
CHAPTER 4

ION TRANSPORT IN SOLUTIONS

4.1. INTRODUCTION

The interaction of an ion in solution with its environment of solvent molecules
and other ions has been the subject of the previous two chapters. Now, attention will
be focused on the motion of ions through their environment. The treatment is restricted
to solutions of true electrolytes.

There are two aspects to these ionic motions. First, there is the individual aspect.
This concerns the dynamic behavior of ions as individuals—the trajectories they trace
out in the electrolyte, and the speeds with which they dart around. These ionic
movements are basically random in direction and speed. Second, ionic motions have
a group aspect that is of particular significance when more ions move in certain
directions than in others and produce a drift, or flux,1 of ions. This drift has important
consequences because an ion has a mass and bears a charge. Consequently, the flux
of ions in a preferred direction results in the transport of matter and a flow of charge.

If the directional drift of ions did not occur, the interfaces between the electrodes
and electrolyte of an electrochemical system would run out of ions to fuel the
charge-transfer reactions that occur at such interfaces. Hence, the movements and drift
of ions is of vital significance to the continued functioning of an electrochemical
system.

A flux of ions can come about in three ways. If there is a difference in the
concentration of ions in different regions of the electrolyte, the resulting concentration
gradient produces a flow of ions. This phenomenon is termed diffusion (Fig. 4.1). If
there are differences in electrostatic potential at various points in the electrolyte, then

1The word flux occurs frequently in the treatment of transportphenomena. The flux ofany species i is the
number of moles of that species crossing a unit area of a reference plane in 1 s; hence,  flux is the rate of
transport.
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Fig. 4.1. The diffusion of positive ions resulting from a
concentration gradient of these ions in an electrolytic
solution. The directions of increasing ionic concentra-
tion and of ionic diffusion are shown below the diagram.

Fig. 4.2. The migration of ions resulting from a gra-
dient of electrostatic potential (i.e., an electric field)
in an electrolyte. The electric field is produced by the
application of a potential difference between two
electrodes immersed in the electrolyte. The direc-
tions of increasing electrostatic potentials and of
ionic migration are shown below the diagram.
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the resulting electric field produces a flow of charge in the direction of the field. This
is termed migration or conduction (Fig. 4.2). Finally, if a difference in pressure or
density or temperature exists in various parts of the electrolyte, then the liquid begins
to move as a whole or parts of it move relative to other parts. This is hydrodynamic
flow.

It is intended to restrict the present discussion to the transport processes of
diffusion and conduction and their interconnection. (The laws of hydrodynamic flow
will not be described, mainly because they are not particular to the flow of electrolytes;
they are characteristic of the flow of all gases and liquids, i.e., of fluids.) The initial
treatment of diffusion and conduction will be in phenomenological terms; then the
molecular events underlying these transport processes will be explored.

In looking at ion–solvent and ion–ion interactions, it has been possible to present
the phenomenological or nonstructural treatment in the framework of equilibrium
thermodynamics, which excludes time and therefore fluxes, from its analyses. Such a
straightforward application of thermodynamics cannot be made, however, to transport
processes. The drift of ions occurs precisely because the system is not at equilibrium;
rather, the system is seeking to attain equilibrium. In other words, the system undergoes
change (there cannot be transport without temporal change!) because the free energy
is not uniform and tends to reach a minimum. It is the existence of such gradients of
free energy that sets up the process of ionic drift and makes the system strive to attain
equilibrium by the dissipation of free energy.

4.2. IONIC DRIFT UNDER A CHEMICAL-POTENTIAL GRADIENT:
DIFFUSION

4.2.1. The Driving Force for Diffusion

It has been remarked in the previous section that diffusion occurs when a
concentration gradient exists. The theoretical basis of this observation will now be
examined.

Consider that in an electrolytic solution, the concentration of an ionic species i
varies in the x direction but is constant in the y and z directions. If desired, one can
map equiconcentration surfaces (they will be parallel to the yz plane) (Fig. 4.3).

The situation pictured in Fig. 4.3 can also be considered in terms of the partial
molar free energy, or chemical potential, of the particular species i. This is achieved
through the use of the defining equation for the chemical potential [Eq. (3.61)]

(The use of concentration rather than activity implies that the solution is assumed to
behave ideally.) Since is a function of x, the chemical potential also is a function of
x. Thus, the chemical potential varies along the x coordinate, and, if desired,
surfaces can be drawn. Once again, these surfaces will be parallel to the yz plane.
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Fig. 4.3. A schematic representation of a slice
of electrolytic solution in which the concentra-
tion of a species i is constant on the shaded
equiconcentration surfaces parallel to the yz
plane.

Now, if one transfers a mole of the species i from an initial concentration  at
to a final concentration  at  then the change in free energy, or chemical potential,
of the system is (Fig. 4.4):

Fig. 4.4. A schematic representation of the work W done
in transporting a mole of species i from an equiconcentra-
tion surface where its concentration and chemical potential
are  and to a surface where its concentration and
chemical potential are  and
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Fig. 4.5. Schematic diagram to illustrate that the
mechanical work W done in lifting a mass from an
initial height to a final height is

However, the change in free energy is equal to the net work done on the system in an
isothermal, constant-pressure reversible process. Thus, the work done to transport a
mole of species i from to is

Think of the analogous situation in mechanics. The work done to lift a mass from
an initial height  to a final height  is equal to the difference in gravitational potential
(energies) at the two positions (Fig. 4.5):

One may go further and say that this work has to be done because a gravitational force
acts on the body and that2

2The minus sign arises from the following argument: The displacement of the mass is upward and
the force acts downward; hence, the product of the displacement and force vectors is negative. If a minus
sign is not introduced, the work done W will turn out to be negative. It is desirable to have W as a positive
quantity because of the convention that work done on a system is taken to be positive; hence, a minus sign
must be inserted.
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Fig. 4.6. Schematic diagram to illustrate the electro-
static work done in moving a unit
positive charge through a distance dx against an elec-
tric field X.

In other words, the gravitational force can be defined thus:

The potential energy, however, may not vary linearly with distance, and thus the ratio
may not be a constant. So it is better to consider infinitesimal changes in energy

and distance and write

Thus, the gravitational force is given by the gradient of the gravitational potential
energy, and the region of space in which it operates is said to be a gravitational field.

A similar situation exists in electrostatics. The electrostatic work done in moving
a unit charge from x to x + dx defines the difference in electrostatic potential
between the two points (Fig. 4.6)

Further, the electrostatic work is the product of the electric field, or force per unit
charge, X and the distance dx

or

The electric force per unit charge is therefore given by the negative of the gradient of
the electrostatic potentials, and the region of space in which the force operates is known
as the electric field.
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Since the negative of the gradient of gravitational potential energy defines the
gravitational force, and the negative of the gradient of electrostatic potential defines
the electric force, one would expect that the negative of the gradient of the chemical
potential would act formally like a force. Furthermore, just as the gravitational force
results in the motion of a mass and the electric force results in the motion of a charge,
the chemical-potential gradient results in the net motion, or transfer, of the species i
from a region of high chemical potential to a region of low chemical potential. This
net flow of the species i down the chemical-potential gradient is diffusion, and
therefore the gradient of chemical potential may be looked upon3 as the diffusional
force Thus, one can write

by analogy with the gravitational and electric forces [Eqs. (4.6) and (4.9)] and consider
that the diffusional force produces a diffusional flux J, the number of moles of species
i crossing per second per unit area of a plane normal to the flow direction (Table 4.1).

4.2.2. The “Deduction” of an Empirical Law: Fick’s First Law of
Steady-State Diffusion

Qualitatively speaking, the macroscopic description of the transport process of
diffusion is simple. The gradient of chemical potential resulting from a nonuniform
concentration is equivalent to a driving force for diffusion and produces a diffusion

3It will be shown later on (Section 4.2.6) that for the phenomenon of diffusion to occur, all that is necessary
is an inequality of the net number of diffusing particles in different regions; there is, in fact, no directed
force on the individual particles. Thus,  is only a pseudoforce like the centrifugal force; it is formally
equivalent to a force.
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Fig. 4.7. Schematic diagram to show
(a) the distance variation of the chemi-
cal potential of a species i and (b) the
relative directions of the diffusion flux,
driving force for diffusion, etc.

flux (Fig. 4.7). What is the quantitative cause-and-effect relation between the driving
force and the flux J? This question must now be considered.

Suppose that when diffusion is occurring, the driving force and the flux J reach
values that do not change with time. The system can be said to have attained a steady
state. Then the as-yet-unknown relation between the diffusion flux J and the diffu-
sional force can be represented quite generally by a power series

where A, B, C, etc., are constants. If, however,  is less than unity and sufficiently
small,4 the terms containing the powers (of  greater than unity can be neglected.

Thus, one is left with

but the constant A must be equal to zero; otherwise, it will mean that one would have
the impossible situation of having diffusion even though there is no driving force for
diffusion.

4Caution should be exercised in applying the criterion. The value of that will give rise to unity will
depend on the units chosen to express Thus, the extent to which is less than unity will depend on
the units, but one can always restrict to an appropriately small value.
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Hence, the assumption of a sufficiently small driving force leads to the result

i.e., the flux is linearly related to the driving force. The value of (zero driving
force) corresponds to an equilibrium situation; therefore, the assumption of a small
value of required to ensure the linear relation (4.13) between flux and force is
tantamount to saying that the system is near equilibrium, but not at equilibrium.

The driving force on 1 mole of ions has been stated to be [Eq. (4.10)]. If,
therefore, the concentration of the diffusing species adjacent to the transit plane (Fig.
4.8), across which the flux is reckoned, is  moles per unit volume, the driving force

at this plane is Thus, from relation (4.13), one obtains

Writing

which is tantamount to assuming ideal behavior, Eq. (4.14) becomes

Thus, the steady-state diffusion flux has been theoretically shown to be propor-
tional to the gradient of concentration. That such a proportionality existed has been

Fig. 4.8. Diagram for the derivation of the linear
relation between the diffusion flux  and the con-
centration gradient
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known empirically since 1855 through the statement of Fick’s first law of steady-state
diffusion, which reads

where D is termed the diffusion coefficient (Table 4.2).

4.2.3. The Diffusion Coefficient D

It is important to stress that, in the empirical Fick’s first law, the concentration c
is expressed in moles per cubic centimeter, and not in moles per liter. The flux is
expressed in moles of diffusing material crossing a unit area of a transit plane per unit
of time, i.e., in moles per square centimeter per second, and therefore the diffusion
coefficient D has the dimensions of centimeters squared per second. The negative sign
is usually inserted in the right-hand side of the empirical Fick’s law for the following
reason: The flux and the concentration gradient  are vectors, or quantities
which have both magnitude and direction. However, the vector J is in an opposite
sense to the vector representing a positive gradient Matter flows downhill (Fig.
4.9). Hence, if is taken as positive, must be negative, and, if there is no
negative sign in Fick’s first law, the diffusion coefficient will appear as a negative
quantity—perhaps an undesirable state of affairs. Hence, to make D come out a
positive quantity, a negative sign is added to the right-hand side of the equation that
states the empirical law of Fick.

Equating the coefficients of in the phenomenological equation (4.15) with
that in Fick’s law [Eq. (4.16)], is seen that

Now, is the diffusion coefficient a concentration-independent constant? A naive
answer would run thus: B is a constant and therefore it appears that D also is a constant.
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Fig. 4.9. Diagram to show that diffusion flow
is in a direction opposite to the direction of

positive concentration gradient Matter
flows downhill, i.e., down the concentration
gradient.

However, expression (4.17) was obtained only because an ideal solution was consid-
ered, and activity coefficients were ignored in Eq. (3.61). Activity coefficients,
however, are concentration dependent. So, if the solution does not behave ideally, one
has, starting from Eq. (4.14), and using Eq. (3.63),
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and therefore

Rigorously speaking, the diffusion coefficient is not a constant (Table 4.3). If,
however, the variation of the activity coefficient is not significant over the concentra-
tion difference that produces diffusion, then and for all practical
purposes D is a constant.5 This effective constancy of D with concentration will be
assumed in most of the discussions presented here.

The treatment so far has been phenomenological and therefore the dependence of
the diffusion coefficient on factors such as temperature and type of ion can be
theoretically understood only by an atomistic analysis. The quantity D can be under-
stood in a fundamental way only by probing into the ionic movements, the results of
which show up in the macroscopic world as the phenomenon of diffusion. What are
these ionic movements, and how do they produce diffusion? The answering of these
two questions will constitute the next topic.

4.2.4. Ionic Movements: A Case of the Random Walk

Long before the movements of ions in solution were analyzed, the kinetic theory
of gases was developed and it involved the movements of gas molecules. The overall

5For example, in diffusion between solutions that have a large concentration difference, such as 0.1 to 0.01
a rough calculation suggests that the activity-coefficient correction is on the order of a few

percent.
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pattern of ionic movements is quite similar to that of gas molecules and therefore the
latter will be recalled first.

Imagine a hypothetical situation in which all the gas molecules except one are at
rest. According to Newton’s first law of motion, the moving molecule will travel with
a uniform velocity until it collides with a stationary molecule. During the collision,
there is a transfer of momentum (mass m times velocity v). So, the moving molecule
loses some speed in the collision, but the stationary molecule is set in motion. Now
both molecules are moving, and they will undergo further collisions. The number of
collisions will increase with time, and soon all the molecules of the gas will be
continually moving, colliding, and changing their directions of motion and their
velocities—a scene of hectic activity.

It would be of interest to have an idea of the path of such a gas molecule in the
course of time. One might think that the detailed paths of all the particles could be
predicted by applying Newton’s laws to the motions of molecules. The problem,
however, is obviously too complex for a practical solution. To use the laws of motion
requires a knowledge of the position and velocity of each particle and even in 1 mole
there are (the Avogadro number) particles.

One can, however, try another approach. Is the ceaseless jostling of molecules
manifested in any gross (macroscopic) phenomenon? Consider a frictionless piston in
mechanical equilibrium with a mass of gas enclosed in a cylinder. Owing to its weight,
the piston exerts a force on the gas. What force balances the piston’s weight? One says
that the gas exerts a pressure (force per unit area) on the piston owing to the continual
buffeting that the piston receives from the gas molecules. Despite this fact, the
bombardment by the gas molecules does not produce any visible motion of the piston.
Evidently the mass of the piston is so large compared with that, of the gas molecules
that the movements of the piston are too small to be detected.

Now let the mass of the piston be reduced. Then the jiggling of the extremely light
piston as a result of being struck by gas molecules should make itself apparent to an
observer. This is what happens if one tries to make a mirror galvanometer more and
more sensitive. The essential part of this instrument is a thin quartz fiber that supports
a light coil of wire seated in a magnetic field (Fig. 4.10). The deflections of the coil
are made visible by fixing a mirror onto the quartz fiber and bouncing a beam of light
off the mirror onto a scale. To increase the sensitivity of the instrument, one tries lighter
coils, lighter mirrors, and thinner fibers. There comes a stage, however, when the
“kicks” which the fiber-mirror-coil assembly receives from the air molecules are
sufficient to make the assembly jiggle about. The reflected light beam then jumps about
on the scale (Fig. 4.11). The movements of the spot about a mean position on the scale
represent noise. (It is as if each collision produced a sound, in which case the irregular
bombardment of the mirror assembly would result in a nonstop noise.) Signals (coil
deflections) that are of this same order of magnitude obviously cannot be separated
from the noise.
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Fig. 4.10. Schematic representation of
the essential parts of a mirror galva-
nometer, used for detecting Brownian
motion.

Instead of mirrors, one could equally consider pistons of a microscopic size, large
enough to be seen with the aid of a microscope but small enough to display motions
due to collisions with molecules. Such small “pistons” are present in nature. A colloidal
particle in a liquid medium behaves as such a piston if it is observed in a microscope.
It shows a haphazard, zigzag motion as shown in Fig. 4.12. The irregular path of the
particle must be a slow-motion version of the random-walk motion of the molecules
in the liquid.

One has therefore a picture of the solvated ions (in an electrolytic solution) in
ceaseless motion, perpetually colliding, changing direction, staggering hither and
thither from site to site. This is the qualitative picture of ionic movements.

4.2.5. The Mean Square Distance Traveled in a Time t by a
Random-Walking Particle

The movements executed by an ion in solution are a three-dimensional affair
because the ion has a three-dimensional space available for roaming around. So one

Fig. 4.11. The time variation of the reading
on the scale of a mirror galvanometer.
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Fig. 4.12. The haphazard
zigzag motion of a colloidal
particle.

must really call the movements a “random flight” because the ion flies in three
dimensions and walks in two dimensions. This fine difference, however, will be
ignored and the term random walk will be retained.

The aim now is to seek a quantitative description of ionic random-walk move-
ments. There are many exotic ways of stating the random-walk problem. It is said, for
example, that a drunken sailor emerges from a bar. He intends to get back to his ship,
but he is in no state to control the direction in which he takes a step. In other words,
the direction of each step is completely random, all directions being equally likely.
The question is: On the average, how far does the drunken sailor progress in a time t?

For the sake of simplicity, the special case of a one-dimensional random walk will
be considered. The sailor starts off from x = 0 on the x axis. He tosses a coin: heads—he
moves forward in the positive x direction, tails—he moves backward. Since, for an
“honest” coin, heads are as likely as tails, the sailor is equally as likely to take a forward
step as a backward step. Of course, each step is decided on a fresh toss and is
uninfluenced by the results of the previous tosses. After allowing him N steps, the
distance x from the origin is noted6 (Fig. 4.13). Then the sailor is brought back to the
bar (x = 0) and started off on another try of N steps.

The process of starting the sailor off from x = 0, allowing him N steps, and
measuring the distance x traversed is repeated many times, and it is found that the
distances traversed from the origin are x(1), x(2), x(3), . . . , x(i), where x(i) is the
distance from the origin traversed in the ith try. The average distance <x> from the
origin is

6It will be zero only if an equal number N/2 of heads and tails turns up. For a small number of trials, this
will not happen every time. So, after each small number of tosses, the sailor is not certain to be back where
he started (i.e., in the bar).
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Fig. 4.13. The distance x (from the origin)
traversed by the drunken sailor in two tries,
each of N = 18 steps.

Since the distance x traversed by the sailor in N steps is as likely for a large number
of trials to be in the plus-x direction as in the minus-x direction, it is obvious from the
canceling out of the positive and negative values of x that the mean progress from the
origin is given by

Hence, it is not very fruitful to compute the mean distance <x> traversed by the
sailor in N steps. To avoid such an unenlightening result, which arises because x(i) can
take either positive or negative values, it is best to consider the square of x(i), which
is always a positive quantity whether x(i) itself is negative or positive. Hence, if x(1),
x(2), x(3),..., x(i) are all squared and the mean of these quantities is taken, then one
can obtain the mean square distance  i.e.,

Since the square of   is always a positive quantity, the mean square
distance traversed by the sailor is always a positive nonzero quantity (Table 4.4).7

7That is finite at first seems difficult to comprehend. One can get to it by recalling that
the drunken sailor may not make net progress but the range of his lurching to the right or to
the left is also interesting and this is obtained if one eliminates the sign of x (which causes the mean of the
sum of the xs to be zero) and deals in the square root of the mean of the sum of Then this root-
mean-square value of x indicates the range of the drunk’s wandering, no matter in what direction (Section
4.2.14).
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Furthermore, it can easily be shown (Appendix 4.1) that the magnitude of  is
proportional to N, the number of steps and since N itself increases linearly with time,
it follows that the mean square distance traversed by the random-walking sailor is
proportional to time

It is to be noted that it is the mean square distance—and not the mean distance—
that is proportional to time. If the mean distance were proportional to time, then the
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drunken sailor (or the ion) would be proceeding at a uniform velocity. This is not the
case because the mean distance <x> traveled is zero. The only type of progress that
the ion is making from the origin is such that the mean square distance is proportional
to time. This is the characteristic of a random walk.

4.2.6. Random-Walking Ions and Diffusion:
The Einstein–Smoluchowski Equation

Consider a situation in an electrolytic solution where the concentration of the ionic
species of interest is constant in the yz plane but varies in the x direction. To analyze
the diffusion of ions, imagine a unit area of a reference plane normal to the x direction.
This reference plane will be termed the transit plane of unit area (Fig. 4.14). There is
a random walk of ions across this plane both from left to right and from right to left.
On either side of the transit plane, one can imagine two planes L and R that are parallel
to the transit plane and situated at a distance  from it. In other words, the region
under consideration has been divided into left and right compartments in which the
concentrations of ions are different and designated by and respectively.

In a time of t s, a random-walking ion covers a mean square distance of  or
a mean distance of Thus, by choosing the plane L to be at a distance
from the transit plane, one has ensured that all the ions in the left compartment will
cross the transit plane in a time t provided they are moving in a left-to-right direction.

The number of moles of ions in the left compartment is equal to the volume
of this compartment times the concentration of ions. It follows that the

number of moles of ions that make the crossing in t s is times the
fraction of ions making left-to-right movements. Since the ions are random-walking,

Fig. 4.14. Schematic diagram for the derivation of the
Einstein–Smoluchowski relation, showing the transit
plane T in between and at a distance from the
left L and right R planes. The concentrations in the left
and right compartments are and respectively.
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right-to-left movements are as likely as left-to-right movements, i.e., only half the ions
in the left compartment are moving toward the right compartment. Thus, in t s the
number of moles of ions making the crossing is  and therefore the
number of moles of ions making the crossing in 1 s is
Similarly, the number of moles of ions making the crossing in 1 s is

Hence, the diffusion flux of ions across the transit plane (i.e., the net number of
moles of ions crossing unit area of the transit plane per second from left to right) is
given by

This equation reveals that all that is required to have diffusion is a difference in
the numbers per unit volume of particles in two regions. The important point is that
no special diffusive force acts on the particles in the direction of the flux.

If no forces are pushing particles in the direction of the flow, then what about the
driving force for diffusion, i.e., the gradient of chemical potential (Section 4.2.1)? The
latter is only formally equivalent to a force in a macroscopic treatment; it is a sort of
pseudoforce like a centrifugal force. The chemical-potential gradient is not a true force
that acts on the individual diffusing particles and from this point of view is quite unlike,
for example, the Coulombic force, which acts on individual charges.

Now, the concentration gradient dc/dx in the left-to-right direction can be written

or

This result for  can be substituted in Eq. (4.24) to give

and, by equating the coefficients of this equation with that of Fick’s first law [Eq.
(4.16)], one has

or
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This is the Einstein–Smoluchowski equation; it provides a bridge between the micro-
scopic view of random-walking ions and the coefficient D of the macroscopic Fick’s
law.

A coefficient of 2 is intimately connected with the approximate nature of the
derivation, i.e., a one-dimensional random walk with ions being permitted to jump
forward and backward only. More rigorous arguments may yield other values for the
numerical coefficient, e.g., 6.

The characteristic of a random walk in the Einstein–Smoluchowski equation is
the appearance of the mean square distance (i.e., square centimeters), and since this
mean square distance is proportional to time (seconds), the proportionality constant D
in Eq. (4.27) must have the dimensions of centimeters squared per second. It must not
be taken to mean that every ion that starts off on a random walk travels in time t a
mean square distance given by the Einstein-Smoluchowski relation (4.27). If a
certain number of ions are, in an imaginary or thought experiment, suddenly intro-
duced on the yz plane at then, in t s, some ions would progress a distance
others, still others, etc. The Einstein–Smoluchowski relation only says that [cf.
Eqs. (4.22) and (4.27)]

How many ions travel a distance how many,  etc.? In other words, how are the
ions spatially distributed after a time t, and how does the spatial distribution vary with
time? This spatial distribution of ions will be analyzed, but only after a pheno-
menological treatment of nonsteady-state diffusion is presented.

4.2.7. The Gross View of Nonsteady-State Diffusion

What has been done so far is to consider steady-state diffusion in which neither
the flux nor the concentration of diffusing particles in various regions changes with
time. In other words, the whole transport process is time independent. What happens
if a concentration gradient is suddenly produced in an electrolyte initially in a
time-invariant equilibrium condition? Diffusion starts of course, but it will not
immediately reach a steady state that does not change with time. For example, the
distance variation of concentration, which is zero at equilibrium, will not instantane-
ously hit the final steady-state pattern. How does the concentration vary with time?

Consider a parallelepiped (Fig. 4.15) of unit area and length dx. Ions are diffusing
in through the left face of the parallelepiped and out through the right face. Let the
concentration of the diffusing ions be a continuous function of x. If c is the concentra-
tion of ions at the left face, the concentration at the right force is
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Fig. 4.15. The parallelepiped of electrolyte used in the derivation of Fick’s
second law.

Fick’s law [Eq. (4.16)] is used to express the flux into and out of the parallelepiped.
Thus the flux into the left face  is

and the flux out of the right face is

The net outflow of material from the parallelepiped of volume dx is

Hence, the net outflow of ions per unit volume per unit time is But this
net outflow of ions per unit volume per unit time from the parallepiped is in fact the
sought-for variation of concentration with time, i.e., dc/dt. One obtains partial differ-
entials because the concentration depends both on time and distance, but the subscripts
x and t are generally omitted because it is, for example, obvious that the time variation
is at a fixed region of space, i.e., constant x. Hence,
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This partial differential equation is known as Fick’s second law. It is the basis for the
treatment of most time-dependent diffusion problems in electrochemistry.

That Fick’s second law is in the form of a differential equation implies that it
describes what is common to all diffusion problems and it has “squeezed out” what is
characteristic of any particular diffusion problem.8 Thus, one always has to calculate
the precise functional relationship

for a particular situation. The process of calculating the functional relationship consists
in solving the partial differential equation, which is Fick’s second law, i.e., Eq. (4.32).

4.2.8. An Often-Used Device for Solving Electrochemical Diffusion
Problems: The Laplace Transformation

Partial differential equations, such as Fick’s second law (in which the concentra-
tion is a function of both time and space), are generally more difficult to solve than
total differential equations, in which the dependent variable is a function of only one
independent variable. An example of a total differential equation (of second order9) is
the linearized Poisson–Boltzmann equation

It has been shown (Section 3.3.7) that the solution of this equation (with dependent
on r only) was easily accomplished.

One may conclude therefore that the solution of Fick’s second law (a partial
differential equation) would proceed smoothly if some mathematical device could be
utilized to convert it into the form of a total differential equation. The Laplace
transformation method is often used as such a device.

Since the method is based on the operation10 of the Laplace transformation, a
digression on the nature of this operation is given before using it to solve the partial
differential equation involved in nonsteady-state electrochemical diffusion problems,
namely, Fick’s second law.

Consider a function y of the variable z, i.e., y = f(z), represented by the plot of y
against z. The familiar operation of differentiation performed on the function y consists
in finding the slope of the curve representing y = f(z) for various values of z, i.e., the

8This point is dealt with at greater length in Section 4.2.9.
9The order of a differential equation is the order of its highest derivatives, which in the example quoted is
a second-order derivative,

10A mathematical operation is a rule for converting one function into another.
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differentiation operation consists in evaluating dy/dz. The integration operation con-
sists in finding the area under the curve, i.e., it consists in evaluating

The operation of Laplace transformation performed on the function y = f(z)
consists of two steps:

1. Multiplying y = f(z) by where p is a positive quantity that is independent
of z

2. Integrating the resulting product with respect to z between
the limits z = 0 and

In short, the Laplace transform is

Just as one often symbolizes the result of the differentiation of y by the result of the
operation of Laplace transformation performed on y is often represented by a symbol

Thus,

Fig. 4.16. Steps in the operation of the
Laplace transformation of (a) the function of
y = sin z, showing (b) and (c) the product

sin z integrated between the limits 0
and
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What happens during Laplace transformation can be easily visualized by choosing
a function, say, y = sin z, and representing the operation in a figure (Fig. 4.16). It can
be seen11 that the operation consists in finding the area under the curve  between

11From Fig. 4.16, it can also be seen that apart from having to make the integral converge, the exact value
of p is not significant because p disappears after the operation of inverse transformation (see Section
4.2.11).
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the limits z = 0 and The Laplace transforms of some functions encountered in
diffusion problems are collected in Table 4.5.

4.2.9. Laplace Transformation Converts the Partial Differential
Equation into a Total Differential Equation

It will now be shown that by using the operation of Laplace transformation, Fick’s
second law—a partial differential equation—is converted into a total differential
equation that can be readily solved. Since whatever operation is carried out on the
left-hand side of an equation must be repeated on the right-hand side, both sides of
Fick’s second law will be subject to the operation of Laplace transformation (cf. Eq.
(4.33)]

which, by using the symbol for a Laplace-transformed function, can be written

To proceed further, one must evaluate the integrals of Eq. (4.34). Consider the
Laplace transform

The integral can be evaluated by the rule for integration by parts as follows:

Since dt is in fact the Laplace transform of c [cf. the defining equation (4.33)],
and for conciseness is represented by the symbol and since is zero when
and unity when t = 0, Eq. (4.36) reduces to



386 CHAPTER 4

where c[t = 0] is the value of the concentration c at t = 0.
Next, one must evaluate the integral on the right-hand side of Eq. (4.34), i.e.,

Since the integration is with respect to the variable t and the differentiation is with
respect to x, their order can be interchanged. Furthermore, one can move the constant
D outside the integral sign. Hence, one can write

Once again, it is clear from Eq. (4.33) that dt is the Laplace transform of c, i.e.,
   and therefore

From Eqs. (4.32), (4.38), and (4.41), it follows that after Laplace transformation,
Fick’s second law takes the form

This, however, is a total differential equation because it contains only the variable
x. Thus, by using the operation of Laplace transformation, Fick’s second law has been
converted into a more easily solvable total differential equation involving  the
Laplace transform of the concentration.

4.2.10. Initial and Boundary Conditions for the Diffusion Process
Stimulated by a Constant Current (or Flux)

A differential equation can be arrived at by differentiating an original equation,
or primitive, as it is called. In the case of Fick’s second law, the primitive is the equation
that gives the precise nature of the functional dependence of concentration on space
and time; i.e., the primitive is an elaboration on
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Since, in the process of differentiation, constants are eliminated and since three
differentiations (two with respect to x and one with respect to time) are necessary to
arrive at Fick’s second law, three constants have been eliminated in the process of
going from the precise concentration dependence that characterizes a particular
problem to the general relation between the time and space derivatives of concentration
that describes any nonstationary diffusion situation.

The three characteristics, or conditions, as they are called, of a particular diffusion
process cannot be rediscovered by mathematical argument applied to the differential
equation. To get at the three conditions, one has to resort to a physical understanding
of the diffusion process. Only then can one proceed with the solution of the (now) total
differential equation (4.42) and get the precise functional relationship between con-
centration, distance, and time.

Instead of attempting a general discussion of the three conditions characterizing
a particular diffusion problem, it is best to treat a typical electrochemical diffusion
problem. Consider that in an electrochemical system a constant current is switched on
at a time arbitrarily designated t = 0 (Fig. 4.17). The current is due to charge-transfer
reactions at the electrode–solution interfaces, and these reactions consume a species.
Since the concentration of this species at the interface falls below the bulk concentra-
tion, a concentration gradient for the species is set up and it diffuses toward the
interface. Thus, the externally controlled current sets up12 a diffusion flux within the
solution.

The diffusion is described by Fick’s second law

or, after Laplace transformation, by

To analyze the diffusion problem, one must solve the differential equation, i.e.,
describe how the concentration of the diffusing species varies with distance x from the
electrode and with the time that has elapsed since the constant current was switched

12When the externally imposed current sets up charge-transfer reactions that provoke the diffusion of ions,
there is a very simple relation between the current density and the diffusion flux. The diffusion flux is a
mole flux (number of moles crossing in 1 s), and the current density is a charge flux (Table 4.1).
Hence, the current density j, or charge flux, is equal to the charge zF per mole of ions (z is the valence of
the diffusing ion and F is the Faraday constant) times the diffusion flux J, i.e., j = zFJ.
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Fig. 4.17. Schematic representation of an electrochemical
system connected to a constant current supply that is
switched on at t = 0. The current promotes a charge-trans-
fer reaction at the electrode–electrolyte interfaces, which
results in the diffusion flux of the species i toward the
interface.

on. First one must think out the three characteristics, or conditions, of the diffusion
process described above.

The nature of one of the conditions becomes clear from the term c[t = 0] in the
Laplace-transformed version [see Eq. (4.42)] of Fick’s second law. The term c[t = 0]
refers to the concentration before the start of diffusion; i.e., it describes the initial
condition of the electrolytic solution in which diffusion is made to occur by the passage
of a constant current. Since before the constant current is switched on and diffusion
starts, one has an unperturbed system, the concentration c of the species that sub-
sequently diffuses must be the same throughout the system and equal to the bulk
concentration Thus, the initial condition of the electrolytic solution is

The other two conditions pertain to the situation after the diffusion begins, e.g.,
after the diffusion-causing current is switched on. Since these two conditions often
pertain to what is happening to the boundaries of the system (in which diffusion is
occurring), they are usually known as boundary conditions.

The first boundary condition is the expression of an obvious point, namely, that
very far from the boundary at which the diffusion source or sink is set up, the
concentration of the diffusing species is unperturbed and remains the same as in the
initial condition
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Thus, the concentration of the diffusing species has the same value at any x at
t = 0 or for any t > 0 at   This is true for almost all electrochemical diffusion
problems in which one switches on (at t = 0) the appropriate current or potential
difference across the interface and thus sets up interfacial charge-transfer reactions
which, by consuming or producing a species, provoke a diffusion flux of that species.

What is characteristic of one particular electrochemical diffusion process and
distinguishes it from all others is the nature of the diffusion flux that is started off at
t = 0. Thus, the essential characteristic of the diffusion problem under discussion is
the switching on of the constant current, which means that the diffusing species is
consumed at a constant rate at the interface and the species diffuses across the interface
at a constant rate. In other words, the flux of the diffusing species at the x = 0 boundary
of the solution is a constant.

It is convenient from many points of view to assume that the constant value of the
flux is unity, i.e., 1 mole of the diffusing species crossing of the electrode–so-
lution interface per second. This unit flux corresponds to a constant current density of

This normalization of the flux scarcely affects the generality of the treatment
because it will later be seen that the concentration response to an arbitrary flux can
easily be obtained from the concentration response to a unit flux.

If one looks at the time variation of current or the flux across the solution
boundary, it is seen that for t < 0, J = 0 and for t > 0, there is a constant flux J = 1 (Fig.
4.18) corresponding to the constant current switched on at t = 0. In other words, the
time variation of the flux is like a step; that is why the flux produced in this setup is
often known as a step function (of time).

At any instant of time, the constant flux across the boundary is related to the
concentration gradient there through Fick’s first law, i.e.,

The above initial and boundary conditions can be summarized thus:
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Fig. 4.18. When a constant unit flux of 1 mol
is switched on at t = 0, the variation

of flux with time resembles a step. (It is only
an ideal switch that makes the current and
therefore the flux instantaneously rise from
zero to its constant value; this problem of
technique is ignored in the diagram.)

The three conditions just listed describe the special features of the constant (unit)-flux
diffusion problem. They will now be used to solve Fick’s second law.

4.2.11. Concentration Response to a Constant Flux Switched On
at t = 0

It has been shown (Section 4.2.9) that after Laplace transformation, Fick’s second
law takes the form

The solution of an equation of this type is facilitated if the second term is zero. This
objective can be attained by introducing a new variable  defined as

The variable can be recognized as the departure of the concentration from its
initial value In other words, represents the perturbation from the initial concen-
tration (Fig. 4.19).

The partial differential equation [Eq. (4.32)] and the initial and boundary condi-
tions now have to be restated in terms of the new variable This is easily done by
using Eq. (4.46) in Eqs. (4.32), (4.43), (4.44), and (4.45). One obtains
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Fig. 4.19. Schematic representation of (a)
the variation of concentration with distance x
from the electrode at t = 0 and t = t and (b)
the variation of the perturbation
in concentrations.

After Laplace transformation of Eq. (4.47), the differential equation becomes

Since, however, [cf. Eq. (4.48)], it is clear that

This equation is identical in form to the linearized P–B equation [cf . Eq. (3.21)] and
therefore must have the same general solution, i.e.,
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where A and B are the arbitrary integration constants to be evaluated by the use of the
boundary conditions. If the Laplace transformation method had not been used, the
solution of Eq. (4.47) would not have been so simple.

The constant B must be zero by virtue of the following argument. From the
boundary condition i.e., Eq. (4.49), it is clear that after Laplace
transformation,

Hence, as but this will be true only if B = 0 because otherwise in
Eq. (4.53) will go to infinity instead of zero.

One is left with

Differentiating this equation with respect to x, one obtains

which at x = 0 leads to

Another expression for can be obtained by applying the operation of
Laplace transformation to the constant-flux boundary condition (4.50). Laplace trans-
formation on the left-hand side of the boundary condition leads to and the
same operation performed on the right-hand side, to – 1/Dp (Appendix 4.2). Thus, from
the boundary condition (4.50) one gets

Hence, from Eqs. (4.57) and (4.58), it is found that

Upon inserting this expression for A into Eq. (4.55), it follows that
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Fig. 4.20. Comparison of the use of (a) logarithms and (b)
Laplace transformation.

The ultimate aim, however, is not to get an expression for the Laplace transform
of but to get an expression for (or c) as a function of distance x and time t. The
expression has been obtained by a Laplace transformation of hence, to go from

to one must do an inverse transformation. The situation is analogous to using
logarithms to facilitate the working-out of a problem (Fig. 4.20). In order to get
from one asks the question: Under Laplace transformation, what function would
give the Laplace transform of Eq. (4.60)? In other words, one has to find  in the
equation

A mathematician would find the function (i.e., do the inverse transformation)
by making use of the theory of functions of variables which are complex. Since,
however, there are extensive tables of functions y and their transforms it is only
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necessary to look up the column of Laplace transforms in the tables (Table 4.5). It is
seen that corresponding to the transform of the equation arising from Eq. (4.60)

is the function

where erfc is the error function complement defined thus:

erf(y) being the error function given by (Fig. 4.21)

Hence, the expression for the concentration perturbation in Eq. (4.61) must be

If one is interested in the true concentration c, rather than the deviation in the
concentration from the initial value one must use the defining equation for

Fig. 4.21. Variation of the error function erf(y)
with argument y.
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The result is

This then is the fundamental equation showing how the concentration of the
diffusing species varies with distance x from the electrode–solution interface and with

Fig. 4.22. Graphical repre-
sentation of the variation of the con-
centration c with distance x from the
electrode or diffusion sink. (a) The
initial condition at t = 0; (b) and (c)
the conditions at and where

Note that, at
is a constant, as it

should be in the constant-flux diffu-
sion problem.
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Fig. 4.23. Use of an electronic device to vary
the current passing through an electrochemi-
cal system in a controlled way.

the time t that has elapsed since a constant unit flux was switched on. In other words,
Eq. (4.65) describes the diffusional response of an electrolytic solution to the stimulus
of a flux which is in the form of a step function of time. The nature of the response is
best appreciated by seeing how the concentration profile of the species diffusing varies
as a function of time [Fig. 4.22(a), (b), and (c)]. Equation (4.65) is also of fundamental
importance in describing the response of an electrochemical system to a current density
that varies as a step function, i.e., to a constant current density switched on at t = 0.

4.2.12. How the Solution of the Constant-Flux Diffusion Problem
Leads to the Solution of Other Problems

The space and time variation of a concentration in response to the switching on
of a constant flux has been analyzed. Suppose, however, that, instead of a constant
flux, one switches on a sinusoidally varying flux.13 What is the resultant space and
time variation of the concentration of the diffusing species?

One approach to this question is to set up the new diffusion problem with the
initial and boundary conditions characteristic of the sinusoidally varying flux and to
obtain a solution. There is, however, a simpler approach. Using the property of  Laplace
transforms, one can use the solution (4.65) of the constant-flux diffusion problem to
generate solutions for other problems.

13If one feels that current is a more familiar word than flux, one can substitute the word current because
these diffusion fluxes are often, but not always, provoked by controlling the current across an electrode-
solution interface.
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Fig. 4.24. Schematic representation of the
response of a system Y to a stimulus

An electronic device is connected to an electrochemical system so that it switches
on a current (Fig. 4.23) that is made to vary with time in a controllable way. The current
provokes charge-transfer reactions that lead to a diffusion flux of the species involved
in the reactions. This diffusion flux varies with time in the same way as the current.
The time variation of the flux will be represented thus

The imposition of this time-varying flux stimulates the electrolytic solution to
respond with a space and time variation in the concentration c or a perturbation in
concentration, The response depends on the stimulus, and the mathematical
relationship between the cause J(t) and the effect can be represented (Fig. 4.24) quite
generally thus14:

where and are the Laplace transforms of the perturbation in concentration and the
flux, and y is the to-be-determined function that links the cause and effect and is
characteristic of the system.

The relationship (4.67) has been defined for a flux that has an arbitrary variation
with time; hence, it must also be true for the constant unit flux described in Section
4.2.10. The Laplace transform of this constant unit flux J = 1 is 1 / p according to
Appendix 4.2; and the Laplace transform of the concentration response to the constant
unit flux is given by Eq. (4.60), i.e.,

Hence, by substituting 1 / p for and for in Eq. (4.67), one has

14It will be seen further on that one uses a relationship between the Laplace transforms of the concentration
perturbation and the flux rather than the quantities and J themselves, because the treatment in Laplace
transforms is not only elegant but fruitful.



398 CHAPTER 4

On introducing this expression for y into the general relationship (4.67), the result is

This is an important result: Through the evaluation of y, it contains the concen-
tration response to a constant unit flux switched on at t = 0. In addition, it shows how
to obtain the concentration response to a flux J(t) that is varying in a known way. All
one has to do is to take the Laplace transform of this flux J(t) switched on at time
t = 0, substitute this in Eq. (4.69), and get If one inverse-transforms the resulting
expression for one will obtain the perturbation in concentration as a function of
x and t.

Consider a few examples. Suppose that instead of switching on a constant unit
flux at t = 0 (see Section 4.2.10), one imposes a flux that is a constant but now has a
magnitude of i.e., Since the transform of a constant is 1/p times
the constant (Appendix 4.2), one obtains

which when introduced into Eq. (4.69) gives

The inverse transform of the right-hand side of Eq. (4.71) is identical to that for the
unit step function [cf. Eq. (4.60)] except that it is multiplied by That is,

In other words, the concentration response of the system to a flux is a
magnified- -times version of the response to a constant unit flux.

One can also understand what happens if instead of sucking ions out of the system,
the flux acts as a source and pumps in ions. This condition can be brought about by
changing the direction of the constant current going through the interface and thus
changing the direction of the charge-transfer reactions so that the diffusing species is
produced rather than consumed. Thus, diffusion from the interface into the solution
occurs. Because the direction of the flux vector is reversed, one has
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Fig. 4.25. The difference in the concentration response to the
stimulus of (a) a sink and (b) a source at the electrode–electrolyte
interface.

and thus

or, in view of Eq. (4.46),

Note the plus sign; it indicates that the concentration c rises above the initial value
(Fig. 4.25).

Consider now a more interesting type of stimulus involving a periodically varying
flux (Fig. 4.26). After representing the imposed flux by a cosine function
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Fig. 4.26. A sinusoidally varying flux at an elec-
trode–electrolyte interface, produced by passing
a sinusoidally varying flux through the electro-
chemical system.

its Laplace transform is (see Table 4.5)

When this is combined with Eq. (4.69), one gets

To simplify matters, the response of the system will only be considered at the
boundary, i.e., at x = 0. Hence, one can set x = 0 in Eq. (4.78), in which case,

The inverse transform reads

which shows that, corresponding to a periodically varying flux (or current), the
concentration perturbation also varies periodically, but there is a  phase difference
between the flux and the concentration response (Fig. 4.27).

This is an extremely important result because an alternating flux can be produced
by an alternating current density at the electrode–electrolyte interface, and in the case
of sufficiently fast charge-transfer reactions, the concentration at the boundary is
related to the potential difference across the interface. Thus, the current density and
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Fig. 4.27. When a sinusoidally vary-
ing diffusion flux is produced in an
electrochemical system by passing a
sinusoidally varying current through
it, the perturbation in the concentra-
tion of the diffusing species also var-
ies sinusoidally with time, but with a
phase difference of

the potential difference both vary periodically with time, and it turns out that the phase
relationship between them provides information on the rate of the charge-transfer
reaction.

4.2.13. Diffusion Resulting from an Instantaneous Current Pulse

There is another important diffusion problem, the solution of which can be
generated from the concentration response to a constant current (or a flux). Consider
that in an electrochemical system there is a plane electrode at the boundary of the
electrolyte. Now, suppose that with the aid of an electronic pulse generator, an
extremely short time current pulse is sent through the system (Fig. 4.28). The current
is directed so as to dissolve the metal of the electrode; hence, the effect of the pulse is
to produce a burst of metal dissolution in which a layer of metal ions is piled up at the
interface (Fig. 4.29).

Because the concentration of metal ions at the interface is far in excess of that in
the bulk of the solution, diffusion into the solution begins. Since the source of the
diffusing ions is an ion layer parallel to the plane electrode, it is known as a plane
source; and since the diffusing ions are produced in an instantaneous pulse, a fuller
description of the source is contained in the term instantaneous plane source.

As the ions from the instantaneous plane source diffuse into the solution, their
concentration at various distances will change with time. The problem is to calculate
the distance and time variation of this concentration.

The starting point for this calculation is the general relation between the Laplace
transforms of the concentration perturbation and the time-varying flux J(t)
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Fig. 4.28. The use of an electronic pulse generator
to send an extremely short time current pulse
through an electrochemical system so that there is
dissolution at one electrode during the pulse.

Fig. 4.29. The burst of electrode dissolution dur-
ing the current pulse produces a layer of ions
adjacent to the dissolving electrode (negative ions
are not shown in the diagram).
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One has to substitute for the Laplace transform of a flux that is an instantaneous
pulse. This is done with the help of the following interesting observation.

If one takes any quantity that varies with time as a step, then the differential of
that quantity with respect to time varies with time as an instantaneous pulse (Fig. 4.30).
In other words, the time derivative of a step function is an instantaneous pulse. Suppose
therefore one considers a constant flux (or current) switched on at t = 0 (i.e., the flux
is a step function of time and will be designated then the time derivative of that
constant flux is a pulse of flux (or current) at t = 0, referred to by the symbol  i.e.,

If, now, one takes Laplace transforms of both sides and uses Eq. (4.38) to evaluate the
right-hand side, one has

But at t = 0, the magnitude of a flux that is a step function of time is zero. Hence,

Fig. 4.30. The time derivative of a
flux that is a step function of time
is an instantaneous pulse of flux.
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If the pumping of diffusing particles into the system by the step-function flux
consists in switching on, at t = 0, a flux of then

and

Using this relation in Eq. (4.83), one has

and, by substitution in Eq. (4.69),

By inverse transformation (Table 4.5),

or by referring to the actual concentration c instead of the perturbation  in concen-
tration, the result is

If, prior to the current pulse, there is a zero concentration of the species produced
by metal dissolution, i.e.,

then Eq. (4.89) reduces to

It can be seen from Eq. (4.86) that is the Laplace transform of the pulse of flux.
However, a Laplace transform is an integral with respect to time. Hence, which is
a flux (of moles per square centimeter per second) in the constant-flux problem (see
Section 4.2.12), is in fact the total concentration (moles per square centimeter) of the
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Fig. 4.31. Plots of the fraction
of ions (produced in the

pulse of electrode dissolution)
against the distance x from the
electrode. At t = 0, all the ions are
on the x = 0 plane, and at t > 0,
they are distributed in the solution
as a result of dissolution and diffu-
sion. In the diagram,

and the distribution curve
becomes flatter and flatter.

diffusing ions produced on the x = 0 plane in the burst of metal dissolution. If, instead
of dealing with concentrations, one deals with numbers of ions, the result is

where n is the number of ions at a distance x and a time t, and is the number of
ions set up on the x = 0 plane at t = 0; i.e., is the total number of diffusing ions.

This is the solution to the instantaneous-plane-source problem. When is
plotted against x for various times, one obtains curves (Fig. 4.31) that show how the
ions injected into the x = 0 plane at t = 0 (e.g., ions produced at the electrode in an
impulse of metal dissolution) are distributed in space at various times. At any particular
time t, a semi-bell-shaped distribution curve is obtained that shows that the ions are
mainly clustered near the x = 0 plane, but there is a “spread.” With increasing time,
the spread of ions increases. This is the result of diffusion, and after an infinitely long
time, there are equal numbers of ions at any distance.

4.2.14. Fraction of Ions Traveling the Mean Square Distance  in
the Einstein–Smoluchowski Equation

In the previous section, an experiment was described in which a pulse of current
dissolves out of the electrode a certain number of ions, which then start diffusing
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Fig. 4.32. Schematic of experiment to note the time interval
between the pulse of electrode dissolution (at t = 0) and the
arrival of radioactive ions at the window where they are regis-
tered in the Geiger-counter system.

into the solution. Now suppose that the electrode material is made radioactive so that
the ions produced by dissolution are detectable by a counter (Fig. 4.32). The counter
head is then placed near a window in the cell at a distance of 1 cm from the dissolving
electrode, so that as soon as the tagged ions pass the window, they are registered by
the counter. How long after the current pulse at t = 0 does the counter note the arrival
of the ions?

It is experimentally observed that the counter begins to register within a few
seconds of the termination of the instantaneous current pulse. Suppose, however, that
one attempted a theoretical calculation based on the Einstein–Smoluchowski equation
(4.27), i.e.,

using, for the diffusion coefficient of ions, the experimental value of
Then, the estimated time for the radioactive ions to reach the counter is

or

This is several orders of magnitude larger than is indicated by experience.
The dilemma may be resolved as follows. If in the Einstein–Smoluchowski

relation pertains to the mean square distance traversed by a majority of the radioactive
particles and if Geiger counters can—as is the case—detect a very small number of
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Fig. 4.33. The Einstein–Smolu-
chowski equation, Dt, per-
tains to the fraction of
ions between x = 0 and

This fraction is
found by integrating the distribution
curve between x = 0 and

particles, then one can qualitatively see that there is no contradiction between the
observed time and that estimated from Eq. (4.27). The time of min estimated by
the Einstein–Smoluchowski equation is far too large because it pertains to a number
of radioactive ions far greater than the number needed to register in the counting
apparatus. The way in which the diffusing particles spread out with time, i.e., the
distribution curve for the diffusing species (Fig. 4.31), shows that even after very short
times, some particles have diffused to very large distances, and these are the particles
registered by the counter in a time far less than that predicted by the Einstein–
Smoluchowski equation.

The qualitative argument just presented can now be quantified. The central
question is: To what fraction of the ions (released at the instantaneous-plane
source) does apply?15 This question can be answered easily by integrating
the n versus x distribution curve (Fig. 4.33) between the lower limit x = 0 (the location
of the plane source) and the value of x corresponding to the square root of This
upper limit of root-mean-square distance—is, for conciseness, repre-
sented by the symbol i.e.,

Thus, the Einstein–Smoluchowski fraction is given by [cf. Eq. (4.92)]

15This fraction will be termed the Einstein–Smoluchowski fraction.
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According to the Einstein–Smoluchowski relation,

Hence,

By using this relation, Eq. (4.94) becomes

To facilitate the integration, substitute

in which case several relations follow

and

With the use of these relations, Eq. (4.96) becomes
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The integral on the right-hand side is the error function of [cf. Eq. (4.63)].
Values of the error function have been tabulated in detail (Table 4.6). The value

of the error function of i.e.,

is 0.68. Hence,

and therefore about two-thirds (68%) of the diffusing species are within the region
from x = 0 to This means, however, that the remaining fraction, namely
one-third, have crossed beyond this distance. Of course, the radioactive ions that are
sensed by the counter almost immediately after the pulse of metal dissolution belong
to this one-third group (Fig. 4.34).
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Fig. 4.34. When diffusion occurs
from an instantaneous plane
source (set up, e.g., by a pulse of
electrode dissolution), then 68%
of the ions produced in the pulse
lie between x = 0 and
after the time t.

In the above experiment, diffusion toward the direction is prevented
by the presence of a physical boundary (i.e., the electrode). If no such boundary
exists and diffusion in both the +x and –x directions is possible, then 68% of
the particles will distribute themselves in the region from
to From symmetry considerations, one would expect 34% to be
within x = 0 and and an equal amount to be on the other side (Fig. 4.35).

Fig. 4.35. If it were possible for diffusion to occur
in the +x and –x directions from an instantaneous
plane source at x= 0, then one-third of the diffus-
ing species would lie between x = 0 and

and a similar number would lie between
x = 0 and
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From the above discussion, the advantages and limitations of using the Einstein–
Smoluchowski relation become clear. If one is considering phenomena involving a
few particles, then one can be misled by making Einstein–Smoluchowski calculations.
If, however, one wants to know about the diffusion of a sizable fraction of the total
number of particles, then the relation provides easily obtained, although rough,
answers without having to go through the labor of obtaining the exact solution for the
diffusion problem (see, e.g., Section 4.6.8).

4.2.15. How Can the Diffusion Coefficient Be Related to Molecular
Quantities?

The diffusion coefficient D has appeared in both the macroscopic (Section 4.2.2)
and the atomistic (Section 4.2.6) views of diffusion. How does the diffusion coefficient
depend on the structure of the medium and the interatomic forces that operate? To
answer this question, one should have a deeper understanding of this coefficient than
that provided by the empirical first law of Fick, in which D appeared simply as the
proportionality constant relating the flux J and the concentration gradient dc/dx. Even
the random-walk interpretation of the diffusion coefficient as embodied in the Ein-
stein–Smoluchowski equation (4.27) is not fundamental enough because it is based
on the mean square distance traversed by the ion after N steps taken in a time t and
does not probe into the laws governing each step taken by the random-walking ion.

This search for the atomistic basis of the diffusion coefficient will commence from
the picture of random-walking ions (see Sections 4.2.4 to 4.2.6). It will be recalled that
a net diffusive transport of ions occurs in spite of the completely random zigzag dance
of individual ions, because of unequal numbers of ions in different regions.

Consider one of these random-walking ions. It can be proved (see Appendix 4.1)
that the mean square distance traveled by an ion depends on the number N of
jumps the ion takes and the mean jump distance l in the following manner (Fig. 4.36):

It has further been shown (Section 4.2.6) that in the case of a one-dimensional random
walk, depends on time according to the Einstein–Smoluchowski equation

By combining Eqs. (4.104) and (4.27), one obtains the equation

which relates the number of jumps and the time. If now only one jump of the ion is
considered, i.e., N = 1, Eq. (4.105) reduces to
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Fig. 4.36. Schematic repre-
sentation of N = 11 steps
(each of mean length l) in the
random walk of an ion. After
11 steps, the ion is at a dis-
tance x from the starting
point.

where is the mean jump time to cover the mean jump distance l. This mean jump
time is the number of seconds per jump,16 and therefore is the jump frequency,
i.e., the number of jumps per second. Putting

one can write Eq. (4.106) thus:

Equation (4.108) shows that the diffusion depends on how far, on average, an ion
jumps and how frequently these jumps occur.

4.2.16. The Mean Jump Distance l, a Structural Question

To go further than Eq. (4.108), one has to examine the factors that govern the
mean jump distance l and the jump frequency k. For this, the picture of a liquid (in
which diffusion is occurring) as a structureless continuum is inadequate. In reality, the
liquid has a structure—ions and molecules in definite arrangements at any one instant

16This mean jump time will include any waiting time between two successive jumps.
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Fig. 4.37. Diagram to illustrate one step in the
random walk of an ion.

of time. This arrangement in a liquid (unlike that in a solid) is local in extent, transitory
in time, and mobile in space. The details of the structure are not necessary to continue
the present discussion. What counts is that ions zigzag in a random walk, and for any
particular step, the ion has to maneuver out of one site in the liquid structure into
another site (Fig. 4.37). This maneuvering process can be symbolically represented
thus:

where is a site occupied by an ion and is an empty acceptor site waiting to
receive a jumping ion. The mean jump distance l is seen to be the mean distance
between sites, and its numerical value depends upon the details of the structure of the
liquid, i.e., upon the instantaneous and local atomic arrangement.

4.2.17. The Jump Frequency, a Rate-Process Question

The process of diffusion always occurs at a finite rate; it is a rate process.
Chemical reactions, e.g., three-atom reactions of the type

are also rate processes. Further, a three-atom reaction can be formally described as the
jump of the particle B from a site in A to a site in C (Fig. 4.38). With this description,
it can be seen that the notation (4.109) used to represent the jump of an ion has in fact
established an analogy between the two rate processes, i.e., diffusion and chemical
reaction. Thus, the basic theory of rate processes should be applicable to the processes
of both diffusion and chemical reactions.

The basis of this theory is that the potential energy (and standard free energy) of
the system of particles involved in the rate processes varies as the particles move to
accomplish the process. Very often, the movements crucial to the process are those of
a single particle, as is the case with the diffusive jump of an ion from site to site. If the
free energy of the system is plotted as a function of the position of the crucial particle,
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Fig. 4.38. A three-atom chemical rec-
tion viewed as the
jump of atom B from atom A to atom C.

e.g., the jumping ion, then the standard free energy of the system has to attain a critical
value (Fig. 4.39)—the activation free energy —for the process to be accom-
plished. One says that the system has to cross an energy barrier for the rate process to
occur. The number of times per second that the rate process occurs, k, i.e., the jump
frequency in the case of diffusion, can be shown to be given by17

4.2.18. The Rate-Process Expression for the Diffusion Coefficient

To obtain the diffusion coefficient in terms of atomistic quantities, one has to
insert the expression for the jump frequency (4.111) into that for the diffusion
coefficient [Eq. (4.108)]. The result is

The numerical coefficient has entered here only because the Einstein–Smoluchowski
equation for a one-dimensional random walk was considered. In general,
it is related to the probability of the ion’s jumping in various directions, not just forward
and backward. For convenience, therefore, the coefficient will be taken to be unity, in
which case

17The on the left-hand side is the jump frequency; the k in the term kT/h is the Boltzmann constant.
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Fig. 4.39. (a) The jump of an ion from a prejump site
to a postjump site through a jump distance l. (b)
Corresponding to each position of the jumping ion, the
system (sites + jumping ion) has a standard free
energy. Thus, the standard free-energy changes cor-
responding to the ionic jump can be represented by
the passage of a point (representing the standard free
energy of the system) over the barrier by the acquisi-
tion of the standard free energy of activation.

As to the value of l, this depends on the model process seen as the mechanism for
diffusion. This is discussed for liquid electrolytes rather fully in Section 5.7. In one
mechanism (“shuffling along”), the diffusing particles are seen to be analogues of
persons pushing through a crowd. Each microstep is less than the distance between
two sites. In another, the ion moves by jumps, taking the opportunity when a void or
vacancy turns up beside it to move in to fill the void. Then the value of l would be
equal to the intersite distance. Thus, in the shuffle-along model, the range of ls would
be as little as 0.01 nm, and in the jump-into-a-hole model, perhaps 0.2–0.3 nm.

4.2.19. Ions and Autocorrelation Functions

Autocorrelation functions involve concepts that one sometimes reads about in
analyses of transport in liquids and are therefore concepts with which the student
should be familiar. These are mathematical devices used in some discussions of the
theory of transport in liquids, e.g., in treatment of viscous flow and diffusion. It is
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possible, for example, to represent the diffusion coefficient D in terms of the autocor-
relation function of a particle’s velocity. When a particle in solution collides with
another (say, an ion colliding with a solvent molecule), the collision is tantamount to
a force operating for a very short time on the particle. This time is much shorter than
the time needed for the normal so-called “Stokes’ resistance” (see Section 4.4.7),
which slows down the particle that has “received a knock” to the average velocity (e.g.,
in flow). Now consider dealing with diffusion coefficients in terms of molecular
dynamics (see a description of this technique in Section 2.3.2). This method is used
to determine how the dynamics of motion of a given particle will be affected by its
collision with other particles. Thus, it is important to know the relation between the
velocity of a particle at the beginning (t = 0), that is, just after collision, and that at
some later time t.

This is where one brings in the concept of the velocity autocorrelation function.
This indeed concerns the velocity at t=0, and the velocity at some subsequent time,

To what extent does the subsequent velocity depend upon the velocity at time t = 0?
That is the sort of information given by the autocorrelation function.

There are several technical details in a rigorous definition of the autocorrelation
function for velocity. First, one has to remember the vectorial character of velocity,
because clearly the direction in which the particle is knocked is important to its
subsequent dynamic history. Then, according to the way it is defined, one has to take
the product of the velocity at t = 0, and that at the later chosen time, However,
it is not as simple as just multiplying together the two vectors, and One has to
allow for the distribution of positions and momenta of the particle in the system at the
beginning, that is, at t = 0. To allow for this, one can introduce symbolically a
probability distribution coefficient, Therefore, the expression for the autocorrela-
tion function will involve the product

Thereafter, there is only one step left, but it is a vital one. One has to carry out an
averaging process for the entire liquid (or solution) concerned. Such averaging
processes can be carried out in more than one way. One of these involves an integration
with respect to time. One ends up by writing down the full-blown expression for the
autocorrelation function as a function of an expression dependent on time, A(t). Then,
in a general way, an autocorrelation function would run

where the brackets represent “the average value of,” as defined in Eq. (4.20).
How can this concept be used to calculate diffusion coefficients in ionic solutions?

First one has to remember that for diffusion in one direction,

However, the displacement of the particle x is in reality a function of time and therefore
can also be expressed in terms of an autocorrelation function similar to that presented
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in Eq. (4.115). One advantage of this procedure is that the autocorrelation function
will depend only on a time interval, and not on the time itself. Through the use
of Eq. (4.116) and some mechanics produced earlier in the century by Langevin, one
finds that the diffusion coefficient D can be expressed by the time integral of the
velocity autocorrelation function and eventually obtains the useful equation

where is the frictional coefficient.
Does this concern ions in solution and electrochemistry? It does indeed concern

some approaches to diffusion and hence the related properties of conduction and
viscous flow. It has been found that the autocorrelation function for the velocity of an
ion diffusing in solution decays to zero very quickly, i.e., in about the same time as
that of the random force due to collisions between the ion and the solvent. This is
awkward because it is not consistent with one of the approximations used to derive
analytical expressions for the autocorrelation function.18 The result of this is that
instead of an analytical expression, one has to deal with molecular dynamics simula-
tions.

One of the simplest examples of this type of calculation involves the study of a
system of rare-gas atoms, as in, e.g., calculations carried out on liquid argon. The
relaxation time after a collision was found to be on the order of which is about
the same time as that for rather large ions (e.g., of 500 pm). Thus, much of what one
learns from the MD study of molecular motion in liquid argon should be applicable to
ionic diffusion.

Figure 4.40 shows the velocity autocorrelation function for liquid argon as
calculated by Levesque et al. Looking now at this figure, one can see at first the fast
exponential decay of the autocorrelation function. The function then becomes negative
(reversal of velocity), indicating a scattering collision with another molecule. At longer
times it trails off to zero, as expected, for eventually the argon atom’s motion becomes
unconnected to the original collision. The time for this to happen is relatively long,
about

In summary, then, autocorrelation functions are useful mathematical devices
which, when applied to velocities, tell us to what degree the motion of a particle at a
given instant is related to the impelling force of the last collision. Their usefulness is
mainly in molecular dynamics, the principal computer-oriented method by which
systems are increasingly being analyzed (Section 2.17).

18Here it is assumed that the influence of the collision lasts a lot longer than the force due to the collision
itself.
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Fig. 4.40. Autocorrelation
function of the velocity (time
units s) obtained by
Levesque et al. (dash-dot
curve). The solid curve is the
molecular dynamics results
(D. Levesque, L. Verlet, and
J. Kurkijarvi, Phys. Rev. A 7:
1690,1973.)

4.2.20. Diffusion: An Overall View

An electrochemical system runs on the basis of charge-transfer reactions at the
electrode–electrolyte interfaces. These reactions involve ions or molecules that are
constituents of the electrolyte. Thus, the transport of particles to or away from the
interface becomes an essential condition for the continued electrochemical transfor-
mation of reactants at the interface.

One of the basic mechanisms of ionic transport is diffusion. This type of transport
occurs when the concentration of the diffusing species is different in different parts of
the electrolyte. What makes diffusion occur? This question can be answered on a
macroscopic and on a microscopic level.

The macroscopic view is based on the fact that when the concentration varies with
distance, so does the chemical potential. However, a nonuniformity of chemical
potential implies that the free energy is not the same everywhere and therefore the
system is not at equilibrium. How can the system attain equilibrium? By equalizing
the chemical potential, i.e., by transferring the species from the high-concentration
regions to the low-concentration regions. Thus, the negative gradient of the chemical
potential, behaves like a driving force (see Section 4.2.1) that produces a net
flow, or flux, of the species.

When the driving force is small, it may be taken to be linearly related to the flux.
On this basis, an equation can be derived for the rate of steady-state diffusion, which
is identical in form to the empirical first law of Fick,
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The microscopic view of diffusion starts with the movements of individual ions.
Ions dart about haphazardly, executing a random walk. By an analysis of one-dimen-
sional random walk, a simple law can be derived (see Section 4.2.6) for the mean
square distance traversed by an ion in a time t. This is the Einstein–Smoluchowski
equation

It also turns out that the random walk of individual ions is able to give rise to a
flux, or flow, on the level of the group. Diffusion is simply the result of there being
more random-walking particles in one region than in another (see Section 4.2.6). The
gradient of chemical potential is therefore only a pseudoforce that can be regarded as
operating on a society of ions but not on individual ions.

The first law of Fick tells one how the concentration gradient is related to the flux
under steady-state conditions; it says nothing about how the system goes from
nonequilibrium to steady state when a diffusion source or sink is set up inside or at the
boundary of the system. Thus, it says nothing about how the concentration changes
with time at different distances from the source or sink. In other words, Fick’s first
law is inapplicable to nonsteady-state diffusion. For this, one has to go to Fick’s second
law

which relates the time and space variations of the concentration during diffusion.
Fick’s second law is a partial differential equation. Thus, it describes the general

characteristics of all diffusion problems but not the details of any one particular
diffusion process. Hence, the second law must be solved with the aid of the initial and
boundary conditions that characterize the particular problem.

The solution of Fick’s second law is facilitated by the use of Laplace transforms,
which convert the partial differential equation into an easily integrable total differential
equation. By utilizing Laplace transforms, the concentration of diffusing species as a
function of time and distance from the diffusion sink when a constant normalized
current, or flux, is switched on at t = 0 was shown to be

With the solution of this problem (in which the flux varies as a unit-step function with
time), one can easily generate the solution of other problems in which the current, or
flux, varies with time in other ways, e.g., as a periodic function or as a single pulse.

