PRÁCTICO 1: PRELIMINARES, CONJUNTOS DE CANTOR Y MEDIDA EXTERIOR

Varios de los ejercicios están tomados del (Capítulo 1 del) libro [RA]: "Real Analysis" de Stein y Shakarchi. Se sugiere consultarlo, dado que el libro contiene sugerencias y ejercicios relacionados que pueden ser de ayuda. Otros ejercicios tienen pre-requisitos de Topología, se indican con una [T]. El plazo para entregar los ejercicios de este práctico es el 25 de abril de 2019.

1. Descomposición de abiertos euclideos(Teoremas 1.1.3 y 1.1.4 de [RA])

- a) Mostrar que todo abierto de $\mathbb R$ puede ser escrito de forma única como unión numerable de intervalos abiertos.
- b) Decimos que dos cubos cerrados Q_1 y Q_2 de \mathbb{R}^d son casi disjuntos si $Q_1 \cap Q_2 \subset \partial Q_1$. Mostrar que todo abierto de \mathbb{R}^d se obtiene como una unión numerable de cubos cerrados dos a dos casi disjuntos.

2. (Ejercicio 12 de [RA]) Probar que:

- a) Sin usar que es conexa: una bola abierta en el plano no se puede escribir como unión disjunta de rectángulos abiertos .
- b) Un abierto conexo del plano se puede escribir como unión disjunta de rectángulos abiertos sii es un rectángulo abierto.

3. Conjunto de Cantor (Ejercicios 1, 2, y 3 de [RA])

Definimos una sucesión de subconjuntos de [0, 1] de la siguiente manera:

 $C_0 = [0, 1]$ y para k > 0, C_k es el conjunto que se obtiene quitando de cada componente de C_{k-1} el intervalo central abierto de proporción $\xi = 1/3$.

- a) Probar que $C = \bigcap_{n=0}^{\infty} C_n \subset [0,1]$ es un conjunto no vacío, compacto, perfecto y totalmente disconexo.
- b) Probar que C^c es una unión numerable de intervalos abiertos dos a dos disjuntos, y que la suma de las longitudes de todos esos intervalos es 1.
- c) Todo real $x \in [0,1]$ tiene una expansión ternaria de la forma

$$x = \sum_{k=1}^{\infty} \frac{a_k}{3^k},$$

donde $a_k \in \{0, 1, 2\}$ para todo k. (Observar que esta expansión no es única. Por ejemplo, $1/3 = \sum_{k=2}^{\infty} 2/3^k$.) Probar que $x \in C$ sii x tiene una expansión ternaria donde no aparece el dígito 1, y concluir que C es un conjunto no numerable.

¹Si I es un intervalo, el intervalo central abierto de proporción ξ en I es el intervalo abierto I' centrado en el punto medio de I tal que $|I'| = \xi \cdot |I|$.

d) Función de Cantor-Lebesgue

Sea $F: C \longrightarrow [0,1]$ definida como

$$F(x) = \sum_{k=1}^{\infty} \frac{b_k}{2^k},$$

donde $b_k = a_k/2$ y $x = \sum_{k=1}^{\infty} a_k/3^k$ es una expansión ternaria de x tal que $a_k \in \{0,2\}$ para todo k. Probar que F es continua, sobreyectiva, creciente y que F(0) = 0, F(1) = 1.

- e) Mostrar que la función anterior se puede extender a una función continua en todo [0,1] que es constante en cada componente conexa del complemento de C. Graficar.
- f) [T] Sea $\Omega_2 = \{0,1\}^{\mathbb{N}} = \{x = (x_n)_{n=1}^{\infty} : x_n = 0,1\}$ el conjunto de las sucesiones de ceros y unos. El conjunto Ω_2 es el producto cartesiano de copias del espacio discreto $\{0,1\}$ indexado en los naturales, y por lo tanto es un espacio topológico compacto con la topología producto. Se puede demostrar que Ω_2 es metrizable, y una métrica viene dada por $d(x,y) = \sum_{n\geq 1} \frac{|x_n y_n|}{2^n}$. La topología de Ω_2 está generada por los *cilindros*

