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In ideal randomised experiments, association is causation:
association measures can be interpreted as effect measures
because randomisation ensures that the exposed and the
unexposed are exchangeable. On the other hand, in
observational studies, association is not generally
causation: association measures cannot be interpreted as
effect measures because the exposed and the unexposed
are not generally exchangeable. However, observational
research is often the only alternative for causal inference.
This article reviews a condition that permits the estimation
of causal effects from observational data, and two
methods—standardisation and inverse probability
weighting—to estimate population causal effects under that
condition. For simplicity, the main description is restricted
to dichotomous variables and assumes that no random
error attributable to sampling variability exists. The
appendix provides a generalisation of inverse probability
weighting.
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COMPUTATION OF CAUSAL EFFECTS VIA
(CONDITIONAL) RANDOMISATION
Suppose the data in table 1 were collected to
compute the causal effect of heart transplant on
six month mortality in a population of persons
with heart disease. As in the first article of this
series,1 the exposure A is 1 if the subject received
a transplant, 0 otherwise, and the outcome Y is 1
if the subject died within six months, 0 other-
wise. The prognosis factor L, measured before the
time of exposure, is 1 if the subject was in critical
condition, 0 otherwise. The causal risk ratio is
defined as Pr[Ya = 1 = 1]/Pr[Ya = 0 = 1], where Ya

is the counterfactual outcome variable Y that
would have been observed under exposure level a
(one of the possible values of A).

Consider two mutually exclusive study designs
that might have produced the data in table 1. In
design 1 investigators randomly selected 65% of
the persons in the population and transplanted a
new heart to each of the selected persons. In
design 2 investigators classified all persons as
being in either critical or non-critical condition.
Then they randomly selected 75% of the persons
in critical condition and 50% of those in non-
critical condition, and transplanted a new heart
to each of the selected persons. Both designs are
randomised experiments. In design 2 the inves-
tigators chose randomisation probabilities that
depended (were conditional) on the values of the

variable L, whereas in design 1 they chose an
unconditional randomisation probability.

Under design 1, the exposed and the unex-
posed are exchangeable. Formally, exchangeabil-
ity means that the counterfactual mortality risk
under every exposure value a is the same in the
exposed and in the unexposed. That is,

Pr[Ya = 1|A = 1] = Pr[Ya = 1|A = 0] or

(read as Ya and A are independent) for all a. In
ideal randomised experiments (no loss to
follow up, full adherence to initial exposure
status over time, blind assignment) conducted
under design 1, exchangeability ensures that
the counterfactual risk under exposure level a,
Pr[Ya = 1], equals the observed risk among
those who received exposure level a,
Pr[Y = 1|A = a]. Therefore the causal risk ratio
equals the associational risk ratio
Pr[Y = 1|A = 1]/Pr[Y = 1|A = 0], which is read-
ily calculated from the data on A and Y. If the
data in table 1 had been collected under design
1, then the causal risk ratio would be

. (This paragraph, as well as the rest

of the article, ignores sampling variability. In
ideal randomised experiments, counterfactual
risks are consistently estimated by, but not
necessarily equal to, observed risks.) But the
data in table 1 could not have been collected
under design 1 because 69% exposed compared
with 43% unexposed persons were in critical
condition. This difference indicates that the risk
of death in the exposed, had they remained
unexposed, would have been higher than the risk
of death in the unexposed. In other words,
exposure A predicts the counterfactual risk of
death under no exposure, and exchangeability

does not hold.

Under design 2, the exposed and the unex-
posed are not generally exchangeable because
each group may have a different proportion of
subjects with bad prognosis. But design 2 is
simply the combination of two separate design 1
randomised experiments: one conducted in the
subset of persons in critical condition (L = 1), the
other in the subset of persons in non-critical
condition (L = 0). Consider first the randomised
experiment being conducted in the subset of
persons in critical condition. In this subset, the
exposed and the unexposed are exchangeable.
Formally, the counterfactual mortality risk under
each exposure value a is the same among the
exposed and the unexposed given that they all
were in critical condition at the time of exposure
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assignment. That is, Pr[Ya = 1|A = 1,L = 1] = Pr[Ya = 1|A =

0,L = 1] or (read as Ya and A are independent

given L = 1) for all a. Similarly, randomisation also ensures
that the exposed and the unexposed are exchangeable in the
subset of persons that were in non-critical condition, that is,

(When, as in design 2, holds for

all values l we simply write Thus, although

randomisation under design 2 does not guarantee (uncondi-

tional or marginal) exchangeability it guarantees

conditional exchangeability within levels of the
variable L.