When the current, or flux, is a single impulse, an instantaneous-plane source for
diffusion is set up and the concentration variation is given by
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in the presence of a boundary. From this expression, it turns out that in a time t, only
a certain fraction (two-thirds) of the particles travel the distance given by the Einstein–
Smoluchowski equation. Actually, the spatial distribution of the particles at a given
time is given by a semi-bell-shaped distribution curve.

The final step involves the relation of the diffusion coefficient to the structure of
the medium and the forces operating there. It is all a matter of the mean distance l
through which ions jump during the course of their random walk and of the mean jump
frequency k. The latter can be expressed in terms of the theory of rate processes, so
that one ends up with an expression for the rate of diffusion that is in principle derivable
from the local structure of the medium.

There is more than one way of calculating diffusion coefficients, and a method
being used increasingly involves molecular dynamics. Some description of this
technique is given in Sections 2.3.2 and 2.17. One aspect of it is the velocity
autocorrelation function as explained in Section 4.2.19.

This then is an elementary picture of diffusion. The next task is to consider the
phenomenon of conduction, i.e., the migration of ions in an electric field.
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4.3. IONIC DRIFT UNDER AN ELECTRIC FIELD: CONDUCTION

4.3.1. Creation of an Electric Field in an Electrolyte

Assume that two plane-parallel electrodes are introduced into an electrolytic
solution so as to cover the end walls of the rectangular insulating container (Fig. 4.41).
With the aid of an external source, let a potential difference be applied across the
electrodes. How does this applied potential difference affect the ions in the solution?

The potential in the solution has to vary from the value at one electrode, to
that at the other electrode, The major portion of this potential drop occurs
across the two electrode-solution interfaces (see Chapter 6); i.e., if the potentials on
the solution side of the two interfaces are and then the interfacial potential
differences are and (Fig. 4.42). The remaining potential drop,

occurs in the electrolytic solution. The electrolytic solution is therefore a region
of space in which the potential at a point is a function of the distance of that point from
the electrodes.

Let the test ion in the solution be at the point where the potential is (Fig.
4.43). This potential is by definition the work done to bring a unit of positive charge
from infinity up to the particular point. [In the course of this journey of the test charge
from infinity to the particular point, it may have to cross phase boundaries, for example,
the electrolyte-air boundary, and thereby do extra work (see Chapter 6). Such surface
work terms cancel out, however, in discussions of the differences in potential between
two points in the same medium.] If another point is chosen on the normal from to
the electrodes, then the potential at is different from that at because of the variation

Fig. 4.41. An electrochemical system consisting
of two plane-parallel electrodes immersed in an
electrolytic solution is connected to a source of
potential difference.
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Fig. 4.42. Diagram to illustrate how the total po-
tential difference is distributed in the re-
gion between the two electrodes.

of the potential along the distance coordinate between the electrodes. Let the potential
at be Then the difference in potential between the two points, is the
work done to take a unit of charge from to

When this work is divided by the distance over which the test charge is
transferred, i.e., one obtains the force per unit charge, or the electric field X

Fig. 4.43. The work done to trans-
port a unit of positive charge from
x1 to x2 in the solution is equal to the
difference in electrostatic po-
tential at the two points.
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where the minus sign indicates that the force acts on a positive charge in a direction
opposite to the direction of the positive gradient of the potential. In the particular case
under discussion, i.e., parallel electrodes covering the end walls of a rectangular
container, the potential drop in the electrolyte is linear (as in the case of a parallel-plate
condenser), and one can write

In general, however, it is best to be in a position to treat nonlinear potential drops. This
is done by writing (Fig. 4.44)

Fig. 4.44. (a) In the case of a nonlinear
potential variation in the solution, the elec-
tric field at a point is the negative gradient
of the electrostatic potential at that point.
(b) The relative directions of increasing
potential, field, and motion of a positive
charge.
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Fig. 4.45. A geometric representation of the electric
field in an electrochemical system in which plane-paral-
lel electrodes are immersed in an electrolyte so that they
extend up to the walls of the rectangular insulating
container. The equipotential surfaces are parallel to the
electrodes.

where now the electric field may be a function of x.
The imposition of a potential difference between two electrodes thus makes an

electrolytic solution the scene of operation of an electric field (i.e., an electric force)
acting upon the charges present. This field can be mapped by drawing equipotential
surfaces (all points associated with the same potential lie on the same surface). The
potential map yields a geometric representation of the field. In the case of plane-
parallel electrodes extending to the walls of a rectangular cell, the equipotential
surfaces are parallel to the electrodes (Fig. 4.45).

4.3.2. How Do Ions Respond to the Electric Field?

In the absence of an electric field, ions are in ceaseless random motion. This
random walk of ions has been shown to have an important characteristic: The mean
distance traversed by the ions as a whole is zero because while some are displaced in
one direction, an equal number are displaced in the opposite direction. From a
phenomenological view, therefore, the random walk of ions can be ignored because it
does not lead to any net transport of matter (as long as there is no difference in
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Fig. 4.46. (a) Schematic representation of the random
walk of two ions showing that ion 1 is displaced a
distance x = +p and ion 2, a distance x = -p and hence
the mean distance traversed is zero. (b) Since the mean
distance traversed by the ions is zero, there is no net
flux of the ions and from a macroscopic point of view,
they can legitimately be considered at rest.

concentration in various parts of the solution so that net diffusion down the concen-
tration gradient occurs). The net result is as if the ions were at rest (Fig. 4.46).

Under the influence of an electric field, however, the net result of the zigzag
jumping of ions is not zero. Ions feel the electric field; i.e., they experience a force
directing them toward the electrode that is charged oppositely to the charge on the ion.

Fig. 4.47. (a) Schematic representation of the
movements of four ions which random walk in the
presence of a field. Their displacements are +p, -p,
+p, and +p, i.e., the mean displacement is finite. (b)
From a macroscopic point of view, one can ignore
the random walk and consider that each ion drifts in
the direction of the field.
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This directed force is equal to the charge on the ion, times the field at the point
where the ion is situated. The driving force of the electric field produces in all ions of
a particular species a velocity component in the direction p of the potential gradient.
Thus, the establishment of a potential difference between the electrodes produces a
drift, or flux, of ions (Fig. 4.47). This drift is the migration (or conduction) of ions in
response to an electric field.

As in diffusion, the relationship between the steady-state flux J of ions and the
driving force of the electric field will be represented by the expression

For small fields, the terms higher than BX will tend to zero. Further, the constant A
must be zero because the flux of ions must vanish when the field is zero. Hence, for
small fields, the flux of ions is proportional to the field (see Section 4.2.2)

4.3.3. The Tendency for a Conflict between Electroneutrality and
Conduction

When a potential gradient, i.e., electric field, exists in an electrolytic solution, the
positive ions drift toward the negative electrode and the negative ions drift in the
opposite direction. What is the effect of this ionic drift on the state of charge of an
electrolytic solution?

Prior to the application of an external field, there is a time-averaged electroneu-
trality in the electrolyte over a distance that is large compared with (see Section
3.3.8); i.e., the net charge in any macroscopic volume of solution is zero because the
total charge due to the positive ions is equal to the total charge due to the negative
ions. Owing to the electric field, however, ionic drift tends to produce a spatial
separation of charge. Positive ions will try to segregate near the negatively charged
electrode, and negative ions near the positively charged electrode.

This tendency for gross charge separation has an important implication: elec-
troneutrality tends to be upset. Furthermore, the separated charge causing the lack of
electroneutrality tends to set up its own field, which would run counter to the externally
applied field. If the two fields were to become equal in magnitude, the net field in the
solution would become zero. (Thus, the driving force on an ion would vanish and ion
migration would stop.)

It appears from this argument that an electrolytic solution would sustain only a
transient migration of ions and then the tendency to conform to the principle of
electroneutrality would result in a halt in the drift of ions after a short time. A persistent
flow of charge, an electric current, appears to be impossible. In practice, however, an
electrolytic solution can act as a conductor of electricity and is able to pass a current,
i.e., maintain a continuous flow of ions. Is there a paradox here?



ION TRANSPORT IN SOLUTIONS 427

4.3.4. Resolution of the Electroneutrality-versus-Conduction
Dilemma: Electron-Transfer Reactions

The solution to the dilemma just posed can be found by comparing an electrolytic
solution with a metallic conductor. In a metallic conductor, there is a lattice of positive
ions that hold their equilibrium positions during the conduction process. In addition,
there are the free conduction electrons which assume responsibility for the transport
of charge. Contact is made to and from the metallic conductor by means of other
metallic conductors [Fig. 4.48(a)]. Hence, electrons act as charge carriers throughout
the entire circuit.

In the case of an electrolytic conductor, however, it is necessary to make electrical
contact to and from the electrolyte by metallic conductors (wires). Thus, here one has
the interesting situation in which electrons transport charge in the external circuit and

Fig. 4.48. Comparison of electric circuits that consist of (a)
a metallic conductor only and (b) an electrolytic conductor
as well as a metallic one.
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ions carry the charge in the electrolytic solution [Fig. 4.48(b)]. Obviously, one can
maintain a steady flow of charge (current) in the entire circuit only if there is a change
of charge carrier at the electrode–electrolyte interface. In other words, for a current to
flow in the circuit, ions have to hand over or take electrons from the electrodes.

Such electron transfers between ions and electrodes result in chemical changes
(changes in the valence or oxidation state of the ions), i.e., in electrodic reactions.
When ions receive electrons from the electrode, they are said to be “electronated,” or
to undergo reduction; when ions donate electrons to the electrodes, they are said to be
“deelectronated,” or to undergo oxidation.

The occurrence of a reaction at each electrode is tantamount to removal of equal
amounts of positive and negative charge from the solution. Hence, when electron-
transfer reactions occur at the electrodes, ionic drift does not lead to segregation of
charges and the building up of an electroneutrality field (opposite to the applied field).
Thus, the flow of charge can continue; i.e., the solution conducts. It is an ionic
conductor.

4.3.5. Quantitative Link between Electron Flow in the Electrodes and
Ion Flow in the Electrolyte: Faraday’s Law

Charge transfer is the essence of an electrodic reaction. It constitutes the bridge
between the current of electrons in the electrode part of the electrical circuit and the
current of ions in the electrolytic part of the circuit (Fig 4.49). When a steady-state

Fig. 4.49. Diagram for the derivation of Faraday’s
laws. The electron current  in the metallic part of the
circuit must be equal to the ion current  in the electro-
lytic part of the circuit.
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current is passing through the circuit, there must be a continuity in the currents at the
electrode–electrolyte interfaces, i.e.,

(This is in fact an example of Kirchhoff’s law, which says that the algebraic sum of
the currents at any junction must be zero.) Further, if one multiplies both sides of Eq.
(4.123) by the time t, one obtains

which indicates19 that the quantity of electricity carried by the electrons is equal
to that carried by the ions

Let the quantity of electricity due to electron flow be the charge borne by an
Avogadro number of electrons, i.e., If the charge on each ion partici-
pating in the electrodic reaction is it is easily seen that the number of ions required
to preserve equality of currents [Eq. (4.123)] and equality of charge transported across
the interface in time t [Eq. (4.125)] is

Thus, the requirement of steady-state continuity of current at the interface leads
to the following law: The passage of 1 faraday (F) of charge results in the electrodic
reaction of one equivalent ( moles) of ions, each of charge This is Faraday’s
law.20 Conversely, if  moles of ions undergo charge transfer, then 1 F of electricity
passes through the circuit, or faradays per mole of ions transformed.

4.3.6. The Proportionality Constant Relating Electric Field and Current
Density: Specific Conductivity

In the case of small fields, the steady-state flux of ions can be considered
proportional to the driving force of an electric field (see Section 4.3.2), i.e.,

19The product of the current and time is the quantity of electricity.
20Alternatively, Faraday’s law states that if a current of I amp passes for a time t s, then   moles of

reactants in the electronic reaction are produced or consumed.
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The quantity J is the number of moles of ions crossing a unit area per second. When
J is multiplied by the charge borne by 1 mole of ions one obtains the current density
i, or charge flux, i.e., the quantity of charge crossing a unit area per second. Because
i has direction, it will be written as a vector quantity,

The constant can be set equal to a new constant which is known as the specific
conductivity (Table 4.7). The relation between the current density i and the electric
field X is therefore

The electric field is very simply related (Fig. 4.50) to the potential difference across
the electrolyte, [see Eq. (4.119)],

where l is the distance across the electrolyte. Furthermore, the total current I is equal
to the area A of the electrodes times the current density i

Substituting these relations [Eqs. (4.129) and (4.130)] in the field-current-density
relation [Eq. (4.128)], one has
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Fig. 4.50. Schematic repre-
sentation of the variation of the
potential in the electrolytic con-
ductor of length /.

or

The constants , l, and A determine the resistance R of the solution

and therefore one has the equation

which reexpresses in the conventional Ohm’s law form the assumption Eq. of (4.122)
concerning flux and driving force.

Thus, an electrolytic conductor obeys Ohm’s law for all except very high fields
and, under steady-state conditions, it can be represented in an electrical circuit (in
which there is only a dc source) by a resistor. (An analogue must obey the same
equation as the system it represents or simulates.)
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Fig. 4.51. Diagram to illustrate the
meaning of the specific conductivity
of an electrolyte.

As in the case of a resistor, the dc resistance of an electrolytic cell increases with the
length of the conductor (distance between the electrodes) and decreases with the area
[cf . Eq. (4.132)]. It can also be seen by rearranging this equation into the form

that the specific conductivity is the conductance 1/R of a cube of electrolytic solution
1 cm long and in area (Fig. 4.51).

4.3.7. Molar Conductivity and Equivalent Conductivity

In the case of metallic conductors, once the specific conductivity is defined, the
macroscopic description of the conductor is complete. In the case of electrolytic

Fig. 4.52. A schematic explanation of the variation
of the specific conductivity with electrolyte concen-
tration.



ION TRANSPORT IN SOLUTIONS 433

conductors, further characterization is imperative because not only can the concentra-
tion of charge carriers vary but also the charge per charge carrier.

Thus, even though two electrolytic conductors have the same geometry, they need
not necessarily have the same specific conductivity (Fig. 4.52 and Table 4.8); the
number of charge carriers in that normalized geometry may be different, in which case
their fluxes under an applied electric field will be different. Since the specific
conductivity of an electrolytic solution varies as the concentration, one can write

where c is the concentration of the solution in gram-moles of solute dissolved in
of solution.21 The specific conductivities of two solutions can be compared only if they
contain the same concentration of ions. The conclusion is that in order to compare the
conductances of electrolytic conductors, one has to normalize (set the variable quan-
tities equal to unity) not only the geometry but also the concentration of ions.

The normalization of the geometry (taking electrodes of in area and 1 cm
apart) defines the specific conductivity; the additional normalization of the concentra-
tion (taking 1 mole of ions) defines a new quantity, the molar conductivity (Table 4.9),

where V is the volume of solution containing 1 g-mole of solute (Fig. 4.53). Defined
thus, it can be seen that the molar conductivity is the specific conductivity of a solution
times the volume of that solution in which is dissolved 1 g-mole of solute; the molar
conductivity is a kind of conductivity per particle.

21As in the case of diffusion fluxes, the concentrations used in the definition of conduction currents (or
fluxes) and conductances are not in the usual moles per liter but in moles per cubic centimeter.
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One can usefully compare the molar conductivities of two electrolytic solutions
only if the charges borne by the charge carriers in the two solutions are the same. If
there are singly charged ions in one electrolyte (e.g., NaCl) and doubly charged ions
in the other (e.g., CuSO4), then the two solutions will contain different amounts of
charge even though the same quantity of the two electrolytes is dissolved. In such a
case, the specific conductivities of the two solutions can be compared only if they
contain equivalent amounts of charge. This can be arranged by taking 1 mole of charge
in each case, i.e., 1 mole of ions divided by z, or 1 g-eq of the substance. Thus, the
equivalent conductivity of a solution is the specific conductivity of a solution times
the volume V of that solution containing 1 g-eq of solute dissolved in it (Fig. 4.54 and
Table 4.10). Hence, the equivalent conductivity is given by22

where cz is the number of gram-equivalents per cubic centimeter of solution (see Fig.
4.55 for units of these quantities).

There is a simple relation between the molar and equivalent conductivities. It is
[cf. Eqs. (4.136) and (4.137)]

The equivalent conductivity is in the region of 100 S for
most dilute electrolytes of 1:1 salts.

4.3.8. Equivalent Conductivity Varies with Concentration

At first sight, the title of this section may appear surprising. The equivalent
conductivity has been defined by normalizing the geometry of the system and the

22Since 1/z mole of ions is 1 g-eq, c moles is cz g-eq.
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Fig. 4.53. Diagram to illustrate the meaning of
the molar conductivity of an electrolyte.

charge of the ions; why then should it vary with concentration? Experiment, however,
gives an unexpected answer. The equivalent conductivity varies significantly with the
concentration of ions (Table 4.11). The direction of the variation may also surprise
some, for the equivalent conductivity increases as the ionic concentration decreases
(Fig. 4.56).

It would be awkward to have to refer to the concentration every time one wished
to state the value of the equivalent conductivity of an electrolyte. One should be able
to define some reference value for the equivalent conductivity. Here, the facts of the
experimental variation of equivalent conductivity with concentration come to one’s
aid; as the electrolytic solution is made more dilute, the equivalent conductivity
approaches a limiting value (Fig. 4.57). This limiting value should form an excellent
basis for comparing the conducting powers of different electrolytes, for it is the only
value in which the effects of ionic concentration are removed. The limiting value will
be called the equivalent conductivity at infinite dilution, designated by the symbol

(Table 4.12).



436 CHAPTER 4

Fig. 4.54. Diagram to illustrate the meaning of the equiva-
lent conductivity of an electrolyte.

It may be argued that if at infinite dilution there are no ions of the solute, how can
the solution conduct? The procedure for determining the equivalent conductivity of
an electrolyte at infinite dilution will clarify this problem. One takes solutions of a
substance of various concentrations, determines the , and then normalizes each to the
equivalent conductivity of particular solutions. If these values of  are then plotted
against the logarithms of the concentration and this versus log c curve is extrapo-

Fig. 4.55. Definitions and units of the conductivity of electrolyte solutions.
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Fig. 4.56. The observed variation of the
equivalent conductivity of CaCI2 with con-
centration.

Fig. 4.57. The equivalent conductivity of
an electrolyte at infinite dilution is obtained
by extrapolating the versus log c curve to
zero concentration.
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lated, it approaches a limiting value (Fig. 4.57). It is this extrapolated value at zero
concentration that is known as the equivalent conductivity at infinite dilution.

Anticipating the atomistic treatment of conduction that follows, it may be men-
tioned that at very low ionic concentrations, the ions are too far apart to exert
appreciable interionic forces on each other. Only under these conditions does one
obtain the pristine version of equivalent conductivity, i.e., values unperturbed by
ion–ion interactions, which have been shown in Chapter 3 to be concentration
dependent. The state of infinite dilution therefore is not only the reference state for the
study of equilibrium properties (Section 3.3), it is also the reference state for the study
of the nonequilibrium (irreversible) process, which is called ionic conduction, or
migration (see Section 4.1).

4.3.9. How Equivalent Conductivity Changes with Concentration:
Kohlrausch’s Law

The experimental relationship between equivalent conductivity and the concen-
tration of an electrolytic solution is found to be best brought out by plotting against

When this is done (Fig. 4.58), it can be seen that up to concentrations of about
0.01 N there is a linear relationship between and thus,

where the intercept is the equivalent conductivity at infinite dilution and the slope
of the straight line is a positive constant A.

This empirical relationship between the equivalent conductivity and the square
root of concentration is a law named after Kohlrausch. His extremely careful meas-
urements of the conductance of electrolytic solutions can be considered to have played
a leading role in the initiation of ionics, the physical chemistry of ionic solutions.
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Fig. 4.58. The experimental basis for
Kohlrausch’s law: versus plots con-
sist of straight lines.

However, Kohlrausch’s law [Eq. (4.139)] had to remain nearly 40 years without a
theoretical basis.

The justification of Kohlrausch’s law on theoretical grounds cannot be obtained
within the framework of a macroscopic description of conduction. It requires an
intimate view of ions in motion. A clue to the type of theory required emerges from
the empirical findings by Kohlrausch: (1) the dependence and (2) the intercepts

and slopes A of the versus curves depend not so much on the particular
electrolyte (whether it is KCl or NaCl) as on the type of electrolyte (whether it is a 1:1
or 2:2 electrolyte) (Fig. 4.59). All this is reminiscent of the dependence of the activity
coefficient on (Chapter 3), to explain which the subtleties of ion–ion interactions
had to be explored. Such interactions between positive and negative ions would
determine to what extent they would influence each other when they move, and this
would in turn bring about a fall in conductivity.

Kohlrausch’s law will therefore be left now with only the sanction of experiment.
Its incorporation into a theoretical scheme will be postponed until the section on the
atomistic view of conduction is reached (see Section 4.6.12).

4.3.10. Vectorial Character of Current: Kohlrausch’s Law of the
Independent Migration of Ions

The driving force for ionic drift, i.e., the electric field X, not only has a particular
magnitude, it also acts in a particular direction. It is a vector. Since the ionic current
density j, i.e., the flow of electric charge, is proportional to the electric field operating
in a solution [Eq. (4.128)],
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Fig. 4.59. The experimental versus
plots depend largely on the type of

electrolyte.

the ionic current density must also be a vector. Vectorial quantities are often designated
by arrows placed over the quantities (unless their directed character is obvious) or are
indicated by bold type. Hence, Eq. (4.128) can be written

How is this current density constituted? What are its components? What is the
structure of this ionic current density?

The imposition of an electric field on the electrolyte (Fig. 4.60) makes the positive
ions drift toward the negative electrode and the negative ions drift in the opposite
direction. The flux of positive ions gives rise to a positive-ion current density
and the flux of negative ions in the opposite direction results in a negative-ion
current density By convention, the direction of current flow is taken to be either
the direction in which positive charge flows or the direction opposite to that in which
the negative charge flows. Hence, the positive-ion flux corresponds to a current
toward the negative electrode and the negative-ion flux also corresponds to a
current in the same direction as that due to the positive ions.

It can be concluded therefore that the total current density is made up of two
contributions, one due to a flux of positive ions and the other due to a flux of negative
ions. Furthermore, assuming for the moment that the drift of positive ions toward the
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Fig. 4.60. Schematic representation of the direction of the
drifts (and fluxes) of positive and negative ions acted on by
an electric field.

negative electrode does not interfere with the drift of negative ions in the opposite
direction, it follows that the component current densities are additive, i.e.,

Do ions migrate independently? Is the drift of the positive ions in one direction
uninfluenced by the drift of the negative ions in the opposite direction? This is so if,
and only if, the force fields of the ions do not overlap significantly, i.e., if there is
negligible interaction or coupling between the ions. Coulombic ion–ion interactions
usually establish such coupling. The only conditions under which the absence of
ion–ion interactions can be assumed occur when the ions are infinitely far apart.
Strictly speaking, therefore, ions migrate independently only at infinite dilution. Under
these conditions, one can proceed from Eq. (4.141) to write

or [from Eq. (4.128)],

whence
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This is Kohlrausch’s law of the independent migration of ions: The equivalent
conductivity (at infinite dilution) of an electrolytic solution is the sum of the equivalent
conductivities (at infinite dilution) of the ions constituting the electrolyte (Table 4.13).

At appreciable concentrations, the ions can be regarded as coupled or interacting
with each other (see the ion-atmosphere model of Chapter 3). This results in the drift
of positive ions toward the negative electrode, hindering the drift of negative ions
toward the positive electrode; i.e., the interionic interaction results in the positive ions’
equivalent conductivity reducing the magnitude of the negative ions’ equivalent
conductivity to below the infinite dilution value, and vice versa. To make quantitative
estimates of these effects, however, one must calculate the influence of ionic-cloud
effects on the phenomenon of conduction, a task that will be taken up further on.

4.4. A SIMPLE ATOMISTIC PICTURE OF IONIC MIGRATION

4.4.1. Ionic Movements under the Influence of an Applied Electric Field

In seeking an atomic view of the process of conduction, one approach is to begin
with the picture of ionic movements as described in the treatment of diffusion (Section
4.2.4) and then to consider how these movements are perturbed by an electric field. In
the treatment of ionic movements, it was stated that the ions in solution perform a
random walk in which all possible directions are equally likely for any particular step.
The analysis of such a random walk indicated that the mean displacement of ions is
zero (Section 4.2.4), diffusion being the result of the statistical bias in the movement
of ions, due to inequalities in their numbers in different regions.

When, however, the ions are situated in an electric field, their movements are
affected by the fact that they are charged. Hence, the imposition of an electric field
singles out one direction in space (the direction parallel to the field) for preferential
ionic movement. Positively charged particles will prefer to move toward the negative
electrode, and negatively charged particles, in the opposite direction. The walk is no
longer quite random. The ions drift.
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Another way of looking at ionic drift is to consider the fate of any particular ion
under the field. The electric force field would impart to it an acceleration according to
Newton’s second law. Were the ion completely isolated (e.g., in vacuum), it would
accelerate indefinitely until it collided with the electrode. In an electrolytic solution,
however, the ion very soon collides with some other ion or solvent molecule that
crosses its path. This collision introduces a discontinuity in its speed and direction.
The motion of the ion is not smooth; it is as if the medium offers resistance to the
motion of the ion. Thus, the ion stops and starts and zigzags. However, the applied
electric field imparts to the ion a direction (that of the oppositely charged electrode),
and the ion gradually works its way, though erratically, in the direction of this
electrode. The ion drifts in a preferred direction.

4.4.2. Average Value of the Drift Velocity

Any particular ion starts off after a collision with a velocity that may be in any
direction; this is the randomness in its walk. The initial velocity can be ignored precisely
because it can take place in any direction and therefore does not contribute to the drift
(preferred motion) of the ion. But the ion is all the time under the influence of the
applied-force field.23 This force imparts a component to the velocity of the ion, an
extra velocity component in the same direction as the force vector  It is this additional
velocity component due to the force that is called the drift velocity What is its
average value?

From Newton’s second law, it is known that the force divided by the mass of the
particle is equal to the acceleration. Thus,

Now the time between collisions is a random quantity. Sometimes the collisions
may occur in rapid succession; at others, there may be fairly long intervals. It is
possible, however, to talk of a mean time between collisions, In Section 4.2.5, it was
shown that the number of collisions (steps) is proportional to the time. If N collisions
occur in a time t, then the average time between collisions is t/N. Hence,

The average value of that component of the velocity of an ion picked up from the
externally applied force is the product of the acceleration due to this force and the
average time between collisions. Hence, the drift velocity is given by

23The argument is developed in general for any force, not necessarily an electric force.
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This is an important relation. It opens up many vistas. For example, through the
mean time one can relate the drift velocity to the details of ionic jumps between
sites, as was done in the case of diffusion (Section 4.2.15).

Furthermore, the relation (4.147) shows that the drift velocity is proportional to
the driving force of the electric field. The flux of ions will be shown (Section 4.4.4)
to be related to the drift velocity24 in the following way:

Thus, if the in Eq. (4.147) is the electric force that stimulates conduction, then this
equation is the molecular basis of the fundamental relation used in the macroscopic
view of conduction [see Eq. (4.122)], i.e.,

The derivation of the basic relation (4.147) reveals the conditions under which
the proportionality between drift velocity (or flux) and electric field breaks down. It
is essential to the derivation that in a collision, an ion does not preserve any part of its
extra velocity component arising from the force field. If it did, then the actual drift
velocity would be greater than that calculated by Eq. (4.147) because there would be
a cumulative carryover of the extra velocity from collision to collision. In other words,
every collision must wipe out all traces of the force-derived extra velocity, and the ion
must start afresh to acquire the additional velocity. This condition can be satisfied only
if the drift velocity, and therefore the field, is small (see the autocorrelation function,
Section 4.2.19).

4.4.3. Mobility of Ions

It has been shown that when random-walking ions are subjected to a directed force
they acquire a nonrandom, directed component of velocity—the drift velocity

This drift velocity is in the direction of the force and is proportional to it

24The dimensions of flux are moles per square centimeter per second, and they are equal to the product of
the dimensions of concentration expressed in moles per cubic centimeter and velocity expressed in
centimeters per second.



ION TRANSPORT IN SOLUTIONS 445

Since the proportionality constant is of considerable importance in discus-
sions of ionic transport, it is useful to refer to it with a special name. It is called the
absolute mobility because it is an index of how mobile the ions are. The absolute
mobility, designated by the symbol is a measure of the drift velocity acquired
by an ionic species when it is subjected to a force i.e.,

which means that the absolute mobility is the drift velocity developed under unit
applied force and the units in which it is available in the literature are
centimeters per second per dyne.

For example, one might have an electric field X of in the electrolyte
solution and observe a drift velocity of The electric force operating
on the ion is equal to the electric force per unit charge, i.e., the electric field X, times
the charge on each ion

for univalent ions. Hence, the absolute mobility is

In electrochemical literature, however, mobilities of ions are not usually expressed
in the absolute form defined in Eq. (4.149). Instead, they are more normally recorded
as the drift velocities in unit electric field and will be referred to here as
conventional (electrochemical) mobilities with the symbol

The relation between the absolute and conventional mobilities follows from Eq.
(4.149)

i.e.,
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Thus, the conventional and absolute mobilities are proportional to each other, the
proportionality constant being an integral multiple of the electronic charge. In the
example cited earlier,

Though the two types of mobilities are closely related, it must be stressed that the
concept of absolute mobility is more general because it can be used for any force that
determines the drift velocity of ions and not only the electric force used in the definition
of conventional mobilities.

4.4.4. Current Density Associated with the Directed Movement of Ions
in Solution, in Terms of Ionic Drift Velocities

It is the aim now to show how the concept of drift velocity can be used to obtain
an expression for the ionic current density flowing through an electrolyte in response
to an externally applied electric field. Consider a transit plane of unit area normal to
the direction of drift (Fig. 4.61). Both the positive and the negative ions will drift across
this plane. Consider the positive ions first, and let their drift velocity be

or simply Then, in 1 s, all positive ions within a distance cm of the transit
plane will cross it. The flux of positive ions (i.e., the number of moles of these ions
arriving in 1 second at the plane of unit area) is equal to the number of moles of positive
ions in a volume of in area and v cm in length (with t = 1 s). Hence, is equal
to the volume in cubic centimeters times the concentration expressed in moles
per cubic centimeter

The flow of charge across the plane due to this flux of positive ions (i.e., the current
density ) is obtained by multiplying the flux by the charge borne by 1 mole
of ions

This, however, is only the contribution of the positive ions. Other ionic species
will make their own contributions of current density. In general, therefore, the current
density due to the ith species will be
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Fig. 4.61. Diagram for the derivation of a relation between the
current density and the drift velocity.

The total current density due to the contribution of all the ionic species will
therefore be

If a z:z-valent electrolyte is taken, then  and  and one has

By recalling that the ionic drift velocities are related through the force operating
on the ions to the ionic mobilities [Eq. (4.151)], it will be realized that Eq. (4.157) is
the basic expression from which may be derived the expressions for conductance,
equivalent conductivity, specific conductivity, etc.

4.4.5. Specific and Equivalent Conductivities in Terms of Ionic
Mobilities

Let the fundamental expression for the drift velocity of ions [Eq. (4.151)] be
substituted in Eq. (4.157) for current density. One obtains

or, from Eq. (4.128)
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which reduces in the special case of a z:z-valent electrolyte to

Several conclusions follow from this atomistic expression for specific conductiv-
ity. First, it is obvious from this equation that the specific conductivity of an
electrolyte cannot be a concentration-independent constant (as it is in the case of
metals). It will vary because the number of moles of ions per unit volume c can be
varied in an electrolytic solution.

Second, the specific conductivity can easily be related to the molar and
equivalent conductivities. Take the case of a z:z-valent electrolyte. With Eqs.
(4.161), (4.136), and (4.138), it is found that

and

What does Eq. (4.163) reveal? It shows that the equivalent conductivity will be a
constant independent of concentration only if the electrical mobility does not vary with
concentration. It will be seen, however, that ion–ion interactions (which have been
shown in Section 3.3.8 to depend on concentration) prevent the electrical mobility
from being a constant. Hence, the equivalent conductivity must be a function of
concentration.

4.4.6. The Einstein Relation between the Absolute Mobility and the
Diffusion Coefficient

The process of diffusion results from the random walk of ions; the process of
migration (i.e., conduction) results from the drift velocity acquired by ions when they
experience a force. The drift of ions does not obviate their random walk; in fact, it is
superimposed on their random walk. Hence, the drift and the random walk must be
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intimately linked. Einstein† realized this and deduced a vital relation between the
absolute mobility which is a quantitative characteristic of the drift, and the
diffusion coefficient D, which is a quantitative characteristic of the random walk.

Both diffusion and conduction are nonequilibrium (irreversible) processes and are
therefore not amenable to the methods of equilibrium thermodynamics or equilibrium
statistical mechanics. In these latter disciplines, the concepts of time and change are
absent. It is possible, however, to imagine a situation where the two processes oppose
and balance each other and a “pseudoequilibrium” obtains. This is done as follows
(Fig. 4.62).

Consider a solution of an electrolyte MX to which a certain amount of radioactive
ions are added in the form of the salt MX. Further, suppose that the tracer ions are

not dispersed uniformly throughout the solution; instead, let there be a concentration
gradient of the tagged species so that its diffusion flux is given by Fick’s first law

Now let an electric field be applied. Each tagged ion feels the field, and the drift
velocity is

This drift velocity produces a current density given by [cf. Eq. (4.154)]25

i.e., a conduction flux that is arrived at by dividing the conduction current density
by the charge per mole of ions

†Albert Einstein’s name remains firmly as that of the most well know scientist in the world, and his name
gives rise to the image students have of what it is like to be a scientist. This is because he produced two
theories which few other scientists understand but seem to show that, in extreme situations of mass and/or
velocity, the world is not what it seems at all. But the fertility of Einstein’s thought extended in several
other directions and most of them are presented in this chapter. Thus, he produced a theory of Brownian
motion (and related it to the net movement in one direction of a diffusing particle); he joined the ancient
law of Stokes to diffusion and showed how knowledge of viscosity and the radius of a particle allowed
one to know the corresponding diffusion coefficient; and he gave rise to a most unexpected connection of
the coefficient of diffusion to the rate of the vectorial drift of ions under an electric field (later taken up by
Nernst and connected to conductivity). If Relativity is Einstein’s most famous work, that which has been
most immediately useful lies in electrochemistry.

Many books have described Einstein’s life, particularly after he came to Princeton. He was a stickler for
time keeping and rode a bike to the office, 9:00 arrival, riding home again at 1:00 p.m. to work with his
assistant in mathematics. But he sometimes caused embarrassment in the social scene—arriving, say, at a
formal banquet in dinner jacketed and black tie, but wearing casual grey pants and sandals (no socks). To
questions about this, his rejoinder was logical: “The invitation said “Dinner jacket and black tie.”

25In Eq. (4.154), one will find the reason is that, in Section 4.4.4, the drift velocity of a positive ion,
had been concisely written as
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Fig. 4.62. An imaginary situation in which the
applied field is adjusted so that the conduction flux
of tagged ions (the only ones shown in the dia-
gram) is exactly equal and opposite to the diffu-
sion flux.

By introducing the expression (4.149) for the drift velocity into (4.165), the
conduction flux becomes

The applied field is adjusted so that the conduction flux exactly compensates for
the diffusion flux. In other words, if the tracer ions (which are positively charged) are
diffusing toward the positive electrode, then the magnitude of the applied field is such
that the positively charged electrode repels the positive tracer ions to an extent that
their net flux is zero. Thus

or

i.e.,
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Under these “balanced” conditions, the situation may be regarded as tantamount
to equilibrium because there is no net flux or transport of ions. Hence, the Boltzmann
law can be used. The argument is that since the potential varies along the x direction,
the concentration of ions at any distance x is given by

where U is the potential energy of an ion in the applied field and is the concentration
in a region where the potential energy is zero. Differentiating this expression, one
obtains

But, by the definition of force,

Hence, from Eqs. (4.169) and (4.170), one obtains

If, now, Eqs. (4.167) and (4.171) are compared, it is obvious that

or

This is the Einstein relation. It is probably the most important relation in the theory
of the movements and drift of ions, atoms, molecules, and other submicroscopic
particles. It has been derived here in an atomistic way. It will be recalled that in the
phenomenological treatment of the diffusion coefficient (Section 4.2.3), it was shown that

where B was an undetermined phenomenological coefficient. If one combines Eqs.
(4.172) and (4.17), it is clear that

or
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Thus, one has provided a fundamental basis for the phenomenological coefficient B;
it is the absolute mobility divided by the Avogadro number.

The Einstein relation also permits experiments on diffusion to be linked up with
other phenomena involving the mobility of ions, i.e., phenomena in which there are
forces that produce drift velocities. Two such forces are the force experienced by an
ion when it overcomes the viscous drag of a solution and the force arising from an
applied electric field. Thus, the diffusion coefficient may be linked up to the viscosity
(the Stokes–Einstein relation) and to the equivalent conductivity (the Nernst–Einstein
relation).

4.4.7. Drag (or Viscous) Force Acting on an Ion in Solution

Striking advances in science sometimes arise from seeing the common factors in
two apparently dissimilar situations. One such advance was made by Einstein when
he intuitively asserted the similarity between a macroscopic sphere moving in an
incompressible fluid and a particle (e.g., an ion) moving in a solution (Fig. 4.63).

The macroscopic sphere experiences a viscous, or drag, force that opposes its
motion. The value of the drag force depends on several factors—the velocity v and
diameter d of  the sphere and the viscosity and density of the medium. These factors
can all be combined and used to define a dimensionless quantity known as the Reynolds
number (Re) defined thus:

Fig. 4.63. An ion drifting in an electrolytic solution is like
a sphere (of the same radius as the ion) moving in an
incompressible medium (of the same viscosity as the
electrolyte).



ION TRANSPORT IN SOLUTIONS 453

When the hydrodynamic conditions are such that this Reynolds number is much
smaller than unity, Stokes showed that the drag force F opposing the sphere is given
by the following relation

where v is the velocity of the macroscopic body. The relation is known as Stokes’ law.
Its derivation is lengthy and awkward because the most convenient coordinates to
describe the sphere and its environment are spherical coordinates and those to describe
the flow are rectangular coordinates.

The real question, of course, centers around the applicability of Stokes’ law to
microscopic ions moving in a structured medium in which the surrounding particles
are roughly the same size as the ions. Initially, one can easily check on whether the
Reynolds number is smaller than unity for ions drifting through an electrolyte. With
the use of the values poise, and
it turns out that the Reynolds number for an ion moving through an electrolyte is about

Thus, the hydrodynamic condition Re << 1 required for the validity of Stokes’
law is easily satisfied by an ion in solution.

However, the hydrodynamic problem that Stokes solved to get v pertains
to a sphere moving in an incompressible continuum fluid. This is a far cry indeed from
the actuality of an ion drifting inside a discontinuous electrolyte containing particles
(solvent molecules, other ions, etc.) of about the same size as the ion. Furthermore,
the ions considered may not be spherical.

From this point of view, the use of Stokes’ law for the viscous force experienced
by ions is a bold step. Several attempts have been made over a long time to theorize
about the viscous drag on tenths of nanometer-sized particles in terms of a more
realistic model than that used by Stokes. It has been shown, for example, that if the
moving particle is cylindrical and not spherical, the factor should be replaced by

While refraining from the none-too-easy analysis of the degree of applicability of
Stokes’ law to ions in electrolytes, one point must be stressed. For sufficiently small
ions, Stokes’ law does not have a numerical significance26 greater than about
Attempts to tackle the problem of the flow of ions in solution without resorting to
Stokes’ law do not give much better results.

26Stokes’ law is often used in electrochemical problems, but its approximate nature is not always brought
out. Apart from the validity of extrapolating from the macroscopic–sphere-continuum-fluid model of
Stokes to atomic near-spheres in a molecular liquid, another reason for the limited validity of Stokes’ law
arises from questions concerning the radii which should be substituted in any application of the law. These
should not be the crystallographic radii, and an appraisal of the correct value implies a rather detailed
knowledge of the structure of the solvation sheath (see Section 2.4). Furthermore, the viscosity used in
Stokes’ law is the bulk average viscosity of the whole solution, whereas it is the local viscosity in the
neighborhood of the ion that should be taken. The two may not be the same, because the ion's field may
affect the solvent structure and hence its viscosity.
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4.4.8. The Stokes–Einstein Relation

During the course of diffusion, the individual particles are executing the compli-
cated starts, accelerations, collisions, stops, and zigzags that have come to be known
as random walk. When a particle is engaged in its random walk, it is of course subject
to the viscous drag force exerted by its environment. The application of Stokes’ law
to these detailed random motions is no easy matter because of the haphazard variation
in the speed and direction of the particles. Instead, one can apply Stokes’ law to the
diffusional movements of ions by adopting the following artifice suggested by
Einstein.

When diffusion is occurring, it can be considered that there is a driving force
operating on the particles. This driving force produces a steady-state diffusion

flux J, corresponding to which [cf . Eq. (4.14)] one can imagine a drift velocity for
the diffusing particles.27 Since this velocity  is a steady-state velocity, the diffusional
driving force  must be opposed by an equal resistive force, which will be taken
to be the Stokes viscous force Hence,

The existence of a charge on a moving body has the following effect on a polar
solvent: It tends to produce an orientation of solvent dipoles in the vicinity of the ion.
Since, however, the charge is moving, once oriented, the dipoles take some finite
relaxation time to disorient. During this relaxation time, a relaxation force operates
on the ion; this relaxation force is equivalent to an additional frictional force on the
ion and results in an expression for the drag force of the form

where s is and is the dielectric constant of the medium. The
correction may be as much as 25% but will be neglected here in the interest of deriving
the classical Stokes–Einstein relation.

One can therefore define the absolute mobility for the diffusing particles by
dividing the drift velocity by either the diffusional driving force or the equal and
opposite Stokes viscous force

27The hypothetical nature of the argument lies in the fact that in diffusion, there is no actual force exerted
on the particles. Consequently, there is not the actual force-derived component of the velocity; i.e., there
is no actual drift velocity (see Section 4.2.1). Thus, the drift velocity enters the argument only as a device.
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The fundamental expression (4.172) relating the diffusion coefficient and the absolute
mobility can be written thus:

By equating Eqs. (4.177) and (4.178), the Stokes–Einstein relation is obtained.

It links the processes of diffusion and viscous flow.
The Stokes–Einstein relation proved extremely useful in the classical work of

Perrin. Using an ultramicroscope, he watched the random walk of a colloidal particle,
and from the mean square distance traveled in a time t, he obtained the diffusion
coefficient D from the relation (4.27)

The weight of the colloidal particles and their density being known, their radius r was
then obtained. Then the viscosity of the medium could be used to obtain the
Boltzmann constant

But

or

and thus the Avogadro number could be determined.
The use of Stokes’ law also permits the derivation of a very simple relation

between the viscosity of a medium and the conventional electrochemical mobility
Starting from the earlier derived equation (4.177)



456 CHAPTER 4

one substitutes for the absolute mobility the expression from Eq. (4.152)

and gets the result

This relation shows that, owing to the Stokes viscous force, the conventional mobility
of an ion depends on the charge and radius28 of the solvated ion and the viscosity of
the medium. The mobility given by Eq. (4.183) is often called the Stokes mobility. It
will be seen later that the Stokes mobility is a highly simplified expression for mobility,
and ion–ion interaction effects introduce a concentration dependence that is not seen
in Eq. (4.183).

4.4.9. The Nernst–Einstein Equation

Now the Einstein relation (4.172) will be used to connect the transport processes
of diffusion and conduction. The starting point is the basic equation relating the
equivalent conductivity of a z:z-valent electrolyte to the conventional mobilities of the
ions, i.e., to the drift velocities under a potential gradient of 1 V

By using the relation between the conventional and absolute mobilities, Eq. (4.163)
can be written

With the aid of the Einstein relation (4.172),

one can transform Eq. (4.184) into the form

28Earlier, the radius dependence of the conventional mobility was used to obtain information on the solvation
number (see Section 2.8).
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This is one form of the Nernst–Einstein equation; from a knowledge of the diffusion
coefficients of the individual ions, it permits a calculation of the equivalent conduc-
tivity. A more usual form of the Nernst–Einstein equation is obtained by multiplying
numerator and denominator by the Avogadro number, in which case it is obvious that

4.4.10. Some Limitations of the Nernst–Einstein Relation

There were several aspects of the Stokes–Einstein relation that reduced it to being
only an approximate relation between the diffusion coefficient of an ionic species and
the viscosity of the medium. In addition, there were fundamental questions regarding
the extrapolation of a law derived for macroscopic spheres moving in an incompress-
ible medium to a situation involving the movement of ions in an environment of solvent
molecules and other ions. In the case of the Nernst–Einstein relation, the factors that
limit its validity are more subtle.

An implicit but principal requirement for the Nernst–Einstein equation to hold is
that the species involved in diffusion must also be the species responsible for conduc-
tion. Suppose now that the species M exists not only as ions but also as ion pairs

of the type described in Section 3.8.1.
The diffusive transport of M proceeds through both ions and ion pairs. In the

conduction process, however, the situation is different (Fig. 4.64). The applied electric
field exerts a driving force on only the charged particles. An ion pair as a whole is
electrically neutral; it does not feel the electric field. Thus, ion pairs are not participants
in the conduction process. This point is of considerable importance in conduction in
nonaqueous media (see Section 4.7.12).

In systems where ion-pair formation is possible, the mobility calculated from the
diffusion coefficient  is not equal to the mobility calculated from the
equivalent conductivity and therefore the Nernst–Ein-
stein equation, which is based on equating these two mobilities, may not be completely
valid. In practice, one finds a degree of nonapplicability of up to 25%.

Another important limitation on the Nernst–Einstein equation in electrolytic
solutions may be approached through the following considerations. The diffusion
coefficient is in general not a constant. This has been pointed out in Section 4.2.3,
where the following expression was derived,

It is clear that BRT is the value of the diffusion coefficient when the solution behaves
ideally, i.e., f = 1; this ideal value of the diffusion coefficient will be called Hence,
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Fig. 4.64. The difference in the be-
havior of neutral ion pairs during dif-
fusion and conduction.

and making use of the Debye–Hückel limiting law for the activity coefficient (see
Section 3.5),

one has

an expression which shows how the diffusion coefficient varies with concentration.
In addition, there is Kohlrausch’s law

where is the equivalent conductivity at infinite dilution, i.e., the ideal value.
From Eqs. (4.189) and (4.139), it is obvious that the diffusion coefficient D and

the equivalent conductivity have different dependencies on concentration (Fig.
4.65). This experimentally observed fact has an important implication as far as the
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Fig. 4.65. The variation of the diffusion coef-
ficient and the equivalent conductivity with
concentration.

applicability of the Nernst–Einstein equation in electrolytic solutions is concerned. If
the equation is true at one concentration, it cannot be true at another because the
diffusion coefficient and the equivalent conductivity have varied to different extents
in going from one concentration to the other.

The above argument brings out an important point about the limitations of the
Nernst–Einstein equation. It does not matter whether the diffusion coefficient and the
equivalent conductivity vary with concentration; to introduce deviations into the
Nernst–Einstein equation, D and  must have different concentration dependencies.
The concentration dependence of the diffusion coefficient has been shown to be due
to nonideality i.e., due to ion–ion interactions, and it will be shown later that
the concentration dependence of the equivalent conductivity is also due to ion–ion
interactions. It is not the existence of interactions per se that underlies deviations from
the Nernst–Einstein equation; otherwise, molten salts and ionic crystals, in which there
are strong interionic forces, would show far more than the observed few percent
deviation of experimental data from values calculated by the Nernst–Einstein equa-
tion. The essential point is that the interactions must affect the diffusion coefficient
and the equivalent conductivity by different mechanisms and thus to different extents.
How this comes about for diffusion and conduction in solution will be seen later.

In solutions of electrolytes, the terms in the expressions for D  and tend to
zero as the concentration of the electrolytic solution decreases, and the differences in
the concentration variation of D and become more and more negligible; in other
words, the Nernst–Einstein equation becomes increasingly valid for electrolytic
solutions with increasing dilution.

4.4.11. The Apparent Ionic Charge

In Eqs. (4.172) and (4.186), two relations between the random movement of
particles and directed drift (mobility under an electric field gradient) have been
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deduced. In Eq. (4.172), D is related to ionic mobility (Einstein equation) and in Eq.
(4.186), it is related to the equivalent conductivity (Nernst–Einstein equation).

The relations derived were based upon very acceptable concepts, such as the
random movement of particles in fluids, or their drift in the direction of an applied
electric field. These ideas are so general that they cannot be doubted—they do not
involve models later found to be wrong and to be displaced by other models, etc. For
this reason, equations such as those named above are called phenomenological,
meaning that they involve phenomena (drift and random movement) that cannot be
doubted by the greatest skeptic. They happen.

One gets a mild shock therefore when one looks into the experimental tests of
these equations, for only under extremely simple conditions (in fact, very dilute
solutions) do they work out to be correct. Although the results never hint that the
equations are wrong, there is sufficient discrepancy (e.g., between the diffusion
coefficient calculated by using an experimental mobility substituted in the Einstein
equation and that determined by direct experiment) for one to take notice and form
some idea of a puzzle. How can simple mathematical reasoning based on the existence
of movements undeniably present give rise to error?

There are two kinds of response to this challenge. In the first, one can invent
special models to explain the observed discrepancy. One such model is displayed on
several pages of Chapter 5—it deals with the deviations from the Einstein equations
in high–temperature ionic liquids. It is suggested that the discrepancies arise because
there are some kinds of molecular movements that contribute to diffusion but not to
conduction. One kind of diffusive mode involves pairs of oppositely charged ions
moving together. This would contribute to D, but because a pair of oppositely charged
ions carries no net charge, its movement would not contribute to the mobility or to
the equivalent conductivity  which reflects only the movement of individual charged
particles moving under an applied field. This kind of movement—individual ionic
movement—contributes to also. Therefore,  receives two kinds of contri-
butions (uncharged pairs and charged individuals), but the  receives only one (that
of the individual charges). Clearly then, the  determined from radiotracer experi-
ments would be greater than the D calculated from the Einstein or Nernst–Einstein
equations because in their deduction only individual ions count—those that drift in
one direction under the applied field, and not pairs of ions, which the field cannot
affect.

This explanation is all very well for the liquid sodium chloride type of case, but
deviations from the predictions of the Nernst–Einstein equation occur in dilute
aqueous solutions also, and here the + and – ions are separated by stretches of water,
and ion pairs do not form significantly until about 0.1 M.

Because deviations from the Nernst–Einstein equation are so widespread, and
because the reasoning that gives rise to the equation is phenomenological, it is better
to work out a general kind of noncommittal response—one that is free of a specific
model such as that suggested in the molten salt case (see Section 5.2). The response
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is to suggest that it is useful to imagine that ions carry (effectively), not the charge we
would normally associate with them (e.g., 2 for but a slightly different
charge—one which, when used in the Nernst–Einstein equation in the form (4.186)
will make the D to which it gives rise have the same value as the experimental one. It
is clear that this way of describing a discrepancy from what is expected from reasoning
that is evidently too simple bears some resemblance to the use of activity coefficients
to describe why the use of concentrations (and not “activities”) does not work well
when describing the equilibrium properties of true electrolytes (Section 3.4.2).

The original Einstein equation is

Now z is the formal charge on the ion (e.g., 3 for One finds experimentally,
however, that the obtained in this way is smaller than the one that is determined
experimentally by means of radiotracers. It might be reasonable then to write

The is chosen so the equation comes out to fit the experiment. In this second
response to the challenge of the deviant values from the Einstein equation, one draws
picture or suggest a model for why is not equal to z. The apparent charge is
just a coverup for the deviation.

Now from Eq. (4.187), and for a symmetrical electrolyte

At infinite dilution the ions are truly independent of each other (no interionic attraction)
and there would be no reason for any difference between  and z.

In Section 5.6.6, one will see the details of the modeling treatment of the
deviations for the Nernst–Einstein equation outlined here. Of course, a modeling
explanation is more enlightening than a general-explanation type of approach. How-
ever, the difficulty is that the model of paired ions jumping together applies primarily
to a pure liquid electrolyte, or alloy, where the existence of paired vacancies is a fact.
Other models would have to be devised for other kinds of systems where deviations
do occur (Fig. 4.66).

4.4.12. A Very Approximate Relation between Equivalent Conductivity
and Viscosity: Walden’s Rule

The Stokes–Einstein equation (4.179) connects the diffusion coefficient and the
viscosity of the medium; the Nernst–Einstein equation (4.187) relates the diffusion
coefficient to the equivalent conductivity. Hence, by eliminating the diffusion coeffi-
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Fig. 4.66. Apparent charge of alkali halides as a func-
tion of concentration. Aqueous solutions of NaF (I), NaCI
(2), and KCI (3) at 25 °C. Broken lines: limiting law of
Debye and Hückel. (Reprinted from P. Turq, J. Barthel,
and M. Chemla, in Transport Relaxation and Kinetic
Processes in Electrolyte Solutions, Springer-Verlag,
Berlin, 1992.)

cient in these two equations, it is possible to obtain a relation between the equivalent
conductivity and the viscosity of the electrolyte. The algebra is as follows:

and therefore

Since and one obtains

Hence, if the radius of the moving (kinetic) entity in conduction, i.e., the solvated
ion, can be considered the same in solvents of various viscosities, the following relation
is obtained:
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This means that the product of the equivalent conductivity and the viscosity of the
solvent for a particular electrolyte at a given temperature should be a constant (at one
temperature). This is indeed what the empirical Walden’s rule states.

Some experimental data on the product are presented in Table 4.14 for
solutions of potassium iodide in various solvents. Walden’s rule has some rough
applicability in organic solvents. When, however, the products for a solute
dissolved on the one hand in water and on the other in organic solvents are compared,
it is found that there is considerable discrepancy (Table 4.15). This should hardly come
as a surprise; one should expect differences in the solvation of ions in water and in
organic solvents (Section 2.20) and the resulting differences in radii of the moving
ions.
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4.4.13. The Rate-Process Approach to Ionic Migration

The fundamental equation for the current density (flux of charge) as a function of
the drift velocity has been shown to be

Hitherto, the drift velocity has been related to macroscopic forces (e.g., the Stokes
viscous force or the electric force  through the relation

Another approach to the drift velocity is by molecular models. The drift velocity
is considered the net velocity, i.e., the difference of the velocity of ions in the

direction of the force field and the velocity  of ions in a direction opposite to the field
(Fig. 4.67). In symbols, one writes

Any velocity is given by the distance traveled divided by the time taken to travel
that distance. In the present case, the distance is the jump distance l, i.e., the mean
distance that an ion jumps in hopping from site to site in the course of its directed
random walk, and the time is the mean time  between successive jumps. This mean
time includes the time the ion may wait in a “cell” of surrounding particles as well as
the actual time involved in jumping. Thus,

The reciprocal of the mean time between jumps is the net jump frequency k, which is
the number of jumps per unit of time. Hence,

Velocity = Jump distance × net jump frequency

or

and
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Fig. 4.67. The drift velocity can be considered to be
made up of a velocity in the direction of the force field
and a velocity* in a direction opposite to the force field.

For diffusion, the net jump frequency k was related to molecular quantities by
viewing the ionic jumps as a rate process (Equation 4.111). In this view, for an ion to
jump, it must possess a certain free energy of activation to surmount the free-energy
barrier. It was shown that the net jump frequency is given by

To emphasize that this is the jump frequency for a pure diffusion process, in which
case the ions are not subjected to an externally applied field, a subscript D will be
appended to the net jump frequency and to the standard free energy of activation, i.e.,

Now, suppose an electric field is applied so that it hinders the movement of a
positive ion from right to left. Then the work that is done on the ion in moving it from
the equilibrium position to the top of the barrier (Fig. 4.68) is the product of the charge
on the ion, and the potential difference between the equilibrium position and the
activated state, i.e., the position at the top of the barrier. Let this potential difference
be a fraction of the total potential difference (i.e., the applied electric field X times
the distance l) between two equilibrium sites. Then the electrical work done on one
positive ion in making it climb to the top of the barrier, i.e., in activating it, is equal to
the charge on the ion times the potential difference  through which it is
transported. Thus the electrical work is per ion, or  per mole of ions.

The electrical work of activation corresponds to a free-energy change. It appears
therefore that there is a contribution to the total free energy of activation due to the
electrical work done on the ion in making it climb the barrier. This electrical contri-
bution to the free energy of activation is
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Fig. 4.68. (a) As the ion moves for the jump, it
has to climb (b) the potential gradient arising
from the electric field in the electrolyte, in addi-
tion to (c) the free-energy barrier for diffusion.
To be activated, the ion has to climb the fraction

of the total potential difference XI between
the initial and final positions for the jump.

Hence, the total free energy of activation (for positive ions moving from right to
left) is

Thus, in the presence of the field, the frequency of right left jumps is

or
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By a similar argument, the left  right jump frequency or the number of jumps per
second from left to right, may be obtained. There are, however, two differences: When
positive ions move from left to right, (1) they are moving with the field and therefore
are helped, not hindered, by the field, and (2) they have to climb through only a fraction

of the barrier. Hence, the electrical work of activation is the
minus sign indicating that the field assists the ion. Thus,

If the factor is assumed to be then and Eqs. (4.205) and (4.206)
can be written

and

where for conciseness p is written instead of    It follows from these equations
that and or

In the presence of the field therefore, the jumping frequency is anisotropic, i.e., it
varies with direction. The jumping frequency of an ion in the direction of the field
is greater the jumping frequency that against the field. When, however, there is no
field, the jump frequency is the same in all directions, and therefore jumps in all
directions are equally likely. This is the characteristic of a random walk. The applica-
tion of the field destroys the equivalence of all directions. The walk is not quite random.
The field makes the ions more likely to move with it than against it. There is drift. In
Eqs. (4.207) and (4.208), the  is a random-walk term, the exponential factors are the
perturbations due to the field, and the result is a drift. The equations are therefore a
quantitative expression of the qualitative statement made in Section 4.4.1.

Drift due to field = Random walk in absence of field × perturbation due to field
(4.209)

4.4.14. The Rate-Process Expression for Equivalent Conductivity

Introducing the expressions (4.207) and (4.208) for  and into the equations for
the component forward and backward velocities  and [i.e., into Eqs. (4.199) and
(4.200)], one obtains

29This implies (Fig. 4.68) that the energy barrier is symmetrical.
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and

where, as stated earlier,

The drift velocity  is obtained [cf. Eq. (4.197)] by subtracting Eq. (4.210) from Eq.
(4.211), thus,

The net charge transported per second across a unit area (i.e., the current density j) is
given by Eq. (4.164),

Upon inserting the expression (4.212) for the drift velocity into Eq. (4.164), it is clear
that

Fig. 4.69. The hyperbolic sine
relation between the ionic cur-
rent density and the electric
field according to Eq. (4.213).
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Fig. 4.70. The similarity between the ionic current flowing (a)
through an oxide film between an electrode and an electrolyte and
(b) through an electrolyte between two electrodes.

A picture of the hyperbolic sine relation between the ionic current density and the
electric field that would result from Eq. (4.213) is shown in Fig. 4.69.

The fundamental thinking used in the derivation of Eq. (4.213) has wide applica-
bility. Take the case of an oxide film that grows on an electron-sink electrode (anode).
All one has to do is to consider an ionic crystal (the oxide) instead of an electrolytic
solution, and all the arguments used to derive the hyperbolic sine relation (4.213)
become immediately applicable to the ionic current flowing through the oxide in
response to the potential gradient in the solid (Fig. 4.70). In fact, Eq. (4.213) is the
basic equation describing the field-induced migration of ions in any ionic conductor.
Equation (4.213) is also formally similar to the expression for the current density due
to a charge-transfer electrodic reaction occurring under the electric field present at an
electrode–electrolyte interface (Chapter 7).

In all these cases, two significant approximations can be made. One is the
high-field Tafel type (see Chapter 7) of approximation, in which the absolute magni-
tude of the exponents |pX| in Eq. (4.213) [i.e., the argument pX of the hyperbolic sine
in Eq. (4.213)] is much greater than unity. Under this condition of pX >> 1, one obtains
sinh because one can neglect in comparison with  Thus (Fig. 4.71)

i.e., the current density bears an exponential relation to the field. Such an exponential
dependence of current on field is commonly observed in oxide growth, at electrode–
electrolyte interfaces, but not in electrolyte solutions.

In electrolytic solutions, however, the conditions for the high-field approximation
are not often observed. The applied field X is generally relatively small, in which case
pX << 1 and the following approximation can be used:
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FIELD X

Fig. 4.71. Under high-field condi-
tons, there is an exponential rela-
tion between ionic current density
and the field across an oxide.

and the current density in Eq. (4.213) is approximately given (Fig. 4.72) by

All the quantities within the parentheses are constants in a particular electrolyte and
therefore

Fig. 4.72. Under low-field con-
ditions, there is a linear relation
between the ionic current den-
sity and the field in the electro-
lyte.
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and according to Eq. (4.160), the value of the constant is equal to This is the low-field
approximation. It is in fact the rate-process version of Ohm’s law. An important point,
however, has emerged: Ohm’s law is valid only for sufficiently small fields. Of course,
this was accounted for in the phenomenological treatment of conduction where the
general flux–force relation

reduced to the linear relation

only for “small” fields.
However, words such as “small” and “large” are relative. If one proceeds to

substitute numerical values in the conditions for a linear relation between current and
field, one starts with pX << 1. For example, zFlX/2RT < 0.1; then, with F/RT = 39.0

at 25 °C, z = 1, and cm, one obtains as the condition
for the linearization of Eq. (4.213). This condition also implies a proportionality of the
current to the applied field in the electrolyte and hence [cf. Eq. (4.213)] independence
of the conductivity on the potential applied to the cell.

Since one often works in the laboratory with  when one says
that X has to be “small” for the conductivity to be independent of field strength, this
becomes a very relative matter. It is better to say that the conductivity remains
independent of the value of the applied field so long as it is not very high. Indeed, it
has been found that the conductivity finally does increase with the applied field but
only at

4.4.15. The Total Driving Force for Ionic Transport: The Gradient of
the Electrochemical Potential

In the rate-process view of conduction that has just been presented, it has been
assumed that the concentration is the same throughout the electrolyte. Suppose,
however, that there is a concentration gradient of a particular ionic species, say,
positively charged radiotracer ions. Further, let the concentration vary continuously
in the x direction (see Fig. 4.73), so that if the concentration of positive ions at x on
the left of the barrier is  the concentration on the right (i.e., at x + l) is given by

i.e.,
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Fig. 4.73. Measurement of ions under both a concentra-
tion gradient and a potential gradient: (a) the free-energy
barrier for the diffusive jump of an ion, (b) the concentration
variation over the jump distance, and (c) the potential
variation over the jump distance.

In this case, there will be diffusion of the tracer ions and therefore the current
density is not given by a conduction law, i.e., by Eq. (4.159), which governs the
situation in the absence of a concentration gradient. Instead, the expression for the
current density has to be written [the subscript x in has been dropped for the sake
of convenience]
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However, and have been evaluated as

and

Under low-field conditions pX << 1, the exponentials can be expanded and
linearized to give

and

Combining Eqs. (4.219), (4.220), and (4.221), one gets

This expression can be simplified further, first, by applying the low-field condition
pX << 1. Itbecomes

Second, by substituting for p, one has

and finally by replacing with [cf. Eq. (4.113)], the result is
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To go from the current density  to the flux  of positive tracer ions is straightforward.
Thus,

The second term on the right-hand side can be rewritten as

since, according to the definition of the chemical potential for ideal solutions [cf. Eq.
(3.54)],

In addition, from Eq. (4.9), the electric field X is equal to minus the gradient of
the electrostatic potential, i.e.,

Hence,
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This is an interesting result. The negative gradient of the chemical potential
is known to be the driving force for pure diffusion and

the driving force for pure conduction. However, when there is both a chemical potential
(or concentration) gradient and an electric field  then the total driving force
for ionic transport is the negative gradient of

This quantity could be called the electrostatic-chemical potential, or simply
the electrochemical potential, of the positive ions and is denoted by the symbol
Thus,

and the total driving force for the drift of ions is the gradient of the electrochemical
potential. Thus, one can write the flux  of Eq. (4.228) in the form

Or, by making use of the Einstein relation,

and the relation between absolute and conventional mobilities, i.e.,

one can rewrite Eq. (4.230) in the form

Expression (4.231) is known as the Nernst–Planck flux equation. It is an important
equation for the description of the flux or flow of a species under the total driving force
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of an electrochemical potential. The Nernst–Planck flux expression is useful in
explaining, for example, the electrodeposition of silver from silver cyanide ions. In
this process, the negatively charged ions travel to the negatively charged
electron source or cathode, a fact that cannot be explained by considering that the only
driving force on the ions is the electric field because the electric field
drives these ions away from the negatively charged electrode. If, however, the
concentration gradient of these ions in a direction normal to the electron source is such
that in the expanded form of the Nernst–Planck equation, i.e.,

the second term is larger than the first, then the flux of the  ions is opposite
to the direction of the electric field, i.e., toward the negatively charged electrode.
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4.5. THE INTERDEPENDENCE OF IONIC DRIFTS

4.5.1. The Drift of One Ionic Species May Influence the Drift of Another

The processes of diffusion and conduction have been treated so far with the
assumption that each ionic species drifts independently of every other one. In general,
however, the assumption is not realistic for electrolytic solutions because it presup-
poses the absence of ionic atmospheres resulting from ion–ion interactions. One has
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been talking therefore of ideal laws of ionic transport and expressed them in the
Nernst–Planck equation for the independent flux of a species i.

The time has come to free the treatment of ionic transport from the assumption of
the independence of the various ionic fluxes and to consider some phenomena which
depend on the fact that the drift of a species i is affected by the flows of other species
present in the solution. It is the whole society of ions that displays a transport process,
and each individual ionic species takes into account what all the other species are
doing. Ions interact with each other through their Coulombic fields and thus it will be
seen that the law of electroneutrality that seeks zero excess charge in any macroscopic
volume element plays a fundamental role in phenomena where ionic flows influence
each other.

A stimulating approach to the problem of the interdependence of ionic drifts can
be developed as follows. Since different ions have different radii, their Stokes
mobilities, given by

must be different. What are the consequences that result from the fact that different
ionic species have unequal mobilities?

