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SUMMARY

Salamanders regenerate appendages via a progeni-
tor pool called the blastema. The cellular mecha-
nisms underlying regeneration of muscle have been
much debated but have remained unclear. Here we
applied Cre-loxP genetic fate mapping to skeletal
muscle during limb regeneration in two salamander
species, Notophthalmus viridescens (newt) and
Ambystoma mexicanum (axolotl). Remarkably, we
found that myofiber dedifferentiation is an integral
part of limb regeneration in the newt, but not in
axolotl. In the newt, myofiber fragmentation results
in proliferating, PAX7�mononuclear cells in the blas-
tema that give rise to the skeletal muscle in the new
limb. In contrast, myofibers in axolotl do not generate
proliferating cells, and do not contribute to newly
regenerated muscle; instead, resident PAX7+ cells
provide the regeneration activity. Our results there-
fore show significant diversity in limb muscle
regeneration mechanisms among salamanders and
suggest that multiple strategies may be feasible for
inducing regeneration in other species, including
mammals.

INTRODUCTION

In salamanders, limb amputation causes the formation of a pro-

liferative progenitor cell zone called the blastema that faithfully

regenerates the original limb (Stocum and Cameron, 2011).

Whether blastema cells arise from resident adult stem cells or

by cellular dedifferentiation has long been debated and skeletal

muscle has been an intense focus of such studies (Slack, 2006).

Conclusive, quantitative evidence for skeletal muscle dedifferen-

tiation was lacking, due to the inability to long-term fate map

endogenous muscle fibers. Histological and short-term cell

labeling studies suggested that multinucleated myofibers and

implanted myotubes dedifferentiate into mononuclear, prolifera-

tive cells in the first weeks of limb and tail regeneration (Calve
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and Simon, 2011; Echeverri et al., 2001; Hay, 1959; Lo et al.,

1993). The results of implantation of virally marked myotubes

were also consistent with fragmentation and proliferation (Kumar

et al., 2000). In vitro, newt myotube nuclei could be stimulated to

reenter the cell cycle (Tanaka et al., 1997) and several conditions

could induce myotube fragmentation into smaller myotubes or

mononuclear cells (Calve et al., 2010; Duckmanton et al., 2005;

Kumar et al., 2004; Odelberg et al., 2000). On the other hand,

PAX7+ satellite cells exist in salamander muscle tissue and

become proliferative upon amputation (Morrison et al., 2006).

Implantation of cultured satellite cells contributed to regenera-

tion but the fate of endogenous PAX7+ cells was not clear (Kragl

et al., 2009; Morrison et al., 2006, 2010).

Here we describe Cre-loxP-based genetic fate mapping of

muscle during limb regeneration in two salamander species,

Notophthalmus viridescens and Ambystoma mexicanum. Sur-

prisingly, in the newt, Notophthalmus viridescens, muscle

dedifferentiation makes a significant contribution to muscle

regeneration, while in the axolotl, Ambystoma mexicanum,myo-

fibers make no contribution to limb regeneration and PAX7+

satellite cells are the main contributor to axolotl limb muscle

regeneration. These results reveal an unexpected evolutionary

diversity in muscle dedifferentiation among closely related

species.
RESULTS

Myofibers Contribute to Regenerated Muscle in the
Newt Limb
Our aim was to permanently mark muscle fibers in the newt

limb and follow them through regeneration. To genomically

integrate a Cherry-to-nlsYFP loxP reporter, we flanked the

loxP expression cassette with Tol2 transposon sites and coe-

lectroporated limb tissue with a Tol2 transposase expression

vector (Figure 1A) (Kawakami, 2007). In addition, the electropo-

ration mix contained a Cre expression plasmid: either a

muscle-specific Cre expression vector, MCK:Cre (Jaynes

et al., 1988); a ubiquitously expressed CMV:Cre plasmid; or

control empty PUC19 vector (Figure 1A). Importantly, the trans-

posase and the Cre-driver vectors did not contain transposase

sites, and therefore would be transiently expressed. Therefore,
.
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only the loxP expression cassette would integrate long-term

into the genome of the limb cells.

We first confirmed that YFP expression from the loxP reporter

depended on CRE activity and that expression lasted through

regeneration. When the loxP reporter was coexpressed with

empty PUC19 in the mature limb, no YFP+ cells were observed

(Figures 1A and 1B). In contrast, when the ubiquitously ex-

pressed CMV:Cre was used, nuclei both within and outside of

muscle were labeled (Figures 1A and 1C). Upon amputation of

CMV:Cre limbs, we detected nuclear YFP signal in multiple cell

types of the 2-month-old regenerates, including skeletal muscle

(Figures S1B and S1C, available online), epidermis (Figures S1D

and S1E), and cartilage (Figures S1E and S1F). These results

showed that we could trace the progeny of stump cells into the

regenerate long-term.