Conditional exchangeability ensures that the

counterfactual conditional risk Pr[Ya = 1|L = l] equals the
conditional risk Pr[Y = 1|L = l,A = a] observed in the subset
of the population with L = l. (The proof is identical to the one
for marginal exchangeability except that now everything is
conditional on L.) The next two paragraphs show, in two
steps, how to calculate the causal risk ratio in the entire
population by using conditional exchangeability.

Firstly, basic probability rules imply that the marginal
counterfactual risk Pr[Ya = 1] is the weighted average of the
stratum specific risks Pr[Ya = 1|L = 0] and Pr[Ya = 1|L = 1]
with weights equal to the proportion of persons in the
population with L = 0 and L = 1], respectively. That is,
Pr[Ya = 1] = Pr[Ya = 1|L = 0]Pr[L = 0]+Pr[Ya = 1|L = 1]Pr[L =
1]. Or, using a more compact notation, Pr[Ya = 1] =
SlPr[Ya = 1|L = l]Pr[L = l], where Sl means sum over all
values l that occur in the population.

Secondly, using conditional exchangeability, we can
replace the counterfactual risk Pr[Ya = 1|L = l] by the
observed risk Pr[Y = 1|L = l],A = a] in the expression above.
That is, Pr[Ya = 1] =SlPr[Y = 1|L = l,A = a]Pr[L = l]. The left
hand side of this equality is an unobserved counterfactual
risk whereas the right hand side includes observed quantities
only. We can now compute counterfactual risks using
observed data on L, A, and Y. Therefore the causal risk ratio
equals

If the data in table 1 had been collected under design 2, the
causal risk ratio would be

In summary, randomisation produces exchangeability
(design 1) or conditional exchangeability (design 2). In both
cases, the causal effect can be calculated from ideal
randomised experiments.

STANDARDISATION
The method described above to compute the causal risk ratio
under conditional exchangeability is known in epidemiology
as standardisation. For example, the numerator
SlPr[Y = 1|L = l,A = 1]Pr[L = l] of the causal risk ratio is
the standardised risk among the exposed using the popula-
tion as the standard. In the presence of conditional
exchangeability, this standardised risk can be interpreted as
the (counterfactual) risk that would have been observed had
all the persons in the population been exposed.

THE RANDOMISED EXPERIMENT PARADIGM FOR
OBSERVATIONAL STUDIES
Consider now study design 3: investigators do not intervene
in the assignment of hearts but rather they observe which
persons happen to receive them. Table 1 now displays the
data collected for this observational study.

As generally expected in observational studies, exchange-

ability does not hold in these data. But the

investigators believe that, had exposed patients in critical
condition stayed unexposed, they would have had the same
mortality risk as patients in critical condition who actually
stayed unexposed (and vice versa). And similarly for patients
in non-critical condition. That is, the investigators believe
that the exposed and the unexposed are exchangeable within
levels of the variable L; they are willing to assume that

conditional exchangeability holds.

An observational study (design 3) can be viewed as a
randomised experiment (design 2) in which

N the conditional probabilities of receiving exposure are not
chosen by the investigators but can be calculated—
estimated—from the data

N conditional exchangeability is not guaranteed but only
assumed to hold based upon the investigators’ expert
knowledge.

If the investigators’ assumption of conditional exchange-
ability is correct, then the causal risk ratio can be easily
calculated using standardisation as described for the design 2
randomised trial. In fact, conditional exchangeability—or
some variation of it—is the weakest condition required for
causal inference from observational data.

Unfortunately, in the absence of randomisation, there is no
guarantee that conditional exchangeability is true. Even
worse, the investigators cannot check their assumption

of conditional exchangeability because the

Table 1 A population with prognosis factor L, exposure
A, and outcome Y

ID L A Y

Rheia 0 0 0
Kronos 0 0 1
Demeter 0 0 0
Hades 0 0 0
Hestia 0 1 0
Poseidon 0 1 0
Hera 0 1 0
Zeus 0 1 1
Artemis 1 0 1
Apollo 1 0 1
Circe 1 0 0
Ares 1 1 1
Athene 1 1 1
Eros 1 1 1
Aphrodite 1 1 1
Prometheus 1 1 1
Selene 1 1 1
Hermes 1 1 0
Eos 1 1 0
Helios 1 1 0
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counterfactual outcomes Ya are unknown. As a result of the
impossibility to verify the assumption of conditional exchan-
geability, causal inferences from observational data are often
controversial.

