

CURSO DE BIOLOGÍA DEL DESARROLLO 2022

PROTOCOLO PRÁCTICO

Manipulación de la expresión génica y desarrollo neural en pez cebra

Docente responsable: **Flavio Zolessi** Ayudante: Lucía Veloz

En esta práctica manipularemos la expresión del gen *cdh2*, que codifica para la proteína de adhesión N-cadherina, con el fin de estudiar su función durante el desarrollo del sistema nervioso del pez cebra (*Daniorerio*).

Generación de mutantes en F0 utilizando CRISPR-Cas9 o bloqueo de la expresión mediante oligómeros de morfolino (MO).

Para generar mutantes en F0 utilizando el sistema propuesto por Wu et al., 2018, se deben generar 4 ARN guías complementarios al gen de interés. Esto se realizó previamente por los docentes siguiendo el protocolo adjunto en el anexo.

- 0.- **Selección de parejas:** El día previo a la inyección (a última hora), se seleccionan parejas de peces y se colocan en parideras, peceras especiales que permiten colectar los huevos con facilidad una vez que los peces desovan. En esta práctica utilizaremos peces de la línea salvaje TAB5.
- 1.A.- CRISPR.Preparación de la solución a inyectar: Se prepara un mix de ARNg con una concentración final de 200 ng/μL. El mix de guías se mezcla 1:1 la proteína Cas9, que se encuentra a una concentración de 5 μM. Para formar el complejo entre las Cas9 y los guías, se realiza una incubación a 37 °C por 10 min del mix previo a la inyección. El complejo obtenido puede ser guardado a -20 °C y descongelado para su uso un par de veces sin perder la eficiencia.
- 1.B.-MO. Preparación de la solución a inyectar: La solución de MO stock (2 mM) se preserva a -20 °C, lo cual provoca la precipitación parcial de las moléculas de MO. Comenzar por calentar el stock a 65 °C por 10 min, seguido de vortexeado, para redisolver. Diluir una cantidad adecuada de stock de MO en agua para llevarlo a una concentración final de 0.2 mM.

2.- Preparación del material previo a la inyección:

- Se toma un capilar estirado nuevo. Bajo la lupa se observa su punta al máximo aumento (50 x) y se corta una punta biselada usando una pinza de punta fina.
- Se coloca un pequeño parafilm en el campo de la lupa y sobre él se coloca una gota de la solución a inyectar. Luego se sumerge la punta del capilar en el centro de la gota, y se succiona el líquido. Es importante que no queden burbujas en el capilar.

- Se coloca la jeringa cargada en el microinyector y se calibra la cantidad de volumen a inyectar por pulso, midiendo el diámetro de la gota en el microscopio.

3.- Inyección de los embriones:

Una vez que las parejas de peces desovan, los huevos se colectan en placas de Petri de 10 cm de diámetro. Rápidamente, se seleccionan embriones de una célula y se colocan en una placa para inyección. Se inyectan 1.5 nl de mixARNg/Cas9 o 1.5 nl de MO en el vitelo del embrión, muy próximo a la célula. En el caso del CRISPR, debe ser realizado antes de que se complete la primera división celular, mientras que el MO puede inyectarse hasta la etapa de 4-8 células.

4.- Los embriones se incuban en estufas de 28°C hasta que alcancen la edad deseada.

Luego de alcanzar el estadío deseado los embriones serán fijados en PFA 4%, para luego ser lavados, coloreados y montados en cámaras con glicerol-agarosa.

Anexo 1: Generación de ARN guías para N-cadherina.

1.-Diseño y selección de los ARNg:

Usando CRISPRscan se buscan los oligonucleótidos para el gen de interés.

- Se deben indentificar los mejores ARNg en función de sus scores y la region del ORF en que pegan.

2.- Generación de los ARNg por PCR

PCR

1μl de 10 μM stock de primer específico 1μl de 10 μM stock de primer tail 17μl de mix de PCR 0,2 μl de polimerada Llevar a 25 μl con Agua ultrapura.

Condiciones de la PCR:

1X:

95 °C, 3 min

30X:

95 °C, 30 s

45 °C, 30 s

72 °C, 20 s

1X:

72 °C, 5 min

Se obtiene un producto de PCR de 117 pb que puede ser purificado mediante un kit.

3.- IVT

Se realiza siguiendo las instrucciones del kit, en nuestro caso:

200 ng de product de PCR purificado 2 μl de buffer 10X (a temperatura ambiente) Agua libre de RNasas hasta llegar a 20 μl 1 μl ATP 1 μl GTP 1 μl CTP 1 μl UTP 0,5 Inh. RNAsa 2 μl Enzima T7

Se incubata la IVT para cada guía a 37°C ON. Se agraga DNAsa y se incuba 15 min a 37°C.

4.- Purificación de los ARN guías:

Para precipitar 20 μL de reacción se agrega en cada tubo: 180 μL de agua, 20 μL Acetato de Na 3M, DPEC y 600 μL de Etanol absoluto. Se deja precipitar ON a -20.

- 1- Centrifugar 30 min a 17.000 g en centrífuga refrigerada.
- 2- Descarta el sobrenadante con cuidado (el pellet es muy pequeño).
- 3- Agregar 500 uL de EtOH 70% frío.
- 4- Centrifugar 30 min a 4 grados y 17.000g.
- 5- Repetir 2, 3 y 4
- 6- Resuspender en 20 µL de agua libre de RNAsas.

Links y bibliografía:

- https://www.crisprscan.org/
- Wu, R. S., Lam, I. I., Clay, H., Duong, D. N., Deo, R. C. and Coughlin, S. R. (2018). ARapid Method for Directed Gene Knockout for Screening in G0 Zebrafish. Dev. Cell 46, 112-125.e4.
- Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC (2009) A primer for morpholino use in zebrafish. Zebrafish. 6(1):69-77. doi: 10.1089/zeb.2008.0555.