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SUMMARY

Many neurological and psychiatric disorders affect
the cerebral cortex, and a clearer understanding of
the molecular processes underlying human corti-
cogenesis will provide greater insight into such pa-
thologies. To date, knowledge of gene expression
changes accompanying corticogenesis is largely
based onmurine data. Here we present a searchable,
comprehensive, temporal gene expression data set
encompassing cerebral cortical development from
human embryonic stem cells (hESCs). Using a modi-
fied differentiation protocol that yields neurons sug-
gestive of prefrontal cortex, we identified sets of
genes and long noncoding RNAs that significantly
change during corticogenesis and those enriched
for disease-associations. Numerous alternatively
spliced genes with varying temporal patterns of
expression are revealed, including TGIF1, involved
in holoprosencephaly, and MARK1, involved in
autism. We have created a database (http://
cortecon.neuralsci.org/) that provides online,
query-based access to changes in RNA expression
and alternatively spliced transcripts during human
cortical development.

INTRODUCTION

The cerebral cortex is responsible for processing sensory input,

encoding memories, coordinating motor movements, thought,

and planning complex behaviors. Accomplishing these sophisti-

cated tasks involves billions of intricately connected neurons in

highly ordered layers and columns (Jones and Rakic, 2010).

Cortical development involves a precisely orchestrated program

of progenitor cell expansion, neuron differentiation, neuronal

migration, and circuit formation to create its highly organized

cytoarchitecture.
Knowledge of global gene expression patterns during corti-

cogenesis has been largely based on data obtained in mouse

systems (Belgard et al., 2011; Dougherty and Geschwind,

2005). Recent studies using RNA sequencing (RNA-seq) have

uncovered novel coding, noncoding, and alternatively spliced

transcripts expressed specifically in each cortical layer and

at different developmental stages, providing a more compre-

hensive view of murine cortical development (Belgard et al.,

2011; Hubbard et al., 2013). There are notable differences

between mouse and human cortices, the most obvious being

a 1,000-fold difference in size, and humans have a significantly

larger and more complex cortex. This elaboration is reflected

in the elongated gestation: cortical neurogenesis is approxi-

mately 70 days in humans (Caviness et al., 1995) but only

7–8 days in mice (Takahashi et al., 1996). Differences between

mouse and human cortical development are also evident at

the molecular level, with distinctly different gene expression

profiles in the cortical germinal zones of mouse and human

(Fietz et al., 2012); 30% of the layer-specific cortical markers

are differentially expressed between mouse and human (Zeng

et al., 2012).

Most human cerebral cortex transcriptome studies have been

carried out on postmortem tissue using microarray techniques

(Hawrylycz et al., 2012; Kang et al., 2011). Given the differences

in mRNA expression, splicing, and editing observed throughout

cerebral cortical development (Dillman et al., 2013) and the

limitations of microarray technology, deep sequencing tech-

nology is needed to fully characterize the transcriptomic

changes during corticogenesis. Differentiation of human embry-

onic stem cells (hESCs) into cortical progeny has been demon-

strated to be a viable model of human cortical development

(Gaspard et al., 2008; Johnson et al., 2007; Kim et al., 2011;

Shi et al., 2012). In this study, we used an adapted protocol to

differentiate hESCs into cortical neurons over 77 days; per-

formed RNA-seq during the process to generate a comprehen-

sive transcriptome database encompassing human in vitro

corticogenesis; and conducted analyses for KEGG pathways,

gene ontology (GO) categories, disease associations, and

alternative splicing. We provide the database and analytical

results as a resource released in raw data format as well as a
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Figure 1. Establishing a Workflow for In Vitro Corticogenesis

(A) Schematic of cortical differentiation protocol, based on dual SMAD-inhibition (LDN = LDN193189; SB = SB431542; KSR = ‘‘Knockout Serum Replacement

media’’; N2 = DMEMF12 with N2 supplement; N2/N27 is DMEMF12 supplemented with N2 and B27) with each media represented by a different color. The

collection times used for RNA-seq profiling are printed above the timeline. Shown below the schematic are phase images of cultures at days 0, 12, and 77 of the

protocol.

(B) Real-time qPCR to verify differentiation of hESC to anterior neural progenitors. Prosencephalic marker, PAX6; Telencephalic marker, FOXG1; dorsal telen-

cephalon marker EMX2; ventral telencephalic markers, NKX2-1, DLX1. No signal was observed for either of the posterior markers. All error bars are SD.

(C) Immunocytochemistry of known neural differentiation and cortical layer markers to establish validity of the protocol. Pluripotency markers: NANOG, POU5F1

(OCT4; day 0). Neural induction markers: NES (day 7), MKI67 (day 0), OTX2 (day 12), and PAX6 (day 12); ADRA2A (L6; day 19), DRD5 (L5; day 19), GRM4 (L4; day

35), and POU3F2 (L2–L4; previously BRN2; day 35).

(legend continued on next page)
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web-based, searchable data set—http://cortecon.neuralsci.

org/—with interactive access to the computational analyses.

RESULTS

Simulating Human Cortical Development In Vitro
We adapted previously published differentiation protocols

(Chambers et al., 2009; Gaspard et al., 2008) to simulate cortical

development in 2D adherent cultures. hESCs were grown and

neural induction was initiated using the dual SMAD-inhibition

protocol (Chambers et al., 2009). To ensure a dorsal telence-

phalic fate, the sonic hedgehog antagonist cyclopamine was

added on day 3 of neural induction (Gaspard et al., 2008).

Throughout the entire subsequent period of cortical differentia-

tion, cultures were maintained in N2B27 medium (Gaspard

et al., 2008) supplemented with FGF-2 (Figure 1A). To verify

that this protocol was in good agreement with previously pub-

lished results (Shi et al., 2012), we performed quantitative real-

time PCR analysis during the first 12 days of the differentiation,

focusing on several known markers of neural specification (Fig-

ure 1B). This revealed a steady increase in the prosencephalic

marker PAX6 (Zhang et al., 2010) and increased expression

of the telencephalic marker FOXG1, indicating acquisition of a

telencephalic fate (Hébert and Fishell, 2008). EMX2 (Cecchi,

2002), a dorsal telencephalon marker, steadily increased over

this period, indicating cerebral cortical fate acquisition (Fig-

ure 1B). Notably, no expression of the ventral telencephalic

markers NKX2-1 and DLX1 (Hébert and Fishell, 2008) was

detected.

The cell phenotypes produced in the cultures were identified

using immunocytochemistry. Expression of the pluripotency

markers NANOGandPOU5F1 (OCT4) was high in the undifferen-

tiated hESCs, and both proteins rapidly decreased after initiation

of neural differentiation as expected (data not shown). Upon neu-

ral differentiation, the neural progenitor cell marker Nestin (NES)

was induced, concomitant with high levels of the proliferative

marker MKI67. Strong expression of PAX6 and OTX2 confirmed

that a dorsal, cortical specification had occurred (Figure 1C).

Neurons destined for different cortical layers are formed in a

set sequence. To assess whether the appropriate cortical cell

layers were forming during the differentiation protocol, we

carried out immunocytochemistry for markers selected from a

recent study identifying several adult human layer-specific

cortical markers by in situ hybridization in postmortem human

brain (Zeng et al., 2012). Expression of adrenoreceptor alpha

2A (ADRA2A; layer VI) and dopamine receptor D5 (DRD5;

layer V) confirmed deep layer formation, and expression of gluta-

mate receptor, metabotropic 4 (GRM4; layer IV) and POU class 3

homeobox 2 (POU3F2; layer IV-II) indicated the presence of mid

and upper layer cells. Together, these data show the 77 day pro-

tocol recapitulates human cortical development in vitro, encom-
(D) Pearson correlations of Cortecon replicates.

(E) Comparative analysis of RNA-seq data with BrainSpan Atlas of the Develo

microdissected human fetal brain regions. Human sample ages range from 9 po

gross brain regions. Due to lack of data pertaining to the whole cortex in Brainspa

closely correlated with other cortical regions. Ventrolateral Prefrontal Cortex (VF

(TH); cerebellum (CB). See also Figures S1 and S2.
passing all stages from pluripotency to upper layer neuron

generation.

RNA-Seq Measures of In Vitro Human Cortical
Development
We used RNA-seq to determine gene expression changes

occurring during the span of corticogenesis. Analysis was car-

ried out using R (Team, 2012) and packages available through

Bioconductor (Gentleman et al., 2004). Data were derived from

samples generated in two separate cortical differentiation exper-

iments: a full differentiation (day 0, 7, 19, 33, 49, 63, and 77; two

samples designated A and B) and a shorter differentiation (day 0,

7, 12, 19, and 26; two samples designated C and D). To verify

that these two differentiations produced similar transcriptional

profiles, we determined the Pearson product-moment correla-

tion coefficient (Pearson’s r) for all combinations of biological

and experimental replicates (Figure 1D; Figure S1A available

online) that showed a strong correlation between expression

profiles generated on the same day of differentiation regardless

of experimental origin, indicating strong reproducibility.