4.5.2. A Consequence of the Unequal Mobilities of Cations and
Anions, the Transport Numbers

The current density  due to an ionic species i is related to the mobility in
the following manner [cf. Eq. (4.159)]

If therefore one considers a unit field X = 1 in an electrolyte solution containing a
z:z-valent electrolyte (i.e.,  and then since it
follows that

This is a thought-provoking result. It shows that although all ions feel the
externally applied electric field to the extent of their charges, some respond by
migrating more than others. It also shows that though the burden of carrying the current
through the electrolytic solution falls on the whole community of ions, the burden is
not shared equally among the various species of ions. Even if there are equal numbers
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of the various ions, those that have higher mobility contribute more to the communal
task of transporting the current through the electrolytic solution than the ions handi-
capped by lower mobilities.

It is logical under these circumstances to seek a quantitative measure of the extent
to which each ionic species is taxed with the job of carrying current. This quantitative
measure, known as the transport number (Table 4.16), should obviously be defined
by the fraction of the total current carried by the particular ionic species, i.e.,

This definition requires that the sum of the transport numbers of all the ionic species
be unity for

Thus, the conduction current carried by the species i (e.g., ions in a solution
containing NaCl and KCl) depends upon the current transported by all the other
species. Here then is a clear and simple indication that the drift of the ith species
depends on the drift of the other species.

For example, consider a 1:1-valent electrolyte (e.g., HCl) dissolved in water. The
transport numbers will be given by30

However, and and therefore

30To avoid cumbersome notation, the symbol  for the conventional mobilities has been contracted to
u. The absence of a bar above the u stresses that it is not the absolute mobility
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Similarly,

The mobilities of the and ions in 0.1 N HC1 at 25 °C are and
respectively, from which it turns out the transport numbers

of the and ions are 0.83 and 0.17, respectively. Thus, in this case, the positive
ions carry a major fraction (~83%) of the current.

Now suppose that an excess of KCl is added to the HCI solution so that the
concentration of is about M in comparison with a concentration of 1 M.
The transport numbers in the mixture of electrolytes will be

The ratio and the ratio of mobilities is

Hence,

which means that although the is about 5 times more mobile than the ion, it
carries 200 times less current. Thus, the addition of the excess of KCl has reduced to
a negligible value the fraction of the current carried by the ions.

In fact, the transport number of the ions under such circumstances is virtually
zero, as shown from the following approximate calculation.
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Thus the conduction current carried by an ion depends very much on the concentration
in which the other ions are present.

4.5.3. The Significance of a Transport Number of Zero

In the previous section, it was shown that the addition of an excess of KCl makes
the fraction of the migration (i.e., conduction) current carried by the ions tend to
zero. What happens if this mixture of HCl and KCl is placed between two electrodes
and a potential difference is applied across the cell (Fig. 4.74)?

In response to the electric field developed in the electrolyte, a migration of ions
occurs and there is a conduction current in the solution. Since this conduction current
is almost completely borne by and ions there is a tendency for the

Fig. 4.74. A schematic diagram of the transport
processes in an electrolyte (of HCI – KCI, with an
excess of KCI) and of the reactions at the inter-
faces.
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ions to accumulate near the positive electrode, and the ions near the negative
electrode. If the excess negative charge near the positive electrode and vice versa were
to build up, then the resulting field due to lack of electroneutrality (see Section 4.3.3)
would tend to bring the conduction current to a halt. It has been argued (Section 4.3.4),
however, that conduction (i.e., migration) currents are sustained in an electrolyte
because of charge-transfer reactions (at the electrode–electrolyte interfaces), which
remove the excess charge that tends to build up near the electrodes.

In the case of the HCl + KCl electrolyte, the reaction at the positive electrode may
be considered the deelectronation of the ions. Furthermore, according to Faraday’s
law (see Section 4.3.5), 1 g-eq of ions must be deelectronated at the positive
electrode for the passage of 1 F of charge in the external circuit. This means, however,
that at the other electrode, 1 g-eq of positive ions must be involved in a reaction. Thus,
either the or the ions must react, but by keeping the potential difference within
certain limits one can ensure that only the ions react.

There is no difficulty in effecting the reaction of the layer of near the negative
electrode, but to keep the reaction going, there must be a flux of ions from the bulk
of the solution toward the negative electrode. By what process does this flux occur?
It cannot be by migration because the presence of the excess of ions makes the
transport number of tend to zero. It is here that diffusion comes into the picture;
the removal of ions by the charge-transfer reactions causes a depletion of these ions
near the electrode, and the resulting concentration gradient provokes a diffusion of
ions toward the electrode.

To provide a quantitative expression for the diffusion flux one cannot use the
Nernst–Planck flux equation (4.231) because the latter describes the independent flow
of one ionic species and in the case under discussion it has been shown that the
migration current of the ions is profoundly affected by the concentration of the
ions. A simple modification of the Nernst–Planck equation can be argued as follows.

Since conduction (i.e., migration) and diffusion are the two possible31 modes of
transport for an ionic species, the total flux must be the sum of the conduction flux

and the diffusion flux Thus,

The conduction flux is equal to times the conduction current borne by the
particular species

31 Another possible mode of transport, hydrodynamic flow, is not considered in this chapter.
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and the conduction current carried by the species i is related to the total conduction
current through the transport number of the species i [cf. Eq. (4.234)]

Hence,

Furthermore, the diffusion flux  is given by32

or approximately by Fick’s first law

so that the total flux of species i is

or approximately

From these modified forms of the Nernst–Planck flux equation (4.231), one can see
that even if it is still possible to have a flux of a species provided there is a
concentration gradient, which is often brought into existence by interfacial charge-
transfer reactions at the electrode–electrolyte interfaces consuming or generating the
species.

From the modified Nernst–Planck flux equation (4.245), one can give a more
precise definition of the transport number. If in which case
then

32The constant B has been shown in Section 4.4.6 to be equal to
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It should be emphasized therefore that the transport number only pertains to the
conduction flux (i.e., to that portion of the flux produced by an electric  field) and any
flux of an ionic species arising from a chemical potential gradient (i.e., any diffusion
flux) is not counted in its transport number. From this definition, the transport number
of a particular species can tend to zero, and at the same time its diffusion flux
can be finite.

This is an important point in electroanalytical chemistry, where the general
procedure is to arrange for the ions that are being analyzed to move to the electrode-
electrolyte interface by diffusion only. Then if the experimental conditions correspond
to clearly defined boundary conditions (e.g., constant flux), the partial differential
equation (Fick’s second law) can be solved exactly to give a theoretical expression for
the bulk concentration of the substance to be analyzed. In other words, the transport
number of the substance being analyzed must be made to tend to zero if the solution
of Fick’s second law is to be applicable. This is ensured by adding some other
electrolyte in such excess that it takes on virtually the entire burden of the conduction
current. The added electrolyte is known as the indifferent electrolyte. It is indifferent
only to the electrodic reaction at the interface; it is far from indifferent to the conduction
current.

4.5.4. The Diffusion Potential, Another Consequence of the Unequal
Mobilities of Ions

Consider that a solution of a z:z-valent electrolyte (of concentration c moles
is instantaneously brought into contact with water at the plane x = 0 (Fig. 4.75). A
concentration gradient exists both for the positive ions and for the negative ions. They
therefore start diffusing into the water.

Since, in general,33 let it be assumed that With the use of the
Einstein relation (4.172), it is clear that

and

or that

33Though the subscript “abs” has been dropped, it is clear from the presence of a bar over the us that one is
referring to absolute mobilities.
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Fig. 4.75. (a) An electrolytic solution is instantane-
ously brought into contact with water at a plane x =
0; (b) the variation of the electrolyte concentration
in the container at the instant of contact.

This means that the positive ions try to lead the negative ions in the diffusion into
the water. But when an ionic species of one charge moves faster than a species of the
opposite charge, any unit volume in the water phase will receive more ions of the
faster-moving variety.

Compare two unit volumes (Fig. 4.76), one situated at and the other at where
is farther from the plane of contact (x = 0) of the two solutions. The

positive ions are random-walking faster than the negative ions, and therefore the
greater the value of x, the greater is the ratio

All this is another way of saying that the center of the positive charge tends to
separate from the center of the negative charge (Fig. 4.76). Hence, there is a tendency
for the segregation of charge and the breakdown of the law of electroneutrality.

When charges of opposite sign are spatially separated, a potential difference
develops. This potential difference between two unit volumes at and opposes the
attempt at charge segregation. The faster-moving positive ions face strong opposition
from the electroneutrality field and they are slowed down. In contrast, the slower-
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Fig. 4.76. (a) At a time t > 0 after the electrolyte and water
are brought into contact, pure water and the electrolyte are
separated by a region of mixing. In this mixing region, the

ratio increases from right to left because of the higher
mobility of the positive ions, (b) and (c) The distance vari-
ations of the concentrations of positive and negative ions.

moving negative ions are assisted by the potential difference (arising from the incipient
charge separation) and they are speeded up. When a steady state is reached, the
acceleration of the slow negative ions and the deceleration of the initially fast, positive
ions resulting from the electroneutrality field that develops exactly compensate for the
inherent differences in mobilities. The electroneutrality field is the leveler of ionic
mobilities, helping and retarding ions according to their need so as to keep the situation
as electroneutral as possible.
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Fig. 4.77. A potential difference is registered
by a vacuum-tube voltmeter (VTVM) con-
nected to a concentration cell, i.e., to elec-
trodes dipped in an electrolyte, the
concentration of which varies from electrode
to electrode.

The conclusion that may be drawn from this analysis has quite profound ramifi-
cations. The basic phenomenon is that whenever solutions of differing concentration
are allowed to come into contact, diffusion occurs; there is a tendency for charge
separation due to differences between ionic mobilities; and a potential difference
develops across the interphase region in which there is a transition from the concen-
tration of one solution to the concentration of the other.

This potential is known by the generic term diffusion potential. The precise name
given to the potential varies with the situation, i.e., with the nature of the interphase
region. If one ignores the interphase region and simply sticks two electrodes, one into
each solution, in order to “tap” the potential difference, then the whole assembly is
known as a concentration cell (Fig. 4.77). On the other hand, if one constrains or
restricts the interphase region by interposing a sintered-glass disk or any uncharged
membrane between the two solutions so that the concentrations of the two solutions
are uniform up to the porous material, then one has a liquid-junction potential 34 (Fig.
4.78). A membrane potential is a more complicated affair for two main reasons: (1)
There may be a pressure difference across the membrane, producing hydrodynamic
flow of the solution, and (2) the membrane itself may consist of charged groups, some
fixed and others exchangeable with the electrolytic solution, a situation equivalent to
having sources of ions within the membrane.

34Now that the origin of a liquid-junction potential is understood, the method of minimizing it becomes
clear. One chooses positive and negative ions with a negligible difference in  mobilities; and  ions
are the usual pair. This is the basis of the so-called “KCI salt bridge.”
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Fig. 4.78. A potential difference, the liq-
uid-junction potential, is developed
across a porous membrane introduced
between two solutions of differing con-
centration.

4.5.5. Electroneutrallty Coupling between the Drifts of Different Ionic
Species

The picture of the development of the electroneutrality field raises a general
question concerning the flow or drift of ions in an electrolytic solution. Is the flux of
one ionic species dependent on the fluxes of the other species? In the diffusion
experiment just discussed, is the diffusion of positive ions affected by the diffusion of
negative ions? The answer to both these questions is in the affirmative.

Without doubt, the ionic flows start off as if they were completely independent,
but it is this attempt to assert their freedom that leads to an incipient charge separation
and the generation of an electroneutrality field. This field, which is dependent on the
flows of all ionic species, curtails the independence of any one particular species. In
this way, the flow of one ionic species is “coupled” to the flows of the other species.

In the absence of any interaction or coupling between flows, i.e., when the drift
of any particular ionic species i is completely independent, the flow of that species i
(i.e., the number of moles of i crossing per square centimeter per second) is described
as follows.

The total driving force on an ionic species that is drifting independently of any
other ionic species is the gradient of the electrochemical potential, In terms of
this total driving force, the expression for the total independent flux is given by the
Nernst–Planck flux equation

When, however, the flux of the species i is affected by the flux of the species j
through the electroneutrality field, then another modification (see Section 4.5.3) of  the
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Nernst–Planck flux equations has to be made. The modification that will now be
described is a more detailed version which will lead us back to transport numbers.

4.5.6. How to Determine Transport Number

Before introducing the reader to the ways in which these transport numbers can
be experimentally measured, it may be helpful to think again about just what they
mean. The bare definition is given in Eq. (4.234) but this often only arouses puzzle-
ment. For how, asks the thoughtful reader, can unequal amounts of negative and
positive charges pass across a solution without doing injury to the electroneutrality
condition that (understood over a time average) must always apply to the bulk of a
solution?35 The trouble seems at first a deep one because in some systems (an extreme
case would be the liquid silicates) the alkali metal cation (a relatively small entity) has

near unity, whereas the anion (the giant silicate polyanion, in the case cited) hardly
moves at all.

Looked at in terms of an analogy, the difficulty is seen to be less than real.
Consider the ions as black (negative) and white (positive) balls. There are just two
lines of black balls and white balls, an equal number of each, and both lines are at first
stationary. Obviously, with an equal number of (oppositely charged) black and white
balls, electroneutrality is preserved.

Now let the white balls all roll steadily off to the left while the black balls retain
their stations. Let there be a machine that produces any required number of new white
balls and inserts them into the beginning of this line on the right. Correspondingly, on
the left, a consumer of white balls acts to bring about their disappearance. Consider
then the middle part. The white balls move along while the black balls remain
immovable. Then, framing a certain element of the bulk, the number of white and black
balls remains always equal in number. As one white ball comes into the frame, one
white ball also goes out of it. The blacks remain constant. Clearly, electroneutrality in
the volume element considered is preserved. The same would be found for any piece
of the bulk of the solution. The only reservation is the presence of the two machines,
one of which produces the white balls on the right while another annihilates them on
the left. In the real case, these functions would be supplied by the electrodes, the
positive anode dissolving ions into the solution while the negative cathode destroys
the ions by depositing them as atoms. So one can have and of any value, with the
proviso that for a 1:1 electrolyte,  Now let three entirely different approaches
for determining t’s be described.

4.5.6.1. Approximate Method for Sufficiently Dilute Solutions.  In order
to use the method, one has to use the Einstein equation

35To the bulk only? Yes. For near the interfaces there is an electrode reaction (an exchange of charge of
ions with the electrode) and the positive ions (the cations) will tend to exceed the negative ones (the
anions) near the negative electrode (and obviously vice versa at the positive electrode).
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From this equation and from the definition of transport number, i.e., Eq. (4.236),

and then can be determined experimentally so long as the diffusion coefficients of
the relevant ions can be measured (e.g., by means of radiotracers). However, there are
a few reservations necessary before this method can be utilized.

1. The Einstein equation is exact only at very low concentrations in aqueous
solution. As explained in a general way in Section 4.4.6, and in a detailed way for a
given system in Section 5.6.6.2, there is usually some deviation—perhaps as much as
20%—between the results of Einstein’s equation and experimental fact. Thus, outside
very dilute solutions, using the Einstein equation to determine transport numbers is a
rough-and-ready method and the results carry a burden of ±10%.

2. The method is clearly limited to ions that have suitable or
radiotracers. Those ions having radioactive isotopes that emit radiation are more
difficult to measure because the long range and penetrating power of the radiation
make it difficult precisely to determine the position of the radiotracer ions as they
spread through a solution.

Another approximate approach to determining transport number is to use the
zeroth approximation equation for ionic mobility, i.e., Eq. (4.183)

where is the Stokes radius of the ion concerned, is the viscosity of the solution,
and is the mobility or ionic velocity under a field gradient of 1

All one has to know here is the viscosity (for dilute solutions this is roughly equal
to that of water) and the radius of a hydrated ion. The principal approximation lies
in the nature of the Stokes equation (4.175) (see Section 4.4.7). This may introduce an
error of up to 25%.

4.5.6.2. Hittorf’s Method. This method of determining transport numbers
was devised as long ago as 1901 and has been described in innumerable papers and
many books. Nevertheless, it is not all that simple to understand and contains a number
of assumptions not always stated.

To start with, let an overall description of the method be given. The essentials of
the apparatus (Fig. 4.79) are two clearly separated compartments joined by a substan-
tial middle compartment. There is an aqueous electrolyte, say, silver nitrate, and if  this
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Fig. 4.79. Hittorf’s cell. (After E. A. Muelwhyn Hughes, 1968)

is the case, the electrodes will each be made of silver. Before the experiment begins,
the concentration of is the same throughout the cell. The experiment involves
passage of a direct electric current (from some power source not shown in the figure)
through the cell.

At the left-hand electrode, Ag dissolves and increases the concentration
in this compartment. In the right-hand compartment, ions deposit so the
concentration decreases in the solution in the right-hand compartment. Measurement
of the changes in concentration in each compartment after a 2–3 hr passage of current
yields the transport number of the anion (since it also gives that of the
cation). Now, let the analysis of what happens be written out.

The current gets passed for the requisite time. Thereafter, the anolyte (see Fig.
4.80) has an increased concentration and the catholyte a decreased concentration

The middle compartment does not change its concentration of silver nitrate, which
will be designated

After t seconds (s) at current I, the number of g-ions of Ag introduced into the
anolyte is
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Fig. 4.80. The principle of Hittorf’s experiment. (After E. A. Moelwhyn-Hughes, 1968)

where F is the faraday or electrical charge on one g-ion of
In the central compartment, in which the concentration is shown by experiment

to remain constant, one can write for the current:

where A is the cross-sectional area of the central compartment and and are the
ionic mobilities, respectively, of and under a unit applied field. Therefore,
from Eqs. (4.249) and (4.250)

In the left-hand compartment, ions are not only produced, they also get moved
out. Hence,

The principle of electroneutrality demands that the concentration of both positive and
negative ions in the left-hand compartment be the same. Therefore,

which represents the rate at which anions introduced by dissolution from the silver
electrode move into the left-hand compartment to partner the cation. Integrating
(4.253) gives
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where is the number of moles of in the compartment before the current I
was switched on.

Turning attention now to the catholyte, it follows that with the being removed
by deposition and being augmented by transport from the middle compartment,

However, diffusion of and its removal by deposition is not the only thing
happening in the right-hand compartment.  clearly moves out to allow electroneu-
trality to be maintained. It must move out at the same rate as disappears. Thus

Integration of (4.256) gives

It has been assumed all along (but it needs an experiment to verify it) that the
central compartment keeps a constant concentration while the is increasing on
the anolyte and decreasing in the catholyte. Hence,

Now from Eqs. (4.251) and (4.254)

and from Eqs. (4.251) and (4.257),

Is this all there is to be said about Dr. Hittorf ’s classic method? The reader may
have noticed a weak point in the argument. Where does the middle compartment begin
and end? This is not a silly question if by “the middle compartment” one does not
mean that section of the apparatus shown in the figure to divide the two compartments,
but that section of the electrolyte between the two compartments which maintains its
concentration constant. Thus, the method does have an Achilles heel: one has to be
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Fig. 4.81. Lodge’s moving-boundary apparatus.

careful that the concentration changes that occur in anolyte and catholyte do not spread
to the central compartment. This in turn means that the current must not flow for too
long at a time and the downside of that is that the concentration changes in the cathode
and anode compartments may not then be large enough to be accurately measurable.36

4.5.6.3. Oliver Lodge’s Experiment. An experiment first done by the
English physicist Oliver Lodge is the origin of a third method by which transport
numbers can be obtained. Here also there is a limitation: one must be able to observe
a boundary between two electrolytes, for knowledge of the boundary’s movement is
the observation upon which the method is based. This implies that the ions concerned
must differ in color (not always an easy condition to fulfill) or at least in refractive
index (but then the observation of the boundary may not always be easy).

To understand how this method works, let us have a look at Fig. 4.81. It involves
a tube and in this tube there are two solutions and a boundary between them. Let the
electrolyte in the upper compartment be named MR and be at a concentration c. The
second (bottom) solution is containing the same anion R, but a different cation,

Now a current is passed. The boundary moves and the velocity of that movement
u is given by

with x being the distance the boundary moves in t s.

36However, this objection is much lessened by the improvement in differential analysis made in the last
quarter-century.
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Now from Eq. (4.250)

where A is the cross section of the solution. Hence, from Eqs. (4.250) and (4.261)

One can see that the method would work best with a colored cation, e.g., a cation that
is chromophoric, such as ions.

4.5.7. The Onsager Phenomenological Equations

The development of an electroneutrality field introduces an interaction between
flows and makes the flux of one species dependent on the fluxes of all the other species.
To treat situations in which there is a coupling between the drift of one species and
that of another, a general formalism will be developed. It is only when there is zero
coupling or zero interaction that one can accurately write the Nernst–Planck flux
equation

Once the interaction (due to the electroneutrality field) develops, a correction term is
required, i.e.,

It is in the treatment of such interacting transport processes, or coupled flows, that
the methods of near-equilibrium thermodynamics yield a clear understanding of such
phenomena, but only from a macroscopic or phenomenological point of view. These
methods, as relevant to the present discussion, can be summarized with the following
series of statements:

1. As long as the system remains close to equilibrium and the fluxes are inde-
pendent, the fluxes are treated as proportional to the driving forces. Experience (Table
4.17) commends this view for diffusion [Fick’s law, Eq. (4.16)], conduction [Ohm’s
law, Eq. (4.130)], and heat flow (Fourier’s law). Thus, the independent flux of an ionic
species 1 given by the Nernst–Planck equation (4.231) is written

where is the proportionality or phenomenological constant and  is the driving
force.
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2. When there is coupling, the flux of one species (e.g., is not simply
proportional to its own (or as it is called, conjugate) driving force (i.e.,  but receives
contributions from the driving forces on all the other particles. In symbols,

3. The linearity or proportionality between fluxes and conjugate driving force is
also valid for the contributions to the flux of one species from the forces on the other
species. Hence, with this assumption, one can write Eq. (4.265) in the form

4. Similar expressions are used for the fluxes of all the species in the system. If
the system consists of an electrolyte dissolved in water, one has three species: positive
ions, negative ions, and water. By using the symbol + for the positive ions, – for the
negative ions, and 0 for the water, the fluxes are

These equations are known as the Onsager phenomenological equations. They
represent a complete macroscopic description of the interacting flows when the system
is near equilibrium.37 It is clear that all the “straight” coefficients where the indices

37If the system is not near equilibrium, the flows are no longer proportional to the driving forces [cf. Eq.
(4.265)].
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are equal, i = j, pertain to the independent, uncoupled fluxes. Thus  and
are the fluxes of the positive and negative ions, respectively, when there are no
interactions. All other cross terms represent interactions between fluxes; e.g.,
represents the contribution to the flux of positive ions from the driving force on the
negative ions.

5. What are the various coefficients Onsager put forward the helpful reci-
procity relation. According to this, all symmetrical coefficients are equal, i.e.,

This principle has the same status in nonequilibrium thermodynamics as the law of
conservation of energy has in classical thermodynamics; it has not been disproved by
experience.

4.5.8. An Expression for the Diffusion Potential

The expression for the diffusion potential can be obtained in a straightforward
though hardly brief manner by using the Onsager phenomenological equations to
describe the interaction flows. Consider an electrolytic solution consisting of the ionic
species and and the solvent. When a transport process involves the ions in the
system, there are two ionic fluxes, and  Since, however, the ions are solvated, the
solvent also participates in the motion of ions and hence there is also a solvent flux

If, however, the solvent is considered fixed, i.e., the solvent is taken as the
coordinate system or the frame of reference,38 then one can consider ionic fluxes
relative to the solvent. Under this condition,  and one has only two ionic fluxes.
Thus, one can describe the interacting and independent ionic drifts by the following
equations

The straight coefficients and represent the independent flows, and the cross
coefficients and the coupling between the flows.

The important step in the derivation of the diffusion potential is the statement that
under conditions of steady state, the electroneutrality field sees to it that the quantity
of positive charge flowing into a volume element is equal in magnitude but opposite
in sign to the quantity of negative charge flowing in (Fig. 4.82). That is,

38Coordinate systems are chosen for convenience.
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Fig. 4.82. According to the principle of electroneutral-
ity as applied to the fluxes, the flux of positive ions into
a volume element must be equal to the flux of negative
ions into the volume element, so that the total negative
charge is equal to the total positive charge.

For convenience, and are written as  and respectively. Now the
expressions (4.269) and (4.270) for  and  are substituted in Eq. (4.271)

or

Using the symbols

and

one has

What are the driving forces and for the independent flows of the positive
and negative ions? They are the gradients of electrochemical potential (see Section
4.4.15)
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and

With these expressions, Eq. (4.275) becomes

or

It can be shown, however, that (Appendix 4.3)

and

where and are the transport numbers of  the positive and negative ions. By making
use of these relations, Eq (4.278) becomes

The negative sign before the electric field shows that it is opposite in direction to the
chemical potential gradients of all the diffusing ions.

If one considers (Fig. 4.83) an infinitesimal length dx parallel to the direction of
the electric- and chemical-potential fields, one can obtain the electric-potential differ-
ence and the chemical-potential difference  across the length dx

or
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Fig. 4.83. Schematic representation of a dx-
thick lamina in the interphase region between
two electrolytes of activities and

This is the basic equation for the diffusion potential. It has been derived here on
the basis of a realistic point of view, namely, that the diffusion potential arises from
the nonequilibrium process of diffusion.

There is, however, another method39 of deriving the diffusion potential. One takes
note of the fact that when a steady-state electroneutrality field has developed, the
system relevant to a study of the diffusion potential hangs together in a delicate
balance. The diffusion flux is exactly balanced by the electric flux; the concentrations
and the electrostatic potential throughout the interphase region do not vary with time.
(Remember the derivation of the Einstein relation in Section 4.4.) In fact, one may
turn a blind eye to the drift and pretend that the whole system is in equilibrium.

On this basis, one can equate to zero the sum of the electrical and diffusional work
of transporting ions across a lamina dx of the interphase region (Fig. 4.84). If one
equivalent of charge (both positive and negative ions) is taken across this lamina, the
electrical work is F But this one equivalent of charge consists of moles of
positive ions and moles of negative ions. Hence, the diffusional work is per
mole, or per moles, of positive ions and per moles of
negative ions. Thus,

39This method is based on Thomson’s hypothesis, according to which it is legitimate to apply equilibrium
thermodynamics to the reversible parts of  a steady-state, nonequilibrium process.
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Fig. 4.84. The sum of (a) the electrical
work F and (b) the diffusional work

of transporting one
equivalent of ions across a dx-thick lamina
in the interphase region is equal to zero.

or

4.5.9. The Integration of the Differential Equation for Diffusion
Potentials: The Planck–Henderson Equation

An equation has been derived for the diffusion potential [cf . Eq. (4.283)], but it
is a differential equation relating the infinitesimal potential difference   developed
across an infinitesimally thick lamina dx in the interphase region. What one measures
experimentally, however, is the total potential difference across a
transition region extending from x = 0 to  x = l (Fig. 4.85). Hence, to theorize about the
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Fig. 4.85. The measured quantity is the total potential differ-
ence across the whole interphase region between
electrolytes of differing concentration and

measured potential differences, one has to integrate the differential equation (4.283);
i.e.,

Here lies the problem. To carry out the integration, one must know:

1. How the concentrations of all the species vary in the transition region.
2. How the activity coefficients vary with
3. How the transport number varies with

The general case is too difficult to solve analytically, but several special cases can
be solved. For example (Fig. 4.86), the activity coefficients can be taken as unity,

ideal conditions; the transport numbers  can be assumed to be constant; and
a linear variation of concentrations with distance can be assumed. The last assumption
implies that the concentration of the ith species at x is related to its concentration

at x = 0 in the following way



502 CHAPTER 4

Fig. 4.86. In the derivation of the Planck–
Henderson equation, a linear variation of
concentration is assumed in the interphase
region, which commences at x= 0 and ends
at  x=l.

and

With the aid of these assumptions, the integration becomes simple. Thus, with
and Eqs. (4.287) and (4.288), one has in (4.286)

This is known as the Planck–Henderson equation for diffusion or liquid-junction
potentials.

In the special case of a z:z-valent electrolyte, and Eq.
(4.289) reduces to
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and since

In the highly simplified treatment of the diffusion potential that has just been
presented, several drastic assumptions have been made. The one regarding the con-
centration variation within the transition region can be avoided. One may choose a
more realistic concentration versus distance relationship either by thinking about it in
more detail or by using experimental knowledge on the matter. Similarly, instead of
assuming the activity coefficients to be unity, one can feed in the theoretical or
experimental concentration dependence of the activity coefficients. Of course, the
introduction of nonideality makes the mathematics awkward; in principle,
however, the problem is understandable.

What about the assumption of the constancy of the transport number? Is this
reasonable? In the case of a z:z-valent electrolyte, the transport number depends on the
mobilities

and

Thus, the constancy of the transport numbers with concentration depends on the degree
to which the mobilities vary with concentration. That is something to be dealt with in
the model-oriented arguments of the next section.

4.5.10. A Bird’s Eye View of Ionic Transport

In the section on diffusion (Section 4.2), we were concerned with the random
walk, but we learned that because this type of movement is purposeless in direction,
it causes particles to spread out in all available directions. To bring about a diffusional
flux in a given direction, all one has to do is to introduce a concentration gradient into
the system and, although the movement of each particle is random, the fact that there
are fewer ions in one direction than in others means that the random walk gradually
raises the concentration in the dilute parts of the solution until all is uniform. In this
sense, there is a directed diffusion flux down the concentration gradient.

Then we discussed the idea that this randomness can have superimposed upon it
an electrical field that does indeed have a direction, so that there are still random
motions by cations and the anions, but a little less randomness for the positive ion in
the direction of the negative electrode and for the negative ion in the direction of the
positive electrode. There thus arises a net drift of ions in the direction of the field.

In the phenomenological treatment of the directed drift that the field brings, we take
the attitude that there is a stream of cations going toward the negative electrode and anions
going toward the positive one. We now neglect the random diffusive movements; they
do not contribute to the vectorial flow that produces an electrical current.



504 CHAPTER 4

This discussion then follows on to give rise to the idea of a transport number.
This is a term that describes the fact that when we talk about the drift velocity, cations
and anions of equal but opposite charge do not have the same speed although the
applied field is the same. On the whole, cations tend to be smaller than anions and we
show that the drift velocity is inversely proportional to the radius of the solvated ion,
so that transport numbers tend to be larger for the cation and smaller for the anion in
an electrolyte.

This brings us to an apparent dilemma because, according to laws first laid down
by Faraday himself, when one passes a certain amount of electricity through a solution
for a certain time, the number of cations and anions carrying the same numerical charge
put on the cathode and anode, respectively, is the same.

Because there is a difference in the cationic and anionic transport number and
hence mobilities, this is at first difficult to understand. One would expect more of the
ions with the higher transport number to be preferentially deposited.

The dilemma is solved by taking into account the fact that the lack of an equal
supply rate for cations and anions carried toward the electrodes by the electric current
will create a concentration gradient near the interface for the slower ions, and this
concentration gradient will speed up the motion of the slower ions to compensate for
their poorer performance. It is this diffusional component that makes Faraday’s laws
come true. The diffusional gradient pitches in to help the slower ions to the electrode
at the same rate as the faster ones.

Several famous equations (Einstein, Stokes–Einstein, Nernst–Einstein, Nernst–
Planck) are presented in this chapter. They derive from the heyday of phenomenologi-
cal physical chemistry, when physical chemists were moving from the predominantly
thermodynamic approach current at the end of the nineteenth century to the molecular
approach that has characterized electrochemistry in this century. The equations were
originated by Stokes and Nernst but the names of Einstein and Planck have been added,
presumably because these scientists had examined and discussed the equations first
suggested by the other men.

As stated earlier, these phenomenological relationships existed after physical
chemistry had passed through its predominantly thermodynamic stage. However,
Onsager produced a late bloom in the 1930s by applying nonequilibrium thermody-
namics to transport in ionic solutions. In this subdiscipline, transport coefficients are
described and their relation to ionic drift in terms of the interaction between the ions
(sodium–sodium, chloride–chloride, and sodium–chloride) is represented mathemati-
cally. Accordingly, the potential difference between two liquid phases differing in
ionic concentrations or even in ionic species is treated in terms of Onsager’s theory,
and the equation for the electrical potential across a liquid–liquid junction is derived
and presented as the Planck–Henderson equation. All this then is a phenomenological
prelude to applying ionic-atmosphere concepts (see Chapter 3) to ionic migration in
order to provide the physical explanation of a famous empirical law due originally to
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Kohlrausch—that equivalent conductivity decreases linearly with the increase of the
square root of the concentration.
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4.6. INFLUENCE OF IONIC ATMOSPHERES ON IONIC MIGRATION

4.6.1. Concentration Dependence of the Mobility of Ions

In the phenomenological treatment of conduction (Section 4.2.12), it was stated
that the equivalent conductivity A varies with the concentration c of the electrolyte
according to the empirical law of Kohlrausch [Eq. (4.139)]

where A  is a constant and is the pristine or ungarbled value of equivalent
conductivity, i.e., the value at infinite dilution.

The equivalent conductivity, however, has been related to the conventional
electrochemical mobilities40 and  of the current-carrying ions by the following
expression

40To avoid cumbersome notation, the conventional mobilities are written in this section without the subscript
“conv”; i.e., one writes instead of
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from which it follows that

where the are the conventional mobilities (i.e., drift velocities under a field of 1 V
at infinite dilution. Thus, Eq. (4.163) can be written as

or it can be split up into two equations

and

What is the origin of this experimentally observed dependence of ionic mobilities
on concentration? Equations (4.294) and (4.295) indicate that the more ions there are
per unit volume, the more they diminish each other’s mobility. In other words, at
appreciable concentrations, the movement of any particular ion does not seem to be
independent of the existence and motions of the other ions, and there appear to be
forces of interaction between ions. This coupling between the individual drifts of ions
has already been recognized, but now the discussion is intended to be on an atomistic
rather than phenomenological level. The interactions between ions can be succinctly
expressed through the concept of the ionic cloud (Chapter 3). It is thus necessary to
analyze and incorporate ion-atmosphere effects into the zero-approximation atomistic
picture of conduction (Section 4.4) and in this way understand how the mobilities of
ions depend on the concentration of the electrolyte.

Attention should be drawn to the fact that there has been a degree of inconsistency
in the treatments of ionic clouds (Chapter 3) and the elementary theory of ionic drift
(Section 4.4.2). When the ion atmosphere was described, the central ion was consid-
ered—from a time-averaged point of view—at rest. To the extent that one seeks to
interpret the equilibrium properties of electrolytic solutions, this picture of a static
central ion is quite reasonable. This is because in the absence of a spatially directed
field acting on the ions, the only ionic motion to be considered is random walk, the
characteristic of which is that the mean distance traveled by an ion (not the mean square
distance; see Section 4.2.5) is zero. The central ion can therefore be considered to
remain where it is, i.e., to be at rest.
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When, however, the elementary picture of ionic drift (Section 4.4.2) was sketched,
the ionic cloud around the central ion was ignored. This approximation is justified only
when the ion atmosphere is so tenuous that its effects on the movement of ions can be
neglected. This condition of extreme tenuosity (in which there is a negligible coupling
between ions) obtains increasingly as the solution tends to infinite dilution. Hence, the
simple, unclouded picture of conduction (Section 4.4) is valid only at infinite dilution.

To summarize the duality of the treatment so far: When the ion atmosphere was
treated in Chapter 3, the motion of the central ion was ignored and only equilibrium
properties fell within the scope of analysis; when the motion of the central ion under
an applied electric field was considered, the ionic cloud (which is a convenient
description of the interactions between an ion and its environment) was neglected and
only the infinite-dilution conduction could be analyzed. Thus, a unified treatment of
ionic atmospheres around moving ions is required. The central problem is: How does
the interaction between an ion and its cloud affect the motion of the ion?

4.6.2. Ionic Clouds Attempt to Catch Up with Moving Ions

In the absence of a driving force (e.g., an externally applied electric field), no
direction in space from the central ion is privileged. The Coulombic field of the central
ion has spherical symmetry and therefore the probability of finding, say, a negative
ion at a distance r from the reference ion is the same irrespective of the direction in
which the point r lies. On this basis, it was shown that the ionic cloud was spherically
symmetrical (see Section 3.8.2).

When, however, the ions are subject to a driving force (be it an electric field, a
velocity field due to the flow of an electrolyte, or a chemical-potential field producing
diffusion), one direction in space becomes privileged. The distribution function (which
is a measure of the probability of finding an ion of a certain charge in a particular
volume element) has to be lopsided, or asymmetrical. The probability depends not
only on the distance of the volume element from the central ion but also on the direction
in which the volume element lies in relation to the direction of ionic motion. The
procedure of Chapter 3 no longer applies. One cannot simply assume a Boltzmann
distribution and, for the work done to bring an ion (of charge to the volume
element under consideration, use the electrostatic work   because the electrostatic
potential  was, in the context of Chapter 3, a function of r only and one would then
infer a symmetrical distribution function.

The rigorous but unfortunately mathematically difficult approach to the problem
of ionic clouds around moving ions is to seek the asymmetrical distribution functions
and then work out the implications of such functions for the electric fields developed
among moving ions. A simpler approach will be followed here. This is the relaxation
approach. The essence of relaxation analysis is to consider a system in one state, then
perturb it slightly with a stimulus and analyze the time dependence of the system’s
response to the stimulus. (It will be seen later that relaxation techniques are much used
in modern studies of the mechanism of electrode reactions.)
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Consider therefore the spherically symmetrical ionic cloud around a stationary
central ion. Now let the stimulus of a driving force displace the reference ion in the x
direction. The erstwhile spherical symmetry of the ion atmosphere can be restored only
if its contents (the ions and the solvent molecules) immediately readjust to the new
position of the central ion. This is possible only if the movements involved in restoring
spherical symmetry are instantaneous, i.e., if no frictional resistances are experienced
in the course of these movements. But the readjustment of the ionic cloud involves
ionic movements which are rate processes. Hence, a finite time is required to reestab-
lish spherical symmetry.

Even if this time were available, spherical symmetry would obtain only if the
central ion did not move still farther away while the ionic cloud was trying to readjust.
Under the influence of the externally applied field, the central ion just keeps moving
on, and its ionic atmosphere never quite catches up. It is as though the part of the cloud
behind the central ion is left standing. This is because its reason for existence (the field
of the central ion) has deserted it and thermal motions try to disperse this part of the
ionic cloud. In front of the central ion, the cloud is being continually built up. When
ions move therefore, one has a picture of the ions losing the part of the cloud behind
them and building up the cloud in front of them.

4.6.3. An Egg-Shaped Ionic Cloud and the “Portable” Field on the
Central Ion

The constant lead which the central ion has on its atmosphere means that the center
of charge of the central ion is displaced from the center of charge of its cloud. The first
implication of this argument is that the ionic cloud is no longer spherically symmetrical
around the moving central ion. It is egg-shaped (see Fig. 4.87).

A more serious implication is that since the center of charge on a drifting central
ion does not coincide with the center of charge of its oppositely charged (egg-shaped)
ionic cloud, an electrical force develops between the ion and its cloud. The develop-
ment of an electrical force between a moving ion and its lagging atmosphere means
that the ion is then subject to an electric field. Since this field arises from the continual
relaxation (or decay) of the cloud behind the ion and its buildup in front of the ion, it
is known as a relaxation field. Notice, however, that the centers of charge of the ion
and of the cloud lie on the path traced out by the moving ion (Fig. 4.88). Consequently,
the relaxation field generated by this charge separation acts in a direction precisely
opposite to that of the driving force on the ion (e.g., the externally applied field). Hence,
a moving ion, by having an egg-shaped ionic cloud, carries along its own “portable”
field of force, the relaxation field, which acts to retard the central ion and decrease its
mobility compared with that which it would have were it only pulled on by the
externally applied field and retarded by the Stokes force [the zeroth-order theory of
conductance; see Eq. (4.183)].
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Fig. 4.87. The egg-shaped ionic cloud
around a moving central ion.

4.6.4. A Second Braking Effect of the Ionic Cloud on the Central Ion:
The Electrophoretic Effect

The externally applied electric field acts not only on the central ion but also on its
oppositely charged cloud. Consequently, the ion and its atmosphere tend to move in
opposite directions.

This poses an interesting problem. The ionic atmosphere can be considered a
charge sphere of radius (Fig. 4.89). The charged sphere moves under the action of
an electric field. The thickness of the ionic cloud in a millimolar solution of a 1:1 -valent
electrolyte is about 10 nm (see Table 3.2). One is concerned therefore with the
migration of a fairly large “particle” under the influence of the electric field. The term
electrophoresis is generally used to describe the migration of particles of colloidal
dimensions (1 to 1000 nm) in an electric field. It is appropriate therefore to describe
the migration of the ionic cloud as an electrophoretic effect.

The interesting point is that when the ionic cloud moves, it tries to carry along its
entire baggage: the ions and the solvent molecules constituting the cloud plus the
central ion. Thus, not only does the moving central ion attract and try to keep its cloud
(the relaxation effect), but the moving cloud also attracts and tries to keep its central
ion by means of a force which is then termed the electrophoretic force

Fig. 4.88. The centers of charge of the ion and of
the cloud lie on the path of the drifting ion.
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Fig. 4.89. The ionic atmosphere can be considered a
charged sphere of radius

4.6.5. The Net Drift Velocity of an Ion Interacting with Its Atmosphere

In the elementary treatment of the migration of ions, it was assumed that the drift
velocity of an ion was determined solely by the electric force arising from the
externally applied field. When, however, the mutual interactions between an ion and
its cloud were considered, it turned out (Sections 4.6.3 and 4.6.4) that there were two
other forces operating on an ion. These extra forces consisted of (1) the relaxation
force resulting from the distortion of the cloud around a moving ion and (2) the
electrophoretic force  arising from the fact that the ion shares in the electrophoretic
motion of its ionic cloud. Thus, in a rigorous treatment of the migrational drift velocity
of ions, one must consider a total force which is the resultant of force due to the
applied electric field together with the relaxation and electrophoretic forces (Fig. 4.90)

The minus sign is used because both the electrophoretic and relaxation forces act in a
direction opposite to that of the externally applied field.

Fig. 4.90. The ion drift due to a net force which
is a resultant of the electric driving force and two
retarding forces, the relaxation and electro-
phoretic forces.
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Fig. 4.91. The components
of the overall drift velocity.

Since an ion is subject to a resultant or net force, its drift velocity also must be a
net drift velocity resolvable into components. Furthermore, since each component
force should produce a component of the overall drift velocity, there must be three
components of the net drift velocity. The first component, which will be designated

is the direct result of the externally applied field only and excludes the influence
of interactions between the ion and the ionic cloud; the second is the electrophoretic
component  and arises from the participation of the ion in the electrophoretic motion
of its cloud; finally, the third component is the relaxation field component   originat-
ing from the relaxation force that retards the drift of the ion. Since the electrophoretic
and relaxation forces act in a sense opposite to the externally applied electric field, it
follows that the electrophoretic and relaxation components must diminish the overall
drift velocity (Fig. 4.91), i.e.,

The next step is to evaluate the electrophoretic and relaxation components of the net
drift velocity of an ion.

4.6.6. Electrophoretic Component of the Drift Velocity

The electrophoretic component of the drift velocity of an ion is equal to the
electrophoretic velocity of its ionic cloud because the central ion shares in the motion
of its cloud. If one ignores the asymmetry of the ionic cloud, a simple calculation of
the electrophoretic velocity  can be made.

The ionic atmosphere is accelerated by the externally applied electric force
but is retarded by a Stokes viscous force. When the cloud attains a steady-state

electrophoretic velocity  then the viscous force is exactly equal and opposite to the
electric force driving the cloud

The general formula for Stokes’ viscous force is where r and v are the
radius and velocity of the moving sphere. In computing the viscous force on the cloud,
one can substitute for r and for v in Stokes’ formula. Thus,
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from which it follows that

This is the expression for the electrophoretic contribution to the drift velocity of an
ion.

4.6.7. Procedure for Calculating the Relaxation Component of the
Drift Velocity

From the familiar relation [cf. Eq. (4.149)],

Velocity = Absolute mobility × force

it is clear that the relaxation component  of the drift velocity of an ion can be obtained
by substituting for the relaxation force  in

The problem therefore is to evaluate the relaxation force.
Since the latter arises from the distortion of the ionic cloud, one must derive a

relation between the relaxation force and a quantity characterizing the distortion. It
will be seen that the straightforward measure of the asymmetry of the cloud is the
distance d through which the center of charge of the ion and the center of charge of
the cloud are displaced.

However, the distortion d of the cloud itself depends on a relaxation process
in which the part of the cloud in front of the moving ion is being built up and the
part at the back is decaying. Hence, the distortion d and the relaxation force must
depend on the time taken by a cloud to relax, or decay.

Thus, it is necessary first to calculate how long an atmosphere would take to decay,
then to compute the distortion parameter d, and finally to obtain an expression for the
relaxation force Once this force is evaluated, it can be introduced into Eq. (4.30)
for the relaxation component  of the drift velocity.

4.6.8. Decay Time of an Ion Atmosphere

An idea of the time involved in the readjustment of the ionic cloud around the
moving central ion can be obtained by a thought experiment suggested by Debye (Fig.
4.92). Consider a static central ion with an equilibrium, spherical ionic cloud around
it. Let the central ion suddenly be discharged. This perturbation of the ion–ionic cloud
system sets up a relaxation process. The ionic cloud is now at the mercy of the thermal
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Fig. 4.92. Debye’s thought experiment to
calculate the time for the ion atmosphere to
relax: (a) the ionic cloud around a central ion;
(b) at t = 0, the central ion is discharged; and
(c) after time the ion atmosphere has
relaxed or dispersed.

forces, which try to destroy the ordering effect previously maintained by the central
ion and responsible for the creation of the cloud.

The actual mechanism by which the ions constituting the ionic atmosphere are
dispersed is none other than the random-walk process described in Section 4.2. Hence,
the time taken by the ionic cloud to relax or disperse may be estimated by the use of
the Einstein–Smoluchowski relation (Section 4.2.6)

What distance x is to be used? In other words, when can the ionic cloud be declared
to have dispersed or relaxed? These questions may be answered by recalling the
description of the ionic atmosphere where it was stated that the charge density in a
dr-thick spherical shell in the cloud declines rapidly at distances greater than the
Debye–Hückel length Hence, if the ions diffuse to a distance the central ion
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can be stated to have lost its cloud, and the time taken for this diffusion provides an
estimate of the relaxation time One has, by substituting in the Einstein–
Smoluchowski relation [Eq. (4.27)]

which, with the aid of the Einstein relation [Eq. (4.172)], can be transformed
into the expression

4.6.9. The Quantitative Measure of the Asymmetry of the Ionic Cloud
around a Moving Ion

To know how asymmetric the ionic cloud has become owing to the relaxation
effect, one must calculate the distance d through which the central ion has moved in
the relaxation time This is easily done by multiplying the relaxation time by the
velocity which the central ion acquires from the externally applied electric force,
i.e.,

By substituting the expression (4.303) for the relaxation time Eq. (4.304) becomes

The center of charge of the relaxing ionic cloud coincides with the original
location of the central ion; in the meantime, however, the central ion and its center of
charge move through a distance d. The centers of charge of the central ion and its ionic
cloud are displaced through the distance d, which is a quantitative measure of the
egg-shapedness of the ion atmosphere around a moving ion.

4.6.10. Magnitude of the Relaxation Force and the Relaxation
Component of the Drift Velocity

Consider first a static central ion. The ion may exert an electric force on the cloud
and vice versa, but at first the net force is zero because of the spherical symmetry of
the cloud around the static central ion.
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When the central ion moves, it can be considered to be at a distance d from the
center of its cloud. The net force due to the asymmetry of the cloud is nonzero. A rough
calculation of the force can be made as follows.

The relaxation force is zero when the centers of charge of the ion and its cloud
coincide, and it is nonzero when they are separated. So let it be assumed in this
approximate treatment that the relaxation force is proportional to d, i.e., proportional
to the distance through which the ion has moved from the original center of charge of
the cloud. On this basis, the relaxation force will be given by the maximum total
force of the atmosphere on the central ion, i.e., multiplied by the
fraction of the radius of the cloud through which the central ion is displaced during its
motion under the external field, i.e., Hence, the relaxation force is

and using Eq. (4.305) for d, one has

Since, however, the velocity arises solely from the externally applied field and
excludes the influence of ion–ion interactions, the ratio is equal to the applied
electric force

On inserting this into Eq. (4.307), it turns out that

In the above treatment of the relaxation field, it has been assumed that the only
motion of the central ion destroying the spherical symmetry of the ionic cloud is motion

41This total force is obtained by considering the ionic cloud equivalent to an equal and opposite charge
placed at a distance from the central ion. Then, Coulomb’s law for the force between these two charges
gives the result
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in the direction of the applied external field. This latter directed motion is in fact a drift
superimposed on a random walk. The random walk is itself a series of motions, and
these motions are random in direction. Thus, the central ion exercises an erratic, rather
than a consistent, leadership on its atmosphere.

Onsager considered the effect that this erratic character of the leadership would
have on the time-averaged shape of the ionic cloud and therefore on the relaxation
field. His final result differs from Eq. (4.309) in two respects: (1) Instead of the
numerical factor there is a factor and (2) a correction factor has to be
introduced, the quantity being given by

in which

where and are related to mobilities of cation and anion, respectively. For
symmetrical or z:z-valent electrolytes, the expression for q reduces to and that for

becomes (Table 4.18)

Thus, a more rigorous expression for the relaxation force is
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Substituting the expression (4.313) for the relaxation force in Eq. (4.301) for the
relaxation component of the drift velocity, one gets

Furthermore, from the definition (4.152) of the conventional mobility,

Eq. (4.314) becomes

4.6.11. Net Drift Velocity and Mobility of an Ion Subject to Ion–Ion
Interactions

Now that the electrophoretic and relaxation components in the drift velocity of an
ion have been evaluated, they can be introduced into Eq. (4.297) to give

If one divides throughout by X, then according to the definition of the conventional
mobility one has

An intelligent inspection of expression (4.316) shows that the mobility u of ions
is not a constant independent of concentration. It depends on the Debye–Hückel
reciprocal length But this parameter  is a function of concentration (see Eq. 3.84).
Hence, Eq. (4.316) shows that the mobility of ions is a function of concentration, as
was suspected (Section 4.6.1) on the basis of the empirical law of  Kohlrausch.
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As the concentration decreases, increases and decreases, as can be seen from
Eq. (3.84). In the limit of infinite dilution Under these
conditions, the second and third terms in Eq. (4.316) drop out, which leaves

The quantity is therefore the mobility at infinite dilution and can be considered to
be given by the expression for the Stokes mobility (Section 4.4.8), i.e.,

To go back to the question that concluded the previous section, it is clear that since
transport numbers depend on ionic mobilities, which have been shown to vary with
concentration, the transport number must itself be a concentration-dependent quantity
(Table 4.19). However, it is seen that this variation is a small one.

4.6.12. The Debye–Hückel–Onsager Equation

The equivalent conductivity of an electrolytic solution is simply related to the
mobilities of the constituent ions [Eq. (4.163)]

Thus, to obtain the equivalent conductivity, one has only to write down the
expression for the mobilities of the positive and negative ions, multiply both the
expressions by the Faraday constant F, and then add up the two expressions. The result
is
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For a symmetrical electrolyte, and Eq. (4.318) reduces to

However, according to Eq. (4.292)

Hence,

Replacing by the familiar expression (3.84), i.e.,

one has

This is the well-known Debye–Hückel–Onsager equation for a symmetrical
electrolyte. By defining the following constants

it can also be written
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Thus, the theory of ionic clouds has been able to give rise to an equation that has the
same form as the empirical law of Kohlrausch (Section 4.3.9).

4.6.13. Theoretical Predictions of the Debye–Hückel–Onsager
Equation versus the Observed Conductance Curves

The two constants

and

in the Debye–Hückel–Onsager equation are completely determined (Table 4.20) by
the valence type of the electrolyte z, the temperature T, the dielectric constant and
the viscosity of the solution, and universal constants.

The Debye–Hückel–Onsager equation has been tested against a large body of
accurate experimental data. A comparison of theory and experiment is shown in Fig.
4.93 and Table 4.21 for aqueous solutions of true electrolytes, i.e., substances that
consisted of ions in their crystal lattices before they were dissolved in water. At very
low concentrations (< 0.003 N), the agreement between theory and experiment is very
good. There is no doubt that the theoretical equation is a satisfactory expression for
the limiting tangent to the experimentally obtained     versus  curves.

One cannot, however, expect the Debye–Hückel–Onsager theory of the non-
equilibrium conduction properties of ionic solutions to fare better at high concentration
than the corresponding Debye–Hückel theory of the equilibrium properties (e.g.,
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Fig. 4.93. Comparison of the equivalent con-
ductivities of HCI and some salts predicted by
the Debye–Hückel–Onsager equation (4.321)
with those observed experimentally.
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Fig. 4.94. Deviation of the predicted equivalent conductivities from
those observed for HCI.

activity coefficients of electrolytic solutions); both theories are based on the ionic-
cloud concept. In the case of the Debye–Hückel–Onsager equation, it is seen from
Fig. 4.94 that as the concentration increases (particularly above 0.003 N), the disparity
between the theoretical and experimental curves widens.

4.6.14. Changes to the Debye–Hückel–Onsager Theory of
Conductance

The original Debye–Hückel–Onsager theory of conductance of ions in solution
takes into account the two ionic atmosphere effects in reducing the mobility and
therefore the lessening of the conductivity of the ions that occurs as their concentration
is increased (see Section 4.6.12). The original theory formed a peak in the physical
chemistry of the first half of the twentieth century, but it was first published some
three-quarters of a century ago. Moreover, as indicated in Fig. 4.94, the original theory
showed deviations from experiments even at really low aqueous concentrations. In
nonaqueous solutions, where the dielectric constants are usually lower than the 80 one
finds for water, the interionic attractions are higher (interionic forces are inversely
proportional to the dielectric constant of the solution), and hence the deviations from
the zeroeth approximation of no interionic interactions are greater. For this reason the
deviation between theory and experiment begins at even lower concentrations than it
does in aqueous solutions. Of course, if one removes some of the primitivities of the
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early theory (e.g., neglecting the fact that ions have finite size), then the concentration
range for the applicability of the theory widens.

Apart from improvements made by taking into account the fact that ions do indeed
take up some of the space in electrolytic solutions, one has to consider also that ion
association occurs in true electrolytes,

and the associated ionic molecule is a dipole, not an ion, and therefore is no longer in
the running as far as contributing to the conductance is concerned. This was allowed
for in an empirical equation due to Justice,

where    is the degree of association of the electrolyte, S is the Onsager limiting-law
coefficient, c is the electrolyte concentration, and E, and are constants. The
parameter     is related to an association constant by

where is the activity coefficient of the dipole. The is given by the relevant
expression found in the activity coefficient of the Debye–Hückel theory (see Section
3.4.4).

What is the use of an empirical equation such as Eq. (4.326)? It acts as a hanger
for the facts. One fits experimental data of as a function of c to the equation and
determines by a least-squares fitting procedure the values of and

These empirical modifications of the Debye–Hückel–Onsager theory of electro-
lytes do not yet give much physical insight into what changes in the elderly (but still
famous) theory might improve the theory of ionic conductance. A more relevant
improvement can be attributed to Fuoss and to Lee and Wheaton. Instead of thinking
about bare ions traveling in a structureless dielectric medium, these authors have taken
the ion to have three regions, as shown in Fig. 4.95. In the first of these regions, that
nearest to the ion, the water molecules are regarded as being “totally oriented” to the
ion, so that their effective dielectric constant would be that of water dielectrically

42In his derivation, Justice suggested that the distance of closest approach a involved in the determination
of  [cf. Eq. (3.120)] be replaced by the Bjerrum parameter q. While q is the distance of closest approach
of the unpaired ions that contribute to the conductance of the solution, ions separated by distances between
q and a are ion-paired and do not contribute to the conductance. The advantage of this approximation is
that a is not known a priori, whereas q is defined by Eq. (3.144).
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Fig. 4.95. Regions of dielectric saturation about i- and j-ions according
to Lee and Wheaton (W. H. Lee and R. J. Wheaton, J. Chem. Soc.
Faraday Trans. // 75:1128, 1979).

saturated, i.e., having all its orientation polarization used up by the electric field of the
ion itself. In the second region, there is only partial dielectric saturation. This region
is part of the secondary hydration. Outside these first two regions, the influence of the
ion’s field is taken to be only the long-range Coulomb forces generally used in
arguments about the properties of ionic solutions.43

On the basis of this model, Lee and Wheaton arrived at an equation for in
terms of q, the Bjerrum distance. The equation is several lines long and clearly only
fit for use in appropriate software. The application of experimental data of to the
equation allows one to find values of  and the co-sphere radius R. These values
are then taken as if they had been experimentally determined, an assumption that is
true only in a secondary way because they depend on the validity of Lee and Wheaton’ s
equation.

Another approach to the conductance of electrolytes, which is less complex than
that of Lee and Wheaton, is due to Blum and his co-workers. This theory goes back
to the original Debye–Hückel–Onsager concepts, for it does not embrace the ideas of
Lee and Wheaton about the detailed structure around the ion. Instead, it uses the
concept of mean spherical approximation of statistical mechanics. This is the rather
portentous phrase used for a simple idea, which was fully described in Section 3.12.
It is easy to see that this is an approximation because in reality an ionic collision with
another ion will be softer than the brick-wall sort of idea used in an MSA approach.
However, using MSA, the resulting mathematical treatment turns out to be relatively
simple. The principal equation from the theory of Blum et al. is correspondingly simple
and can be quoted. It runs

43These regions have been met before (Section 3.6.2) in discussions of recent models for finding activity
and osmotic coefficients. They correspond to the 1949 models for primary and secondary hydration of
Bockris [cf. the Gurney co-sphere (1971)].
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with the drift velocity under a field E, defined as

where E is the electric field applied across the solution,  is the diffusion coefficient
of the ion i, and is the individual conductance of the ion i at infinite dilution.

The application of Blum’s theory to experiment is unexpectedly impressive: it
can even represent conductance up to 1 mol . Figure 4.96 shows experimental
data and both theories—Blum’s theory and the Debye–Hückel–Onsager first approxi-
mation. What is so remarkable is that the Blum equations are able to show excellent
agreement with experiment without taking into account the solvated state of the ion,
as in Lee and Wheaton’s model. However, it is noteworthy that Blum stops his
comparison with experimental data at 1.0 M.

Blum’s use of the MSA represents a significant advance, but it does not take into
account either ionic association or Bjerrum’s very reasonable idea (Section 3.8) about
the removal of free water in the solution by means of hydration. Furthermore, Blum’s
equations do not explain the relation between conductance and concentration noted
for many electrolytes, particularly at high concentrations, that is,

There are some who see this equation as indicative that a whole different approach
to conductance theory might be waiting in the wings, as it were. As the concentration
increases, the idea of an ionic atmosphere becomes less useful and one might start at
the other end, with ideas used to treat molten salts (Chapter 5), but in a diluted form.
This would repeat the history of the theory of liquids which, in the early part of this
century, was derived from the treatment of very compressed gases but later seemed to
be more developable from modifications of how solids are treated.

4.7. DIVERSE RELAXATION PROCESSES IN ELECTROLYTIC
SOLUTIONS

4.7.1. Definition of Relaxation Processes

The term relaxation, as applied in physical chemistry (cf. Section 4.6.8), refers to
molecular processes occurring after the imposition of a stress on a system. Thus, one
can have a system at equilibrium to which a new constraint is applied (e.g., an electric
field switched on suddenly onto a dipole-containing liquid). The system is then
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constrained to a new position of equilibrium. The time it takes to change position is
called the relaxation time.

To understand better what is meant by relaxation time, consider a system under
the following equilibrium

The rate of change of A is given by

Upon the imposition of a constraint, the system reaches a new equilibrium. Moreover,
the constraint changes the rate constants that control the interconversion of states A
and B. During the first equilibrium, these were and and they become and
under the new conditions. While A is adjusting (relaxing) to its new equilibrium value,
its concentration changes from to until it reaches its new equilibrium state,

In the same way, under the constraint, the concentration of B changes to the new
value but during the relaxation it is The concentration of A then changes as
follows

and after reaching the new equilibrium state,

Therefore, Eq. (4.333) becomes

Integrating from a time 0 when to a time t when

The change of the concentration of A as it goes from the preconstraint equilibrium
value to the after-constraint equilibrium value follows the exponential change
indicated by Eq. (4.336) and shown in Fig. (4.97).

What is called the relaxation time is a somewhat arbitrary quantity: it is taken
to be the time that makes the exponential in Eq. (4.336) unity, i.e.,
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Fig. 4.97. Concentration change of species A from its
preconstraint equilibrium value to the after-constraint
equilibrium value

Hence, at the relaxation time,

A trivial calculation shows that Eq. (4.338) implies that x at time changed some
63% of the way from the initial value of  to the final value of  Thus, is some
measure of the time to complete the change caused by the constraint just as the half-life
of a radioactive element is a measure of the lifetime of a radioactive element.44   In the
next subsections, the relaxation times of certain systems will be presented.

4.7.2. Dissymmetry of the Ionic Atmosphere

One kind of relaxation time has already been discussed in Section 4.6.8, namely,
the time of adjustment to dissymmetry of the ionic atmosphere around an ion when an
applied electric field is switched on. Its understanding is basic to our picture of ionic

44And for the same sort of reason. The change in both cases follows an exponential law and the rate of
change slows down toward completion of the change so that formally the change is never quite finished.
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solutions. Thus, in the absence of an electric field, the ions randomly jump about (or
shuffle around) in all directions. When an electric field forces them to move preferen-
tially in one direction, the ionic atmosphere around the ions becomes dissymmetric—
egg-shaped—so that the longer part of the egg is behind the ion and, having more
counter charge behind it than in front, retards the ion’s forward motion.

An interesting effect in the conductivity of ions is related to the relaxation time
of their ionic atmosphere. Imagine that the electrical conductance of ionic solutions is
measured by using alternating currents of a certain frequency, let’s say 1000 counts
per second.45 Imagine also the ions moving in the solution and following the dictates
of the oscillating electric field. Since this is constantly altering its direction, for a
millisecond it pulls the cations to the right and then for a millisecond pulls them to the
left, with analogous movements but in opposite directions being forced upon the
anions.

The frequency of has been mentioned because it is typical for measure-
ment of electrical conductivity. To perform the measurement, the researcher varies the
frequency and plots the corresponding measured resistance values against
extrapolating the measured resistance in the ordinate to “infinite frequency.”

Suppose, however, that instead of making conductance measurements at, say, 10,
100, 1000,  and and performing the said extrapolation to infinite frequency,
one goes on increasing the frequency past Think again now of a given
ion and its atmosphere in the system. As the frequency increases, the ionic atmosphere
has a harder time keeping the changes in its dissymmetry in tune with the changes in
direction of drift of the ions—moving now to the right and now to the left. Below
about the ionic atmosphere manages to adjust its shape every time the ion
changes direction and present the appropriate asymmetric stance, slowing down the
ionic movements.

Eventually there is a critical frequency above at which the ionic cloud
cannot adjust anymore to the ion’s movements in the right way because there is too
much inertia to execute the rapid changes required by the oscillating applied field. The
reciprocal of this critical frequency is called the relaxation time of the asymmetry of
the ionic cloud. As a consequence, an increase in conductivity occurs at this frequency
because there is no longer more charge behind the ion than in front. This increase in
conductance at the critical frequency is called the Debye effect. It is part of the evidence
that shows that the ionic atmosphere is indeed present and functioning according to
the way first calculated by Debye.

45The reason for this is that with a direct current, an unwanted ionic layer forms at the interfaces with the
solution of the electrodes used to make contact with the outside power source. These nonequilibrium
structures at the surface–solution boundaries create a new resistance that interferes with the solution
resistance one is trying to measure. This is wiped out if an alternating current, which keeps on reversing
the structure at the interface, is applied.
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4.7.3. Dielectric Relaxation in Liquid Water

Water is not only the most abundant of all liquids on this planet but also one of
the most complex (see Section 2.4). The dielectric constant (permittivity) at frequen-
cies below about is about 78 at room temperature, and this is about one whole
order of magnitude higher than the dielectric constant of simple liquids such as carbon
tetrachloride. Kirkwood was the first to develop a model to explain why the dielectric
constant of water is so high. He pictured groups of  coupled together by means
of H bonding. His idea was that the dielectric constant of water consists of three parts.

First, there would be the part based on the distortion of the electronic shells of the
atoms making up water molecules. Because their inertia is so small, electrons have no
difficulty in keeping up with an applied field as its frequency increases. Such a
contribution is part of the permittivity of any liquid.

The second part can be viewed as the distortion of the nuclei of the atoms making
up water—how much the applied field disturbs the positions of the nuclei in the O and
H atoms of molecular water. This part is also present in all liquids.

The third contribution involves the dipole moment of the individual molecules.
In water and associated liquids, the dipoles should be taken in groups as a result of the
intermolecular H bonding (Fig. 4.98). It is this coupling of the molecules that provides
the huge permittivity of water.

Were water a simple unassociated dipolar liquid, the effect of an applied field
would be simply to orient it, to inhibit its random libration and bend the average

Fig. 4.98. The dielectric constants of
liquids as a function of their dipole mo-
ments unassociated liquids, and
= H-bonded liquids).
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direction of the molecules to lie more along the lines of the field. With water, the
molecular dipoles also feel the force of the field. The special feature is that each of the
water molecules, being bound together with H bonds, pulls other waters with it as it
bonds to the field. When one water molecule goes to obey the field and align with it,
the ones to which it is bound get a pull from the waters to which they are bound and
this helps them turn also. Thus, in an associated liquid one gets a double whammy
from the oscillating applied field. It pulls each dipolar molecule around. This is an
effect on the individual dipoles that one would find with any dipolar liquid, but there
is also a correlated additive effect due to the orienting effect of one dipole on another.

Now, what of relaxation? According to the picture drawn here (Fig. 4.99), there
should be two relaxation times. The first will be that corresponding to the state in which
the dipoles can no longer react in consonance with the applied field. At some critical
high frequency, the permittivity falls (loss of the biggest contributor—the netted
dipolar groups), and the dielectric constant falls from 78 to  at 298 K. The value of
the associated time, that is, the reciprocal of the critical frequency of the applied ac
field at which the permittivity falls, is which corresponds to a frequency
of

At frequencies above  the next thing to be exceeded is the speed at which
the nuclei in the molecules can react to changes in the direction of the field. The protons
in the nuclei have an inertia approximately 2000 times greater than that of the electrons
in the outer shell and accordingly a relaxation time much less than that of the electron
shells. This value for water is and the critical frequency is

The remaining permittivity at frequencies higher than this is due to distortion of
the electron shell of the atoms. This last and most fundamental permittivity is often
called the optical permittivity because it pertains to movements in the liquid (distortion
of the electron shells), which occur near the speed of light).