We next assessed the specificity of the muscle Cre-driver,

MCK:Cre, which yielded nuclear YFP+ expression exclusively

in skeletal muscle as determined by coimmunostaining with

Myosin Heavy Chain (MHC) (Figure 1D). YFP+ nuclei in muscle

were only detected within the laminin+ basement membrane

(Figure 1E) and they colocalized with the myogenic transcription

factor MEF2C (Figure 1F). Of 642 YFP+ nuclei (n = 5 limbs), all

were found within the basement membrane, and 561 out of

563 YFP+ nuclei were MEF2C+.

It was also important to confirm that PAX7+ satellite cells

were not targeted by our labeling method. The electroporation

conditions we employed were in fact unable to access

satellite cells, as PAX7+ cells never expressed Cherry from

the loxP reporter when the loxP reporter was electroporated

alone (Figure S2A, n = 208 PAX7+ nuclei). We also did not

find any YFP+PAX7+ cells after coelectroporation of the loxP

reporter with CMV:Cre (data not shown). Consistent with these

observations, electroporation of the loxP reporter and MCK:Cre

yielded no YFP+PAX7+ nuclei (833 YFP+ nuclei in five limbs)

(Figure S2B). We further confirmed these results in an in vitro

culture of dissociated limb myofibers (Figures S2C and S2D).

In such preparations, we counted 249 YFP+ nuclei out of

4,399 DAPI nuclei associated with myofibers and none were

PAX7+ (Figure S2E). These in vitro studies also indicated that

an average of 5.0% ± 1.6% of dissociated myofibers ex-

pressed YFP (n = 4 limbs). These data collectively show that

we could specifically target myonuclei in newt limb skeletal

muscle.

Having shown the specificity and durability of the labeling

method, we used it to trace myofibers during limb regeneration

by coelectroporating upper arms with MCK:Cre, the loxP

reporter, and the transposase constructs 14 days before ampu-

tation. To map the long-term fate of the myofiber-derived

progeny, we analyzed limbs at the late palette and the late digit

stages of regeneration (Iten and Bryant, 1973). Figure S3A shows

the developing humerus, ulna, and radius, outlined by collagen-II

staining in late palette stage regenerate where myogenesis was

not yet complete. We detected YFP+ nuclei both proximally and

distally to the level of amputation. Double immunostaining

against collagen-II showed that YFP+ nuclei never colocalized

with regenerating cartilage (Figure S3B), which was in contrast

to the observations after CMV:Cre-mediated recombination

(Figure S1F). When late digit stage regenerates were analyzed,

we detected YFP+ nuclei in myofibers along the entire
Ce
proximal-distal axis, except at the digit tips (Figures 1G–1L).

On average 5.33% ± 1.37% of the myofibers were labeled

throughout the limb excluding the fingertips (Figure 1M) and

YFP+ nuclei were only found in myofibers. It is likely that the

lack of YFP+ nuclei in the fingertips is due to the fact that there

is almost no muscle found in this region. These data showed

that myofibers quantitatively contributed to new muscle forma-

tion during newt limb regeneration.

Myofibers Dedifferentiate into Proliferative Blastema
Cells during Newt Limb Regeneration
An important question is whether the injured myofibers

dedifferentiate during the regeneration process. To test this,

we first asked if YFP+ cells in the 2-week-old blastema had

lost the muscle marker MHC (Figure 2A). Proximal to the ampu-

tation plane, we found YFP+ nuclei both within and aroundMHC+

myofibers (Figures 2B and 2E). At the base of the blastema, close

to the amputation plane, we detected evidence of skeletal

muscle fragments that were positive for MHC and contained

YFP+ nuclei (Figures 2B and 2D). Importantly, in the distal

blastema we observed YFP+ cells that were negative for MHC

expression, indicating that muscle cells dedifferentiate to form

mononuclear, blastema cells (Figures 2B and 2C).

To determine if the YFP+MHC� blastema cells were prolifera-

tive, we double immunostained for YFP and the proliferating cell

nuclear antigen (PCNA). 16.7% ± 2.3% (n = 4 limbs) of the YFP+

nuclei in the blastema were double positive, indicating that they

were cycling (Figures 2F and 2G). We corroborated this conclu-

sion by pulsing the animals with the nucleotide analog EdU using

two different time windows. A short, 6 hr pulse on the day of

sacrifice resulted in 8.0% ± 4.0% (n = 4 limbs) of YFP+MHC�

cells incorporating EdU. Daily administration of EdU from 7 to

14 days postamputation (dpa) increased the fraction of

EdU+YFP+MHC� cells to 65.0%±13.3% (n=3 limbs) (Figures 2H

and 2I). In the stump region, we never detected YFP+EdU+MHC+

nuclei, neither in MHC+ skeletal muscle fragments nor in intact

myofibers, indicating that cell cycle reentry is a postfragmenta-

tion event localized to the blastema.

To determine the long-term fate of the YFP+EdU+ cells, limbs

that had been pulsed with EdU during blastema formation

(day 8–21) were analyzed at the late digit stage (80 dpa) (Fig-

ure 2A). We observed EdU+YFP+ nuclei within regenerated

muscle in all regions of the new limb, including the hand, in

two out of four samples (Figures 2J and 2K). In seven transverse

hand sections we saw that 8 out of 27 labeled myofibers con-

tained EdU+YFP+ myonuclei, indicating that the proliferating

YFP+ cells had contributed to de novo myogenesis.

These data show that upon limb amputation, myofiber dedif-

ferentiation produces MHC�, proliferative blastema cells that

contribute to de novo muscle regeneration during limb regener-

ation in newts. The further molecular profile of the dedifferenti-

ated, myogenic blastema cell is described later in this work.