CONFOUNDING AND IDENTIFIABILITY OF CAUSAL
EFFECTS
In an ideal design 1 randomised experiment, exchangeability

ensures that effect measures can be computed when

complete data on exposure A and outcome Y are available. For
example, the causal risk ratio equals the associational risk
ratio. There is no confounding or, equivalently, the causal
effect is identifiable given data A and Y.

In an ideal design 2 randomised experiment, conditional

exchangeability ensures that effect measures can

be computed when complete data on exposure A, outcome Y,
and variable L are available. For example, the causal risk ratio
equals the ratio of standardised risks. There is no unmea-
sured confounding given the measured variable L or,
equivalently, the causal effect is identifiable given data on
L, A, and Y.

In an ideal design 3 observational study, there is no
guarantee that the exposed and the unexposed are con-
ditionally exchangeable given L only. Thus the effect
measures may not be computed even if complete data on L,
A, and Y are available because of unmeasured confounding
(that is, other variables besides L must be measured and
conditioned on to achieve exchangeability). Equivalently, the
causal effect is not identifiable given the measured data.

More formally, the non-identifiability of causal effects
from observational data means that the distribution of the
observed data is consistent with different values of the effect
measure. For example, the data in table 1 are consistent with
a causal risk ratio

N greater than 1, if risk factors other than L are more
frequent among the exposed.

N lower than 1, if risk factors other than L are more frequent
among the unexposed.

N equal to 1, if all risk factors except L are equally distributed
between the exposed and the unexposed or, equivalently,

if

Unlike data arising from randomised experiments, obser-
vational data do not suffice to identify causal effects. The
causal effect can only be identified by using the observational
data plus an assumption regarding the unmeasured risk
factors. This identifying assumption is external to the data;
investigators make the assumption based on their causal
theories. For example, under a design 3 observational study,
the data in the table plus the identifying assumption of

conditional exchangeability imply a causal risk

ratio equal to 1. This identifying assumption is also known as
the assumption of no unmeasured confounding given the
measured variables. In contrast, under the design 2 rando-
mised study, the data in table 1 imply a causal risk ratio equal
to 1, without requiring any further assumptions.

INVERSE PROBABILITY WEIGHTING
We now describe another method to compute effect measures
under conditional exchangeability: inverse probability
weighting.

The data in table 1 can be displayed as a tree (fig 1) in
which all 20 persons start at the left and progress over time
towards the right. The leftmost circle of the tree contains its
first branching: eight persons were in non-critical condition
(L = 0) and 12 in critical condition (L = 1). The numbers in
parentheses are the probabilities of being in non-critical
(Pr[L = 0] = 8/20 = 0.4) or critical (Pr[L = 0] = 12/20 = 0.6)
condition. Let us follow, for example, the branch L = 0. Of the
eight persons in this branch, four were unexposed (A = 0)
and four were exposed (A = 1). The conditional probability of
being unexposed is Pr[A = 0|L = 0] = 4/8 = 0.5, as shown in
parentheses. The conditional probability Pr[A = 1]|L = 0 is
0.5 too. The upper right circle represents that, of the four
persons in the branch L = 0,A = 0; 3 survived (Y = 0) and 1
died (Y = 1). That is, Pr[Y = 0|L = 0,A = 0] = 3/4 and
Pr[Y = 1|L = 0,A = 0] = 1/4. The other branches of the tree
are interpreted analogously. The circles contain the bifurca-
tions defined by non-exposure variables (that is, variables for
which no hypothetical intervention needs to be defined). We
now use this tree to compute the causal risk ratio
Pr[Ya = 1 = 1]/Pr[Ya = 0 = 1].

