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In this essay begins with the descending and ascending chain conditions for
modules, and more generally for partially ordered sets. If a module satisfies both
of these chain conditions then it has an invariant called the length. This essay will
consider some properties of this length.

The first version of this essay was written to provide background material for
another essay focused on the Krull–Akizuki theorem and on Akizuki’s other theorem
that every Artinian ring is Noetherian.1 The current essay considers Noetherian
and Artinian modules, the follow-up essay considers Noetherian and Artinian rings.

I have attempted to give full and clear statements of the definitions and results,
and give indications of any proof that is not straightforward. However, my philos-
ophy is that, at this level of mathematics, straightforward proofs are best worked
out by the reader. So some of the proofs may be quite terse or missing altogether.
Whenever a proof is not given, this signals to the reader that they should work out
the proof, and that the proof is straightforward. Often supplied proofs are sketches,
but I have attempted to be detailed enough that the reader can supply the details
without too much trouble. Even when a proof is provided, I encourage the reader
to attempt a proof first before looking at the provided proof. Often the reader’s
proof will make more sense because it reflects their own viewpoint, and may even
be more elegant.

1 Required background

This document is written for readers with some basic familiarity with abstract
algebra including some basic facts about rings (at least commutative rings), ideals,
modules over such rings, quotients of modules, and module homomorphisms and
isomorphisms. For example, the reader should know the correspondence between
submodules of a quotient modules M/N and modules X with N ⊆ X ⊆M .

In this document all rings will be commutative with a unity element called 1.
We will require that all ring homomorphisms map 1 to 1, and we will require that
the element designated 1 in a subring be equal to the element designated 1 in the
containing ring.

∗Copyright c© 2019 by Wayne Aitken. This work is made available under a Creative Commons
Attribution 4.0 License. Readers may copy and redistributed this work under the terms of this
license.
†Version of December 12, 2019.
1See my essay The Krull–Akizuki Theorem.
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In Propositions 10 and 20, the reader is expected to be familiar with short exact
sequences, but these propositions can be skipped if desired.

2 Chains conditions

We formulate the notion of the ascending chain condition (ACC) and the dual
notion of the descending chain condition (DCC) in the general context of partially
ordered sets.

Definition 1. A reflexive partial order on a set S is a relation ≤ on S such that
(1) the relation is reflexive, (2) the relation is transitive, (3) for all x, y ∈ S if x ≤ y
and y ≤ x then x = y.

A reflexive total order on a set S is a reflexive partial order on S with the extra
property that for all x, y ∈ S either x ≤ y or y ≤ x.

A partially ordered set is a set C together with a reflexive partial order relation ≤
on C. Similarly a totally ordered set is a a set C together with a reflexive total order
relation ≤.

Remark. So a partially ordered set has two components: (1) a set and (2) an order
relation on that set. The set component is called the underlying set. Of course, a
given set with more than one element can be the underlying set for multiple partial
ordered sets. However, when the order relation is understood, it is customary
to identify the ordered set with the underlying set. This convention applies to
structured sets in general. So, for example, the term Z can refer, depending on
context, to the set of integers, the ring of integers, the additive group of integers,
or the ordered set of integers with the usual order relation. In this section we will
typically use the term C to refer to a partially ordered set and the underlying set.

Remark. Given a reflexive partial or total order ≤ on a set C, we can define an
associated strict order < on C. It is the relation defined by the rule that x < y if
and only if x 6= y and x ≤ y. It is anti-reflexive (¬(x < x)), transitive, and satisfies
the partial trichotomy law: for each pair x, y ∈ S at most one occurs: x < y, y < x,
or x = y. If ≤ is a total order, then < satisfies the total trichotomy law: for each
pair x, y ∈ S exactly one occurs: x < y, y < x, or x = y.

Given a partially (or totally ordered) set we define the relations ≥ and > on
that set in the usual way.

Proposition 1. A subset of a partially ordered set is a partially ordered set, using
the induced relation. A subset of a totally ordered set is a totally ordered set, using
the induced relation.

Definition 2. Let S be a nonempty subset of a partially ordered set C. A maximal
element of S is an element M ∈ S such that if M ≤ X with X ∈ S then M = X.
A maximum element of S is an element M ∈ S such that X ≤ M for all X ∈ S.
We define minimal and minimum elements in a similar manner.