Muscle Dedifferentiation Does Not Contribute to Limb
Regeneration in Axolotl
The axolotl (Ambystoma mexicanum), another salamander spe-

cies commonly used to study limb regeneration, presented addi-

tional opportunities to study muscle dedifferentiation. To initially

assesswhether axolotl myofibers contribute to limb regeneration
ll Stem Cell 14, 174–187, February 6, 2014 ª2014 Elsevier Inc. 175
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similarly to the newt, we performed electroporation-based mus-

cle labeling. The MCK:Cre, CAGGS:loxpCHERRY-STOPloxp-

H2BYFP and CMV:Tol2-transposase expression plasmids were

coelectroporated into the axolotl limb (Figure 3A). Electropo-

rated limbs showed robust nuclear YFP expression closely asso-

ciated with myofibers as visualized by immunocytochemistry

against MEF2C (Figures 3B–3D) or muscle-specific MHC (Fig-

ure 3E). Labeled limbswere amputated in the upper arm, allowed

to regenerate fully, and then visualized both by whole-mount

imaging at 33 dpa (n = 5, Figure 3F) and by sectioning of entire

regenerated limbs at 90 dpa. In contrast to the results from the

newt, nuclear counts along the sectioned regenerate showed

that all visible YFP+ nuclei (732) were restricted to the upper

limb region and no labeled nuclei were found in the distal upper

arm, lower arm, or hand (Figures 3F and 3G). These results sur-

prisingly suggested that myofibers make no contribution to the

axolotl limb regenerate.

Considering the striking lack of myofiber contribution in

axolotl, we sought to confirm our tracing results using

germline transgenic animals (Sobkow et al., 2006). We have

recently generated germline transgenic loxP-reporter animals,

CAGGS:loxp-GFP-STOP-loxp-Cherry, and tamoxifen-inducible

Cre lines including CAGGS:ert2-cre-ert-T2A-nucGFP (Khattak

et al., 2013). Using these well-characterized animals, we

achieved muscle-specific labeling by exploiting the syncytial

property of differentiated skeletal muscle cells that form by

myoblast fusion (Figure S4A and described further below).

Conceptually, if we allow fusion of a CAGGS:loxp-GFP-STOP-

loxp-Cherry myoblast with a CAGGS:ert2-cre-ert-T2A-nucGFP

myoblast, the nuclei of the two genotypes would share a

common cytoplasm, allowing the inducible CRE protein from

one nucleus to enter the CAGGS:loxp-GFP-STOP-loxp-Cherry

transgenic nucleus. Upon tamoxifen induction recombination

would occur, resulting in Cherry expression throughout the

myofiber cytoplasm.

We achieved cell-fusion-mediated muscle-specific labeling

of CAGGS:loxp-GFP-STOP-loxp-Cherry and CAGGS:ert2-cre-

ert2-T2A-nucGFPmyoblasts by grafting an upper arm blastema

from one genotype onto the upper arm stump of a host animal of

the other genotype (‘‘Axolotl LB-transplant,’’ Figure 4A). The

grafted limbs were then allowed to fully regenerate. After grafting

and limb differentiation, we did not observe Cherry+ cells in the

limb prior to tamoxifen injection (Figures S4B and S4C). When
Figure 1. Long-Term Contribution by Myofibers to Limb Regeneration

(A) Schematic outline of the experimental paradigms. Letters within parenthesis

(B) Only Cherry+ cells are visible when no Cre recombinase is expressed.

(C) Cells within and outside of skeletal muscle are YFP+ when Cre recombinase

(D) Only cells in skeletal muscle are YFP+ whenCre is under the control of the mus

all copies of the loxP construct have converted to YFP.

Arrowheads point to YFP+ nuclei outside of skeletal muscle in (C) and arrows po

(E) YFP+ nuclei are located within the laminin+ basement membrane.

(F) YFP+ nuclei are MEF2C+. Arrows point to colocalization.

(G) Drawing of the location of the transverse sections shown in (H)–(L).

(H) YFP+ nuclei in stump muscle.

(I–K) YFP+ nuclei at the indicated levels (in G) along the proximo-distal axis.

(L) Lack of YFP+ nuclei in the fingertip region.

Dotted lines in (I0)–(K0) indicate the cartilage boundary. The inserts in (H0)–(L0) are
(M) Graph showing the fraction of labeled myofibers at the indicated levels (in G

Scale bars: 20 mm. See also Figures S1, S2, and S3.

Ce
tamoxifen was injected into the animals, we observed strong

Cherry expression in linear elements within the limb consistent

with labeling of myofibers (Figures 4B and 4C). Both donor::host

pairings, CAGGS:loxpGFP-STOPloxpCherry:: CAGGS:ert2-cre-

ert2-T2A-nucGFP or vice versa, gave muscle labeling (n = 20,

n = 13 respectively). We did not observe any Cherry+ cells

when the donor or host was replaced by a nontransgenic animal

and induced with tamoxifen (Figures S4D–S4F).

The specificity of Cherry expression in muscle was confirmed

by colocalization of the Cherry signal with muscle markers.

Excellent colocalization of Cherry signal with MHC was

observed, and no Cherry signal was observed outside of muscle

tissue (Figures S5A–S5D). We also examined cross-sections for

colocalization of Cherry signal with immunofluorescence signal

for the nuclear muscle marker MEF2C or the satellite cell marker

PAX7. For a total of 513 Cherry+ nuclei counted, 509 were found

to beMEF2C+ (Figures S5E–S5H, n = 11 limbs). Conversely, for a

total of 861 Cherry+ nuclei counted, two were found to be poten-

tially PAX7+ (Figures S5I–S5L, n = 9 limbs). These results indicate

that the cell labeling based on fusion of blastema cells with host

cells during limb redifferentiation is muscle specific.

