Práctico 8: Medidas abstractas

1. Consideremos un espacio X con un álgebra de conjuntos \mathcal{A} y una premedida μ_0 . Definimos \mathcal{A}_{σ} como la familia de conjuntos que son uniones numerables de conjuntos de \mathcal{A} y $\mathcal{A}_{\sigma\delta}$ los que resultan de intersecciones numerables de conjuntos en \mathcal{A}_{σ} .

Construimos la medida exterior μ_* generada por cubrimientos. Sea un conjunto E arbitrario y $\varepsilon > 0$ arbitrario. Demostrar que existen

a) Un conjunto E_1 de clase \mathcal{A}_{σ} tal que $E \subset E_1$ y

$$\mu_*(E_1) \le \mu_*(E) + \varepsilon,$$

b) Un conjunto E_2 de clase $\mathcal{A}_{\sigma\delta}$ tal que $E \subset E_2$ y

$$\mu_*(E_2) = \mu_*(E).$$

(Este ejercicio es la Proposición 1.6 de la pág. 273 de [RA])

- 2. a) Probar que la familia de conjuntos que son uniones finitas de rectángulos en \mathbb{R}^d , es un álgebra. (Nota: Se considera como rectángulo todo producto $I_1 \times \dots I_d$ donde I_i es un intervalo en \mathbb{R} que puede ser degenerado. Es decir, pedimos simplemente que cada I_i sea un conexo de \mathbb{R}).
 - b) Sean $(X_1, \mathcal{M}_1, \mu_1)$ y $(X_2, \mathcal{M}_2, \mu_2)$ dos espacios de medida. Si $A \in \mathcal{M}_1$ y $B \in \mathcal{M}_2$ diremos que $A \times B$ es un rectángulo medible en $X_1 \times X_2$. Probar que la unión finita de rectángulos así definidos es un álgebra.
- 3. Probar que una intersección arbitraria de σ -álgebras (no vacía) es una σ -álgebra.
- 4. (Completación de una medida). Sea (X, \mathcal{M}, μ) un espacio de medida. Se define $\overline{\mathcal{M}}$ como la siguiente familia de subconjuntos de X

$$\overline{\mathcal{M}} = \{A \cup Z \colon A \in \mathcal{M} \text{ y } Z \subset F \text{ para cierto } F \in \mathcal{M} \text{ con } \mu(F) = 0\}.$$

Se define $\overline{\mu}: \overline{\mathcal{M}} \to [0, \infty]$ como $\overline{\mu}(A \cup Z) = \mu(A)$.

- a) Probar que $\overline{\mathcal{M}}$ es una σ -álgebra y $\overline{\mu}$ una medida (en particular, está bien definida).
- b) Probar que $\overline{\mu}$ es completa (es decir, si $E \in \overline{\mathcal{M}}$ tiene medida cero entonces todos los subconjuntos de E están en $\overline{\mathcal{M}}$).
- c) Mostrar que $\overline{\mathcal{M}}$ es la menor σ -álgebra para la cual se puede extender μ a una medida completa.

- d) Dar un ejemplo en el que μ se pueda extender a una σ -álgebra aún mayor.
- 5. Sea m_* la medida exterior de Lebesgue. Probar que E en \mathbb{R}^d es medible Lebesgue si y sólo si E es medible Carathéodory a partir de m_* .

(Sugerencia: Si E es medible Lebesgue y A en \mathbb{R}^d es un conjunto cualquiera considerar G un conjunto G_δ tal que $A \subset G$ y $m_*(A) = m(G)$. Recíprocamente, si E es medible Carathéodory y $m_*(E) < \infty$ considerar G un G_δ tal que $E \subset G$ y $m_*(E) = m(G)$. Luego G - E tiene medida exterior 0.)

- 6. Sea m_j la medida de Lebesgue en \mathbb{R}^{d_j} para j=1,2. Consideremos $\mathbb{R}^d=\mathbb{R}^{d_1}\times\mathbb{R}^{d_2}$ (con $d=d_1+d_2$) con la medida de Lebesgue m en \mathbb{R}^d . Mostrar que m es la completación (en el sentido del Ejercicio 4) de la medida producto $m_1\times m_2$.
- 7. Sea x_0 un punto de \mathbb{R}^d y δ_{x_0} la medida delta de Dirac en x_0 . Es decir, δ_{x_0} está dada por $\delta_{x_0}(A) = 1$ si $x_0 \in A$ y $\delta_{x_0}(A) = 0$ si $x \notin A$, para todo $A \subset \mathbb{R}^d$.