The denominator of the causal risk ratio, Pr[Ya = 0 = 1], is
the counterfactual risk of death had everybody in the
population remained unexposed. Let us calculate this risk.
In figure 1, four of eight persons with L = 0 were unexposed,
and one of them died. How many deaths would have
occurred had the eight persons with L = 0 remained
unexposed? Two deaths, because if eight persons rather than
four persons had remained unexposed, then two deaths
rather than one death would have been observed. If the
number of persons is multiplied by two, then the number of
deaths is also doubled. In figure 1, 3 of 12 persons with L = 1
were unexposed, and two of them died. How many deaths
would have occurred had the 12 persons with L = 0 remained
unexposed? Eight deaths, or two deaths times four, because
12 is 364. That is, if all 8+12 = 20 persons in the population
had been unexposed, then 2+8 = 10 would have died. The
denominator of the causal risk ratio, Pr[Ya = 0 = 1], is
10/20 = 0.5. Figure 2 shows the population had everybody
remained unexposed (a = 0). Of course, these calculations
rely on the assumption that exposed persons with L = 0, had

Y = 0 (0.75)

A = 0 (0.5)

4

A = 1 (0.5)

4

A = 0 (0.25)
3

A = 1 (0.75)9

Y = 1 (0.25)

3

1

Y = 0 (0.75)

Y = 1 (0.25)

3

1

Y = 0 (1/3)

Y = 1 (2/3)

1

2

L = 0 (0.4)

L = 1 (0.6)

8

12

Y = 0 (1/3)

Y = 1 (2/3)

3

6

Figure 1 A population with prognosis factor L, exposure A, and
outcome Y.
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they remained unexposed, would have had the same
probability of death as those who actually remained
unexposed. This assumption is precisely conditional exchan-
geability given L = 0.

The numerator of the causal risk ratio Pr[Ya = 1 = 1] is the
counterfactual risk of death had everybody in the population
been exposed. Reasoning as in the previous paragraph, this
risk is calculated to be also 10/20 = 0.5, under the assumption
of conditional exchangeability given L = 1. Figure 3 shows
the population had everybody been exposed (a = 1).
Combining the results from this and the previous paragraph,
the causal risk ratio Pr[Ya = 1 = 1]/Pr[Ya = 0 = 1] is equal to
0.5/0.5 = 1 under the assumption of conditional exchange-
ability We are done.

Let us examine how this method works. Figures 2 and 3 are
essentially a simulation of what would have happened had all
subjects in the population been unexposed and exposed,
respectively. These simulations are correct under the assump-
tion of conditional exchangeability. Both simulations can be
pooled to create a hypothetical population in which every
person appears both as an exposed and as an unexposed
person. This hypothetical population, twice as large as the
original population, is often referred to as the pseudo-
population. Figure 4 shows the entire pseudo-population.

Under conditional exchangeability in the original

population, the exposed (a = 1) and the unexposed (a = 0) in
the pseudo-population are (unconditionally) exchangeable
because they are the same persons under a different exposure
level. In other words, there is no confounding in the pseudo-
population and the associational risk ratio in the pseudo-
population is equal to the causal risk ratio in both the
pseudo-population and the original population.

This method is known as inverse probability weighting. To
see why, let us look at, say, the four unexposed persons with
L = 0 in the population of figure 1. These persons are used to
create eight members of the pseudo-population of figure 4.
That is, each of them is assigned a weight of 2, which is equal
to1/0.5. Figure 1 shows that 0.5 is the conditional probability
of staying unexposed given L = 0. Similarly, the nine exposed
subjects with L = 1 in figure 1 are used to create 12 members
of the pseudo-population. That is, each of them is assigned a
weight of 1.33 = 1/0.75. Figure 1 shows that 0.75 is the
conditional probability of being exposed given L = 1.
Informally, the pseudo-population is created by weighting
each person in the population by the inverse of the
conditional probability of receiving the exposure that she
indeed received. These inverse probability weights are shown
in the last column of figure 4.

INVERSE PROBABILITY WEIGHTING VERSUS
STANDARDISATION
We have described two analytical approaches to compute
causal effects from observational data: standardisation and
inverse probability weighting. Both approaches need to
supplement observational data with the identifying assump-
tion of conditional exchangeability of the exposed and the

unexposed given the measured variables L

Y = 0 (0.75)

a = 0 (1)

8

a = 1 (0)

0

a = 0 (1)
12

a = 1 (0)0

Y = 1 (0.25)

6

2

Y = 0 (0.75)

Y = 1 (0.25)

0

0

Y = 0 (1/3)

Y = 1 (2/3)

4

8

L = 0 (0.4)

L = 1 (0.6)

8

12

Y = 0 (1/3)

Y = 1 (2/3)

0

0

Figure 2 The population had everybody remained unexposed.

Y = 0 (0.75)

a = 0 (0)

0

a = 1 (1)

8

a = 0 (0)
0

a = 1 (1)12

Y = 1 (0.25)

0

0

Y = 0 (0.75)

Y = 1 (0.25)

6

2

Y = 0 (1/3)

Y = 1 (2/3)

0

0

L = 0 (0.4)

L = 1 (0.6)

8

12

Y = 0 (1/3)

Y = 1 (2/3)

4

8

Figure 3 The population had everybody been exposed.