The cortical RNA-seq datasets were compared to data in the

BrainSpan Atlas of the Developing Human Brain (Miller et al.,

2014) (http://brainspan.org/), which contains transcriptome

profiles generated by RNaseq from macrodissected and laser-

microdissected human fetal brain regions from multiple time

points during development (9, 12, 13, 17, 21, 24, 26, 56, and

92 postconception weeks). This analysis demonstrated the

genes expressed by in vitro generated cortical cells correlated

best with human fetal cerebral cortex transcriptomic profiles as

compared to other brain regions (Figure 1E). Notably, the anal-

ysis indicates the cells generated by this protocol most closely

resemble medial prefrontal cortex (Figure S1B) while showing

the least similarity to primary somatosensory and auditory

regions.

Global Temporal Transcriptome Analysis of In Vitro
Corticogenesis
EdgeR and DESeq2 (Anders et al., 2013) were used to gain

insight into the dynamic changes in the transcriptome during

the cortical differentiation period. A total of 14,065 RNAs

exhibited significant changes during the time course (adjusted

p value <0.05 and a 2-fold change), common to both EdgeR

and DESeq2, out of 31,041 expressed RNAs. A total of 1,729

of these were long intergenic, noncoding RNAs (lincRNAs) (Fig-

ure 2A; Table S1). To better understand the gene expression

changes occurring, we utilized the GOseq package (Young

et al., 2010) to determined enriched GO categories. CateGOrizer

(Zhi-Liang et al., 2008), which parses GO analysis into a more

user-friendly format, was used to count the number of enriched

GOcategories falling under a hand-annotated list of the develop-

mental categories (Table S2). As expected, the major group of
ping Human Brain of transcriptome profiles from macrodissected and laser-

stconceptual weeks to 1 year old. Shown are the Spearman correlations with

n, VFC was used to represent cortex in the brain-wide comparison because it

C); hippocampus (HIP); striatum (STR); amygdaloid complex (AMY); thalamus

Neuron 83, 51–68, July 2, 2014 ª2014 Elsevier Inc. 53

http://cortecon.neuralsci.org/
http://cortecon.neuralsci.org/
http://brainspan.org/


Figure 2. Global View of Temporal Expression Profiles during In Vitro Corticogenesis
RNA-seq was used to determine the transcriptome at frequent intervals during in vitro corticogenesis.

(A) Distribution of significantly changing transcripts.

(B) Significantly enriched developmentally related GO categories aggregated into more comprehensive terms.

(C) Significantly enriched KEGG pathways in the global gene set and their distribution among six categories. Nervous-system-related pathways are highlighted

and displayed with calculated z scores.

(D) Significantly enriched diseases categorized as being a ‘‘nervous system disorders,’’ brain-related disease, a type of ‘‘cancer,’’ ‘‘other disorders,’’ or a

combination of these categories. See also Tables S1, S2, S3, and S4.
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GO categories enriched in this global data set aligned with the

‘‘Nervous System Development’’ category, providing confi-

dence in the differentiation and analysis, and smaller groups

aligned with categories describing the development of a variety

of other anatomical systems (Figure 2B; Table S2).

Key signaling pathways in the global RNA-seq data were eluci-

dated using the Signaling Pathway Impact Analysis (SPIA) pack-

age (Tarca et al., 2009). SPIA utilizes the curated KEGG pathway

repository to help determine the relative representation of spe-

cific pathways in expression data. Significantly enriched KEGG

signaling pathways included several main categories: ‘‘Cell Pro-

cesses,’’ ‘‘Cancer,’’ ‘‘Canonical Signaling,’’ ‘‘Nervous System,’’

and ‘‘Immune and Infectious Disease’’ (Figure 2C; Table S3).
54 Neuron 83, 51–68, July 2, 2014 ª2014 Elsevier Inc.
Many pathways implicated in normal neuronal development

were highlighted by SPIA. For example, genes falling under the

neuroactive-ligand receptor interaction-signaling pathway regis-

ter as enriched. The glutamatergic synapse-signaling pathway is

also enriched, which is encouraging, as the majority of endo-

genous cortical neurons are glutamatergic. In addition, several

other synaptic pathways are enriched, such as the GABAergic,

serotonergic, and dopaminergic pathways, signifying that a

multitude of genes required for neuronal function increase

expression over the time course. For example, neurotrophic

factors (e.g., BDNF, Neurotrophin 3) play key roles in neuronal

maturation, synaptogenesis, and cortical development (Zweifel

et al., 2005) and show expected dynamic changes throughout
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the time course (Figure S2). Genes contributing to synaptic func-

tion, such as SLC17A6 (Kaneko and Fujiyama, 2002), increase

during the later stages as expected (Figure S2).

Genes showing differential expression during in vitro cortico-

genesis were analyzed using the DISEASES database (http://

diseases.jensenlab.org/), which ranks disease-gene associa-

tions mined from the literature using Disease Ontology terms.

Using GOseq along with the DISEASES database, we observed

that several different categories of diseases were enriched in

the global data set, the majority being related to ‘‘Cancer,’’

‘‘Nervous System Disorders,’’ or a combination thereof (Fig-

ure 2D; Table S4).

Classification of Genes into Different Cortical
Developmental Stages
We used fuzzy c-means clustering (Kumar and E Futschik, 2007)

to group genes with significant changes in temporal expression

into clusters based on similarity in their temporal expression

patterns (Figure S3). This analysis generated 64 clusters ranging

in size from 65 to 854 genes with an average of 220 genes per

cluster (Figure S3).

The clusters were then classified by developmental stage,

using five different categories: ‘‘Pluripotency’’ (PP), ‘‘Neural

Differentiation’’ (ND), ‘‘Cortical Specification’’ (CS), ‘‘Deep Layer

neuron generation’’ (DL), and ‘‘Upper Layer neuron generation’’

(UL). To establish these categories, we examined genes known

to be associated with each stage and used their expression pro-

files to help establish milestones along the differentiation time

course. Pluripotency genes such as POU5F1 (OCT4), NANOG,

NODAL, and TDGF1 were found to be expressed highest at

Day 0 and to decrease dramatically thereafter, as expected,

thus setting clusters with highest expression at Day 0 as the

PP stage. PAX6, a known early indicator of neural commitment,

begins to be expressed at Day 7 and Sox1, another early neural

marker, peaks at Day 7; hence, we set the start of the ND stage at

Day 7. EMX2, a master regulator of cortical development (Cec-

chi, 2002), peaks at Day 12, setting the start of the CS stage at

day 12. For the DL stage, we examined TBR1 expression, a layer

6marker (Hevner et al., 2001), and found it upregulated at day 26.

Additionally, a marker of layer 5 cortical projection neurons,

BCL11B (CTIP2), rises in expression at day 33. Thus, we defined

the start of DL neuron generation at day 26. For the UL stage, we

looked at the recently identified human upper layer markers

CACNA1E, PRSS12, and CARTPT (Zeng et al., 2012) and found

their expression rises at day 63 and continues throughout, thus

defining the start of the UL stage as Day 63.

Once we established the developmental stages, we grouped

all the clusters with positive slopes of a certain degree (including

peaks) during the ND thru UL stages. In the case of the PP stage,

we grouped the clusters showing a negative slope after day 0.

This was done using a heuristic algorithm based on the changing

slopes of gene expression, rationalizing that positive slopes

indicate a critical role at that point in the process. It is possible

that genes could play critical roles at more than one period of

corticogenesis; for example, some genes are expressed in

both precursor cells and postmitotic neurons, so clusters exhib-

iting multiple peaks were classified into multiple stages. To take

into account multiple stage membership, we generated a
weighted average of clusters for each stage by first calculating

the number of stages each cluster belongs to. We then gave

less weight to those clusters belonging to more than one stage

and calculated a representative expression profile for each

developmental stage (Figure 3A).

We next examined the other genes and clusters associated

with each developmental stage. The PP stage (containing 24

clusters) was exemplified by cluster 31 (Figure S3) and included

not only the pluripotency genes already mentioned but also

genes known to be vital to the differentiation of other lineages,

such as SOX17. Clusters present in the ND stage include cluster

38 (Figure S3), which has the LHX2 a gene implicated in neural

differentiation (Hou et al., 2013), and cluster 13 (Figure S3), which

contains NPTX1, a gene that plays a role in neural induction

(Boles et al., 2014). In addition to the known CS gene EMX2,

clusters with peaks at this stage (e.g., cluster 56; Figure S3)

include MDGA1 and FGF8 (cluster 54; Figure S3), already impli-

cated in cortical specification (Takeuchi et al., 2007; Toyoda

et al., 2010).

Global Analysis of Each Stage of Corticogenesis
After classifying genes into a developmental stage, we function-

ally categorized them via a GO analysis using the GOseq

package (Figure 3B; Table S6). We identified enriched GO cate-

gories for each stage and then used cateGOrizer to count the

number of GO categories. As expected, we found ‘‘Nervous

System Development’’ categories to be a major component of

each stage, starting with ND (Figure 3B).