Remark. A nonempty subset S of a partially ordered set C does not necessarily
have a maximal or maximum element. It can also have multiple maximal elements.
A maximal element is not necessarily a maximum. However, a maximum element is
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necessarily maximal. In fact, if S has a maximum element it is the unique maximum
and maximal element of S.

If S is a nonempty totally ordered subset then a maximal element of S, if it
exists, is necessarily the maximum of S.

Similar remarks apply to minimal and minimum elements.

Remark. In the context of this document, an integer index set is a subset I of Z
with the property that if a, b ∈ I then any x ∈ Z with a < x < b is in I. If I is
such an integer index set and if S is a set, then a sequence in S indexed by I is just
a function I → S. We employ the notation (si)i∈I for such a sequence where si is
understood to be the image of i ∈ I. We write (si) if the index set does not need
to be specified.

Definition 3. Let C be a partially ordered set. An ascending chain in C is a
sequence (Ci)i∈I in C such that

· · · ≤ Ci−1 ≤ Ci ≤ Ci+1 ≤ · · ·

In other words, for all i, j ∈ I such that i < j we have Ci ≤ Cj . A strict ascending
chain is an ascending chain (Ci)i∈I such that

· · · < Ci−1 < Ci < Ci+1 < · · ·

We define descending chains and strict descending chains in a similar manner
using the relations ≥ and >. We use the term chain for any sequence (Ci) of
elements of C which forms an ascending or descending chain.

A chain is bounded if the index set I has maximum element. (Typically, I will
have minimum, and the minimum is often 0. But we ignore lower bounds here.) A
chain (Ci) stablizes if it is either bounded, or if there is a i ∈ I such that Cj = Ci
for all j ≥ i).

Remark. Let C be a partially ordered set. The set of elements occurring in a chain
forms a totally ordered subset of C.

Proposition 2. Let C be a partially ordered set. Then the following are equivalent:

1. Every ascending chain in C stabilizes.

2. Given an unbounded ascending chain (Ci)i∈I there are only a finite number
of positive i ∈ I with Ci < Ci+1.

3. Every strict ascending chain in C is bounded.

4. Every nonempty subset of C contains a maximal element. In fact, given X ∈ S
where S is a subset of C, there is a maximal element M of S with X ≤M .

Proof. It is straightforward to prove (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1).

Definition 4. We say that a partially ordered set C satisfies the ascending chain
condition (ACC) if the equivalent conditions of the above proposition hold.

Similarly, we have the following for descending chains and minimal elements:
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Proposition 3. Let C be a partially ordered set. Then the following are equivalent:

1. Every descending chain in C stabilizes.

2. Given an unbounded descending chain (Ci)i∈I there are only a finite number
of positive i ∈ I with Ci > Ci+1.

3. Every strict descending chain in C is bounded.

4. Every nonempty subset of C contains a minimal element. In fact, given X ∈ S
where S is a subset of C, there is a minimal element m of S with X ≥ m.

Definition 5. We say that a partially ordered set C satisfies the descending chain
condition (DCC) if the equivalent conditions of the above proposition hold.

Proposition 4. Suppose C′ is a subset of a partially ordered set C. If C satisfies
the ACC then so does C′. If C satisfies the DCC then so does C′.

Definition 6. Let C be a partially ordered set. A finite chain is a chain (Ci)ı∈I
such that the integer index set I is finite. By reversing the order of the terms Ci if
necessary and shifting the indexing if necessary, we can write such a chain as

C0 ≤ C1 ≤ · · · ≤ Cn

for a unique n, which we call the length of the chain. If a finite chain is a strict
ascending or descending chain, we call it a strict finite chain.

Definition 7. Suppose that C is a partially ordered set and suppose X,Y ∈ C
with X ≤ Y . A composition series between X and Y is a strict chain

X = C0 < C1 < · · · < Cn = Y

that is maximal in the following sense: for i ∈ {1, . . . , n} there are no Z ∈ C such
that Ci−1 < Z < Ci.

Proposition 5. Suppose both the ACC and DCC hold for a partially ordered set C.
If X,Y ∈ C with X ≤ Y , then there is a composition series between X and Y .

Proof. Let C0 = X. We continue recursively as follows: given a term Ci, if Ci < Y
then let Ci+1 be a minimal D ∈ C such that Ci < D ≤ Y . For some i it will happen
that Ci = Y (otherwise the ACC would be violated). The resulting chain can be
seen to be a composition series between X and Y .