Y = 0 (0.75)

a = 0 (1)

8

a = 1 (1)

8

a = 0 (1)
12

a = 1 (1)12

Y = 1 (0.25)

6

2

Y = 0 (0.75)

Y = 1 (0.25)

6

2

Y = 0 (1/3)

Y = 1 (2/3)

4

8

L = 0 (0.4)

L = 1 (0.6)

8

12

Y = 0 (1/3)

Y = 1 (2/3)

4

8

1/0.5 = 2

1/0.5 = 2

1/0.5 = 2

1/0.5 = 2

1/0.25 = 4

1/0.25 = 4

1/0.75 = 1.33

1/0.75 = 1.33

Figure 4 The pseudo-population (non-stabilised weights).
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Investigators can use their expert knowledge to enhance the
plausibility of the conditional exchangeability assumption.
For example, they can measure many relevant variables
(determinants of the exposure that are also risk factors for
the outcome), rather than only one variable, as in table 1, and
then assume that conditional exchangeability is approxi-
mately true within the strata defined by the combination of
all those variables L. The validity of the causal inferences
depends upon the correctness of this assumption but, no
matter how many variables are included in L, there is no way
to test that the assumption is correct. That is why causal
inference from observational data is a risky task.

Standardisation and inverse probability weighting use the
measured data in a different way, but both approaches need
data on L to estimate causal effects under the assumption

We say that these methods adjust for the measured

variables in L. In a slight abuse of language we sometimes say
that these methods control for L, but this ‘‘analytical control’’
is quite different from the ‘‘physical control’’ of randomised
experiments in which the intervention on exposure assign-
ment ensures the absence of confounding.

Both standardisation and inverse probability weighting
yielded the same result (causal risk ratio equal to 1) in our
example above. This is no coincidence. In simple settings,
standardisation and weighting are exactly equivalent (proof
in appendix). On the other hand, the results of standardisa-
tion and inverse probability weighting may differ in more
complex—and more realistic—settings with multiple, and
possibly continuous or time varying, variables. This is so
because in complex settings one cannot compute the
standardised or weighted risks directly from the table as we
did above. For example, to compute the standardised risk, we
readily computed Pr[Y = 1|L = l,A = a] and Pr[L = l] by
looking at table 1. In a more complex example, we would
have needed to use statistical models to estimate the
conditional distributions of the variables Y and L. Similarly,
to compute the inverse probability weighted risk, we would
have needed to use a statistical model to estimate the
conditional distribution of the exposure A. In practical
applications, the actual estimates from standardisation and
inverse probability weighting may differ because they are
based on different modelling assumptions.

Standardisation and inverse probability weighting are not
the only approaches for causal inference from observational
data. Stratification, matching, other propensity score based
methods, and instrumental variables are some alternatives.
In future articles, we will review the relative advantages and
disadvantages of each approach.

In this article we have emphasised that conditional

exchangeability is a key condition for causal

inference, irrespective of the analytical approach used to
compute the causal effect. Additional conditions that are
required for causal inference include accurate data measure-
ment, data missing at random, and no interaction between
subjects (also known as SUTVA). But these additional
conditions differ from (conditional) exchangeability of the
exposed and the unexposed in one crucial aspect: they can be
violated in observational studies and in randomised experi-
ments, regardless of sample size. Our emphasis on condi-
tional exchangeability derives from its specific relevance to
observational data.

BIBLIOGRAPHICAL NOTES
Rubin2 described the conditions for estimating causal effects
in observational studies with fixed exposures. He also

classified missing data as missing completely at
random, missing at random, or not missing at random.3

Causal inference can be conceptualised as a missing data
problem in which only one counterfactual outcome is
observed for each subject. Exchangeability under design 1
implies that the counterfactual outcomes are missing
completely at random. Conditional exchangeability under
design 2 implies that the counterfactual outcomes are
missing at random (given the variables used to define the
randomisation probabilities). Under design 3, there is not
guarantee that the counterfactual outcomes are missing at
random conditionally on the measured covariates. The
concepts of identifiability, exchangeability, and confounding
were reviewed by Greenland and Robins,4 and that of SUTVA
by Rubin.5

