^{2}(t_{0})}{m^{2}}(t - t_{0})^{2} + (\Delta X)^{2}(t_{0}),$$

siendo t_0 el tiempo en el que $(\Delta X)^2$ es mínimo.

7. El Hamiltoniano de un oscilador armónico de masa m y frecuencia ω es

$$H = (p^2 + m^2 \omega^2 q^2)/2m.$$

- a) Mostrar que los valores medios $\langle q \rangle$ y $\langle p \rangle$ realizan oscilaciones sinusoidales de frecuencia ω alrededor del orígen.
- b) Mostrar que los cuadrados de las desviaciones Δp y Δq oscilan sinusoidalmente con la mitad del período alrededor de un valor promedio y calcularlo. ¿En qué condiciones permanecen constantes?
- 8. Considere el hamiltoniano unidimensional:

$$H = \frac{P^2}{2m} + V(X),$$

donde P y X son los operadores momento y posición, con $[X,P]=i\hbar$. Utilizando la base propia de H dada por $H|\phi_n\rangle=E_n|\phi_n\rangle$:

a) Muestre que: $\langle \phi_n | P | \phi_{n'} \rangle = \alpha \langle \phi_n | X | \phi_{n'} \rangle$, con α un número que depende de la diferencia entre E_n y $E_{n'}$ (sugerencia: considere [X, H]).

b) De lo anterior deduzca que

$$\sum_{n'} (E_n - E_{n'})^2 |\langle \phi_n | X | \phi_{n'} \rangle|^2 = \frac{\hbar^2}{m^2} \langle \phi_n | P^2 | \phi_n \rangle.$$

Observe que esto permite conocer el valor esperado de la energía cinética en un autoestado de H si son conocidas las amplitudes $\langle \phi_n | X | \phi_{n'} \rangle$ del operador de posición entre ese autoestado y los demás.

9. Teorema del Virial

Considere una partícula que se mueve en una dimensión y cuyo Hamiltoniano es

$$H(X, P) = T(P) + V(X)$$

siendo
$$T(P) = \frac{P^2}{2m}$$
 y $V(X) = \lambda X^n$.

- a) Calcule el conmutador [H, XP].
- b) Pruebe que los valores esperados $\langle T \rangle$ y $\langle V \rangle$ cumplen la relación $2 \langle T \rangle = n \langle V \rangle$ para cualquier estado estacionario.