3 Noetherian and Artinian modules

Let R be a commutative ring. Observe that if M is an R-module, then the collection
of submodules of M forms a partially ordered set under the inclusion relation.

Definition 8. An R-module is said to be Noetherian if the collection of submodules
of M satisfies the ACC. An R-module is said to be Artinian if the collection of
submodules of M satisfies the DCC.
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Although the current essay is focused on modules, we make a brief mention of
Noetherian and Artinian rings. Recall that R is itself an R-module.

Definition 9. The ring R is a Noetherian ring if R is a Noetherian R-module. The
ring R is an Artinian ring if R is a Artinian R-module.

In other words, the ring R is Noetherian if and only if the collection of ideals
of R satisfy the ACC. Similarly, the ring R is Artinian if and only if the collection
of ideals of R satisfy the DCC.

Proposition 6. Suppose M and M ′ are isomorphic R-modules. If M is Noetherian
then so is M ′. If M is Artinian then so is M ′.

Lemma 7. Suppose M is an R-module. If M is Noetherian then so is any sub-
module of M . If M is Artinian then so is any submodule of M .

Lemma 8. Suppose M is an R-module with submodule N . If M is Noetherian
then so is M/N . If M is Artinian then so is M/N .

Proposition 9. Suppose M is an R-module with submodule N . Then M is Noethe-
rian if and only if both N and M/N are Noetherian. Similarly M is Artinian if
and only if both N and M/N are Artinian.

Proof. One implication (of both claims) is provided by the previous two lemmas.
We will give the other implication in the Noetherian case since the Artinian case is
similar. So suppose N and M/N are Noetherian. Consider an ascending chain (Mi)
of submodules of M . We can map this into an ascending chain (M ′i) of submodules
of M/N that stabilizes for indices j ≥ N1 for some integer N1. Likewise the
ascending chain (N ∩Mi) stabilizes for indices j ≥ N2 for some integer N2. Let N
be the maximum of N1 and N2. It is straightforward to show that (Mi) stabilizes
for indices j ≥ N .

Proposition 10. Given a short exact sequence of R-modules

0→M1 →M2 →M3 → 0

then M2 is Noetherian if and only if both M1 and M3 are Noetherian. Similarly, M2

is Artinian if and only if both M1 and M3 are Artinian.

Proof. Note that M1 is isomorphic to a submodule N of M2, and M3 is isomor-
phic to the quotient M2/N . So the current result is a corollary to the previous
proposition.

For the most part we consider properties that are symmetric with respect to
the Noetherian and the Artinian condition for modules. The following breaks that
symmetry:2

2There are non-finitely generated Artinian modules even for Z-modules. Consider the subgroup
of the additive Abelian subgroup of Q/Z consisting of elements represented by a fraction whose
denominator is a power of two. Each proper subgroup is generated by the class of 1/2n for
some n. From this property it is straightforward to show the DCC. Observe that this Z-module
is not finitely generated.
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Proposition 11. Let M be a Noetherian R-module. Then M is a finitely gener-
ated R-module.

Proof. Consider the collection of all finitely generated submodules of M . It has a
maximal element M0 by the ACC. Let x ∈ M . Then M0 + xR is also a finitely
generated submodule of M , so M0 = M0 +xR by maximality of M0. Thus x ∈M0.
This shows that M = M0, so M is finitely generated.

4 The length of a module

Let M be a R-module, where R is a commutative ring, and let N be a submodule
of M . There are important situations where there is a composition series (Defi-
nition 7) of modules intermediate between N and M , and often such composition
series or even the lengths of such series are often helpful in relating N and M . This
happens, for example, if N = I and M = J are nonzero ideals of Z. More generally
this happens for nonzero ideals of any Noetherian ring where every nonzero prime
ideal is maximal (such as PIDs or Dedekind domains).3 Such series are also related
to the concept of the norm of an ideal in algebraic number theory.

A composition series

N = M0 (M1 ( · · · (Mn = M

corresponds to a composition series of quotient modules

0 = M0/N (M1/N ( · · · (Mn/N = M/N.

So we can reduce to the situation where the first term is 0. In this case, the length
of the composition series gives a nice generalization to the dimension of a vector
space: if R is a field then the dimension of a finite dimensional vector space V is
just the length of a composition series between the zero space 0 and all of V .