Robins6 7 established the conditions for estimating
causal effects in observational studies with time varying
exposures. He also proposed a generalisation of standardisa-
tion, the g-formula, to compute the effects of time varying
exposures, and proposed the causally structured trees
shown in figures 1–5. Inverse probability weighting was
first proposed by Horvitz and Thompson in the context of
survey sampling.8 Robins proposed a class of semiparametric
models, marginal structural models, whose parameters can
be estimated by inverse probability weighting.9 Several
real world applications of marginal structural models
have been described. See, for example, Cole et al10 and
Choi et al.11
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APPENDIX

A.1. THE POSITIVITY CONDITION
We defined the standardised risk for treatment level a as

Y = 0 (0.75)

a = 0 (0.35)

2.8

a = 1 (0.65)

5.2

a = 0 (0.35)
4.2

a = 1 (0.65)7.8

Y = 1 (0.25)

2.1

0.7

Y = 0 (0.75)

Y = 1 (0.25)

3.9

1.3

Y = 0 (1/3)

Y = 1 (2/3)

1.4

2.8

L = 0 (0.4)

L = 1 (0.6)

8

12

Y = 0 (1/3)

Y = 1 (2/3)

2.6

5.2

0.35/0.5 = 0.7

0.35/0.5 = 0.7

0.65/0.5 = 1.3

0.65/0.5 = 1.3

0.35/0.25 = 1.4

0.35/0.25 = 1.4

0.65/0.75 = 0.87

0.65/0.75 = 0.87

Figure 5 The pseudo-population (stabilised rates).
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However, this definition is incomplete because the expression

can only be computed if the conditional probability
Pr[Y = 1|A = a,L = l] is well defined; that is, if the conditional
probability Pr[A = a|L = l] is greater than zero for all values l
that occur in the population. Therefore, the standardised risk
is defined as

and is undefined otherwise. The condition ‘‘if
Pr[A = a|L = l].0 for all l with Pr[L = l]?0’’ is known as
the positivity condition and essentially means that the above
standardised risk can be computed only if, for each value of
the covariate L in the population, there are some subjects that
received the exposure level a.

A.2. EQUIVALENCE OF INVERSE PROBABILITY
WEIGHTING AND STANDARDISATION
A subject’s inverse probability weight depends on her values
of exposure A and covariates in (the vector) L. For example,
an exposed subject with L = l receives the weight
1/Pr[A = 1|L = l] whereas an unexposed subject with L = l9
receives the weight 1/Pr[A = 0|L = l9]. We can express these
weights using a single expression for all subjects—regardless
of their individual exposure and covariate values—by using
the probability density function (pdf) of A rather than the
probability of A. The conditional pdf of A given L evaluated at
the values a and l is represented by fA|L[a|l] or simply as
f[a|l]. For discrete variables A and L, f[a|l] is the conditional
probability Pr[A = a|L = l]. As the denominator of the weight
for each subject is the conditional density evaluated at the
subject’s own values of A and L, it can be expressed as the
conditional density evaluated at the random arguments A
and L (as compared with the fixed arguments a and l), that
is, as f[A|L]. This notation, which already appeared in figure
4, is used to define the inverse probability weights W =
1/f[A|L]. (Note that using probabilities rather than densities
would not allow us to present a unified notation for the
weights because Pr[A = A|L = L] is not considered proper
notation.)

For a dichotomous outcome Y, the risk Pr[Y = 1] is equal to
the population mean (or expected value) of Y, E[Y]. Therefore
the inverse probability weighted risk for treatment level a is
defined as the mean of Y reweighted by 1/f[a|L] in subjects

with treatment value A = a. That is, we define

to be the inverse probability weighted risk for treatment level
a, where the function I = (A = a) takes value 1 for subjects
with A = a, and 0 for the others. This is the correct
mathematical fomalisation of the inverse probability
weighted risk as defined in the main text. It is only well
defined when the positivity condition holds, as when
positivity does not hold, the undefined ratio occurs in
computing the expectation. To intuitively understand why it
is not defined when the positivity condition fails, consider
figure 1. If there were no exposed subjects (A = 1) with L = 0
it would not be possible to simulate what would have
happened had all unexposed subjects been exposed under the
assumption of conditional exchangeability. There would be
no exposed subjects with L = 0 that could be considered
exchangeable with the unexposed subjects with L = 0.