Using the DISEASES database (Frankild and Jensen, 2013),

we determined disease affiliations that are overrepresented in

the genes associated with each stage (Figure 3C; Table S7).

For display purposes, we grouped diseases into four categories:

‘‘Eye Diseases,’’ ‘‘Nervous System Diseases,’’ ‘‘Cancers,’’ and

‘‘Other Diseases.’’ As pluripotent stem cells are inherently tumor-

igenic due to their propensity for teratoma formation, it was not

surprising that the PP stage is enriched for several cancer types.

Interestingly, both the ND and DL stages showed negligible

disease enrichment. The majority of disease terms enriched in

the CS stage are related to the nervous system and include the

major category ‘‘Neurodegenerative Disease.’’ The UL stage

shows enrichment for the most disease terms, and genes asso-

ciated with diseases such as schizophrenia and autism are

enriched in this stage. Moreover, three of the four cancer terms

associated with the UL stage are cancers of the nervous system.

Finally, in examining the ‘‘Other Diseases’’ category, three of the

15 diseases have connections to cortical and nervous system

defects (Bardet-Biedl syndrome, sudden infant death syndrome,

and lipoidosis).

Changes in signaling pathways for each stage were revealed

using the SPIA package. The SPIA method performs two mea-

surements, the first utilizes expression data to determine if the

components of pathways, as curated in the KEGG pathway

database, are significantly overrepresented. The second mea-

surement determines how likely it is that the current condition

impacts the functioning of each pathway (activating or rendering

it inactive). Pathways were categorized into six groups:

‘‘Nervous System,’’ ‘‘Cell Processes,’’ ‘‘Canonical Signaling,’’

‘‘Immune and Infectious Disease,’’ ‘‘Cancer,’’ and ‘‘Other’’
Neuron 83, 51–68, July 2, 2014 ª2014 Elsevier Inc. 55
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Figure 3. Developmental Stage Analysis of Temporal Expression Profiles

(A) Individual clusters were assigned to cortical developmental stages, classified as ‘‘Pluripotency’’ (PP), ‘‘Neural Differentiation’’ (ND), ‘‘Cortical Specification’’

(CS), ‘‘Deep Layer neuron generation’’ (DL), and ‘‘Upper Layer neuron generation.’’ Plots for each stage are shown, with the time period of a stage illustrated by a

gray band.

(legend continued on next page)
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(Figure 3D; Table S8). As expected, the greatest number of path-

ways enriched in the ND through UL stages pertained to the

‘‘Nervous System’’ group, such as axon guidance and different

neurotransmitter pathways (Figure 3E). Together, these data

provide functional insight into genes expressed at the different

stages of cortical development.

Functional Classification of Gene Clusters
We next examined each individual cluster (Figure S3) using GO,

KEGG pathway, and DISEASES enrichment analysis, as

described above. Clusters 18 (166 genes) and 34 (143 genes)

showed the greatest number of enriched developmental cate-

gories, and both of these clusters were associated with the ND

and CS stages (Figure 4A; Table S9). In cluster 18 nearly half

(13/28) of the associated GO categories deal with nervous sys-

tem development, and cluster 34 had most categories dealing

with nervous system development (10/13), with over half of those

more specifically involved in central nervous system develop-

ment (6/10). Cluster 18 and 34 are similar in having an early

peak that drops to a sustained level of expression; however,

cluster 18 expression rises at a faster rate than cluster 34 at

the early peak. Intriguingly, the composition of these clusters is

quite different: cluster 18, which includes 166 genes (Figure S3),

contains 42 (25%) transcription factors, whereas cluster 34,

which includes 143 genes, contains 50 (35%) membrane pro-

teins and 22 (15%) secreted molecules, illustrating two very

different roles for these clusters in the process of corticogenesis.

Another interesting cluster in this analysis is cluster 56 (152

genes), which is associated with the ND, CS, and UL stages. It

has seven enriched categories, and all are involved in nervous

system development. It includes 26 lincRNAs, 18 genes with

transcription regulator activity, 21 secreted proteins, 39 trans-

membrane proteins, and assorted other genes. Of the 18 tran-

scription regulatory factors, only four have previously been

associated with cortical development, and it will be worthwhile

investigating whether the remaining 14 genes are novel regula-

tors of human corticogenesis.

SPIA pathway analysis highlighted a different set of clusters,

with 32 clusters showing enrichment in at least one pathway (Fig-

ure 4B; Table S10). Cluster 47 (280 genes), which is associated

with the PP and DL stages, was enriched for the greatest number

of pathways, with two related to the nervous system, two related

to cancer, and six related to the immune system. This cluster

shows high expression in the PP stage and a shallow peak during

DL formation, after which expression peters out, suggesting

reduced involvement in mature cortical function. Genes asso-

ciated with Huntington’s disease and Alzheimer’s disease

pathways were also enriched in this cluster, and interestingly,

these pathways are rated as inactive based on the specific genes

present in cluster.

Cluster 58 (243 genes) and cluster 39 (370 genes) are specif-

ically associated with the UL stage. For cluster 58, four of the
(B) GO enrichment for each of the cortical developmental stages.

(C) Enrichment for disease terms for each of the cortical developmental stages.

(D) KEGG pathway enrichment for each of the cortical developmental stages.

(E) Selected nervous-system-related KEGG pathways highlighted and displayed

pathway is active or inhibited by genes in each stage. See also Tables S6, S7, a
six enriched pathways are concerned with the nervous system.

Cluster 58 includes a significant number, 77 (31% of the cluster),

of lincRNAs, the second highest lincRNA complement of any

cluster. This cluster also includes 33 (14%) secreted factors

and 60 (25%) transmembrane proteins. Interestingly, the other

cluster specific to the UL stage, cluster 39 (370 genes), also

has most of its enriched pathways associated with the nervous

system (2 out of 3). Furthermore, the composition of the two

clusters is similar, although cluster 39 contains fewer (46, 12%)

lincRNAs. The combination of GO and KEGG analyses pre-

sented here provides functional insight into coordinated gene

sets at different stages of cortical development and highlights

several that would be worthwhile exploring further.

We next investigated the clusters for associations with disease

(Figure 4C; Table S11) as described above. Only 11 clusters

showed enrichment for genes involved in disease, of which

two clusters are notable due to the number of associated

disease terms. Cluster 31 (854 genes) is specifically associated

with the PP stage and shows an enrichment for 14 disease terms,

eight of which are cancer related. Many genes driving pluripo-

tency also have roles in carcinogenesis (Lee et al., 2013), so

this finding is consistent with pluripotent cell biology. In contrast,

when looking at cluster 39, which in the KEGG pathway analysis

is principally involved in nervous system pathways, only seven

disease terms were associated with the nervous system, while

21 of 43 enriched terms were associated with cancer. Cluster

39 also showed enrichments for genes associated with develop-

mental disorders that affect cortical function. For example, there

is an enrichment in autism-associated genes, including WNT2,

GABRG1, and C4B, and in schizophrenia-associated genes,

including HTR2A, TPH1, and ZNF804A (Frankild and Jensen,

2013), indicating a potential role for other genes in this cluster

in those diseases.

Alternatively Spliced Transcripts during Human
Corticogenesis
Alternative splicing is an essential step in regulating the function

of the majority of protein-coding genes, and studies have impli-

cated abnormal splicing in several medical disorders (Padgett,

2012). Using the DEXseq package (Anders et al., 2012), we iden-

tified genes with evidence of alternative splicing in the Cortecon

data set and then looked for disease associations (Table S12).

As shown earlier, 5,017 genes had differential splicing during

in vitro corticogenesis (Figure 2A), with an average of 2.2 exons

per gene changing expression during the differentiation time

course. We used this subset of spliced genes, associated with

stage and cluster, to look for enrichment of disease terms as

we did for the total gene sets described above. Interestingly, in

the PP and CS stages, the spliced gene subsets compared to

the total stage gene sets were enriched in disease terms related

to cancer (Figure 5A; Table S13). In concordance, cluster 31

showed an increase in the number of enriched disease terms
with calculated z scores. Backgrounds of each graph in (E) and (F) indicate if a

nd S8.
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Figure 4. Individual Cluster-Based Analysis of Temporal Expression Profiles

(A) GO enrichment for each of the temporal expression profile-derived clusters. Black arrowheads with numbers indicate specific clusters.

(B) KEGG pathway enrichment for each of the temporal expression profile-derived clusters. Black arrowheads with numbers indicate specific clusters.

(C) Enrichment for diseases for each of the temporal expression profile-derived clusters. Black arrowheads leading into black lines with numbers indicate specific

clusters. Expression profiles of clusters highlighted in each analysis is shown below each legend. See also Tables S9, S10, and S11 and Figure S3.
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Figure 5. Splice Form Analysis Reveals Roles in Neural Diseases and Cancer

Identification of genes in the data set with significant temporal changes in alternative splice forms.

(A) Enrichment for diseases for genes with alternative splice forms for both cortical developmental stages (left panel) and temporal expression profile-derived

clusters (right panel).