We then assessed the percentage of nuclei in the Cherry+

myofibers that had the genotype CAGGS:loxP Cherry. In mature

myofibers, transcripts and proteins show enrichment close to

the nucleus producing a given transcript (Rossi et al., 2000).

We therefore counted Cherry+ myofiber nuclei that showed

very strong versus weaker signal. Out of 879 counted nuclei

(six animals), 43% ± 10% of nuclei showed very strong nuclear

Cherry signal (Figures S5M–S5P). This data indicates that we

had an efficient conversion of the loxP cassette and a good yield

in Cherry-expressing nuclei in limb myofibers.

To determine the contribution of myofibers to the limb

regenerate, we amputated the labeled limbs in the upper arm

and allowed regeneration to occur. Limbs were visualized by

whole-mount microscopy and cross-section. Whole-mount

visualization by widefield microscopy indicated that the visible

Cherry+ myofibers were restricted to the upper arm of the regen-

erate and no signal was observed in the lower arm and hand (Fig-

ures 4D and 4E; Figures S6A–S6C, n = 4). Fluorescence intensity

measurements along the proximal-to-distal limb axis showed

high levels of Cherry+ fluorescence in the upper limb segment

up to the amputation plane, while in the lower arm and hand,

fluorescence levels dropped to those matching the contralateral
in Newts

indicate the panels depicting the outcomes of the alternative procedures.

is under the control of the ubiquitous CMV promoter.

cle-specific MCK promoter. Dual Cherry and YFP expression indicates that not

int to YFP+ nuclei within skeletal muscle in (C) and (D).

shown in (H00)–(L00) and (H00 0)–(L00 0 ).
) along the proximo-distal axis. Data are presented as mean ± SEM (n = 4).
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Figure 2. Myofibers Contribute Prolifer-

ating Cells to the Regenerating Newt Limb

(A) Schematic outline of the experimental para-

digms. Letters within parenthesis indicate the

panels depicting the outcomes of the alternative

procedures.

(B) Overview in longitudinal section of a 14-day

regenerate shows typical figures of fragmenting

skeletal muscle during blastema formation.

Dashed line indicates the amputation plane.

Asterisks indicate fragmenting myofibers.

(C) Close-up of region C in the overview (B) shows

examples of YFP+MHC� mononuclear cells in the

distal blastema.

(D) Close-up of region D in the overview (B)

shows YFP+ nuclei within and outside of MHC+

fragments.

(E) YFP+MHC+ and YFP+MHC� nuclei in a

representative cross-section around the stump/

blastema boundary. Arrowheads in (C)–(E) point to

YFP+MHC� cells.

(F and G) Example of a PCNA+YFP+ cell

(arrowhead) in the blastema.

(H and I) EdU+YFP+ (arrowheads) mononuclear

cells in the blastema and EdU�YFP+ (arrows)

nuclei within the muscle.

(J) Examples of YFP+EdU+ and YFP�EdU+

myonuclei in MHC+ myofiber in the hand region

(region K in Figure 1).

(K) Examples of a YFP+EdU+, YFP+EdU�, and

YFP�EdU+ nuclei within the laminin+ basal

membrane in a myofiber in the hand region.

In (J) and (K), arrows point to YFP+EdU+,

arrowheads point to YFP+EdU�, and asterisks

point to YFP�EdU+ myonuclei.

Scale bars, (B), (F), (H), (J), and (K): 200 mm; (C–E),

(G), (I), (J0), and (K0): 20 mm.
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control limb that had not received a blastema transplant (Fig-

ure 4F; Figure S6D). We also cross-sectioned regenerated limbs

and quantitated the percentage of MHC+ myofibers that were

Cherry+ at different levels along the amputated limb (Figures

4G–4K, n = 3). At the amputation plane, an average of 21% ±

15% of MHC+ myofibers strongly expressed Cherry. In contrast,

we observed no MHC+Cherry+ myofibers in the lower arm and

hand in the regenerates. These tracing results using germline

transgenic animals confirm that myofibers make no detectable

contribution to the regenerated axolotl limb.

Though we had not observed any labeled muscle in the regen-

erated limb, we examined the limb blastema for any possible

evidence of muscle-derived mononucleate, proliferative cells

as was found in the newt. We examined longitudinal sections

of 10-day blastemas derived from LB-transplant animals. In

contrast to the newt data, we found no labeled cells in the distal

portion of the axolotl limb blastema (Figure S7A, n = 9). Among

nine samples examined, all Cherry+ fragments that potentially

represented mononucleate cells were located close to the

amputation plane and none were found in the mid or distal blas-

tema. Only 164 out of 580 Cherry+ fragments colocalized with a

Hoechst+ nucleus (Figures S7A–S7C). Furthermore, none of the

Cherry+ signal was associated with a PCNA+ nucleus (Figures

S7A–S7C) and no Cherry+ signal was found colocalizing with

PAX7+ blastema cells (Figures S7D– S7F). In summary, our

results indicate that axolotl myofibers undergo considerable

morphological changes at the amputation plane, but we found

no evidence for their contribution to proliferative progenitor cells.

