Fubini

Folleq:

Katok’s Paradoxical

Example in Measure Theory

natole Katok has proved the following (unpublished):

There exists a measurable set E of area one in the unit square (0, 1) X [0, 1], to-

gether with a family of disjoint smooth real analytic curves I'g which fill out this

square, so that each curve I'g intersects the set E in at most a single poinl.

In other words, we can construct a set of full two-dimen-
sional Lebesgue measure by selecting at most one point
from each I'z. The construction is completely explicit and
natural. (The curves in question depend continuously on
the parameter 8 € [0, 1], and form a topological foliation
of the square.) Note however, in any such example, that I'g
cannot depend smoothly on the parameter 8. In the case
of a smoothly parameterized family, it follows easily from
Fubini’s Theorem that E must intersect almost every I'z in
a set of full one-dimensional Lebesgue measure.)

Figure 1 shows an example of such a family of curves,
based on a construction similar but not identical® to that
of Katok. To begin our construction, we will need Borel's
Strong Law of Large Numbers. Suppose that we toss a bi-
ased coin, which lands with the “zero” side up with prob-
ability p(0) = p and lands with the “one” side up with prob-
ability p(1) = 1 — p. Then, for a sequence of n independent
coin tosses, we obtain a sequence of n bits, where the prob-
ability of a given sequence (b, . . ., by) is given by the
product rule

-5 by) = p(b1) -+ p(by). 1)
Jakob Bernoulli, 300 years ago, showed that the frequency

probability(by, . .

of ones, that is the ratio (b; + --- + b, )/n, is likely to be close
to p(1) if n is large. Emile Borel sharpened this result as fol-
lows. Consider an infinite sequence of coin tosses. Formula
(1) gives rise to a probability measure, called the (p(0), p(1))-
Bernoulli product measure, on the space {0, 1}N consisting
of all infinite sequences (by, bo, . . .) of zeros and ones. Borel
showed that the limiting frequency

lim (by + - + bp)n
N>

exists and is precisely equal to p(1), with probability 1. In
other words, this limit equals p(1) for all sequences in
{0, 1}N outside of a subset of measure zero with respect to
the Bernoulli product measure.

We can restate this result using only real variables (in-
stead of coin tosses) as follows. Let x vary over the circle
R/Z, and let the parameter p vary over the open unit in-
terval (0, 1). For each p, define a piecewise linear map f,
of degree two from the circle R/Z to itself by the formula

x/p forx € Iy(p) = [0,p) CR/Z

B = {(x —pY(1 ~p) forz € L) = [p, ) CRZ,

as plotted in Figure 2.

TKatok's example is based on a family of degree-two Blaschke products mapping the unit circle to itself. | am grateful to C. Pugh for describing
it to me. A different version of the construction, based on tent maps of the interval, has been given by J. Yorke, also unpublished.
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(Alternatively, we can think of f,, as a discontinuous map
from the unit interval [0, 1] to itself. The argument would
be the same in either case.)

It is easy to see that each f, is measure-preserving. In
fact, for any interval J C [0, 1] of length €(J), the preim-
age fp (J) consists of an interval in Iy(p) of length p(0)¢(J)
together with an interval in I;(p) of length p(1)€(.J), so that
the total length is €(f, 1(J)) = €(J). [Here again, we set
p(0) = pand p(1) = 1 — p.] For fixed p, we can code each

point x € R/Z by an infinite sequence (by, bg, bs, . . .) €
{0, 1}N of bits, defined as follows. Let
T =X > g > Xy > e )]

be the orbit of x under f;, and set each b,, equal to zero or
one according to whether x,, belongs to the interval Iy(p)
or I),(p) modulo Z. We will call (by, by, . . .) the symbol se-
quence associated with x and f,.

(Note: Almost every symbol sequence in {0, 1}N can oc-
cur in this construction. However, sequences ending with

infinitely many ones do not occur. Compare the Remarks
at the end of this article.)

In terms of this coding, note that f; corresponds to the
shift map

(b, b, b3, . . ) > (b2, b, by . ).

It is not difficult to check that the Lebesgue measure on
R/Z corresponds precisely to the (p(0), p(1))-Bernoulli
product measure on |0, 1}N; that is, the length of the in-
terval consisting of all x for which the associated symbol
sequence starts with some specified finite sequence (b,

., by) of bits is equal to the product p(by) ‘- p(b,).