(B) Verification of alternative splice forms of TGIF1 by qRT-PCR.

(C) Verification of alternative splice forms of MARK1 by qRT-PCR. See also Tables S12, S13, and S14.

All error bars are SD.
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Table 1. Selected Genes from Each Stage

Entrez Gene ID Gene Symbols Stage

Stage

Eigenvector

Stage

Betweenness Associated Disease Max/Min Max/Threshold

183 AGT CS 0.8515 0.0162 Diabetes mellitus 626.88 227.72

UL 0.8571 0.0400 Brain disease

185 AGTR1 CS 0.7993 0.0190 Diabetic retinopathy Inf 7.85

UL 0.7929 0.0067 Brain disease

1565 CYP2D6 ND 0.5859 0.4384 Alzheimer’s disease 6.79 9.46

1571 CYP2E1 ND 0.9465 0.1982 Parkinson’s disease 24.94 2.66

1636 ACE CS 1.0000 0.1935 Central nervous

system disease

102.35 62.99

DL 0.1008 0.1516 Migraine

UL 1.0000 0.2366 Alzheimer’s disease

1813 DRD2 ND 0.5572 0.8659 Schizophrenia 22.87 56.87

1815 DRD4 ND 0.4424 0.0204 Autism 68.99 1605.65

2153 F5 UL 0.5776 0.0877 Migraine 274.48 66.40

2944 GSTM1 ND 1.0000 0.9109 Carcinoma 2.50 572.52

2947 GSTM3 ND 0.5304 0.0301 Childhood brain tumor 26.81 537.75

3106 HLA-B DL 0.6227 0.0385 Neurodegenerative disease 4.84 143.83

3113 HLA-DPA1 DL 0.0840 0.0016 Amyloidosis 4.28 10.11

3119 HLA-DQB1 DL 0.9222 0.0000 Pilocytic astrocytoma 7.30 157.24

3123 HLA-DRB1 DL 1.0000 0.0590 NA 7.24 45.24

3383 ICAM1 DS 0.3573 0.1023 Blindness 27.60 1451.80

3552 IL1A DL 0.1026 0.0358 Alzheimer’s disease 15.28 98.80

3553 IL1B CS 0.6087 0.5317 Alzheimer’s disease Inf 8.02

DL 0.1223 0.4333 Schizophrenia

3557 IL1RN UL 0.3693 0.0141 Brain disease Inf 1.14

3569 IL6 UL 0.6628 1.0000 Alzheimer’s disease Inf 34.19

3576 IL8 CS 0.4216 0.1884 Brain neoplasm Inf 71.94

3990 LIPC ND 0.4340 0.0592 Age-related macular

degeneration

Inf 4.47

4023 LPL ND 0.4934 0.8059 Cancer 44.81 1630.98

4524 MTHFR CS 0.6716 1.0000 Down syndrome 6.06 226.72

DL 0.0938 0.8549 Alzheimer’s disease

UL 0.7463 0.8106 Schizophrenia

4846 NOS3 CS 0.6416 0.2358 Alzheimer’s disease 4.95 62.27

4968 OGG1 ND 0.6267 0.0546 Neurodegenerative disease 3.52 291.74

5468 PPARG UL 0.3666 0.3778 Alzheimer’s disease 8.73 9.48

5683 PSMA2 PP 0.9990 0.0016 Alveolar echinococcosis 3.90 727.40

5684 PSMA3 PP 0.9995 0.0104 Chronic fatigue syndrome 5.05 5225.13

5685 PSMA4 PP 0.9904 0.0090 Keratoconus 3.87 2397.07

5687 PSMA6 PP 1.0000 0.0098 Heart disease 2.93 1216.66

5688 PSMA7 PP 0.9977 0.0067 Cancer 3.67 12907.39

5689 PSMB1 PP 0.9819 0.0014 Visceral leishmaniasis 2.67 2730.82

5690 PSMB2 PP 0.9845 0.0008 NA 2.95 693.59

5692 PSMB4 PP 0.9819 0.0026 Neurotic depression 2.19 7890.62

5693 PSMB5 PP 0.9857 0.0002 Multiple myeloma 2.51 6924.69

5701 PSMC2 PP 0.9897 0.0193 NA 2.35 1190.04

7040 TGFB1 CS 0.5385 0.4873 Holoprosencephaly 12.40 983.38

DL 0.0780 0.2332 Alzheimer’s disease

UL 0.5636 0.4556 Glioma

(Continued on next page)
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Table 1. Continued

Entrez Gene ID Gene Symbols Stage

Stage

Eigenvector

Stage

Betweenness Associated Disease Max/Min Max/Threshold

7422 VEGFA CS 0.4208 0.5852 Astrocytoma 5.82 401.39

UL 0.3529 0.3714 Neuroblastoma

7515 XRCC1 ND 0.8439 0.9213 Carcinoma 2.39 1766.83

100507436 MICA DL 0.0987 0.0137 Carcinoma 6.47 121.50

Shown are the top ten genes from each stage according to eigenvector centrality scores as derived from the network analysis. The fold change for each

gene from its peak to its trough in the time course is shown in the Max/Min column. TheMax/Threshold column shows change between the calculated

threshold for each gene and themax value. The remaining columns show the eigenvector centrality scores (EV) of the gene and betweenness centrality

score for its stage. Betweenness scores were normalized against the top betweenness score in its stage so that a score of 1 represents the highest

betweenness score.
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when comparing all genes in the cluster to those genes that are

spliced, and a higher percentage of the terms are cancer related

in the spliced genes (91% versus 57%) (Figure 5A; Table S14). Of

the genes spliced differently over time, a number were associ-

ated with cortical-associated diseases.

To confirm alternative splicing at different stages, we carried

out qRT-PCR targeting specific splice forms for select examples.

We chose to examine TGFB-induced factor homeobox 1 (TGIF1;

cluster 14) due to its association with holoprosencephaly

(El-Jaick et al., 2007). We designed probes spanning exon junc-

tions with one probe belonging to nearly all splice forms of TGIF1

to act as a control and two spanning exon junctions of selected

TGIF1 isoforms and performed qRT-PCR. The expression values

were plotted as a percent expression of the control probe. One

exon junction demonstrated expression specifically at days 12

and 19 of differentiation (CS stage), while no expression was de-

tected at any of the other time points (Figure 5B, ‘‘purple’’). This

junction is associated with three splice forms of TGIF1, one of

which (splice form 4a) is the predominant TGIF1 splice form ex-

pressed in a range of human tissues, including brain (Hamid

et al., 2008). Thus, the expression of this exon junction specif-

ically during cortical specification, with low expression at later

times, may indicate a need for one of these three splice forms

during cortical patterning. One might speculate that as holopro-

sencephly occurs early in nervous system development, these

splice forms may be specifically involved in that pathology. The

other exon junction tested was unique to a specific TGIF1 splice

forms (Figure 5B, ‘‘blue’’), and it demonstrated changing expres-

sion throughout the time course, with expression being lowest

during PP but increasing throughout the remainder of cortico-

genesis (Figure 5B), suggesting a wider role during the process.

Together, these data demonstrate specific isoforms of TGIF1 are

expressed at specific times during cortical development, so that

defects in the splicing events at these times could contribute to

developmental disorders.

We next examinedMAP/microtubule affinity-regulating kinase

1 (MARK1) due to its implication in autism spectrum disorder

(ASD) (Maussion et al., 2008). We used four probes spanning

exon junctions: one spanning all to serve as a control, a second

to test a shortMARK1 splice forms, and a third and fourth probe

that split the remaining variants into two groups (Figure 5C). At

the start of the differentiation process, variant 1, the short splice

forms, makes up approximately 35% of the total MARK1 mes-

sage, increases to approximately 60% on day 7, reduces to
35% at day 12–19 (Figure 5C), and thereafter steadily decreases

to 25% by day 77. Other probes indicate an increase in the

proportion of variant 4 splice forms as corticogenesis pro-

gresses, while splice forms 2 and 3 maintain a similar proportion

throughout. This suggests the short MARK1 splice forms

(variant 1) might play a critical role during early neural develop-

ment and cortical specification, while theMARK1 variant 4 splice

formsmight play a greater role at later stages of cortical develop-

ment. It will be interesting to explore these different splice forms

to determine if one in particular is critical for the progression of

autism-related pathologies.

Network Analysis Shows Autism-Related Genes in the
Context of Cortical Developmental
As development proceeds, waves of gene expressionmust work

coordinately to establish a fluid, systematic, neural progenitor

expansion and differentiation process. To further demonstrate

the utility of this data set and to obtain a greater understanding

of how genes in each cluster and stage relate to each other

throughout cortical development, we created a network based

on cocitations (see Supplemental Experimental Procedures,

available for download from http://cortecon.neuralsci.org/).

The resulting network was then filtered against lists of genes

belonging to a particular cluster or stage to obtain subgraphs.

Graph theoretic measures of ‘‘centrality’’ were then utilized to

find important nodes (genes) based on the relationships defined

within the structure of these subgraphs.