Fig. 4.99. Variation of the dielectric constant
as a function of the frequency of an applied
ac electric field.
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Much information can be obtained from the study of dielectric relaxation times
in liquids, for example, the extent to which the waters are netted together (Table 4.22).

4.7.4. Effects of Ions on the Relaxation Times of the Solvents in Their
Solutions

There are three new “effects” related to the properties of relaxation time that arise
when ions are added to water.

First, the solution’s relaxation time appears to change. If solvent molecules are
far away, say more than 1000 pm distant from an ion, the ion’s effect on the relaxation
time will be negligible. Conversely, water molecules bound to ions will be what is
called dielectrically saturated; they will be so tightly held in the ion’s local electric
field that they will not be affected by the applied electric field used to measure the
dielectric constant of the solution. The average relaxation time of all the waters will
be increased, because the water molecules attached to the ions now have, in effect, an
infinite relaxation time.

The second effect is related to the formation of ion pairs. If ion pairs or other ionic
aggregates are present, they will introduce a new relaxation time above that exhibited
by the pure solvent.

Figure 4.100 shows the Argand of water (curve 1) and the permittivity
for 0.8 M KC1 (curve 2) in water. The “structural” part of the spectrum is represented
by curve 3. The difference of curves 2 and 3 is the result of electrolytic conductance.

An Argand diagram (also called a Cole-Cole plot) is a diagram of the real  and imaginary components
of the dielectric constant of the system.
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Fig. 4.100. Argand diagrams of a completely dissociated
electrolyte and its pure solvent. Full circles: experimental
data from frequency domain measurements on aqueous
potassium chloride solutions at 25 °C. Curve 1: Argand
diagram of pure water. Curve 2: Argand diagram, =

of an 0.8 M aqueous KCI solution, Curve 3: Argand
diagram, obtained from curve 2. (Reprinted from
P. Turq, J. Barthel, and M. Chemla, in Transport, Relaxa-
tion and Kinetic Processes in Electrolyte Solutions, Sprin-
ger-Verlag, Berlin, 1992, p. 78).

The permittivity of ionic solutions, is less than that of the pure solvent and
decreases linearly with an increase in concentration. The reason for this has already
been discussed (Section 2.12.1): water dipoles held by the very strong local field of
an ion cannot orient against the weak applied field used in measuring the dielectric
constant. The average is therefore decreased.

The linear relation found between dielectric constant and concentration can be
interpreted in a first approximation as the result of a number of “irrotationally bound”
waters. Such waters would constitute the primary hydration water referred to in
Section 2.4.
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4.8. NONAQUEOUS SOLUTIONS: A NEW FRONTIER IN IONICS

4.8.1. Water Is the Most Plentiful Solvent

Not only is water the most plentiful solvent, it is also a most successful and useful
solvent. There are several facts that support this description. First, the dissolution of
true electrolytes occurs by solvation (Chapter 2) and therefore depends on the free
energy of solvation. A sizable fraction of this free energy depends on electrostatic
forces. It follows that the greater the dielectric constant of the solvent, the greater is
its ability to dissolve true electrolytes. Since water has a particularly high dielectric
constant (Table 4.23), it is a successful solvent for true electrolytes.

A second advantage of water is that in addition to being able to dissolve
electrolytes by the physical forces involved in solvation, it is also able to undergo
chemical proton-transfer reactions with potential electrolytes and produce ionic solu-
tions. Water is able to donate protons to, and to receive protons from, molecules of
potential electrolytes. Thus, water can function as both a source and a sink for protons
and consequently can enter into ion-forming reactions with a particularly large range
of substances. This is why potential electrolytes often react best with water as a partner
in the proton-transfer reactions. Finally, water is stable both chemically and physically
at ambient temperature, unlike many organic solvents which tend to evaporate (Table
4.24) or decompose slowly with time.

On the whole, therefore, ionics is best practiced in water. Nevertheless, there are
also good reasons why nonaqueous solutions of electrolytes are often of interest.
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4.8.2. Water Is Often Not an Ideal Solvent

If water were the ideal solvent, there would be no need to consider other solvents.
However, in many situations, water is hardly the ideal solvent. Take the electrolytic
production of sodium metal, for example. If an aqueous solution of a sodium salt is
taken in an electrolytic cell and a current is passed between two electrodes, then all
that will happen at the cathode is the liberation of hydrogen gas; there will be no
electrodeposition of sodium (see Chapter 7). Hence, sodium cannot be electrowon
from aqueous solutions. This is why the electrolytic extraction of sodium has taken
place from molten sodium hydroxide, i.e., from a medium free of hydrogen. This
process requires the system to be kept molten (~ 600 °C) and therefore requires the
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use of high-temperature technology with its associated materials problems. It would
be a boon to industry if one could use a low-temperature conducting solution having
the capacity to maintain sodium ions in a nonaqueous solvent free of ionizing
hydrogen. This argument is valid for many other metals which are extracted today by
electrodic reactions in fused salts at high temperatures, with the attendant difficulties
of corrosion and heat losses.

Another field attracting the development of nonaqueous electrochemistry is that
of energy storage for automobiles. Many reasons (e.g., the growing danger of  pollution
from automobile exhausts; the increasing concentration of  with its consequences
of planetary warming; and the accelerating consumption of oil reserves) make the
search for an alternative to the internal combustion engine a necessity. Nuclear reactors
with their attendant shielding problems will always be too heavy for the relatively
small power needed in road vehicles. There would be attractive advantages to a
zero-emission, vibration-free electric power source. However, the currently available
cheap electrochemical storage device—the lead–acid battery—is too heavy for the
electric energy it needs to store to offer a convenient distance range between recharg-
ing. The electrochemical energy storers available today that do have a sufficiently high
energy capacity per unit weight are expensive. The highest energy density theoretically
conceivable is in a storage device that utilizes the dissolution of lithium or beryllium.
However, aqueous electrolytes are debarred because in them, these metals corrode
wastefully rather than dissolving with useful power production. So one answer to the
need for an electrochemically powered transport system is the development of a
nonaqueous electrochemical energy storage system that incorporates alkali metal (in
particular lithium) electrodes. Many other examples could be cited in which the use
of water as a solvent is a nuisance. In all these cases, there may be an important future
for applications using nonaqueous solutions.

A nonaqueous solution must be able to conduct electricity if  it is going to be useful.
What determines the conductivity of a nonaqueous solution? Here, the theoretical
principles involved in the conductance behavior of true electrolytes in nonaqueous
solvents will be sketched. However, before that, let the pluses and minuses of
working with nonaqueous solutions (particularly those involving organic solvents)
be laid out.

4.8.3. More Advantages and Disadvantages of Nonaqueous
Electrolyte Solutions

First, compared with aqueous electrolytes, nonaqueous solutions generally are
liquid over a larger temperature range; this may include temperatures below 273 K,
which is useful for applications in cold climates. They allow the electroplating of
substances that would be unstable in aqueous solutions, such as aluminum, beryllium,
silicon, titanium, and tungsten. One can even plate high-temperature superconductors
and oxidize and reduce many organic and inorganic materials in electrosyntheses as
long as one uses organic solvents. (The reason for the preference for nonaqueous
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solutions here is the absence of protons and ions. These tend to undergo
preferential electrode reactions, evolving, respectively, hydrogen and oxygen. Such
reactions compete with the intended organic reaction and often dominate it. In a
nonaqueous solutions, the “window of opportunity,” the potential range in which
something useful may be done, is as much as 6 V.) Nonaqueous solutions are useful
in the electromachining of metals and, as mentioned earlier, in high-energy-density
batteries, which eventually could allow the use of these batteries in automobiles.

On the other hand, the drawbacks of nonaqueous solutions include their lower
conductivities and their toxicity and flammability. They need extreme purification and
handling under a highly purified inert-gas atmosphere. They may not be exposed to
the atmosphere because they will pick up water, which may give rise to the undesired
co-deposition of hydrogen.

The most important concentration range of conductivity studies for these electro-
lytes is below mol Their most determined enemy is water, which acts as a
contaminant. If one considers that 20 ppm of water is equivalent to a mol
solution of water in a nonaqueous solvent, it is no surprise that electrochemical
quantities recorded in the literature are much less precise than those for aqueous
solutions. Conductivities that are said to be as precise as are often in the
nonaqueous literature. With materials that react with water (e.g., Li and Na) the water
level has to be cut to less than 0.05 ppm and kept there; otherwise a monolayer of oxide
forms on the metals’ surfaces.

Drying of nonaqueous solutions can be carried out by various methods which
include the addition of sodium, in the form of wires, or powdered solids such as barium
oxide; alternatively, a high potential difference between auxciliary electrodes can be
used to getter the and ions. The quality of the nonaqueous work in electro-
chemistry is increasing rapidly.

4.8.4. The Debye–Hückel–Onsager Theory for Nonaqueous Solutions

An examination of the Debye–Hückel–Onsager theory in Section 4.6.12 together
with the recent developments described in Section 4.6.14 shows that the developments
are in no way wedded to water as a solvent. Does experiment support the predicted
versus curve in nonaqueous solutions also?

Figure 4.101 shows the variation of the equivalent conductivity versus concen-
tration for a number of alkali sulfocyanates in a methanol solvent. The agreement
with the theoretical predictions demonstrates the applicability of the Debye–Hückel–
Onsager equation up to at least mol

When one switches from water to some nonaqueous solvent, the magnitudes of
several quantities in the Debye–Hückel–Onsager equation alter, sometimes drasti-
cally, even if one considers the same true electrolyte in all these solvents. These
quantities are the viscosity and the dielectric constant of the medium, and the distance
of closest approach of the solvated ions (i.e., the sum of the radii of the solvated ions).
As a result, the mobilities of the ions at infinite dilution, the slope of the versus
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Fig. 4.101. Change in the equiva-
lent conductivity of some alkali sul-
focyanates with concentration in
methyl alcohol.

curve, and finally, the concentration of free ions cause the conductance behavior
of an electrolyte to vary when one goes from water to nonaqueous solvent. Before we
get into equations which will deal with such effects to some degree, it is useful to look
at the data available for nonaqueous solutions.

Among the goals of this brief survey is overcoming a common prejudice—that
nonaqueous solutions are always less conductive than aqueous ones. A clear
example is that of highly concentrated electrolyte solutions such as 5 M in
1,2-dimethoxyethane (DME), which has a conductivity comparable to that in aqueous
solutions at the same temperature.

4.8.5. What Type of Empirical Data Are Available for Nonaqueous
Electrolytes?

4.8.5.1. Effect of Electrolyte Concentration on Solution Conductivity.
It has been seen that reliable conductivity values are known only at low electrolyte
concentrations. Under these conditions, even conductance equations for models such
as the McMillan–Mayer theory (Sections 3.12 and 3.16) are known. However, the
empirical extension of these equations to high concentration ranges has not been
successful. One of the reasons is that conductivity measurements in nonaqueous
solutions are still quite crude and literature values for a given system may vary by as
much as 50% (doubtless due to purification problems).
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Fig. 4.102. Conductivity of LiBF4 in
butyrolactone at (1) 298 K and (3) 238 K,
and in tetrahydrofuran at (2) 298 K and (4)
238 K (M. Kindler, Dissertation, Re-
gensburg, 1985).

One characteristic of conductivity curves when studied in a wide concentration
range is the appearance of maxima, as shown in Fig. 4.102. These maxima are always
observed when the solubility of the electrolyte in the given solvent is sufficiently high.
They are the result of the competition between the increase of conductivity due to the

Fig. 4.103. Dependence of vs. for various salts in (a) propylene
carbonate and (b) methanol at 298 K (J. Barthel and H.-J. Gores, Pure Appl.
Chem. 57:1071,1985).
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increase of free ions and the decrease of conductivity due to the decrease of ionic
mobility as the electrolyte concentration increases. A linear relation has been found
(Fig. 4.103) between the maxima plotted for specific conductivity and the concentra-
tion at which the maxima are observed.

Another type of behavior observed when plotting conductivities versus is the
presence of temperature-dependent minima and maxima, as shown in Fig. 4.104. This
unusual behavior has been attributed to triplet-ion formation (see Section 4.8.11). In
this case Walden’s rule (Section 4.4.12) has been used to calculate the values of
equivalent conductivities at infinite dilution

4.8.5.2. Ionic Equilibria and Their Effect on the Permittivity of Electrolyte
Solutions. Most of the commonly used solvents exhibit several relaxation
processes that show up in the change of dielectric constant with frequency (see Section
2.12). These relaxation processes include rotation and libration of the molecules of the
solvents, aggregates of ionic species, and H-bonding dynamics.

Relaxation times and dispersion amplitudes46 change when ions are added. If ion
pairs are formed, a new relaxation region appears on the solvent relaxation spectrum
on the low-frequency side. Figure 4.105 shows the dielectric absorption spectrum of
LiBr in acetonitrile, and how a maximum is developed in the low-frequency region as
the concentration of solute increases and ion pairs are formed. Association constants
can be determined from these data and contribute to the identification of the ion pair
present.

4.8.5.3. Ion–Ion Interactions in Nonaqueous Solutions Studiedby Vibrational
Spectroscopy. Conventional methods to determine ion association measure a
single property of the bulk solution, that is, an average of the interactions occurring
over the time of the measurement. Microwave absorption studies exemplify such
methods to determine solvation and ion association by studying, e.g., dielectric
relaxation phenomena (see Section 2.12).

On the other hand, techniques that give information on the particular ion–ion and
ion–solvent interactions would be of great help in the electrochemistry of nonaqueous
solutions. Such help can be obtained from the various vibrational spectroscopic
techniques, which are able to probe specific species in solution.

Raman spectra are related to the concentration of the species that give rise to them
and offer a tool by which one may perform quantitative evaluations of ion-pair
equilibria. For example, the ion association constant for ion pairing between and

46The dielectric constant (or relative permittivity) is an important property in the study of electrolyte
conductivity of solutions and their solvents. However, the measurable quantity is the frequency-dependent
complex permittivity, The static permittivity (dielectric constant) is obtained by extrapolation to
zero frequency of the frequency-dependent complex permittivity  and both relaxa-
tion times and dispersion amplitudes can be obtained from these variables.  The real part  yields the
dispersion curve, and the imaginary part  the absorption curve of the dielectric spectrum.



ION TRANSPORT IN SOLUTIONS  541

Fig. 4.104. Molar conductivity of
solutions in 1,2-di-

methoxyethane at –45 and 25 °C,
showing negative temperature co-
efficients at moderate concentra-
tions (J. Barthel and H.-J. Gores,

Edge in Modern Electrochemical
Technology,” in Chemistry of
Nonaqueous Solutions: Current
Progress, G. Mamantov and A. I.
Popov, eds., VCH Publishers, New
York, 1994).

in acetonitrile has been obtained by Janz and Müller. Associated structures of
ions have been studied in nonaqueous solvents over a wide range of dielectric
constants. LiCNS in solvents of low dielectric constant, such as ethers and thioethers,
gives rise to several different types of ion aggregates. Many different types of contact
ion pairs or agglomerates have been identified, and the role the solvent has in this
association—whether the solvent separates the ions or not—has been determined. The
Bjerrum critical distance, that is, the distance at which the ion is able to interact with
other ions to form ion-pair structures (see Section 4.8.8), is of great use in these types
of studies. Table 4.25 shows some values for 1:1, 2:2, and 3:3 electrolytes in different
solvents.

It might be expected that NMR would be the ultimate technique for the identifi-
cation of ion pairs in nonaqueous solutions because of its specificity for differentiating
resonances of nuclei in ions in different environments. Several studies that involve

and among others, have been examined satisfactorily. Nevertheless, NMR
also has drawbacks, such as a lack of well-defined spectra, which make interpretation
difficult. The main reason seems to be the short lifetimes of the complexes (the ion
pair lasts probably less than the data acquisition time, which is on the order of s),
which allow only small chemical shifts to be detected.

“Solution Chemistry: A Cutting
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Fig. 4.105. Dielectric absorption spec-
trum (imaginary part of the complex per-
mittivity, of LiBr solutions in
acetonitrile at 25 °C. 1, Pure solvent; 2,
0.107 M; 3,0.194 M; 4,0.303 M; 5,0.479
M; 6, 0.657 M. S and IP indicate the
frequency regions of the relaxation proc-
esses of solvent and solute. For the sake
of clarity, experimental data are
added only for curves 1, 4, and 6 (J.
Barthel, H. Hetzenauer, and R. Buchner,
Ber. Bunsenges. Phys. Chem. 96: 988,
1992).
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It seems likely that improvements in the technology of the various spectroscopic
techniques will make it possible to increase our knowledge of ion association in
nonaqueous solutions. Knowledge of parameters such as and
is becoming indispensable for understanding ionic association processes. For example,
it is possible that the driving force to form ion pairs is a reorganizational one; that is,
it is entropic and not enthalpic in nature, as might have been expected at first.

4.8.5.4. Liquid Ammonia as a Preferred Nonaqueous Solvent.  Liquid
ammonia has been widely used as a nonaqueous solvent in the study of ion-pair
association. One of its advantages is the large range of dielectric constants—from 12
to 26—when the temperature is changed over 200 degrees. In contrast, the dielectric
constant of water does not change throughout its normal liquid temperature range
enough to move it out of the high dielectric constant range.

Furthermore, many salts are highly soluble in NH3 because of the high solvation
energies it makes possible. Finally, from the spectroscopic point of view, the small
ammonia molecule has few molecular vibrations, which eases the interpretation of
spectra observed in it—a characteristic difficult to find in other (more complex)
solvents.

The first evidence of ion pairing in liquid ammonia came from a study of nitrate
solutions by means of Raman spectroscopy. A number of bands larger than the ones
expected for “free” nitrate ions were observed. A full understanding of these bands

Fig. 4.106. The stretching region of the Raman spectra of sodium
nitrite solutions at about 1.0 M in liquid ammonia at 293 K. The second
spectrum is one of a solution in which = 4. Band A, either
ion triplet or contact ion pair containing bidentate
bands B and C, contact ion pairs and band E,

Faraday Discuss. 64:150, 1978).
“free” solvated anion                         (P. Gans and J. B. Gill, J. Chem. Soc.
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has not been accomplished yet, but researchers agree that the observed changes in
symmetry are due to ion association. Figure 4.106 illustrates these Raman spectra.

4.8.5.5. Other Protonic Solvents and Ion Pairs. Apart from information
for the solvent liquid ammonia, little spectroscopic data are available on this topic.
The reason seems to be the great complexity of spectra when solvents like methanol
or ethanol are used.

4.8.6. The Solvent Effect on Mobility at Infinite Dilution

At infinite dilution, neither relaxation nor electrophoretic effects are operative on
the drift of ions; both these effects depend for their existence on a finite-sized ionic
cloud. Under these special conditions, the infinite-dilution mobility can be considered
to be given by the Stokes mobility

Considering the same ionic species in several solvents, one has

If the radius r of the solvated ion is independent of the solvent, then one can
approximate Eq. (4.339) to47

Hence, an increase in the viscosity of the medium leads to a decrease in the infinite-
dilution mobility and vice versa.

Tables 4.14 and 4.15 contains data on the equivalent conductivity, the viscosity,
and the Walden constant for two electrolytes and several solvents. It is seen that
(1) Eq. (4.340) is a fair approximation for many solvents and (2) its validity is better
for solvents other than water.

In fact, the radius of the kinetic entity may change in going from one solvent to
another because of changes in the structure of the solvation sheath. Sometimes these
solvation effects on the radius may be as much as 100%. Hence, it is only to a rough
degree that one can use the approximate equation (4.340).

In some cases, the changes in the radii of the solvated ions are mainly due to the
changes in the sizes of the solvent molecules in the solvation sheath. Thus, in the case
of water, methanol, and ethanol, the size of the three solvent molecules increases in
the order

47Actually, Eq. (4.340) containing the mobility is a form of Walden’s rule [cf. Eq. (4.196)], which contains
the equivalent conductivity. Since —cf. Eq. (4.292)—it is easy to transform
Eq. (4.340) into the usual form of  Walden’s rule.
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Water methanol ethanol

Since the radius of the solvated ions should also increase in the same order, it follows
from Eq. (4.339) that the mobility or equivalent conductivity at infinite dilution should
increase from ethanol to methanol to water. This is indeed what is observed (see Table
4.15).

One should be careful in using a simple Walden’s rule = constant, which
assumes that the radii of the moving ions are independent of the solvent. Rather, one
should use a generalized Walden’s rule, namely,

= constant (4.339)

where r is the radius of the ionic entity concerned in a given solvent.

4.8.7. Slope of the versus Curve as a Function of the Solvent

If one takes the generalized Walden’s rule (4.339) and calculates (from
the equivalent conductivity at infinite dilution for a number of nonaqueous

solutions, it turns out that the values of in such solutions are relatively high. They
are near those of water and are in some cases greater than those of water.

One might naively conclude from this fact that in using nonaqueous solutions
instead of aqueous solutions in an electrochemical system, the conductivity presents
no problem. Unfortunately, this is not the case. The crucial quantity that often
determines the feasibility of using nonaqueous solutions in practical electrochemical
systems is the specific conductivity at a finite concentration, not the equivalent
conductivity at infinite dilution. The point is that it is the specific conductivity
which, in conjunction with the electrode geometry, determines the electrolyte resis-
tance R in an electrochemical system. This electrolyte resistance is an important factor
in the operation of an electrochemical system because the extent to which useful power
is diverted into the wasteful heating of the solution depends on  where I is the
current passing through the electrolyte; hence, R must be reduced or the increased.

Now, is related to the equivalent  conductivity at the same concentration

but varies with concentration; this is what the Debye–Hückel–Onsager equation
(4.321) was all about. To understand the specific conductivity    at a concentration c,
it is not enough to know the equivalent conductivity under a hypothetical condition of
infinite dilution. One must be able to calculate,48 for the nonaqueous solution, the

48Of course, the validity of the calculation depends upon whether the theoretical expression for the
equivalent conductivity (e.g., the Debye–Hückel–Onsager equation) is valid in the given concentration
range.
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equivalent conductivity at finite concentrations, utilizing the value and the theo-
retical slope of the versus curve. This will be possible if one knows the values
of the constants A and B in the Debye–Hückel–Onsager equation

where

and

When one looks at the above expressions for A and B, it becomes obvious that as
decreases, A  and B increase; the result is that and therefore decrease. Physically,

this corresponds to the stronger interionic interactions arising as is reduced.
So the question of the specific conductivity of nonaqueous solutions vis vis

aqueous solutions hinges on whether the dielectric constant of nonaqueous solvents is
lower or higher than that of water. Table 4.23 shows that many nonaqueous solvents
have s considerably lower than that of water. There are some notable exceptions,
namely, the hydrogen-bonded liquids.

Thus, because of the lower dielectric constant values, the effect of an increase of
electrolyte concentration on lowering the equivalent conductance is much greater in
nonaqueous than in aqueous solutions. The result is that the specific conductivity of
nonaqueous solutions containing practical electrolyte concentrations is far less than
the specific conductivity of aqueous solutions at the same electrolyte concentration
(Table 4.26 and Fig. 4.107).

In summary, it is the lower dielectric constants of the typical nonaqueous solvent
that cause a far greater decrease in equivalent conductivity with an increase of
concentration than that which takes place in typical aqueous solutions over a similar
concentration range. Even if the infinite-dilution value makes a nonaqueous
electrochemical system look hopeful, the practically important values of the specific
conductivity (i.e., the ones at real concentrations) are nearly always much less than
those in the corresponding aqueous solution. That is another unfortunate aspect of
nonaqueous solutions, to be added to the difficulty of keeping them free of water in
ambient air.
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4.8.8. Effect of the Solvent on the Concentration of Free Ions: Ion
Association

The concentration c that appears in the Debye–Hückel–Onsager equation pertains
only to the free ions. This concentration becomes equal to the analytical concentration
(which is designated here as ) only if every ion from the ionic lattice from which the
electrolyte was produced is stabilized in solution as an independent mobile charge
carrier; i.e., if there is ion-pair formation. Whether ion-pair formation occurs
depends on the relative values of a, the distance of closest approach of oppositely
charged ions, and the Bjerrum parameter When the
condition for ion-pair formation is satisfied and when the ions remain free.

Fig. 4.107. Comparison of the
concentration dependence of the
equivalent conductivity of
tetraisoamylammonium nitrate
dissolved in water and in water–
dioxane mixtures.
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From the expression for q, it is clear that the lower the dielectric constant of the
solvent, the larger is the magnitude of q. Hence, when one replaces water with a
nonaqueous solvent, the likelihood of ion-pair formation increases because of the
increasing q (assuming that a does not increase in proportion to q).

It has already been emphasized that, taken as a whole, an ion pair is electrically
neutral and ceases to play its role in the ionic cloud (Section 3.8). For the same reason
(i.e., that the ion pair is uncharged), the ion pair does not respond to an externally
applied electric field. Hence, ion pairs do not participate in the conduction of current.
A quantitative analysis of the extent to which ion-pair formation affects the conduc-
tivity of an electrolyte must now be considered.

4.8.9. Effect of Ion Association on Conductivity

In treating the thermodynamic consequences of ion-pair formation (Section
3.8.4), it was shown that the association constant for the equilibrium between free
ions and ion pairs is given by

where is the fraction of ions that are associated, is the analytical concentration of
the electrolyte, is the mean activity coefficient, and is the activity coefficient for
the ion pairs. Since neutral ion pairs are not involved in the ion–ion interactions
responsible for activity coefficients deviating from unity, it is reasonable to assume
that , in which case,

A relation between and the conductivity of the electrolyte will now be devel-
oped. The specific conductivity has been shown [cf. Eq. (4.161)] to be related to the
concentration of mobile charge carriers (i.e., of free ions) in the following way:

One can rewrite this equation in the form

Since is the fraction of ions that are not associated (i.e., are free), it is equal
to unity minus the fraction of ions that are associated. Hence,
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and using this result in Eq. (4.344)

or, from the definition of equivalent conductivity, i.e.,

one can write

If there is no ion association, i.e., then one can define a quantity which
is given by [cf. Eq. (4.163)]

By dividing Eq. (4.347) by Eq. (4.348), the result is

and

Introducing these expressions for and 1 –  into Eq. (4.342), one finds that

or
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Though Eq. (4.351) relates the equivalent conductivity to the electrolyte concen-
tration, it contains the unevaluated quantity By combining Eqs. (4.346) and
(4.348), one gets

from which it is clear that is the equivalent conductivity of a solution in which
there is no ion association but in which the concentration is Thus, for
small concentrations (see Section 4.6.12), one can express by the Debye–
Hückel–Onsager equation (4.321), taking care to use the concentration
Thus,

which can be written in the form (see Appendix 4.4)

where Z is the continued fraction

with

Introducing expression (4.354) for into Eq. (4.351), one has

or

This is an interesting result. It can be seen from Eq. (4.357) that the association
of ions into ion pairs has entirely changed the form of the equivalent conductivity
versus concentration curve. In the absence of significant association, was linearly
dependent on as empirically shown by Kohlrausch. When, however, there is
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Fig. 4.108. Plots of Eq. (4.357) for the
hydrogen halides in ethyl alcohol.

considerable ion-pair formation (as would be the case in nonaqueous solvents of low
dielectric constant), instead of the Kohlrausch law, one finds that when is plotted
against a straight line is obtained with slope and intercept
Figure 4.108 shows the experimental demonstration of this conductance behavior.

4.8.10. Ion-Pair Formation and Non-Coulombic Forces

The theory of ion-pair formation in nonaqueous solutions has been substantially
advanced by the work of Barthel, who demonstrated how important it is to take into
account the non-Coulombic forces at small ionic distances in addition to the Coulom-
bic ones used by Bjerrum. These non-Coulombic forces are represented by the mean
force potential in the region

where q' is related to Bjerrum’s parameter q (cf. Eq. 3.144).
Non-Coulombic forces are those that are responsible for different degrees of

association of electrolytes in isodielectric solvents. For example, one can see the
importance of non-Coulombic forces in respect to ion-pair formation when one
compares the temperature dependence of the association constants of alkali metal salts
and the tetraalkylammonium salts in protic solvents. The association constants of alkali
metal halides show a monotonically increasing when plotted against

49In this region, the ion pair suppresses long-range interactions with other ions in solution.
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whereas the tetraalkylammonium halide plot passes through a minimum at a tempera-
ture that is characteristic of the anion and solvent studied. Cation exchange has no
effect on the position of this minimum.

In Table 4.27, one can see the free energies, enthalpies, and entropies of
ion-pair formation. The enthalpies and entropies of the alkali metal salts are on the

the ions (e.g., of an ion pair Coulombically attracting a free ion strongly
enough to overcome the thermal forces of dissociation

From the conductance point of view, ion pairs and triple ions behave quite
differently. The former, being uncharged, do not respond to an external field; the latter
are charged and respond to the external field by drifting and contributing to the
conductance.

The extent of ion-pair formation is governed by the equilibrium between free ions
and ion pairs. In like fashion, the extent of triple-ion formation depends on the
equilibrium between ion pairs and triple ions.

order of and respectively. In contrast, the small enthalpies
and entropies of the tetraalkylammonium ions reflect lesser solvation of the cations in
the protic solvents.

4.8.11. Triple Ions and Higher Aggregates Formed in Nonaqueous
Solutions

When the dielectric constant of the nonaqueous solvent goes below about 15, ions
can associate not only in ion pairs but also in ion triplets. This comes about by one of
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Fig. 4.109. Minimum in the curve for
equivalent conductivity vs. concentration
in the case of tetraisoamylammonium ni-
trate in a water–dioxane mixture of dielec-
tric constant

Thus, the greater the stoichiometric concentration, the greater is the ion-pair formation
and triple-ion formation.

With increasing concentration, therefore, ion-pair formation dominates the
equivalent conductivity, which decreases with increasing concentration faster than if
there had been no formation. At still higher concentrations, when triple-ion formation
starts becoming significant, the equivalent conductivity starts increasing after passing
through a minimum. This behavior has been experimentally demonstrated (Fig. 4.109).

Nevertheless, minima in plots of vs. do not unambiguously prove the
existence of triple ions. Grigo showed that it is also possible to reproduce the data
for sodium iodide in butanol in terms of dielectric constant variation without the
assumption of ion triplets. In summary, doubts still exist in relation to the formation
of triple ions. Such doubts are most likely to be relieved by information that may
become available through Raman and other kinds of spectroscopy.

4.8.12. Some Conclusions about the Conductance of Nonaqueous
Solutions of True Electrolytes

The change from aqueous to nonaqueous solutions of true electrolytes results
in characteristic effects on the conductance. The order of magnitude of the equiva-
lent conductivity at infinite dilution is approximately the same in both types of
solutions and is largely dependent on the viscosity of the solvent. However, the slope
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of the equivalent-conductivity versus concentration curve is considerably more nega-
tive in nonaqueous solutions than in the corresponding aqueous solutions. This means
that the actual specific conductivity σ, which is the significant quantity as far as the
conducting power of an actual solution is concerned, is much lower for nonaqueous
solutions. Ion-pair formation worsens the conductance situation; triple-ion formation
may be a slight help.

Thus, nonaqueous solutions of true electrolytes are not to be regarded with
unrestrained optimism for applications in which there is a premium on high specific
conductivity and minimum power losses through resistance heating. One may have to
think of solutions of potential electrolytes where there is an ion-forming reaction
between the electrolyte and the solvent (Section 2.4).

Further Reading

Seminal
1.
2.

R. M. Fuoss and F. Ascania, Electrolytic Conductance, Interscience, New York (1959).
H. J. Gores and J. M. C. Barthel, “Nonaqueous Solutions: New Materials for Devices and
Processes Based on Recent Applied Research,” Pure Appl. Chem. 67: 919 (1995).

Review
1. J. Barthel and H. J. Gores, Nonaqueous Solutions: Ionic Conductors with Widely Varying

Properties, in Chemistry of Nonaqueous Solutions, G. Mamantov and A. Popov, eds., p. 36,
VCH Publishers, New York (1994).

Papers
1.
2.
3.
4.
5.

6.
7.
8.

A. N. Ogude and J. D. Bradley, J. Chem. Ed. 71: 29 (1994).
Z. H. Wang and D. Scherson, J. Electrochem. Soc. 142: 4225 (1995).
Y. Koga, V. J. Loo, and K. T. Puhacz, Can. J. Chem. 73: 1294 (1995).
Y. C. Wu and P. A. Berezansky, J. Res. Natl. Inst. Standards Technol. 100: 521 (1995).
A. A. Chialvo, P. T. Cummings, H. D. Cochran, J. M. Simonson, and R. E. Mesmer, J.
Chem. Phys. 103: 9379 (1995).
G. H. Zimmerman, M. S. Gruszkiewicz, and R. H. Wood, J. Phys. Chem. 99: 11612 (1995).
M. G. Lee and J. Jorne, J. Membr. Sci. 99: 39 (1995).
J. Barthel, H. J. Gores, and L. Kraml, J. Phys. Chem. 100: 3671 (1996).

4.9. ELECTRONICALLY CONDUCTING ORGANIC COMPOUNDS IN
ELECTROCHEMISTRY

4.9.1. Why Some Polymers Become Electronically Conducting

Although organic compounds by and large have very poor electronic conductivity
with values of specific conductivity    that are as much as times lower than those
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of a metal, certain organic polymers (conjugated compounds such as polyaniline and
polypyrrole) conduct relatively well (see Table 4.28). The actual range of  at room
temperature observed among organic polymers is large, but some organic polymers
have values of around unity. A few have specific conductivities that are even
comparable with those of metals.

The degree of conductivity of organic polymers arises from their states of relative
oxidation or reduction. In such states the polymer itself loses (for oxidation) or gains
(for reduction) electrons in its structure. The number of monomer units that gain or
lose an electron is variable but may be, e.g., 1 unit in 4. Once the polymer is
electronically charged, counterions from solution enter the polymer fibrils to guard
electrostatic neutrality. These neutralizing ions are often referred to as dopants.
However, this is not doping in the sense of semiconductor doping (see Chapter 6),
where the dopant itself  ionizes to provide the charge carriers. In conducting polymers,
the charge carriers are generated within the polymer chain. On the other hand, it is
convenient to refer to the counterions in the charged polymers as dopants, so this term
is widely used.

One model used to explain conductivity in polymeric structures is that of  polaron
formation.50 Upon oxidation, double bonds along the chain are broken, leaving a

50 A polaron is the term given to the quantum of electrostatic energy.
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Fig. 4.110. Conductivity in polymeric structures by polaron formation. (After Lyons,
1996.)

radical and a positive charge unit on the polymer chain—and this positive charge is
called a polaron (see Fig 4.110). After further oxidation, more polarons are formed
along the chain. When the polaron concentration gets high enough, the radical cations
spread out through adjacent structures across approximately eight bond lengths. At
this distance the polarons are able to “feel” each other, making contact between them.

bond is more stable than the two radical-cation bonds; that is, the of the bond
is greater than the of dissociation of the two polarons. The result is a bipolaron
that is more stable than two polarons the same distance apart. The bipolarons are then
free to move along the polymer chain, which gives rise to electronic conductivity. It
is at this point in the oxidation process that the conductivity undergoes a marked

Fig. 4.111. An example of a re-
dox polymer.

The combination of two radicals—one from each polaron—forms a new    bond. This
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Fig. 4.112. Mechanism of conduction of loaded ionomers. (After Lyons, 1996.)

increase. Once the radical components of the polarons have combined to form  bonds,
the remaining positive charges achieve high mobility along the chain.

Organic materials that conduct electricity are grouped into three classes. These
are called, respectively (see Figs. 4.111–4.113),

1. redox polymers
2. loaded ionomer materials
3. electronically conducting polymers

The redox polymers contain, as the name indeed suggests, redox-active groups
that are in turn bound to the polymer’s spine, as shown in Fig. 4.111. Electrons travel
macroscopic distances by hopping along using the redox groups attached to the spine
at points between which the hops occur.

For electrodes at which redox processes occur (Chapter 7), the redox potential E
is given by the expression

At the standard redox potential it is found that the conductivity passes through a
maximum. This maximum of conduction occurs when Hence, highly
oxidized or highly reduced polymers do not conduct well at all.
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Fig. 4.113. Examples of electroni-
cally conducting polymers.

A second type of conducting electroactive organic substance is called a loaded
ionomer (Fig. 4.112). Here the redox-active groups are mixed into the matrix of the
ion-containing substance or ionomer. It can be seen in Fig. 4.112 what happens when
an ionomer is placed in solution. As with the redox polymers, ionomers have charged
sites attached to the polymer spine. Each of these charged sites has a partner or
counterion of opposite sign. Once placed in a solution which itself contains ions that
can take part in redox processes, the ionomer takes part in an ion-exchange process.
The counterions originally belonging to the ionomer transport themselves into the
surrounding solution, and the redox-active ions which were in the solution to begin
with enter the ionomer and become electrostatically attached to the opposite charges
in the polymer that makes up the ionomer material (usually a film). The conduction
has the same mechanism as that for the redox polymer: electrons hop along between
charged sites.

It is when one reaches the electronically conducting polymers that the really high
conductances are found. There is a clear reason for this: for these substances (Fig.
4.113) the spine contains many conjugated structures and in these electrons are
delocalized. Along such conjugated structures, charge transport is very fast and the
rate-determining act is crossing from chain to chain.

Such materials also vary greatly in conductivity, depending on the state of
oxidation. However, the conductance does not maximize at the standard redox poten-
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tial—as with redox polymers—but when the polymer is in the highly oxidized state,
so that many electrons are set free (i.e.,  In the reduced state, electrons
are withdrawn and the electronically conducting polymers become insulating poly-
mers; the loss in conductivity is dramatically sudden and tends to disrupt the happiness
of the experimenter. Thus, to keep the electronically conducting polymers conducting,
they always have to be oxidized.51

4.9.2. Applications of Electronically Conducting Polymers in
Electrochemical Science

4.9.2.1. Electrocatalysis.    New materials that may act as electrocatalysts, that
is, that may improve the desired path in a given reaction, are always needed if they are
inexpensive and/or more easily handled than conventional materials. The development
of conducting polymers to act as electrocatalysts is an area of research that began in
the 1990s. It is relatively easy for organic compounds to be “adjusted,” that is, the
surface groups in the polymer can be varied to a great degree, which is just what is
needed to give catalysts a variety and power corresponding to those of enzymes.

Corresponding to this is the idea of biosensors that could be implanted in the body
for the electroanalysis of conceivably any chemical in the body. Thus, it may become
possible to adsorb enzymes on the surface of electrodes and then tune these enzymes
to react with appropriate biomolecules, as represented in Fig. 4.114. How would
conducting polymers figure in such devices? They might be useful as the biosensor
itself, since, being organic, they are more likely to interact positively with enzymes
and biochemicals than metal electrodes would.

4.9.2.2. Bioelectrochemistry. A potential area of application of conducting
polymers is in prosthetic devices. One of the difficulties in this area of research is blood
clotting, which occurs when the electrical potential of the implanted device is negative
insufficiently in potential. Blood clotting is common when metals are used as
prosthetics, but given the great variety of materials that could become suitable through
the use of electronically conducting organic polymers, the range of possible materials
is much increased. The further possibility of organically conducting materials being
able to be made into artificial organs52—replacing the difficult-to-find transplants—is
an enticing one, particularly in the future development of electrochemistry in concepts
such as the “cyborg” (Chapter 1).

51 There are other factors that also affect the degree of conduction of electronically conducting polymers
when they are in the oxidized state; one is alignment of the polymer chains. Thus, a rate-determining step
in conduction may be the transfer of electrons from one unit in the spine to another: here linearity in the
chain would help and junctions out of alignment would impede the continued passage of electrons along
the chain.

52 Although this goal is enticing, and perhaps not more than a decade away, a prerequisite to its achievement
is much more knowledge of the surface properties of electronically conducting polymers.



560 CHAPTER 4

Fig. 4.114. Glucose sensor in which the
enzyme (containing a reduced cofactor)
is oxidized directly at an electrode.

4.9.2.3. Batteries and Fuel Cells.  The work that directed commercial
attention toward the use of electronically conducting polymers was initiated by Alien
MacDiarmid at the University of Pennsylvania, who reported in 1980 on a battery
using polyacetylene in propylene carbonate. The original battery is shown in Fig.
4.115. The conductivity of the polymer is adjusted by varying the content of lithium
perchlorate, which acted as doping material in the polyacetylene. The maximum
conductivity of the polyacetylene is on the order of The energy density
obtained by this battery, which discharges with an initial current of  was
about 170 W-hr per kilogram, compared with about 30 for the lead acid-battery. Since
MacDiarmid’s pioneer work, many other batteries involving conducting polymers
have been studied. They are attractive, particularly for their potential as extremely
cheap electricity storers, perhaps for widespread use in electrically powered bicycles.

An attraction of conducting organic materials as batteries is their low densities of
about compared with for metals. Their use in aircraft might be cost
effective. Such prospects must be balanced against the relatively small potential range
in which the present electronically conducting polymers are stable.

4.9.2.4. Other Applications of Electronically Conducting Polymers. Future
applications of electrochemistry in clean energy systems (based on solar light or
chemically stimulated nuclear changes) seem possible. A major difficulty so far has
been the expense of the materials. In this area, one of the initial studies involving



ION TRANSPORT IN SOLUTIONS 561

Fig. 4.115. Schematic representation of the dis-
charge process in a rechargeable
storage battery celt (A. J. Heeger and A. G. MacDiar-
mid, in The Physics and Chemistry of Low Dimen-
sional Solids, L. Alcacer, ed., D. Reidel, Boston, 1980,
p. 45).

conducting polymers was carried out by Shirakawa et al. in the early 1990s. Their cell
is shown in Fig. 4.116.

One of the fields in which conducting polymers may have a great potential for
development is the one broadly classified as molecular electronics. The fabrication of
reliable electronic devices based on organic molecules or biological macromolecules
offers formidable challenges. Is there a possibility of utilizing conducting organic
compounds in miniaturizing electronic devices so that eventually molecules take the
place of wires, transistors, and memory devices? Electronically conducting polymers
should be useful in such advanced developments.

Another area of potential applicability of conducting polymers is monitoring the
composition of gaseous ambients. Although solid-state gas sensors are available, they
present a disadvantage: the high temperatures needed for the sensor elements to
operate. Here is where research may find conducting organic polymers useful. For
example, it has been shown by Miasik et al. that the resistance of a polypyrrole
deposited on a filter paper is sensitive to the presence of ammonia at room temperature.
Thus, the resistance increases in the presence of a reducing gas, such as ammonia, and
decreases in the presence of an oxidizing gas, such as nitrogen dioxide. The response
of such an electrode is depicted in Fig. 4.117.

4.9.3. Summary

The major difficulty in the 1990s for the development of electronically conducting
polymers lies in the limited understanding we have about the relation between the
molecular structure of the organic material and the resulting electronic conductance.
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Fig. 4.116. Experimental apparatus used by Shirakawa et al.
for photoelectrochemical measurements of a polyacetylene
electrode (H. Shirakawa, S. Ikeda, M. Aizawa, J. Yoshitake, and

Fig. 4.117. Qualitative dc resistance
response characteristic at room tem-
perature of a conductive polypyrrole
sensor to pulses of ammonia and nitro-
gen dioxide (J. J. Miasik, A. Hooper, P.
T. Mosely, and B. C. Tofield, “Elec-
tronically Conducting Polymer Gas
Sensors,” in Conducting Polymers,
Luis Alcacer, ed., Reidel, Dordrecht,
The Netherlands, 1987).
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However, the field is ripe for development, particularly in electrocatalysis for obtain-
ing cheap, light, electrochemical storage and in molecular electronics coupled with
prosthetics.

4.10. A BRIEF RERUN THROUGH THE CONDUCTION SECTIONS

We learned early on that equivalent conductivity and specific conductivity dif-
fered in that the former was not directly proportional to concentration but only
secondarily so. However, it turned out that this secondary dependence was consider-
able and arose because the mobility of the ion itself decreased with an increase in
concentration. Thus, as ions get near enough to feel each other through the interaction
of their electric fields, they slow down.

At a molecular level, this slowdown is described in terms of two effects. One of
these effects is called electrophoretic and the other, relaxational. The electrophoretic
effect is easy to understand because it is a kind of electrical friction: as one ion passes
the other within electrical hailing distance, both ions slow down in recognition of the
electrical existence of the other.

The relaxation effect is a bit more difficult to explain. It has to do with the fact
that when an ion moves in a given direction, inertia causes the ionic cloud around it
to become egg shaped, and this dissymmetric ionic cloud has more counter charge
toward its rear than toward its front. The dissymmetry of charges acts to counteract
the effect of the directional electric field applied through the solution, and so this also
slows the ion down. Both these effects combine to explain why mobility falls with
increasing concentration, for the two effects increase in strength with the square root
of the concentration.

Then, having broached the subject of the relaxation of the ion’s atmosphere—its
taking up a dissymmetric shape when the ion moves—we went on to tackle the subject
of relaxation quite generally. For example, if an electric field is suddenly applied to a
solution, it would orient the solvent dipoles therein. A new equilibrium would then be
set up. The relaxation time is a measure of the time it takes to set up this new
equilibrium. At first it seems peculiar that one should call it “a measure of ” and not
the time itself. However, the situation is similar to that of radioactive decay because
in changing from state 1 to state 2, the concentration of a radioactive nucleus decreases
exponentially with time, taking an infinite time to disappear completely. Since this is
not a practical measure, we agree to use another measure of the rate of decay—the
time to decline by 63%.

These ideas about relaxation times are applied to several phenomena, including
the changes in asymmetry of the ionic atmosphere and the unusual behavior of the
dielectric constant of water, which has three values according to the frequency with
which it is measured. They are 78, 5, and 2.

Nonaqueous solutions are one of two final topics in this section. They form a
subfield in which there has been immense progress since 1970. Nonaqueous solutions
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allow a much greater electrochemical window than do the aqueous solutions because
of course in the latter, one is subject to hydrogen evolution if one goes too negative
and evolution of oxygen if one goes too positive. In practice, in aqueous solutions,
there is only about 1.5 V of practical working potential—a relatively short range when
one recalls that the electrochemical series extends over about 4.5 V. This is one of the
reasons why the study of nonaqueous solutions has increased in intensity so much in
recent years. It opens up several new areas, and one of them concerns the strange new
ions that are formed there. This is because the dielectric constant is so much lower in
nonaqueous than in aqueous solutions and therefore the Coulombic attraction between
ions of opposite sign is higher in the former solutions, so that there is a greater tendency
to “stick together.” Dimers, trimers, and even larger aggregates occur.

Last of all, we discussed the conductivity of certain polymers. This is a fairly new
area and very promising for electrochemical devices, the breadth of application of
which may be greatly extended. We started off by pointing out why it is that only
certain types of organic materials produce relatively high concentrations of mobile
electrons that can leave the tiny prescribed molecular area in which they usually have
their being and become mobile along a whole polymer chain, by hopping along
charged sites in the polymer spine. In this way organic materials (that normally would
be considered insulators) may become significantly conducting (e.g.,

Electronically conducting polymers form so new a field that it exists more in hope
than in reality. As with the progress of much scientific research, it depends on the
amount of funding available. Nonaqueous solutions offer tremendous scope because
they allow one to introduce so much variety in properties. Among the applications
already mentioned is the possibility of making cheap electricity energy storers (or
batteries) utilizing, e.g., polyacetylene or polypyrrole. A really exciting suggestion for
the future is the possibility that we might be able to manufacture artificial organs for
the body by using conducting organics and hence avoid the wait for transplants.
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4.11. THE NONCONFORMING ION: THE PROTON

4.11.1. The Proton as a Different Sort of Ion

The reason for having a whole section in this book on proton conduction is that
this particle exhibits characteristics quite different from those of other ions; moreover,
the particle itself is tiny in dimension. Instead of carrying with it the electron shell
normal to all other ions—hence having its radius expressed in nanometers—the proton
is a nucleus only, and its radius is only about 1 fermi (F) This makes it the
smallest ion and the lightest, giving it the property of being able to approach much
closer to a neighboring ion or atom than any other ion or atom can. The tiny proton is,
however, also a mighty proton: it attracts electrons much more powerfully than, say,
Li. This particular property is shown by the magnitude of the ionization energy: 1309

for hydrogen vs.  for lithium. Apart from this display of power,
protons have a unique characteristic—they form H bonds. Partly for this reason, the
time a proton remains bare in water is small indeed; it spends less than 1% of its time
alone. The remaining 99% of its time, a proton in solution is closely attached to an

molecule, forming a hydronium ion.
Being such a famous performer, the shape and size of the hydronium ion have

been determined by NMR and other methods. The ion has a rather flat trigonal-
pyramidal structure with the hydrogen at the corners of the pyramid and the oxygen
in the middle, as shown in Fig. 4.118. Its structure resembles that of the ammonia
molecule.

A great deal can be learned about the proton simply by reviewing some energy
quantities assigned to it. The energy change associated with the interaction between a
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Fig. 4.118. The trigonal-pyramid structure of the hydronium ion

value corresponds to the interaction of and in the gas phase, not in solution.
The corresponding value of the enthalpy or heat of hydration of the proton is

How are these two values related? If the proton affinity is subtracted from
the total hydration heat of a proton, one gets then the heat of hydration of an
ion! This value is a reasonable value when one compares it with the
heat of hydration of a ion which has approximately the same
radius as the ion.

The value of for the hydration energy of the hydronium ion
indicates that it itself is hydrated. How many molecules of water hydrate it? A look at
Fig. 4.119 shows that approximately three water molecules are associated to the
hydronium ion, giving a structure of

How is the H+ a nonconforming ion? For one thing, because of its special
association with water; it is nearly always tightly bound to one water. This structure
seems to exist as an entity which itself is being solvated by other waters.

This is not the only nor the main differentiating property of the nonconforming
ion. Having seen that is usually to be found tightly attached to one would
expect that would be the transporting entity. It is not! movement contrib-
utes only about 10% of the transport of       in aqueous solution, and the main mode of
transport is, indeed, entirely different from that of other ions.

Why is it that one regards the proton as different from all other ions? There are
three reasons, all connected with its tiny size and small mass: (1) The tiny size means
that such an ion can go anywhere (e.g., diffusing in Pd). (2) Its small mass turns out
to give rise to a mechanism of motion in solution quite different from that of any other
ion (except its isotope, the deuteron). (3) In quantum mechanical tunneling (see also
Chapter 9), low mass is a vital factor. The electron, the mass of which is nearly 2000
times less than that of a proton, can easily tunnel through barriers more than 2000 pm
in thickness. The ability of the proton to tunnel is much less than that of the electron,

53In the coordination shell of an  n water molecules are compressed owing to the electric field of
the ion, and thus the molar volume is decreased compared to what one would expect from the volume of
water. By measuring molar volumes or densities as a function of temperature and comparing them with
curves calculated for an assumed value of  n, the number of coordinating water molecules can be predicted.

proton and a single water molecule, the  proton affinity of  water, is                          This
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Fig. 4.119. Schematic configuration of group
shown with an extra molecule electrostatically
bound.

but its quantum properties are still significant—and that is something that sets it apart
from heavier ions, even and certainly So this ion's properties deserve a special
section of which this is the introduction.

4.11.2. Protons Transport Differently

The starting point to elucidate the way the proton moves in solution is to consider
its movement through the solvent at a steady state—constant velocity—and at a
concentration so low that there is no interionic interaction (zeroth approximation). This
occurs when the electric driving force balances the Stokes viscous force,

Thus, the Stokes mobility is

What radius should one use? Suppose one takes a rough-and-ready measure to
consider the hydronium ion. Since it has approximately the same radius as that of a

ion, one would expect its mobility to be approximately the same, i.e., about
It is here that one encounters the great anomaly—the nonconforming

ion—for the mobility of the proton is in reality a sevenfold
excess.
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Fig. 4.120. The equivalent conductivity of HCI in
methanol-water mixtures decreases with increasing
alcohol content and reaches a minimum at about 80
mol % of alcohol. At this concentration, the abnormal
mobility, i.e., the mobility of the ion compared
with that of the ion (which is of similar size), is
reduced almost to zero.

One can pick up a clue as to the reason for this anomaly in mobility if one asks:
What is the proton’s mobility in other, related solvents? This rather vital question was
addressed and solved in a Ph.D. thesis by an Austrian student, Hanna Rosenberg, more
than 40 years ago. She found that if, for example, methanol was added to water, the
anomalous mobility of the proton was decreased (Fig. 4.120). When methanol was
replaced by other, larger alcohols (no water present), she was astounded to find that
the anomalous mobility was greatly reduced until by the time n-propanol was reached,
the difference between HCl and LiCl was greatly reduced (Table 4.29).
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Another fact came up in further work stimulated by Ms. Rosenberg: the ratio of
the proton and deuterium mobilities in water had been found to be 1.4 at 25 °C, an
unexpectedly large value. If the proton mobility was to be understood in terms of

the two ions and would be negligible. Finally, when one looks into the
conductance of protons in water at various temperatures, one expects that as with the
other ions, there will be a constant energy of activation over an appreciable range of
temperatures. The truth is, the vs. 1 /T plot shows curvature, suggesting that as
the temperature increases, the entity contributing to the transport is changing.

The proton is indeed anomalous in its conductance and mobility. These properties
do not vary with temperature in the expected, regular way. There is not the expected
near-sameness for hydronium and deuterium ion mobilities. The conductance of
protons in aqueous-non-aqueous media is wholly dependent on the mole-fraction of
water present.

4.11.3. The Grotthuss Mechanism

The use of Stokes’ law to calculate the mobility of an ion implies a mechanism
for the way an ion goes through a solution. When Stokes derived his famous equation
(the one that gives the resistive force to flow as  (Section 4.4.7)), ions had not
been thought of, and the movement that Stokes imagined was much more like a brass
ball being pulled through molasses. As the decades passed, Stokes’ law turned out to
perform remarkably well, not only for brass balls in molasses, but also right down to
particles of angstrom size, the size of normal, regular ions. So it is not unreasonable
to conclude that ions, too, have a slow, viscous kind of movement through a solvent.
The molecular-level picture is that of the ion—in the absence of an applied field—
lurching hither and staggering thither, the direction of each lurch being randomly
determined. When an electric field is applied, there is still this lurching all over the
place, as in diffusion (Section 4.2), but now there is a slightly preferred component to
the random movement—that of the ion's movement in the direction of the electric
field. It is to this drift movement—movement in the direction of the electric field—that
Stokes’ law applies.

It was demonstrated earlier in several ways that although it may well apply to
and Stokes’ law certainly does not apply to the proton, the nonconforming ion.

be no need for a whole to lumber along, taking the proton with it. Could a proton

movements of  or in a viscous fluid (i.e., if it were determined by Stokes’
law), the two values should be about the same, because the actual difference in size of

There may be a slow, viscous drifting of through the solvent. However, it does
not explain the proton’s movement.

A Swedish worker, Grotthus, had noticed that in a row of marbles in contact, the
collision of the marble at one end of the row with a new marble caused a marble at the
far end to detach itself and go off alone (Fig. 4.121). This sort of movement would
provide a rapid way for an ion to appear to travel through a solution. There would then
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Fig. 4.121. Effect of marbles colliding in a row: the
Grotthuss mechanism.

attach itself to one end of a chain of water molecules in solution and push one off at
the other end of the chain?

Stokes and Grotthuss both worked during the Victorian age. It appeared that
Stokes’ drift of whole ions though solutions had won out as far as most ions are
concerned, and Grotthuss’s concept found no resonance until in 1933 Bernal and
Fowler, in the first issue of the famous Journal of Chemical Physics, suggested a
mechanism that borrowed some things from it. In Fig. 4.122 one sees a suggestion for
the mechanism of a proton jumping from one water molecule to the next, which is
vaguely what Grotthuss had suggested. Thus, when a proton arrives at one water,
making it temporarily another different proton from the same detaches
itself from the for the next hop. It is at once clear that this “relay-like” mechanism
provides an exciting possibility for more rapid transport than Stokes’ law would allow.
There is no need for the relatively heavy to lumber along; the tiny proton itself
hops from to (making it  and new are rapidly formed across
the solution.

Fig. 4.122. Two schematic views (a) and (b) of a water
molecule adjacent to an ion. The free electron pair
(orbital) of the O of the water molecule is oriented along the O
(of H3O

+)–H+–O (of H2O) line. The jump of the proton H+ from
the H3O

+ ion to the water molecule converts the water mole-
cule into an ion and the ion into a water molecule.
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Fig. 4.123. If there are a series of proton jumps down a
line of water molecules, the net result is equivalent to the
migration of an ion (indicated by a charge on the
oxygen) along the line.

This latter impression is better seen by looking at Fig. 4.123 because there one
sees that although in reality it is always a proton that does the jumping, the positions
a, b, c represent an ensemble of waters netted together by means of H bonding, with
a proton swinging away from one water to the next, making each stationary water54

become momentarily a hydronium ion, and causing the casual onlooker to get the
impression that itself is moving through the solution.

4.11.4. The Machinery of Nonconformity: A Closer Look at How the
Proton Moves

If one is going to consider protons actually jumping from one quasi-stationary
water molecule to the next, the classical view would be to ask what fraction of them
would be sufficiently activated to get over the top of the corresponding energy barrier.
Another possibility was discussed not long after the introduction of quantum mechan-
ics in 1928 by Bernal and Fowler. In a famous paper of 1933, they applied quantum
mechanics to the possibility of tunneling through a barrier.

It is not reasonable just to say “the proton transfers to a water molecule,” because
that is a fairly vague statement. One starts asking questions like: Can it transfer to a
water molecule when it arrives from any direction? Hardly, for it has to find an orbital
on O to form a bond with—and orbitals have direction. Considering that water
molecules librate and sometimes break H bonds and rotate, the next question which
will have to be researched is: Does a water get into a proton-receiving posture all by

54Not quite stationary! Every time a water molecule is blessed by the arrival of a proton, it momentarily
become an and lumbers off a bit down the electric field gradient. But, as the proton detaches itself
again, it jumps off to the next and so each undergoes a Stokeslike movement only to a small
degree that corresponds to the short time an is attached to it.
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itself, spontaneously, or does it have to be pushed by the powerful electric field of the
approaching proton to turn around and offer an orbital to which the proton can jump?

To start finding out what happens to the energy of a proton when it leaps from
one water molecule to the next, let the system be simplified to be treated as
though it were a diatomic entity, where W is the water molecule. Then the
potential energy of any diatomic system can be represented accurately in the gas phase
and roughly in solution by a Morse-type equation,

where is the energy of the diatomic system as a function of the actual distance r at
any degree of stretching or compressing around the equilibrium distance of the two
“atoms”; is the dissociation energy of and a is a constant as a function of

the frequency of vibration. For the overall hydration energy of the proton is used,
i.e., and for the distance is 98 pm.

Knowing these parameters, one can plot the vs. r curve for the stretch of a
proton along one of the p orbitals of oxygen. This plot is known as a Morse curve and
is shown in Fig. 4.124 for our system. The energy trajectory under study here pertains
to the reaction shown in Fig. 4.125. Because of the symmetry of the system, one has
an identical curve for the approach of the proton to the second water molecule. Thus,

Fig. 4.124. Variation of the poten-
tial energy of the system
with the stretching of the
bond (Morse curve).
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Fig. 4.125. Model for proton transfer between
an ion and a favorably oriented
molecule.

the two Morse curves, one for and the other for are put together (Fig.
4.126) and form the potential-energy barrier for proton transfer.

This then is the energy barrier for the jump of a proton from one water molecule
to another over a potential-energy barrier. From this barrier, one can calculate the
energy of activation and thus the rate of proton transfer. How can one create and locate
the curves with respect to each other?

Eyring and Stearn made the first study of the probability that the proton would
have enough energy to climb over the potential-energy barrier. The basic application
of the theory of absolute reaction rates made by Eyring begins with the equation for
the frequency at which the proton crosses the barrier, i.e., the rate constant

Fig. 4.126. Potential-en-
ergy barrier for proton
transfer from to
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where denotes the free energy of activation at zero local field X. Equation (4.361)
is derived from the basic equation for all rate constants in Eyring’s famous theory.
However, the free energy of activation is modified (reduced from the proton’s forward
movement toward the negative pole) by the term Thus, X is the electric
field applied to the solution at an angle to the proton’s movement, F is the charge
per g-ion on the proton, and is the activation or half-jump distance, i.e., half the
distance the proton must travel in crossing a symmetrical barrier. This second electrical
term in the exponent represents the change in energy which acts to reduce for a
forward direction jump.

If we average over all angles of orientation of the jumping direction to the field,
from 0 to (180°), then the rate constant becomes

If one substitutes for X, for and the usual values of F and
R at room temperature, the exponential in the integral can become less than a
rather small number, and the exponential can be linearized as approximately 1 + x.

We can use this model to fix the relative positions of the minima of the Morse
curves. When the two minima are fixed, we can see from Fig. 4.127 that the two Morse

Fig. 4.127. Schematic dia-
gram to show that the activa-
tion energy for proton transfer
depends upon the distance be-
tween the minima of the Morse
curves.
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curves intersect and a potential-energy barrier is fabricated. To obtain the height of the
energy barrier, the resonance energy of the activated complex is required. In an

hydrogen bond, resonance energy would account for half the hydrogen bond
energy if the hydrogen were symmetrically distributed between the two oxygen atoms.
The hydrogen bond energy has been established as and so the
resonance energy of the activated state can be taken as This value
must be subtracted from the energy of activation calculated from the point of intersec-
tion of the Morse curves. A microscopic look at Figure 4.126 shows that the intersec-
tion point occurs at about above the zero-point energy for the proton,
and so the energy of activation is about  An important feature to note is
that the barrier height is reasonably low and that the width (the transfer distance) is of
atomic dimensions, about 35 pm.

Is Eyring’s theory on proton mobility in water successful in predicting the
experimental values of mobility? The unfortunate answer is that this classical calcu-
lation is not acceptable at all, partly because it gives mobilities that are much smaller
than those observed and it does not fit the demanding criterion of IIt is
necessary to turn to another view.

4.11.5. Penetrating Energy Barriers by Means of Proton Tunneling

A third approach to understanding the anomalous behavior of the nonconforming
ion was provided by Bernal and Fowler in the paper mentioned earlier. Their sugges-
tion was that when the proton jumped from an

converting the water on the right to an and leaving a water behind, the crossing
of the space between the two waters was accomplished, not by crossing above the
energy barrier, but by going through it. This is quantum mechanical tunneling. The
initial application of this type of novel idea—the earliest application of quantum
mechanics to chemistry—had been made by Gurney and Condon to the escape of
electrons (then called from nuclei in radioactivity. To think of protons
penetrating a barrier in this way was a big step, because a proton is 1840 times heavier
than an electron. However, in the Gamow probability function for the penetration of
barriers, the probability is proportional to the exponential of the energies of the
jumping particle, that is

where m is the mass of the particle penetrating,  is the length of the jump, and E and
U are the total and potential energies of the jumping particle, respectively. There are
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three factors that could compensate for the great decrease of the tunneling probability
obtained by increasing the mass of the particle in the expression. To begin with, the
probability of tunneling found for electrons penetrating barriers of 1 to 10 eV (the
magnitudes of barriers generally found in chemical problems) is approximately 1 up
to a distance of 2000 pm. Nevertheless, the very large increase in mass of the proton
compared with the electron—which would seem to greatly decrease the tunneling
probability—is reduced in effect by being taken as Furthermore, the
energy quantities in penetrating the barrier between

are small—around 0.1 eV, compared with the 1 to 10 eV often observed in electron
penetration problems. Putting this all together gives This is the result
of a very rough calculation, but it suggests that even if the path lengths  for jumping
were the same for an electron tunneling out of an electrode to a neighboring ion (see
Chapter 7) and for a proton passing from one water to another, the proton tunneling
probability would be at least 0.01. It is likely55 to be much more.

This is somewhat the way Bernal and Fowler conjectured the proton to behave
more than half a century ago in one of the earliest applications of quantum mechanics
to chemistry. However, their conjecture was by no means satisfactory in a numerical
sense. It was, as it were, too much of a good thing. The resulting values suggested a
velocity for the proton far greater than the high rate observed, and also a quite wrong
value for Something was still very much amiss.

4.11.6. One More Step in Understanding Proton Mobility: The Conway,
Bockris, and Linton (CBL) Theory

Rosenberg, whose work on proton conduction in the alcohols led to insights into
proton conduction, was also a coauthor of a paper that laid the foundation for the
development of the theory of proton conduction in solutions. The theory utilized the
idea of proton tunneling as outlined earlier, but added an essential limitation to its rate.
Thus, in the Eyring theory, the only prerequisite for a proton to pass from an

in water was a certain degree of activation from the ground state, which is governed
by Maxwell’s law. The answer was far too small. In the quantum mechanical theory
of Bernal and Fowler, the fraction of proton neighbors of a given water which had

55The proton’s passage turns out from model building to be about 30 pm whereas electrons jumping from
an electrode to a neighboring ion tend to jump several thousand picometers.
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Fig . 4.128. The hybrid orbi-
tals of an oxygen atom. (After
Lyons, 1996.)

attained a certain activation energy was multiplied by the Gamow probability equation
using the energy value corresponding to that of the activated proton [see Eq. (4.363)],
and this product was taken as the probability of protons penetrating the energy barrier
at a given height. The probabilities for all the heights were added to obtain the total
barrier penetration probability. Now the answer was far too large.

A new group of researchers, Conway, Bockris, and Linton, however, asked and
answered an important question: Does it not also matter whether the orbitals of the
oxygen of the water molecule to which the proton is tunneling are correctly oriented
to receive it? The oxygen atom has four orbitals (Fig. 4.128), two of them occupied
by H atoms. It would be reasonable to consider it a nonevent if a proton attempted to
tunnel to a water that was incorrectly oriented, as depicted in Fig. 4.129, and a
successful event if the orientation was adequate, as in Fig. 4.130.

There are two processes that must cooperate for a successful proton transfer, the
basis of proton mobility. The first is water reorientation and then the second is proton
tunneling. Hence the rate of proton transfer will be limited by whichever of the two
processes is slower. One must therefore suspect that the water reorientation is the
rate-determining step in the process of proton transfer (because the tunneling through
the barrier has already been shown to be too fast to be consistent with the mobility
observed).

Fig. 4.129. None of the free orbitals of the water molecule are
correctly aligned and therefore no proton transfer occurs. (After
Lyons, 1996.)
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Fig. 4.130. One of the free orbitals of a water molecule is
properly oriented and the proton is able to tunnel to the water
molecule. (After Lyons, 1996.)

