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PREFACE

 This book is a translation of a textbook entitled ‘Electrochimie Physique et 
Analytique’ (Presses Polytechniques Universitaires Romandes, 2001). The original 
goal was to gather in a single book the physical bases of electroanalytical techniques, 
including electrophoretic methods. Indeed, most of the textbooks dedicated to 
electrochemistry cover either the physical or the analytical aspects.
 As science becomes more and more interdisciplinary, a thorough comprehension 
of the fundamental aspects becomes more important. The book is therefore intended 
to provide in a rigorous manner an introduction to the concepts underlying the 
electrochemical methods of separation (capillary electrophoresis, gel electrophoresis, 
ion chromatography, etc.) and of analysis (potentiometry, conductometry and 
amperometry).
 My first thanks go to Magnus Parsons (Isle of Sky, Scotland) who did the trans-
lation. The present text has been thoroughly reviewed again by Prof. Roger Parsons 
(FRS), and I wish to thank most sincerely Roger for his support over all these years.
 My thanks also go to the reading committee composed of Drs. Henrik Jensen, 
Jean-Pierre Abid, Maurizio Caragno, Debi Pant and Jördis Tietje-Girault.
 I also thank all the team at Fontis Media (Lausanne, Switzerland) for producing 
this book, and in particular Thierry Lenzin for his patience and meticulous editing.

Preface
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PREFACE  TO THE ORIGINAL 
FRENCH VERSION

“ELECTROCHIMIE PHYSIQUE ET ANALYTIQUE”

 

For historical reasons, physical electrochemistry and analytical electrochemistry are 
often taught separately.  The purpose of this course book is to bring these two subjects 
together in a single volume, so as to bridge the fundamental physical aspects to the 
analytical applications of electrochemistry.
 The philosophy of this book has been to publish in extenso all the mathemati-
cal derivations in a rigorous and detailed manner, in such a way that the readers can 
understand rather then accept the physical origins of the main electroanalytical prin-
ciples.

 By publishing this book, I express my thanks to all those who have taught me the 
way through electrochemistry:
 ∑ From my early years in France, I wish to thank all the teachers from the Ecole 

Nationale d’Electrochimie et d’Electrométallurgie de Grenoble (ENSEEG) for 
developing my interest in electrochemistry, and of course I thank my parents for 
their financial and moral support.

 ∑ From my years in England, my most profound gratitude goes to Sir Graham 
Hills for both his scientific and political approach to Science, as well as to 
Lady Mary Hills for her friendship from the very beginning of my thesis. My 
admiration goes to Professor Martin Fleischmann (FRS), whose creative force 
has always been a source of inspiration, and to Professor Roger Parsons (FRS) 
whose intellectual rigor and mastery of thermodynamics can be found, I hope, in 
these pages. I would not forget Professor David Schiffrin who has taught me so 
much and with whom I spent several fruitful years. Thanks to them, I acquired 
during these years in Southampton a certain comprehension of classical physical 
electrochemistry.  

 ∑ From my years in Scotland begins the period of my interest in analytical 
electrochemistry. I owe much to Drs Graham Heath and Lesley Yellowlees who 
helped me discover another type of electrochemistry, and I insist on expressing 
my sincere admiration to Professor John Knox (FRS) for his very scientific 
approach to chromatography and capillary electrophoresis.  

 ∑ From my years in Switzerland, I thank Professor Michael Grätzel for his support 
when I arrived in Lausanne. 
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  As a textbook, this work has been tried and tested on a series of undergraduate 
classes, and I thank all those students and teaching assistants who helped me with 
their comments to smooth out the difficulties. In particular I would like to thank 
Dr. Rosaria Ferrigno for her constructive criticisms; Dr. Pierre-François Brevet, Dr. 
Frédéric Reymond, Dr. David Fermin and Dr. Joël Rossier for their advice; and Dr. 
Olivier Bagel for having carried out the experiments whose results have served to il-
lustrate several of the methods described here.
 A detailed review of the work was carried out by Professors Jean-Paul Diard 
(ENSEEG, France) and Roger Parsons (Southampton, UK), and I thank them for their 
work. For the preparation of the original French version of this text, I thank the PPUR 
for their work in a collaboration that was both cordial and fruitful.  
 Finally, more than thanks must go to Dr. Jördis Tietje-Girault for her infallible 
support over the course of the years ever since our first meeting in the laboratory of 
Professor Graham Hills.
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1Electrochemical Potential