Using the igraph package (Csardi and Nepusz, 2006), we

utilized two methods for computing centrality, one more quanti-

tative (eigenvector centrality) and one more heuristic (between-

ness centrality) to determine genes pivotal to each cluster and

stage (Tables 1, S15 and S16). Utilizing these two distinct mea-

sures of centrality, we provide insight into the key players for

each cluster and developmental stage. To illustrate this method

of examining the data, we chose to focus on genes associated

with ASD from the DISEASES database (Frankild and Jensen,

2013) that change significantly in our data set. ASD encom-

passes a range of neurodevelopmental disorders, characterized

by social and communication deficits and repetitive behaviors

(Halfon and Kuo, 2013). We created a subgraph comprising

only those 171 genes related to ASD that change significantly

over the time course of in vitro corticogenesis (Table S17). After

constructing this subgraph, the genes in the graph were then

grouped by stage to visualize a potential ordering of gene
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Figure 6. Literature-Based Network Analysis for ASD-Associated Genes in Data set

(A) Cocitation network for ASD-associated genes (DISEASES database) with significant temporal expression in RNA-seq data set. Larger nodes representing

genes of more importance to the network by betweeness centrality. Network is set up according to the cortical developmental stages: ‘‘Pluripotency’’ (PP; green),

‘‘Neural Differentiation’’ (ND; orange), ‘‘Cortical Specification’’ (CS; purple), ‘‘Deep Layer neuron generation’’ (DL; red), ‘‘Upper Layer neuron generation’’ (UL;

blue), and ‘‘multi-stage’’ (‘‘linked’’: yellow).

(legend continued on next page)
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interactions during the developmental process. Genes unique to

a single stage (PP, ND, CS, DL, and UL) are each arranged in five

groups with a sixth group comprised of genes associated with

multiple stages (Figures 6A and 6B). Distributed around the cen-

tral group are groups of genes unique to a single stage, arranged

in a counter-clockwise fashion with the ‘‘Pluripotency stage’’ at

10 o’clock and each following stage thereafter. Genes that

have high centrality are highlighted in the network (Figure 6C).

This schematic (Figures 6A and 6B) gives an overall impression

of (a) the activity of genes over time (according to the stages),

(b) the importance of genes according to their measure of cen-

trality, and (c) the relationships/connections between genes

associated with autism.

A general impression of the developmental autism network is

that a myriad of receptors and ligands are at the center of each

stage (Figure 6). The gene with the highest eigenvector score is

catechol-O-methyltransferase (COMT), one of several enzymes

that degrade catecholamines such as dopamine, epinephrine,

and norepinephrine. Dopamine degradation by COMT is of

particular importance to the functions of the prefrontal cortex,

a region that our differentiation protocol enriches for (Figure 1E),

and polymorphisms in COMT affect working memory (Matsu-

moto et al., 2003). A serotonin receptor, HTR2C, has the highest

betweenness score in the network. Dysfunction in serotonin

signaling has been linked to autism (Scott and Deneris, 2005),

and several members of the serotonin receptor-family in addition

to HTR2C are also prominent at different cortical developmental

stages in the network: ‘‘PP’’ (green), HTR3A, HTR1A, and HTR7

and ‘‘UL’’ (blue), HTR5A, and HTR2A. HTR2A, in addition to

having the fourth highest eigenvector score in this network, is

also in the top 1% of eigenvector scores in the UL stage and

has the highest eigenvector score for cluster 39. Previous

studies have shown serotonin plays a role in cortical develop-

ment, and loss of serotonin results in abnormal development of

neurons in cortical layers 3 and 5 in rats (Vitalis et al., 2007).

Our data supports these studies and lends further credence to

the importance of serotonergic signaling during cortical develop-

ment and in ASD. Thus, the use of these networks can highlight

the interconnectivity of genes changing during the different

stages of cortical development and provide insight into which

stages might be most important for a specific disease, such as

ASD. By using the data provided in this resource, similar net-

works can be created for other diseases to highlight disease

associated processes.

Resource Utilization
To enhance the utility of this resource, we present the data and

analytical results in a searchable, web-based resource (http://

cortecon.neuralsci.org). Users can search for and navigate

genes, clusters, diseases, pathways, and ontology categories

of interest. The Cortecon resource provides a valuable standard

for comparison of other data sets. While the protocol described

here can robustly generate human cortical cells, culture varia-
(B) ASD-associated gene network for ‘‘Upper Layers’’ (UL) stage highlighted.

(C) Table with genes that display highest Eigenvector centralities and Betweenne

Eigenvector and Betweenness values for the genes within overall cortical deve

Figure S5.
tions exist from lab-to-lab, with two common variables being

(1) the variability of pluripotent stem cell (iPSC and hESC) lines

and (2) the starting cell density of the pluripotent stem cells. As

an example, when cortical differentiation was performed using

the same hESC line but with a lower cell density (approximately

60% compared to 85%) at the initiation of neural differentiation,

changes were observed in the resultant time course of cortico-

genesis, based upon the expression profile (Figure 7). The cells

were cultured for the full span of 77 days, with RNA sampled

at the same time points described in Figure 1 for RNA-seq.

Using Spearman rank correlations (Figures 7A and 7B), we

compared the original Cortecon data set to the lower density

test run data set and saw strong correlations at day 0 and day

7 between the two runs; however, correlations decreased at later

time points (Figure 7A). In order to assess whether the rate of

differentiation was different, we used the top 1,000 changing

genes in the Cortecon data as landmarks for the temporal

progression of corticogenesis (Figure 7B). Based upon these

landmarks, the test run differentiation was accelerated

throughout the early time course compared to the Cortecon

data set (i.e., day 33 of the test run showed strong correlations

with day 33–63 of the Cortecon data). We next examined the

overlap of significantly changing genes (Figure 7C) and found

that approximately 70% of the Cortecon genes were changed

in the test case. After examining the enriched GO Biological Pro-

cesses categories from both data sets, we found a high overlap

between each differentiation (Figure 7D). Finally, we compared

the percentage of deep and upper layer markers present in

each data set and noticed that while decreased compared to

the Cortecon data set, the test protocol did robustly generate

cortical neurons (Figure 7E). Importantly, we were able to

demonstrate that by using simple correlation analyses, re-

searchers can perform a temporal alignment of their data to

this reference set for corticogenesis, regardless of cell density.

We also compared the Cortecon data set to a similar data set

generated from mouse embryonic stem cells (Hubbard et al.,

2013) (Figure S4). Using the human/mouse homologs, the Pear-

son product-moment correlation coefficient (Pearson’s r) was

calculated between the time points of each data set. Within

each data set, adjacent time points were highly correlated, while

overall there was low correlation between the mouse and human

data, although the earlier time points were more correlated (Fig-

ure S4A). We next examined the expression of select genes

involved in neural differentiation and corticogenesis. Normalized

counts for each gene were scaled to the average expression of

the gene over the time course for each data set to facilitate the

comparison of expression profiles (Figure S4B). FOXG1 nearly

has identical profiles in mice and human corticogenesis, and

PAX6 and EMX2 have very similar profiles. Finally, GAD1 and

GRIK4 trend the same in both mouse and human, but their pro-

files are different (Figure S4B). Thus, ‘‘Cortecon’’ is a valuable

tool for researchers to identify similarities or differences even

across species over the differentiation time course.
ss centralities within specific developmental stages of the ASD-gene network.

lopmental stages are given as well. See also Tables S15, S16, and S17 and
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Figure 7. Comparison of Cortecon Data Set to a Modified Cortical Protocol

A separate cortical differentiation was carried out with the starting cells at a reduced confluency of 60%–80% (test case).

(A and B) Spearman’s correlation was used to compare the Cortecon data and the test case. Heatmaps of the Spearman’s rho values describing the correlation

between every sample in the data set (A) using all genes and (B) using the top 1,000 significantly changing genes (the test case sample labels are indicated by a

gray background).

(C) A Venn diagram showing the overlap of significantly changing genes between the test case and the Cortecon data.

(D) A Venn diagram showing the overlap of GO categories between the test case and the Cortecon data.

(E) Percentage of layer markers (Zeng et al., 2012) expressed during the time course in the Cortecon data versus the test case. See also Figure S4.
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DISCUSSION

Until recently, insights into the molecular determinants of human

corticogenesis have primarily been inferred from non-human
64 Neuron 83, 51–68, July 2, 2014 ª2014 Elsevier Inc.
model systems. Since the first studies describing the differentia-

tion of hESCs into characteristic cortical neurons (Johnson et al.,

2007; Kim et al., 2011; Shi et al., 2012), this system is gaining

recognition as a valuable ‘‘development-in-a-dish’’ model of
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human corticogenesis. Here, we describe a resource ‘‘Corte-

con’’ that we have created to help researchers exploring this

topic by cataloguing how the transcriptome changes during

human in vitro corticogenesis using RNA-seq technology,

demonstrating a variety of downstream analyses to show its util-

ity and value, and creating an online, readily searchable website

to access the resource.

Through a comparison to BrainSpan RNA-seq data sets, the

cortical neurons generated using this protocol were found to

be most closely associated with prefrontal cortical regions.