It will turn out that all composition series between two modules have the same
length (assuming at least one such series exists). For now, we define the length of a
module M as the minimum length among the composition series between 0 and M :

Definition 10. Let M be a module. A composition series for M is a composition
series between 0 and M , in the sense of Definition 7, in the collection of submodules
of M partially ordered by inclusion.4 In other words, a composition series of M is
a strict finite chain

0 = M0 (M1 ( · · · (Mn = M

that is maximal in the following sense: for i ∈ {1, . . . , n} there are no submod-
ules M ′ of M such that Mi−1 (M ′ (Mi. If such a finite composition series exists,
then we say that M has finite length. The minimal length n of all such composition
series for M is called the length of M . We write len(M) or length(M) for the length
of M .

3Suppose I ⊆ J are ideals in such a ring R. It turns out that R/J is a Noetherian and
Artinian ring (see, for example, my essay The Krull–Akizuki Theorem). Thus I/J is Noetherian
and Artinian as an R/J-modules, and hence as an R-module. So, I/J has a composition series.

4Given a finite group G we also define composition series (Gi) in terms of the partially ordered
collection of subgroups. However, in that case we add the requirement that Gi is a normal
subgroup of Gi+1.
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One fruitful approach to studying composition series is via the Jordan-Holder
theorem which we will consider in an appendix. Here we derive the basic properties
of length without using the Jordan-Holder approach.

Definition 11. A simple module is a nonzero module M whose only submodules
are 0 and M .

Proposition 12. A strict finite chain of submodules of M

0 = M0 (M1 ( · · · (Mn = M

is a composition series if and only if Mi/Mi−1 is simple for each i ∈ {1, . . . , n}.

Proposition 13. Suppose M1 and M2 are isomorphic modules. If M1 has finite
length, then so does M2, and both modules have the same length.

Proposition 14. Let N be a submodule of a module M . If M has finite length
then N has finite length and length(N) ≤ length(M). If N is a proper submodule
of M then length(N) < length(M).

Proof. Let 0 = M0 ( M1 ( · · · ( Mn = M be a composition series of minimal
length and let Ni = Mi ∩N . For each 0 < i ≤ n, consider the composition of the
inclusion map followed by the quotient homomorphism: Ni → Mi → Mi/Mi−1.
The kernel is Ni−1, so there is an injection Ni/Ni−1 →Mi/Mi−1. Thus Ni/Ni−1 is
isomorphic to its image in Mi/Mi−1. Since Mi/Mi−1 is simple, either Ni/Ni−1 is
isomorphic to Mi/Mi−1, hence is simple, or Ni/Ni−1 is isomorphic to 0, in which
case Ni = Ni−1. We have a finite chain

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nn = N

but it might not be strict. By repeatedly removing a term Ni with Ni = Ni−1, if
such exists, we eventually form a strict finite chain of length at most n. Since
each quotient Ni/Ni−1 is simple for such a chain, it is a composition series.
Thus length(N) ≤ length(M).

Suppose Ni/Ni−1 is isomorphic to Mi/Mi−1 for each i. We claim that Ni = Mi

for each i in this case. We prove this by induction so we assume Ni−1 = Mi−1 for
some i > 0. Let x ∈ Mi. Then in Mi/Mi−1 we have [x] = [y] for some y ∈ Ni.
Thus x = y + z for some z ∈ Ni−1 = Mi−1. Thus x ∈ Ni.

So if Ni/Ni−1 is isomorphic to Mi/Mi−1 for each i then N = M . Thus if N (M
then the composition series (Ni) for N has strictly smaller length than the compo-
sition series (Mi) for M .

Proposition 15. Suppose M is a module of finite length. Given a strict finite
chain of submodules of M

0 (M1 ( · · · (Mk

then k ≤ length(M).

Proof. By the previous proposition each Mi has finite length and

0 < len(M1) < · · · < len(Mk) ≤ len(M).
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Proposition 16. Suppose M is a module of finite length. Given a strict finite
chain of submodules of M

0 (M1 ( · · · (Mk

Then k = length(M) if and only if this sequence is a composition series for M . In
particular, all composition series have the same length.

Proof. Suppose k = length(M). If the given chain is not a composition series we
could form a longer strict chain of length k+ 1, contradicting Proposition 15. Thus
the given chain is a composition series.

Conversely, suppose the given sequence is a composition series. Then we
have k ≥ len(M) by definition of length. However, k ≤ length(M) by Proposi-
tion 15. Thus k = length(M).

