Bioestadística

Nombre:	CI:	

SOLUCIÓN DEL PARCIAL

9 de Octubre de 2021

Ejercicio 1

- (a) A^+ y B^+ serán independientes si $P(A^+ \cap B^+) = P(A^+)P(B^+)$. Esto no se verifica ya que $0.08 \neq (0.17)(0.1)$.
- (b) Usando la definición de probabilidad condicional se obtiene que $P(B^+|A^+) = 0.8$.
- (c) Análogamente, se obtiene que $P(B^+|A^-) = \frac{P(B^+ \cap A^-)}{P(A^-)} = \frac{0.09}{0.9} = 0.1$ ya que $P(B^+) = P(B^+ \cap A^+) + P(B^+ \cap A^-)$ (es decir que $P(B^+ \cap A^-) = 0.17 0.08$).

Ejercicio 2

- (a) Observar que:
 - $P(X \le 3,4) = P\left(\frac{X-\mu}{\sigma} \le \frac{3,4-\mu}{\sigma}\right) = P\left(Z \le \frac{3,4-\mu}{\sigma}\right) = 0,025$, entonces $\frac{3,4-\mu}{\sigma} = -1,96$ y se tiene que verificar:

(i)
$$\mu - 1.96\sigma = 3.4$$

■ $P(X \ge 4.6) = P\left(\frac{X-\mu}{\sigma} \ge \frac{4.6-\mu}{\sigma}\right) = P\left(Z \ge \frac{4.6-\mu}{\sigma}\right) = 0.025$, entonces $\frac{4.6-\mu}{\sigma} = 1.96$ y se tiene que verificar:

(ii)
$$\mu + 1.96\sigma = 4.6$$

Resolviendo el sistema lineal formado por las ecuaciones (i) y (ii) se obtiene que $\mu = 4$ y $\sigma = \frac{15}{49} \approx 0{,}306$.

(b) Notar que $\overline{X}_n \sim N(\mu, \frac{\sigma^2}{n})$, luego

$$P(\overline{X}_n > 4.06) = P\left(\frac{\overline{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} > \frac{4.06 - \mu}{\frac{\sigma}{\sqrt{n}}}\right) = P(Z > 1.96) = 0.025.$$

Ejercicio 3

- (a) Los valores que toma son 0,1,2,3,4,5, o 6.
- (b) P(Z = 0|X = 1) = 1/2 y P(Z = 0|X = 2) = 1/4
- (c) Usamos la fórmula de probabilidad total:

$$P(Z=0) = P(Z=0|X=1)P(X=1) + P(Z=0|X=2)P(X=2) + \dots + P(Z=0|X=6)P(X=6)$$

$$= \frac{1}{6} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} \right)$$

(d) Si sabemos que X=5 entonces, $Z \sim Binom(5,1/2), E(Z)=5/2$ y Var(Z)=5/4.