This is an important area to model in vitro, given its association

with a number of significant diseases and disorders, including

schizophrenia (Pomarol-Clotet et al., 2010), autism (Courchesne

et al., 2011), and age-related impairment in memory consolida-

tion and retrieval (Mander et al., 2013). While strongly suggestive

of a prefrontal cortical identity, this area takes longer to mature

than others such as somatosensory or visual cortical areas

(Gogtay et al., 2004). Thus, the high correlation to MFC could

also be attributed to the late persistence of genes associated

with cortical development, which will be interesting to explore

further.

Using the Cortecon data set, we can assess mechanisms of

cortical development established in other model systems for

their role in human. The radial glial marker NES was expressed

throughout the period of progenitor cell generation, as expected

(Figure S2). In general, neurons are born in order (Shen et al.,

2006), as they are in other species, confirming results in humans.

For example, Reelin is a marker of early born Cajal-Retsius cells

and is an important secreted molecule that guides organization

of the mouse cortex (Rice and Curran, 2001). In the Cortecon

data set, its expression increases early in the time course,

consistent with early-born Cajal-Retsius cell production. Inter-

estingly, this is followed by a much larger increase during the

UL stage, consistent with reports in the mouse of a later period

of generation of Reelin+ cortical cells (Förster et al., 2010). After

neurogenesis, gliogenesis occurs, and consistent with this, the

astrocyte marker GFAP greatly increases at the last time point

sampled (Figure S2).

FGF and WNT signaling play key roles in mouse corti-

cogenesis, and several of the related genes show similar trends

in expression in the Cortecon database to those reported in

mouse. For example, FGF8 plays a crucial role in mouse cortical

areal patterning (Toyoda et al., 2010) and in generating deep

layer neurons (Chalmers et al., 2002). In the Cortecon data set,

FG8 expression increases throughout the CS and DL stages

supporting a possible involvement during these early stages of

human corticogenesis. The FGF receptors (FGFR1, FGFR2,

and FGFR3) have been demonstrated to be essential for corti-

cogenesis (Rash et al., 2011), and their expression peaks during

the early stages of cortical development (Figure S2). Finally,

FGF10, which in mouse controls the differentiation of neuro-

epithelial cells into radial glia, has very low expression until upper

layer neurons are being generated (Sahara and O’Leary, 2009),

indicating a different role for FGF10 in human cortical

development.

To assess how the WNT pathway components changed, we

looked for WNT regulators in the Cortecon data set. WNT7B

and WNT8B play key roles in cortex formation in mouse, (Garda
et al., 2002), and in the Cortecon data set, their expression

increased during cortical specification (Figure S2). In addition

to pathway stimulation, WNT antagonism plays a critical role in

cortical development; for example, the WNT antagonist DKK1

impacts the early decision for neurectoderm to adopt a telence-

phalic fate (del Barco Barrantes et al., 2003). Using the Cortecon

data set, we assessed the expression profile of two WNT antag-

onists, DKK1 and FRZB. DKK1 sharply increased during the ND

stage, sharply decreased during the CS stage, and peaked again

at the UL stage. FRZB showed a similar pattern; however, it had

a much greater peak during the UL stage and a much smaller

peak during the ND stage (Figure S2).

Exploration of the Cortecon data set from different perspec-

tives will allow researchers to examine hypotheses centered

on human cortical development. One of the most interesting dis-

coveries made during this analysis was the catalog of alterna-

tively spliced transcripts present at different stages of cortical

development. Interestingly, the splice forms gene sets can

consolidate the disease enrichment of a gene cluster into

more narrow categories. For example, cluster 31, which fits

the pluripotency PP expression profile, had roughly 60% of

enriched diseases associated with cancer when looking at all

significantly changing genes. However, when focusing on genes

demonstrating alternative splicing, the disease enrichment was

now almost exclusively cancer related (Figures 3, 4, and 5).

These findings are in line with recent evidence showing overlap-

ping mechanisms underlying stem cell reprogramming and

tumorigenesis (Bernhardt et al., 2012), indicating that the differ-

entially expressed splice forms in cluster 31 not currently asso-

ciated with cancer are potential oncogenic candidates for

further study. In relation to cortical development, we identified

different isoforms expressed at different stages of in vitro

corticogenesis for TGIF1, which is associated with holoprosen-

cephaly (El-Jaick et al., 2007), and MARK1, which has been

implicated in ASD (Maussion et al., 2008) (Figure 5). These

data suggest that specific splice forms might be more relevant

to certain diseases based on the time they are expressed in

the developmental program. For example, three splice forms

of TGIF1 were expressed specifically at the early stages of

cortical development as the cortical field was being specified.

It could be that these transcripts are the ones critical for cortical

development, and subsequently the progression of holoprosen-

cepahly. Hence, the Cortecon resource will be valuable for those

interested in splicing mechanisms and how they contribute to

development, to changes in specific gene expressions, and to

a variety of neurological diseases.

Researchers can also use this resource to gain insight into

developmental pathways by applying network analysis strate-

gies. For example, the developmental autism network created

revealed that receptors and ligands associated with ASD are

key players at all stages of cortical development. Most notable

are genes related to serotonin signaling and GABAergic

signaling. Serotonin has been previously shown to be critical in

cortical development (Janusonis et al., 2004) and in autism

(Anderson et al., 2009; Janusonis et al., 2004). The ASD network

constructed using these data shows various serotonin receptors

as well as a serotonin-pathway-related enzymes to be important

at the PP and UL stages (Figure 6). Interestingly, one hypothesis
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for ASD is based on a vital role for serotonin in the development

of upper cortical layers 2–4, in which perturbed serotonin

signaling results in altered layer formation, possibly contributing

to ASD pathology (Altamura et al., 2007). In addition, the autism

network indicates several GABA-receptors are involved in

different stages of in vitro corticogenesis, with individual

subtypes showing distinct temporal expression patterns (Fig-

ure 6). Many genes encoding presynaptic and postsynaptic

proteins located at GABAergic synapses have been implicated

in autism pathology (Delorme et al., 2013), and as indicated by

our data set, many of these genes also appear to play a role in

corticogenesis.

Application of this network approach enables different

clusters to be connected to each other, allowing interrogation

of interactions between clusters. For example, genes in cluster

18, which shows an early peak and is largely composed of tran-

scriptional regulators, may regulate the expression of genes in

cluster 34, which also shows an early peak but is principally

composed of signaling molecules. To test this hypothesis, we

examined a network composed of both clusters and observed

the transcription factors in cluster 18 were highly connected

with the signaling molecules in cluster 34 (Figure S5). In fact, in

a network constructed from the genes in cluster 34 and the

transcription factors from cluster 18, we found that a cluster 18

transcription factor (SOX5) had the highest betweenness and

closeness centrality scores in the network, and this corroborates

the critical role of Sox5 in mouse cortical development (Lai et al.,

2008). Moreover, SOX5 is directly linked to Myocyte Enhancer

Factor 2C (MEF2C), which is a transcription factor belonging to

cluster 34 and has the second highest betweenness and

closeness centrality scores in this network. Other cluster 18

transcription factors are similarly linked to cluster 34 genes.

This underscores the potential importance of cluster 18 in the

correct expression of genes in cluster 34. Using this network

approach to search for temporally relevant regulators of each

cluster can provide insight into how each cluster is connected

and regulated and focus attention on particular pathways to un-

cover mechanisms underlying human cortical development in

health and disease.

EXPERIMENTAL PROCEDURES

Human ESC Differentiation

Human ESCs (WA-09,WiCell) weremaintained on irradiatedmouse embryonic

fibroblasts (GobalStem) according to standard culture procedures. In some

cases, hESCS were maintained using StemBeads FGF2 (StemCulture). Induc-

tion of neural progenitors was initiated using an adaptation of the dual SMAD-

inhibition protocol (Chambers et al., 2009). Cyclopamine was added from day

3 of neural induction to ensure an anterior cortical fate (Gaspard et al., 2008).

Throughout the entire subsequent cortical differentiation, cultures were main-

tained in N2B27-medium (Gaspard et al., 2008) supplemented with 10 ng/ml

FGF-2. See Supplemental Experimental Procedures.

Quantitative RT-PCR

Quantitative RT-PCR was performed using TaqMan gene expression assays

(Life Technologies); see Supplemental Experimental Procedures.

Immunocytochemistry

Immunocytochemistry was carried out using standard procedures; see

Supplemental Experimental Procedures.
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RNA-Seq Application

Samples were collected using RNAprotect cell reagent (QIAGEN), and total

RNA was extracted using RNeasy plus mini kit (QIAGEN), according to the

manufacturer’s protocol. RNA samples were subject to RNA-seq by Expres-

sion Analysis (Durham) or Covance (Seattle): TruSeq RNA sample prep kit

(v2), HiSeq2000 platform (Illumina), paired-end, 50 cycles, multiplex (EA

4-plex; Covance 5-plex).