Proposition 17. A module M has finite length if and only if it is both Noetherian
and Artinian.

Proof. If M is both Noetherian and Artinian, then it has a composition series
(Proposition 5). Now suppose M has finite length. All strict ascending or descend-
ing chains of submodules of M must be finite by Proposition 15.

Proposition 18. A module M fails to have finite length if and only if for all n ∈ N
there is a strict finite chain of submodules of M

0 = M0 (M1 ( · · · (Mn.

Proof. If M fails to have finite length then there is no composition series, which
means that any strict chain 0 = M0 (M1 ( · · · (Mk can be expanded to a strict
chain of length k+ 1. By starting with k = 0, we can grow the chain to any desired
length.

Conversely, suppose M has finite length k. Then any such sequence has length
bounded by k(Proposition 15).

We can strengthen Proposition 14:

Proposition 19. Suppose that M is an R-module and that N is an R-submodule
of M . Then M has finite length if and only if N and M/N both have finite length.
In this case,

length(M) = length(N) + length(M/N).

Proof. We combine Proposition 9 and Proposition 17 to conclude that M has finite
length if and only if N and M/N both have finite length.

Now suppose N and M/N , and so M , are all of finite length. Let

0 = N0 ( N1 ( · · · ( Nk = N

be a composition series of N , and let

0 = M0/N (M1/N ( · · · (Ml/N = M/N

be a composition series of M/N . Then

0 = N0 ( N1 ( · · · ( Nk = M0 (M1 ( · · · (Ml = M
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is a composition series for M . The length of a module is the length of any compo-
sition series, so the additivity follows.

Proposition 20. Suppose 0 → M1 → M → M2 → 0 is an exact sequence of
modules. Then M has finite length if and only if both M1 and M2 have finite
length. In this case

length(M) = length(M1) + length(M2).

Proof. Observe that M1 is isomorphic N where N is the kernel of M1 → M2.
Observe that M2 is isomorphic to M/N . Thus the result follows from the previous
proposition.

Proposition 21. If M is an R-module of finite length. Then M is a finitely
generated R-module.

Proof. If M is of finite length then it is Noetherian (Proposition 17). So M is
finitely generated (Proposition 11).

Proposition 22. Suppose M is an R-module and suppose I is an ideal of R that
annihilates M in the sense that aM = 0 for each a ∈ I. Then M is naturally
an R/I-module. In this case an Abelian subgroup N of M is an R-submodule of M
if and only if N is an R/I-submodule of M .

Conversely if M is an R/I-module for some ideal I of R then M is naturally
an R-module and I annihilates M .

Corollary 23. Suppose M is an R-module and suppose I is an ideal of R that
annihilates M in the sense that aM = 0 for each a ∈ I. Then any ascending chain
of R-submodules of M is an ascending chain of R/I-submodules of M and vice
versa. Any descending chain of R-submodules of M is a descending chain of R/I-
submodules of M and vice versa. A composition series for M as an R-module is a
composition series for M as an R/I-module, and vice versa.

So M is Noetherian as an R-module if and only if it is Noetherian as an R/I-
module. Likewise, M is Artinian as an R-module if and only if it is Artinian as
an R/I-module. Similarly, M has finite length as an R-module if and only if it
has finite length as an R/I-module. In this case the lengths are the same (as an
R-module versus an R/I-module).

Proposition 24. Let M be an F -vector space where F is a field. Then M has
finite length if and only if M is a finite dimensional F -vector space. In this case
the length is just the dimension. In fact, for such vector spaces M the following are
equivalent:

1. M has finite length.

2. M has finite dimension.

3. M is Noetherian.

4. M is Artinian.
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Proposition 25. Let M be an R module, and let

M0 ⊆M1 ⊆ · · · ⊆Mk

be a finite chain of submodules of M . Then Mk/M0 has finite length if and only
if Mi/Mi−1 has finite length for each i ∈ {1, . . . , k}. In this case,

len(Mk/M0) = len(Mk/Mk−1) + . . .+ len(M2/M1) + len(M1/M0).

Proof. We prove this by induction on k. The case k = 1 is immediate, so we
consider the case k > 1. We have

Mk−1/M0 ⊆Mk/M0

and
(Mk/M0)/(Mk−1/M0) ∼= Mk/Mk−1.

We now use Proposition 19.