 CHAPTER 1

ELECTROCHEMICAL POTENTIAL

1.1 ELECTROCHEMICAL POTENTIAL OF IONS

 The chemical potential is the main thermodynamic tool used to treat chemical 
equilibria. It allows us to predict whether a reaction can happen spontaneously, or to 
predict the composition of reactants and products at equilibrium. In this book, we shall 
consider electrochemical reactions that involve charged species, such as electrons 
and ions. In order to be able to call on the thermochemical methodology, it is 
convenient to define first of all the notion of electrochemical potential, which will 
be the essential tool used for characterising the reactions at electrodes as well as the 
partition equilibria between phases. To do this, let us recall first of all, what a chemical 
potential is, and in particular the chemical potential of a species in solution.

1.1.1  Chemical potential

Thermodynamic definition

 Let us consider a phase composed of chemical species  j. By adding to this phase 
one mole of a chemical species i whilst keeping the extensive properties of the phase 
constant, i.e. the properties linked to its dimensions (V, S, nj), we increase the internal 
energy U of the phase. In effect, we are adding the kinetic energy Etrans, the rotational 
energy Erot and the vibrational energy Evib if i  is a molecule, the interaction energy 
between the species Eint, perhaps the electronic energy Eel if we have excited electronic 
states and the energy linked to the atomic mass of the atoms Emass if we consider 
radiochemical aspects, such that:

 U E E E E E E= + + + + +trans rot vib el massint  (1.1)

Thus, we define the chemical potential of the species i as being the increase in inter-
nal energy due to the addition of this species

 

µ ∂
∂i

i V S n

U

n
j i

=






≠, ,
 

(1.2)

 In general, the variation in internal energy can be written in the form of a 
differential:

© 2004, First edition, EPFL Press



2 Analytical and Physical Electrochemistry 3Electrochemical Potential

 
d d d dU p V T S ni

i
i= − + + ∑µ

 
(1.3)

Having defined the Gibbs energy G as a function of the internal energy

 G U pV TS= + −  (1.4)

we can see, by taking the differential of each term of this equation and by replacing  
dU  by the equation (1.3), that

 
d d d dG V p S T ni

i
i= − + ∑µ

 
(1.5)

This expression gives a definition of the chemical potential, which is in fact easier to 
use experimentally

 

µ ∂
∂i

i T p n
i

G

n
G

j i

=






=
≠, ,  

(1.6)

 In other words, the chemical potential i is equal to the work which must be 
supplied keeping T & p  constant in order to transfer one mole of the species  i  from a 
vacuum to a phase, except for the volume work. By definition, it represents the partial 
molar Gibbs energy G

_
i. In the case of a pure gas, the chemical potential is in fact the 

molar Gibbs energy

 
µ ∂

∂
= 



 = =G

n
G

G

nT p,
m

 
(1.7)

 Before treating the chemical potential of a species in the gas phase, let’s look, by 
way of an example, at the influence of pressure on the molar Gibbs energy. 

EXAMPLE 

Let us calculate the variation in Gibbs energy associated with the isothermal compression 
from 1 to 2 bars ( T = 298 K ) of (1) water treated as an incompressible liquid and (2) 
vapour treated as an ideal gas.
Considering one mole, we have the molar quantities

∆G V pm m d= ∫
For water as a liquid, the molar volume (Vm = 18 cm3·mol–1) is constant if we use the 
hypothesis that liquid water is incompressible. Thus we have:

∆ ∆G V pm m
3 1 1m mol Pa 1.8 J mol= = ⋅ = ⋅− ⋅ −( ) × ( ) −18 10 106 5

For water as vapour, considered as an ideal gas, the molar volume depends on the 
pressure,

Vm = RT/p

from which we get
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∆G V p RT
p

p
RT

p

pp

p

p

p
m m

–d
d

 kJ mol= = =






= ⋅∫ ∫
1

2

1

2 2

1

11 7ln .

which is a thousand times greater.