Define the ‘‘apparent’’ inverse probability weighted risk for

treatment level a to be This risk is always well

defined as its denominator f[A|L] can never be zero. The
‘‘apparent’’ and true inverse probability weighted risks for
treatment level a are equal to one another (and to the
standardised risk) whenever the positivity condition holds
and thus all quantities are well defined. When the positivity
condition fails to hold, the ‘‘apparent’’ inverse probability
weighted risk for treatment level a is without either a useful
statistical or causal interpretation.

It follows that the inverse probability weighted risk can
also be defined as

and it is undefined otherwise. We now prove that the inverse
probability weighted risk is equal to the standardised risk
under the positivity condition. By definition of expected
value, and after some simplification,

For the remainder of this appendix, we will assume that
the positivity condition holds.

A.3. GENERALISATIONS
A.3.1. Non dichotomous outcome and exposure
The methods described above can be generalised to a non-
dichotomous outcome Y by contrasting counterfactual means
rather than risks. Let E[Ya] be the mean of the counterfactual
outcome Ya had all subjects in the population received
exposure level a. We now show that the standardised mean
and the inverse probability weighted mean are equal to the
counterfactual mean E[Ya].

In general, the standardised mean is

where FY|A,L[?] is the conditional

cumulative density function (cdf) of Y given A and L, and
FL(?) is the cdf of L. The counterfactual mean

equals the standardised

mean because FY|A,L[y|a,l] = FYa|A,L[y|a,l] by definition of
counterfactual outcome, and FYa

|A,L[y|a,l] = FYa|L[y|l] by
conditional exchangeability.

The inverse probability weighted mean

equals the standardised mean, as shown above for dichot-
omous outcomes, and therefore equals the counterfactual
mean E[Ya] under conditional exchangeability. We now
present an alternative demonstration of the equality between
the inverse probability weighted mean and the counterfactual
mean. Some of the material presented in subsequent sections
is based upon this demonstration. First note that

is equal to by definition of

counterfactual outcome. The next steps in the proof are:
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The key point is that conditional exchangeability is
necessary to interpret both the standardised mean and the
inverse probability weighted mean as a counterfactual mean.

The extension to polytomous exposures is straightforward
(that is, a can take more than two values). However, this is
not the case for continuous exposures because, in realistic
scenarios, estimates based on the weights 1/f[A|L] have
infinite variance and thus cannot be used. The next section
describes generalised weights that can be used with all kinds
of exposure variables.

A.3.2. Inverse probability weights
The previous section shows that, using weights W = 1/f[A|L],

the inverse probability weighted mean equals

the counterfactual mean E[Ya] under conditional exchange-
ability. We motivated the use of the weights W as a method for
simulating what would have happened had everybody in the
population experienced each of the exposure levels. For
example, figure 4 displays the number of deaths that would
have been observed had everyone been exposed (a = 1) and
unexposed (a = 0). The causal risk ratio is then readily
calculated as the ratio of the number of deaths under each
exposure level. When using the weights W, the pseudo-
population is larger than the original population. However,
this does not result in a corresponding decrease in the variance
because persons in the pseudo-population, unlike those in the
original population, are not statistically independent.

Now suppose that, in contrast with simulating what would
have been observed had everyone been exposed and
unexposed, we were able to simulate what would have been
observed had, say, 65% of the population been exposed and
35% unexposed in every level of L. Under conditional
exchangeability, this simulation would provide us with data
from a design 1 randomised experiment, and therefore would
allow us to compute the causal risk ratio. Using the same
argumentation as the one used to construct figure 4, let us
simulate what would have happened had 65% of subjects
been exposed, and the other 35% unexposed, in the
population shown in figure 1. The resulting pseudo-
population is displayed in figure 5. In this pseudo-population,

the risk in the exposed is and the risk in the

unexposed is Therefore the risk ratio is

which equals the causal risk ratio computed by

using the pseudo-population of figure 4 (see proof below).
The method used to construct the pseudo-population in

figure 5 is inverse probability weighting with weights
modified to simulate a design 1 randomised experiment. It
is easy to check that the pseudo-population in figure 5 can be

constructed by applying the weights to the exposed,

and to the unexposed in the original population.