5 Simple modules

We will now consider some results about simple modules over a commutative ring R.
Using the correspondence between submodules of M/N and submodules of M

containing N we get the following.

Lemma 26. Let I be an ideal of a commutative ring R. Then R/I is a simple R-
module if and only if I is a maximal ideal.

Lemma 27. Let ϕ : M1 →M2 be an injective homomorphism between R-modules.
If M2 is simple and if M1 is nonzero then ϕ is an isomorphism and so M1 is simple.

Lemma 28. Let M be a simple R-module. Then M is isomorphic as an R-module
to R/m for some maximal ideal m.

Proof. Fix x ∈ M a nonzero element of M and consider the function r 7→ rx.
This map is an R-module homomorphism R → M . If I is the kernel then there
is an injective homomorphism R/I → M . Since M is simple and since I 6= R
(since 1 6∈ I), this map is an isomorphism (Lemma 27). Thus R/I is simple as
an R-module, and so I is a maximal ideal of R (Lemma 26).

Proposition 29. Let M be a module over a commutative ring R. Then the fol-
lowing are equivalent.

1. M is simple.

2. M has has finite length over R with length(M) = 1.

3. M is isomorphic, as R-modules, to R/m for some maximal ideal m of R.
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6 Appendix: the Jorden-Holder approach

We will given another approach to the lengths of modules that also considers the
quotients that appear. This is the Jorden-Holder approach. Given two composition
series

0 = M0 (M1 ( · · · (Mk = M, 0 = M ′0 (M ′1 ( · · · (M ′l = M

the Jorden-Holder approach will not only show that k = l, but will also show that,
up to permutation and isomorphism, the simple quotients Mi/Mi−1 of the first
composition series are the same as the simple quotients M ′i/M

′
i−1 of the second

composition series.
Throughout this appendix, we adopt the terminology and methodology of mul-

tisets of modules up to isomorphism. To make this more precise, we will define
multisets as a kind of equivalence class. Given sequences (Xi)i∈I and (X ′i)i∈I′

of R-modules indexed by finite sets I and I ′, we say that (Xi)i∈I and (X ′i)i∈I′

are equivalent if there is a bijection σ : I → I ′ such that Xi is isomorphic to X ′σi
for all i ∈ I. This is clearly an equivalence relation between such sequences.5 We
view a multiset of modules up to isomorphism to be an equivalence class of this
equivalence relation. We will use the notation {Ci} for the multiset associated with
the representative sequence (Ci). The cardinality of a multiset is, of course, the
cardinality of an index set of any representative sequence. Given two multisets, we
can form a well-defined union which is a multiset whose cardinality is the sum of
the cardinalities of the given multset.

Our goal in this appendix is to prove the following:

Theorem 30 (Jorden-Holder for modules). Let M be a module and let

0 = M0 (M1 ( · · · (Mk = M, 0 = M ′0 (M ′1 ( · · · (M ′l = M

be two composition series. Then k = l and {Mi/Mi−1} and {M ′i/M ′i−1} are equal
as multisets up to isomorphism.

Our strategy is to set up a two-dimensional array of R-modules. For each i, j
with 0 ≤ i ≤ k and 0 ≤ j ≤ l let Ni,j be the module defined as follows

Ni,j
def
= Mi ∩M ′j .

In particular, N0,j = Ni,0 = 0, Ni,l = Mi, Nk,j = M ′j , and Nk,l = M .

Remark. One method of proof can be described informally as follows: For any path
from (0, 0) to (k, l), such that each step increases either the first coordinate or the
second coordinate by one unit, we can generate a composition series using the Ni,j
for (i, j) along the path (discarding extra isomorphic terms). The path

(0, 0), (0, 1), . . . , (0, l), (1, l), . . . , (k, l)

yields the first given composition series, and the path

(0, 0), (1, 0), . . . , (k, 0), (k, 1), . . . , (k, l)

5We will limit our attention to to quotients of submodules of a fixed module M and we will
limit our index sets to subsets of Z or Z2. So the collection of such sequences forms a set.
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yields the second given composition series. We then show that for each modification
of a path by replacing a sequence of steps (i− 1, j − 1) to (i− 1, j) to (i, j) by the
sequence (i − 1, j − 1) to (i, j − 1) to (i, j) yields the same length of composition
series with the same multiset of simple quotients (using the lemmas below). We
then need to argue that any path can be changed to any other by a series of such
modifications (“homotopy”). This approach is intriguing, but it involves work to
make it formal. So we will pursue another approach involving cancelling like terms
in certain multisets.