PAX7+ Cells Regenerate Muscle in Axolotl
Considering the lack of myofiber contribution to the axolotl limb

regenerate, we searched for the source of cells formuscle regen-

eration. Previously, labeling of limb myofibers plus satellite cells

via embryonic transplantation (green fluorescent protein labeled

presomitic mesoderm transplant; GFP-PSM) resulted in robust

contribution of GFP+ cells to the regenerated limb muscle (Kragl

et al., 2009; Nacu et al., 2013). We confirmed here that the GFP+

nuclei were MEF2C+ (83% ± 2.7%) and PAX7+ (12% ± 2.3%)

(n = 4, 277 ± 33 cells per section) (Figures 5A–5E). Since our

above data indicated that myofibers make no contribution to

the limb regenerate, this observation indicates that PAX7+

satellite cells are a major contributor to muscle regeneration in

axolotl. To confirm the participation of PAX7+ cells in regenera-

tion, we traced cells from the GFP-PSM labeled limbs

(myofibers + satellite cells) into the blastema and found many

GFP+ cells in the blastema (Figures 5F–5H, n = 5). Out of a total

of 834 GFP+ blastema cells, 809 expressed PAX7 protein. This is

in contrast to the labeling of Cherry+ myofibers alone (from the
Figure 3. Larval Axolotls Show No Contribution of YFP+ Muscle Cells t

(A) Schematic outline of the experimental paradigms.

(B–D) Colocalization of YFP+ nuclear signal (green) with MEF2C (white) by immuno

limbs). Arrows indicate YFP+MEF2C+ double-positive cells.

(E) 3D rendering of upper limb region electroporated with the abovementioned

associate with the MHC+ myofibers.

(F) Upper arm muscle was labeled via coelectroporation of MCK:cre, CAGGS:lo

mids. Whole-mount YFP fluorescence image of regenerated limb at 33 days is sho

the lower arm and hand. White line indicates amputation plane.

(G) Number of YFP+ nuclei in upper limb, lower limb, and hand in 90-day regene

Scale bars, (B)–(D): 50 mm; (E): 100 mm; (F): 2 mm.
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LB-transplants) that gave no colocalization of muscle-derived

Cherry+ signal with PAX7+ cells in the blastema (Figures S7D–

S7F). These results indicate that PAX7+ cells are quantitatively

the major contributors to muscle regeneration in the axolotl.

To further assess the proliferating status of the PSM-derived

GFP+ cells in the blastema, we injected EdU in pulses prior to

blastema collection, resulting in significant incorporation of the

nucleotide analog in the blastema (Figure 5I). We corroborated

colocalization of the nucleotide analog EdU with GFP in different

areas of the blastema (Figures 5J and 5K). Furthermore, we

immunostained for PCNA and found abundant GFP+ cells ex-

pressing this proliferation marker (Figure 5L). Taken together

our data indicate that PAX7+ satellite cells from the mature

limb produce proliferative, PAX7+ muscle progenitors of the

limb blastema.

In the axolotl, proliferating PAX7+ cells are found abundantly

and broadly distributed in the midbud limb blastema, consistent

with their role as the muscle progenitors for limb regeneration

(Figures 6G and 6H). In contrast, by midbud blastema stages

the adult and larval newt limb blastema was devoid of PAX7+

cells (Figures 6A–6F), although PAX7+ cells had been described

in the very early stages of newt limb regeneration (Morrison et al.,

2006), probably representing satellite cells activated by muscle

injury. We further compared the molecular profile of axolotl

versus newt cells by examining myogenic determinants in iso-

lated YFP+ and GFP+ cells from the newt and axolotl blastemas,

respectively, by RT-PCR. These experiments confirmed that

Pax7was not expressed in YFP+ cells arising from dedifferentia-

tion in the newt blastema while Pax7 was expressed in GFP+

cells isolated from satellite-cell-derived axolotl limb blastema

cells (Figure 6I). Interestingly, cells from both axolotl and newt

blastemas expressedMyf5 but not two other myogenic determi-

nants, Myogenin and Mrf4 (Figure 6I). These results highlight

fundamental differences in the cellular composition of the axolotl

and newt limb blastema.

To address whether the difference between the two species

reflects the special neotenic character of the axolotl, we forcibly

metamorphosed axolotls and then analyzed limb muscle regen-

eration (Figure 7). Postmetamorphic axolotls were electropo-

rated to specifically label limbmyofibers asdescribed for Figure 1

and Figure 3. We examined cross-sections of electroporated

mature limbs and confirmed that only myofiber nuclei were ex-

pressing YFP. When we examined regenerated limbs for contri-

bution of labeled muscle to the regenerate, we only observed

YFP+ cells proximally to the amputation plane (n = 3, 190 nuclei)

(Figures 7A–7C). To confirm this result, we metamorphosed

animals that had been LB transplanted and tamoxifen-injected

as described in Figure 4 (Figure 7D). Upon amputation, the
o New Muscle during Limb Regeneration

fluorescence detection. All nuclei (732 out of 732) counted were MEF2C+ (n = 6

expression plasmids and immunostained for MHC (red). YFP+ nuclei closely

xpCHERRY-STOPloxp-H2BYFP, and CMV:Tol2-transposase expression plas-

wn, showing nuclear expression in the upper limb but no visible YFP+ nuclei in

rates counted after sectioning of limbs.

.
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regenerated limb showed no muscle labeled in lower limb or

hand (Figure 7E, n = 4). Longitudinal sections of the limb regen-

erate confirmed the lack of Cherry+ myofibers in the lower limb or

hand muscle (Figures 7F–7H).