RNA-Seq Data Analysis

FASTQ files were mapped to the hg19 assembly via BFAST (Homer et al.,

2009) and analyzed using R (Team, 2012), an open source programming envi-

ronment for statistical computing and graphics, and a variety of packages

available through Bioconductor (Gentleman et al., 2004), an open develop-

ment project. FastQC was used to assess the quality of the sequencing (Table

S18). All code and R sessions are provided for download from http://cortecon.

neuralsci.org/. Files can also be downloaded from GEO: GSE56796. See Sup-

plemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, eighteen tables, and Supple-

mental Experimental Procedures and can be found with this article online at

http://dx.doi.org/10.1016/j.neuron.2014.05.013.
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Cluster PP ND CS DL UL Cluster PP ND CS DL UL

1 Absent Absent Present Absent Present 33 Absent Present Present Present Absent

2 Absent Present Present Present Present 34 Absent Present Present Absent Absent

3 Absent Present Present Present Absent 35 Present Absent Absent Absent Present

4 Absent Present Present Present Present 36 Absent Present Present Present Absent

5 Present Absent Absent Absent Absent 37 Absent Present Absent Absent Absent

6 Present Absent Absent Present Absent 38 Absent Present Present Present Present

7 Present Absent Absent Absent Present 39 Absent Absent Absent Absent Present

8 Absent Absent Present Absent Present 40 Absent Present Present Absent Present

9 Present Absent Present Absent Absent 41 Absent Present Absent Absent Absent

10 Present Absent Present Absent Absent 42 Present Absent Present Absent Absent

11 Absent Absent Absent Present Absent 43 Absent Present Present Present Present

12 Absent Present Present Absent Absent 44 Absent Present Present Present Absent

13 Absent Present Absent Absent Present 45 Absent Absent Present Present Present

14 Absent Absent Present Absent Absent 46 Absent Absent Present Present Absent

15 Present Absent Absent Absent Absent 47 Present Absent Absent Present Absent

16 Absent Present Absent Present Present 48 Absent Present Absent Absent Absent

17 Absent Absent Present Present Present 49 Absent Present Present Present Absent

18 Absent Present Present Absent Absent 50 Present Absent Absent Absent Absent

19 Absent Present Absent Present Present 51 Present Absent Present Present Absent

20 Present Absent Absent Present Absent 52 Absent Present Absent Absent Absent

21 Absent Present Present Present Absent 53 Present Absent Present Present Present

22 Present Absent Absent Absent Absent 54 Absent Absent Present Present Absent

23 Absent Present Absent Present Present 55 Absent Present Present Present Absent

24 Absent Absent Present Present Present 56 Absent Present Present Absent Present

25 Absent Present Absent Present Absent 57 Present Absent Present Present Present

26 Present Absent Present Present Absent 58 Absent Absent Absent Absent Present

27 Present Absent Absent Absent Absent 59 Present Absent Absent Present Absent

28 Absent Absent Present Absent Present 60 Present Absent Absent Present Absent

29 Absent Present Absent Absent Present 61 Absent Absent Present Absent Present

30 Absent Absent Present Present Present 62 Absent Absent Present Absent Present

31 Present Absent Absent Absent Absent 63 Present Absent Present Absent Absent

32 Absent Present Present Present Absent 64 Absent Present Absent Absent Absent

Significantly changing genes were clustered by c-means clustering based on their expression across the time course. Shown 

above are the stage memberships of each cluster, and following are graphs of each cluster's shape.

Stage Membership of each Cluster

Figure S3. Temporal expression profile-derived clusters.



0 20 40 60 80

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Cluster 1
 Composed of 410 Genes

Days post Neural Induction

R
el

at
iv

e 
C

ha
ng

e 
in

 E
xp

re
ss

io
n



0 20 40 60 80

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
Cluster 2

 Composed of 302 Genes

Days post Neural Induction

R
el

at
iv

e 
C

ha
ng

e 
in

 E
xp

re
ss

io
n



0 20 40 60 80

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
Cluster 3

 Composed of 147 Genes

Days post Neural Induction

R
el

at
iv

e 
C

ha
ng

e 
in

 E
xp

re
ss

io
n



0 20 40 60 80

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
Cluster 4

 Composed of 292 Genes

Days post Neural Induction

R
el

at
iv

e 
C

ha
ng

e 
in

 E
xp

re
ss

io
n



0 20 40 60 80

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
Cluster 5

 Composed of 275 Genes

Days post Neural Induction

R
el

at
iv

e 
C

ha
ng

e 
in

 E
xp

re
ss

io
n



0 20 40 60 80

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Cluster 6
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 Composed of 127 Genes
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 Composed of 143 Genes
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 Composed of 194 Genes
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 Composed of 157 Genes
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 Composed of 250 Genes
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 Composed of 230 Genes

Days post Neural Induction

R
el

at
iv

e 
C

ha
ng

e 
in

 E
xp

re
ss

io
n



0 20 40 60 80

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
Cluster 42

 Composed of 334 Genes
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 Composed of 259 Genes
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 Composed of 65 Genes
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 Composed of 145 Genes
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 Composed of 185 Genes
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 Composed of 194 Genes
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 Composed of 148 Genes
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 Composed of 152 Genes
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 Composed of 172 Genes
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Supplemental Figure 4. Mouse Human corticogenesis transcriptome comparison, 
related to Figure 7. 
Transcriptome data from a mouse in vitro corticogenesis differentiation (Hubbard 2013), was 
obtained and the human homologs were isolated. (A.) Heatmap of Pearson correlations between 
the human and mouse datasets containing only the mouse/human homologs.(B.) Comparison of 
select cortical genes from the mouse and human cortecon data. (mouse embryonic stem cells, 
mESC; neuroepithelial stem cells, NeSC; radial glia, RG; developmental stage (DS) I/II/III/IV neurons,
DS I/II/III/IV; maturing DS IV/V neurons,DS IV/V maturation; Pluripotency, PP; Neural Differentiation, 
ND; Cortical Specification, CS; Deep Layer Generation, DL; Upper Layer Generation, UL).



SCGN

GPR111
FABP7

HSF2

SCUBE3

CEND1
TRIM9 PHF21B

ID4

EMID1

DACH1

PHLDB1

SCMH1
PLAGL1

ADRA1D
GDF6

NEDD9

EPHA7

POU3F2 NR2E1

ZFHX4GRIP2

MPP5

PHPT1

BIK
GPC5

PLEK2
ENDOD1

USP46

SOX11

DUSP4

LPAR6

PRKCB

CALM2

SPHK1
RIMS1

RBFOX1

SOX10

SFRP2

WNT7B

C10orf11

WNT2B

HS6ST2

MUC12

CCDC109B
GPC3CLCN5

EGR1REL EDARKIT
RNF152ABCB4DDB2 GPR22 NAV3

CREM

FOSBGLI3

GRK5
MAP3K1

WNT3A

SNAI2

CFTR CTNNA2
ISPD ZFP30

ATF3
PTPRD

TKTL1

SOX5
SOX3 GDNF CXCL2

IL12A
GDF7

DRD2

SNAPIN

SPEN

MEF2C

CROT H1FX HEYL

DCAF12

HES4

MAFB

HES5

ZNF154
CNN3

ARSI

WNT8B

NEBL
LGI1

PCDHB13

DRAM2

A1CF

Supplemental Figure 5. Cluster 18 transcription factor and cluster 34 network, related to Figure 6.
 A subgraph was created from transcription factors of cluster 18 (shown in blue) and cluster 34 (shown in red).
SOX5 has the highest betweenness and closeness centrality scores of the subgraph indicating it as a key 
gene in this network. Size of node represents betweenness centrality score with larger nodes having 
higher scores.
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Supplemental Experimental Procedures 
 

Human Embryonic Stem Cell Culture  

Human ES cells (H9, WiCell) were maintained on irradiated mouse embryonic fibroblasts (MEFs; 

GobalStem) according to standard culture procedures(Fasano et al., 2010). H9 cells were cultured 

in HES-medium (all reagents were obtained from Life Technologies): DMEM/F12 (1:1) with 20% 

(v/v) KSR, 1 mM L-glutamine, 100 µM non-essential amino acids, 55 µM 2-mercaptoethanol, and 

10 ng ml-1 FGF-2. 

 

Neural Induction Human ESCs 

Human ES cells were dissociated to singe cells with dispase (StemCell), and isolated from MEFs 

by a 1hr, 37°C incubation on gelatin (StemCell)-coated plates in HES-medium. Non-adherent 

hESCs were washed and plated onto matrigel (BD biosciences)-coated 12-well or 24-well plates in 

HES-medium conditioned on MEFs, supplemented with ROCK inhibitor (Stemgent). When cultures 

were around 90% confluent, induction of neural progenitors was initiated using an adaptation of the 

12 day protocol (Chambers et al., 2009). The culture medium was changed to KSR-medium (all 

reagents were obtained from Life Technologies unless indicated otherwise): knockout-DMEM with 

15% (v/v) KSR, 2mM L-glutamine, 100 µM non-essential amino acids, 55 µM 2-mercaptoethanol, 

supplemented with 100 nM LDN193189 (Stemgent) and  10 µM SB431542 (Tocris). Medium was 

changed daily, on the third day 1µM cyclopamine (Stemgent) was added. Medium was changed 

every other day, as of day five increasing amounts of N2-medium (25%, 50%, 75%, 100%) was 

added, cyclopamine concentration was maintained at 1 µM. N2-medium (all reagents were 

obtained from Life Technologies unless indicated otherwise): DMEM/F12 (1:1) with N-2 

supplement and 0.775 g glucose (Sigma).  