Thus, in the new theory by CBL, a model was formulated in which the librational
properties of water played an important part. Even that was not the whole story. The
calculation of the specific rate of water reorientation is a complex task. One cannot
consider the reorienting water molecule as an isolated entity. If that were so, then one
could work on the only basis of the rate of rotation of a gas molecule and calculate the
rate. However, the water molecule is hydrogen bonded to other water molecules within
the 3D lattice and therefore the reorientation involves the torsional stretching and
breaking of the hydrogen bonds—an attempt that seldom succeeds.

To summarize, in order for the proton to tunnel successfully, it has to wait for the
adjacent water molecules to turn so that they provide a properly oriented orbital. If the
tunneling protons have to wait for the water molecules to turn around spontaneously
and get into the right position every time a proton arrives on the scene,56 the predicted
mobility will be low compared with experiment. Figure 4.131 shows one of the CBL
calculations for the variation of energy in this turning process. However, as is hinted
by the figure, the energy of turning and finally breaking the H bonds that hold water
down is sufficiently large that it will happen seldom and the excessive speedup due to
tunneling will be slowed so much that the reduction in rate caused by the proton having
to bide its time will lead to an overcorrection.

Therefore there must be another factor, one that helps turn the water molecule
around in the “ready” position. The force to do this is readily found; it is provided by
the field of the approaching proton itself.57 The equation for the energy of a proton–
water (ion–dipole) interaction is [see Eq. (A2.2.11)],

56This spontaneous turning of the water molecules by random motions corresponds to the acceptor water
molecule’s reorientation by the thermal motions without help from surrounding electric fields.

57This process is called the field-induced reorientation of the water molecules.
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ANGLE OF ROTATION IN DEGREES FROM INITIAL POSITION

Fig. 4.131. Angular electrostatic potential-energy curves for ro-
tation of near the ion (ion dipole contribution not
included) (B. E. Conway, J. O’M. Bockris and H. Linton, J. Chem.
Phys. 24: 834,1956).

where is the angle between the water dipole and the line between the proton and the
dipole center (Fig. 4.132), r is the ion–dipole distance,  is the dielectric constant of
the medium, and is the dipole moment of water. As  is reduced to zero,

Fig. 4.132. Angle of inter-
action between a proton
(positive charge) and a
water molecule (dipole).
Maximum interaction oc-
curs when and
therefore (After
Lyons, 1996.)
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Fig. 4.133. Proton field-induced reorientation of a water
molecule. (After Lyons, 1996.)

goes to a maximum numerical value. Hence, as the proton approaches a water turned
away from it, it swings it around and with it, its appropriately oriented orbital, as shown
in Fig. 4.133.

One last matter remains. What has been said could be a description for the
self-diffusion of the proton, where the movements are random. In conduction, there
has to be a preferential movement in the direction of the electric field applied to the
cell. CBL calculated this motion also; it is a small correction, but causes a preferential
drift toward the negative electrode.

4.11.7. How Well Does the Field-Induced Water Reorientation Theory
Conform with the Experimental Facts?

Can the CBL theory predict experimental values? The answer is a resounding yes,
and the results justify printing the lengthy story of an advance made in 1956. The rate
of this field-induced water reorientation was faster than the rate of the spontaneous
thermal rotation, but turned out to be much slower than the proton tunneling rate. Thus,
it is the field-induced rotation of water that determines the overall rate of proton
transfer and the rate of proton migration through aqueous solutions. According to the
theory, the estimated value of the proton mobility is and that observed
experimentally is

The anomalous decrease in the heat of activation with an increase in temperature
also follows from the model. An increase in temperature causes increased disorder in
the water structure, and consequently there are on average, fewer H bonds to break
when water molecules reorient. Since the water reorientation increases, the heat of
activation becomes smaller.

The decrease in anomalous mobility of the proton in the presence of added alcohol
solvents (see Section 4.11.2) could also be explained: the larger size of the alcohol
makes its reorientation more difficult than that for water and causes a fall in proton
mobility by the tunneling and solvent-oriented method.

Finally, the stringent test for the CBL model was given by the 1.4 ratio of the
mobilities of hydrogen and deuterium. Therefore, the correct calculation of this
ratio—as the model indeed makes possible—is strong evidence in favor of a mecha-
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nism involving field-assisted water reorientation as the rate-determining step in proton
tunneling.58

4.11.8. Proton Mobility in Ice

If extra confirmation of the CBL model is needed, it is given by interpretation of
the fact that in pure ice the proton’s mobility (not its conductance) is approximately
100 times greater than it is in water at the same temperature. Does this means that
water molecules turn faster in ice than in water? Intuitively, the reverse might be
expected.

However, the CBL model provides the answer. In ice, the concentration of the
proton is much less than that in water. Eventually, water molecules in ice do rotate
into the correct position, even without the help of an oncoming proton, so that they
offer an inviting orbital to any oncoming proton. With so few protons in ice, the waters
rotate spontaneously in time for the occasional oncoming proton. Every time a proton
is ready to jump, the waiting orbital is there. It is like an all-green traffic light on a
main thoroughfare, early in the morning when traffic is light. The former need for
water rotation to be spurred by proton attraction is no longer the rate-determining step,
and tunneling alone calls the shots. This tunneling is a much faster process than that
of water rotation, so that it leads to higher mobilities of protons in ice than in the water
or aqueous solutions in which the water rotation is rate determining.
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APPENDIX 4.1. THE MEAN SQUARE DISTANCE TRAVELED BY A
RANDOM-WALKING PARTICLE

In the one-dimensional random-walk problem, the expression for  is found
by mathematical induction as follows. Consider that after N – 1 steps, the sailor has
progressed a distance If he takes one more step, the distance from the origin
will  be either

or

Squaring both sides of Eqs. (A4.1.1) and (A4.1.2), one obtains

and

The average of these two possibilities must be

This is the result for when the distance traveled after N – 1 steps is exactly  In
general, however, one can only expect, for the value of the square of the distance at
the (N – l)th step, an averaged value in which case one must write

At the start of the random walk, i.e., after zero steps, progress is given by
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After one step it is

After two steps, from Eq. (A4.1.6), one has

and, using Eq. (A4.1.8),

Similarly,

Hence, in general,

This equation has been derived for a one-dimensional random walk, but it can be shown
to be valid for three-dimensional random flights, too.

The mean square distance that a particle travels depends upon the time of
travel in the following manner. The number of steps N obviously increases with time
and is proportional to it, i.e.,

where k is the constant of proportionality. Hence, by combining Eqs. (A4.1.12) and
(A4.1.13),

which may be written

where is a proportionality constant to be evaluated in the Einstein–Smoluchowski
equation.
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APPENDIX 4.2. THE LAPLACE TRANSFORM OF A CONSTANT

The Laplace transform of a constant is by definition (4.33) given by

Hence, the Laplace transform of a constant is equal to that same constant divided by
p.

APPENDIX 4.3. THE DERIVATION OF EQUATIONS (4.279) AND (4.280)

According to notation [cf. Eqs. (4.273) and (4.274)],

and

Hence, one can carry out the following expansions
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It has been stated [cf. Eq. (4.269)] that

and that [cf. Eqs. (4.276) and (4.277)]

and

Hence, substituting for  and in Eq. (A4.3.4) and setting one has

Similarly,

In terms of these expressions, Eq. (A4.3.3) becomes

By notation,

and

and therefore Eq. (A4.3.9) can be rewritten as
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Furthermore, according to the relation between current density and flux,

and

Using these relations in Eq. (A4.3.11), one has

By definition, however [cf. Eq. (4.247)],

By combining Eqs. (A4.3.14) and (A4.3.15), the result is

Similarly, it can be shown that

APPENDIX 4.4. THE DERIVATION OF EQUATION (4.354)

One can rewrite Eq. (4.353), namely,

in the form
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where for conciseness the symbol m is used instead of
It has been shown, however [cf. Eq. (4.349)], that

If this relation is used in Eq. (A4.4.2), one gets

and substituting for in the right-hand side of Eq (A4.4.2), the result is

One has again been left with on the right-hand side and thus one again
substitutes from Eq. (A4.4.2). This process of substitution can be repeated ad infinitum
to give the result

where

with

EXERCISES

1. The unit flux has been used in an attempt to simplify the solution of the
partial-derivative equation of Fick’s second law. (a) Calculate, for a univalent
ion, what current density this flux will cause. Is this current density achievable
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2.

3.

4.

5.

6.

7.

8.

9.

in a real experiment? (b) is a current density typically used in
electrochemistry laboratories. What is the flux in this case? (Xu)

Calculate the concentration gradient of a univalent ion in 0.1 M solution at 25 °C
when the electric field is and the current density at the electrode is

(Kim)

Estimate the electrophoretic velocity of a sodium ion in 0.01 M NaCl solution
under an electric field of The viscosity of the solution is 0.00895
poise. (Kim).

Ohm’s law is generally applicable to electrolytes in solution. A theory suggests
that the observed current depends on the difference of two exponential terms,
i.e., where A is zFU2RT. The term / is the distance between “sites”
in diffusion, z is the charge on the ion, and X is the applied field. Calculate the
applied field in at which Ohm’s law breaks down.

If a current of 10 A is passed between two electrodes, each of and one
is depositing Cu metal from a solution, calculate the thickness of this
deposit after 6 h.

In an instantaneous-pulse experiment, the electrode material is radioactive and
hence detectable by a Geiger counter. As the pulse is realized with an electronic
device generating a current of 10 A on a electrode for 0.1 s, with a Geiger
counter placed 1 cm from the electrode, register the trace of the radioactive
univalent ion at 450 s after the pulse. Calculate the limiting sensitivity of the
instrument. Suppose the diffusion coefficient of the ion is the typical value of

(Xu)

Estimate the diffusion coefficient of and in water at 298 K from the
equivalent conductivity at infinite dilution, and
the cation transport number (Herbert)

In experiments involving radiotracer measurements of diffusion in molten salt,
the Stokes–Einstein equation has been found to be roughly applicable. For a
series of ions, in molten salts it was found that the product

From this information, find whether the best form of the coefficient in
this expression for this case is nearer to 6 or 4.

For aqueous solutions at room temperature, the order of magnitude of the
diffusion coefficient of most of the common simple ions is

Suppose now that a capillary tube containing a solution of an
electrolyte is brought into contact vertically and very gently with a capillary of
pure water; about how far would the electrolyte diffuse into the capillary of water
in 24 hr?
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10.

11.

12.

13.

14.

15.

16.

It is easy to understand that protons must have an abnormal mechanism of
transport through the solution. Thus, protons in aqueous solution exist almost
entirely as ions yet their conductivity is several times higher than one
would expect if they transported primarily by rolling along as  Imagina-
tively discuss the alternatives. Explore what is meant by “transfer to a neighbor-
ing water molecule.” Can the proton come into this neighbor from any direction?
Why does it prefer to drift, particularly in one direction?

Write equations representing each of Pick’s laws. Exemplify the type of situation
in which each law applies. A glucose solution
diffuses across a region of 0.2 cm in length and in area. On one side, the
concentration is and on the other, effectively zero. Calculate the rate
of diffusion of the sugar across the boundary in

At first the results arising from the Einstein–Smoluchowski equation
may seem difficult to understand. Thus, the diffusion considered in the

equation is random. Nevertheless, the equation tells us that there is net move-
ment in one direction arising from this random motion. Furthermore, it allows
us to calculate how far the diffusion front has traveled. Is there something curious
about randomly moving particles covering distances in one direction? Comment
constructively on this apparently anomalous situation.

Show that the diffusion coefficient (D) is independent of the concentration for
dilute (ideal) solutions, using the example of planar steady-state diffusion.
Explain the meaning of the negative sign that is usually inserted into Fick’s first
law of steady-state diffusion. (Bock)

A definition for specific ion conductivity frequently cited in electrochemical
literature is where i is ionic species, the number of the ion in a
unit volume, the conventional mobility, the valence state, the elemental
charge, and E the electric field. Derive this definition. (Xu)

When it comes to practical application, the actual conductance (the inverse of
resistance R) instead of specific conductivity is the important variable. This is
the reason why polymer electrolytes have drawn so much attention as a potential
component of alkali-metal batteries although their specific conductivities are usually
low compared with those at nonaqueous electrolytes
Calculate the conductance of  in poly(ethylene oxide) and propyl-
ene carbonate, respectively. The former is fabricated into a film of 10 Tm thickness
and the latter is soaked with porous separator of 1 mm thickness. (Xu)

A conductance cell containing 0.01 potassium chloride was found to have a
resistance of 2573 Ohms at 25 °C. The same cell when filled with a solution of
0.2 N acetic acid had a resistance of 5085 Ohms. Calculate (a) the cell constant,
(b) the specific resistances of the potassium chloride and acetic acid solutions,
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17.

18.

19.

20.

21.

22.

23.

24.

25.

(c) the conductance ratio of 0.2 N acetic acid, utilizing the following data at 25
specific conduc-

A 0.2 N solution of sodium chloride was found to have a specific conductivity
of at 18 °C; the transport number of the cation in this
solution is 0.385. Calculate the equivalent conductance of the sodium and
chloride ions. (Constantinescu)

A conductance cell having a constant k of is filled with 0.01 N
potassium chloride solution at 25°C; the value of  for this solution is

If the specific conductance, of the water employed as solvent is 1.0
what is the measured resistance of the cell containing the solution?

(Constantinescu)

The ionic conductivity at infinite dilution of a divalent copper ion is
and its ionic radius, Calculate the primary solvation

number of taking pm for the radius of the water molecule.
(Herbert)

Calculate the equivalent conductivity of a 0.1 M NaCl solution. The diffusion
coefficient of is and that of is

(Kim)

Calculate the conductivity of Nal in acetone when the radii
for and are 260 and 300 pm, respectively. (Kirn)

Calculate the conventional mobility of a sodium ion in 0.01 M NaCl. The
viscosity of the solution is 0.00895 poise and the Stokes radius of a sodium ion
is 260 pm. (Kim)

In acetonitrile  the equivalent conductivity for very dilute
solutions of KI is 198.2 at 25 °C. Calculate the equivalent conductance of KI in
a similar concentration range in acetophenone.

Calculate the specific and equivalent conductivity of LiBr using the data in the
text.

A student has to determine the equivalent conductivity at infinite dilution for
KC1, NaCl, and solutions and the transport numbers of the ions
in these solutions. He managed to determine only

 and and wrote them in a table:
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26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Assuming that the determined values are correct, help him fill in the blanks in
the table without doing any further experiments. (Herbert)

Given the transport number of in  and of
in KC1, calculate the transport number of  in a solution
containing both 0.001 M and 0.01 M KC1, neglecting the variation of t
and with concentration. (Herbert)

A current of 5 mA flows through a 2-mm inner-diameter glass tube filled with
1 N          solution in the anode compartment and with a
solution in the cathode compartment. The interface created between the two
solutions moves 6.05 mm toward the anode in 10 min. Calculate the transport
number of the sulfate ion in this solution. (Herbert)

In a 1:1 electrolyte, measurements showed diffusion coefficients of
for the cation and for the anion. Calculate the transport

number of the anion.

Calculate the absolute mobility of a sodium ion when the drift velocity is
under an electrical field of  (Kim)

Calculate the conventional mobility of a sodium ion in aqueous solution using
the diffusion coefficient of at 25 °C. (Kim)

Calculate the radius of the solvated sodium ion in aqueous solution when the
absolute mobility of the ion is The viscosity of the
solution is 0.01 poise. (Kim)

The mobility of a cation is and that of the accompanying
anion is Calculate the specific conductivity of a
M solution.

A tube of glass 60 cm high is closed at one end, blue copper sulfate hydrate
crystals are placed at the bottom, and water is introduced. Calculate how far a
blue color will have spread upward after 1 min, 1 day, 1 week, and 1 month.

Ions are pumped into a system electrochemically. At a short burst of
dissolution of an electrode is caused, giving rise to ntotal ions, which then begin
to diffuse away from the source. Seek in the text the appropriate equation by
which one may know the number of ions at a distance x and time t. This is a
plane-source problem. Thus, Cu ions could be dissolved from a Cu plate filling
the end of a tube of solution. The question is how many ions would have diffused
11 cm in 300 s?

Imagine, now, a horizontal tube of dilute KC1 solution. Exactly in the middle is
a thin slab of smooth, solid copper sulfate covered with an insoluble protective
plastic layer, suddenly removed at t = 0. At x (which can be positive for the
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36.

37.

38.

39.

40.

41.

42.

43.

right-hand side of the slab and negative for the left) equals zero, the
begins to dissolve and diffuse in both directions. Draw a qualitative

schematic diagram, the concentration of (taken to be unity at on
the ordinate and the distance x in either direction on the abscissa. On the diagram,
plot the concentration (a) for a very long time, (b) for a day, and (c) for
an hour.

The ionic mobilities given in tables are around What would
be the corresponding order of magnitude for the absolute mobility (the velocity
under an accelerating force of

A saturated solution of silver chloride, when placed in a conductance cell with
a constant has a resistance of at 25 °C. The resistance
of the water used as solvent was found to be in the same cell.
Calculate the solubility S of the salt at 25 °C assuming it to be completely
dissociated in its saturated solution in water. (Constantinescu)

Utilize the calculated values of the thickness of the ionic atmosphere in 0.1
N solutions of a univalent electrolyte in (a) nitrobenzene, (b) ethyl alcohol, and
(c) ethylene dichloride to calculate the relaxation times of the ionic atmospheres.
(Constantinescu)

Estimate the time for an ionic cloud to relax around a sodium ion in 0.1 M NaCl
when the drift velocity is under an electrical field of
cm–1. (Kim)

In the text, a discussion of what happens to an ionic atmosphere when the ion at
its center is discharged gives rise to an equation for the relaxation time of the
ion atmosphere (as it disperses). Find such an expression. Apply it to find the
time the ionic atmosphere takes to relax around ions in a 0.01 M NaCl
solution when the diffusion coefficient of is

The diffusion coefficient of an ion in water is It seems
reasonable to take the distance between two steps in diffusion as roughly the
diameter of a water molecule (320 pm). With this assumption, calculate the rate
constant in for the ion’s diffusion.

Assume that a solution (100 ml) containing is reduced at a constant current
density, (j), of employing planar electrodes of area.
Calculate the time after which the concentration of would
have decreased by 10%. (Bock)

An investigator wants to study the Debye effect of diluted NaCl solution at room
temperature but has no clue about what frequency range he should look at. Please
help him. The diffusion coefficient of 0.001 M NaCl solution is

(Xu)
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44.

45.

Calculate the junction potentials for the following situations, (a) 0.1 M HC1/0.01
M HC1, (b) 0.1 M KC1/0.01 M (Kim)

From data in the text, calculate the degree of association in NaCl in a 2 M
solution.

PROBLEMS

1.

2.

3.

4.

5.

In the experiment described in Exercise 6 it was found that at a certain time the
Geiger counter registered a maximum ion flux, i.e., the intensity of the radiation
has a maximum with respect to time. It was also found that by placing the Geiger
counter farther away from the electrode, the time at which the maximum occurs
becomes longer, and the peak intensity of the maximum decreases rapidly.
Justify this observation and evaluate its usefulness in experimentally measuring
diffusion coefficients of ions. (Xu)

Does the ion valence affect the statement that the ion diffusion coefficient can
be considered a constant? Take electrolytes of the z:z type, for example, 1:1 and
2:2, and compare their diffusion coefficient variation over the concentration
range of 0.1 to (Xu)

The Einstein–Smoluchowski equation, gives a measure of the
mean-square displacements of a diffusing particle in a time t. There is the
mean-square distance traveled by most of the ions. Common observation using
dyes or scents shows that diffusion of some particles occurs far ahead of the
diffusion front represented by the equation. Determine the distance
of this Einstein–Smoluchowski diffusion front for a colored ion diffusing into
a solution for 24 hr  Determine for the same solution
how far the farthest 1% of the total diffused material diffused in the same time.
Discuss how it is possible that one detects perfume across the space of a room
in (say) 30 s.

In a molten salt solution of in KC1, radiotracer measurements of the
diffusion coefficient of Cd at 470 °C showed the heat of activation to be

A rough calculation of the entropy of activation showed this to be small,
about When the composition of the melt is 66% KC1, the
diffusion coefficient is  Use these data to examine which of
the two models for transport in liquids—jumping from site to site or shuffling
along—is favored.

There are several ways of expressing ionic mobility. According to one of them,
the absolute mobility, is the velocity of an ion under an applied force of 1
dyne. The conventional mobility,  on the other hand, is the velocity under
the force exerted on an ion by its interaction with an electric field of 1
Deduce the relation between  and



594 CHAPTER 4

6.

7.

8.

9.

10.

11.

The self-diffusion coefficients of and in molten sodium chloride are,
respectively, exp(–8500/RT) and (a)
Use the Nernst–Einstein equation to calculate the equivalent conductivity of the
molten liquid at 935°C. (b) Compare the value obtained with the value actually
measured, 40% less. Insofar as the two values are significantly different, explain
this by some kind of structural hypothesis.

It is normal to think that positive cations are reduced and deposited at negative
cathodes in electrolysis and negative anions react at anodes to be oxidized.
Although this is indeed the norm, there are a number of cases where negative
anions undergo reaction at negative cathodes. A well-known example is that of
the chromate anion, which is the entity from which chromium metal plates out.
Consider the phenomenon in terms of the Nernst–Planck equation. Using a 2:2
electrolyte, and

calculate the needed to make anion deposition at a cathode possible.

Blum has developed an MSA approach to conductance (Equation 4.328). It
applies well in representing conductance as a function of concentration. Con-
versely, it neglects established characteristics of electrolytes, such as their
hydration (which changes with concentration and hence affects the ionic mobil-
ity) and association (which has been measured spectroscopically and calculated
theoretically to be substantial in the concentration region worked on by Blum).
Examine Blum’s equation in this text. Compare his treatment with that of Lee
and Cheaton. Does parametrization play a part in explaining why Blum gets the
right results with a model that neglects established aspects of the structure of the
moving particles?

The equivalent conductivities of KC1 and aqueous solutions at 25 °C
were estimated as 146.95 and 124.11 respectively. Calculate the
molar and the specific conductivities when the concentrations of both solutions
were g-eq per What would be the measured resistance of these
two solutions when two planar Pt electrodes of area and 0.5 cm apart are
employed? Measurements of the specific conductivity and hence of the solution
resistance are usually carried out under a small ac field. Explain why a small ac
field is used. (Bock)

Walden’s empirical rule states that the product of the equivalent conductivity
and the viscosity of the solvent should be constant at a given temperature.
Explain the data in Table P.1, which were obtained for NaI solutions in several
different solvents at 25 °C. Calculate the radius of the moving entity in acetone,
applying Walden’s rule. (Bock)

(a) Estimate the concentration of the supporting electrolyte (i.e., KC1) which
must be added to a M HC1 solution in order to study the diffusion of protons
using the data in Table P.2. (Bock)
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12.

13.

(b) Explain the differences between the cation transference numbers listed in
Table P.3.

According to Faraday’s laws of electrolysis, an amount of electricity (i.e.,
number of electrons) will cause the equivalent weight of an ion in solution to
react at the electrode. In a very simple case, one might envisage the deposition
of (needing 1 mole of electrons per mole of Ag) to deposit at the negative
electrode or cathode of an electrolytic cell. Correspondingly, at the other
electrode, one might imagine an anodic oxidation to be occurring so that 1 mole
of  (say) would be oxidized to 1 mole of  At each electrode, the same
number of electrons would be transferred, and the same number of moles of
reactant affected. This sounds simple and expected. However, there is an
apparent problem. To react at the electrodes, ions have to be transported through
the solution to the interface at the electrode at a sufficient rate. This rate is a
fraction of the current given by the transport number. All would be well if each
transport number were exactly 0.5. However, this is not the case because
transport numbers vary greatly. In extreme cases, for very large ions, they tend
to be zero. Explain, with equations and diagrams, how Faraday’s laws can still
be obeyed.

It is desired to know the transport number of protons in trifluoromethanesulfonic
acid. The actual measurements made were of tritium self-diffusion and the result
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obtained for 5 M at 80 °C was The relative
values of the mobilities of and are (according to a modeling hypothesis)

As far as is concerned, this can be obtained from the
Stokes–Einstein equation. The necessary viscosity data are shown in Figure
P4.1. Calculate the transport number of  in at 80 °C. (The radius
of  can be obtained from models.)

14. Ohm’s law implies that the equivalent conductivity is independent of the
strength of the applied electric field. This is certainly so for a very wide variety
of applied fields, 1 to in fact. However, Wien showed that (with
appropriate precaution taken against heating of the solution, etc.), the equivalent
conductivity of electrolytes undergoes a substantial increase at about
By appropriate consideration of the ionic atmosphere and its time of relaxation,
show that a credible model to explain the above is that the high applied field

Fig. P.4.1. Plot of log vs. K for at
different concentrations.
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15.

16.

17.

causes the central ion to travel so fast that in fact the ionic atmosphere does not
have time to form around the ion as it travels through the solution.

(a) Derive and plot the relations for variation in ion concentration at the surface
of the electrode, under conditions of constant flux and instantaneous pulse,
respectively, (b) In the constant flux-induced diffusion, the time when the ion
concentration at the electrode surface reduces to zero is called the transition time,
and is designated as Derive an expression of and comment on its physical
significance. (Assume that in the constant flux experiment the concentration
change is only caused by diffusion; i.e., the contribution of ion migration to
concentration change is suppressed and therefore negligible.) (Xu)

Calculate the junction potentials for the following situations, (a) 0.1 M HC1/0.1
M KC1, (b) 0.1 M HC1/0.01 M Refer to Table P.4. (Kim)

A two-compartment electrochemical cell contains NaCl in one compartment and
KC1 in the other. The compartments are separated by a porous partition.
Concentrations of both the electrolytes are equal. If and are the
equivalent conductivities of the two solutions, show that the liquid junction
potential is given by
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18.

19.

20.

(a) What are the liquid–liquid junction potentials for a cell consisting of HC1
(0.1 M) in contact with KC1 when (a) the concentration of KC1 is 0.1 M and (b)
a saturated KC1 solution (i.e., 4.2 M) is employed? Refer to Table P.5.

(b) Discuss any practical advantages of selecting KC1 and/or changing the
concentration of the electrolyte in one half-cell. Also consider the factors that
could introduce deviations between the calculated and measured values of
(Bock)

In the study of nonaqueous electrolytes, the ion-pair effect is a severe factor
affecting ion conduction. The degree of association of salts in nonaqueous
solvents (or the solubilizing ability of the different solvents toward the salt) is
often estimated by comparing the Walden product, that is, Justify this
method and explain what hypothesis is included and how it holds. (Xu)

The Einstein–Smoluchowski equation, is a phenomenological
equation derived for diffusion along one coordinate. (For example, after the
release of a barrier, along a tube containing a liquid.) However, it also applies
to any medium. Suppose, now, that metal ions, (e.g., Pt) are deposited on a Pd
substrate. Calculate how far the Pt would diffuse into the Pd in 6 weeks. (The
diffusion coefficient of Pt into Pd can be estimated from other data as

at 295 K.)

MICRO RESEARCH PROBLEMS

1.

2.

(a) In an electrochemical analysis experiment, a univalent ion in a
solution with a large amount of indifferent electrolyte is constantly oxidized at
the electrode with a current density of  Calculate at 0.05 s after the
constant current is switched on, the ion’s concentration at and

from the electrode, respectively. The diffusion coefficient of the ion
is at 250°C. Use the error function table in the text if necessary, (b)
Calculate the concentration at  and at 0.5 s
after the constant flux is switched on. Compare the results obtained at 0.05 s. (c)
Based on the above results and results of Problem 15, qualitatively draw the
three-dimensional distribution of the ion with respect to both time t and distance
x. (Xu)

From several points of view (for example, in battery technology), it is extremely
important to have solutions of maximum specific conductivity. Basically, the
specific conductivity increases proportionally to the concentration of ions. On
this simplistic ground, it would seem important to have as high a concentration
as possible up to the solubility limits. However (see the work of Haymet
described in Chapter 3), increasing concentration leads to an increase of ionic
association which decreases the concentration of conducting entities. Also, as
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the concentration increases, the mobility decreases. By investigating the material
in the text and in books of data, propose a solution (aqueous or nonaqueous,
including a room-temperature molten salt) that would have a maximum conduc-
tivity at 25°C. Estimate its value. Do not omit considering the effect of viscosity
and the insights of the Stokes–Einstein equation on the diffusion coefficient and
hence (through the Nernst–Einstein equation) on mobility and conductivity.





CHAPTER 5

IONIC LIQUIDS

5.1. INTRODUCTION

5.1.1. The Limiting Case of Zero Solvent: Pure Electrolytes

Modern electrochemistry is concerned not only with systems based on aqueous
solutions but also with solvent-free systems. Indeed, it is in such systems that many
important electrochemical processes are carried out, such as the production of metals
(aluminum, sodium, and magnesium) and the development of high-energy-density
batteries.

The rationale behind the use of (and the search for) media other than water will
be restated (see also Section 4.8). In aqueous media, electrode reactions involving
hydrogen ions and hydroxyl ions may compete with and even supplant the desired
electrochemical process (as in the deposition of magnesium from aqueous solutions).
Furthermore, in technologies based on the conversion of chemical energy into electri-
cal energy and vice versa, the desired rate of conversion may be limited by the
conductivity of the solution: when working with pure electrolytes (as in eutectics such
as those formed by LiCl-KCl), conductivity is never limiting.

Some of the difficulties associated with carrying out processes in aqueous solu-
tions, particularly the undesired competition from hydrogen and oxygen evolution,
can be sometimes overcome by using nonaqueous solvents consisting usually of
organic substances (e.g., acetonitrile) to which are added a solute that dissociates in
that solvent. However, often this is not a good approach just because of the low specific
conductivities of such solutions (see Section 4.8.5) and their tendencies to absorb water
from the surroundings.

So the question arises: Why have a solvent at all? This limiting case of an aqueous
or a nonaqueous ionic solution from which all the solvent is removed is a pure liquid
electrolyte. Conceptually, this definition is accurate. Operationally, however, if one
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Fig. 5.1. An ionic crystal can be dismantled either
by the action of a solvent or by the action of heat.

removes solvent molecules from a solution by evaporation, for example, one is left
with ionic crystals, pure solid electrolyte. A further step in conversion from this solid
to the pure liquid form is necessary.

5.1.2. Thermal Loosening of an Ionic Lattice

The process of dissolution of a true electrolyte was described in Chapter 2. The
basic picture is that the ions in an erstwhile-rigid ionic lattice succumb to the strong
attraction1 of the solvent molecules and follow them into solution, executing a random
walk there as free, stable solvated ions. The result is an ionic solution that has the
ability to conduct electricity by means of the preferential drift of ions in the direction
determined by the applied electric field and the charge on the ion. The disassembly of
the ionic lattice was achieved by the solvent overcoming the Coulombic cohesive
forces holding together the ions in the regular arrangement called a lattice (Fig. 5.1).

A solvent, however, is not the only agency that can cause an ionic lattice to fall
to pieces. Heat energy also can overcome the cohesive forces and disrupt the ordered
arrangement of ions in a crystal (Fig. 5.1). This process of melting results in a pure
liquid electrolyte, a system having a conductance several orders of magnitude larger
than that of the corresponding solid (Table 5.1).

1In the case of aqueous solutions, the forces are essentially ion–dipole and ion–quadrupole in character.
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5.1.3. Some Differentiating Features of Ionic Liquids (Pure Liquid
Electrolytes)

A common type of ionic lattice is that of a crystalline salt. One such ionic lattice
encountered in everyday life is sodium chloride. Molten sodium chloride is a typical
liquid electrolyte and displays the characteristics of many liquid electrolytes.2

An appreciation of the properties of liquid electrolytes can be gained by a
comparison between molten ice (water) and molten sodium chloride (Table 5.2). Both
liquids are clear and colorless. Their viscosities, thermal conductivities, and surface
tensions near their melting points are not very different.

In fact, one can go further and make the following statement: Molten salts look
like water and not far above their melting points have viscosities, thermal conductivi-
ties, and surface tensions on the same orders of magnitude as those of water. In general,
however, and with the important exception of some  organic systems,
most fused salts are stable as liquids only at relatively high temperatures (500 to 1300
K) (Table 5.3).

One can quote exceptions to these generalizations. The tetraalkylammonium salts
as a class are liquid at temperatures below 300 K. There are liquid electrolytes—pro-
duced from dissolving into some complex organics—which are liquid at room
temperature (Tables 5.3 and 5.4). Above the normal range of 300–1300 K is another
set of molten electrolytes, the molten silicates, borates, and phosphates, for which the
characteristic temperature range is 1300–2300 K (Tables 5.5 and 5.6).

5.1.4. Liquid Electrolytes Are Ionic Liquids

The crucial difference between molten salts and molten ice lies in the values of
the specific conductivity (Table 5.7). Fused salts have about  times greater specific
conductivity than fused ice.

The temptation to ascribe the high conductance of fused salts to conduction by
electrons must be rejected. The conductivity of a molten salt is high compared to that
of water; but it is ten thousand times lower than that of a liquid metal, such as mercury
(Table 5.8).

2The terms pure liquid electrolyte, ionic liquid, fused salt, and molten salt are used synonymously.
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Fused salts conduct by means of the preferential drift of ions in the direction of
applied electric fields. They are in fact ionic liquids, that is, liquids containing only
ions, the ions being free or associated (see Section 5.4).

Another class of ionic liquids consists of the molten oxides. These are highly
conducting liquids formed by the addition of a metal oxide to a non-metal
oxide These systems melt at much higher temperatures than the molten
salts. Some properties of the molten oxides are shown in Table 5.5. To develop a
perspective on the properties of liquid electrolytes, some properties of water, liquid
sodium, an aqueous solution of NaCl, fused NaCl, and a mixture of fused and

are shown in Table 5.6.

5.1.5. Fundamental Problems in Pure Liquid Electrolytes

In dealing with aqueous and nonaqueous solutions of electrolytes, the procedure
was first to seek a picture of the time-averaged structure of the electrolytic solution
and second to understand the basic laws of ionic movements. The picture that emerged
was of ions and solvent molecules interacting together to form solvated ions; of ions
interacting with each other to form ionic clouds and associated ion pairs or complexes;
and of all these entities executing an aimless random walk at equilibrium, which
becomes a directed drift under a concentration gradient or an external electric field.
The problems in pure liquid electrolytes are analogous, though more difficult to treat
mathematically because of the increased energy of interactions between the ions (com-
pared with those in aqueous solution) arising from the short distance between them.

The first problem can be defined as follows: What idealized model could best
replicate a solvent-free system of charged particles forming a highly conducting ionic
liquid? In the case of the aqueous solution, it was easy to understand the drift of ions
at the behest of the applied electric field. Positive and negative ions separated by large
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Fig. 5.2. In an aqueous solu-
tion,  the  solvent  separates  the
drifting ions.
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Fig. 5.3. In an ionic liq-
uid, there is no solvent
separating the drifting
ions.

stretches of water drift in opposite directions (Fig. 5.2). In a pure ionic liquid, however,
there is no water for the ions to swim in; the ions move about rather aimlessly among
themselves (Fig. 5.3). When an external field is switched on, how is it that the ions are
able to move past each other? Will not the large interionic force make them stick
together, forming a poorly conducting ionic lattice? The situation appears puzzling.

What is the essential difference between the solid form and the liquid form of an
ensemble of particles? This is a question that is relevant to all processes of fusion, e.g.,
the process of solid argon3 melting to form a liquid. In the case of ionic liquids, the
problem is more acute. One must explain the great fluidity and corresponding high
conductivity in a liquid that contains only charged particles in contact.

The second problem concerns an understanding of the sharing of transport duties
(e.g., the carrying of current) in pure liquid electrolytes. In aqueous solutions, it was
possible to comprehend the relative movements of ions in the sense that one ionic
species could drift under an electric field with greater agility and therefore transport
more electricity than the other until a concentration gradient was set up and the
resulting diffusion flux equalized the movements when the electrodes were reached.
In fused salts, this comprehension of the transport situation is less easy to acquire. At
first, it is even difficult to see how one can retain the concept of transport numbers at
all when there is no reference medium (such as the water in aqueous solutions) in which
ions can drift.

Third, there exists another problem, that of complex ions. In aqueous and
nonaqueous solutions, it is possible to regard the ionic atmosphere as a type of incipient
complex in which the mean distance between oppositely charged ions becomes smaller
with increasing electrolyte concentration. Eventually the ions come sufficiently close
so that the thermal forces that tend to separate them are overcome on an increasingly
frequent basis by the Coulombic attraction forces so that cation and anion pairs arise,
some of which remain stuck together (see Section 3.8).

3This is a relatively simple solid from the point of view of the forces between the uncharged particles.
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Fig. 5.4. The problem of distinguishing a
neighboring ion colliding with the reference
ion from a ligand (i.e., a partner in complex
formation) vibrating in relation to the refer-
ence ion.

For the ionic liquids, however, without a separating solvent, the situation is
different for the ions are always in contact. This absence of solvent causes conceptual
problems regarding the existence of complex ions in ionic liquids. Consider a particu-
lar ion associated with another to form a vibrating complex. The ion is also in contact
with, and continually jostled by, neighboring ions that are exactly like its partner in
the complex (Fig. 5.4). Which is the partner and which the neighbor? Which is the
vibration and which the collision? A distinction between these two types of contacts
constitutes one of the problems in this field.

In aqueous solutions, the situation is clarified by the solvent. This solvent keeps
the complex ions apart at mean distances, defines them as independent stable entities,
and permits probing radiation (e.g., visible light) to pick them out from the surround-
ings (Fig. 5.5).

The concept of complex ions is therefore more subtle in ionic liquids than in
aqueous solutions. There is not only the question of an objective means for identifying

Fig. 5.5. In an aqueous solution,
the complex ion is spatially sepa-
rated from the other ions.
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ions that can be said to be joined in some way to other ions so that the aggregate is
distinctly an individual but also questions of distortion of ions in contact and the
introduction of covalent bonds between them.
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5.2. MODELS OF SIMPLE IONIC LIQUIDS

5.2.1. Experimental Basis for Model Building

One’s first impression of a liquid (its fluidity, conformity to the shape of the
containing vessel, etc.), would suggest that its structure has nothing to do with that of
the crystal from which it was obtained by melting. If, however, a beam of monochro-
matic X-rays is made incident on the liquid electrolyte, the scattered beam has an
interesting story to tell, as have corresponding studies on concentrated electrolytes and
on molten salts carried out by means of neutron diffraction. The ions are almost at the
same internuclear distances in a fused salt as in the ionic crystal, actually at a slightly
lesser distance (Table 5.9). The X-ray patterns (Fig. 5.6) also indicate that in the liquid
state the local order extends over a very short distance (tens of nanometers). It is as if
the fused salt forgets how to continue the ordered arrangements of ions of the parent
lattice, although, curiously, the distance between individual ions becomes smaller
rather than greater.

5.2.2. The Need to Pour Empty Space into a Fused Salt

There is another important fact about the melting process. When many ion lattices
are melted, there is a 10 to 25% increase in the volume of the system (Table 5.10). This
volume increase is of fundamental importance to someone who wishes to conceptual-
ize models for ionic liquids because one is faced with an apparent contradiction. From
the increase in volume, one would think that the mean distance apart of the ions in a
liquid electrolyte would be greater than in its parent crystal. On the other hand, from
the fact that the ions in a fused salt are slightly closer together than in the solid lattice,
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Fig. 5.6. Schematic diagram to show short-range and
long-range order in an ionic crystal as opposed to only
short-range order in a fused salt. In an ideal ionic crystal,
if one takes a reference positive ion, there is a certainty
of finding a negative ion at the lattice distance or a
multiple of this distance; in a fused salt, there is a high
probability of finding a negative ion one distance away;
but within two or three lattice distances away, the prob-
ability becomes half, i.e., a negative ion is as likely as a
positive ion. Thus, in a fused salt, there is no long-range
order.

one would think that there should be a small volume decrease upon fusion.4 How is
this emptiness—which evidently gets introduced into the solid lattice on melting—to
be conceptualized?

Before an answer is given to this central question, it is necessary to retrace the
steps that have been taken in respect to Fig. 5.6. One examines how it was obtained
because quantitative knowledge of the short-range order which does exist (dotted line
in Fig. 5.6) is vital to understanding the liquidity of molten salts.

5.2.3. How to Derive Short-Range Structure in Molten Salts from
Measurements Using X-ray and Neutron Diffraction

5.2.3.1. Preliminary. Before World War I, little was known either about the
nature of X-rays (were they like waves or more like particles?) or about the

4In the case of some salts, the volume changes on fusion are smaller than are indicated in Table 5.10. Thus,
calcium, strontium, and barium halides have volume changes that are about a fifth of the changes for the
corresponding alkali halides. This is because such salts crystallize in a form that already contains plenty
of open space in the solid lattice. When these open-lattice salts are melted, a smaller volume increase is
needed than is the case for the space-filled lattices of the solid alkali halides.



IONIC LIQUIDS 613

arrangement of atoms in crystals. Much light was thrown on the latter question as a
result of a thought experiment suggested by von Laue. He considered an apparatus
known as a diffraction grating. This consists of a great number of parallel slits. It can
be shown that if light of a specific monochromatic wavelength is incident upon a
grating on which the parallel slits are a distance d apart at a certain specific angle
then “interference” occurs among the light waves, so that for the Bragg condition,
=2d sin and no rays emerge—they have been knocked out by destructive interference
with other rays.

The merit in von Laue’s thought was to see that the regular rows of atoms which,
in 1913 when he did his thinking, were only tentatively thought to be there, could be
regarded as a diffraction grating of atomic dimensions.5 For the diffraction experiment
to work with reasonable values of the incident angle,  the wavelength must have
the same order of magnitude as the width of the slits in a grating or the interatomic

5Von Laue’s flash of insight in recognizing that a crystal lattice equals a diffraction grating is a beautiful
example of the birth of a scientific idea. Since it gave rise to X-ray diffraction as a technique for obtaining
knowledge of the structure of solids, it can be regarded as having great historical significance. It was the
beginning of the effective study of the structure of the solid state. This creative thought is analogous to von
Helmholtz’s suggestion that an electrode in solution charged with excess negative or positive charges would
attract to itself a monolayer of ions of opposite charge; the ensemble could be thought of as if it were the
two plates of a parallel-plate condenser.

Such flashes, inspirations if you like, do not happen while one is thinking in one’s study or talking with
a student. They turn up like a photograph in the mind at some odd time later (Leo Szilard, for example,
got some of his best ideas while soaking in the bathtub). But they don’t turn up at all unless one has thought
a great deal about the matter.
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distance (d) in the crystals. However, X-rays can have wavelengths around 0.1 nm,
which is just the right wavelength to react to a grating in which the distance the “slits”
are apart is in fact the distance between ions. Von Laue boldly predicted that if a beam
of X-rays were incident upon a solid crystal lattice, destructive interference and
constructive augmentation would occur and a diffraction pattern6 would result. Trial
experiments succeeded and the method of X-ray diffraction for investigating structure
in solids, and solid-state structural chemistry, was born.

Shortly after von Laue’s suggestion and its validation, Bragg produced his
equation. He showed that conditions for interference would be reached when

The terms in Bragg’s law have been defined above except for n, which represents
the number of the crystal planes (in succession, going downward from the surface)
from which the reflected beam arises and therefore runs 1, 2, 3,.... The condition for
interference is that the difference in path length of two rays of light, reflected from
neighboring planes, should be an integral multiple of Finding maxima and minima
(non-interfered and interfered conditions) coupled with the strength of the reflection
(“intensity”) and the corresponding angle values of the reflected X-rays gives d [from
Eq. (5.1)], the internuclear distance.

For an ordered solid, as is changed, the peaks representing no constructive
interference repeat themselves for values of sin corresponding to n = 1, 2, 3, with a
constant d; i.e., the arrangement is of long-range order. On the other hand, as has been
seen, for liquids (see Fig. 5.6), the peaks fade rapidly with increasing distance from
the reference plane, representing a short-range order.

5.2.3.2. Radial Distribution Functions. What happens when X-ray dif-
fraction occurs in liquids? To understand this (see also Section 3.11), it is best at first
to consider only a single-species liquid; one could have in mind not a binary molten
salt such as liquid sodium chloride, but, say, liquid sodium.

Then one defines a quantity called a pair correlation function, represented by
Consider a reference particle, A. The number of particles called B that occupy

a spherical shell having a radius r is

where is the number of B’s per unit volume.

6A diffraction pattern is a series of bright spots alternating with dark areas that results from a plot of the
intensity of the reflected beam after it passes through the object examined, as a function of the incident
angle of the X-ray beam.
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Fig. 5.7. A hypothetical radial distribution
function g(r) for a liquid that contains just one
chemical species. (Reprinted from J. E. En-
derby, in Molten Salts, NATO ASI Science
Series, Series C 202: 2, 1988.)

Enderby has illustrated an idealized “radial distribution function” [see Eq. (5.3)],
shown in Fig. 5.7. The figure suggests that starting from the center of A , nothing is
seen until a distance away, and the most probable distance to the center of the next
nearest particle is What does the distance mean? At distances greater than this, as
far as A is concerned, nearest-neighbor interactions can be neglected.

From these statements, one can begin to appreciate the significance of the radial
distribution function shown in the figure. This quantity is obtained by integrating Eq.
(5.2).

If one takes as the pair correlation function defined in Eq. (5.2), the radial
distribution function represents the number of particles of B in a shell up to  around
A. If is then (see Fig. 5.7), one can regard Eq. (5.2) as giving the coordination
number of A in the liquid. In the example chosen for simplicity, species A is the same
as species B but this of course is only true for radial distributions of monatomics, e.g.,
sodium. It is found in practice that in a liquid, settles to unity by the third or
fourth atom away from the reference atom A.

Radial distribution functions can be determined experimentally using diffraction
(i.e., interference) experiments. X-rays or neutrons can be used. If one knows the pair
correlation function for each atom, one can work out the short-range structure
in a liquid. The question is then how does one find
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5.2.4. Applying Diffraction Theory to Obtain the Pair Correlation
Functions in Molten Salts

The mathematical theory of diffraction7 is heavy stuff, and a very simplified
version takes several book pages to deduce. Here, some equations from this theory
will be presented to show their shape and size, and their significance to the task on
hand will be explained.

The amplitude of waves scattered by nuclei is given by an equation of the form

where is the X-ray form factor and defines the central atom, In the second
summation, k is the wave vector of the X-rays used, and is the distance from
the ith nucleus of the species i. This second part deals with the phase relationships8 of
the scattered radiation as a function of distance from the given atom,

The intensity of the scattered light is given by the equation

In this expression, is the atom fraction of the atomic species  the same as
is the X-ray form factor; and F(k) is the average of the quantities called partial
structural factors and is given by

7Diffraction is sometimes described as “the bending of light around an obstacle.” When light is interrupted
by an object, the shadow formed is bordered by alternating white and dark bands. To observe such effects,
one needs to use a point source and monochromatic light; hence diffraction effects are not observed in
everyday life.

Diffraction—and the alternating dark and light bands to which it gives rise—is based on the interference
of light waves that occurs when two light beams meet and annihilate or augment each other. Diffraction
should not be confused with the primary phenomenon of refraction, which refers to the bending of light
as it passes from a more dense to a less dense medium. When this occurs (and depending on the angle at
which the beam from the dense medium is incident upon the less dense one), the light may pass through
from one medium to the next or it may be reflected (or some of both). The change in direction of the light
beam on entering the new medium can be regarded as a result of the exchange of kinetic and potential
energy at the interface. Refraction is expressed in terms of the refractive index of the dense medium.

8 In electricity theory, phase relationships refer to the relation of current to potential in an ac circuit. If the
current and potential vary together in time, i.e., they reach maximum and minimum together, then they are
“in phase.” If the current and potential are “out of step,” by, say, a quarter of a phase, they are “out of
phase.” In diffraction theory, the phase refers to the variation of the amplitude of the light wave with time
at a given point. Two beams of radiation out of phase by a half cycle will annihilate.
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Fig. 5.8. The conventional arrangement for neutron diffraction.
(Reprinted from J. E. Enderby, in Physics and Chemistry of
Aqueous Ionic Solutions, M. C. Bellisent-Fund and G. W. Niel-
son, eds., NATO ASI Series C 207: 131, 1987.)

The quantity symbolized by is called the structural factor.
How would pair correlation functions and partial structural factors be written for

a binary molten salt, e.g., sodium chloride? The corresponding correlation function
would be given by

and the partial structural factor by

These equations (also undeduced) may seem pretty fearsome. However, the
quantities present in Eq. (5.5), the partial factors, can all be determined from X-ray or
neutron diffraction setups. Figures 5.8 and 5.9 show at a schematic level what one does
to make diffraction measurements.

The material given here then shows how measurement of the diffraction of X-rays
(also neutrons, see later discussion) gives the pair correlation function, It can give
much more. As shown in Section 3.11, the determination of   allows one to calculate
a number of properties of the liquid or solution. A property calculated from pair
correlation functions does not involve an assumed modeling theory. Instead, the
experimentally determined pair correlation functions are the basis of the calculated
properties. It is as though one had “worked out”9 the structure first and then used the
knowledge of that structure to calculate the properties. Is this a “higher level” approach

9“Working out the structure” means determining the for the various entities (e.g., and ) present in
the liquid.
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Fig. 5.9. Conventional arrangement for X-ray diffrac-
tion studies on liquids. (Reprinted from J. E. Enderby,
in Physics and Chemistry of Aqueous Ionic Solutions,
M. C. Bellisent-Fund and G. W. Nielson, eds., NATO
ASI Series C 205: 131, 1987.)

to the elucidation of the structure inside a liquid, rather than the alternative modeling
one in which one sketches several possible pictures of the liquid and then applies
uncontroversial theory to each to see the properties each model gives rise to, judging
the validity of the hypothesized structure from the match of the calculated results with
those of experiments?

5.2.5. Use of Neutrons in Place of X-rays in Diffraction Experiments

From the early years of this century, the only type of radiation used to find
long-range order in solids and short-range order in liquids was X-rays. However,
neutrons can also be used to carry out diffraction experiments, and with certain
advantages, as will be seen. The trouble is that while it is fairly easy (hence,
economically attractive) to use an X-ray source, one has to have a nuclear reactor handy
to achieve a neutron stream. The advantages of using neutrons rather than X-rays in
diffraction arise from a difference in how diffraction (i.e., interference) occurs for the
two forms of radiation.

X-rays interact with matter because their electromagnetic oscillations are affected
by the electrons of the material. Neutrons take no notice whatsoever of electrons when
they pass through matter. They interact with the nuclei. Neutron diffraction is sensitive
to the atomic number and atomic weight of the atoms constituting the substance. For
example, it can distinguish easily between Fe and Co in alloys and between isotopes
such as and

Thus, the b terms in Eq. (5.6) are 11.7 for but 3.08 for  a difference much
greater than that intuitively expected. Such differences are helpful in using Eq. (5.7)
to give and to lead to the calculation of properties (Section 5.2.3.2). Variation in
the concentration of the isotopes and measurements of the patterns for a series of such
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changes provides added data for a given salt and improves finding the unknowns. All
this being the case, one has to weigh the undeniable pros of neutron diffraction against
the considerable cons of having to take a team of collaborators to a nuclear reactor to
obtain the neutron stream and work there day and night10 for some days.

What about the determination of voids in a liquid? Determination of the short-
range order may not allow one to determine the distribution (number and size) of
fluctuating voids in the liquid.11 While such voids may play a vital part in the
mechanism of transport, they are voids and hence would hardly make much impression
upon the probing radiation.

Nevertheless, neutron diffraction work in molten salts gives rise to much new
knowledge of the structure of these bodies; the only caveat is that it must be used in
conjunction with other kinds of measurements; the data from these measurements are
used to check on the structural concepts developed.

5.2.6. Simple Binary Molten Salts in the Light of the Results of X-ray
and Neutron Diffraction Work

Table 5.11 contains typical results obtained from neutron diffraction, and the
pair-correlation functions for and are shown in Fig. 5.10.

10Channels on research reactors are let to research groups for a limited total time. The cost of even a small
university teaching reactor ($10–20 million) is such that the amortization rate may be hundreds of dollars
per hour.

11Such “volumes of nothingness” must be present to account for the large increase in volume upon fusion
while at the same time the internuclear distance decreases (see Tables 5.9 and 5.10).
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Fig. 5.10. Partial radial distribution functions for molten
solid line, experimental data; points, root mean

cube fit. (Reprinted from R. L. McGreevy and L. Pusztai,
Proc. R. Soc. Lond. A 430: 241, 1990.)

Much neutron diffraction data of this kind are now available for molten salts. They
are basic to structural knowledge of these pure electrolytes. However, the data do not
play the same stellar role in determining the structure of liquid salts as they do for the
solid salts because in the liquids the free space introduced on melting affects the
dynamic movement of the ions and hence the liquid properties. In fact, this space is
counterintuitive to the internuclear distances given by X-ray or neutron diffraction.
The internuclear distances found in molten salts are smaller, not bigger, as might be
thought from the increase in volume.

Data on simple molten salts can be interpreted without bringing in any orbital
bond overlap; i.e., one can interpret the behavior of simple binary alkali halide molten
salts in terms of ionic attraction and repulsion in a way similar to that used for the solid
lattice. Molten salts containing complex anions—such as those consisting of
and —need models that involve directed valence forces. Many results from
different ways of modeling molten salts will be given in Section 5.2.8.



IONIC LIQUIDS 621

5.2.7. Molecular Dynamics Calculations of Molten Salt Structures

It has already been seen in Section 2.17 that computer simulation of structures in
aqueous solution can give rise to calculations of some static (e.g., coordination
numbers) and dynamic (e.g., diffusion coefficients) properties of ions in aqueous and
nonaqueous solutions. One such computer approach is the Monte Carlo method. In
this method, imaginary movements of the particles present are studied, but only those
movements that lower the potential energy. Another technique is molecular dynamics.
In this method, one takes a manageable number of atoms (only a few hundred because
of the expense of the computer time) and works out their movements at femtosecond
intervals by applying Newtonian mechanics to the particles under force laws in which
it is imagined that only pairwise interactions count. The parameters needed to compute
these movements numerically are obtained by assuming that the calculations are
correct and that one needs to find the parameters that fit.

Now, these numerical simulation methods seem superior to the approaches that
use alternative intuitive models. In the modeling approaches, one creates various
imaginative hypotheses as to what the liquid salt might look like from inside it. Then,
one calculates what one would expect from each intuited model in respect to its various
properties, e.g., the diffusion coefficient. Models that predict nearest to the experimen-
tal result are taken as the best approximation to the real thing. In molecular dynamics
calculations, on the other hand, one starts farther back by assuming a force law for
interaction between the two kinds of particles present ( and  say) and finding out by
calculation what kind of arrangement among such particles is indicated by applying such
laws to the particles’ movements. In the end, which approach to apply—results of models
or calculation of ionic movement—depends on which is cheaper.

Experimental determinations and bench-type research may continue for a genera-
tion or two, for both methods need experimental results as a standard to judge success.
As the variety of available software grows and becomes more user friendly, the choice
will move toward computer simulation.

Another factor that counts in the balance is the degree to which playing with a
number of intuitive, imaginative models helps thinking new thoughts. Here one comes
to the question of how knowledge will be advanced in the new century. Can computers
imagine and create new ideas? Or must they always be supercalculating machines,
using human-derived software that instructs the calculator to work out numerical
equations written by intelligent beings? If the latter, is the intuitive perception of a
number of alternative possible models more likely to enhance progress? Or will
molecular dynamics simulation (computational chemistry) beckon on and spark the
vital new fantasies from which new paradigms arise?

5.2.8. Modeling Molten Salts

Some typical radial distribution functions for molten salts (see Section 5.2.3.2)
are shown in Fig. 5.11. Those plots are made by assuming pairwise interactions
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Fig. 5.11. Radial distribution functions of simulated KCI obtained by MC
at T = 1700 K over a wide density range. The numbers are the molar
volumes in The continuous line is long dashes and
short dashes (Reprinted from D. L. Price, M. L. Saboungi, W. S.
Howells, and M. P. Tosi, J. Electrochem. Soc. 9: 1, 1993.)

They naively assume that the additivity of such interactions (and nothing from ions
outside the pairs) will allow a realistic calculation of physical properties.12 However,
a somewhat more mature view is to take into account the dipole moments induced
among ions by nearest neighbors. Since this changes the ions’ shapes (e.g., makes them
spheroids and not spheres), the interaction equation usually assumed is not adequate.

12Why can patently wrong assumptions be made to give excellent agreement with experiment? Does the
calibration of the parameters with experimental results in pairwise interaction equations introduce a degree
of empiricism into computer simulation that suggests a lessened integrity in the calculation? Could pair
potentials other than those used in Eq. (5.9) also give excellent results if their parameters were also
calibrated on experimental data of a kind similar to that being calculated?
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If the properties of one ion affect those of the other when they interact, an iterative
approach has to be taken until constancy of intermolecular energy is obtained. This is
because the dipoles induced in the ions exert counter fields upon the surrounding ions
and the resulting change in shape modifies the values obtained for a system conceived
as a sum of attractive and repulsive forces of unchanging spherical ions. If such a
counter field can be calculated, then equations such as (5.9) can be used without the
introduction of a dielectric constant in the Coulomb attractive term. Thus, dielectric
constants are empirical devices that make an allowance for counter fields and forces
in electrical systems.
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5.3 MONTE CARLO SIMULATION OF MOLTEN POTASSIUM
CHLORIDE

5.3.1. Introduction

The general principle behind a Monte Carlo procedure has already been described
(Section 2.3.2). Woodcock and Singer were the first to make such a calculation for
molten salts, and their work is the source of the following section.
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In all simulations in which the interaction involves Coulomb’s law, there is a
difficulty in the extent to which the Coulombic terms can be summed because the
number of particles used in the ensemble being considered (e.g., 216 in Woodcock
and Singer’s case) is too small. Thus, the Coulombic forces (which decline slowly
with increasing distance) have not yet become negligible outside the “package.” Some
way of terminating them without spoiling the calculation had to be found. A solution
to this problem, and the one that Woodcock and Singer used, is due to Ewald and lies
in a purely mathematical technique by which one nonconverging series is converted
into two converging series. One must bear with simplification here; a more quantitative
description of Ewald’s artifices would take precious space without significantly
increasing the reader’s comprehension of how ionic liquids work.

5.3.2. Woodcock and Singer’s Model

Woodcock and Singer followed up on some considerations published earlier by
Tosi and Fumi. The latter suggested that the potential that forms a suitable basis for
the calculation of the pairwise addition potentials in a molten salt is suitably written
as

This equation was first used by Born, Huggins, and Meyer and therefore bears
their names. The first two terms represent, respectively, the attractive and repulsive
potentials. The last two terms represent dipole-dipole and dipole-quadrupole poten-
tials, respectively. In spite of allowing for the dipole interactions, the calculation is
still a hard-sphere one, a mean spherical approximation, because the forces are not
allowed to change the shape and the position of the particles. Later on, Saboungi et al.



IONIC LIQUIDS 625

Fig. 5.12. Pair potentials for potassium chloride.
(Reprinted from L. V. Woodcock and K. Singer,
Trans. Faraday Soc. 67:12, 1971.)

did take into account a mutual squeezing of the ions, and some of the work of this team
will be described later.

The various parameters needed in these equations come from other work and are
given in Table 5.12, taken from Woodcock and Singer. The pairwise potential for
potassium chloride, first calculated by Tosi and Fumi in 1964, is reproduced in Fig.
5.12. Typical computational data for an MC calculation are given in Table 5.13. The
software of the day generated only 80,000 steps per hour.

5.3.3. Results First Computed by Woodcock and Singer

Changes of volume upon fusion together with compressibilities, expansivities,
and specific heats calculated by Woodcock and Singer are shown in Table 5.14. What
is the uncertainty in these calculations? It is around and within this
error the agreement of simulated and experimental results is rather good. Thus, at 1045
K for the volumes
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Radial distribution functions are characterized by the distance of closest approach
d, the position and height h of the main peak, the position of the minimum
following the main peaks, and the coordination numbers CN, defined by
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On fusion, Woodcock and Singer’s calculation found that the coordination
number for molten KC1 decreases from 5.3 to 4 in accordance with experiment. The
distance of closest approach rather unexpectedly decreases as the temperature in-
creases, while the first peak (Fig. 5.13) becomes broader and lower (less order even
in the first shell).

Bockris and Richards’ experimental value of the free volume for KC1
agrees well with that of Woodcock and Singer. The volume change on

melting obtained experimentally, however, is 8.2 which is only 3% less
than the entirely acceptable calculated value obtained by Woodcock and Singer’s
Monte Carlo simulation. Their actual model for liquid KC1 is shown in Fig. 5.14 and
appears to contain “hole volume” corresponding to modelistic concepts which feature
this property (Section 5.5.1).

5.3.4. A Molecular Dynamics Study of Complexing

Saboungi et al. have carried out molecular dynamics studies in the 1990s that are
a great improvement on those done in the pioneering Woodcock and Singer studies.
They studied, for example, complexes between NaCl and by means of a
molecular dynamics program. These systems are well known from experimental work
to form and other, higher complex ions, such as
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Fig. 5.14. Woodcock and Singer’s representation of
liquid KCI, the dark spheres representing chloride ions
and white spheres representing potassium ions. (Re-
printed from L. V. Woodcock and K. Singer, Trans.
Faraday Soc. 67: 12, 1971.)

In the molecular dynamics approaches to such systems, one of the principal
novelties compared with the work on simpler systems such as KCl (Section 5.3.3) is
the taking into account of anion polarizability, i.e., elimination of the hard-sphere
approximation. Anions are by and large more polarizable than cations. The polarizabil-
ity    is proportional to      The radii of cations, formed by losing an outer electron, are
smaller than those of the anions, which are formed by adding an electron. Hence,
anions are mainly the ions affected when polarizability is to be accounted for.

When an anion feels the field of a cation X, a dipole moment is induced into the
anion,

and this induced dipole moment will give rise to an additional energy of attraction
between the monopole and the dipole (cf. the corresponding effect in the theory of
hydration energy in Section 2.4.3). In addition, there will be dipole–dipole interactions.

The calculations of Saboungi et al. on these systems do not lack
complexity. There are as many as ten terms of interaction. Thus,
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Here, the first six terms refer to pair potential energies of interaction and the last four
terms represent dipole–dipole or monopole–dipole interaction energies.

Taking the anion as polarizable not only introduces these last terms but also
reduces the repulsive energies used compared with those of earlier calculations that
took a “hard” anion according to the mean spherical approximation. By “hard” anion
is meant one that doesn’t respond to being squeezed, i.e., is not polarizable.

What do the calculated distribution coefficients look like? They are shown in Fig.
5.15. The positions of the first peaks show that the cations are largely coordinated
with as On the other hand, the parameter b in the repulsive potential [see
Eq. (5.10)] was given values so that the calculations would indeed show up ions,
so their appearance is not something that fills one with awe. According to the
calculations, these anions are present to the extent of 92%. The empirically enlightened
calculations show that there is some indication of doubly bridged A1-A1 pairs and these
are assigned to molecules present in the melt (see Fig. 5.16). These molecular
dynamics calculations (however much aided by information from prior experiments)
allow many properties (e.g., the angles in entities such as NaAlCl) to be calculated
(Fig. 5.16).

Fig. 5.16. Geometric relation-
ship between and tetra-
hedron. The cation sits
perpendicular to the center of a
face of the tetrahedron. Conse-
quently, one M-A-X triplet exists
at 180° for every three triplets at
64°. (Reprinted from M. L.
Saboungi, D. L. Price, C.
Scamehorn, and M. Tosi, Euro-
phys. Lett. 15: 281, 1991.)
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Calculations taking into account the anion polarizability in reduce the
approximation associated with the simple additivity of pairwise potentials in compu-
tational modeling (hard-sphere approximation) of molten salts. They predict new
entities (e.g., and in this respect have an advantage over earlier calculations.
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5.4. VARIOUS MODELING APPROACHES TO DERIVING
CONCEPTUAL STRUCTURES FOR MOLTEN SALTS

5.4.1. The Hole Model: A Fused Salt Is Represented as Full of Holes
as a Swiss Cheese

One of the models that can be used to approximately predict the properties of
molten salts is called the hole model. The outstanding fact that led to this model is the
large volume of fusion (10–20%) exhibited by simple salts on melting (Fig. 5.17). The
basic idea of this rather artificial model is that within the liquid salt are tiny volume
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Fig. 5.17. The hole model with randomly
located and variable-sized holes in the
liquid.

elements, varying in size from the subatomic to about six ions, which are empty and
constantly fluctuating in size. Such a model is a kind of liberation from the lattice concepts
appropriate to solids and leads to equations that can explain liquid properties, some of them
with reasonable numerical accuracy and without any of those “calibrating factors” that
make the computer simulation approaches always agree with experiment.

How are the alleged holes in the molten salt produced? They are formed by a
process analogous to the formation of a vacancy in a crystal, but in a less ordered
fashion. The displacement of an ion from a lattice site in a solid produces a vacancy
at its former site. In the case of the vacancy in a solid, however, the ion is removed so
far from the original site that the displaced ion can be forgotten altogether. Suppose
instead that at high temperatures in the course of thermal motion some of the ions
constituting a cluster are displaced relative to each other but only by small amounts.
Then a “hole” is produced between them (Fig. 5.18). Its size must vary in a random
manner because the thermal motions that produce it are random. Further, since thermal
motions occur everywhere in the liquid electrolyte, holes appear and disappear
anywhere in this liquid. If one were able to label the holes with scintillating material
and enlarge the signals so one could see them, the molten salt would look like a set of
twinkling light sources, going on and off all over the melt.

Fig. 5.18. The formation of a hole in a
liquid by the relative displacement of ions
in contact.
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Fig. 5.19. The formation of a hole can also be looked
at in terms of the number of ions occupying a volume
V. In (a) seven particles occupy the volume V  before
the hole is formed, and, in (b), six particles occupy
the same volume after hole formation.

If a liquid electrolyte (Fig. 5.19) could be sliced up and subjected to nanometer-
scale photography with an exposure time of around s, the photos would resemble
those of cuts through a Swiss cheese. This is why, in the matter of randomness of size
and location, the hole theory of liquids has been referred to in homely terms as the
“Swiss cheese model.” What the cheese represents, however, is the time-averaged
picture of the holes. In the model, holes are continuously forming and disappearing,
moving, coalescing to form larger holes, and diminishing into smaller ones.

