Actividad práctica 4 - Fraccionamiento subcelular - Núcleo

Parte A: Reacción de Feulgen – Rossenbeck

A.1: Reacción de Feulgen sobre macromoléculas en solución: validación del método.

1.- Prepare los tubos tipo "eppendorf" 1, 2 y 3 de acuerdo a la tabla adjunta:

TUBO	1 2		3
Agua destilada			100 µL
BSA* (1 mg/mL)		100 μL	
ADN (1 mg/mL)	100 μL		
HCI (1 N)	100 µL	100 µL	100 µL
	Agitar e incubar	10 minutos a 60 ºC	
Reactivo de schiff	200 μL	200 μL	200 μL

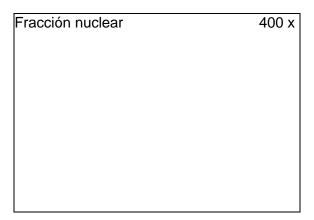
^{*}BSA = albúmina sérica bovina (proteína)

Dejar 15 min en oscuridad (cubrir con aluminio), a temperatura ambiente

2.- ¿Qué tubos elegiría como controles positivo y negativo del experimento? Justifique brevemente su respuesta.

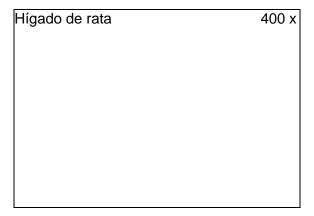
3.- Indique si la reacción de Feulgen sobre macromoléculas en solución fue positiva o negativa:

- Tubo 1 (ADN):
- Tubo 2 (BSA):
- Tubo 3 (Agua):


4.- ¿Qué control negativo falta en el diseño experimental propuesto?

5 Considerando los resultados obtenidos, ¿puede considerarse útil esta reacción par la presencia de núcleos en una fracción subcelular?	oara detectar

A.2: Utilización de la reacción de Feulgen para la identificación de una fracción subcelular enriquecida en núcleos.


- 1.- Traspase una gota de la fracción nuclear a un portaobjetos para su observación al microscopio. Utilice el volumen restante para la reacción de Feulgen. Agregue 200 µL de HCl 1 N e incúbelo a 60 °C durante 10 min.
- 2.- Agregue 600 µL de reactivo de Schiff e incube 15 min a temperatura ambiente y en oscuridad (envolver el tubo con papel de aluminio).
- 3.- Equilibre el tubo problema con otro tubo de centrífuga (agregando agua hasta que pesen lo mismo).
- 4.- Centrifugue durante 1 min a 2000 rpm.
- 5.- Observe el pellet obtenido.
- 6.- Retire la mayor parte del sobrenadante y resuspenda, mediante pipeteo suave, la fracción remanente.
- a) ¿Cómo se observa el sedimento luego de centrifugar la fracción tratada con la reacción de Feulgen? ¿A qué se debe?
- b) Si al concluir la centrifugación usted observa que el sobrenadante del tubo presenta una coloración rosada: ¿qué podría inferir sobre el estado de los núcleos de la preparación?

8.- Observe al microscopio la fracción nuclear tratada, poniendo una gota entre porta y cubreobjeto. Realice un esquema de la observación microscópica de la fracción nuclear sometida a la reacción de Feulgen.

A.3: Reacción de Feulgen sobre cortes histológicos (in situ).

- 1.- Desparafine 2 preparados de cortes de hígado de rata. Esta parte se realizará dentro de la campana de extracción de gases.
- 1.1.- Coloque los cortes en un vaso de Copling y sumérjalos en Xilol 2 veces (Xilol I y Xilol II, 5 min. cada uno).
- 1.2.- Cubra los cortes con Alcohol 95% por 5 min.
- 1.3.- Coloque los preparados en Alcohol 70% por 5 min.
- 1.4.- Mantenga los cortes en agua desionizada hasta su uso.
- 2.- Cubra el corte con unas gotas de HCl 1 N durante 20 min. a 60 °C (cuidar que no se evapore).
- 3.- Enjuague brevemente con agua destilada.
- 4.- Incube el preparado con unas gotas de reactivo de Schiff durante 15 min a temperatura ambiente, manteniéndolo en la oscuridad.
- 5.- Enjuague con agua destilada.
- 6.- Coloree el citoplasma con Fast Green 0,08% durante 10 segundos.
- 7.- Enjuague con agua destilada.
- 8.- Monte el preparado y observe al microscopio.
- 9.- Realice un esquema de la observación microscópica del preparado histológico de hígado de rata sometido a la reacción de Feulgen.

Parte B1: Observe a mayor aumento la estructura de los núcleos en los siguientes preparados.

1.- Músculo estriado esquelético (hematoxilina y eosina)

Observe los núcleos de las fibras musculares, que se ven como grandes células alargadas de citoplasma intensamente eosinófilo.

2.- Médula espinal, corte transversal (hematoxilina y eosina)

Busque las motoneuronas en las astas ventrales de la médula, identificables por su gran tamaño y la intensa coloración con hematoxilina del citoplasma. Compare sus núcleos con los de otras células que las rodean.

3.- Testículo, corte transversal de los túbulos seminíferos (hematoxilina y eosina)

Identifique las espermátidas maduras y los espermatozoides (cuyos núcleos se tiñen de un color muy similar), como las células de menor tamaño del tejido. Compare sus núcleos con los de otras células que las rodean.

B.2: Luego de observar las micrografías electrónicas y los cortes histológicos coloreados con hematoxilina y eosina, complete los casilleros del siguiente cuadro:

Tipo celular	nº núcleos por célula	forma del núcleo	ubicación del núcleo	estado de la cromatina
Fibra muscular estriada				
Motoneurona				
Espermátida madura				

F	Parte C	Obse	erva	ción	de r	nicro	ografía	as elec	trón	icas		
	- ·										~	-

 Observe las planchas 1 	a 18 y 101 a 107 y	discuta con sus	compañeros	acerca de su
contenido.				

2 ¿Cómo se observan,	en microscopía	electrónica	de 1	transmisión,	los	sectores	de	cromatina
condensada o heterocrom	natina?							

3.- Respecto a plancha 101: ¿cuál de estas células podría tener una mayor actividad de síntesis proteica? ¿En qué basa su respuesta?

4.- De acuerdo a lo observado en la plancha 102: señale dos diferencias entre los núcleos de las células que se observan en las micrografías.

científicos. El material será proporcionado por el docente en la clase práctica
Parte D: Análisis y discusión de resultados experimentales publicados en artículos
7 ¿Qué técnica microscópica utilizaría para analizar la estructura del poro nuclear?
aparecen estas estructuras en forma de "pinos de navidad", que representan la hebra de ADN y las moléculas de ARNr 45S en diferentes momentos de su transcripción. En cada "pino", ¿cuáles son las moléculas de ARNr más avanzadas en su síntesis?
6 Considere la plancha 105d. Cuando los nucléolos se disgregan sobre una interfase acuosa,
¿Está esta estructura más desarrollada en células con actividad de síntesis proteica baja o alta? Justifique brevemente.