DISCUSSION

Our fate mapping experiments showed an unexpected differ-

ence in the occurrence of myofiber dedifferentiation during

limb regeneration in two salamander species. In the newt,

labeled myofibers generated PAX7�, proliferative cells in the

blastema that contributed exclusively to regenerated myofibers.

Indeed, the newt limb blastema is essentially devoid of PAX7+

cells except for proximal regions at very early stages after ampu-

tation. In axolotl, labeled myofibers gave rise neither to prolifer-

ative cells in the blastema nor to regenerated myofibers at later

stages. In contrast, our muscle grafting data indicate that axolotl

limb muscle regeneration occurs by the recruitment of abundant

PAX7+ cells from themature tissue into the blastema, where they

proliferate. The vastmajority of myogenic blastema cells express

PAX7 and are derived from PAX7+ satellite cells.

We have performed parallel electroporation experiments in the

two species and obtained clearly different contributions of

myonuclei to the regenerating limb. The lack of myofiber contri-

bution in axolotl was confirmed using germline transgenically

integrated cassettes where the efficiency of muscle labeling

was at least as high as in the newt experiments: 9% of MHC+

myofiber nuclei expressed the labeling cassette in the axolotl

experiments, compared to 5% in the newt. Another consider-

ation was the life cycle of the animals. The axolotl is a neotenic

animal in which larval features such as the gills are retained

throughout life, and a question was whether the axolotl tracing

results reflected a larval mode of regeneration. However, no

contribution of labeled myofibers to the regenerate was

observed in the postmetamorphic axolotl. Complementarily, no

PAX7+ cells were found in the larval newt midbud blastema,

revealing concrete molecular differences in the composition of

the limb blastema between the two species.

In newt, myofiber-derived cells contributed to regenerated

muscle and we so far found no evidence of contribution to
Figure 4. Tracing Using Germline Transgenic loxPReporter Axolotls Yie

Limb

(A) Cre-loxP-based genetic labeling of axolotl limb muscle via blastema transplant

10-day blastema from aCAGGS:ert2-cre-ert2-T2A-nucGFP transgenic animal wa

animal and allowed to regenerate (or vice versa). After at least 3 weeks of regen

fusion of myoblasts, they are the only chimeric cell type where the ERT2-CRE-E

expressedCherry protein. All the remainingmononucleate cells (e.g., satellite cells

upon tamoxifen administration.

(B and C) Fluorescence and brightfield image of a limb after tamoxifen injection.

(D) LB transplant after regeneration showing no muscle contribution to the regen

(E) Contralateral nontransplanted control limb to that shown in (D).

(F) Cherry fluorescence intensity graphs along the proximal-to-distal limb axis fo

represents fluorescence intensity of the limb in (E). Pixel intensity across the width

intensity graph along the proximo-distal axis.

(G–J) Cross-sections from regenerated limb showing the distribution of Cherry+ m

arm, (I) the distal lower arm, and (J) the hand. No Cherry+ cells were found at the lo

myogenesis during axolotl limb regeneration.

(K) Fraction of Cherry+myofibers (as visualized by anti-MHC immunofluorescence

presented as mean ± SEM (n = 3).

Scale bars, (B) and (C): 1 mm; (D) and (E): 2 mm, (G–J): 200 mm. See also Figure
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cartilage, consistent with our RT-PCR data showing that dedif-

ferentiated YFP+ cells in the newt blastema express Myf5

mRNA. Previous experiments tracking clonally cultured newt

satellite cell progeny after limb implantation described contribu-

tion to cartilage in addition to skeletal muscle (Morrison et al.,

2010). On the other hand, tracking of endogenous muscle and

satellite cells in the axolotl showed no contribution to cartilage.

We currently do not know whether newt satellite cells truly

have a unique, broad potential to form cartilage, or whether

experimental circumstances due to the culturing and implanta-

tion of the newt satellite cells could have influenced their proper-

ties. In vivo tracing studies specifically targeting endogenous

satellite cells would clarify this issue. At present it is technically

not possible in the newt because we were unable to transfect/

label endogenous satellite cells in the newt limb. Similarly, in

the future, it would be important to exclusively lineage trace

satellite cells in axolotls to confirm their role in muscle regenera-

tion, and to characterize the active transcriptional programs in

these cells.

Newts and axolotls were separated from each other approxi-

mately 100 million years ago (Steinfartz et al., 2007). Although

the ability of adult limb regeneration is a unique feature of

salamanders among tetrapods (Simon and Tanaka, 2013), our

observations suggest that microevolutionary selection pres-

sures have led to divergent implementation of muscle dediffer-

entiation in these two species. It is important to note that adult

newts can regenerate the lens of the eye by dedifferentiation of

the pigmented epithelial cells of the iris (Grogg et al., 2005).

Unlike newts, axolotls are able to regenerate the lens only during

an early developmental time window of 2 weeks starting at the

limb bud stage (Suetsugu-Maki et al., 2012).

