Universidad de la República Facultad de Ciencias Centro de Matemática

Introducción al Análisis Real-Curso 2019

PRÁCTICO 4: CONVERGENCIA, ESPACIOS L^p Y TEOREMA DE FUBINI

El plazo para entregar este práctico es el 5 de junio de 2019. Entregar el ejercicio 1 y dos a elección.

1. Convergencia en medida Decimos que f_n una sucesión de funciones medibles converge en medida a f si se cumple que para todo $\varepsilon > 0$ tenemos que

$$m(\lbrace x \in \mathbb{R}^d : |f_n(x) - f(x)| \ge \varepsilon \rbrace \to 0 , n \to \infty.$$

- a) Mostrar que convergencia en L^1 implica convergencia en medida.
- b) Dar un ejemplo donde convergencia en medida no implica convergencia en L^1 .
- c) Dar un ejemplo donde convergencia m-ctp no implica convergencia en medida.
- d) Dar un ejemplo donde convergencia m-ctp no implica convergencia en L^1 . (Sugerencia: Recordar los contraejemplos al teorema de convergencia dominada sin la hipótesis de que la sucesión esté dominada.)
- e) Dar un ejemplo donde convergencia en medida no implica convergencia m-ctp.
- f) Mostrar que convergencia en medida implica que hay subsucesión que converge m-ctp.
- g) Mostrar que si en vez de \mathbb{R}^d , tomamos como dominio $[0,1]^d$, convergencia m-ctp implica convergencia en medida.
- 2. Lema de Scheffé Sean $f_n \ge 0$ y $f \ge 0$ tales que $\int f_n = \int f = 1$ para todo n y tal que $f_n \to f$ m-ctp. Mostrar que $\int |f_n f| \to 0$.
- 3. Lema de Riemann-Lebesgue Sea $f \in L^1(\mathbb{R}^d)$ y definimos su transformada de Fourier como $\hat{f} : \mathbb{R}^d \to \mathbb{C} \cup \{\infty\}$ tal que:

$$\hat{f}(z) = \int f(x)e^{2\pi i \langle x, z \rangle} dm(x).$$

Demostrar que $\hat{f}(z) \to 0$ cuando $||z|| \to \infty$.

4. **Teorema de Cantor-Lebesgue** Sean a_n, b_n sucesiones de numeros reales y sea $A_n(x) = a_n \cos(nx) + b_n \sin(nx)$. Mostrar que si $\sum_{n\geq 0} A_n(x)$ converge en un conjunto de medida positiva entonces a_n y b_n tienden a 0 con n.

5. Completitud de las series de Fourier en L^2 . Mostrar que dada una sucesión $\{c_n\}_{n\in\mathbb{Z}}$ de números complejos que cumple que $\sum_n |c_n|^2$ se tiene que existe una única función $f:[0,2\pi]\to\mathbb{C}$ definida en m-c.t.p. de forma tal que si $S_N:[0,2\pi]\to\mathbb{C}$ está definida como $S_N(x)=\sum_{n=-N}^N c_n e^{inx}$ entonces $\|f-S_N\|_2\to 0$ cuando $N\to+\infty$. Mostrar que $c_n=\frac{1}{2\pi}\int_0^{2\pi}f(x)e^{-inx}dx$.

6. Densidad de los Polinomios

- a) Mostrar que los polinomios son densos en $L^2([0,2\pi])$ (Sugerencia: Usar el ejercicio anterior y el hecho que las funciones que aparecen en S_N son analíticas.)
- b) Deducir que son densos también en $L^p([0,2\pi])$ para todo $1 \leq p < \infty$. ?' Porqué no es cierto para $L^{\infty}([0,2\pi])$?
- c) Sea $f:[0,2\pi]\to\mathbb{C}$, denotamos $c_n(f)=\frac{1}{2\pi}\int_0^{2\pi}f(x)e^{-inx}dx$ y $S_Nf(x)=\sum_{n=-N}^Nc_n(f)e^{inx}$. Mostrar que si $\sum_n|c_n(f)|<\infty$ entonces S_Nf converge uniformemente a f.
- d) Mostrar que si f es de clase C^2 , $f(0) = f(2\pi)$ y $f'(0) = f'(2\pi)$, entonces se cumple que $\sum_n |c_n| < \infty$.
- e) Mostrar que las funciones de clase C^{∞} son densas en las funciones continuas tales que $f(0) = f(2\pi)$ con la convergencia uniforme. (Sugerencia: Hacer la convolución con una aproximación de la identidad; y si no conocen esas palabras, buscarlas en internet.)
- f) Deducir que los polinomios son densos en las funciones continuas de $[0, 2\pi]$ con la topología de la convergencia uniforme. (Cuidado: No estamos restringiendonos acá a las que cumplen $f(0) = f(2\pi)$.)