Either approach will require two key lemmas:

Lemma 31. Suppose A,B,N are submodules of M such that A ⊆ B. Suppose also
that B/A is simple. Then either B∩N = A∩N or (B∩N)/(A∩N) is isomorphic
to B/A.

Proof. Consider the composition of the inclusion followed by the quotient map.

B ∩N → B → B/A.

Observe that the kernel is just A ∩N . Thus there is an injection

(B ∩N)/(A ∩N)→ B/A.

Since B/A is simple, the image is 0 or all of B/A. In the first case B ∩N = A∩N .
In the second (B ∩N)/(A ∩N) is isomorphic to B/A.

Lemma 32. Let M be a module. Suppose A,B,C,D are submodules of M such
that A ⊆ B and C ⊆ D. Suppose also that B/A is simple and that D/C is simple.
Then we have

{B ∩D/B ∩ C, B ∩ C/A ∩ C} = {B ∩D/A ∩D, A ∩D/A ∩ C}

as multisets up to isomorphism.

Proof. Suppose first that (B ∩D)/(A ∩ C) is simple. Since B ∩ C and A ∩D are
each intermediate between A ∩ C and B ∩ D, each are equal to A ∩ C or B ∩ D.
Thus, each multiset is {0, (B ∩D)/(A ∩ C)}, so they are equal.

Next suppose that (B∩D)/(A∩C) is not simple. By the previous lemma, each
element of each multiset is either 0 or simple. Since (B ∩D)/(A∩C) is not simple,
no element can be 0. Since each element is simple, we have, by the previous lemma

{B ∩D/B ∩ C, B ∩ C/A ∩ C} = {D/C,B/A}

and
{B ∩D/A ∩D, A ∩D/A ∩ C} = {B/A,D/C}.

Corollary 33. let i, j be such that 1 ≤ i ≤ k and 1 ≤ j ≤ l. Then as multisets up
to isomorphism

{Ni,j/Ni−1,j , Ni−1,j/Ni−1,j−1} = {Ni,j/Ni,j−1, Ni,j−1/Ni−1,j−1}.
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Now we can give an argument for the key result. We set-up notation for two
types of quotients of the Nij : For each 0 ≤ i ≤ k and 1 ≤ j ≤ l define

Hi,j
def
= Ni,j/Ni,j−1 = (Mi ∩M ′j)/(Mi ∩M ′j−1).

For each 1 ≤ i ≤ k and 0 ≤ j ≤ l define

Vi,j
def
= Ni,j/Ni−1,j = (Mi ∩M ′j)/(Mi−1 ∩M ′j).

So the above corollary states that Xi,j = Yi,j where

Xi,j
def
= {Vi,j , Hi−1,j}, Yi,j

def
= {Hi,j , Vi,j−1}.

Now define two multisets X and Y (each of cardinality 2kl):

X
def
=

⋃
1≤i≤k
1≤j≤l

Xi,j , Y
def
=

⋃
1≤i≤k
1≤j≤l

Yi,j .

By the above corollary, X = Y . Now consider the multiset W :

W
def
= {Hi,j | 1 ≤ i ≤ k − 1, 1 ≤ j ≤ l} ∪ {Vi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ l − 1}

Note that
X = W ∪ {H0,1, H0,2, . . . ,H0,l, V1,l, V2,l, . . . , Vk,l}

and
Y = W ∪ {Hk,1, Hk,2, . . . ,Hk,l, V1,0, V2,0, . . . , Vk,0} .

Since X = Y , this means (as multisets up to isomorphism of size k + l)

{H0,1, . . . ,H0,l, V1,l, V2,l, . . . , Vk,l} = {Hk,1, Hk,2, . . . ,Hk,l, V1,0, . . . , Vk,0} .

In terms of Mi and M ′i this gives multisets

{0, . . . , 0,M1/M0, . . . ,Mk/Mk−1} = {M ′1/M ′0, . . . ,M ′k/M ′k−1, 0, . . . , 0}

where the left side has 0 occurring l-times and the right side has 0 occurring k-times.
Thus k = l. Removing the 0 terms gives the desired equality of multisets.

Remark. This proof can be adapted to the composition series of finite groups, which
yields the Jordan-Holder theorem for finite groups.

13