The Strong Law of Large Numbers can now be restated
as follows: Choose some fixed parameter p and consider
the map f,. For Lebesgue almost every point x € R/Z, the
Jrequency of ones in the associated symbol sequence
(by, by, b3, . . .) is defined and equal to p(1) =1 — p.

Let E C (0, 1) X R/Z be the set consisting of all pairs
(p, x) such that the frequency of ones, for the symbol se-
quence of x under the action of f,, is defined and equal to
1 — p. It is not difficult to check that E is a measurable set.
For each fixed p, let C, denote the circle {p} X R/Z C
(0, 1) X R/Z. Since the intersection of F with each C, has
one-dimensional Lebesgue measure ¢;(F N Cp) = 1, it fol-
lows from Fubini’'s Theorem that E has two-dimensional
Lebesgue measure

1
G(E) = jo €(E NGy dp = 1.

Next, define a family of smooth curves I'g as follows.
Let B be any number in the interval [0, 1). Form the base-
two expansion

B = 0.b1bab3 -+ pase2) = an/zn,

and let I'g be the set of all pairs (p, x) € (0, 1) X R/Z such
that the symbol sequence of x under the map f,, is equal to
(b1, by, b3, . . ). Clearly the I' are disjoint sets with union
equal to (0, 1) X R/Z. To prove that each I'g is a smooth
real analytic curve, we proceed as follows. For each orbit
(3), it follows easily from (2) that

Zn = by p(0) + Zyi1 D(bn).

A straightforward induction then shows that x = x,; is given
by the series

x =2x(p, B)
= p(0)(by + p(b1)(bz + p(b2)(bg + --)+)-)
= p(0)(by + bap(b1) + bap(b1)p(b2)
+ bap(b)p(b2)p(bs) + ). @

Setp(MH =p=A+)2andp()=1-p=(1A—-02If
t| < ¢ < 1, then the nth term in the series (4) has absolute
value at most [(1 + ¢)/2]" Hence, this series converges uni-
formly. If fact, this is true even if we allow complex values
of t with |t| =< ¢ < 1. Hence, by the Weierstrass Uniform
Convergence Theorem, for each fixed B the series (4) de-
fines x as an analytic function of ¢ throughout the interval
t| < 1, or as an analytic function of p throughout the in-
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terval 0 < p < 1. Evidently, I's is just the graph of this real
analytic function p — x(p, B).

Finally, since a given symbol sequence can have at most
one limiting frequency lim(b, + -+ + b,/ = 1 — p, it fol-
lows that each I's can intersect the measurable set E in at
most a single point (p, x(p, B)).

Remarks

The function B — x(p, B) is strictly monotone and maps
the interval [0, 1) onto itself. Hence, it is a homeomorphism.
In fact, it follows easily that the correspondence (p, B) —
(», x(p, B)) maps the product space (0, 1) X R/Z homeo-
morphically onto itself.

Here is an alternative argument. It is clear that expres-
sion (4) depends continuously on the two variables p €
(0, D) and (b, o, . . .) € {0, 1}N, where we give this space
of sequences the cartesian product topology. The corre-
spondence

(b b, . . )= > b2" €0, 1]

from symbol sequence to real variable is not quite one-
to-one, as every dyadic rational m/2" has two distinct
base-two expansions, ending either with infinitely many
zeros or with infinitely many ones. However, a straight-
forward computation shows that these two expansions
give rise to the same sum x(p, B), and it follows easily
that the correspondence (p, 8) — z(p, B) is indeed con-
tinuous.

We can interpret these constructions dynamically as fol-
lows. It is not hard to show that each f,: R/Z — R/Z is
uniquely topologically conjugate to the angle-doubling map

32  THE MATHEMATICAL INTELLIGENCER

Ji2(x) = 2x (mod Z); that is, there is a unique homeomor-
phism h;, : R/Z — R/Z which conjugates fi,» to Jp, S0 that

Jo =Ry o fig o by,
In fact, this conjugating homeomorphism is given by the
formula h,(B) = x(p, B) and is continuous in both vari-
ables. If B € [0, 1) has base-two expansion 8 = > b,/2",
note that the symbol sequence of 8 under fi is (by, bo,
- - .) and that the symbol sequence of h,(8) under f, is this

same sequence (b, by, . . .). Details of these arguments
will be left to the reader.
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