

Resultados Práctico 6

6.1.1) *a*)
$$\lambda = 563 \, \text{nm}$$

b)
$$\Delta y = 2.25 \, \text{cm}$$

6.1.2)
$$\lambda = 600 \, \mathrm{nm}$$

6.1.3) *a*)
$$\lambda = 55,7 \,\mathrm{m}$$

6.1.4) a)
$$\delta = 1.93 \times 10^{-6} \,\mathrm{m}$$

b)
$$\delta = 3{,}00\lambda$$

- c) Corresponde a un máximo
- **6.1.5**) *a*) Primeros máximos: 2,29°, 4,59° y 6,89°
 - b) Primeros mínimos: 1,15°, 3,44° y 5,74°
 - c) Los ángulos son pequeños y por lo tanto $\sin x \approx x$
- **6.1.6)** $\lambda = 567 \, \text{nm}$: color amarillo
- **6.1.7)** $t = 789 \, \text{nm}$
- **6.1.8)** a) $y_1 = 2.25 \,\mathrm{mm} \,\mathrm{y} \,\Delta Y_{max} = 4.50 \,\mathrm{mm}$
 - b) $a = 2.27 \times 10^{-4} \,\mathrm{m}$
 - c) $\Delta\theta_1=5.91^{\circ}, \Delta\theta_2=13.2^{\circ}, \Delta\theta_3=24.5^{\circ}.$ No hay para m>3
- **6.1.9**) *a*) $\lambda = 533 \, \text{nm}$ (verde)
 - b) Utilizar más capas provoca que el porcentaje de intensidad reflejada crezca.
 - c) Si el ángulo de incidencia no es normal, vemos un máximo en longitudes de onda más largas, es decir, más amarillas.

6.1.10) a)
$$I_T = 33.6\%$$
 e $I_A = 16.4\%$

b)
$$\theta_B = 60.5^{\circ}$$

c)
$$\phi = 8.62^{\circ}$$

6.2.1) a)
$$K_{max} = 2,75 \, \text{eV}$$

b) $2,51 \times 10^8$ electrones por unidad de área y tiempo

6.2.2)
$$\lambda = 272 \, \mathrm{nm}$$

6.2.3)
$$\lambda = 382 \, \mathrm{nm}$$

6.2.4)
$$E = 14 \,\mathrm{keV}$$

6.2.5) a)
$$\Delta E = 10.2 \,\text{eV}$$

b)
$$f_{max} = 3.29 \times 10^{15} \, \mathrm{Hz}$$

c) No hay un mínimo, $f_{min} = 0 \,\mathrm{Hz}$

6.2.7)
$$\lambda = 102 \, \mathrm{nm}$$

6.2.8)
$$\lambda_{atomo} = 1.78 \times 10^{-8} \,\mathrm{m}, \, \lambda_{auto} = 2.98 \times 10^{-38} \,\mathrm{m}$$

6.2.9)
$$\Delta V = 151 \, \mathrm{V}$$

6.2.10)
$$\lambda = 2.43 \,\text{Å}$$

6.2.11)
$$\lambda = 1.25 \times 10^{-9} \,\mathrm{m}$$