The capacity to regenerate complex body parts is limited

among vertebrates but not exclusive to salamanders: zebrafish

can regrow amputated fins and larval frogs regenerate their limbs

and tails. Cell tracking experiments in these animals showed

varying manifestation of cellular dedifferentiation. New muscle

arises from satellite cells and not from preexistingmyofibers dur-

ing tail regeneration in tadpoles (Gargioli and Slack, 2004;

Rodrigues et al., 2012). In contrast, fin regeneration involves

dedifferentiation of osteoblasts and heart regeneration involves
lds No Evidence for LimbMyofibers Contributing to the Regenerated

ation (Axolotl LB Transplant): schematic of experimental procedure. A 6-day or

s grafted onto the upper arm stump of aCAGGS:loxp-GFP-STOP-loxp-Cherry

eration, animals were injected with tamoxifen. Since myofibers form from the

RT2 protein and the loxP reporter were found in the same cell and therefore

) have either one or the other genotype and do not convert to Cherry expression

Cherry fluorescence is visible in upper and lower limb myofibers.

erate. White line denotes the amputation plane.

r samples shown in (D) and (E). Red line depicts the limb in (D) while blue line

of the limb was averaged at every proximo-distal position to yield a single line

uscle at (G) the upper arm proximal to amputation plane, (H) the proximal lower

wer arm and hand level, indicating that myofibers do not contribute to de novo

staining) in upper arm, proximal lower arm, distal lower arm, and hand. Data are

s S4, S5, S6, and S7.

.



Figure 5. Tracing Using Presomitic Mesoderm Transplants in Axolotls Shows that PAX7+ Cells Contribute to the Limb Blastema

(A) Labeling and tracking of PAX7+ cells during limb regeneration. To label limbmyofibers plus satellite cells, presomiticmesoderm (PSM) was transplanted from a

GFP transgenic embryo to a white (nontransgenic) host and allowed to develop limbs. Schematic image of a PSM transplanted animal is shown. After amputation

through a labeled region, a limb with green muscle and satellite cells is regenerated.

(B–E) Cross-section of the mature limb from PSM-labeled animal immunostained for MEF2C, a transcription factor expressed in differentiated muscle cells, and

PAX7, a transcription factor found in the muscle satellite cells. Arrows label PAX7+GFP+ cells while arrowheads label MEF2C+GFP+ cells. Asterisks show nuclei

negative for any labeling.

(F–H) A 10-day upper arm blastema (longitudinal section) from a PSM-labeled animal. All GFP+ cells in the blastema are PAX7+ (arrowheads). GFP (F), PAX7 (G).

(I) Longitudinal section of a 10-day blastema from a PSM transplant immunostained for GFP and EdU. Solid line shows amputation plane.

(J–J00 and K–K00) High magnification of inserts in (I) showing colocalization of GFP+ cells with EdU (arrowheads).

(L–L00) Colocalization of GFP+ cells and PCNA in the 10-day blastema (arrowheads).

Scale bars: (B)–(H) and (J)–(L): 50 mm; (I): 100 mm.
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Figure 6. Abundance versus Lack of

PAX7+ Cells in Axolotl and Newt Blastemas,

Respectively

(A–E) Distribution of PAX7+ cells in the adult newt limb

mesenchyme 14 days after amputation shows lack of

PAX7 expression in the blastema. Note the back-

ground staining in the skin. (B–E) Distribution of PAX7+

cells in relation to myofibers (indicated by laminin

staining) and to YFP+ cells deriving from muscle

(C, blastema, D and E, limb stump). Arrows point to

PAX7+ nuclei and arrowheads point to YFP+/PAX7�

nuclei. Dashed lines indicate the amputation plane.

(F) Absence of PAX7+ cells in the premetamorphic,

larval newt limb blastema. Images show the distribu-

tion of PAX7+ cells in a 12-day-old blastema. Dashed

lines indicate the amputation plane.

(G) Abundance of PAX7+ cells in the premetamorphic,

larval axolotl limb blastema. Images show the distri-

bution of PAX7+ cells in a 10-day-old blastema.

Dashed line indicates the amputation plane.

(H) PCNA-expressing PAX7+ in the axolotl limb

blastema.

(I) Difference in molecular profile of myofiber-derived

blastema cells from newt with PSM-derived blastema

cells from axolotl. PCRwas performedwith cDNA from

the tail, stump muscle, and blastema YFP+ or GFP+

cells from newt and axolotl, respectively. Pax7 is not

expressed in myofiber-derived cells in the newt

blastema, whereas it is expressed in axolotl muscle-

derived blastema cells. Other myogenic factors show

similar regulation in newt and axolotl.

Scale bars: (A), (F), and (G): 200 mm; (C)–(E) and

(H): 20 mm.
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Figure 7. No Contribution of Myofiber-Derived Cells to Regeneration in Postmetamorphic Axolotl

(A–C) Colocalization of YFP+ nuclear signal with MEF2C in the upper limb proximal to the amputation plane in regenerated limbs in postmetamorphic animals.

(D–D0) Animals with limbs labeled by LB transplants were injected with thyroxine to induce metamorphosis and amputated in the upper limb. Fluorescence and

brightfield image of a limb from a metamorphic animal with myofibers labeled is shown. White line marks the amputation plane.

(E and E0) Fluorescence and brightfield image of the regenerated limb.

(F–H) Longitudinal section of the metamorphic regenerated limb immunostained for MHC. Cherry+ myofibers are found only in the upper arm and not in the lower

arm or hand.

Scale bars, (A)–(C): 50 mm; (D)–(H): 1 mm.
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proliferation of cardiomyocytes in zebrafish (Jopling et al., 2010;

Kikuchi et al., 2010; Knopf et al., 2011; Singh et al., 2012; Sousa

et al., 2011). These observations along with recent cell tracing

work in other vertebrate and invertebrate model organisms un-

derscore the existence of a variety of cellular processes for blas-

tema formation during regeneration (Eisenhoffer et al., 2008;

Wagner et al., 2011). Understanding the underlying mechanisms

may have significant implications for regenerativemedicine (Blau

and Pomerantz, 2011).