$$c_{n_1,\dots,n_k}^{\varepsilon_1,\dots,\varepsilon_k} = \{x \in \Omega : x_{n_i} = \varepsilon_i\},$$

donde $\varepsilon_i = 0, 1$. En la construcción del conjunto de Cantor, C_1 es una unión de 2^1 intervalos cerrados y llamaremos I_0 al que está a la izquierda e I_1 al que está a la derecha. Luego, C_2 es unión de 2^2 intervalos cerrados, que son dos subintervalos de I_0 y dos de I_1 . Llamaremos I_{00} al subintervalo de I_0 que está a la izquierda, I_{01} al subintervalo de I_0 que está a la derecha, y análogamente definimos I_{10} , I_{11} . En general, C_k es la unión de 2^k intervalos cerrados $I_{\varepsilon_1,\ldots,\varepsilon_k}$, $\varepsilon_i = 0,1$.

Sea $f: \Omega \longrightarrow C$ definida de la siguiente manera: f(x) es el único punto del conjunto $\bigcap_{n\geq 1} I_{x_1,\dots,x_n}$. Probar que f está bien definida y que es un homeomorfismo entre el conjunto de Cantor y Ω .

4. Conjuntos de Cantor II (Ejercicio 4 de [RA])

Construiremos ahora un conjunto \hat{C} con el mismo procedimiento que el conjunto de Cantor, es decir, retirando intervalos centrales en cada etapa, pero ahora en el k-ésimo paso la longitud de los intervalos que se retiran es l_k , donde la sucesión l_k cumple que $\sum_{i=1}^{\infty} 2^{i-1} l_i < 1$.

- a) Sea $\lambda = \sum_{i=1}^{\infty} 2^{i-1} l_i \leq 1$, probar que $m_*(\hat{C}^c) = \lambda$.
- b) Mostrar que si $x \in \hat{C}$ entonces existe una sucesión $\{x_n\}$ tal que $x_n \notin \hat{C}$ pero $x_n \to x$ y $x_n \in I_n$, donde I_n es un sub-intervalo en el complemento de \hat{C} con $|I_n| \to 0$.
- c) Probar que en consecuencia, \hat{C} es perfecto y no contiene intervalos abiertos.
- d) Probar que \hat{C} es no numerable.

- e) ([T]) Construir un homeomorfismo $h:[0,1] \longrightarrow [0,1]$ tal que $h(C)=\hat{C}$ y concluir que estos conjuntos son homeomorfos. Sugerencia: Definir primero h en el complemento de C.
- 5. ([T]) Mostrar que todo espacio métrico perfecto (i.e. sin puntos aislados), compacto y totalmente disconexo (i.e. todo punto tiene una base de entornos simultaneamente abiertos y cerrados) es homeomorfo a $\{0,1\}^{\mathbb{N}}$ con la topología producto. A un espacio topológico perfecto y totalmente disconexo le llamaremos *conjunto de Cantor*.
- 6. (Ejercico 10 de [RA]) Construiremos una sucesión decreciente de funciones continuas positivas en [0,1] que converge puntualmente, y su límite no es integrable Riemann. Sea $\hat{C} \subset [0,1]$ un conjunto de Cantor de medida positiva como en el ejercicio 2. Para cada $n \in \mathbb{N}$, sea F_n una función continua tal que: $0 \le F_n(x) \le 1$, $F_n(x) = 1$, $\forall x \in \hat{C}_n$ y F_n vale cero en los puntos medios de los intervalos que forman el complemento de \hat{C}_n . Sea $f_n = F_1 \cdot F_2 \cdots F_n$.
 - a) Probar que para todo $x \in [0,1]$ se tiene que $0 \le f_n(x) \le 1$ y $f_n(x) \ge f_{n+1}(x)$, y por lo tanto f_n converge puntualmente a una función f.
 - b) Probar que f es discontinua en todo punto de \hat{C} .
- 7. Contenido de Jordan (Ejercicio 14 de [RA])