7. Desigualdad de Hölder

- a) **Desigualdad de Cauchy-Schwartz** Mostrar que si $f, g \in L^2$ entonces se cumple que $|\langle f, g \rangle| = |\int f\overline{g}| \le ||f||_2 ||g||_2$. Demostrar que la igualdad implica que f y g son colineales.
- b) Mostrar que si $f \in L^1$ y $g \in L^\infty$ entonces $\left| \int fg \right| \le ||f||_1 ||g||_\infty$.
- c) Más en general, mostrar que si 1/p+1/q=1 entonces si $f\in L^p$ y $g\in L^q$ entonces:

$$\left| \int fg \right| \le \|f\|_p \|g\|_q.$$

- d) Mostrar que la igualdad en la desigualdad anterior implica que $|f|^p$ es colineal a $|g|^q$.
- 8. **Desigualdad de Minkowski** Sea $p \geq 1$ y $f, g \in L^p$. Mostrar que $f + g \in L^p$ y se cumple que

$$||f + g||_p \le ||f||_p + ||g||_p$$

(Sugerencia: Dado que ya fue probada en el teórico, intentar probarla como consecuencia de la desigualdad de Hölder, para eso, mostrar que si $f \in L^p$ entonces la función $\hat{f} = \|f\|_p^{1-p} \operatorname{signo}(f)|f|^{p-1}$ está en L^q , cumple que $\|\hat{f}\|_q = 1$ y se cumple que $\int f\hat{f} = \|f\|_p$.)

- 9. a) Considerar una transformación lineal $T: \mathbb{R}^d \to \mathbb{R}^d$ dada por una matriz triangular superior con entradas 1 en la diagonal (es decir, la matriz asociada $(a_{ij})_{ij}$ a T cumple que $a_{ii} = 1$ para todo $1 \le i \le d$ y $a_{ij} = 0$ si i > j). Usando el teorema de Fubini iteradamente demostrar que si E es un conjunto medible entonces T(E) también lo es y m(E) = m(T(E)).
 - b) Mostrar lo mismo para matrices triangulares inferiores con entradas 1 en la diagonal.
 - c) Demostrar que si $T: \mathbb{R}^d \to \mathbb{R}^d$ es una transformación lineal entonces se descompone como $PD_i\Delta D_s$ donde D_i es triangular inferior con 1's en la diagonal, Δ es una matriz diagonal, P es una matriz de permutación y D_s es triangular superior con 1's en la diagonal.
 - d) Deducir que si $T: \mathbb{R}^d \to \mathbb{R}^d$ es una transformación lineal y E un conjunto medible, entonces T(E) es medible y $m(E) = |det(T)|^{-1}m(T(E))$.
 - e) Concluir que la medida de Lebesgue es invariante por isometrías de \mathbb{R}^d .
- 10. Usar el ejercicio anterior para mostrar que si f es una función integrable en \mathbb{R}^d y T una transformación lineal de \mathbb{R}^d , entonces $f \circ T$ es integrable y se cumple que:

$$\int f \circ T = |det(T)|^{-1} \int f$$

- 11. Sea $f:\mathbb{R}^2 \to \mathbb{R}$ definida como
 - $f(x,y) = 2 2^{-n}$ si $(x,y) \in [n, n+1]^2$ para algún $n \in \mathbb{Z}_{>0}$,
 - $f(x,y) = 2^{-n} 2 \text{ si } (x,y) \in [n,n+1] \times (n+1,n+2]$ para algún $n \in \mathbb{Z}_{>0}$ y
 - f(x,y) = 0 si no.
 - a) Mostrar que para todo $y \in \mathbb{R}$ se cumple que la función $x \mapsto f(x,y)$ es integrable y calcular $F(y) = \int f(x,y) dm(x)$.
 - b) Mostrar que para todo $x \in \mathbb{R}$ se cumple que la función $y \mapsto f(x,y)$ es integrable y calcular $G(x) = \int f(x,y) dm(y)$.
 - c) Mostrar que las funciones F y G son integrables pero $\int F \neq \int G$.
 - d) Explicar porqué no aplica el Teorema de Fubini.
- 12. Sea $f: \mathbb{R}^d \to \mathbb{R}$ una función integrable. Mostrar que si $E_{\alpha} = \{x \in \mathbb{R}^d : |f(x)| > \alpha\}$ entonces $\int |f| = \int_0^{\infty} m(E_{\alpha}) d\alpha$.
- 13. a) Sea E un boreliano de \mathbb{R}^2 y para $y \in \mathbb{R}$ definimos $E^y \subset \mathbb{R}$ dado por $E^y = \{x \in \mathbb{R} : (x,y) \in E\}$. Mostrar que E^y es un boreliano. (Sugerencia: Mostrar que los abiertos tienen esa propiedad y que los conjuntos con dicha propiedad son una σ -álgebra.)
 - b) Construir un conjunto $E \subset \mathbb{R}^2$ medible Lebesgue tal que para algún $y \in \mathbb{R}$ el conjunto E^y no es medible.

14. Sea f integrable en \mathbb{R}^d y $\delta = (\delta_1; \dots; \delta_d) \in \mathbb{R}^d$ con $\delta_i \neq 0$. Definimos $f^{\delta}(x) := f(\delta_1 x_1; \dots; \delta_d x_d)$. Probar que f^d es integrable y

$$\int f^{\delta} = |\delta_1|^{-1} \dots |\delta_d|^{-1} \int f$$

- 15. Sea $f:[0,1]\to\mathbb{R}$ una función medible tal que la función $g(x,y):[0,1]^2\to\mathbb{R}$ definida por g(x,y)=|f(x)-f(y)| es integrable. Entonces f es integrable.
- 16. Sean $X:[0,1]^2\to\mathbb{R}$ e $Y:[0,1]^2\to\mathbb{R}$ variables aleatorias. Llamemos $m_{[0,1]^2}$ a la medida de Lebesgue en $[0,1]^2$, y m a la medida de Lebesgue en [0,1]. Decimos que X e Y son independientes si

$$m_{[0,1]^2}\{\omega;X(\omega)\in A,Y(\omega)\in B\}=m\{\omega;X(\omega)\in A\}\ m\{\omega;Y(\omega)\in B\},\ \forall A,B\in\mathcal{B}_{\mathbb{R}}.$$

- a) Dar un ejemplo de un par de variables aleatorias con dicha propiedad.
- b) Demostrar que si X e Y son independientes E(X.Y) = EX.EY.
- 17. **Funciones convexas** Una función $f: I \to \mathbb{R}$ (con $I \subset \mathbb{R}$ conexo) es *convexa* si para todo $x, y \in I$ y $0 \le t \le 1$ se cumple que $f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$.
 - a) Buscar una interpretación geométrica de que una función sea convexa.
 - b) Mostrar que la función $|x|^p$ con $p \ge 1$ es convexa en \mathbb{R} , $-\log x$ es convexa en $(0, +\infty)$ y la función $x \log x$ en $[0, \infty)$ (donde consideramos $0 \log 0 = 0$).
 - c) Mostrar que para todo $x_0 \in \mathbb{R}$ existe (al menos) una función lineal g(x) = ax + b de forma tal que $g(x_0) = f(x_0)$ y tal que $g(x) \le f(x)$ para todo $x \in \mathbb{R}$.
 - d) Si f tiene un mínimo local en x_0 entonces es un mínimo global.
 - e) **Desigualdad de Jensen** Si $\varphi : [0,1] \to I$ es integrable, entonces se cumple que $f\left(\int_0^1 \varphi(t)dt\right) \leq \int_0^1 f \circ \varphi(t)dt$. (Sugerencia: Considerar g lineal que $g(\int \varphi) = f(\int \varphi)$ y tal que $g(x) \leq f(x)$ y usar que las funciones lineales entran y salen libremente de las integrales.)
 - f) Rigidez Estudiar en que condiciones puede ocurrir la igualdad en la desigualdad de Jensen.