 

Cortical Differentiation Human ESCs 
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On day 13 of initial neural induction, medium was changed to a culture medium supporting cortical 

differentiation, adapted from Gaspard et al. (Gaspard et al., 2008), and changed every other day. 

N2/B27-medium consists of equal parts N2 and B27. N2 (all reagents were obtained from Life 

Technologies): DMEM/F12 (1:1) with N-2 supplement, 2 mM L-glutamine, 0.5 mg ml-1 bovine 

albumin fraction V solution, 110 µM 2-mercaptoethanol, supplemented with 10 ng ml-1 FGF-2. B27 

(all reagents were obtained from Life Technologies): neurobasal with B-27 supplement, 2 mM L-

glutamine, supplemented with 10 ng/ml  FGF-2 to promote cortical progenitor proliferation and 

neurogenesis (Qian et al., 1997) 

 

Quantitative RT-PCR 

Samples were collected using RNAprotect cell reagent (Qiagen) and total RNA extracted using 

RNeasy plus mini kit (Qiagen), according to the manufacturer’s protocol. cDNA was generated 

using iScript reverse transcription supermix (Biorad), and quantitative RT-PCR performed using 

SsoFast probes supermix (Biorad) with TaqMan gene expression assays (Life Technologies) on a 

Mastercycler ep realplex2 S (Eppendorf) system, all reactions were carried out according to the 

manufacturer’s protocol. VIC-labeled HPRT was used as an endogenous reference gene in 

multiplex assays with FAM-labeled gene of interest: DLX1 (Hs00698288_m1*), EMX2 

(Hs00244574_m1*), FOXG1 (Hs01850784_s1), NKX2-1 (Hs00163037_m1*), OTX2 

(Hs00222238_m1), PAX6 (Hs01088112_m1).  

 

Immunocytochemisty 

Cultures were fixed in 4% (w/v) paraformaldehyde (Santa Cruz Biotechnology, Inc.) in phosphate-

buffered saline (Fisher Bioreagents) for 10 min at room temperature, and washed thrice with 

phosphate-buffered saline. Fixed cells were incubated for 1 hr at room temperature while gently 

rocked in block solution: phosphate buffered saline with 3% (w/v) bovine serum albumin (Santa 

Cruz Biotechnology, Inc.), 0.25% (v/v) triton X-100 (Sigma), 10% (v/v) normal donkey serum 

(Jackson ImmunoResearch). Fixed cells were incubated overnight at +4°C while gently rocked with 
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primary antibody diluted in block solution. Next day the fixed cultures were rinsed thrice with 

phosphate-buffered saline (Fisher Bioreagents), and incubated for 1 hr at room temperature with 

secondary antibody diluted in block solution. Following, the cultures were rinsed five times with 

phosphate-buffered saline (Fisher Bioreagents), and counterstained with DAPI nucleic acid stain 

(Life Technologies). Immunocytochemistry cultures were imaged using a Zeiss AxioObserver.D1 

inverted microscope. Primary antibodies used: ADRA2A (abcam, ab85570), DRD5 (abcam, 

32620), GRM4 (abcam, ab53088), MKI67 (BD Pharmingen, 550609), NANOG (R&D systems, 

AF1997), NES (Millipore, AB5922), OTX2 (Millipore, AB9566), PAX6 (DSHB, PAX6), POU3F2 

(previously BRN2) (Santa Cruz, sc-6029), POU5F1 (previously Oct4) (Santa Cruz, sc-9081), 

TUBB3 (Sigma-Aldrich, T8578). Secondary antibodies used were species-specific Alexa Fluor 

dyes (Jackson ImmunoResearch).  

 

RNA-Seq Application 

Samples were collected using RNAprotect cell reagent (Qiagen), homogenized with QIAshredder 

(Qiagen), and total RNA extracted using RNeasy plus mini kit (Qiagen), according to 

manufacturer’s protocol. Sample quality control was carried out using a 2100 Bioanalyzer (Agilent), 

only samples with an RNA integrity number (RIN) above 0.9 were selected for RNA-Seq. Selected 

samples were send out for RNA-Seq application (including library preparation, bar-coding, 

etcetera) to Expression Analysis (Durham, NC, USA), or Covance (Seattle, WA, USA), samples 

day 63 only: TruSeq RNA sample prep kit (v2), HiSeq2000 platform (Illumina), paired-end, 50 

cycles, multiplex (EA 4-plex; Covance 5-plex).  

 

RNA-Seq Data Analysis  

FASTQ files was mapped (80-85%) to human genome 19 using BFAST(Homer et al., 2009). 

Mapped files were analyzed utililzing R (Team, 2012) in conjunction with multiple packages: 

GenomicFeatures, rtracklayer, Rsamtools, GenomicRanges, edgeR, Mfuzz, DESeq, DESeq2, 

goseq, SPIA, ggplot2, igraph, RcolorBrewer, GO.db, org.Hs.eg.db, foreach, parallel, multicore, 
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doMC ((Anders and Huber, 2010; Anders et al., 2012; Csardi and Nepusz, 2006; Kumar and M, 

2007; Lawrence et al., 2009; Lawrence et al., 2013; Robinson et al., 2010; Tarca et al., 2009; 

Wickham, 2009; Young et al., 2010). For display purposes, data was normalized for library size 

using the DEseq package. All R code and sessions are available for download from the Corecton 

website (http://cortecon.neuralsci.org/).  

 

Network creation and analysis 

We created a network of gene associations based on mappings between Entrez gene ids and 

Pubmed ids. These mappings are available in the org.Hs.eg.db R package (Carlson et al.). Using this 

package, a network was constructed by connecting genes (the nodes in the network) to one another if 

they were co-cited in published articles (edges in the network). Connections between genes were 

weighted depending on the number of co-citations to strengthen confidence in the associations. 

Constructing the network in this manner indicates plausible interactions between genes, with these 

interactions weighted by the cohort of shared literature (Available for download from 

http://cortecon.neuralsci.org). The resulting network was then filtered against lists of genes belonging 

to a particular cluster or stage. This filtering yielded subgraphs (smaller networks) containing only 

genes relevant to each cluster or stage.  Graph theoretic measures of “centrality” were then utilized to 

find important nodes (genes) based on the relationships defined within the structure of these 

subgraphs. Centrality is one measure of how important a particular node is, indicating how likely it is 

that a particular node occurs along the most efficient path between two other nodes. On a map, we 

can compute the centrality of a location of interest based on how likely it is that the shortest route 

between any two other locations passes through it. In our case, centrality measures the likelihood that 

a gene in the network is found in a pathway of interactions connecting two other genes.  Cytoscape 

was used for network visualization (Shannon et al., 2003). 
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Comparison of in vitro data to in vivo Brainspan developmental data 

RNAseq data obtained at each time point from the differentiation protocol was compared to the 

Allen Institute's Brainspan database, a publicly available RNAseq data set from the developing 

human brain, to identify in vivo brain regions with the highest molecular similarity to the in vitro 

samples. Two comparisons were performed: a brain-wide comparison and a cortex-specific 

comparison. For the brain-wide comparison, seven regions were selected from Brainspan in vivo 

data (Ganglionic eminences, Ventrolateral prefrontal cortex, Hippocampus, Striatum, Amygdala, 

Thalamus, and Cerebellum), and for the cortex-specific comparison, eleven cortical areas 

(Ventrolateral prefrontal, Dorsolateral prefrontal, Medial prefrontal, Orbital frontal, Inferior parietal, 

Inferolateral temporal, Superior temporal, Primary motor, Primary somatosensory, Primary 

auditory, and Primary visual) were chosen. For most of these regions, we selected data from 

multiple ages of human brain development, as is available in the Brainspan database. 

In order to find a unique molecular signature for each region, the top 300 genes were selected 

whose expression was enriched in that region as compared to all other regions regardless of time 

(all brain regions for the brainwide comparison, all cortical regions for the cortex-only comparison; 

thus the gene sets used to define a signature for the VFC region vary depending on whether it is 

compared to brain-wide regions or to cortical regions). Genes were ranked based on enrichment p-

values, with the restriction that all genes selected had a corrected p-value<0.01. The Spearman 

correlation was calculated between the expression levels of these genes in each of the in vitro 

samples and in the relevant in vivo region, and plotted these values to find the highest correlations 

between in vivo brain regions and in vitro time points. It is important to note that the gene sets used 

to calculate the correlation are different for each brain region, although there is some overlap. As 

different genes are enriched in each region, there is no unified gene set that was used to generate 

all these correlations.  
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