Taken together, our results demonstrate the flexibility and

diversity of cellular mechanisms, even among salamanders,
Ce
used to arrive at successful regeneration, implying that multiple

strategies are feasible for inducingmuscle and limb regeneration

in adult tetrapods.

EXPERIMENTAL PROCEDURES

Animals and Procedures

Red-spotted newts, Notophthalmus viridescens, were supplied by Charles D.

Sullivan Co. (Nashville, TN, USA). Axolotls, Ambystomamexicanum, were bred

in our CRTD facility. Animals were anesthetized by being placed in an

aqueous solution of ethyl 3-aminobenzoate methanesulfonate (Sigma). The

CAGGS:loxpGFP-STOPloxpCherry and CAGGS:ert2-cre-ert2-T2A-nucGFP
ll Stem Cell 14, 174–187, February 6, 2014 ª2014 Elsevier Inc. 185
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transgenic axolotls were generated via SceI meganuclease assisted plasmid

injection, as described in Khattak et al. (2009), Sobkow et al. (2006), and the

Supplemental Experimental Procedures. All surgical procedures were per-

formed according to the European Community and local ethics committee

guidelines.

Injections and Electroporations

Plasmid preparation and injection procedures are provided in the Supple-

mental Experimental Procedures.

Blastema Transplants

Donor Blastema Formation

The left or right forelimb of each animal was cut in the midupper arm and bone

was trimmed to allow wound epidermis to form properly and to allow blastema

to form.

Blastema Transplantation

The donor blastema was sliced off at day 6 and transplanted to an

ipsilateral amputated upper limb. The transplanted blastema naturally

adhered to the host due to the presence of clotted blood at the

transplantation site. Limbs were allowed to fully regenerate. Different

combinations of transplants were performed to validate our method. Donor

Inducible Cre, Host loxP Cherry, n = 20; Donor loxP Cherry, Host Inducible

Cre, n = 13. As controls, Donor Inducible Cre, HostWhite sibling of loxPCherry,

n = 3; Donor loxPCherry, Host white sibling of Inducible Cre n = 6. The rationale

behind this protocol is to have a combination of cells baring the two different

genes in the blastema formation. These two sets of cells would fuse during

myogenesis, giving rise to myofibers containing both sets of genes that would

only recombine after addition of tamoxifen (Figure S4A). In all cases, one limb

of the animal was used for transplantation and the contralateral limbwas left as

a control.

Tamoxifen Injection

To induce Cre recombination, tamoxifen was injected i.p. at a concentration of

5 mg per 100 mg of body weight. Red fibers could be observed after 3 days of

injection.

Limbs with visible red myofibers were amputated in the mid-upper arm 10

to 14 days after tamoxifen injection. The amputated limb (first regenerate)

was fixed and processed for validation of the method. The right limb

was also amputated and used as a control. Ten days after amputation,

some of the blastemas were dissected out and fixed for analysis (n = 12).

The remaining animals were left intact to allow the full limb to regenerate

(second regenerate).

Embryonic Transplants

Embryonic transplants were carried as described previously in Kragl et al.

(2009), Nacu et al. (2009), and the Supplemental Experimental Procedures.

Metamorphosis of Axolotls

Animals of 10 cmwere injected under the skin of the upper thoracic cavity with

L-Thyroxine (Sigma T2376) at a concentration of 1.5 mg per gram of body

weight. The first visible signs of gill regression were observed at 7 to

10 days postinjection. Metamorphosed animals were then kept in low water

and fed fish pellets.

Immunohistochemistry, Whole-Mount Immunostaining, and Image

Processing

Tissue processing, immunostaining, andmicroscopy procedures are provided

in the Supplemental Experimental Procedures.

Tissue Dissociation and RT-PCR

Newt limbs were dissociated according to (Morrison et al., 2006). Newt and

axolotl blastemas were dissociated into single cells (Kragl et al., 2009), and

YFP+ and GFP+ cells were picked up for further RT-PCR analysis. The tissue

dissociation and RT-PCR procedures are provided in the Supplemental

Experimental Procedures.
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Morrison, J.I., Lööf, S., He, P., and Simon, A. (2006). Salamander limb

regeneration involves the activation of a multipotent skeletal muscle satellite

cell population. J. Cell Biol. 172, 433–440.

Morrison, J.I., Borg, P., and Simon, A. (2010). Plasticity and recovery of

skeletal muscle satellite cells during limb regeneration. FASEB J. 24, 750–756.

Nacu, E., Knapp, D., Tanaka, E.M., and Epperlein, H.H. (2009). Axolotl

(Ambystoma mexicanum) embryonic transplantation methods. Cold Spring

Harb Protoc 2009, pdb prot5265.

Nacu, E., Glausch, M., Le, H.Q., Damanik, F.F., Schuez, M., Knapp, D.,

Khattak, S., Richter, T., and Tanaka, E.M. (2013). Connective tissue cells,

but not muscle cells, are involved in establishing the proximo-distal outcome

of limb regeneration in the axolotl. Development 140, 513–518.

Odelberg, S.J., Kollhoff, A., and Keating, M.T. (2000). Dedifferentiation of

mammalian myotubes induced by msx1. Cell 103, 1099–1109.
Ce
Rodrigues, A.M., Christen, B., Martı́, M., and Izpisúa Belmonte, J.C. (2012).
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