Se define el contenido exterior de Jordan de un conjunto $E \subset \mathbb{R}$ como

$$J_*(E) = \inf \Big\{ \sum_{j=1}^N |I_j| : E \subset \cup_{j=1}^N I_j, I_j \text{ intervalos y } N \in \mathbb{N} \Big\}.$$

- a) Probar que $J_*(E) = J_*(\bar{E})$, para todo $E \subset \mathbb{R}$
- b) Construir un conjunto numerable $E \subset [0,1]$ tal que $J_*(E) = 1$ y $m_*(E) = 0$
- 8. Funciones integrables de Riemann (Problema 4 de [RA])

Sea $f:[0,1]\to\mathbb{R}$ acotada. Definimos $M(x,r)=\sup\{|f(x)-f(y)|:x,y\in B(x,r)\}$ y $M(x)=\lim_{r\to 0}M(x,r)$. Probar que:

- a) f es continua en x sii M(x) = 0.
- b) $\forall \varepsilon > 0$, el conjunto $A_{\varepsilon} = \{x : M(x) \geq \varepsilon\}$ es compacto.
- c) Si el conjunto de discontinuidades de f tiene medida cero, entonces f es integrable Riemann.

Sugerencia: Dado $\varepsilon > 0$, se puede cubrir A_{ε} con una unión finita de intervalos abiertos de medida $\leq \varepsilon$. Usar esto para elegir una partición adecuada de [0,1] que permita estimar la sumas superiores e inferiores.

d) Si f es integrable Riemann, probar que el conjunto de sus discontinuidades tiene medida cero.

Sugerencia: El conjunto de discontinuidades de f está contenido en $\bigcup_n A_{1/n}$. Tomar una partición P de [0,1] tal que la diferencia entre sumas superiores e inferiores sea $\leq \varepsilon/n$ y mostrar que el conjunto de intervalos de P cuyo interior intersecta a $A_{1/n}$ tiene largo total $\leq \varepsilon$.

9. (Problema 1 de [RA]) Sea $x \in \mathbb{R} \setminus \mathbb{Q}$. Mostrar que existence infinitas fracciones reducidas $\frac{p}{q}$ tales que

$$\left| x - \frac{p}{q} \right| \le \frac{1}{q^2}$$

Mostrar que para todo $\varepsilon > 0$ el conjunto de $x \in \mathbb{R}$ tales que existe una fracción reducida $\frac{p}{q}$ que cumple

$$\left| x - \frac{p}{q} \right| \le \frac{1}{q^{2+\varepsilon}}$$

tiene medida zero.

Ejercicios opcionales:

- 10. (Vitali). En [0,1] consideramos la relación de equivalencia $x \sim y$ si $x-y \in \mathbb{Q}$. Llamemos a cada clase ϵ_{α} . Usando el axioma de elección elegimos para cada ϵ_{α} un único elemento x_{α} y definimos $\mathbb{N} = \{x_{\alpha}\}$
 - a) Consideremos $\{r_k\}_{k\in\mathbb{N}} = [-1,1] \cap \mathbb{Q}$ y $N_k = N + r_k$
 - i) Pruebe que $N_q \cap N_p = \emptyset$ si $p \neq q$.
 - ii) Demostrar que $[0,1] \subset \bigcup_{k \in \mathbb{N}} \mathsf{N}_k \subset [-1,2]$ y concluir que N es no medible.
 - iii) Encuentre $A \subset \mathbb{R}^d$ no medible Lebesgue y $B \subset \mathbb{R}^d$ tal que A + B sea medible.
 - iv) Encuentre $A, B \subset \mathbb{R}^d$ medibls Lebesgue tal que A + B no sea medible.
 - b) i) Dado $\epsilon > 0$ modificar la construcción del conjunto de Vitali para que tenga medida exterior menor o igual a ϵ .
 - ii) Es posible pedir $\epsilon = 0$?.
 - ii) Construir un conjunto no medible contenido en un Cantor (como en el ejercicio 4). Puede ser cualquier Cantor?