Although this model of a liquid was suggested independently of the results
obtained from computer modeling, the imagined picture of  the hole model in Fig. 5.17
closely resembles the picture (Fig 5.14) from Woodcock and Singer’s model derived
from the Monte Carlo approach.

5.5. QUANTIFICATION OF THE HOLE MODEL FOR LIQUID
ELECTROLYTES

5.5.1. An Expression for the Probability That a Hole Has a Radius
between r and r  + dr

To quantify the hole model, it is necessary to calculate a distribution function for
the hole sizes. This is a plot of the number of holes per unit volume as a function of
their size. As a first step toward this calculation, one can consider a particular hole in
a liquid electrolyte and ask: What are the quantities (or variables) needed to describe
this hole? This problem can be resolved by means of a formulation first published by
Fürth in 1941.

Since a hole in a liquid can move about like an ion or other particle, the dynamic
state of a hole is specified in the same way that one describes the dynamic state of a
material particle. Thus, one must specify three position and three momentum coordi-
nates: x, y, z and There is, however, an extra feature of the motion of a hole
that is not possessed by material particles. This feature concerns what is called its
breathing motion (Fig. 5.20), i.e., the contraction and expansion of the hole as its size
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Fig. 5.20. The breathing motion of
a hole involves its radial expansion.

fluctuates in the liquid. To characterize this breathing motion, it is sufficient to specify
the hole radius r and the radial momentum corresponding to the breathing motion.
To characterize a hole completely, it is necessary to specify eight quantities: x, y, z,

and whereas the first six only are adequate to describe the state of  motion
of a particle.

According to the normal equations of classical statistical mechanics, which are
used to express velocities and momenta distributed in three dimensions, the probability

that the location of a hole is between x and x + dx, y and y + dy, z and z + dz; that
its translational momenta lie between  and and  and
that its breathing momentum is between and  and, finally, that its radius is
between r and r + dr, is proportional to the Boltzmann probability factor,

where E is the total energy of the hole.
Since the desired distribution function only concerns the radii (or sizes) of holes,

it is sufficient to have the probability that the hole radius is between r and r + dr
irrespective of the location and the translational and breathing momentum of the hole.
This probability Pr dr of the hole’s radius being between r and r + dr is obtained from
Eq. (5.16) by integrating over all possible values of the location, and of the translational
and breathing momentum of the hole, i.e.,

However, the total energy of the hole on average does not depend upon its
position; i.e., E is independent of  x, y, and z. Hence,

Furthermore,
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the volume of the liquid. Thus, by incorporating this V  into the proportionality constant
implicitly associated with Eq. (5.18), one has

Now the total energy E consists of the potential energy W of the hole (i.e., the
work required to form the hole) plus its kinetic energy. This kinetic energy is given
by

where is the apparent mass13 of the hole in its translational motions and is the
apparent mass in its breathing motion. Hence,

Inserting this value of E into the expression (5.20) for the probability of the hole’s
having a radius between r and r + dr, one has

From the standard integral,

it is clear that

13Any entity that moves displays the property of inertia, i.e., resistance to a change in its state of rest or
uniform motion. That is, the entity has a mass. If the entity is not material (a hole is a region where in fact
there is no material), one refers to an apparent mass. Holes in semiconductors have apparent masses like
holes in liquids. The inertia of the hole arises as a result of the displacement of the liquid around the hole
as it moves, which gives rise to dissipation of energy (Appendix 5.1).
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and

By using these values of the integrals in Eq. (5.23), the result is

It can be shown, however (see Appendix 5.1), that

and

After taking all the quantities that are radius independent into the proportionality
constant A, one has by combining Eqs. (5.27), (5.28), and (5.29) that

The evaluation of the constant is achieved through the following plausible
argument. The probability that a hole has some radius must be unity (i.e., is certain by
definition). Equation (5.30) expresses the probability of the radius of the hole lying
between r and r + dr. Similarly, one can write down the probabilities of the radius’
being between and between and etc. If all these probabilities for
r from zero to infinity are summed up (or integrated), then the sum must be unity, i.e.,

However, to carry out this integration, one must know whether the work of hole
formation W is a function of r; i.e., one must understand what determines the work of
formation (or the potential energy) of a hole of radius r (Fig. 5.21).

5.5.2. An Ingenious Approach to Determine the Work of Forming a
Void of Any Size in a Liquid

A remarkably simple way of calculating the work of hole formation was found
by Fürth, who treated holes in liquids, the sizes of which are thermally distributed, in
an article published in the Proceedings of the Cambridge Philosophical Society. This
is an erudite university journal whose readers are mainly members of the university’s
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Fig. 5.21. The basis of the hole model of Fürth is the analogy
between (a) a hole in a liquid and (b) a bubble in a liquid. An
inward pressure and an outward pressure act on the
bubble surface.

colleges, and this conservative choice of publication medium delayed recognition of

the virtues of the model from 1941 until the 1970s, well after Monte Carlo calculations
had begun. In Fürth’s model, a hole in a fused salt is considered to simulate a bubble
in a liquid (Fig. 5.21). The surrounding liquid exerts a hydrostatic pressure on the
bubble surface. Inside the bubble, however, there is vapor, which exerts an outward
pressure on the surface. The net pressure is therefore Furthermore, surface
tension operates in the direction of reducing the surface area and therefore the surface
energy of the bubble.

The total work required to increase the bubble size consists of two parts, the
volume work and the surface work where and A are
the net pressure on the bubble surface, the increase of volume, the surface tension, and
the increase of surface area of the bubble, respectively. Thus, the work done in making
a bubble grow to a size having a radius r is

The first term, i.e., the volume term, is negligible compared to the second or surface
term for bubbles of less than about cm in diameter. The work of bubble formation
reduces to

This expression can also be obtained from the general equation (5.32) by setting
This equality between and represents the condition that the liquid is

boiling. The analogy between a hole and a bubble consists therefore in assuming that
the work of hole formation is given by the expression for the work of bubble formation
in a liquid. Let the ability of  the model to replicate experimental results be the criterion
of the acceptability of Eq. (5.33).
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5.5.3. The Distribution Function for the Sizes of the Holes in a Liquid
Electrolyte

Now that an expression for the work of hole formation has been obtained, it can
be inserted into Eq. (5.31), which must be integrated to evaluate the constant A . One
has

where

To carry out the integration, the following standard formula is used

where n is a positive integer. The integral in Eq. (5.34) is consistent with the standard
formula if one substitutes n = 3, and therefore,

The constant in Eq (5.34) is given by

Fig. 5.22. How the probability dr  that a hole has a radius
between r and r + dr varies with r.
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and the expression (5.30) for the probability of the existence of a hole of a radius
between r and r + dr becomes

This is the distribution function which was said to be the goal at the beginning of  Eq.
(5.17). From it, the average hole volume and radius will shortly be seen to be obtainable
(see Fig. 5.22).

5.5.4. What Is the Average Size of a Hole in the Fürth Model?

The average radius <r> of a hole can be obtained from Eq. (5.39) by multiplying
the probability of the hole radius being between r and r + dr by the radius of the hole
and integrating this product over all possible values of r. This is the general method
of obtaining average values of a quantity of which the probability is known. Thus, the
average hole radius is

The integral in Eq. (5.40) can be evaluated by using the substitution

which leads to

The integral dt is the gamma function  (Appendix 5.2) and is equal to
3! from

Hence, Eq. (5.42) becomes
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It follows that the average surface area of a hole calculated by this procedure is

Then from Eqs. (5.44) and (5.45), one obtains, clearly:

What typical values of mean hole radius does Eq. (5.44) yield (Table 5.15)? By
using the macroscopic surface-tension value, Eq. (5.44) shows that the average radius
of a hole in molten KCl at 1173 K is 190 pm. The mean ionic radius, however, is 160
pm.

A typical hole therefore can accommodate an ion in a possible movement into a
hole. This result is remarkable because of the process by which it has been attained.
One began by considering that a liquid electrolyte was a liquid continuum interspersed
by holes of random size and location imagined to be forming and collapsing as in a
boiling liquid. Thus, the work of hole formation was taken to be equal to the work of
expanding the surface area of a bubble in a boiling liquid. With the use of this
expression and simple probability arguments, the average hole radius was calculated
by taking the integral of Eq. (5.40) from zero to infinity.
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At a fixed temperature, the only parameter determining the mean hole size is the
surface tension. Though one is aiming at a microscopic (structural) explanation of the
behavior of ionic liquids, one goes ahead and uses the macroscopic value of surface
tension. The mean hole radius then turns out to have the same order of magnitude as
the mean radius of ions comprising the liquid.

A remarkable conclusion can be drawn by looking at Table 5.15. One sees that
Fürth’s theory of holes in liquids—liquids imagined to be nearly on the boil so that

0—indicates that the holes arising from the model are molecular in size.
Why is this a remarkable conclusion? It is because no props (e.g., dependence on some
measurement of volume increase on melting) which would ensure that the right hole
size would turn up have been used. In fact, hitherto, nothing has been said about
molecules, ions, or any structure. It might have been thought to be a long shot—taking
the bubble in a boiling liquid and seeing in such a concept any molecular reality. Look
back at Table 5.15. The molecular size of the holes arising from the theory is an
established fact. The conclusion: the model is worth investigating further and seeing
how its application works out when one comes to the interpretation of transport data
(Section 4.5.2). At this stage, it is sufficient to be properly surprised: the idea of bubbles
(holes) in liquids gives rise to the average size, which is that of the ions concerned.
Later on (Section 5.6) it will be seen just how this result offers a possible mechanism
for transport, e.g., viscous flow and diffusion.

The theory of an indication of molecular-sized holes supports the idea that the
model reflects some aspects of reality in liquids. How can bubbles in liquids be used
as the basis of a calculation of liquid properties? The answer is given by the degree to
which such an approach predicts facts, for example, the compressibility (Table 5.16).
The fact that it indicates the calculated size of holes seems to suggest a diffusion model
in which critical acts may be the formation of the holes and the jumping into them of
neighboring ions (but see Section 5.4.1).

These indications that one of the modeling approaches to molten salts looks
remarkably promising does not mean that it is the final word in making models of
molten salts. It is an imaginative portrayal, but there are some molten salts the
properties of which are not covered at all by any theory of holes distributed like bubbles
in boiling liquids. One of these undealt-with properties—the property of supercooling
liquids, which continue to retain their properties below the normal melting point—
must be looked into before one returns to a modeling interpretation of viscous flow,
diffusion, and conductance (see Chapter 4).

5.5.5. Glass-Forming Molten Salts

A number of molten salt systems [e.g., the simple ionic system
have the property of being able to be supercooled, i.e., to remain liquid at temperatures
below the melting point down to a final temperature. This is called the glass transition
temperature, and at this temperature the salts form what is called “a glass.” This glass
is only apparently solid. It is a highly disordered substance in which a liquid structure
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—no long-range order—is frozen into what appears to be a solid. Although such
systems were studied in the 1960s and earlier, they subsequently received a seminal
and sustained contribution from the Australian physical chemist Angell, who has been
the driving force behind the discovery of much of modern knowledge of the super-
cooled state.
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Mathematical treatment of molten salts that supercool was first carried out by
Cohen and Turnbull. The principal idea of the hole theory—that diffusion involves
ions that wait for a void to turn up before jumping into it—is maintained. However,
Cohen and Turnbull introduced into their model a property called the free volume,

What is meant by this “free volume”? It is the amount of space in addition to that,
filled by matter in a closely packed liquid. Cohen and Turnbull proposed that the

free volume is linearly related to temperature

where is the temperature at which the free volume becomes zero. Cohen and
Turnbull named the temperature at which a supercooled liquid becomes a glass the
glass transition temperature.

To express the probability that the free volume occasionally opens up to form a
hole, Cohen and Turnbull first defined a factor which allows for the partial filling
of the expanded free volume to the size of a hole. It can vary between
value of means that the holes are empty, and a value of that they are half
filled.

The authors rejected the normal thermal probability term, involving  They
used a statistical argument concerning the number of ways it is possible to mix free
spaces with ions and found thereby the probability of finding a void volume as
a fraction of the free volume. The expression for this probability comes to

Then the most elementary expression for a diffusion coefficient would be:

where l is the distance covered in one jump and v the velocity of the particle. This
primitive expression would be true if there were a void always available and each jump
were in the same direction. Since there are three distance coordinates, each having two
directions (i.e., six directions), and since the coming-into-being of a hole has the
probability given by Eq. (5.48), then,

Substituting from Eq. (5.47),
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where

Cohen and Turnbull’s model is oriented to liquids that form glasses. At the glass
transition temperature (i.e., at T= the diffusion coefficient becomes zero, which
is a rational consequence of what is thought to be going on: the supercooled liquid
finally becomes a glass in which D is effectively zero.

A difficulty might face the worker who wishes to apply Cohen and Turnbull’s
theory to transport phenomena in molten salts not only near the glass transition
temperature but also above the normal melting point (see Section 5.6.2.2). Experimen-
tal evidence shows that the heat of activation of diffusion and of conductance for
viscous flows is related to the normal melting point of the substance concerned

Accepting this on faith for the moment, then B from Eq. (5.51) can be written as

The order of magnitude of  is If one identifies with a void into
which an ion jumps, then in transport phenomena this must be around
a typical molar volume for simple monatomic ions. Moreover, near to the melting
point, and

This result increases the credibility of the Cohen and Turnbull view: the meaning
of is that the “hole” is 20% full, and this seems consistent with the picture of
an ion-sized space filled 20% of the time with an ion.

Further Reading

Seminal
1.

2.

3.

4.

R. Fürth, “On the Theory of the Liquid State, I. The Statistical Treatment of the Thermo-
dynamics of Liquids by the Theory of Holes,” Proc. Cambridge Phil. Soc. 37: 252 (1941).
R. Fürth, “On the Theory of the Liquid State, II. The Hole Theory of the Viscous Flow of
Liquids,” Proc. Cambridge Phil. Soc. 37: 281 (1941).
M. H. Cohen and D. Turnbull, “Molecular Transport in Liquids and Glasses,” J. Chem.
Phys. 31: 1164(1959).
A. F. M. Barton and R. J. Speedy, “Simultaneous Conductance and Volume Measurements
on Molten Salts at High Pressure,” J. Chem. Soc. Faraday Trans. 71: 506 (1974).



646    CHAPTER 5

Reviews
1.

2.

C. A. Angell, “Transport and Relaxation Processes in Molten Salts,” NATO ASI Series C

202: 123 (1987).
G. Mamantov, C. Hussey, and R. Marassi, eds., An Introduction to the Electrochemistry
of Molten Salts, Wiley, New York (1991).

Papers
1.

2.
3.
4.
5.

6.
7.
8.

9.
10.

11.
12.
13.
14.
15.
16.

Y. Shirakawa, S. Tamaki, M. Saito, H. Masatoshi, and S. Harab, J. Non-Cryst. Solids 117:
638 (1990).
W. Freyland, J. Non-Cryst. Solids 117: 613 (1990).
R. L. McGreevy, Nuovo Cimento 12D (4–5): 685 (1990).
T. Nakamura and M. Itoh, J. Electrochem. Soc. 137: 1166 (1990).
M. L. Saboungi and D. L. Price, in Proc. Int. Symp. Molten Salts, Electrochemical Society,

p. 8 (1990).
M. Abraham and I. Zloges, J. Am. Chem. Soc. 113: 8583 (1991).
M. Noel, R. Allendoerfer, and R. A. Osteryoung, J. Phys. Chem. 96: 239 (1992).
R. J. Speedy, F. X. Prielmeier, T. Vardag, E. W. Lang, and H. D. Ludemann, J. Electro-
chem. Soc. 139: 2128 (1992).
C. A. Angell, C. Alba, A. Arzimanoglou, and R. Bohmer, AIP Proc. 256: 3 (1992).
S. Deki, H. Twabuki, A. Kacinami, and Y. Kanagi, Proc. Electrochem. Soc. 93–9: 252
(1993).
S. Itoh, Y. Hiwatari, and H. Miwagawa, J. Non-Cryst. Solids 156: 159 (1993).
C. A. Angell, C. Lia, and E. Sanchez, Nature 362: 137 (1993).
C. A. Angell, P. H. Poole, and J. Shao, Nuovo Cimento 16: 993 (1994).
C. A. Angell, Proc. Natl. Acad. Sci. U.S.A. 92: 6675 (1995).
C. A. Angell, Science 267: 1924 (1995).
M. G. McClin and C. A. Angell, J. Phys. Chem. 100: 1181 (1996).

5.6. MORE MODELING ASPECTS OF TRANSPORT PHENOMENA IN
LIQUID ELECTROLYTES

5.6.1. Simplifying Features of Transport in Fused Salts

An important characteristic of liquid ionic systems is that they lack an inert
solvent; they are pure electrolytes. Owing to this characteristic, some aspects of
transport phenomena in pure molten salts are simpler than similar phenomena in
aqueous solutions.

Thus, there is no concentration variable to be taken into account in the considera-
tion of transport phenomena in a pure liquid electrolyte. Hence, there cannot be a
concentration gradient in a pure fused salt, and [because of Fick’s first law; see Eq.
(4.16)] without a concentration gradient there cannot be pure diffusion. In an aqueous
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solution, on the other hand, it is possible to have a concentration gradient for the solute
and thus have diffusion in the normal sense.

Another consequence of the absence of a solvent in a pure liquid electrolyte is
that the mean ion–ion interaction field as a function of distance within the liquid is
constant. In solutions of ions in a solvent, however, the extent of ion–ion interaction
is a variable quantity. It depends on the amount of solvent dissolving a given quantity
of ionic solute, i.e., on the solute concentration.

5.6.2. Diffusion in Fused Salts

5.6.2.1. Self-Diffusion in Pure Liquid Electrolytes May Be Revealed by
Introducing Isotopes. In the absence of a solvent, it is meaningless to consider a
pure liquid electrolyte (e.g., NaCl) as having different amounts of NaCl in different
regions. Let the possibility be momentarily considered that the system could be made
to have more ions of one species (e.g., in one region than in another. However,
this is impossible over significant time spans because any attempt of a single ionic
species to accumulate in one region and decrease in another is promptly stopped by
the electric field that develops as a consequence of the separation of charges. Overall
electroneutrality must prevail; i.e., there can be no congregation of an ionic species in
one part of the liquid.

Fortunately, electroneutrality only requires that the total positive charge in a
certain region be equal to the total negative charge. Suppose therefore that in a liquid
sodium chloride electrolyte, a certain percentage of the ions are replaced by a
radioactive isotope of sodium. There is no difference between the and as far
as the principle of electroneutrality is concerned; it is only required that the number
of ions plus the number of tagged ions are equal to the total number of
ions (Fig. 5.23). However, the labeled ions and the nonradioactive are
completely different entities from the point of view of a counter; only the former
produce the scintillations.

Herein lies a method of examining the diffusion of ions in pure ionic liquids that
differs from the diffusion of ions in aqueous solution, which is governed by Fick’s
law. One takes a pure liquid electrolyte, say NaCl, and brings it into contact with a
melt containing the same salt but with a certain proportion of radioactive ions, say,
NaCl with radioactive ions. There is a negligible concentration gradient for
ions, but a concentration gradient for the tracer ions has been created. Diffusion
of the tracer begins (Fig. 5.24).

If a capillary containing an inactive melt is suitably introduced into a large
reservoir of tracer-containing melt at t = 0, then diffusion of the tracer into the capillary
starts (Fig. 5.25). At time t, the experiment can be terminated by withdrawing the
capillary from the reservoir. The total amount of  tracer in the capillary can be measured
by a detector of the radioactivity. From the study of the diffusion problem and the
experimentally determined average tracer concentration in the capillary, the diffusion
coefficient of the ions can then be calculated.
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Fig. 5.23. The principle of electroneu-
trality is satisfied if the number of tagged
positive ions plus the number of nonra-
dioactive positive ions is equal to the
total number of negative ions.

Since the tracer ions (e.g., diffuse among particles (e.g., that are
chemically just like themselves, one often refers to the phenomenon as self-diffusion
(tracer diffusion is a more explanatory term) and to the diffusion coefficient thus
determined as the self-diffusion coefficient.

5.6.2.2. Results of Self-Diffusion Experiments. Self-diffusion coefficient
studies with fused salts really began to gather momentum after radioisotopes became

Fig. 5.24. The existence of a concen-
tration gradient for tracer ions produces
diffusion of the tracer, i.e., tracer diffu-
sion.
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Fig. 5.25. A schematic of an experiment to study
tracer diffusion. A capillary containing inactive melt
is dipped into a reservoir of melt containing tracer
ions. Tracer ions diffuse into the capillary.

widely available, i.e., after about 1950. Some of the data for comparing the diffusion
coefficients of typical inert gases, room-temperature liquids, metals, and molten salts
are presented in Tables 5.17, 5.18, and 5.19.

It can be seen that the diffusion coefficients of these liquid electrolytes (near their
melting points) are of the same order of magnitude  as for liquid inert
gases, liquid metals, and normal room-temperature liquids. This fact suggests that the
mechanism of  diffusion is basically the same in all simple liquids, i.e., liquids in which
the particles do not associate into pairs, triplets, or network structures (see Sections
3.8 and 4.8.8). The order of magnitude of the diffusion coefficient has evidently more
to do with the liquid state than with the chemical nature of the liquid for in the case of
the corresponding solid substances, the diffusion coefficient ranges (Table 5.19) over
more than four orders of magnitude

An expected feature of the results on tracer diffusion is that the diffusion
coefficient varies with temperature. The temperature dependence observed experimen-
tally can be expressed in the type of equation exhibited by virtually all transport, or
rate, phenomena.
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where is found to depend little on substance and temperature, and is the
activation energy for self-diffusion (Fig. 5.26). Some preexponential factors and the
corresponding energies of activation for diffusion are given in Table 5.18.

In some liquids, a deviation (Fig. 5.27) occurs from the straight-line log D versus
1/T plots expected on the basis of the empirical exponential law for the diffusion
coefficient (Eq. 5.55). An example of such a deviating liquid electrolyte is molten

but in the case of this substance, structural changes have been noted with
increasing temperature. This seems to be a reasonable explanation for the deviation
from the straight-line log D versus 1/T plot.
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Fig. 5.26. The straight-line plot of log D versus 1/T
observed in the case of the diffusion of  and

in molten CsCI.

The activation energy for self-diffusion is usually a constant, independent of
temperature. It is, however, characteristic of the particular liquid electrolyte. The
dependence of the activation energy for self-diffusion on the nature of the fused salt
was experimentally found by Nanis and Bockris in 1963 to be expressible in the simple
relation of Fig. 5.28, given by the equation

where is the melting point.
It is important to emphasize that this same relation is valid for liquids in general,

including the liquid inert gases, organic liquids, and the liquid metals, a remarkable
fact and one which some liquid theorists have had difficulty explaining (though see
Section 5.7.5). Equation (5.53) does not apply, however, to associated liquids, or to
those in which there is widespread intermolecular binding throughout the liquid, such
as water or molten silicates, borates, and phosphates (Section 3.8).

5.6.3. Viscosity of Molten Salts

An examination of the properties of viscous flow of molten liquids shows that
viscosity varies with temperature in a way quite similar to that of self-diffusion. For
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Fig. 5.27. An example of a log D versus 1/T plot that
is not a straight line. The curve is for the diffusion of

and 36Cl in molten

Fig. 5.28. The dependence of the experimental energy of activa-
tion for self-diffusion on the melting point (1 cal = 4.184 J).
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Fig. 5.29. The straight-line plot of log versus
1/T for viscosity of a molten salt.

simple, unassociated liquids, the temperature dependence is given by an empirical
equation

where is a constant analogous to and is the energy of activation for viscous
flow (Fig. 5.29 and Tables 5.20 and 5.21).
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This expression is formally analogous to Eq. (5.51) for the dependence of the
self-diffusion coefficient upon temperature. For simple liquid electrolytes, the experi-
mental activation energy for viscous flow is given by an expression (Fig. 5.30)
identical to that for self-diffusion, i.e.,

The fact that this empirical law applies so widely clearly is trying to tell us
something. It is that the basic factors determining viscous flow and self-diffusion are
the same for all liquids that do not have to break bonds before they undergo transport.

Simple ionic liquids have viscosities in the range of 1 to 5 centipoises (cP).
However, when there is an association of ions into aggregates, as, for example, in

near the melting point, the viscous force-resisting flow of the melt increases
above that noted for simple liquids. Such complex ionic liquids are discussed later
(Section 5.8).

5.6.4. Validity of the Stokes–Einstein Relation in Ionic Liquids

All transport processes (viscous flow, diffusion, conduction of electricity) involve
ionic movements and ionic drift in a preferred direction; they must therefore be
interrelated. A relationship between the phenomena of diffusion and viscosity is
contained in the Stokes–Einstein equation (4.179).
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This equation was deduced in Section 4.4.8. It is of interest to inquire here about
its degree of applicability to ionic liquids, i.e., fused salts. To make a test, the
experimental values of the self-diffusion coefficient and the viscosity are used
in conjunction with the known crystal radii of the ions. The product  has been
tabulated in Table 5.22, and the plot of  versus 1/r is presented in Fig. 5.31,
where the line of slope  corresponds to exact agreement with the Stokes–Einstein
relation.14

Looking at Fig. 5.32, it can be seen that there is a fairly significant fit. The anions,
particularly those of the group II halides, are not very consistent with the Stokes–Ein-
stein relation. However, their poorer fit is offset by the better Stokes–Einstein behavior
of the cations. The relatively good fit of the cations tempts one to conclude that there
is a particular reason for the deviations of the anions. Some attempts have been made

14The essential applicability of this phenomenological equation is clearly shown by using the numerical
comparison of The right-hand side is for r = 300 pm, and the mean of the
experimental values is  which is not bad!
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Fig. 5.30. The dependence of the experimental energy of activation for viscous
flow on the melting point.

to elucidate this reason. For instance, it has been suggested that since anions are by
and large larger than cations, they require greater local rearrangements at a site before
they can jump into it, i.e., greater entropies of activation.

The Stokes–Einstein relation is based on Stokes’ law in hydrodynamics according
to which the viscous force experienced by a large sphere moving in an incompressible
continuum is What Fig. 5.31 tells one is that, even though ions do not move
in a continuum but among particles that are of approximately the same dimensions as
the ions themselves, Stokes’ law still holds! In view of the great dissimilarity of an
ion in a structured medium and a sphere in an incompressible continuum, the rough
applicability (in fused salts) of the Stokes–Einstein equation is somewhat unexpected
and very useful. Of course, it is entirely consistent with the agreement between the
heats of activation for viscous flow and self-diffusion. Each must evidently be
concerned with the same rate-determining step, mechanism, and heat of activation.

5.6.5. Conductivity of Pure Liquid Electrolytes

The electrical conductance of molten salts is the easiest transport property to
measure. In addition, knowledge of the order of magnitude of the equivalent conduc-
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Fig. 5.31. When is plotted against 1/r, a straight-
line of slope should be obtained if the Stokes–Ein-
stein relation is applicable to molten salts. The
experimental points are indicated in the figure to show
the degree of applicability of the Stokes–Einstein rela-
tion to molten salts.

tivity of a pure substance was used as a criterion for the nature of the bonding present.
For these reasons, the electrical conductance of ionic liquids has been the subject of
numerous studies.

The equivalent conductivities of some of the fused chlorides are given in Table
5.23, where the substances have been arranged according to the Periodic Table. The
heavy line zigzagging across the table separates the ionic from the covalent chlorides.
This structural difference is shown up sharply in the orders of magnitude of the
equivalent conductivities.

Two further correlations emerge from Table 5.23. First, the equivalent conduc-
tivity decreases with increasing size of the cation (Table 5.24); second, there is a
decrease in equivalent conductivity in going from the monovalent to the divalent and
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Fig. 5.32. The straight-line plot of log  versus 1/T.

then to the trivalent chlorides (Table 5.25), probably because of an increase in covalent
character in this order.

As with the other transport properties, the specific (or equivalent) conductivity of
fused salts varies with temperature.15 For most pure liquid electrolytes, the experimen-
tal log versus 1/T plots are essentially linear (Fig. 5.32). This implies the usual
exponential dependence of a transport property upon temperature

For some substances, the plots are slightly curved. In these cases, structural changes
(e.g., the breaking up of polymer networks such as those observed with occur
with change of temperature.

When the activation energies for conduction are computed from the log     versus
1/T plots, it is seen (Table 5.26) that they are a little lower than the activation energies
for viscous flow and self-diffusion, i.e.,

but follow the same pattern; they are proportional to the melting point temperature.

15A convenient means of comparing different salts is to use “corresponding temperatures”; usually 1.05 or
1.10 times the value of the melting point in kelvins is used for this purpose.
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5.6.6. The Nernst–Einstein Relation in Ionic Liquids

5.6.6.1. Degree of Applicability. Just as the Stokes–Einstein equation gives
the relation between the transport of momentum (viscous flow) and the transport of
matter (diffusion), the connection between the transport processes of diffusion and
conduction leads to the Nernst–Einstein equation (see Section 4.4.9). For 1:1
electrolytes this is

A more general expression of this same equation is

The Nernst–Einstein relation can be tested by using the experimentally deter-
mined tracer-diffusion coefficients to calculate the equivalent conductivity and
then comparing this theoretical value with the experimentally observed It is found
that the values of calculated by Eq. (5.61) are distinctly greater (by ~10 to 50%)
than the measured values (see Table 5.27 and Fig. 5.33). Thus there are deviations
from the Nernst–Einstein equation and this is strange because its deduction is pheno-
menological.16

I6A phenomenological deduction is one that follows from general common sense or logic and involves only
very general laws. It does not involve detailed models. So if experimental phenomena don’t agree with
predictions made on their basis, the only conclusion is that the conditions implied for the applicability of
the laws do not apply to the case at hand. In this case, the expectation that the conductivity measured
should agree with that obtained from diffusion data via the Nernst–Einstein equation requires that
diffusion and conduction at least involve the same particles (e.g., and  If  in diffusion an extra particle
comes into the picture that is not effective in conduction, then the Nernst–Einstein law will not apply.
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Fig. 5.33. Plot to show deviations from the Nernst–Ein-
stein equation; observed equivalent conductivity of
molten NaCI and calculated from Eq. (5.61).
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Fig. 5.34. An entity formed by the
temporary or permanent associa-
tion of a pair of oppositely charged
ions is electrically neutral and there-
fore does not migrate under an
electric field.

5.6.6.2. Possible Molecular Mechanisms for Nernst–Einstein Deviations.
The observed conductivity is always found to be less than that calculated from the sum
of the diffusion coefficients (Table 5.27), i.e., from the Nernst–Einstein relation [Eq.
(5.61)]. Conductive transport depends only on the charged species because it is only
charged particles that respond to an external field. If therefore two species of opposite
charge unite, either permanently or temporarily, to give an uncharged entity, they will
not contribute to the conduction flux (Fig. 5.34). They will, however, contribute to the
diffusion flux. There will therefore be a certain amount of currentless diffusion, and
the conductivity calculated from the sum of the diffusion coefficients will exceed the
observed value. Currentless diffusion will lead to a deviation from the Nernst–Einstein
relation.

It was suggested by Borucka et al. that a permanent association of positive and
negative ions is not a necessary basis for a breakdown of the Nernst–Einstein equation.
The only requirement is that diffusion should occur partly through the displacement
of entities which have (momentarily, during jumps) a zero net charge and thus do not
contribute to conduction. The entity may be, for instance, a pair of oppositely charged
ions, in which case the diffusive displacement occurs by a coordinated movement of
such a pair of ions into a paired vacancy (Fig. 5.35), i.e., a vacancy large enough to
accept a positive and a negative ion at the same time. The pair of oppositely charged
ions that jumps into a “paired vacancy” is neutral as a whole and therefore such
coordinated jumps do not play a part in the conduction process, which is determined
only by the separate, uncoordinated movements of single ions.

Thus, the experimentally observed diffusive flux of either of the ionic species is
made up of two contributions—the diffusive flux occurring through the independent
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Fig. 5.35. Schematic diagrams to indicate how diffusive displacement
can occur through a coordinated movement of a pair of ions into a paired
vacancy.

jumps of ions and that occurring through paired jumps. Taking the example of the
diffusion of in an NaCl melt, one has17

where is the experimentally observed flux of (primes refer here to experi-
mental quantities), is the diffusion of by independent jumps, and is
the flux due to coordinated jumps of and ions into paired vacancies

and

Adding Eqs. (5.65) and (5.66), one has

17The subscript NaCl must not be taken to mean that there are entities in the melt that might be considered
“molecules” of sodium chloride. The NaCl does not refer to and ions that are bound together like
an ion pair in aqueous solution; rather, it refers to a pair of and ions that undergo a coordinated
jump into a paired vacancy during the short time for which they momentarily exist in contact. They do
not contribute to the conductance because their jumps are directed not by the externally applied field but
by the presence of a paired vacancy that exists before the ions jump as a pair.
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However, from Eqs. (5.63) and (5.64)

Hence,

Similarly,

On adding, it is clear that

The and ions that make coordinated jumps into paired vacancies, i.e., the
NaCl species, contribute to diffusion but not to conduction since such a coordinated
pair is effectively neutral. Hence, the Nernst–Einstein equation is only applicable to
the ions that jump independently, i.e.,

where is the experimentally observed equivalent conductivity of molten NaCl.
Making use of Eqs. (5.72) and (5.71), one has

or

The first term on the right-hand side corresponds to the value of the equivalent
conductivity that would be calculated on the basis of the experimentally observed
diffusion coefficients. Using the symbol  for this calculated value, i.e.,
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one has

which shows that the experimental value of the equivalent conductivity is always less
than that calculated from a Nernst–Einstein equation based on experimental diffusion
coefficients. This is what is observed (Table 5.27).

5.6.7. Transport Numbers in Pure Liquid Electrolytes

5.6.7.1. Transport Numbers in Fused Salts. The concept and determin-
ation of transport numbers in pure liquid electrolytes is one of the most interesting,
and most confusing, aspects of the electrochemistry of fused salts.

The concept has been referred to in Section 4.5.2. The transport number of an
ionic species i is the quantitative answer to the question: What fraction of the total
current passing through an electrolyte is transported by the particular ionic
species i? In symbols [see Eq. (4.234)]:

In the case of z:z-valent salts, the transport number is simply given by

where is the mobility of the ion concerned, e.g., that of or  The coordinate
system with which these mobilities are measured is considered later on. For a pure
liquid electrolyte consisting of one cationic and one anionic species,

It was seen (Section 2.4) that in aqueous solutions, the solvent could not be
relegated to the status of an unobtrusive background. The solvent molecules, by
entering into the solvation sheaths of ions, participated in their drift. Thus, in addition
to the flows of the positive and negative ions, there was a flux of the solvent. This
complication of solvent flux is absent in pure ionic liquids. There is, however, an
interesting effect when a current is passed through a fused salt.
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Fig. 5.36. Schematic U-tube setup with M electrodes
and MX electrolyte. When 1 F of electricity is passed
through the system, one equivalent of ions is depos-
ited at the M cathode and one equivalent of ions is
produced at the M anode. Hence, a negative charge
tends to be produced near the cathode and a positive
charge near the anode.

Consider that a fused salt MX is taken as the ionic conductor in a U tube and two
M electrodes are introduced into the system as shown in Fig. 5.36. Let the conse-
quences of the passage of 1 faraday (F) of electricity be analyzed. Near the cathode,
one equivalent of ions will be removed from the system by deposition on the
cathode, and near the anode one equivalent of ions will be “pumped” into the
system. Since one equivalent of has been added and another equivalent has been
removed, the total quantity of ions in the system is unchanged (Table 5.28).

Is the system perturbed by the passage of a faraday of charge? Yes, because near
the cathode, one equivalent of ions has been removed, which has created a local
excess of negative charge. This local unbalance of electroneutrality creates a local
electric field.18 A similar argument can be used for the anode region.

How do the ions of the liquid electrolyte respond to this perturbation, i.e., this
creation of local fields? The ions start drifting under the influence of the fields so that the
initial state of electroneutrality and zero field is restored. How do the positive and negative
ions share this responsibility of moving to annul the unbalance of charges—more anions
than cations near the cathode and vice versa? It should be noted (Fig. 5.37) that the original

18This unbalance of electroneutrality and creation of field should not be confused with that arising from the
presence of the electrode, which causes an anisotropy in the forces on the particles in the electrode-elec-
trolyte interphase region. That anisotropy also produces an unbalance of electroneutrality and an electric
double layer (Chapter 6) with a field across the interface, but it occurs only within the first few tens of
nanometers of the surface.
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Fig. 5.37. The tendency for
electroneutrality to be upset
near electrodes is avoided
in one of three ways. For
example, near the anode,
where positive charge
tends to be produced, (a)
positive ions can migrate
away from the anode, (b)
negative ions can migrate
toward the anode, and (c)
both (a) and (b) processes
can occur to various ex-
tents.
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electroneutral situation can be restored by (1) only cations moving in the anode-to-
cathode direction; (2) only anions moving in the cathode-to-anode direction; and (3)
both cations and anions moving in opposite directions to different extents. However,
these possibilities represent different values of the transport numbers, which are the
fractions of the total field-induced ionic drift arising from the various species.

5.6.7.2. Measurement of Transport Numbers in Liquid Electrolytes. Let
and be the transport numbers of the and ions of the fused salt. The changes
in the numbers of equivalents of       and near the two electrodes are shown in Table
5.28, which is based on Fig. 5.36. The analysis of the changes leads to an interesting
result. The passage of 1 F of charge is equivalent to transferring equivalents of the
whole fused salt MX from the cathode region to the anode region (Fig. 5.38).

In the case of aqueous solutions, the ever-plentiful solvent could absorb this
equivalents of MX and register the transfer as a concentration change of magnitude

equivalents per liter, where V is the volume of the compartment. On the other
hand, a pure molten salt has no concentration variable. Hence, the transfer leads to an
increase in mass near the anode.

In molten salts, therefore, it is the change in mass in a compartment that reveals
transport numbers; in aqueous solutions, it was the change in concentration. However,
unless it is performed properly, the experiment provides information only on the
change in mass, not on the transport property.

What future has this mass increase? Left alone, the mass increase is short-lived
and the transport experiment fails. This is because gravitational flow of the molten salt
from the anode to cathode tends to equalize the amounts of MX in the two tubes (Fig.
5.39). It causes the liquid level in both tubes to be the same and wipes out the change
in level that the ionic movements tend to make.

Fig. 5.38. As a result of the passage of 1 F of
electricity, equivalents of MX electrolyte are
transferred from the cathode region (where the
electrolyte level falls) to the anode region (where
the level rises).
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Fig. 5.39. The difference in elec-
trolyte levels produced by the pas-
sage of 1 F of electricity leads to a
gravitational flow of the electro-
lyte.

The first step in determining transport numbers in pure ionic liquids is to prevent
the gravitational flow from masking the transfer of electrolyte. If the hydrodynamic
backflow that gravity causes cannot be prevented, it must at least be taken into account.
The general procedure is to minimize the gravitational flow by interposing a membrane
between anode and cathode (Fig. 5.40). However, there are serious objections to the
use of a membrane, owing to hydrodynamic interferences between this and the moving
liquid.

Fig. 5.40. The gravitational
flow can be minimized by in-
terposing a membrane be-
tween the anode and the
cathode.
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Fig. 5.41. A simple arrangement by which gravitational flow is avoided. The displace-
ment of the electrolyte from the cathode to the anode region occurs at one level. The
change in position of the melt in the capillary indicates the amount of electrolyte
displaced.

It is also possible to open out the U tube and make the whole liquid “lie down”
so that the movement of the fused salt occurs at one level and not against gravity. The
amount of salt entering the anode region is then indicated, for example, by a sliver of
molten metal pushed along by the movement of the salt in the capillary (Fig. 5.41).
This method is also subject to difficulties, for the movement of salts in capillary tubes
may not be smooth but is sometimes jerky.

This experiment directly demonstrates that when electricity is passed through a
fused salt, there is a movement of the salt as a whole. In other words, the mass center
of the liquid electrolyte moves. Now, the ions also are drifting with certain mobilities,
i.e., velocities under unit field. But velocities with respect to what? One must define
a coordinate system, or frame of reference, in relation to which the velocities (distances
traversed in unit time) are reckoned. Though the laws of physics are independent of
the choice of the coordinate system—the principle of relativity—all coordinate
systems are not equally convenient. In fused salt it has been found convenient to use
the mass center of the moving liquid electrolyte as the frame of reference, even though
this choice, while providing a simple basis for computations, suffers from difficulties.

Even the elementary presentation given here makes it clear that transport-number
measurements in fused salts are based on the transfer of the fused salt from the anode
to the cathode compartment. The quantities measured are weight changes, the motion
of indicator bubbles, the volume changes, etc. Some basic experimental setups shown
in Fig. 5.42 include the apparatuses of Duke and Laity, Bloom, Hussey, and other
pioneers in this field.

The migration of the electrolyte from the anode to the cathode compartment can
also be followed by using radioactive tracers and tracking their drift. Since isotopic
analysis methods are sensitive to trace concentrations, there is no need to wait for the
electrolyte migration to be large enough for visual detection. The results of some
transport-number measurements are given in Table 5.29.
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Fig. 5.42. Schematic diagrams of methods of determining transport num-
bers: (a) Measure velocity of the bubble; (b) measure transfer of the tracer;
(c) measure the potential difference due to pressure difference; (d) measure
the change in weight; (e) measure the transport of liquid metal electrodes; (f)
measure the steady-state level; (g) measure the change in weight; (h)
measure the moving boundary.

5.6.7.3. Radiotracer Method of Calculating Transport Numbers in Molten
Salts. In the discussion of the applicability of the Nernst–Einstein equation to fused
salts, it was pointed out that the deviations could be ascribed to the paired jump of ions
resulting in a currentless diffusion. With fused NaCl as an example, it has been shown
that there is a simple relation between the experimentally determined equivalent
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conductivity and the experimental diffusion coefficients of  and as indicated
by radiotracer and The relation is

From this expression, it is clear that one can determine Knowing one  can

and ions from the relations (5.69) and (5.70), i.e.,

and

Further, by using the Einstein relation [Eq. (4.172)] and the relation between absolute
and conventional mobilities, one has

and similarly,

With these values of mobilities, the transport numbers can easily be calculated from
the standard formulas

obtain the diffusion coefficients  and  of the independently jumping
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which, in the case of NaCl  reduces to

A comparison between transport numbers calculated in this way and those obtained
by some of the experimental methods used is shown in Table 5.30.
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5.7. USING A HOLE MODEL TO UNDERSTAND TRANSPORT
PROCESSES IN SIMPLE IONIC LIQUIDS

5.7.1. A Simple Approach: Holes in Molten Salts and Transport
Processes

Some facts about transport processes in molten salts have been mentioned
(Section 5.6). Whether a hole model (Section 5.4) can provide an interpretation of
these must now be examined. First it is necessary to cast the model into a form suitable
for the prediction of transport properties. The starting point is the molecular-kinetic
expression (Appendix 5.3) for the viscosity of a fluid, i.e.,

where n and m are the number per unit volume and the mass of the particles of the
fluid, is the mean velocity of the particles, and l is their mean free path.

The quantity l is linked to the model for viscous flow in fluids. According to this
picture (Fig. 5.43), a fluid in motion is considered to consist of layers lying parallel to
the direction of flow. (The slipping and sliding of these layers against each other
provides the macroscopic explanation of viscosity.) When particles jump between
neighboring layers, there is momentum transfer between these layers, the cause of
viscous drag (Fig. 5.44). In this picture, the symbol  is taken to represent the
component of the average velocity of the particles in a direction normal to the layers.

Irrespective of whether the fluid is in motion, the particles constituting the fluid
continuously execute random motion. The particles of a flowing fluid have a drift
superimposed upon this random walk. It is by means of the random walk of the
particles from one layer to another that the momentum transfer between layers is
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Fig. 5.43. A fluid in motion is considered equivalent to
moving layers of fluid, the layers lying parallel to the flow
direction.

carried on. This momentum transfer is visible to the observer as the viscosity of the
fluid.

Holes also move. As argued earlier (Section 5.5.1), anything that moves at finite
velocities must have an inertial resistance to motion, i.e., a mass (see Appendix 5.1).
Although it may continue to be surprising, holes have masses and moving holes have
momenta.

Thus, according to the hole theory, the random walk of holes between adjacent
layers results in momentum transfer and therefore viscous drag in a moving fused salt
(Fig. 5.45). On the basis of this model, the expression for the viscosity of an ionic
liquid is

where and are the number per unit volume and the apparent mass for translational
motion of the holes.

The velocity component is given by the ratio of  the mean distance between
collisions (i.e., the mean free path), to the mean time between collisions,

Fig. 5.44. Viscous forces are con-
sidered to arise from the momentum
transferred between moving fluid lay-
ers when particles jump from one
layer to another.
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Fig. 5.45. According to the
hole model, viscous drag
arises from the momentum
transferred between moving
fluid layers when holes jump
from one layer to another.

The viscosity can be written as follows

The theorem of the equipartition of energy can now be applied to the one-dimen-
sional motion referred to by

and using this approximate relation, one has

5.7.2. What is the Mean Lifetime of Holes in the Molten Salt Model?

The parameter now invites consideration. In the gas phase, is the mean time
between collisions. What is the significance of in an ionic liquid?

In a liquid, in the present model, would be the mean lifetime of a hole, i.e., the
average time between the creation and destruction of a hole through thermal fluctua-
tion. To calculate this, one may use the formula for the number of particles escaping
from the surface of a body per unit time per unit area into empty space, i.e.,

where c is the number of particles per unit volume, m is the mass of a particle, and A
is the work necessary for a mole of particles lying on the surface of the hole to be
released into its interior.
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In a time t, at particles escape from the exterior into a spherical hole of
radius The hole will be filled by these particles if this number is equal to the
number of particles in a sphere of radius that is, Then the time for
destruction of the hole is

Obviously, this is also the time for hole formation, and the lifetime, from Eqs. (5.91)
and (5.92), is

This is the mean lifetime of a hole. This expression is consistent with the idea that the
hole theory represents a Swiss-cheese sort of model of a liquid with holes of different
sizes [for is the mean radius for holes varying in size according to Eq. (5.44)].
The holes keep on opening and shutting, and the mean time they are open is given by
Eq. (5.93).

Before one leaves expression (5.93), it is well to note the innocent acceptance
with which A has been treated. It is the heat term associated with getting a hole
“unmade,” with collapsing the hole, the negative of the work of forming the hole.
However, it has not yet been said how this will be calculated, and what terms go into
this. Such a calculation will be one test that will be made of the hole theory in Section
5.7.6.

5.7.3. Viscosity in Terms of the “Flow of Holes”

By inserting the expression for the mean lifetime of a hole [Eq. (5.93)] into Eq.
(5.90), one obtains the hole-theory expression for viscosity. Thus,

There are two quantities on the right-hand side of Eq. (5.94) which need discus-
sion. They are the number of holes per unit volume of the liquid, and A, which
occurs in the Boltzmann factor exp(– A/RT), for the probability of a successful filling
of a hole. These quantities are discussed in terms of the closely related quantity of
diffusion.
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5.7.4. The Diffusion Coefficient from the Hole Model

Now that the viscous flow properties of an ionic liquid have been discussed, the
next task is to derive an expression for the diffusion coefficient. The present modeling
interpretation of the elementary act of a transport process consists of hole formation
followed by a particle jumping into the hole. The focus in this elementary act has
hitherto been the center of the hole.

What is the situation at the original site of the jumping ion? Alternatively stated:
What has happened, as a consequence of the jump process, at the point where the ion
was before it jumped? At this prejump site, there has been precisely that moving away
of particles from a point that corresponds to hole formation (Fig. 5.46).

Thus, when a particle jumps, it leaves behind a hole. So then, instead of saying
that a transport process occurs by particles hopping along, one could equally well say
that the transport processes occur by holes moving. The concept is commonplace in
semiconductor theory, where the movement of electrons in the conduction band is
taken as being equivalent to a movement of so-called “holes” in the valence band. It
has in fact already been assumed at the start of the viscosity treatment (Section 5.7.1)
that the viscous flow of fused salts can be discussed in terms of the momentum
transferred between liquid layers by moving holes.

Hence, when diffusion of particles occurs, there is a corresponding diffusion of
holes. Instead of treating ionic diffusion as a separate subject, therefore, one can
consider hole diffusion and write the Stokes–Einstein relation (Section 4.4.8) for the
diffusion coefficient of holes

The hole-theory expression for viscosity is known. It is Eq. (5.94). Let this be
introduced into Stokes–Einstein relation [Eq. (5.95)]. Using Eq. (5.44) the result is

Fig. 5.46. When a
particle jumps into a
hole, there is the for-
mation of a hole at the
prejump site of the
particle.
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The number of holes per unit volume can be expressed in terms of the known
volume expansion of a mole of the liquid at the melting point  divided by the mean
hole volume and reduced to the number per cubic centimeter by dividing by the
molar volume of the liquid at Hence,

Utilizing the value of the hole volume derived by substituting for  from Eq.
(5.44) in

The assumed identity of the rates of hole diffusion and ionic diffusion is recalled.
Thus, the final expression for the diffusion coefficient of ions in a fused salt is the same
as that for holes, i.e., Eq. (5.98).

The first point to note about this expression, apart from the fact that it is of the
form of the experimentally observed variation of D with temperature (i.e.,

is that the energy of activation for self-diffusion of cations and anions
should be the same. This is what is observed in Table 5.31.

What is meant by the term “Arrhenius activation energy?” This term arose from
the work of the early gas kineticists, who wrote equations of the type

and considered Z to have a negligible temperature dependence. Such an assumption
would of course give
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and it is this coefficient that is often identified with the “energy of activation.”
Therefore, if one wants to calculate what a theory gives for this, one has to take into
account whatever temperature dependence is possessed by the preexponential factor
in the theory. If one knew (as one hopes to know later on in this chapter) a theoretical
expression for A of Eq. (5.98), one would have to calculate a theoretical value for E
from Eq. (5.100) (including the effect of the temperature dependence of the preexpo-
nential) and compare its theoretical value with the experimental value of E calculated
from Eq. (5.100). From Eq. (5.98),

In the following sections, a value of A will be calculated. Used in the right-hand side
of Eq. (5.101), it gives there the theoretical prediction of the experimental energy of
activation, i.e., the left-hand side of Eq. (5.101) [cf. Eq. (5.100)].

5.7.5. Which Theoretical Representation of the Transport Process in
Molten Salts Can Rationalize the Relation

It has been pointed out (Sections 5.6.2.2 and 5.6.3) that the heats of activation for
viscous flow and for self-diffusion are given by the empirical generalization

where is the melting point in kelvins. Some of the data
that support this statement are plotted in Figs. 5.28 and 5.30. The empirical law is
applicable to all nonassociated liquids, not only ionic liquids. An empirical generali-
zation that encompasses the rare gases, organic liquids, the molten salts, and the molten
metals is indeed a challenge for theories of the liquid state, and hence also for
fundamental electrochemists interested in pure liquid electrolytes.
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Several approaches to the theory of liquids can be distinguished (see Section 5.2).
One may express the properties of a liquid in terms of a distribution function (as given
in Section 5.2.3.2), an expression that indicates the probability of finding particles at
a distance r from a central reference ion. One may be able to calculate the distribution
function itself from molecular dynamics. Alternatively, one can make educated
guesses about the scenarios inside the liquid, i.e., one agrees to temporarily assume a
number of competing models of the structure, and goes on to develop the mathematical
consequences of the various assumptions. The results of predictions from alternative
models can then be compared with experiments and one may decide upon the most
experiment-consistent model and use it as a working hypothesis to calculate other
properties of the liquid model.

Several differing simple models of molten salts do indeed give reasonably close
calculations of equilibrium properties, e.g., compressibility and surface tension. What
these models do not do, however, is to quantitatively rationalize the data on the
temperature dependence of conductance, viscous flow, and self-diffusion. The discov-
ery by Nanis and Richards of the fact that simple liquids have heats of activation for
all three properties given approximately by  presents a clear and challenging
target for testing models of liquids.

5.7.6. An Attempt to Rationalize

To find what Fürth’s hole theory predicts for the heat of activation in viscous flow,
it is necessary to attempt to use it to calculate the term A in, e.g., Eq. (5.98). The
meaning of A has already been defined in Section 5.7.2. It is the work done in
transferring a mole of particles from the surroundings of a hole into its interior.

An assumption will now be added to the model. It is that near or at the melting
point, a hole is annihilated by the “evaporation” into it of one particle; i.e., just one
particle fills it. There is no violation of physical sense in this assertion, for use of Eq.
(5.44) shows that the size of the holes predicted by the hole theory is near that of the
ions which are assumed in the model to jump into them. Correspondingly, the work
done to annihilate a hole is numerically equal to the work done in forming a surface
of radius r, namely, where is the surface tension. Hence, if  particles
must jump into a hole to annihilate it at temperature T

where is the term A (per mole, not molecule) at the temperature T. With the
assumption made
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What of at Ts other than the melting point, at which temperature has been
assumed to be unity? From Eq. (5.44), the hole volume—and hence its surface
area—should increase as T increases (and  decreases, as it does with an increase in
T). Of course, ions surround the hole and it seems reasonable to assume that as the
hole volume increases, the number of ions that surround it will increase, and thus the
number that is needed to fill it (thus causing the work will also increase.

Let it be assumed that the difference between the volume of the liquid salt
and that of the corresponding solid is due only to holes. Then the number of holes per
mole of salt at temperature T is

where is obtained from Eq. (5.44).
Thus, the number of ions per hole at T is

Hence,

Let it be assumed that the number of ions that will be needed to fill the hole at
any temperature would be proportional to the number of ions per hole in the liquid.
Thus,

However,

with
Thus [and with Eq. (5.44)]
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One can obtain numerical values for the term on the right. It has been calculated
from experimental data for some 14 simple molten salts, and if one restricts the range
of experimental data used to about 200 K above the melting point, it is found that

Under such circumstances, from Eqs. (5.110) and (5.111),

However,

From Eq. (5.44)

From Eq. (5.112),

This result may be compared with the empirical heat of activation by substituting
it in Eq. (5.101). The term on the left of this equation, the experimental values, are
found to be about Using for which the derivation has been
given here, on the right of Eq. (5.101), one obtains agreement between observed and
calculated values of the heat of activation to within about 5–10%. The theory of holes
is thus able to give some approximate, numerical account of the heat of activation in
the transport of simple liquids above the melting point.

5.7.7. How Consistent with Experimental Values Is the Hole Model for
Simple Molten Salts?

The Swiss-cheese model approach is consistent with the X-ray data, which show
that the distance apart of ions remains constant or decreases on melting while the
volume increases ~20%. In this respect, it is more consistent with experiment than
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some other models which upon melting involve expansion of the “cell” in which each
ion spends most of its life (so that the internuclear distance would increase).

An example of the ability of this Fürth hole model to reproduce experimental data
numerically without previous appeal to experimental values of similar systems is
shown in Table 5.32, which gives a comparison of experimental expansivities with the
values that the hole theory yields. An interesting aspect of the evidence supporting the
usefulness of this model is the relation of the (cell) free volume (Fig. 5.47) to the
volume of the expansion of melting. This free volume, in the sense referred to here, is
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Fig. 5.47. Plot of the free volume per ion against the average hole volume;
LiCI, NaCI, KCI, CsCI, NaBr, KBr, CsBr, Nal, Kl.

the space that is free to each atom on the average. This relation is shown in Fig. 5.47.
The continuous increase of the free volume with the hole volume is what would be
expected with a model in which, for between one in five atoms, there is a neighboring
hole, so that when a vibrating atom comes into contact with this space, its free volume
(= cell free volume and part of the volume of the hole) is increased. Thus, the free
volume due to the space within cells is related also to the hole volume, the volume
injected on melting, because the average ion’s freedom to move is increased by the
presence of holes. This is just what Fig. 5.47 confirms.

One must not give the impression that Fürth’s theory of holes in molten salts is
more than an attempt to see what can be done in the matter of replicating experimental
values without the use of experimental data relied on by competing models. It is the
model that gives the greatest degree of numerical agreement for several properties,
particularly those of transport. It is, on the other hand, a very crude model indeed. It
attempts to deal with the problem in a curious, perhaps ingenious, way by using an
analogy between holes in an actual molten salt and bubbles in a near-boiling liquid.
One might at first not take it seriously, particularly when one finds that it eliminates
the term by assuming that the liquid is near boiling when but one
should see merit in the ability of the model to predict experimental data without relying
on values obtained from previous experimental determinations, as is done in Monte
Carlo and molecular dynamics approaches. On the other hand, the theory involves
some far-fetched imagery, for example, that one particle or thereabouts evaporates to
annihilate a hole.
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Further consideration shows that a liquid molten salt bears more than one
resemblance to predictions of the hole theory. Ions do indeed tend to cling together in
clusters so that the internuclear distance does not increase to allow for the observed
large increase in volume on melting. Between these clusters of ions are gaps and
cavities of varying sizes, undergoing rapid changes in size. Some models similar to
the hole model seem unavoidable if one is to attain consistency with the increase of
volume on melting but lack of increase of the internuclear distance in the process. No
model of simple molten salts should be considered valid except a model that replicates
such unbending facts, and after that it is largely a matter of how to describe the space
introduced, varying in size and lifetime, in terms of physical chemistry, which is the
challenge and the answer to the question: “Why is a liquid so fluid while a solid is so
rigid?”

5.7.8. Ions May Jump into Holes to Transport Themselves: Can They
Also Shuffle About?

Constant-Volume Measurements: Big Jumps? The theories representing
trans- port in molten liquids which have been the subjects of Section 5.6 are all
consistent with the one general idea as to how transport works in molten salts. This is
that ions vibrate in their cells surrounded on all sides by counterions for a relatively
long time, but when the opportunity arrives, they dart off into a nearby vacancy of
some kind. Only Fürth’s theory is clear about what they dart to—an opened-up
neighboring cavity similar to those in the Woodcock and Singer model of Fig. 5.14,
which then gets 90% filled up by the ion’s arrival.

Then the rate at which transport, viscous flow, diffusion, and conduction occur is
controlled by either the rate at which the opportunities for escape occur or the ease
with which the ion jumps into the new “open structure.” Of course, these statements
apply only to molten salts such as sodium chloride, simple molten salts as they are
called, and those for which the log D versus 1/T line is straight (Fig. 5.49).19 If the
molten salt forms complexes (e.g., which is formed in then it is
rather different; the control of transport rate in these substances will be discussed in a
later section.

It is desirable to give some evidence that supports the idea that the ions await some
rearrangement that allows the transporting ion to have a less coordinated existence for
the brief moment of movement. If one determines the diffusion coefficient (or
conductance, or viscosity) at constant pressure, then both these processes—the making
of the cavity and the jumping into it—are components of the heat of activation (see
Figs. 5.48 and 5.49). This can be written as

19Many molten salts apart from the archetypal NaCl show a straight line for log D – 1/T.



IONIC LIQUIDS 687

Fig. 5.48. Arrehnius plots of fused salt self-dif-
fusion coefficients; anions; cations.

and Dworkin et al. (1960); TICI
and Angell and Tomlinson (1965);

Sjoblom and Behn (1968).]

where the suffixes H and J represent, respectively, the process of hole formation and
that for jumping into it.

One may also keep the temperature constant but vary the external hydrostatic
pressure. Doing this at various temperatures, one obtains relations such as those shown
in Fig. 5.50. Thus, knowing the expansivity and compressibility of the molten salt
concerned, one can figure out what values of log D have the same volume, though at
different temperatures (see Figs. 5.51 and 5.52).

At constant volume there can be no change in volume as the temperature increases,
a hypothetical and artificial state. Under these hypothetical conditions, changes of
transport with temperature cannot be affected by any corresponding increase in the
number of holes with temperature for if more holes were to increase with an increase
of volume, the volume of the solution would increase. Hence, under such (hypotheti-
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Fig. 5.49. Activation energy for diffusion at constant
pressure

cal) conditions of constant volume, the energy for hole formation would no longer
influence the rate of diffusion. For this reason, it is reasonable to write

Knowing the values of both at constant pressure but also at
constant volume, one can separate out the heats of activation: the one for the formation
of holes, and the one for jumping into holes. Some of the values obtained for ordinary
liquids, molten metals, and molten salts are shown in Table 5.33.20

In rate theory terms, the rate constant for a happening is given by

20If the “make hole, then jump in” model makes sense. It makes less sense if
Holes are there, all right, but they could be simply geographic features of the structure.
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Fig. 5.50. Effect of pressure on the diffusion of
ion in molten

so that the lifetime of an event (e.g., the formation of a cavity) is

Knowing and estimating the entropy of activation for its formation, one can
calculate how long the hole will last.21 Thus, the values experimentally found for

and show that the hole lasts longer than the time for jumping

21There is a quantity referred to in transport calculations called the velocity autocorrelation  function (see
Section 4.2.19). When applied to the velocity of particles in liquids, it refers to the time needed for a
particle to be free of the influence of the previous movement of particles (i.e., uncorrelated). For KCl at
1045 K, the value calculated by Smedley and Woodcock by means of a simulation gave  s for
the autocorrelation function—about one-tenth of the time for a jump calculated by a hole model (see Table
5.33) for

This result is more consistent with a “shuffle-along” (Swallin) model than the “wait-for-a-cavity-and-
leap-into-it” model. The weight of evidence (particularly the  law) is in the other direction
and one must then ask if neglect of the 20% volume increase on melting (with a decrease of internuclear
distance) has invalidated the significance of the results in Smedley and Woodcock’s calculation. To
support this suggestion, one may point to the wrong sign arising from such models in calculating deviations
from the Nernst-Einstein equation.
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Fig. 5.51. Evaluation of constant-volume conditions
(molten Standard of reference: 1 atm, 623 K

Fig. 5.52. Activation energy of “jumping”
ion in molten
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This is just a confirmatory calculation and it could not be any other
way if the idea of an ion waiting for the right juxtaposition of things—so it has space
to move elsewhere—represents microscopic reality, at least for the systems for which
the above result holds.

5.7.9. Swallin’s Model of Small Jumps

Many years ago, Swallin suggested another idea as a model for transport in molten
metals and molten salts.22 In his view, the free space that occurs when a liquid melts
does not play a part in the mechanism of transport, diffusion, conductance, and viscous
flow. This occurs, he suggested, by means of microjumps, a movement not unlike the
gyrations of a person in a large football crowd trying to get out to his seat in the front
row. Gaps in the crowd are too small to aid his motion, so that the only way is to shuffle
slowly forward, pushing and being pushed. Swallin’s23 suggestion did not sit well with
researchers studying molten salt at the time of its publication, however, because it was
accompanied by the following equation

where l is the jump distance and is the average distance between ion centers. This
is the volume difference between the ion in its activated state—the quintessential

situation of movement in the rate-determining happening—and the initial state, and it
is determined easily at constant temperature from the equation

22The fact that (see Fig. 5.28) the temperature dependence of rare-gas liquids, ordinary liquids, liquid metals,
and molten salts obeys the equation may mean they all have similar mechanisms for
transport.

23Swallin’s 1959 suggestion was made for metals. Here it may be more applicable than it seems to be to
molten salts. Thus, in Table 5.33, it is seen that for the ordinary liquids and molten salt
quoted but is close to 1.1 for metals. This signifies that the transport rate in a metal is determined less by
hole formation and influenced significantly by jumping.
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It can be seen that   knowing  one can calculate l, the jump distance. For
at 620 K, this is equal to 380 pm, which is too big by far to be called a microjump as
required in Swellin’s shuffling, though it is just the right kind of number for a jump
into the conveniently opening neighboring cavity, hole, or vacant space.

On the other hand, Swallin’s idea has not remained unused. One of the early
simulation calculations on molten salt structures—that by Alder and Einwohner—
found that a jump distance much smaller than the diameter of an ion fitted the
simulation and therefore fitted Swallin’s microjump model. However, this would not
be consistent with the values, for if the microjump distance is l, then

and as l in the microjump model would be around 10-20 pm,
would be about compared with a measured of about 10

(e.g., for at 620 K).
Work by Rice and Allnutt24 for molten salts posed another threat to the “making-

holes-and-jumping-into-them” model. In fact, their work has been seen by some to
pump life into the aging Swallin theory. The simulation they made was based on
calculation of the distribution functions (see Section 5.5.3), but this could be its
Achilles heel because the function thus calculated neglects the large change in volume
that occurs in salts such as NaCl when they melt. This is like trying to play Hamlet
with the Elsinore castle in the backdrop, but a large live African elephant walking
across the stage—it takes no notice of the main point (internuclear distance decreases
on melting but volume increases 11–28%). Tables 5.33 and 5.34 contain the values
for and and Table 5.35 contains those of

At first it was thought that the work of hole making was as much as ten times
greater than that of jumping, but later on the two values were found to be not so far
apart, indicating that the difficulty of jumping can be competitive with that of hole
making; the ion is less eager to avail itself of the conveniently opened up neighboring
hole than had been thought.

So what of Swallin’s shuffling and his idea of microjumps? There is no need to
abandon microjumping even though the heat of activation for all nonassociated,
noncomplexed liquids follows the law suggesting a unified mecha-
nism of transport for metals, organic liquids, and molten salts. Perhaps in some liquids
two kinds of steps contribute to transport in parallel.

It is only in the types of liquids that fit into the relation shown in Fig. 5.28 (i.e.,
the linear relation of that hole  formation seems to be the rate-controlling

24The Rice–Allnutt model may be understood by taking the ions that move to be analogous to a man who
enters a room full of partying people. His aim is to make it to the bar. There is no gap in the crowd present.
He “dives in” and essentially jiggles his way forward. This is a similar picture to the “shuffling along”
view presented in the 1950s by Swallin for diffusion in metals.
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event in transport. Take the case of the transport of protons in water (Section 4.11.6).
They dart about, continuously jumping from water to water, tunneling through the
barriers in between, with a slight tendency to go more in one direction than the other
if there is an applied electric field or a concentration gradient. On the other hand, about
one-fifth of the ions also move along as moves along. Here, therefore, two
mechanisms contribute to transport. There is nothing against assuming (according to
Rice and Allnutt’s calculations, which neglected the distributed cavities in liquids) that
some movements of ions occur by a shoulder-to-shoulder pushing microjump shuffle.
While the evidence for holds, and the are about the size
calculated for a hole (if models involving cavity making and jumping
into it seem more consistent with experiments than those that feature shuffling.
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5.8. MIXTURES OF SIMPLE IONIC LIQUIDS: COMPLEX FORMATION

5.8.1. Nonideal Behavior of Mixtures

A measure of understanding has been gained on the structure and transport
properties of simple ionic liquids. In practice, however, mixtures of simple liquid
electrolytes are more important than pure systems such as liquid sodium chloride. One
reason for their importance is that mixtures have lower melting points and hence
provide the advantages of molten salts,25 but with a lessening of the difficulties caused
by high temperatures. What happens when two ionic liquids, for example, and
KCl, are mixed together?