Because Pr[A = 1] = 0.65 and Pr[A = 0] = 0.35 the numerator
of these modified weights is f[A]. We refer to the weights

used to construct the pseudo-population in figure 5 as

stabilised inverse probability weights SW. When using the
weights SW (or in fact any weight with a density, or a
function that integrates to 1, in the numerator), the pseudo-
population is of the same size as the original population.
Also, the weights SW have mean one because

The causal effect can be computed by using either the non-

stabilised weights or the stabilised weights

More generally, the causal effect can be

computed by using weights where g[A] is any

function of A that is not a function of L. We now show that

the inverse probability weighted mean with weights is

equal to the counterfactual mean E[Ya]. First note that the

inverse probability weighted mean using

weights 1/f[A|L] can also be expressed as

because Similarly, the inverse probability

weighted mean using weights can be expressed as

which is also equal to the counterfactual

mean E[Ya]. The proof proceeds as in the previous section to

show that the numerator

and that the denominator

Thus, the choice of weights does not affect the consistency
of the estimator of causal effect. However, in more complex
and realistic settings in which it is necessary to use models
for (functions of) the outcome Y given exposure A, the choice
of the weights affects the variability of the estimator of causal

effect. In these cases weights are preferable over

weights because there exist functions g[A] (for

example, f[A]) that can be used to construct more efficient
estimators of the causal effect (that is estimators with a

narrower confidence interval). Also, weights (for
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example, the stabilised weights SW) can be used for
continuous exposures.

A brief note about estimation. We stated that the weighted

means and are equal because

However, this is not necessarily true when

estimating the inverse probability weighted mean in the
population by using the average in a sample. Thus the

original Horvitz-Thompson estimator and the

modified Horvitz-Thompson estimator may

yield different estimates in practice. (The ‘‘hat’’ over E
indicates that is the sample average, a consistent
estimator of the population mean.) The modified Horvitz-
Thompson estimator is used to estimate the parameters of
marginal structural models.9

A.3.3.The causal effect in a subset of the population
We have used standardisation and inverse probability
weighting to compute the causal effect of the exposure on
the outcome in the entire population. That is, we computed
the causal risk ratio Pr[Ya = 1 = 1]/Pr[Ya = 0 = 1] that compares
the counterfactual risk had everybody in the population of
interest been exposed and the counterfactual risk had
everybody in the population been unexposed. But investiga-
tors may be interested in the causal effect of the exposure in a
subset of the population (for example, men, the exposed)
rather than in the causal effect in the entire population.
When this is the case, standardisation and inverse probability
weighting can be easily modified as follows.

Let S be a pre-exposure non-continuous variable (for
example, sex). The causal effect in the risk ratio scale in the
subset of population subjects with S = s (for example, men) is
Pr[Ya = 1 = 1|S = s]/Pr[Ya = 0 = 1|S = s] To compute the coun-
terfactual risk Pr[Ya = 1|S = s] using standardisation (or the
counterfactual mean E[Ya|S = s] using inverse probability
weighting), one just needs to restrict the calculations to the
subset of subjects in the population with S = s.

Sometimes the investigators want to compute the causal
effect in subjects who were actually exposed (or unexposed).
For example, the causal risk ratio in the exposed is
Pr[Ya = 1 = 1|A = 1]/Pr[Ya = 0 = 1|A = 1] or, by definition of
counterfactual outcome, Pr[Y = 1|A = 1]/Pr[Ya = 0 = 1|A = 1].
The causal risk ratio in the exposed is also known as the
standardised morbidity, or mortality, ratio (SMR). Unlike for
a pre-treatment variable S, one cannot restrict the calculation
of the counterfactual risk Pr[Ya = 0 = 1|A = 1] to the subset of
subjects with A = 1 because the subset of exposed subjects
has no information to compute the risk under no exposure.

We now describe how to compute the counterfactual risk
Pr[Ya = 1|A = a9] where a?a9 by using standardisation, and a
more general approach to compute the counterfactual mean
E[Ya|A = a9] by using inverse probability weighting.

1. Standardisation

Pr[Ya = 1|A = a9] is equal to

The steps of

the proof are

See Miettinen12 for a discussion of standardised risk ratios.

2. Inverse probability weighting

E[Ya|A = a9] is equal to the inverse probability weighted
mean

with weights . To prove this equality, first note

that the numerator is equal to by

definition of counterfactual outcome, and that the denomi-
nator is equal to Pr[A = a9] The rest of the proof is
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If A is dichotomous and we want to estimate the inverse
probability weighted risk in the exposed and the unexposed,
our results reduce to those of Sato and Matsuyama.13

Note that the effect in the exposed (or the unexposed) can
be computed under a weaker conditional exchangeability
assumption, for one value a only, than that
required to compute the effect in the entire population,

for all values of a. But the key point is that some
form of conditional exchangeability is always necessary for
causal inference.
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