Probar que δ_{x_0} restringida a σ -álgebra de Lebesgue \mathcal{L} de \mathbb{R}^d no puede escribirse como la integral de una función respecto a la medida de Lebesgue, es decir, probar que no existe $f: \mathbb{R}^d \to \mathbb{R}$ integrable Lebesgue tal que $\delta_{x_0}(A) = \int_A f \, dm$ para todo $A \in \mathcal{L}$.

- 8. Dar un ejemplo de una premedida en un álgebra que pueda ser extendida de más de una manera a la σ -álgebra generada. (Nota: Recordar que necesariamente no será σ -finita.)
- 9. Sea (X, \mathcal{M}, μ) un espacio de medida y $\varphi: X \to [0, +\infty]$ una función medible. Mostrar que μ_{φ} definida en \mathcal{M} como

$$\mu_{\varphi}(E) = \int_{E} \varphi d\mu, \quad \forall E \in \mathcal{M}$$

es una medida positiva y que si $f:X\to [0,+\infty]$ es una función medible cualquiera se cumple que

$$\int_{E} f d\mu_{\varphi} = \int_{E} \varphi f d\mu.$$

- 10. Sea \sharp la medida de conteo en $\mathcal{P}(\mathbb{N})$. Mostrar que convergencia en medida y convergencia uniforme coinciden.
- 11. El objetivo de este ejercicio es mostrar que la hipótesis de que cada factor sea una medida σ -finita es necesaria para el teorema de Fubini.

Sea $(X_1, \mu_1, \mathcal{M}_1)$ el espacio $X_1 = [0, 1]$ con μ_1 la medida de Lebesgue y \mathcal{M}_1 la σ -álgebra de Lebesgue. Sea $(X_2, \mu_2, \mathcal{M}_2)$ el espacio $X_2 = [0, 1]$ con μ_2 la medida de conteo y \mathcal{M}_2 la σ -álgebra dada por partes de [0, 1]. Es decir, para todo $A \subset [0, 1]$ se tiene que $\mu_2(A) = n$ si A tiene exactamente n elementos o $\mu_2(A) = \infty$ si A tiene infinitos elementos.

a) Probar que efectivamente $(X_2, \mu_2, \mathcal{M}_2)$ es un espacio de medida y que μ_2 no es σ -finita.

b) Sea $\Delta = \{(x,x) \colon x \in [0,1]\}$ la diagonal en $[0,1] \times [0,1] = X_1 \times X_2$. Probar que $\chi_{\Delta} \colon X_1 \times X_2 \to \mathbb{R}$ es medible e integrable respecto al espacio de medida producto $(X_1 \times X_2, \mu_1 \times \mu_2, \mathcal{M}_1 \times \mathcal{M}_2)$ pero que sin embargo no aplica el teorema de Fubini para χ_{Δ} .

Medidas absolutamente continuas y singulares

- 12. Sea ν una medida signada y μ una medida positiva. Mostrar que si $\nu \perp \mu$ y $\nu \ll \mu$ entonces $\nu = 0$.
- 13. Sean ν , ν_1 , ν_2 medidas signadas y μ medida positiva en (X, \mathcal{M}) . Probar que:
 - a) Si $\nu_1 \perp \mu$ y $\nu_2 \perp \mu$, entonces $\nu_1 + \nu_2 \perp \mu$.
 - b) Si $\nu_1 \ll \mu$ y $\nu_2 \ll \mu$, entonces $\nu_1 + \nu_2 \ll \mu$.
 - c) $\nu_1 \perp \nu_2$ implies $|\nu_1| \perp |\nu_2|$.
 - $d) \ \nu \ll |\nu|.$
- 14. Consideremos dos medidas μ y ν en un espacio (X, \mathcal{M}) . Mostrar que las siguientes tres condiciones son equivalentes:
 - a) $\nu \ll \mu$
 - b) $|\nu| \ll \mu$
 - c) $\nu^{+} \ll \mu \ \text{y} \ \nu^{-} \ll \mu$.