Consider, for instance, the electrical conductance of fused and KCl mix-
tures. If the equivalent conductivity of the mixtures (at a fixed temperature) were given
by a simple additivity relation, then a linear variation of equivalent conductivity with
the mole fraction of KCl should be observed (dashed line in Fig. 5.53). The straight

that gives a greater velocity in any rate process. The drawbacks are corrosion and the extra
precautions that must be taken to avoid the breakdown of equipment. These threaten high-temperature
experiments and make those above 2000 K extremely difficult to carry out. Such difficulties are greatly
reduced by using the room temperature molten salts. However, their organic nature often leads to great
dissymetry in ion size between cation and anion.

line should run from the equivalent conductivity of pure liquid at a particular
temperature to that of pure liquid KCl at the same temperature. Some binary mixtures
of single ionic liquids do indeed exhibit the simple additivity implied by the dashed
line of Fig. 5.53.

25Advantages include no competing hydrogen or oxygen evolution during electrode reactions and an
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Fig. 5.53. The variation of the observed equivalent conductivity of
mixtures as a function of the mole fraction of KCI. The

dashed line corresponds to the variation that would be given by the
additivity behavior.

There are, however, many systems in which deviations occur from a simple

dilution of, say KCl, the properties (e.g., equivalent conductivity) due to the and
ions are additive (see Section 4.3.10). This is ideal behavior (see Section 3.4.1).

With increasing concentration, however, there is a departure from ideality: the equiva-
lent conductivities are not simply additive.

Nonideality in aqueous solutions (see Chapter 3) was ascribed to Coulombic
attractionbetween and ions, and the ion-ion interaction theories were evolved
for aqueous solutions. The electrostatic attraction between a pair of oppositely charged
ions could overwhelm thermal jostling and result in the formation of ion pairs (see
Section 3.8).

One can resort to similar explanations for departures from ideality in mixtures of
simple ionic liquids. However, there are specific differences between the situation in
fused salts and that in aqueous solutions. In pure liquid KCl, there is no concentration
variable and therefore fused KCl has a single value of equivalent conductivity (at a
particular temperature). The mean distance between the and ions cannot be
altered, as it can be in aqueous solutions, by interposing varying amounts of solvent

additive law for conductance. The system of and KCl is a case in point (full line
in Fig. 5.53). A minimum in the conductivity curve is observed. What is the signifi-
cance of this minimum?

5.8.2. Interactions Lead to Nonideal Behavior

The situation is reminiscent of some happenings in aqueous solutions. At infinite
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because there is no solvent. Hence, the equivalent conductivity of pure liquid KCl
embodies the effects of all the possible interactions for the temperature concerned. The
thermodynamics of mixtures of molten salts has been intensively studied by Bloom,
by Kleppa, and by Blander.

The interactions that one proposes to account for the deviations from ideality in
mixtures of ionic liquids are interactions between the ions of one component of the
mixture considered as a solvent and the ions of the other component that is added. In

between ions and Cl– ions, and this interaction can be more than simply
electrostatic, which is attraction without preferred direction. It may also involve
directed valence forces.

5.8.3. Complex Ions in Fused Salts

It is intended here to discuss nonideality arising from complex ion formation. In
the case of mixtures of pure liquid electrolytes, however, the idea of complex ion
formation raises some conceptual problems.

Consider complex ion formation in the system, and let it be assumed
for the moment that a complex ion is formed. If such complex ions were formed
in an aqueous solution of and KC1, they would exist as little islands separated
from other ions by large expanses of water. In fused salts, there are no oceans of solvent
separating the ions. Thus, a ion would constantly be coming into contact on all
sides with chloride ions, and yet one singles out three of these ions and says that
they are part of (or belong to) a complex ion (Fig. 5.54). It appears that in the
absence of the separateness possible in aqueous solutions, the concept of complex ions
in molten salts is suspect. As will be argued later, however, what is dubious turns out
to be not the concept but the comparison of complex formation in fused salts with
complex formation in aqueous solutions.

It is more fruitful to compare complex formation in ionic liquids with the
phenomenon of hydration of ions in aqueous solution (Chapter 2). It will be recalled
that though an ion was seen as constantly nudged by the water molecules of the
surrounding medium, a certain number of the water molecules—the “hydration

Fig. 5.54. The similarity between (a) a solvated
ion in an aqueous solution and (b) a complexed
ion in a mixture of ionic liquids.

the case of KCl added to pure one can consider, for example, the interactions
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number”—were considered to stay with the ion in its movement through the solution.
The criterion by which the two kinds of water were distinguished was that all those
water molecules that temporarily surrendered their translational degrees of freedom to
the ion and participated in its random walk constituted its solvation sheath.

Similarly, a completed ion is an entity in which a certain number of ligand ions
(e.g., three chloride ions in a complex) participate in the random walk of the
ion (i.e., the Cd2+ ion in the complex). The other Cl– ions only underg o
promiscuous contacts with the ion of the complex, not long-term affairs. The
implication is that a complex ion (i.e., the ion and its ligands) is an entity with a lifetime
that is at least several orders of magnitude longer than the time required for a single
vibration.

From the standpoint of this comparison (Fig. 5.54), it is seen that the concept of
a complex ion in a molten salt is at least as tenable as that of an ion with a primary
solvation sheath (Section 2.4) in aqueous solutions. What experimental evidence exists
for complex ions in fused salt mixtures? To anwer this question, one must discuss some
results of investigating the structure of mixtures of simple ionic liquids.

5.8.4. An Electrochemical Approach to Evaluating the Identity of
Complex Ions in Molten Salt Mixtures

Here one measures a quantity called the transition time at an electrode (see
Chapter 7). One switches on a constant current through an electrode. This current is
such that the electrode reactions occur fast enough and the activation overpotential is
avoided. Under such conditions, an interval of time can be measured (the transition
time, ) at which ions in the interfacial layer in contact with the electrode exhaust
because they are being removed onto the electrode faster than the rate at which they
are being supplied from the solution. Then the electrode potential undergoes a dramatic
change in the electrode search for other ions to act as a sink for the electrons pouring
into it, which corresponds to the constant current strength chosen.

Then it is easy to show (Inman and Bockris, 1961) that under these circumstances

Here t is the time elapsed since the switch on of the current, and is the potential

The key point here is that is independent of the concentration of the species
exchanging electrons at the electrode if there are no complexes formed. Conversely,
it is empirically found that if complexes are present, varies with the concentration.

To illustrate how one might use this method to find the concentration of the
complexes, consider a molten salt system such as dissolved in a eutectic of

at about 530 K. There are no complexes between and in the

reached at one-fourth of the transition time described earlier.
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What happens to when one adds to the nitrate system just described some
ion that complexes Cd, e.g., Then it is found that changes with the
concentration of added in contrast to its constancy in the absence of the ligand.
Now, where is the quarter-time potential under standard

of  Cd formed by adding, e.g., varying concentrations of  KCl to the
eutectic.

DeFord and Hume derived expressions to treat the type of situations sketched
above and a version of their equation is

Two symbols require definitions; is the ligand concentration (the for example)
and m is the maximum number of ligand ions associated with Cd, that is 3, as in
other terms have their usual meaning.

Further functions are defined as follows ( is the experimentally determinable
quantity):

when etc., are related to the successive formation constants
etc., by

system of Correspondingly, it is found that,  is inde-
pendent of                                            in this system.

conditions, and  is thevalue of  in the presence of -containing complexes
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By making suitable plots, it is possible to obtain the formation constants
of the complexes and then to calculate from the equations given above the formulas

should equal and the limiting slope at should equal and
so on, up the series. The F against plot for the next-to-last complex present in the
system should be a straight line with a slope equal to the overall formation constant
for the complex of the highest coordination number, and the intercept at the plot
for the last complex should be a straight line parallel to the axis. The calculated
formation constants are given in Table 5.36.

The way this plots out is shown in Fig. 5.55. The figure illustrates a lesson that is
easily understandable: the dominant complex changes with the concentration of the
ligand.

5.8.5. Can One Determine the Lifetime of Complex Ions in Molten
Salts?

Ideas on complex ions in molten salts tend to vary with the time at which they
were published. In the first half of the century, there seemed no doubt that complex
ions in molten salts were distinct entities and, it was implied, they were permanent.
Later, there was doubt as to our ability to identify complex ions in molten salts. Thus,
it was argued, there is no difficulty in accepting the existence of discrete ions in
aqueous solutions because each ion is a separate entity, and there are many solvent

of the complexes present. For example, if is plotted against the extrapolation to
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Fig.5.55. Dependence of theconcentration of variouscomplex
ions upon the addition of KBr.

molecules between each ion. In the molten salt, however, there is a continuum of ionic
entities and whether complexed ionic species can be distinguished seems less certain;
perhaps the Br– ligands in the imagined are just shared equally among the
solvated ions in a solvent such as

These two views can be described in terms of a time representing the time an
ion such as remains bonded to a ligand, such as In the two extreme views
just given, would be minutes or even hours for long-lived complexes and zero for
the concept that distinguishable complex ions in molten salts do not exist.

Such problems can be tackled by spectroscopic means, as shown later. Raman
spectra, in particular, would indicate new lines having characteristic frequencies when

is added to and in the preceding section it has been
shown that an analysis of the variations of the electrode potential of in

with addition has given reason to believe in complex ions in the
cases quoted. However, there is a nifty electrochemical method that allows one to also
obtain the lifetime of the individual ions and hence remove doubt as to the real
existence of complex ions in molten salts.
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If one applies a constant current density to an inert electrode such as Pt dipped
into a molten salt consisting of a solvent (e.g., with a solute of

it is found that the transition time varies with the strength of the electric
current passing across the electrode.

The “transition time” was described briefly in Section 5.8.4, but it is described in
more detail in Chapter 7. When one switches on a cathodic current (electrons ejected
from the electrode to the solution) at an electrode, at first there are plenty of ions in
the region near the electrode and plenty of current can flow. However, there comes a
time the transition time, when the solution near the electrode “runs out” of ions, and
the electrode potential then undergoes a significant change.

The value of for simple situations (no complexing in solution) is given by

where j is the current density, n is the number of electrons in the overall reaction, F is
the faraday, is the diffusion coefficient of the ion diffusing to the electrode, and

is the concentration of, e.g., ions in solution.
It can be readily seen from Eq. (5.130) that should be a constant for

independent of the applied current, and Fig. 5.56 shows that for the system indicated
in the annotation to the figure, it is not. Why not?

Figure 5.56 contains two linear sections. Thus, (which would be constant if
all were simple) decreases as the current density increases. This is consistent with a
homogeneous reaction occurring in the bulk of the solution. As the current strength
increases, the dissociation of the complex becomes increasingly unable to keep up with
the electrode’s need for is kept constant). For this reason, sinks with an
increase of current density and hence decreases.

It is difficult to think of an interpretation consistent with these facts except some
sequence of the kind:

One of these reactions must involve a slow, rate-determining step that prevents
the complex from dissociating rapidly enough to make up the quantities that the
electrode removes from the interfacial region around it. Thus, in Fig. 5.56 for the lower
line (with higher current densities) the story is qualitatively the same. However, the
mathematical treatment goes into a different approximation at higher current densities
with the slope change.

It is possible to show that a two-sloped graph such as that shown in Fig. 5.56 can
be treated in such a way that the rate-controlling reaction in the above series can be
identified as the slow dissociation of  and the corresponding lifetime of the entity
involved evaluated, also. The lifetime determined for the  was 0.3 s in the nitrate
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Fig. 5.56. against
KBr=9.21x (Reprinted

from S. Srinivasan, D. Inman, A. K. N. Reddy,
and J. O’M. Bockris, J. Electroanal. Chem. 5:
476, 1965.)

eutectic considered. All this goes to show that there can be indeed complexed entities
in molten salts and they live for quite long times,26 although they are by no means
permanent.

5.9. SPECTROSCOPIC METHODS APPLIED TO MOLTEN SALTS

Cryolite is in the process for the extraction of Al, which is
obtained from the corresponding hydrate in the mineral bauxite,27 is added to molten

26Long in comparison with some molecular complexes, which have lifetimes on the order of as little as
s.

27Bauxite is most easily available to U.S. companies from Venezuela and islands in the Caribbean; there is
also a lot in Australia. When bauxite ceases to be economically obtainable from nearby sources (after the
year 2000), Al will be extracted from clay (sodium aluminum silicate), which is one of the more abundant
minerals on earth and occurs in all countries. would be formed by chlorination of the clay and this
compound would be added to a KCl-LiCl eutectic around 770 K. Electrolysis at this temperature would
deposit solid Al. Because of the very large amount of Al available from clay, and because of its light
weight, Al is tending to replace Fe even in automotive manufacture.
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Fig. 5.57. (a) Spectrum of molten cryolite at 1380 K (— halation),
(b) Analysis of the spectrum in Raman scattering (——), thermal
radiation (- - - -), and instrumental background radiation (---).
(Reprinted from C. Solomons, J. Clarke, and J. O’M. Bockris, J.
Chem. Phys. 49: 445, 1968.)

cryolite in such a way that Al deposits at the negative electrode of an electrolytic cell.
This is the method by which Al is obtained throughout the world. It is the number one
electrochemical process in terms of money invested.

In the study of this system, it is necessary to study the constitution of cryolite,
what complex ions are present in it, if any. The work is difficult because the
temperature is on the order of 1270 K, and cryolite is an aggressive substance,
particularly after has been added; it attacks most materials, even refractory
material such as Making up a cell that is both not attacked by the corrosive
cryolite and has a transparent window for radiation to enter and leave is a challenge.
The difficulty was first overcome in 1968 by Solomons et al., who used BN as a
refractory not attacked by cryolite. In a typical Raman experiment, a focused laser
beam enters into one hole in a BN crucible and the scattered light (see also Section
2.11), which carries information on the structure of the particles, emerges through
another hole in the crucible. Surface tension keeps the liquid cryolite and alumina from
escaping through the holes.

The Raman spectrum of cryolite is shown in Fig. 5.57. The features remaining
after deconvolution are two peaks, one at a wavenumber of 633 and one at 577
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Both these peaks are polarized.28 The relatively high frequency and polarized nature
of these bands is consistent with the totally symmetric stretching frequency of Al–F
in one of the two anions known to constitute cryolite— (tetrahedral) and

(octahedral).
In solid cryolite there is a band at 554 (wavenumbers)29 that has been

identified as originating in Is the band in the melt due to the same
ion? The more intense band (see Fig. 5.57) at 633 would be expected to be from
a complex of lesser coordination number and this fits

What fits the observations reported is the equilibrium

The mole fractions of and are determined from the relative values of the
peaks in the spectrum as 0.07 and 0.3, respectively; i.e., the that dominates the
solid at room temperature dissociates to a considerable extent in the liquid at 1270 K
to the simpler complex.

When is added to molten cryolite, another ion, also forms and may
(surprisingly, because it is an anion) take part in the final reaction at the negative
electrode31 that produces Al.

28In Raman spectroscopy (see Section 2.11), one speaks of the polarization and depolarization of the
scattered light. The depolarization ratio of a line is the ratio of the intensities within the scattered light
polarized perpendicular and parallel to the plane of polarization of the incident light. The
depolarization ratio, is defined as There are several possibilities for the value of this ratio for
the emergent light. It can be nonpolarized or retain its initial polarization and In
practice, a Raman line is counted as depolarized if and polarized if Of course, to observe
this, one has to look at the Raman scattered light through a polarizing filter, which enables us to find the
ratio of to light. The importance of measuring the polarization of the scattered light is that its
interpretation tells us about the symmetry of the scattering source, i.e., gives information on the nature of
the ions present.

29Wavenumber is defined as where is the wavelength. However, where is frequency and c
is the velocity of light. A higher wavenumber means a lower and a lower means a higher frequency.

31 Readers should not be overly shocked at the idea that negatively charged anions such as may react
at cathodes, which are the negative electrodes in a cell. Electrodeposition at negative electrodes from
negative anions is quite common (Cr plating of car bumpers occurs from Although the anions are
electrostatically repelled at a cathode, there may be a driving force as a result of a diffusion gradient.

This can be seen from the Nernst–Planck equation of Section 4.4.15. Here there are two terms. One

30Now for an oscillator,  where k is the force constant of the vibration and is the reduced
mass of the oscillator, e.g., Al-F. A lower coordination number means a higher k, and hence v , because
of lessened repulsion between the ligands and diminished screening of the nuclear charge on the cation.

contains a potential gradient, and the other a concentration gradient, For a negative anion
approaching a negatively charged cathode, there is repulsion. However, transport to the electrode and
deposition is still possible if the concentration gradient term (which tends to impel the anion to the cathode)
dominates over the potential gradient term.
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5.9.1. Raman Studies of Al Complexes in Low-Temperature “Molten”
Systems

complexes with inorganic ions such as to form and both

is highly viscous. The obvious question is: What happens when is added to
(both being in the liquid state)? This seems an ideal sort of question for study by a
Raman spectroscopist since Al–Cl and Sn–Cl both show Raman-active bands.

Fig. 5.58. Raman spectra of equimolar
mixtures: (a) spectrum of the liquid (T= 500 K) and (b)
spectrum of the glass (T= 298 K). (Reprinted from B.
P. Gilbert, F. Taulelle, and B. Tremillon, J. Raman
Spectros. 19: 1,1988.)

Solomons and Clarke found pure to be polymerized when liquid, and it
of which register in Raman spectra. might be considered a fruitful partner for
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Figure 5.58 shows the spectra for the equimolar liquid and the corresponding
glass. Features that are not in the spectrum of either  or liquid before they
are brought together are observed at This wavenumber is known to be
characteristic of  Sn-Cl bonds. When the melt is cooled to form a glass, the
band breaks up to show a band at 248 and one at 219 The band
is probably partly depolymerized

The other band at 219 will be characteristic of a new Sn-Cl bond and this
could come from the breakdown of the polymer, perhaps in a new complex,

either as

or as

The second structure is preferred because it brings about a lesser symmetry in the
complex ion and this decreased symmetry is found to lead to an explanation of one of
the characteristics of the spectra, the fact that they exhibit polarization, i.e., have
differences in the spectra when the polarized light incident on the sample is in either
the parallel or the vertical plane, respectively. Thus, polarization of the scattered
Raman radiation is expected from the but not from the complex ion.

5.9.2. Other Raman Studies of Molten Salts

Some idea of how Raman spectroscopy works—how light from nonelastic
scattering on molecules contains information on the vibratory state of the bonds
therein—has been given in Section 2.11. Raman spectroscopy can be used to obtain
information on the structure of ions in molten salts, as has been shown in the last three
sections. Here, two further molten salt systems that contain complexes and that have
been subjected to Raman spectroscopy are described. The first one concerns melts of
zinc chloride hydrate.
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Fig. 5.59. Background-corrected Raman
spectra for ZnCI2 hydrate at 298 K. Solid
lines show the peak components ob-
tained by the least-squares fits. (Re-
printed from T. Pom, T. Yamaguchi, S.
Hayaschi, and H. Ohtaki, J. Am. Chem.
Soc. 93:2620,1989.)

The associated spectra and Raman frequencies are shown in Fig. 5.59 from the
work of Yamaguchi et al. The predominant band at  280–289 is attributable to
the Zn–Cl vibration in There is also a peak at 227–234 for  solutions
containing less than 40% Zn. The same peak is found in anhydrous  melts and
is probably due to  in aggregates (i.e., a number of ions joined together by
Cl atoms). Polarized light studies on the symmetry and structure do not seem to have
been done.

Another system studied by Raman spectroscopy concerns molten salts at room
temperature, which usually involve organic compounds. The system consists of
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Fig. 5.60. Raman spectra for
MEIC melts at room tempera-

ture: (a) n=0.35 molar fraction
and (b) n=0.64 molar fraction
For both, the upper spectrum is ver-
tically polarized, and the lower one
is horizontally polarized The inten-
sity scales are different for the two
polarizations. (Reprinted from S. P.
Wicelinski, R. J. Gale, S. D. Williams,
and G. Mamantov, Spectrochim.
Acta 45A: 759,1989.)

gallium chloride in 1-methyl-3-ethylimidazolium chloride (MEIC) at ambient tem-
peratures. This system was examined by Mamantov et al. using an exciting wavelength
of 514.5 nm and some spectra are shown in Fig. 5.60.

Table 5.37 contains data on the chlorogallates. The peak at 376 corresponds

The latter ion would have peaks as shown in the table; there is a weak peak at
that may indicate the presence of

to but when the molar fraction of  one would expect
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5.9.3. Raman Spectra in Molten CdCI2-KCI

Tanaka et al. investigated liquid with special reference to the com-

nm) and green light ( = 546.1 nm) as exciting sources. Four peaks were recorded and
the strongest ones are shown in Table 5.38.

The interpretation of what these peaks mean in terms of structure was made by
Tanaka et al. by comparing the numerical values of peaks shown in Table 5.38 with
values obtained for the corresponding solids where the structure is known by means
of the interpretation of X-ray diffraction patterns. Polarized light in the exciting source
was used in the investigation and indicated the degree of symmetry in the structure of
the ion being observed.

Over the range of compositions of 33–66 mol% in no  change
was observed in the Raman results; i.e., over this midrange of compositions there is a
stable complex. The peaks and polarization data were compatible with the complex

in pyramidal structure (tetrahedral and planar structures had also been possi-
bilities).

5.9.4. Nuclear Magnetic Resonance and Other Spectroscopic Methods
Applied to Molten Salts

When a certain radio frequency is applied to substances which
themselves have been placed in magnetic field of about G (or 1 T), absorption of
the applied frequency occurs. The origin of this absorption lies in the spin of the protons

plexes formed in the liquid state at from 750–980°. They used Hg blue light ( = 435.8
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and neutrons in the nucleus of the atoms of the material. Contrary to the dogma of an
earlier physics, the properties of nuclei are not immune to their surroundings, i.e., to
the doings of electrons outside the nucleus, and hence to the chemical properties of
the substance and to the environment. Thus, a study of these frequencies of nuclear
magnetic resonance can give information on the properties of the systems being
irradiated.

Instead of varying the frequency of the exciting radiation, as in other kinds of
spectroscopies, and finding maxima at which absorption occurs, the usual thing with
NMR is to keep the frequency of the incident radiation applied to the substance the
same and vary the strength of the magnetic field H applied to it. The entity being
measured is the absorption (A) of the applied radiation as a function of the magnetic
field strength. Maxima and submaxima are observed, and the values of these (which
measure absorption in the nucleus) as well as the width of the spectral band can be
analyzed in a way that gives rise to information on the chemical structure of the
substance being irradiated.

As an example, in liquid one can interpret the characteristics of the
NMR absorption as being due to the existence of  The ion is stable to 820 K.
However, no evidence of the ion’s rotation is seen, and a probable interpretation of
this is that groups are bonded into bigger structures, which prevent rotation of
individual units in the structure.

The radiation applied to materials induces an oscillatory extra magnetic field in
the nucleus and one thing which this does is alter the energy distribution among the
protons there. The change is not much but it reestablishes itself to the earlier equilib-
rium values when the incident radiation is removed. It turns out that the time taken for
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Fig. 5.61. Fully optimized configura-
tion of the

system. (Reprinted from D.
Dymek, N. E. Heimer, J. W. Rowang,
and J. S. Wilkes, J. Am. Chem. Soc.
110: 2722,1988.)

what is named the spin–lattice relaxation is between 1 and 100 s and this is a
convenient sort of time to measure. Study of can give information, e.g., on the time
of relaxation in diffusional movements in salts containing and

The study of ions containing aluminum in the liquid state can be done via NMR
very conveniently, particularly since their complexes with certain large organic
molecules are stable at room temperature. One may bring into contact with, e.g.,
pyridine or imidazoline and the result is a number of  new materials that melt at or near
room temperature to form true solvent-free liquid electrolytes (see Section 5.12). The
cation may be pyridinium or imidazolonium, and analysis of  the degree of absorption
in the Al nucleus as a function of the applied magnetic field strength can be used to
determine the structure, e.g., of the Al-containing ion. is the atom for which
nuclear resonance is being observed, and it turns out that it gives two signals. The
positions of these peaks are consistent with one peak being due to isolated
groups and the other to dimers (Fig. 5.61).
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Fig. 5.62. Ring and chain structures of (Reprinted from M. Blander,
E. Bierwagen, K. G. Calkin, L. A. Curtiss, D. L. Price, and M. L. Saboungi,
J. Chem. Phys. 97: 2733, 1992.)

Electron paramagnetic resonance (EPR) and neutron diffraction can also be used
to study molten salts. An example of the former is a study of the motion of large
organics [2,2,6,6-tetramethylpiperidine-l-oxyl (tempo) and 4-amino tempo, or tem-
pamine] dissolved in room-temperature molten salts, e.g., 1-ethyl-3-methylimidazalo-
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nium chloride (ImCl) and One can learn about the dynamics of movement in
these systems from such studies.

Neutron diffraction has been applied to the chloroaluminate melts to determine
the shape and structure of a number of anions there. They turn out to have chain and
ring structures in the higher members similar to those in liquid silicates and borates
(Fig. 5.62).
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5.10. ELECTRONIC CONDUCTANCE OF ALKALI METALS
DISSOLVED IN ALKALI HALIDES

5.10.1. Facts and a Mild Amount of Theory

Bronstein and Bredig were the discoverers (1958) of the unexpected fact that 1%
concentrations of alkali metals dissolved in molten salts show electronic conductivity.
In the K-KC1 system, the conductance was found to increase more than linearly with
concentration while in the Na-NaCl system, it increases less than linearly.

The equation for the specific conductivity (see Section 4.3.6) is

where Ne is the number of moles of electrons per cubic centimeter, ue is the mobility
in cm2 V–1 s–1, and F is the electrical charge on 1 g-ion (96,500 C). Equation (5.134)
yields values for the mobilities. In the Na system, the mobility was found to be equal
to 0.4 and in the K system, 0.1 When the Na is 0.01 M in
the Na system, the concentration of electrons is about 1019 electrons

These values of mobilities of 0.1 and 0.4 obtained at 1070 K at first
appear to be 250 times more than those for the corresponding ions in aqueous solution
at 300 K It would hardly be reasonable to compare mobilities
at different temperatures. If one recalculates the ionic mobility for a hypothetical
situation of an alkali ion in an aqueous solution at 1070 K, the value for the mobility
in aqueous solution should increase from about to about 0.2
Hence, when the correction for the temperature difference is accounted for, the
electron’s mobility in the molten salt is not very different from that of an ion in the
corresponding ion in an aqueous solution.

What about the lifetime of the electrons that conduct? One can find the lifetime
from a simple phenomenological theory of conductivity. Thus, the equation of motion
for the electron’s movement under an electric field in the molten salt is

Here is taken as negative. The field X accelerates the electron and there is a retarding
force Cu which, because of the Stokes–Einstein equation (Section 4.4.8), one assumes
to be proportional to velocity.

Integrating Eq. (5.135), and taking u at t = 0 to be equal to zero, one gets
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of the final value (as the electron accelerates).
Thus, the value at the steady-state value, is

In order to obtain some idea of the order of magnitude of it is reasonable to take
u as the mean of the values for the two salts described, i.e., ½(0.1 + 0.4) = 0.25. X is
1 V g, and

Thus,

which is a typical lifetime for an electron in a solid.
The meaning of is the average time the electron has to move from one ion before

interacting again with another one. Hence, the distance traveled in one direction
between collisions when the applied field is 1 V is only

cm = 0.004 nm, a surprisingly small distance, although it is consistent with the
short tunneling distance found in the following model analysis.

5.10.2. A Model for Electronic Conductance in Molten Salts

The fact that a concentration of about 1 mol% of an alkali metal in a molten salt
system can cause a considerable specific conductance demands some kind of expla-
nation. At 1 %, the electrons are about 2 nm apart, on the limit for tunneling site to site.
What is the mechanism of their easy passage through the molten salt?

Emi and Bockris suggested a model for this phenomenon that bears some
resemblance to the Conway–Bockris–Linton (CBL) theory of the mobility of protons
in solution. Here (Section 4.11.6), protons tunnel from their positions attached to a
given water to another water when—under the influence of the proton’s field—this
latter has rotated sufficiently to offer an orbital in which to receive a jumping proton.

There are three steps in the corresponding calculation for electrons. In the first,
one finds the energy of an electron with respect to its zero potential energy in vacuo,
both the energy in the filled state in the atom and in the empty state on a cation (each
at equilibrium, i.e., having an energy at a minimum of the potential-energy–displace-
ment relations). The next step is to allow the atom and ion to be displaced from their
equilibrium positions to such an extent that the potential energy of the filled and empty
electronic states in the atom and ion, respectively, become equal, which is the condition
for radiationless transfer.

where t is the time after the last collision and is the time at which the mobility is
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Gamow-type expressions (see Section 4.11.5) can be used for the calculations of
the probability of tunneling (from atom to cation) and thereafter it is relatively simple
to calculate the electron mobility. This is given by the concentration times the vibration
frequency times the probability of tunneling from atom to ion.

According to this theory (Table 5.39), the mobility is not affected by the concen-
tration of electrons, because at 1% they are too far apart to interact. No change in

Fig. 5.63. radial
pair correlation functions. (Reprinted from C.
Malescio, Mol. Phys. 69: 895,1990.)
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mobility was detected as a result of a temperature change of 40 degrees for Na-NaCl
(experimental; Table 5.39).

The radial distribution function of electrons in Cs has been calculated and is shown
in Fig. 5.63. The numbers given on the figure are the coordination numbers of the
electron by in terms of the distances from the center of the ion. They are
calculated from

where is the distribution function for the electron in Cs and r is the radius of the
electron orbit in the outermost shell. Values ranging from 3 to 6 agree with those from
corresponding neutron diffraction evidence.

Molecular dynamics calculations in metal–molten salt systems which could lead
to diffusion and conduction values were first made by Parinello and Rahman in 1984.
They have been used particularly by Malescio to examine the degree of delocalization
of the electrons, which increases with the radii of the metal atoms.

Further Reading

Seminal
1. H. R. Bronstein and M. A. Bredig, “The Electrical Conductivity of Solutions of Alkali

Metals in Their Molten Halides,” J. Am. Chem. Soc. 82: 2077 (1958).
2. T. Emi and J. O’ M. Bockris, “Electronic Conductivity in Ionic Liquids,” Electrochim. Acta

16: 2081(1971).

Papers
1. G. Malescio, Mol. Phys. 69: 895 (1990).
2. G. Malescio, Nuovo Cimento 13D: 1031 (1991).
3. G. M, Harberg and J. J. Egan, Proc. Electrochem. Soc. 16: 22 (1992).
4. J. Lin and J. C. Poignet, J. Appl. Electrochem. 22: 1111 (1992).
5. J. Bouteillon, M. Jaferian, J. C. Poignet, and A. Reydat, J. Electrochem. Soc. 139: 1 (1992).
6. D. Naltland, T. Reuj, and W. Freyland, J. Chem. Phys. 98: 4429 (1993).
7. J. C. Gabriel, J. Bouteillon, and J. C. Poignet, J. Electrochem. Soc. 141: 2286 (1994).
8. L. Arurault, J. Bouteillon, and J. C. Poignet, J. Electrochem. Soc. 142: 16 (1994).

5.11. MOLTEN SALTS AS REACTION MEDIA

Molten salts can be good media in which to carry out chemical reactions. The rate
of all reactions increases exponentially with temperature. A liquid medium causes a
higher rate of reaction to occur in a solute compared with that in a gas at the same
temperature. Why is this? The situation needs thought. In the gaseous state, reactants
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experience only a fleeting contact when they collide, which is often too brief a contact
to reach thermal activation and a successful product formation. Thus, gas molecules
fly around at about at room temperature. When they collide, the actual time
of contact is less than

A different situation is observed in liquids. Here, the time one reactant spends
next to another is much longer than that in the gas phase. For this reason, the two
particles can enlarge the possibilities from those of fleeting acquaintance to the more
productive ones of prolonged contact, leading much more often to permanent associa-
tion. One can determine the order of magnitude of the time of contact (see Section
4.2.18) as

where D is the diffusion coefficient, k is the rate constant for diffusion, and l is the
distance a particle covers in one jump of its movement in diffusion. From the above
equation,

Thus, is the residence time, the time between “hops,” the time the two reactant
particles have to decide whether to react. Near the melting point of a molten salt, the
diffusion coefficient in solutes is on the order of With l chosen as 3 ×

cm (a typical value of the distance between sites within the molten salt structure),
one obtains s for the residence time, which is about 100 times longer than that
in the gas phase at the same temperature and hence there is a hundredfold greater
chance to react.

However, there is another reason why the molten salt is often a more effective
medium for carrying out a reaction quickly. Reaction rates are proportional to

where is the energy of activation of the reaction. Assume Ea = 105 J mol–1.
Then, if one compares the rates at 300 and 600 K, the reaction rate is 108 higher at the
higher temperature if the rate-determining step in the reaction remains the same.

Consider, for example, a dissolved organic molecule, RH, reacting with dissolved
to give and If the reaction at 300 K occurs at a rate that at 600 K

should occur at a greatly increased rate. Could this be achieved by heating the dissolved
materials in an aqueous solution? Of course not! For unless one uses a pressure vessel
(with the added expense of having one made), the aqueous solution cannot be heated
much above 373 K before the solution boils. On the other hand, molten salts are
available over the whole temperature range—from room temperatures with the
complexes in organics such as imidazoline—to molten silicates at 2000 K.

A good example of the success of a molten salt reactor is the work carried out by
Guang H. Lin at Texas A&M University in 1997. This has led to a new method for
the complete consumption of carbonaceous material at low cost. Lin introduced a
mixture of paper, wood, and grass in pellets into a molten salt eutectic of and
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Fig. 5.64. Production of as a function of time in a
molten salt reactor of and

at temperatures that ranged from 670 to 870 K. At the same time, he contrived
to have a stream of minute bubbles of at 670 K flow through the liquid electrolyte.
The organic material (incompletely dissolved) reacts very rapidly to give and

A plot of some of Lin’s results32 is shown in Fig. 5.64.
The oxygen stream can be merely air. Lin showed that the method can be extended

to consume rubber. Scaled up, Lin’s work could be the solution to most waste disposal
problems (including consumption of the solid sludge left over from the modern
treatment of sewage; rubber tire disposal; and that of superdangerous organics such as
Agent Orange). The point is that the combustion is so complete and so quick that there
are no noxious effluents to reach the air.
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in contact with the molten salt and  until consumed.
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5.12. THE NEW ROOM-TEMPERATURE LIQUID ELECTROLYTES

At the beginning of this chapter it was pointed out that aqueous and many
nonaqueous electrochemical systems suffer from the small size of the potential range
in which solutes dissolved in them can be examined. This is because (for pH = 0, say)
if the potential of an electrode immersed therein is more negative than 0.00 V on the
normal hydrogen scale (see Section 4.8.3), the water itself in the solution begins to
decompose to form On the other hand, at a potential more positive than 1.23 V on
the same scale, the aqueous solvent tends to decompose to form

It is true that this small window of 1.2 V is extendable in both potential directions,
particularly on the positive side because the phenomenon of overpotential (Chapter 7)
is especially strong there and the potential that has to be applied to the positive
electrode to get a significant current density may be as high as 1.8 V. Nevertheless, it
has been felt for decades that systems were needed in which one could make the
potential of electrodes more positive (thus releasing a greater power in oxidation) and
also more negative (greater power of reduction) than is currently possible because of
the solvent decomposition problem in aqueous solutions.

Indeed, the possibility of using molten salts to extend the potential window in
which electrochemical reactions can occur has been one of the driving forces behind
the need to know about the liquid electrolytes described in this chapter. Thus, for liquid
NaCl, significant decomposition does not occur till c. 3.0 V have been applied across
an electrochemical cell containing liquid NaCl. This gives twice the electrochemical
window, which in aqueous systems is as low as 1.2 V. However, the sacrifice has been
that one had to work at more than 1120 K, with all the attendant experimental
difficulties that work at high temperatures brings.33

It has long been known that liquid electrolyte systems that melted in the low
hundreds of degrees were available in systems of metal chlorides and and that
some tetraalkylammonium salts melted at 373 K. Hurley and Wier in 1951 showed
that a 2:1 mixture of some complex organic chlorides with gave liquid electro-
lytes at room temperatures. The discovery remained undeveloped for more than 25

33There are a good many of these, although they are less at temperatures below, say 770 K, when glass
vessels can still be used, and they increase exponentially as the temperature is increased. They include
the difficulty that the containing vessels tend to dissolve in the liquid electrolyte solvent, the evaporation
and decomposition thereof, the need to take precautions in experimental design to achieve a uniform
temperature, the troubles of extensive thermal insulation, cracking of the refractory vessels, etc.
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years. However, in 1977, Halena Chum, writing with Koch and Osteryoung,† found
that such systems (to be precise: 1-Methyl-3-ethylimidazolonium chloride in union
with could be made into liquid electrolyte solvents, and that many such systems
had melting points near room temperature. Such systems have been under intensive
examination in the ’80s and ’90s, largely by American electrochemists, among whom
Osteryoung, Wilkes, and Hussey have—each with his own team—led most of the
contributions. Although the chemistries (including the redox properties) of many of
these systems have been researched, their applications (e.g., to energy storage systems)
are in the early development stage and promise rich yields. The electrochemical
windows are often above 3 V and occasionally extend even to 6 V!

5.12.1. Reaction Equilibria in Low-Melting Point Liquid Electrolytes

Redox reactions are subject to examination in solvent systems such as 1-
butylpyridinium chloride with which melts at 308 K (correspondingly, 1-3-
dialklyimidazolonium chloride). These molecules are

Many treatments of these solvent systems are in terms of acid–base equilibria,
and the basis is to regard as a Lewis base.34 In these terms, the heptachloroalumi-
nate is a strong Lewis acid.

†Robert Osteryoung is picked out here for recognition because—apart from his pioneering work on low
temperature molten salts—he is well known for his early work on pulse techniques (Chap. 8). He was the
first to develop computers to control electrochemical experiments. Professor Osteryoung is a Head of
Chemistry at North Carolina State University where unlike some great researchers, he is well known for
his success as an able administrator.

34In Lewis’s view, a base donated an electron pair and an acid accepted an electron pair. For example,
consider the reaction

The is the base and the the acid.
This definition of acids and bases is broader than that of Brønsted, which had an acid as something that

gave protons and a base as something that accepted protons. Thus, Lewis’s definition includes reactions
involving ions, oxide ions, and solvent interactions.
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In one of the low-melting liquid electrolyte systems containing one has a
changing acid/base character, depending on the ratio of to the organic partner.

In systems of organic chlorides such as R–Cl with when the  is first added
(in low concentrations), the Al is largely in the form of but as the
increases in relative concentration, the system becomes acid in the Lewis sense, and
the dominating constituent is the ion

To obtain the equilibrium constant in these systems, one can use electrochemical
cells such as those described in Section 3.4.8. For example, measurements that involve
Al electrodes have a K value of at 308 K and the reaction is displaced to
the right in a system formed with butylpyridinium chloride.

Attractive interactions occur between acids such as  and  A
sign of this is the increase in viscosity.

Among the kind of probable structures are = imidazolonium),

and NMR measurements are consistent with these structures.

5.12.2. Electrochemical Windows In Low-Temperature Liquid
Electrolytes

Whereas 1.2 V is the fundamental electrochemical window in aqueous solutions,
more than 3 V is available in some of the currently discussed systems. As a concrete
example, Al can be electrochemically deposited from at –0.4 V with an Al
electrode taken as reference. The evolution of occurs at +2.5 V against the same
reference electrode. Thus, the window is 2.5 – (–0.4) = 2.9 V.

5.12.3. Organic Solutes in Liquid Electrolytes at Low Temperatures

A number of organic solutes undergo reaction with  For example, aromatic
amines dissolve in the room-temperature molten electrolyte butylpyridinium chloride.
Triphenylamine (TPA) shows two stages of oxidation upon polarographic examina-
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tion. The first reaction involves the formation of the radical cation. On the other hand,
in a neutral or acid melt, the behavior is different and probably

followed by

5.12.4. Aryl and Alkyl Quaternary Onium Salts

Although researches on room-temperature systems of  and butylpyridinium
chloride have contributed a new vista to the physical chemistry and electrochemistry
of molten salts, the systems carry with them the disadvantage that few of the materials
mentioned are commercially available. Correspondingly, molten systems containing
the easily available pyridinium cation have to pay a penalty in that pyridinium is easy
to reduce.

On the other hand, onium salts based in N (or S or P) are commercially available
in abundance. Extended by introducing a variety of alkyl and aryl groups, they present
a large variety of properties, being all liquid electrolytes.
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The breadth of the compounds available can be gauged from Table 5.40. Some of
the remarkable properties of these compounds are exhibited in Tables 5.41 to 5.43,
taken here from the pioneering work of Jones and Blomgren in 1989. Melting points
go down as the complexity increases. Tetraheptylammonium chloride melts at 264 K!
However, the more complex salts have high viscosity and low conductivity. Conduc-
tivity is reduced by the presence of aryl groups. Mixed with liquid eutectics at
198 K can be obtained.

There is probably an interaction between the electrons of the arylammonium
cations and the anions. This would account for the lowering of the melting
point by these salts. Furthermore, these bonds may well be delocalized, again helping
to lower the melting point. The smaller organic groups provoke lower viscosity and
hence (Walden’s rule) a higher conductance.

The electrochemical window obtainable with the low-temperature liquid onium
systems is about 3 V, which is about the same as that with high-temperature liquid
NaCl. NMR measurements of these low-temperature electrolytes can be informative.
For example, containing melts can be examined by registering the NMR
characteristics of probe groups (e.g., and The NMR relaxation provides
information on interactions in systems such as groups and various properties of

It is found that exhibits interaction of the ring and
Even greater electrochemical windows, up to 4 V, are available, for example,

with an alkyl-substituted aromatic heterocyclic cation and trifluoromethane sulfonate.

5.12.5. The Proton in Low-Temperature Molten Salts

is regarded as a contaminant in molten salt work. It arises from the pervasive
presence of water vapor. It can be studied, e.g., with 1-ethyl-3-methylimida-
zolonium chloride (ImCl). The methods used have been Fourier transform infrared
(FTIR) and NMR spectroscopies and standard electrochemical techniques.

The proton is found to exist in these melts as HCl and The equilibrium
between these two forms can be studied by the methods stated (particularly NMR) and
turns out to be much in favor of the anion. If the concentration of HCl is above 0.5 in
mole fraction, various complex ions begin to form. Thus, it turns out
that can be taken up in these salts, but only in the form of complex anions.
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5.13. MIXTURES OF LIQUID OXIDE ELECTROLYTES

5.13.1. The Liquid Oxides

Fused salts (and mixtures of fused salts) are not the only type of liquid electrolytes.
Mention has already been made of fused oxides and in particular mixtures of fused
oxides. A typical fused oxide system is the result of intimately mixing a nonmetallic
oxide and a metallic oxide

and then melting the mixture. The system can be
represented by the general formula  where M is the metallic element and
R is the nonmetallic element.

Why give these liquids special consideration? Are not the concepts developed for
understanding molten salts adequate for understanding molten oxides? The essential
features of fused salts emerge from models of the liquid state. There is no doubt that
the fluidity of molten salts demands a model with plenty of free space, and a model
based on density fluctuations that are constantly occurring in all parts of the liquid
seems about the best way to think of the inside of a molten liquid. Is the same
dependence on the opening up of temporary vacancies an adequate basis for explaining
the behavior of the fused oxides?

5.13.2. Pure Fused Nonmetallic Oxides Form Network Structures Like
Liquid Water

Some of the special features of molten oxides must now be described for it is these
features that do not permit the hole model of ionic liquids to be applied to fused oxides
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in the same way it is applied to molten salts. The first interesting feature of molten
silica, is that its conductivity is more like that of water (i.e., molten ice) than that of
fused NaCl (Table 5.44).

The dissimilarity in the conductivities of liquid NaCl, on the one hand, and liquid
water and liquid silica, on the other, is of fundamental importance. When NaCl is fused,
the ionic lattice (the three-dimensional periodic arrangement of ions) is broken down
(see Section 5.1.2) and one obtains an ionic liquid. When ice is melted, the tetrahedrally
directed hydrogen bonding involved in the crystal structure of ice is partially retained.
Thus, water is not a collection of separate water molecules but an association (based
on hydrogen bonding) of water molecules in a three-dimensional network. The
network, however, does not extend indefinitely. There is a periodicity and only
short-range order, implying a certain degree of bond breaking. It is this network
structure that is responsible for the small mole fraction of free ions and in
water, in contrast to the almost total absence of any ion association (into pairs,
complexes, etc.) in liquid NaCl. This great difference in the concentration of charge
carriers is responsible for a difference in the specific conductivities of liquid NaCl
(high charge carrier concentration) and liquid water (very low charge carrier concen-
tration) that is several orders of magnitude.

The specific conductivities of water and of fused silica are both very low. This
suggests that the structures of crystalline water [Fig. 5.65(a)] and crystalline silica [Fig.
5.65(b)] have much in common. Each oxygen atom in ice is surrounded tetrahedrally
by four other oxygens, the oxygen–oxygen bonding occurring by a hydrogen bridge
(the hydrogen bond). In crystalline silica, there are tetrahedra occurring through
an oxygen bridge. The different forms of ice and the different forms of silica (Fig.
5.66) correspond to different arrangements of the tetrahedra in space.

It is reasonable therefore to consider that fused silica resembles liquid water. Just
as liquid water retains from the parent structure (ice) the three-dimensional network
but not the long-range periodicity of the network, one would expect that liquid silica
also retains the continuity of the tetrahedra, i.e., the space network, but loses much of
the periodicity and long-range order that are the essence of the crystalline state. This
model of fused silica, based on keeping the extension of the network but losing the
translational symmetry of crystalline silica, implies a low concentration of charge
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Fig. 5.65. The similarity
between the basic building
blocks of (a) ice and (b)
crystalline silica structures.

carriers in pure liquid silica and therefore low conductivity in comparison with a
molten salt (see Tables 5.44 and 5.45).

5.13.3. Why Does Fused Silica Have a Much Higher Viscosity Than Do
Liquid Water and the Fused Salts?

It has just been argued that the conductivities of simple ionic liquids, on the one
hand, and liquid silica and water, on the other, are vastly different because a fused salt
is an unassociated liquid (it consists of individual particles) whereas both molten silica
and water are associated liquids with network structures. What is the situation with
regard to the viscosities of fused salts, water, and fused silica? Experiments indicate
that whereas water and fused NaCl have similar viscosities not far above the melting
points of ice and solid salt, respectively, fused silica is a highly viscous liquid (Table
5.46). Here then is an interesting problem.

One successful theory of transport processes in liquids are based on elementary
acts, each act consisting of two steps: (1) holes are formed and (2) particles jump into
these holes (see Section 5.7.4). For fused salts and other nonassociated liquids, this
theory was successful in explaining the movements and drift of particles although it
clashed with molecular dynamics calculations that seemed to favor a shuffle-along
mechanism for transport. The mean volume of a hole is determined by the surface
tension as follows [cf. Eq. (5.44)]:
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Fig. 5.66. Forms of silicates result-
ing from different ways of linking up

tetrahedra: (a) single chain of
tetrahedra; (b) double chain of
tetrahedra, as in asbestos; (c)
sheets of tetrahedra, as in clay,
mica, and talc; and (d) networks of
tetrahedra, as in ultramarine.

from which it turns out that in unassociated fused salts, the size of the holes is roughly
equal to the size of individual ions. In those simple liquids, holes can receive ions of
the fused salt which jump into them. Furthermore, in simple ionic liquids, the free
energy of activation for the jumping of ions into holes is much less than that of the
free energy for forming the holes. Once the hole is formed in a fused salt, the jump
into the hole is three to ten times easier than forming the hole.

The surface tension of fused silica is only about three times that of fused sodium
chloride. Hence [see Eq. (5.144)] in fused silica also there would be many holes of
atomic dimensions, as for fused ionic liquids.
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Fig. 5.67. Schematic diagram to show a segment
of an chain breaking off and jumping into an
empty hole: (a) before jump and (b) after jump.

In simple ionic liquids (e.g., NaCl), the holes are atom sized; so are the jumping
ions. Jumping is easier than making holes. What particles can jump into holes in fused
silica? Obviously, large chunks of a silicate network (for suggestions, see later
discussion) cannot jump into holes that are about the same size as those that receive

and etc. How then can jump-dependent transport processes occur? There may
be a way. Small segments (one to a few atoms in size) can break off from the network
and these pieces (segments) can do the jumping (Fig. 5.67).

A comparison between transport processes in simple fused salts and in fused
is interesting. In molten salts, the jump was easier than making the hole but neverthe-
less many voids of different sizes were shown to form in the liquid. The rate of the
process was controlled more by the rate of hole formation than the easier jumping.
However, with molten silica, the balance of influences is different. Holes are as easily
formed as in the ionic liquids because the rate of hole formation is controlled by the
vibrations of the atoms relative to each other, but it is difficult to produce individual
small particles because this would involve rupturing strong Si–O–Si bonds holding
the network together (Table 5.47). Therefore, in the silicates, the rate-determining
process is the bond-rupture step. While in simple ionic liquids the experimental
activation energy35 for a transport process, such as a viscous flow, is determined
predominantly by the enthalpy of hole formation, in associated liquids with network
structures it is determined entirely by the energy required to break the bonds of the
network to produce a “flow unit” sufficiently small to jump into the relatively easily
made hole.

35It will be recalled that it was decided that the quantity obtained from the slope of the log versus 1/T
curve would be termed an energy of activation irrespective of whether it pertains to constant-pressure or
constant-volume conditions, though under the former it is an enthalpy and under the latter, it is an energy.
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In this difference of the rate-controlling mechanism for flow lies the answer to
the next question. Why is the viscosity of associated water similar to that of molten
NaCl, which has no network? The difference in the viscosity behavior of water and of
fused silica lies in the ease with which segments can be broken off the two networks.
The Si–O–Si chemical bonds are much more difficult to rupture than the O–H–O
hydrogen bonds (Table 5.48). Thus, flow units—probably individual mole-
cules—are so easily produced in water that the holes do not have much of a wait; an
ease of flow, high fluidity or low viscosity, results. This is not the case with fused
silica because of the much higher bond-breaking energy, and a high viscosity results.

Some support for the idea that the viscous-flow properties of associated liquids
such as liquid silica and water are determined by the step of bond breaking rather than
that of hole formation comes from the experimental plots of log versus 1/T. These
plots suggest a slight trend away from linearity (Fig. 5.68), which is not the case for
fused salts (Fig. 5.29). For water also, the plot is curved slightly, with the experimental
energy of activation for viscous flow  decreasing with increasing temperature. The
explanation for this phenomenon is as follows. Because the energy of activation for
viscous flow depends upon the breaking of bonds and because, according to the
Boltzmann distribution, the fraction of broken bonds increases with temperature, the
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Fig. 5.68. Two independent sets of data for the
difficultly determinable viscosity of liquid
Both suggest a slight tendency to curve in the
sense that the energy of activation becomes
higher at the lower temperatures.

fraction required to be broken by the shearing force in viscous flow decreases with an
increase in temperature and, correspondingly, there is a decreasing energy of activation
with increasing temperature.

To summarize: Unlike fused salts, mixtures of fused oxides are associated liquids,
with extensive bonding between the individual molecules or ions. In fused oxides, hole
formation occurs but it is not the step that determines the rate of transport processes.
It is the rate of production of individual small jumping units that controls them. This
conclusion makes it essential to know what (possibly different) entities are present in
fused oxides and what are the kinetic entities. In simple fused salts, the jumping
particles are already present (they are the ions themselves); the principal problem is
the structure of the empty space or free volume or holes, and the properties of these
holes. In molten oxides, the main problem is to understand the structure of the
macrolattices or particle assemblies from which small particles break off as the flow
units of transport.

5.13.4. Solvent Properties of Fused Nonmetallic Oxides

If fused silica is a three-dimensional, aperiodic network, all the atoms are to some
extent joined together, i.e., the liquid is a giant molecule. Can ions dissolve in such a
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Fig. 5.69. The interaction between a metal oxide
and a silicon atom of the silica network.

structure? Water also is a network structure like and ions dissolve in water.
Hence, liquid may well be expected to have solvent properties leading to the
production of ionic solutions.

Water, it may be recalled (Chapters 2 and 4), has two modes of solvent action,
depending on the nature of the added electrolyte. The water can contact an ionic crystal
(e.g., NaCl), detach the ions from the lattice through the operation of ion–dipole (or
ion–quadrupole) forces, and convert them to hydrated ions (Chapter 2).

The water can also interact chemically with a potential electrolyte (e.g.,
The hydrogen atom forming part of the hydroxyl group of the organic

acid does not differentiate between the oxygen atoms of the water network and that of
the OH group. The hydrogen of the OH group detaches itself from the organic acid.
Two ions are thus formed: a hydrogen bonded to a water molecule from the solvent
and an organic anion. This mode of solvent action is a proton-transfer or acid–base
reaction.

The type of solvent action that fused nonmetallic oxides have on metallic oxides
may be likened to the second type of dissolution process, i.e., proton-transfer reactions.
The process may be pictured as follows. The oxygens cannot discriminate between
the metal ions (of the metallic oxide), with which they have been associated in the
lattice of a metal oxide before dissolution, and the oxygen atoms of the tetrahedra
contained in the solvent—fused silica. The oxygen atoms sometimes therefore leave
the metal ions and associate with those of the tetrahedra. Dissolution has occurred with
a type of oxygen-transfer reaction (see Fig. 5.69).

There is a further analogy between the solvent actions exercised by water and a
fused nonmetallic oxide. Just as water dissolves an electrolyte at the price of having
its structure disturbed, so also the reaction resulting from the addition of a metallic
oxide to a fused nonmetallic oxide like silica is equivalent to a bond rupture between
the tetrahedra (Fig. 5.70). Solvent action occurs in fused oxide systems along
with a certain breakdown of the network structures present in the pure liquid solvent
(e.g., in pure liquid silica).

5.13.5. Ionic Additions to the Liquid-Silica Network: Glasses

An interesting aspect of molten oxide electrolytes may be mentioned at this point.
Some liquids can appear to be solids, i.e., some solids are really liquids of such high
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Fig. 5.70. The oxygen-transfer reaction leads to a
rupture between the tetrahedra.

viscosity that no significant flow occurs over tens or hundreds of years. These solidlike
liquids are called glasses. The structure breaking that has just been described is an
aspect of the basic mechanism behind the formation of glasses, which might be
regarded as “cold molten silicates.”

When ions with a relatively large radius and small peripheral field are added to
liquid silica, they produce structure breaking in the network. This is shown in a
one-dimensional way in Figs. 5.69 and 5.70. With an increase in the number of ruptures
in the network, there is an increase in the number of “free” or “dangling” ends of the
ruptured network. The network becomes increasingly distorted with an increase in the
mole fraction of the metallic oxide present.

If the “broken-down network” is at a sufficiently high temperature, it is known as
a liquid silicate. Such a system results, for example, from adding an alkali oxide (e.g.,

in low concentration to At these temperatures the system can be distinctly
a liquid, though the viscosity near the melting point may be, for example, 427 poises
(P) (at 1820 K), whereas that of water at its melting point is about 0.01 P. When the
temperature is dropped, the liquid silicate attempts to “freeze,” but, to do this, the
long-range order of the crystalline silicate has to be reestablished. The establishment
of order, however, requires rearrangement of the structure; i.e., the kinetic units of the
broken-down network must move into the sites corresponding to order. Were these
particles, or kinetic units, simple, they would be agile, i.e., their movements would be
easy, the viscosity would be low, and the restoration of crystalline order would be
accomplished almost immediately. A crystalline solid with a sharp melting point
would result.

However, this reorganization is precisely what is not quickly accomplished by the
entities in the broken-down networks in liquid silicates. The entities36 resulting from

36The nature of these large anionic entities that exist in glass-forming silicates is discussed in Section 5.13.8.
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the rupturing of three-dimensional networks when metal oxides are added are large
and sluggish. They cannot get into line in time; the viscosity is too high. The loss of
thermal energy during cooling catches them still out of position as far as the regular
three-dimensional arrangement of the crystalline silicate is concerned. Then it is too
late, for as the temperature drops still further, they are still less likely to be able to get
back into line before the structure forming about them is too inhibiting to allow further
movement. The loss of thermal energy freezes the structure of the liquid silicate—a
glass is formed. It is a “frozen liquid,” i.e., a liquid that has been supercooled to such
a high viscosity that it seems to have the essential requirement of a solid—absence of
flow. A beam of X-rays, however, would reveal an essential characteristic of the liquid
state, namely, the absence of long-range periodicity.

If, however, sufficient time is allowed (e.g., a few hundred years), a sufficient
number of the units of the broken-down network will get back into line. Long-range
order will be partly reestablished; the glass will “deglassify” or devitrify, as it is called,
and will often split up and break.

How is the liquid-silicate network affected by the addition of various types of ions
in the production of the peculiar and complicated kind of pure electrolyte, a glass? It
is the answer to this structural question that provides the basis for the understanding
of the glassy state.

5.13.6. The Extent of Structure Breaking of Three-Dimensional
Network Lattices and Its Dependence on the Concentration
of Metal Ions Added to the Oxide

The extent of breakdown of the network structures present in a pure liquid solvent
can be viewed in the following way. The tetrahedron is accepted as the basic
structural unit in a mixture of metallic oxide and fused silica. However, are the
tetrahedra linked together at all and, if so, how are they linked together? What is the
number of links per silicon? Water molecules are the basic structural unit in an aqueous
solution, but extensive linkage and intermolecular bonding occurs in pure water. How
is this linkage in molten affected by the presence of new ions dissolved in it
(Section 5.1)?

In a fused-oxide system, the metal oxide (e.g., is the structure breaker; in
aqueous solutions, the electrolyte (e.g., NaCl) is the structure breaker. Does the extent
of structural breakdown of the continuous Si–O network present in pure silica before
the addition of MO depend on the concentration of MO? The extent of breakdown
must indeed depend on the concentration of the structure breaker; then one would
expect that properties that depend on the size and nature of the structures present would
also be concentration dependent.

In fused-oxide systems, a simple way of expressing the concentration of the metal
oxide in the fused nonmetallic oxide is sometimes used. This involves the
so-called “O/R ratio.” The O/R ratio is related to the mole fraction of the metallic
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Fig. 5.71. The variation of the energy of acti-
vation for viscous flow in an melt
as a function of the mole percent of (1
cal = 4.184 J)

oxide. For example, an O/Si ratio of 4 in a system of and is obtained when
the has a mole fraction of 66% (i.e.,   has four Os to one Si).

One way of probing the sizes of structures present in fused-oxide systems and
their variation with the mole fraction of MO added to the nonmetallic oxide is through
the variation of the ease of flow with composition. The viscosity of the system must
be keenly sensitive to the size and nature of the kinetic entities present because it is
these entities that must make the jumps from site to site involved in viscous flow.

Experimental results on the variation of the energy of activation for viscous flow,
as a function of the mole percent of the metal oxide are shown in Fig. 5.71. The

basic feature of the results appears to be a very high or
energy of activation for viscous flow of the pure nonmetallic oxide and then a rapid
fall with addition of the metallic oxide, whereupon there is a leveling off to a value of
about which remains relatively unchanged between
about 10 and 50 mol% of  in This behavior can be used (Section 5.13.7)
as a touchstone in deciding between alternative models for the structural changes
accompanying changes in metal-ion concentration.

The structural theories presented will be in terms of the liquid silicates because
most research on molten oxides has been done with them, but one can extend the basic
structural ideas to fused-oxide systems involving metal oxides dissolved in and
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and probably to most liquid electrolytes in which there are largely continuous
network structures at very low concentrations of

5.13.7. Molecular and Network Models of Liquid Silicates

A naive view of events after the addition of metallic oxides to molten silica is to
think of different uncharged molecular species, the species changing with the mole
fraction of the metallic oxide. This view has to be given up quickly because studies of
mixtures of and show that these systems are highly conducting and
therefore are rich in charge carriers (Table 5.45). One has to suggest ionic, rather than
molecular, structures.

A second attempt at interpreting the structure of liquid silicates starts with a
consideration of the curve of versus the mol% of  (Fig. 5.71). It is in terms of
the gradual breakdown of the three-dimensional network of fused silica. Just as there
is thermal bond breaking on going from crystalline to fused silica, one can consider
that with the addition of, say, the additional O atoms cause Si–O–Si bonds in
the originally continuous network of to break. This produces structure breaking
to various composition-dependent degrees. A mole fraction of 66% for implies,
as already stated, an O/Si ratio of 4 and must therefore be considered a composition

37at which the only anions are ions;
What model can be suggested for the corresponding structural changes “inside”

the fused-oxide system for the mole-fraction range from 0 to 66%? From the fact
that there is such a sharp fall in the energy of activation for viscous flow between zero
and about 10 mol% of (Fig. 5.71), one must think of a radical change (over this
composition range) in the difficulty of causing a kinetic entity or flow unit to break
off from the rest of the structure and jump from site to site in the random walk that is
the basis of diffusion (Section 5.7.4). The model must of course contain the explanation
of the generation of more free ions to account for an increase in conductivity with an
increasing amount of MO. The anions postulated as dominant for a given O/R ratio
must meet some exacting requirements. Thus (1) they must have formulas consistent
with the overall O/R ratio; (2) they must have a total charge that compensates for the
total charge of the cations and thereby ensures overall electroneutrality; and (3) they
must be shaped in a way consistent with the bond angles, particularly the R–O–R
angle, shown from X-ray data in the corresponding solids.

The broad approach used by Zachariasen in the network model of liquid silicates
is to break down the network present in the pure fused nonmetallic oxide thus

37Correspondingly, for  mol%, there are oxygen atoms in excess of the ability of the Si atoms
present to coordinate them (O/Si ratio > 4). Hence, liquids with such compositions probably contain

and entities in addition to the cations present.
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Three-dimensional network with some
thermal bond breaking (e.g., two-dimensional sheets

range (33 to 66% In contrast to the expectation, however, the changes by
only 25% over the composition range of 10 to 50% (Fig. 5.71), whereas from 0
to 10% the change in energy of activation is about 200% (Fig. 5.71).

Another inconsistency of the earlier network model concerns the implications that
it has for phenomena in the composition region around 10% This is an important
composition region. Experimentally, whether one measures the composition depend-
ence of the heat of activation for viscous flow, of expansivity, of compressibility, or

one-dimensional chains  simple monomers

The details of the network theory of liquid-silicate structures, which was first
suggested to explain the glassy state, are presented in Table 5.49. The chief defect of
this model is that it argues for very large changes in the heat of activation for viscous
flow in the composition range of 33 to 66%. However, this is not what is indicated in
Fig. 5.71, where the large change comes after 10% oxide. This is because in the
network model the size and shape of the kinetic unit—the jumping entity—is supposed
to undergo a radical change in the composition range of 33 to 66%. Thus (Table 5.49),
sheets are being broken up into chains. The kinetic unit of flow would therefore be
expected, in this model, to change radically in size over this composition range, and
this diminution in size of the flowing unit would be expected to make the heat of
activation for viscous flow strongly dependent on composition in this composition
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Fig. 5.72. The sharp change in the expansivity of
melts around the 10 mol% of compo-

sition; (o)

of other properties, in all cases there is always a sharp and significant change (Fig.
5.72) around the 10% composition, which indicates a radical structural change
at this point. However, this composition has no special significance at all, according
to the former network model. Thus, although the network model served well in an
earlier stage of the development of the theory of glasses, one must reconsider the
situation and develop a model that corresponds more closely, in the expectations it
produces, to the experimental facts.

5.13.8. Liquid Silicates Contain Large Discrete Polyanions

Consider the situation as one decreases the O/R ratio, i.e., decreases the mole
percent of the metallic oxide Between 100 and 66% there is little need for special
modeling because the quadrivalency of silicon and the requirements of stoichiometry
demand that the ionic species present be monomers of tetrahedra. It is in the
composition range of 66 to 10% that the network model fails (see Section 5.13.7)
in the face of facts.

What are the requirements of a satisfactory structural model for ionic liquids in
this composition range? First, since transport-number determinations show that the
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conduction is essentially cationic, the anions must be large in size compared with the
cations (see Sections 4.4.8 and 4.5). Second, the marked change in properties (e.g.,
expansivity) occurring at 10% indicates radical structural changes in the liquid
in the region of this composition. From the sharp rise of the heat of activation for the
flow process to such high values (toward  at compositions below 10 mol%

with decreasing mole percent of in this composition region, one suspects
that the structural change that is the origin of all the sudden changes near 10 mol%

must involve sudden aggregation of the Si-containing structural units into
networks. The difficulty of breaking bonds to get a flowing entity out of the network
and into another site explains the very sluggish character of the liquid at 10 or less
mol% of The potential flow unit (perhaps here itself) has to break off four
bonds to flow. Finally, from 66 to 10% there must be no major changes in the type of
structure, except some increase in the size of the entities, because there is only a small
increase in the heat of activation for viscous flow over this composition region (cf . Fig.
5.71). This relative constancy of the heat of activation for flow over this composition
region means that the various structural units present can become the kinetic entities
of flow over this region without great change of the energy involved; i.e., the flow
units present over the composition range must be similar.

The construction of a model (Table 5.50) can therefore start from the ions
present in the orthosilicate composition (66% With a decrease in the molar
fraction of the size of the anions must increase to maintain the stoichiometry.
One can consider that there is a joining up, or polymerization, of the tetrahedral

monomers. For example, the dimer (Fig. 5.73) could be obtained thus
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Fig. 5.73. The dimer ion

This chemical change into polyanions is the concept of the discrete-polyanion model
(Bockris and Lowe, 1954) for the structure of mixtures of liquid oxides corresponding
to compositions greater than 10%  and less than 66%.

At the outset, it does not seem easy to derive the structure of the polyanions
predominant for each composition of the liquid oxides. However, several criteria can
be used to suggest their structure. Electroneutrality must be maintained for all
compositions; i.e., the total charge on the polyanion group per mole must equal the
total cationic charge per mole for a given composition. Since the cationic charge per
mole must decrease with decreasing  mole percent, the negative charge on the
polyanions per mole equivalent of silica must also decrease. It follows that the size of
the polymerized anions must increase as the molar fraction of  decreases.

After a dimer, i.e., is formed, the next likely anionic entity to appear as
the ratio falls might be expected to be the trimer

Following the trimer, a polymeric anion with four units may be invoked to satisfy
the requirements of electroneutrality and stoichiometry, etc., the general formula being

On this basis, however, when a composition of 50% is reached, i.e.,
when the mole fraction of is equal to that of the Si/O ratio is 1:3. However,
from the general formula for the chain anion, i.e., it is clear that O/Si = 3
when (3n + l)/n = 3, i.e., when Near 50% an attempt to satisfy
electroneutrality and stoichiometry by assuming that linear chain anions (extensions
of the dimers and trimers) are formed would imply a large increase in the energy of
activation for viscous flow in the composition range of 55 to 50 mol% of  because
here the linear polymer would rapidly approach a great length. However,  no such sharp
increase in the heat of activation for viscous flow is observed experimentally in the
range of 55 to 50 mol% of (see Fig. 5.71). Hence, the composition range in the
liquid oxides in which linear anions can be made consistent with the flow data is
relatively small—between 66 and somewhat greater than 50 mol% of   The linear
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Fig. 5.74. The proposed ring anions: (a)
and (b)

anion must be given up as a dominant anionic constituent before the metal oxide
composition has dropped to 50 mol%.

An alternative anionic structure near a 50% composition that satisfies stoichiomet-
ric and electroneutrality considerations is provided by ring formation. If, in the
composition range of 55 to 50% the linear anionic chains (which are assumed
to exist at compositions between some 50 and 60 mol% link up their ends to
form rings such as (Fig. 5.74), then such ring anions satisfy the criteria
of the O/Si ratio, electroneutrality, and also the Si–O–Si valence angle that X-ray data

on the three calcium ions required to give is 6+. Further, the anion
is not very much larger than the dimer and hence there would not be any large
increase in the heat of activation for viscous flow. With regard to the Si–O–Si bond
angle, in the and ions, it is near that observed for the corresponding
solids, i.e., the minerals wollastonite and poryphrite, respectively, which are known
to contain and

Further structural changes between 50 and 30% are based on the and
ring system. At the 33% compositions, polymers and (Fig. 5.75)

can be postulated as arising from dimerization of the ring anions and
(Fig. 5.74). As the concentration is continuously reduced, further polymerization
of the rings can be speculatively assumed. For example, at  when
is 25%, the six-membered ring would have the formula and would consist of
three rings polymerized together (Fig. 5.76) (Table 5.50).

Ring stability might be expected to lessen with increase in size and increasing
proportion of because the silicate polyanions that correspond to compositions
approaching 10 mol% of would be very long. The critical 10% composition at
which there is a radical change in many properties may be explained as that composi-
tion in the region of which a discrete polymerized anion type of structure becomes

leads one to expect. Thus, the anion corresponds to an O/Si ratio of 3, and if
one is considering a 50% CaO system, the charge per ring anion is 6–, and the charge
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Fig. 5.75. The proposed large ring anions:
(a) and (b)

unstable (because of size) and rearrangement to the random three-dimensional network
of silica occurs. That is, a changeover in structural type occurs to what is fundamentally
the network, with some bond rupture due to the metal cations. The very large
increase in the heat of activation for flow that takes place at this composition (Fig.
5.71) would be consistent with this suggestion, as would also the sudden fall in
expansivity.

These ideas about the discrete-polyanion model for liquid-silicate structures are
summarized in Table 5.50. As in most models, the description is highly idealized.
Thus, all the silicate anions may not have the Si–O–Si angle of the crystalline state;
only the mean angle may have the crystalline value. Furthermore, the discrete anion
suggested for a particular composition is intended to be that which is dominant, though
not exclusive. Mixtures of polymerized anions may be present at a given composition,
the proportions of which vary with composition.

The discrete-polyanion model is a speculative one because no direct proof of the
existence of its ring-polymeric anions, for example, is available. It provides a much
more consistent qualitative account of facts concerning the behavior of liquid silicates
than does the network model. It predicts the observed marked changes in properties
near 10% (Fig. 5.72), the relatively small variation in over the concentration
range of 10 to 50% (Fig. 5.71), etc. The suggestions for the structure of the anions

Fig. 5.76. The proposed
six-membered ring anion
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receive some indirect support from solid-state structural analyses of certain mineral
silicates.

5.13.9. The “Iceberg” Model

There are some facts, however, which cannot be easily explained in terms of the
discrete-polyanion model. First, the partial molar volume of  which is related to
the size of the containing entities, is relatively constant from 0 to 33 mol%
(Fig. 5.77). On the basis of the discrete-polyanion model, the critical change at 10%

involving the breakdown of three-dimensional networks and the formation of
discrete polyanions would require a decrease in molar volume of at about 10%

for the following reasons. The structure is a particularly open one and has
a large molar volume; in contrast, a structure with discrete polyanions would involve
a closing up of some of the open volume and a decrease in partial molar volume
compared with the networks. Second, it is a fact that in certain ranges of
composition (e.g., 12 to 33% and are not completely miscible. The
two liquids consist of an phase and a metal-rich phase. The discrete-polyanion
model cannot accommodate this phenomenon.

It was suggested by Tomlinson, White, and Bockris (1958) that in the composition
range of 12 to 33% two structures are present. One is similar to that which exists
at 33% in the discrete-polyanion model. The other is a structure corresponding to
glassy or vitreous silica, i.e., fused silica with the randomized three-dimensional

Fig. 5.77. The negligible change in the partial molar
volume of an melt over the range of 0 to 33
mol% of
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networks frozen in. The vitreous silica is in the form of  “islets” or “icebergs”—hence
the name, the iceberg model of liquid-silicate structure. These icebergs are similar to
the clusters that occur in liquid water (Section 5.13.2). The submicroscopic networks
may be pictured as continually breaking down and re-forming. Microphase regions of

(the 33% structure) occur in the form of thin films separating the  rich
icebergs; hence there is the possibility of a separation of the liquid into two phases,
one rich in and the other rich in Since most of the is present in the
icebergs, the almost constant partial molar volume of is rationalized.

An estimate of the order of magnitude of the iceberg size can be made. For 12%
the radius of an (assumed spherical) iceberg is about 1.9 nm, and at 33%

the iceberg of the iceberg model becomes identical in size with the discrete polyanion
of the discrete-polyanion model, which has a radius of about 0.6 nm.

5.13.10. Icebergs As Well as Polyanions

In the iceberg model, the structure of the medium on a microscale is heterogene-
ous. Flow processes would involve slip between the iceberg and the film. No Si–O–Si
bonds need be broken. At present, it seems that both the discrete-polyanion model and
the iceberg model probably contribute to the structure of liquid silicates. In a sense,
the iceberg model is the most complete model because it involves the discrete
polyanions as well as the  entities called icebergs.

5.13.11. Spectroscopic Evidence for the Existence of Various Groups,
Including Anionic Polymers, in Liquid Silicates and
Aluminates

The structure of liquid silicates suggested in the last few sections was presented
as a reasonable interpretation of conductance, viscous flow, and density measurements
and the variation of the heats of activation with composition, for example. What
evidence for the chains, rings, and icebergs is given from spectral approaches such as
Roman and NMR? If all is well in the earlier interpretation, it should be possible to
see evidence of the structures in the spectral peaks.

The earliest workers to obtain this evidence were Furokawa et al., and then a little
later, work was carried out by McMillan. These researchers found that in systems based
on the metasilicate and the disilicate had two peaks, one that showed up
at and one at respectively. What molecular entities should these
peaks represent? This kind of question is grist for the mill among spectroscopists, who
often argue a great deal about the significance of the blips and “shoulders” on their
curves. In this system they have come up with a decisive but unambitious answer—
each peak represents the vibrations of the Si–O bond and the peak for this varies with
composition. Such a conclusion, of course, does not indicate the structural units
present.
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Evidence of various structures of the silicate anions shows up from these Raman
and IR studies. The results are shown with the attendant peaks in Table 5.51.

Although these anions are simpler than the structures deduced on the basis of
transport measurements, they agree with the structure (see Section 5.6). Chains are
present, as are and However, up to 1997, no peaks have yet been registered
that are characteristic of the ring structures known to exist in the corresponding solids,
the suggested presence of which in the liquid silicates fits stoichiometry, bond angles,
and the behavior of the heat of activation for viscous flow as a function of composition
(Fig. 5.71).

Farnan and Stebbins performed NMR measurements on simple molten silicates
in 1990 and managed to pull more out of their data than other workers in this area.
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They measured the lifetime of the tetrahedra and found it to be What
happens after an ion dies? Lifetime implies an exchange (perhaps by means of
between and another ion. By making such measurements on quenched samples
as a function of temperature, it is possible to get the heat of activation for the critical
step in viscous flow. Remarkably, the values for  turn out to be
which is within of those measured earlier for viscous flow in
This fits well with the model for viscous flow (see Fig. 5.71). According to this model,
an entity has to break off from the silicate anion (i.e., exchange to another structure)
before the critical unit (which must be the size of a hole) can move into the cavity,
thus giving consistency to the idea of ions of limited lifetime. The dependence on
temperature of the NMR peaks for  is shown in Fig. 5.78.

Up until the late 1990s the spectroscopic confirmation of the liquid silicates of
the model suggested in Sections 5.13.7 and 5.13.9 was limited to the ions

Fig. 5.78. Variable-temperature
NMR spectra of the lithium or-

thosilicate/metasilicate mixture.
Typically, narrow spectra required
64 pulses and broader spectra 500
pulses. The line broadening used in
processing each spectrum was less
than 10% of the total line width.
(Reprinted from I. Farnan and J. F.
Stebbins, J. Am. Chem. Soc. 112:
32,1990.)
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and etc. However, the ring anions also suggested are
well confirmed in the corresponding solid silicates.

The degree of certainty in the structures deduced as a result of modeling reasoning
from the facts of transport, partial molar volumes, etc., are better than one might think.
However, one needs to consider two important facts to be able to pick up the proper
structures; these are the necessity for electroneutrality and the fixed O–Si–O angle.
Thus, for a certain O/Si ratio, there must be a certain number of charges per ion to
match the concentration of cations that the ratio determines. The other matter concerns
the O–Si–O bond angle, which is fixed at 120°.

Taking these two facts into account effectively decreases the number of structures
possible at a given O/Si value. They are those given in Table 5.50. Now, if there is
molecular silica present molecules in the complex water structure), as seems to
be indicated by the small change of over the composition range 0–33 mol%
in the system, molecular may indeed be added to the structure present
in the range of 12-33 mol% in and this would decrease the size of the
corresponding polyanion, probably to

A system of interest among the silicates is partly because of the
relevance of knowledge of the structure of the corresponding glasses and liquids to
geochemistry and materials science. Using 27A1 and 29Si, Poe et al. found it possible
to obtain the coordination number of O for the molecules cited above. Using IR spectra,
they were able to get information on the structure, leading to the idea of considering
polyhedra involving Al, which tends to replace Si as the main ion to which O
coordinates in structures. Poe et al. identified and
(polyhedra) with peaks at 700–900, 600–700, and respectively.How
are these polyhedra related to each other? It seems likely that exchange of O is the
active process:

The critical variables are the O/Al ratio and the molecular size, and hence the
representative anion formulated must depend on these parameters just as it does for
the systems (see Section 5.13.8).

The change in composition with the ions presented was determined by shifts of
the NMR peaks. The liquid samples were splat-quenched—dropped into a cold body
in such a way that rapid solidification occurred, easing the measurements which then
could be made at room temperature. There is a danger in this method since the
quenching may not be fast enough, so that some change in structure from that at a
given composition and temperature may occur before the quenching ends.

5.13.12. Fused Oxide Systems and the Structure of Planet Earth

We live on an apparently solid earth, but the solidified crust is only some 60 km
thick. As one moves down into it, the temperature increases from about 300 K on the



750 CHAPTER 5

surface toward about 1000 K at the bottom of the solid crust where the magma begins.
From here, for the next 6000 km (i.e., to the center of the earth) the temperature is
thought to remain in the 1000–2000 K range but the pressure increases linearly. The
mantle down to the iron core is made up of silicates of varying kinds which are
liquefied from the solid rock not only by the high temperatures but also by the
increasing pressure. Do the structures presented in the last few sections exist in the
earth’s interior? What is the effect of pressure upon the structure of liquid silicates?

These questions cannot be answered unless one knows the pressure inside the
earth as the depth increases. Knowledge of this is incomplete and it clearly must be
obtained somewhat indirectly (e.g., from the study of the pattern of seismic distur-

Fig. 5.79. spectra of
samples quenched from 8 GPa: (a) 1700 K,
glassy and (b) 1420 K, crystalline. Peaks
marked with dots are spinning side bands;
peaks marked with arrows are attributed to

Exponential line broadenings of about
20% of the peak widths (20 and 100 Hz) were
applied to enhance signal-to-noise ratios.
Scales for all spectra are in parts per million
relative to tetramethylsilane (TMS). (Re-
printed from X. Sue, J. F. Stebbins, M. Kan-
zaki, and R. D. Tronnes, Science 245: 963,
1993.)
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bances, etc.). However, one can also use the average density of the earth (6.7) and ask
what is the force per unit area at the bottom of a vertical column 1000 km deep. This
force per unit area turns out to be on the order of

Making a physiochemical measurement at and ~2000 K is clearly very
difficult indeed. How could it be achieved? One approach is to pressurize a silicate
such as at 1700 K (glassy state) and then freeze it very rapidly so that the
structure corresponding to the high pressure and temperature remains frozen in the
sample. Then NMR measurements can be made at room pressure and temperature
while the structure from the high pressure and temperature remains present. What can
be seen (Fig. 5.79)?

The main difference that occurs at these high pressures (like those deep in the
earth) is that the coordination number of  Si begins to change. Throughout the material
described in this chapter so far, the central assumption has been that Si is four-coor-
dinated with O, as in but also in the polymer ions assumed for O/Si < 4. Now,
as seen from the arrow points in Fig. 5.79, some amount of six-coordinated Si exists
as well as a trace of octahedral structures.

Does this mean that deep in the magma liquid silicates would have a different
structure from that described on the basis of measurements at atmospheric pressure?
Probably! We are far from knowing what the detailed changes are, or being able to
say, for example, that the polymer ions in Fig. 5.75 are now smaller in size. However,
at least according to Xue et al. (1992), deep in the earth there is a more random
distribution of bridging and nonbridging oxygens than that observed in solid and liquid
silicates under conditions at the earth’s surface.

5.13.13. Fused Oxide Systems in Metallurgy: Slags

Knowledge of what goes on inside fused oxide systems is important not only as
a basis for future advances in glass technology but also for metallurgical processes.
Consider, for example, one of the most basic processes in industry, the manufacture
of iron in a blast furnace (Fig. 5.80). Iron ore, coke, and flux (essentially limestone
and dolomite) are fed into the top of the furance. Compressed air fed in through
openings in the bottom of the furnace converts the carbon in coke to carbon monoxide,
which reduces the iron oxide to iron. Molten iron collects at the bottom. On top of the
molten metal is a layer of molten material called slag.

What is slag? A typical chemical analysis (Table 5.52) shows that it consists

precisely the kinds of substances (i.e., nonmetallic oxides such as and metallic
oxides such as CaO) the structure of which is being discussed here. (Slags, in fact, can
be regarded as molten glasses.) The constituents of the slags are present in the ores
and in coke.

Successful operation of the furnace and production of an iron with the desired
composition (and hence metallurgical properties) depend so much on making the slag

mainly of silica  alumina lime (CaO), and magnesia (MgO)—in fact,
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Fig. 5.80. Schematic of a blast furnace.

with the right composition by controlling the raw materials fed into the furnace that it
is sometimes said: “You don’t make iron in the blast furnace, you make slag!”

Can one explain this importance of the slag? Measurements of conductance as a
function of temperature and of transport number indicate that the slag is an ionic
conductor (liquid electrolyte). In the metal–slag interface, one has the classic situation
(Fig. 5.81) of a metal (i.e., iron) in contact with an electrolyte (i.e., the molten oxide
electrolyte, slag), with all the attendant possibilities of corrosion of the metal. Corro-
sion of metals is usually a wasteful process, but here the current-balancing partial electrodic
reactions that make up a corrosion situation are indeed the very factors that control the
equilibrium of various components (e.g., between slag and metal and hence the
properties of  the metal, which depend greatly on its trace impurities. For example,
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Fig. 5.81. Molten metal in contact with slag is electro-
chemically equivalent to a metal in contact with an elec-
trolyte.

The quality of the metal in a blast furnace is thus determined largely by electrochemical
reactions at the slag–metal interface. Making good steel and varying its properties at
will depends on making good slag first. Future developments in steel making depend
on having electrochemists controlling the electrical potential at the slag–metal inter-
face.
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APPENDIX 5.1. THE EFFECTIVE MASS OF A HOLE

The pressure gradient in a fluid in the direction x as a result of an instantaneous
velocity u in that direction can be expressed as

Similar equations exist for the pressure gradients along the other two mutually
perpendicular axes, y and z. In these equations, P is pressure;  is the density of the
fluid, and is its viscosity; u, v, and w are the instantaneous fluid velocities at the
points x, y, and z in the directions of the three coordinate axes; and X is the component
of the accelerating force in the x direction.

Stokes has shown that in cases where the motion is small and the fluid is
incompressible and homogeneous, etc., these equations can be simplified to a set of
three equations of the form

plus an equation of continuity

Solution of Eqs. (A5.1.2) and (A5.1.3) in spherical coordinates leads to a general
expression of the form

for the force of the fluid acting on the surface (r = a) of a hollow sphere oscillating in
it with a velocity v given by where  and are the instantaneous normal and
tangential pressures at the points r and  c is the velocity at time t = 0, and is the
frequency of oscillation. The term in  can be ignored for present purposes since it
corresponds to a viscous force acting on the sphere owing to its motion through the
liquid.

Inserting the appropriate expressions for ignoring the terms arising from the
viscosity of the liquid since there can be no viscous slip between a liquid and a hole,
and proceeding through a number of algebraic stages yields
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where is the density of the fluid. Writing now

for the mass of fluid displaced by the sphere gives

However, from the equation

and on remembering that, by Newton’s law of motion, action and reaction are equal
and opposite, it follows that

This force thus corresponds to the force that would be produced by a solid
body of mass operating under conditions where the fluid is absent; it is thus
produced by a hole of effective mass

APPENDIX 5.2. SOME PROPERTIES OF THE GAMMA FUNCTION

The gamma function is defined thus

Some of its properties are as follows:

1. When n = 1,

2. When
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Put in which case

dt = 2x dx

and

Using Eq. (5.24), i.e.,

one has

3.

Integrating by parts,

Hence,

APPENDIX 5.3. THE KINETIC THEORY EXPRESSION FOR THE
VISCOSITY OF A FLUID

Consider three parallel layers of fluid, T, M, B (Fig. 5.82), moving with velocities
and respectively, where z is the direction normal to the
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Fig. 5.82. Viscous forces arise from
the transfer of momentum between ad-
jacent layers in fluid.

planes and is the mean free path of the particles populating the layers, i.e., the mean
distance traveled by the particles without undergoing collisions. In the direction of
motion of the moving layers, the momenta of the particles traveling in the T, M, and
B layers is mv, and respectively.

When a particle jumps from the T to the M layer, the net momentum gained by
the M layer is If is the mean velocity of
particles in the direction normal to the layers, then, in 1 s, all particles within a distance

will reach the M plane. If one considers that there are n particles per cubic
centimeter of the fluid and the area of the M layer is A then A  particles
make the T M crossing per second, transporting a momentum per second of

in the downward direction.
When a particle jumps from the B to the M layer, the net momentum gained by

the M layer is i.e., the momentum transported per
particle in the downward direction is Hence, the momentum transferred
per second in the downward direction owing to B  M  jumps is

Adding the momentum transferred owing to 7  M and B M  jumps, it is clear
that the momentum transferred per second in the downward direction, i.e., the rate of
change of momentum, is  This rate of change of momentum is
equal to a force (Newton’s second law of motion). Thus, the viscous force is given
by

However, according to Newton’s law of viscosity, the viscous force is propor-
tional to the area of the layers and to the velocity gradient, and the proportionality
constant is the viscosity, i.e.,
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From Eqs. (A5.3.1) and (A5.3.2), it is clear that

EXERCISES

From different tables in the text, determine the average change of internuclear
distance upon melting for group IA and IIA halides. Then, tabulate the change
of volume for the same act. Comment on any contradictions you see when
comparing these two sets of data.

Draw the potential-energy vs. distance curves for the pair potentials in a molten
salt.

Calculate the mean hole size in CsBr for which the surface tension is 60.7 dyn
at 1170 K.

It is possible by measuring the velocity of sound to determine the “free volume”
of a liquid. Reference to the corresponding free volume for a solid shows that
there this concept describes the solid volume in a cell of the crystalline solid,
diminished by the volume of an atom in it.

In a molten salt (as shown by a diagram in the text), the free volume increases
with the hole volume in a roughly proportional way. Consider this correlation
and make deductions as to what kind of structure in a molten salt would be
consistent with the observation quoted.

To what degree and in what way do the data on heats of activation at constant
volume and constant pressure contribute to these deductions?

Explain the meaning of refraction and diffraction. What does a diffraction
pattern look like? Write down expressions for the radial distribution function.
What is the physical significance of the decline in value of the maximum with
increasing distance from the reference point?

Explain the difference between diffraction measurements with X-rays and with
neutrons. Determine which method you would use in examining a molten salt.

Determine and explain the terms radial distribution function, pair correlation
function, and partial structural  factors.

By using the pair potentials of one of the pioneer works in the modeling of
molten salts (Woodcock and Singer) as well as the corresponding parameters in
this work, calculate the equilibrium distance for and  ions just above the

1.

2.

3.

4.

5.

6.

7.

8.
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melting point. In what way is the much later work of Saboungi et al. considered
to be an improvement on the pioneer calculations of  Woodcock and Singer?

In Fürth’s theory of cavities in liquids, there is a distribution function for the
probability of the hole size. It is

Deduce an expression for the mean hole size from this function. Work out the
mean radius of holes for molten KC1 near the melting point if the surface tension
is 89.5 dyn and the melting point is 1040 K.

Calculate the work of hole formation in molten sodium chloride, using the Fürth
approach. The surface tension of  NaCl, molten salt at 1170 K, is 107.1 dyn

(a) Assess the total number of individual Si–O bonds in a mole of

(b) Give a chemical explanation of why the addition of to silicate causes
the breaking up of the tetrahedral network.

(c) Assuming three coordination exclusively for B in borate glasses, calculate
the moles of base needed to form a chain structure. What is the formula of the
glass? (Xu)

Frozen liquids can also flow. Research has found that the window glass of many
medieval churches in Europe has a thicker bottom than top (by as much as a
millimeter), and this deformation is evidently caused by the flowing of the
silicate under the effect of gravity. Calculate how far the moving species in the
glass can travel in a millennium at room temperature. [Hint: The glass produced
in ancient Europe is very similar to the so-called “soda-glass” today, which
contains about 20 mol% ] (Xu)

From data in the text, work out a measure of the degree to which
measures the activation energy for transport in molten salts. Does

this equation apply to other liquids?

9.

10.

11.

12.

13.

14.

15.

and the mean hole radius of  NaCl is (Contractor)

Describe the physical meaning of the glass transition temperature.

Explain the idea of a glass-forming liquid electrolyte and the glass transition
temperature. Cohen and Turnbull were the first to formulate a quantitative theory
of diffusion in a glass-forming liquid. Using equations from their theory, show
how it leads to an abrupt change of the diffusion coefficient from a value
continuous with that of the liquid above its melting point to zero at the glass
transition temperature.
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Explain the value of constant-volume and constant-pressure measurements of
transport rates. What can one conclude from utilizing the values of each?

The determination of transport numbers in aqueous electrolytes is relatively easy
(Chapter 3), but in molten salts it poses difficulties of concept, which in turn
demand specialized apparatus. Explain why direct determination is difficult.
Would it not be better to abandon the direct approach and use the approximate
applicability of the Nernst–Einstein equation, relying on self-diffusion determi-
nations? Any counter considerations?

Calculate the transport numbers of the cation and the anion in molten CsCl at
943 K. The experimental equivalent conductivity of the fused salt is

equiv. The observed diffusion coefficients of and ions in molten
CsCl  are                      and                                      respectively.  (Contractor)

Use the text to find an equation giving the “lifetime” of a hole in a molten salt.
Calculate it for KC1 using data in the text.

Calculate the relaxation time for an electron conducting in a metal–molten salt
mixture. (The mobility for such systems is about

For a molten salt mixture in which the reaction at an electrode involves one
electron,  and Electrolysis is
occurring in constant-current pulses of 4 A Calculate the time at which
the reactant in the interface is exhausted.

In Raman spectroscopy of cryolite, a higher value of favors a lower coordina-
tion number. Why?

In the text of Chapter 5, there are X-ray data on the internuclear distance in the
solid and liquid forms of the alkali halides. In all cases, the internuclear distance
contracts on melting. Find the mean contraction in percent. What kind of
structure in the liquid could be consistent with your finding?

In Chapter 5, there are data on the increase in volume of the solid lattice when
it becomes liquid. Work out the average increase in volume in percent and
compare it with the average contraction of the internuclear distance on melting
(see the previous problem). What kind of structure of molten salts does this
suggest?

Why is it that neutrons are preferred to X-rays in carrying out diffraction
experiments with, e.g., molten salts? What is the disadvantage (in practice) of
using neutrons compared with X-rays?

Sketch a few of the typical anionic polymer ions likely to be present at each
composition range in molten oxides. What new ions are formed if O/Si > 4?
Which ions have been confirmed to be present by spectroscopic methods?

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
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State, in less than 50 words, the essential principles behind the Monte Carlo and
molecular dynamics methods of calculating the numerical values of  phenomena
in liquids. Why is it that such methods need prior experimental determinations
in nearby systems?

Some of the ambient-temperature molten salts are made up from certain alkyl
ammonium salts or, alternatively, a mixture of with organics such as
imidazolonium chloride. They have two strong advantages over traditional
molten salts with melting points several hundred degrees above room tempera-
ture: their great ease of handling and the very large electrochemical window that
they allow.

From the information given in the chapter, suggest up to six solvents (systems)
that would allow the electrochemical oxidation of complex organics such as
polymerized isoprene (rubber) or even Teflon (polymerized tetrafluoroethylene)
at less than 373 K.

From the Cohen-Turnbull configurational entropy model, prove that the
temperature dependence of relaxation time and viscosity of super-cooled
liquids are both non-Arrhenius, i.e., of the  type, where is
a characteristic temperature. (Xu)

(CKN) is a well-known molten salt that easily vitrifies upon
cooling. An attempt to ascertain the fragility of this system was made on a CKN
sample with a glass transition temperature of 350 K. This sample was heated up
to 390 K and its dielectric relaxation time measured by an impedance bridge as

Classify this ionic liquid. (Xu)

Assume that the electrical conductivity of CaO is determined primarily by the
diffusion of ions. Estimate the mobility of cations at 2070 K. The diffusion
coefficient of ions in CaO at this temperature is CaO has an
NaCl structure with a = 0.452 nm. Account for your observation. (Contractor)

The equivalent conductivity of molten salts depends upon the cationic radius.
Plot the equivalent conductivities of molten salts of monovalent cations against
the corresponding cationic radii. Comment on this linear dependence. (Contrac-
tor)

The diffusion coefficient of tracer ion in molten NaCl is
at 1290 K and at 1110 K. Calculate the values of the activation
energy and the preexponential factor. (Contractor)

Given that the equivalent conductivity of molten NaCl is
at 1193 K and that the self-diffusion coefficients of and ions in molten
NaCl are and  respectively, evaluate the Faraday
constant. (Contractor)

27.

28.

29.

30.

31.

32.

33.

34.
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PROBLEMS

In the text, data are given on the changes of volume on melting for certain molten
salts. Find out the free space per ion (use a standard compilation of ionic radii).
In the text will also be found a table showing some changes of internuclear
distances on melting. What is your conclusion in respect to the type of structure
for molten salts?

In deviations from the Nernst–Einstein equation in a molten salt, one hypothesis
involved paired-vacancy diffusion. Such a model implies that holes of about
twice the average size are available at about one-fifth the frequency of average-
sized holes. Use the equation in the text for the distribution of hole size to test
this model.

Based on the results of the hole model of ionic liquids, derive the average surface
area <S> and volume <V> of the holes. Compare <S> and <V> with the area and
volume calculated from the average hole radius. Calculate the work needed to be
done in making a hole of the average size at 1170 K in any molten salt if  Fürth’s
“nearly boiling” assumption holds. [Hint: has the
following properties: (1) (2) when n is a positive
integer; or (3) when n is positive real. (See Xu)

Use the Woodcock and Singer results in the text to calculate the coordination
number of by using the equations recorded and the radial distribution
functions shown.

The radial distribution function is the principal entity in the use of X-ray and
neutron diffraction data to determine a structure. Write an expression for the
number of particles, B, in a spherical shell of radius r with respect to a reference
particle. Calculate the number of particles in that shell, assuming that the
material concerned has a density of 1.6; that the first shell outside the reference
atom S is at least a distance of 0.20 nm from the latter (internuclear distance);
and that the – r relation is idealized to a square box, height 2.0 and width 0.10
nm.

Fürth’s model for liquids pictures the liquid as if  the vacant spaces in it behave
like bubbles in a boiling liquid. Several other versions of liquids as disturbed
solids with vacancies exist. The Woodcock and Singer Monte Carlo simulation
of KC1 shows a structure for liquid KC1 similar to that of Fürth’s proposition.
However, the most important point in favor of the model is this: a contradiction
to competing theories, in particular those arising from molecular dynamics, is
that it allows an explanation of the heat of activation exhibited for diffusion and
viscous flow for all nonassociated liquids,

Comment on the following:

1.

2.

3.

4.

5.

6.
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(1) The expression for the hole size in Fürth’s theory uses the surface tension
of the liquid and then gives a remarkable fit to ion size.

(2) The calculated compressibility and expansivity of typical sample molten
salts are ±~20% of the actual values.

(3) There is a linear relation between the free volume from sound velocity
measurements and the hole volume (from volume of fusion data).

Several diagrams given in the text for transport properties attest to the validity
of the empirical expression It appears that from liquid
through liquid organics, to molten salts and metals, the activation energy when
plotted against has a slope of  3.74R. Discuss the significance of  this. How
is this uniformity of behavior to be seen as consistent with two mechanisms of
transport, that in which the occurrence of vacancies is the key element and that
in which “pushing through the crowd” is a more fitting description of the
movement in transport?

Take the data in the text on transport (unassociated molten salt data only) and
work out Discuss whether this conforms more to a “jump
into a hole” (Fürth) or “shuffle along” model of transport (Swallin). Make a
similar comparison for the activation volume.

(a) Use data in Chapter 5 to calculate the transport number in molten NaCl and
find out the temperature dependence of the coordinated diffusion coefficient,

(b) If the difference between calculated and observed equivalent conductivity in
the table in this chapter is phenomenologically attributed to the association
(either permanent or transient) between cations and anions in molten salt, what
is the temperature dependence of this “association degree” and how would you
explain the seeming contradiction with our knowledge about cation–anion
interaction? (See Xu)

The conductance calculated from the Nernst–Einstein equation is several tens
of percentages more than that measured. An interpretation is that the diffusion
coefficient includes contributions from jumps into paired vacancies and these
(having no net charge) would contribute nothing to the conductance while
counting fully for the diffusion.

Assume one takes a 1:1 molten salt for which the increase of volume on melting
is 20%, while the internuclear distance shrinks by 5%. Calculate on the basis of
simple statistics the fraction of paired vacancies. For simplicity, assume the radii
of the cation and the anion are equal (as in KF) and use the Stokes–Einstein
equation to calculate the diffusion coefficient of the ions and that of the paired
vacancies. (The viscosity of KF at 1000 K is 1.41 centipoise; the mean radius

7.

8.

9.

10.
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the equation where N is the number of moles of Na per cubic centimeter
and u is the mobility What would be the average distance apart
of the Na atoms? On the basis of this distance and an approximation square-well
model, calculate the probability of electron tunneling between a K atom and a

ion in molten KC1 and thereby the mobility.

Is the order of magnitude of your result consistent with the observed mobility?
If not, suggest an alternative model for electronic conductance of alkali metals
in alkali metal salts.

Using the distribution function, make a plot of probability that a hole has a radius
in molten sodium chloride at 1170 K. The surface tension of molten sodium

chloride at 1170 K is and the mean hole radius is
(Contractor)

In the Fürth hole model for molten salts, the primary attraction is that it allows
a rationalization of the empirical expression In this model,
fluctuations of the structure allow openings (holes) to occur and to exist for a
short time. The mean hole size turns out to be about the size of ions in the molten
salt. For the distribution function of the theory (the probability of having a hole
of any size), calculate the probability of finding a hole two times the average
(thereby allowing paired-vacancy diffusion), compared with that of finding the
most probable hole size.

In the liquid oxides of the type there are certain limitations on the
absolute structures. The O–Si–O angle may be assumed to be between 90° and
120°; the saturated valence of Si is 4 and that of O is 2. Electroneutrality means
that the total charges on the metal ions (e.g.,  and must be equal
in number to the corresponding charges on the silicate anions. Finally, it is
always possible from the known composition, in mol%, to determine the value
of O/Si, e.g., 4 in On the basis of these “givens,” calculate the likely
structure of a liquid oxide for which O/Si is 2, 3, 4, and 5.

The heats of activation for flow in simple molten salts are generally <40 kJ
In the liquid silicates, the corresponding heat of activation is 5 to 10

times higher than that for <50% in Why is there this very
significant difference? Is there evidence that connects transport properties in
NaCl-type molten salts—the movement into gaps or vacancies in the struc-

11.

12.

13.

14.

15.

of  and is 0.131 nm.) Then calculate the contribution of the paired vacancies
to the diffusion and find out how much greater the Nernst–Einstein equation
would indicate the conductance to be than it really is.

When a metal such as Na is dissolved in a molten salt such as NaCl, it is found
that 1 mol% of the metal gives rise to significant electronic conductance. Utilize
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ture—to a probable rate-determining step in the flow of  liquid oxides (i.e., liquid
silicates, borates, and phosphates)?

There are several ways by which the structure of pure liquid electrolytes may be
examined. A leading way currently is by means of neutron diffraction, a method
that acts by registering the interferences caused by the reflection of neutrons and
gives the internuclear distance. Examine this method with respect to its ability
to contribute to conclusions stimulated by the two most outstanding facts
relevant to the structure of molten salts. These are that when the salt melts and
expands, the ions get nearer together rather than farther apart, and that the degree
of expansion on melting, particularly for the alkali halides, is about 20% of their
volume in the solid. To what kind of structures do these striking facts point? Can
neutron diffraction measure empty space?

Ring and chain structures of were deduced by Blander and Saboungi in
1992 and are given in diagrams in the text. Compare the structure shown there
( the coordinating ion) with those deduced by MacKenzie and Lowe for the
liquid silicates in 1955 (also given in the text). Differences? Similarities? Why
is the working temperature range for the liquid silicates (>1600 K) different from
the room-temperature systems studied by Blander and Saboungi?

A pairwise potential widely used in both Monte Carlo and molecular dynamics
computations is given as

which describes the potential as a function of distance between two ions i and  j;
and are charges on i and  j, respectively, while is the size parameter of the

ion pair (normally the sum of the crystallographic radii of i and j).
and are constants estimated from the studies on the crystal of

the corresponding salt.

(a) Identify the term that dominates the attraction between a pair of oppositely
charged ions in long range and the term that prevents these two ions from “falling
into each other.”

(b) Which parameter in the second term determines the steepness of the repulsion
felt by these two ions once their size parameters and center-to-center distances
have been fixed?

(c) In molten silicate, the Si–Si equilibrium distance is ca. 0.32 nm. Determine
by calculation whether the force due to the second term or the Coulombic-like
charge repulsiondominates. What does the result suggest concerning the stabil-
ity of the silicate network?

16.

17.

18.
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(d) For simple molten salts such as KC1, the various parameters are given as
follows:

When a liquid supercools (i.e., does not crystallize when its temperature drops
below the thermodynamic melting point), the liquidlike structure is frozen due
to the high viscosity of the system. The supercooled liquid is in a so-called
viscoelastic state. If the crystallization can be further avoided as the temperature
continues to drop, a glass transition will happen at a certain temperature, where
the “frozen liquid” turns into a brittle, rigid state known as a “glassy state.” A
well-accepted definition for glass transition is that the relaxation time of the
system is  or the viscosity is Pa s (an arbitrary standard, of course).

(a) Calculate the average distance an ion can travel during the period of a single
relaxation time in a substance with a room-temperature glass transition.

(b) A simple relation between relaxation time and viscosity exists in all liquids
down to the glass transition temperature: where K has a very small
temperature dependence and can be regarded as a constant independent of
temperature. Obtain this constant and calculate the theoretical upper limit of the
viscosity of liquids, using the fact that the electronic relaxation time measured
in the far infrared region is (Xu)

In the equation and the
constant B is an important characteristic of the structure of the liquid; its inverse
is known as the “fragility” of the liquid, i.e., the greater B, the stronger (or the
less fragile) the liquid.

(a) Explain how the value of B influences the non-Arrhenius behavior of both
the relaxation time and viscosity

(b) According to the value of B, liquids can be classed into categories of  “strong”
(large value of B), “intermediate” (medium value of B), and “fragile” (small
value of B). Pure silicate belongs to “strong” with a B value of ca. 100; as
is added, the fragility increases and the resultant glass passes via intermediate
(B < 50) into fragile (B < 10). Interpret this transformation on a structural level.
(Xu)

19.

20.
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MICRO RESEARCH PROBLEMS

Using references cited in the text, research the history and development of
room-temperature molten salts. The first publication was by Hurley and Weir in
1951. Why was there silence for a quarter century? What contribution was made
by Halena Chum in the pioneering 1977 work?

Make a 250–500 word summary of the contributions of  teams led, respectively,
by Osteryoung, Wilkes, and Hussey. Aluminum is often involved in this chem-
istry. It has very advantageous properties for storing energy because of the
combination of the low molecular weight and 3-electron transfer reactions to
form Because of the availability of an advantageous electricity storage
device would consist of a room-temperature molten salt involving (which
would deposit in a cathodic charging reaction and dissolve during discharge)
and a redox coupling involving

Devise a cathodic reduction reaction to occur during discharge of a cell that
would reduce in the melt and be comparable with the Al organic type of
solution.

What is the difference between “average hole radius <r>” and “radius of the
most populous hole Calculate the “most popular” hole radius and
compare it with <r>.

If the answer in the above question is no, what parameter is needed to describe
the distribution of the hole size? Is there validity to the statement that “all holes
are of the same size in molten salts?” Using data in Table 5.15, find the above
distribution for KC1 molten salt at 1170 K.

[Hint: numerical integration may be needed to solve the last question.] (Xu)

1.

2.
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steps in, 289
triumphs and limitations, 268

Debye–Hückel–Onsager
and concentration, 521
equation, 518
observed conductance curves, 520
theory

improvements to date, 522
for nonaqueous solutions, 537

Decay time, of an ionic atmosphere, 512
Degani, and conducting enzymes, 23
Dependence of heat of solution, upon a

nonaqueous component, 176
Dielectric behavior, of DNA, 195
Dielectric breakdown

and the electrochemical model, 3
some mechanistic thoughts, 181
of water, 179, 184

Dielectric constants
critical, absence of ion pairs, 312
function of field strength, 90
function of frequency, 531

in solution, 93
measurement in ionic solutions, 92
and hydration measurements, 89
their explanation, 87

Dielectric effects, in solution, 87
Dielectric measurements, ion solutions, 91
Dielectric relaxation, in water, 530
Dielectric saturation, and conductance theory,

524
Dielectric spectra, proteins, 196
Diffraction theory, and pair correlation func-

tions, for molten salts, 616
Diffusion

at boundaries, in solution, 484
and concentration gradient, 369
constant current source, 388
and driving force, 363
and the Einstein–Schmulokowski equation,

410
after instantaneous current pulse, 401
in molten salts, 647
non-steady state, an overall viewpoint, 380
an overall viewpoint, 418

Diffusion (cont.)
of polyions, and hydration, 193
after step function application of current

pulse, 389
transport, 3

Diffusion coefficient, 370
calculation in ionic solution, 416
function of concentration, 371, 459
function of temperature, 679
the hole model, 678
and ionic mobilities, related, 450
and molecular quantities, 411
and rate processes, 414
ways of calculating ionic drift, 420

Diffusion potentials, 483, 486
in terms of Onsager coefficients, 496

Dimer and triplet calculations, from MD
results, 331

Dimers and trimers, computed, 329
Dimers in liquid silicates, 742
Dipole–ion interaction, deduced, 208
Dipole moment of water, 48
Disciplines, and charge transfer reactions,

14
Dispersion forces, the key to anomalous salting

in, 173
Dissolution, of ionic crystals, 36
Distribution functions

and Enderby and Nielson’s work on neutron
diffraction, 78

holes in molten salts, 636
liquids, 615
sizes of holes in liquids, 639
in solvation, effects on solubility, 170

Distribution law, charges near the center of ion,
236

DMSO, molecular models, 17
DNA, and dielectric behavior, 195
Drag forces, acting on ion, 452
Drift velocity

average values of, 443
and the effect of the unsymmetrical ionic

atmosphere, 510
its electrophoretic component, 511
and ion–ion interactions, 517
in a model, 465

Dynamic simulations, for aqueous solutions,
163

Dynamics, molecular, and solvation, 39
Dysmmetry of the ionic atmosphere, and the

effect of frequency, 528



Einstein’s equation, its deduction, 449
Einstein’s relation, 448, 451
Einstein–Schmolukowski

theory, its mathematics, 583
the calculation of the fraction counted,

408
equation, what fraction of the total diffusate

does it represent?, 378, 405
fraction, 407

Electrochemical and chemical reactions, 8, 9,
11, 29

Electrochemical cell, 10
Electrochemical potential, its gradient, 471
Electrochemical reactor, 9, 10
Electrochemical windows, and low temperature

liquid electrolytes, 722
Electrochemistry

and biology, 15
and the center at Texas A&M University,

26
and companies, in College Station, Texas, 26
chemical origins, 13
cleaner environments, 25
a core science for a sustainable society, 30
in the developing world, 28
discovered by Galvani, 1
and engineering, 15
and electrodics, 4
and geology, 15
an interdisciplinary field?, 15
definition, 1
journals, 34
and metallurgy, 13
and monograph series, 33
and other sciences, 12
and progress since 1980, 18
related to civilization, 28
related to physical chemistry, 12
and the theory of metabolism, 24
two kinds of, 3

Electrodics, 4
some characteristics, 5

Electrolytes
interactions, ion–ion, their relevance, 229
potential, 226
strong and weak, diagrammated, 228
and their adiabatic compressibility, 62
true and potential, 225

Electrolytic solutions, and the seminal work of
Enderby and Nielson, 78

Electron beam and Kebarle, 97
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Electroneutrality
and conduction, a conflict?, 426
and drift of different ionic species, 487
its unbalance in molten electrolytes, 666

Electronically conducting polymers, 558
in electrochemical science, 559

Electronic conduction, in molten salts, 714
Electronics, medical, field of the near future,

31
Electrons, flow across interfaces, 8
Electron transfer processes, 427
Electrostatic potential, function of distance,

from central ion, 242
Electrostatics, and work done, 366
Electrostriction, 185

calculated, 188
and other systems, 190
and volume changes, in water, 187, 189

Eley and Evans
statistical mechanics of ions in solution, 86
their seminal 1938 paper, 40, 114

Enderby and Neilson, their seminal contribu-
tions to electrolytic solution, 78

Energy of activation
cations and anions in molten salts, 680
for conductance, 658
at constant volume, 689
in molten salt diffusion, 650
for viscous flow, in liquid silicates, 737

Engineering, and electrochemistry, 15
Entropies

of hydration, compensation plots, 138
of hydration, tabulated, 113
individual, 112
ionic, and the evidence from reversible cells,

110
of solvation, described, 53

Entropy, librational, near ions, 132
Entropy calculations

and the Sackur–Tetrode equation, 128
various models, tabulated and compared,

134–136
Entropy changes, and solvation, 127
Entropy of hydration

as a function of reciprocal radius, for various
models, 137

possible models, 126
and relevant quantities in its calculation, 128

Entropy of solvation,
its dependence on radius, 54
and heat of solvation, 138
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Entropy of translation, for ions in solution, 129
Environments, cleaner, and electrochemistry, 25
Equation, differential, for the situation of po-

tential near an ion, 241
Equations

Arrhenius, 2
Boltzmann, 237
Born, 204
Debye–Hückel–Onsager, 518
Einstein’s, 449
Einstein–Schmolukowski, 378, 405
Gibbs–Duhem, 262
LaPlace, 392
Leonard–Jones, 45
Nernst–Einstein, 456
Nernst–Planck, 476
Onsager, 494
Planck–Henderson, 500
Poisson, 235, 344
Poisson–Boltzmann, 239
Sackur–Tetrode equation, 128
Setchenow’s, 172
Tafel, 2

Equivalent conductivity
and concentration, 434
of dilute solutions, tabulated, 435
function of rate processes, 467
at infinite dilution, 438
variation with concentration, diagrammated

and tabulated, 437
in terms of mobilities, 447

Equivalent conductivity and molar conductiv-
ity, 432

Error function, 394
Excess free energy, and correlation functions, 326
Exercises, student solution,

ionic transport, 587
on molten salts, 758
on solvation, 213, 349

Expansivity, as a function of metal oxide addi-
tion, for liquid silicates, 740

Fajans, his original contributions to solvation, 53
Faraday, and his 1834 discovery, 2
Faraday’s laws, 428
Fawcett and Tikanen

application of dielectric constant variations
to MSA calculations, 329

the MSA theory, 329
Fermi levels, of electrons, and dielectric break-

down, 183

Fick’s 1s t Law, 367
Fick’s 2nd Law, 381

and LaPlace transformation, 387, 419
Field dependence, of orbital reorientation, 578
Fields, near an ion, and the compressibility of

water, 188
Field strength, and dielectric constant, 90
Flux

under concentration gradients, 472
under field gradient, 473
sinusoidal, and the treatment with LaPlace

transformation, 400
Flux as a function of chemical and electrical

forces, 474
Flux–force laws, 495
Forces, in the phenomenological treatment of

transport, 367
Fraction associated, as function of distance of

closest approach, 313
Franck and Evans, their 1957 work, 84
Franck and Wenn, their seminal paper of 1957,

50
Frank, his theory of electrostriction, 190
Free energies of hydration

dependence on radius, 54
how to get them, described, 53

Free energies of solvation, described, 53
Friedman

contributions to the Mayer theory, 317
contributions to ionic solution theory, 323
various contributions towards ion–ion inter-

actions, 335
Frogs, and Galvani, 1
Fuel cells

discovered by Grove, 2
inseparable from Bacon’s work, 2
and metabolism, 24

Functions, distribution, and x-ray measure-
ments, 45

Functions of hydration, 203
Furth model, in molten salt theory, 638
Fused oxides, and the structure of liquid water,

726
Fused oxide systems, and the structure of

planet earth, 749
Fused silica

its structure, 727
its viscosity, 728

Fusion, the volume change, 613
Fuxed oxide systems: slags: as liquid silicates,

751



Galvani, his adventure with a frog’s legs, 1
Gamboa–Aldeco, on the compression of ions in

the double layer, 190
Gamma functions, some properties, 755
Gas phase

and ionic hydration, 93
solvation and Hiraoka, 97

Geology, and electrochemistry, 15
Gibbs–Duhem equation and the determination

of activity coefficients, 262
Glasses, 734
Glass forming, molten salts, 642
Glucose, and diabetics, 22
Gouy, originator of the ion–atmosphere model,

292
Greenler theorem, 21
Grotthus mechanism, and proton conductance,

569, 570
Grove, and power from chemical reactions,

diagrammated, 12
Grove, the discovery of fuel cells, 2
Guntelberg charging process, 302
Gurney

his 1936 book on ions in solution, 50
his idea of a co-sphere, 334

Gutmann, his theory of metabolism, 24

Hal ides, hydration numbers, 144
Halliwell and Nyburg

the essence of their method, 109
and the individual properties of the proton,

99
Haymet

and dimer formation in electrolytes, calcu-
lated, 331

study of 2:2 electrolytes, 331
Heat and entropy, for hydration, a relation?,

138
Heat changes, accompanying hydration, dia-

grammated, 117
Heats of hydration

and atomic number, 150
individual ions, 110
numerical evaluations from the theory, 124
relative, tabulated, 101
tabular, 52
for transition metals, 151

Heats of solvation, thermodynamic approach,
51

Heinziger, his contributions to computer simu-
lation in ionic solutions, 343
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Helix–Coil transitions, affected by solvation,
197

Heller, and conducting enzymes, 23
Hewich, Neilson, and Enderby, 1982 determi-

nation of life time of water in vicinity
of ion, 80

Hiraoka, and solvation in the gas phase, 97
Histogram, showing distribution of O-Na-O

angles, 159
Hitchens, and wastewater treatment, 26
Hittorf’s method, 489

diagrammated, 490
the theory, 491

Hole, mass, 754
Hole model

for molten salts, 633
and probability function, 634
and transport, 674

Hole radius, for molten salts, tabulated, 641
Hunt and Taube, their determination of the

lifetime of water in a hydration
shell, 82

Hussy, seminal contributions to molten salt
chemistry, 19

Hydration
in biological systems, spectroscopic studies

of, 198
in biophysics, 192
of cations and anions, 201
in chemistry, and Conway, 50
of cross linked polymers, 191
and diffusion of polyions, 193
and entropy changes occurring near it, 126
and IR spectra, 73
its breadth as a field, 37
its dependence on radius, 54
and model calculations of Bockris and Sa-

luja, 114
models, plotted against radius, 125
quantities dependent on the number of

ligands, 96
polyions, 190
of proteins, 194
and radial distribution functions, 156
and thermochemical quantities, 96
for transition metals, its strange dependence

on atomic number, 145
Hydration heats, and model calculations, 114
Hydration numbers

from activity coefficients, 299, 68
affected by the dynamics of water, 141
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Hydration numbers (cont.)
for alkaline metals, 144
and coordination numbers, 140
determined by various methods, 143
function of, 296
for halides, 144
from IR spectroscopy, 76
from measurements of dielectric constants,

89
from the mobility method, 71
and neutron diffraction, 79
primary, 140

methods of determination, 142
those of Bergstrom and Lindgren, 75
ionic mobility measurements, 72

and residence times, 165
secondary, 140
total, 140

Hydrogen bonding
and the Periodic Table, 44
in water, the importance, 43

Hydrogen scale, and solvation of ions, 100
Hydrophobic effects in solvation, 175
Hydrophobicity, as a field, 38
Hydroxonium ion, its structure, 566

Ice, structure, related to water, 43
Iceberg model and liquid silicates, 745
Infrared (IR) measurements, and ionic hydra-

tion, 74
Infrared (IR) spectroscopy,

and intermediates, 20
and electrolytic solutions, 340

Inorganic salts, melting points, 604
Interactions

of the ion-dipole model, 49
in molten salts, and non-ideal behavior,

695
Interfaces

in contact with solution, 6
and the flow of electrons, 8

Intermediates, and infrared spectroscopy, 20
Ion, models for, 116
Ion association, 304, 547

and conductance, 548
a theory, 305
constant of Bjerrum, 309

Ion-dipole
interaction, deduced, 207
model for ion solvent interactions, 49

Ion-exchange resins, 191

Ion hydrates, 95
a function of partial pressure, 95

Ion hydration, quantities for calculating, 118
Ionic atmosphere

effects on ionic migration, 505
its thickness, for various concentrations,

248
Ionic charge, apparent, 459
Ionic cloud

and adjacent charge, 244
catching up with moving ions, 507
and chemical potential changes, 250
egg shaped, 508
electrophoretic effect, 509
its potential, 250
a smeared out charge, 234

Ionic cloud theory, a prelude, 232
Ionic crystals, dissolution, 36
Ionic current density, electric field, a hyper-

bolic relation, 468
Ionic diameters, average, obtained by Fawcett

and Tikanen’s approach, 329
Ionic drift

under electric fields, 421
some interactions, 476
under a potential gradient, 363

Ionic entropies, individual, and the contribu-
tions of Lee and Tai, 111

Ionic equilibria, effect on permitivity, 539
Ionic hydration, in the gas phase, 93
Ionic interaction, and the quadrupole moments

of water molecules, 105
Ionic liquids

complex formation, 694
differentiating features, 603
and gravitational flow, 669
models, 611

Ionic migration
an atomistic picture, 442
as a rate process, 463

Ionic mobility measurements, and primary hy-
dration numbers, 72

Ionic movements, and the random walk, 372
Ionic properties

individual, 98
and the Conway extrapolation, 99
extrapolation is the best method, 99

summarized, 114
Ionics

and electrochemistry, 4
a frontier in nonaqueous solutions, 16



Ionic solutions
and computer simulation, 319
and dielectric constants, 92
and dielectric measurements, 91
and Raman spectra, 73

Ionic solution theory
and the 21st century, 342
student exercises for, 349

Ionic solvation
and computer simulation, 153
and entropy calculations, 130
its effect on solubility, 167
and models, 115
surveyed, 201

Ionic solvation numbers
the data, 65
obtained in dilute solution, five methods,

119
Ionic transport,

a bird’s eye view, 503
exercises, 587

Ionic volume
function of field strength, 186
individual, how to obtain them, 56

Ion-induced dipole interactions, 106
Ion-ionic solvation, the quadrupole model,

107
Ion–ion interactions, 225

activity coefficients, 251
chemical potential, 231
strategy for understanding, 230
vibrational spectroscopy, 540
theory, its parentage, 292

Ion pair formation, and noncoulombic forces,
551

Ion-quadrupole
interaction, deduced, 209
model, 103

Ions
and the autocorrelation function, 415
concentration in a variety of media, 37
detected, in liquid silicates, by spectroscopy,

747
effect on the structure of water, 46
and entropy calculations, 131
enveloped by sheath of oriented water, 46
of equal radii, and their heats of solvation,

101
and finite size effects, 273
individual properties, 98
interacting with nonelectrolytes, 166
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Ions (cont.)
and models for entropy, 133
mobility, 444
movements under electric fields, 425
and partial molar volumes, 56
radii, and solvation number, 81
response to electric fields, 424
in solution and their partial molar volume,

55
in solution, thermodynamic properties, 55
structure near them, by spectroscopy, 72
surrounded by water, 47

Ion size parameters, 280
tabulated, 283
varying with concentration?, 285

Ion–solvent interactions
and activity coefficients, 293
the future of research, 199
the ion quadrupole model, 103
and mobilities, a simplistic theory, 70

Ion–solvent relations, defined, 47
Ion transport, 361

problems, 593
Ion–water clusters, computations thereon,

157
Ion–water interactions, 162

dependence upon quadrupole interactions,
104

Irish and Davis, and effect of solvation on
nitrate spectra, 85

Jump frequency, a rate process, 413

Kainthla, and the dielectric breakdown of wa-
ter, 183

Kalman, her early attempts at computing static
solvation, 154

Kebarle
and the pulse electron beam, 97
his seminal work on ionic hydration in the

gas phase, 94
Kohlrausch’s law, 438

formulated, 458
and the independent migration of ions,

439
and ionic migration, 506
in terms of ionic interactions, 519

Krestov
and the separation of ion and solvent effects

in hydration, 139
and the thermodynamics of solvation, 179
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LaPlace transformation, 382
equation, 392
explained, 383
partial differential to total differential,

385
schematized, 393

LaPlace transforms
of a constant, 584
and dependence with concentration of time

and distance, 404
tabulated, 384
and the treatment of constant flux, 398

Lattice, a thermal loosening, 602
Lee and Tai

doubtful assumptions, 112
significant contribution to ionic entropies,

111
Lee and Wheaton, their contributions to con-

ductance theory, 523
Leonard–Jones equation, 45
Levesqe, and autocorrelation functions, 417
Life time,

of complex ions, in molten salts, 699
of holes, in molten salts, 676
of water in hydration shells, 83

Ligands, dependence of hydration quantities,
96

Lin, and waste disposal in molten salts, 719
Linearization, of the Boltzmann equation,

237
Linearized Poisson–Boltzmann equation, solu-

tion to, 239
Liquids, various properties, tabulated, 606
Liquid ammonia, the preferred nonaqueous sol-

vent, 543
Liquid electrolytes

ionic liquids, 603
at room temperature, 720

Liquid oxide electrolytes, 726
Liquid silica,

and fused salts, transport processes, com-
pared, 732

the effect of ionic additions, 734
Liquid silicates

conductance, 730
and the effect of pressure on structure, 750
and the ring anions, 743
in spectroscopy, 746

Lodge’s experiment, 493
Lynntech, a leading electrochemical company,

32

Macroions
effect upon a solvent, 191
partial molar volumes, 192

Mammantov, and “the cutting edge of technol-
ogy,” 1

Marinelli and Squire, successive molecules
added to hydration shell, 150

Materials, and surfaces, 6
Mayer’s

helpful stratagem, 317
theory, 316

compared with that of Debye and Hückel,
327

virial coefficient approach, to ionic solu-
tions, 317

McMillan–Mayer theory, 316
MD and Monte Carlo: are they just answer get-

ters?, 322
Mean activity coefficients, their theory, 345
Mean jump distance, 464

a structural question, 412
Mean square distance, traveled in time t, 374
Mechanistic thoughts, on dielectric breakdown,

181
Melting points

of inorganic salts, 604
of tetraalkylammonium chlorides, 724

Metabolism
and fuel cells, 24
a speculative model, 24

Metal oxide, and silica atom, interactions, in
silica networks, 734

Methanol oxidation, and the spectra therefrom,
21

Migration of ions
how it happens, 441
independent, 440

Mitochondrion, and a model for the energy ex-
change in biology, 25

Mobilities, related to diffusion coefficients,
450

Mobility
absolute, 445
of electrons, in molten salts, 716
of ions, 444
from Stokes’ law, 455

Model, for activity coefficients, finite sized
ions, 280

Model calculations, for hydration heats, 114
Modeling approaches, to conceptual structures

of molten salts, 632



Models
in electrolyte theory, detailed, 332
for entropy calculations, 134

near ions, 133
for hydration shells, 120
for ionic solvation, 115
for liquid silicates, 738
for region near an ion, 116
for solvation, 202
for the structure of a hydration shell, 161

Molar conductivity
and equivalent conductivity, 432
in methoxyethane, 541
tabulated, 434

Molecular dynamic calculations, for molten
salts, 621

Molecular dynamics
the basic equations used, 155
and protein hydration, 193
and self diffusion, 164
simulation, 203

for ionic solutions, 320
and solvation, 40

an early attempt, 154
and the study of complexing, 627

Molecular models, for DMSO, 17
Molten cryolite, Raman analysis of its struc-

ture, 703
Molten salts

binary, as seen from neutron diffraction, 619
conductivities, 607
and electronic conduction, 715
glass forming, 642
modeling, 621
and neutron diffraction, 612
as reaction media, 717

why they are good reaction media, 718
at room temperature, 19, 720
structure among complexes of, 631

Monographs, series of, in electrochemistry, 33
Monomers, dimers and trimers, as a function of

concentration, computed, 330
Monte Carlo

approach, 319
approach to solvation, 39
and MD techniques: their future, 322
simulation, of potassium chloride, 623

Movements, of ions, under applied field, 442
MSA

and Blum’s theory of conductance, 525
a description, 41
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Murphy, Oliver, President of Lynntech, College
Station, Texas, 32

NASA, their critical decision to use fuel cells, 3
Nernst, Walter, professor in Berlin, 263
Nernst–Einstein

deviations, in molecular mechanism, 662
equation, 456

deviations from, 460
tested, 664

relation,
for equivalent conductance, 661
in ionic liquids, 660
some limitations, 457

Nernst–Planck
equation, applied to deposition of anions at

cathodes, 476
flux, and transport numbers, 482
flux equation, 475

applied to problems, 481
Network theory, of liquid silicates, 739
Neugebauer, and introduction of FTIR into

electrochemistry, 20
Neutron diffraction

application to chloro-aluminates, 713
approach to solvation, 77
and distribution functions, 45
the experimental arrangement, 617
used by Enderby and Neilson, 78

Neutrons, not X-rays, for diffraction experi-
ments, 618

Neutron scattering, inelastic, 82
Newton’s laws, applied to ionic motion, 373
Nitrate, their spectra, and information it will

give towards solvation, 85
NMR spectra in lithium silicate, 748
Nonaqueous solutions

a frontier in ionics, 16
how much empirical data is available?, 538
a new frontier?, 534
and solvation therein, 74
their plus and minus, 536

Noncoulombic forces, and ion pair formation,
551

Nonelectrolytes, interaction with ions, 166
Nonmetallic oxides, solvent properties, 733
Nuclear magnetic resonance

and molten salts, 709
in solvation structures, 85, 86
spectroscopy, in electrolytic solutions, 340
studies, 341
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Ohm’s law, and ionic conductivity, 431
Onori, and his objections to Passynski, 59
Onsager phenomenological equations, 494
Orbitals

hybrid and water, 42
of water,

and their effect on hydration of transition
metals, diagrammated, 148

from hydration of transition metals, 147
in water molecules, their alignment as key to

photon conduction, 577
Organic compounds, electronically conducting,

554
Organic solutes, in liquid electrolytes at low

temperatures, 722
Orientation, of water molecules, near ions,

91
Orienting dipoles and dielectric constants,

88
Osmotic coefficients, for various models, as a

function of ionic strength, 318
Osteryoung, seminal contributions to molten

salt chemistry, 19
Oxygen transfer reactions, and the silicate, tet-

rahedra, 735

Pair correlation functions, 343
Pair–pair interactions, 321
Paired vacancy model, for ionic transport in

molten salts, 663
Palinkas, his early attempt at molecular dynam-

ics of hydration, 154
Parameter, adjustable, effect of, 284
Partial molar volumes

defined, 56
determination, and Conway’s method, 57
ions in solution, 55
of macroions, 192
obtained for ions, 56

Passynski
criticized by Onori, 59
and his argument about compressibility, 58

Phenomenological relations, and time, 504
Physical chemistry, related to electrochemistry,

12
Picture, stereoscopic, of “frozen” waters near

sodium ion, 160
Planck–Henderson

equation, 500
and integration, 501
and the liquid junction potential, 502

Planet earth, and the structure of fused oxide
systems, 749

Poisson–Boltzmann equation
and its rigorous solution, 300
linearized, 238
and a logical inconsistency, 301
mathematics, 240
for point charged ions, 288
schematic, 287

Poisson’s equation
and the charge density near the central ion,

235
for symmetrical charge distribution, 344

Pollution, and oil, 31
Polyacetylene, as a photo electrode, 562
Polyion model, for liquid silicates, tabulated,

741
Polyions

individual ones, 191
and liquid silicates, 740
their hydration, 190

Polymer formation, in silicates, 740
Polymers

electronically conducting, 554, 564
electronically conducting, diagrammated,

558
electronically conducting, various applica-

tions, 561
Pons, and his development of FTIR, 20
Potassium–water interaction, as a function of

distance, 158
Potential, super position of, 249
Potential electrolytes, 226

schematic presentation, 227
Potential energy,

for proton–oxygen bonds, 572
curves, in rotation of water molecules near

ions, 579
Power supplies, caught up in electron flow, 8
Pressure

near an ion, due to electrostriction, 185
near an ion, its effect on compressibility,

187
Primary hydration numbers, their values, sum-

marized, 145
Primary solvation sheath, and the ion-induced

dipole itneractions, 106
Probability

finding oppositely charged ions near each
other, 304

function, in hole model, 634



Problems, for student solution
pure liquid electrolytes, 762
ionic solution theory, 352

micro research standard, 357
on hydration, 217
on molten salts, 758, 762

micro research standard, 767
on ion transport, 587

Properties, of ions, individual, how to obtain
them, 98

Protein, in water, schematic, 193
Protein dynamics, as a function of hydration, 194
Protein hydration, tabulated, 195
Proteins

and relay stations within, 22
dielectric spectra, 196

Proton, and the individual properties by Halli-
well and Nyburg, 99

Proton mobility, in ice, 581
Protons, 565

motility, 571
and low temperature molten salts, 725
absolute entropies, 112

Proton transfer, and favorable orientations, 573
Proton transport, 567
Proton tunneling, 575
Pulse generator, and short bursts of ion produc-

tion, 402
Pure electrolytes, 601

diagrammated, 608
Pure liquid electrolytes, fundamental problems,

605

Quadrupoles, 102
and dipoles, 212
energy and interaction with ions, 105
orientations near to ions, 104

Quadrupole ion interaction, deduced, 211,
209

Quadrupole model, evaluated, 109
Quadrupole moments, 210
Quantities, for calculating ionic hydration,

118
Quaternary onium salts, liquid, 723

Radial distribution functions, 28, 620
solvation, 156
of Woodcock and Singer, 626

Radii, various kinds, 48
Radiotracer approach, to transport numbers,

672
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Radiotracer detection of diffusion, 406
Raman effect, 84
Raman peaks, in various molten salts, 710
Raman spectra

of chloro-gallates, 708
and ion solutions, 73
of molten cadmium chloride, 709
of molten organics, 707
and molten salts, 704
Smekal’s prediction of, 86
and solution structure, 84

Raman spectroscopy, and electrolytic solutions,
339

Raman studies
for aluminum complexes, in low temperature

molten salts, 705
of molten zinc chloride, 706

Random walk
and diffusion, 378
explained, 376
and ionic movements, 372
and its characteristic equation, 379
mathematical proof, 582
one dimensional, 377

Random walking particles, 374
Rassaiah and Friedman, improvements to the

mound model, 334
Rate constant, in diffusion, 466
Rate of distribution functions

and coordination numbers, in complex mol-
ten salts, 630

for KCl, from MD, 622
Rate processes

and the diffusion coefficient, 414
and equivalent conductivity, 467
for ionic migration, 463

Rayleigh scattering, 84
Reaction equilibria, in low melting point liq-

uids, 721
Reciprocal length, in ionic cloud theory, 248
Relative heats of hydration, of opposite

charged ions with equal radii, 102
Relaxation, 526

a general treatment, 527
Relaxation effects, 563
Relaxation field, 515
Relaxation force

and a better theory, 516
and the drift velocity, 514

Relaxation processes, in electric solutions,
526
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Relaxation time
of the drift velocity, 512
effect of ions upon it, 532
and the ionic atmosphere, 513

Reorientation, the key to the Conway, Bockris,
and Linton theory, 576

Residence times and hydration numbers, 165
Response, of a system to a stimulus, in diffu-

sion, 397
Rice–Alnut theory, in molten salt transport, 693
Richards, Nolan, and sound velocity determi-

nations, 61
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