Chemical potential in the gas phase

 For an ideal gas (pV = nRT), we express the chemical potential  for a given 
temperature with respect to a standard pressure value defined when the pressure has 
the standard value po of  1 bar (=100kPa). Thus by integration, the chemical potential 
for a given pressure p is linked to the standard chemical potential by: 

 
µ µ( ) ( )T T V p

RT

p
p

p

p

p

p
− = =∫ ∫o d do o

 
(1.8)

that is

 
µ µ( ) ( ) lnT T RT

p

p
= +







o
o  

(1.9)

Remember that an ideal gas is one in which the molecules do not have any 
interaction energy, and consequently a real gas can only be considered in this manner at 
low pressures. The chemical potential tends towards negative infinity when the pressure 
tends to zero because the entropy tends to infinity and because   = Gm = Hm – TSm.
 When the pressure is sufficiently high, the interactions between the gas molecules 
can no longer be ignored. These are attractive at medium pressures and the chemical 
potential of the real gas is therefore below what it would be if the gas behaved as an 
ideal one. On the other hand, at high pressures, the interactions are mostly repulsive, 
and in this case the chemical potential of a real gas is higher than it would be if it 
behaved as an ideal one.
 These deviations of the behaviour of a real gas with respect to an ideal gas 
are taken into account by adding a correcting factor to the expression (1.9) for the 
chemical potential:

Fig. 1.1 Variation of chemical potential with pressure.

Repulsion

Attractions
between the molecules



o

ln(p/po)
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µ µ ϕ µ( ) ( ) ln ln ( ) lnT T RT

p

p
RT T RT

f

p
= +






+ = +







o
o

o
o

 
(1.10)

where  is called the fugacity coefficient (dimensionless) and f = p is the fugacity.
 The term RTln represents the energy of interaction between the molecules. 
Given that gases tend towards behaving ideally at low pressures, we can see that   
 Æ 1  when  p Æ 0 .
 The reasoning developed above for a pure gas can be applied equally to ideal 
mixtures of ideal gases. The chemical potential of the constituent i of an ideal mixture 
of gases is therefore given by

 
µ µ µi i

i
i iT T RT

p

p
T RT

p

p
RT y( ) ( ) ln ( ) ln ln= +







= + +o
o

o
o      

(1.11)

with  pi  being the partial pressure of the constituent i and yi the mole fraction. The 
standard state of a constituent i corresponds to the pure gas i considered as ideal and 
at the standard pressure of 1 bar.

Chemical potential in the liquid phase 

 In a liquid phase, the molecules are too close to one another to allow the hypothesis 
used in the case of ideal gases, i.e. that the intermolecular forces can be neglected. We 
define an ideal solution as a solution in which the molecules of the various constituents 
are so similar that a molecule of one constituent may be replaced by a molecule of 
another without altering the spatial structure of the solution (e.g. the volume) or the 
average interaction energy. In the case of a binary mixture A and B, this means that A 
and B have approximately the same size, and that the energy of the interactions  A-A, 
A-B and B-B are almost equal (for example a benzene-toluene mixture).
 When there is an equilibrium between a liquid phase and its vapour, the chemical 
potential of all the constituents is the same in both phases. If the solution is ideal, its 
constituents obey Raoult’s Law pi = xi pi

* with pi being the partial pressure of the 
constituent i and pi

* the saturation vapour pressure of the pure liquid. By analogy with 
ideal gases, we define a solution as ideal if the chemical potential of its constituents 
can be written as a function of the mole fraction xi  in the liquid

 µ µi i
ideal

iT T RT x( ) ( ) ln,= +o
 (1.12)

The equality of the chemical potentials between the vapour phase and the liquid phase 
leads to 

 
µ µi

ideal
i

iT T RT
p

p
o o

o
,

*

( ) ( ) ln= +




  

(1.13)

In the case of the benzene-toluene mixture, Raoult’s law is obeyed for all values of the 
mole fractions (ideal solution).
 Other types of ideal solutions are the binary mixtures A-B in which the molecules 
are not identical but, where one constituent is present in a much greater quantity 
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than the other. If A is in the majority, it becomes the solvent and B the solute. Such 
a solution is ideal in as much as the replacement of a molecule of A by one of B or 
vice-versa has little effect on the properties of the solution, given the dilution of B in 
A. We call this particular type of ideal solution an ideally dilute solution. 

Mole fraction scale

 At the molecular level, we can say that in an ideally dilute solution, the solute 
molecules do not interact with each other, but only interact with the molecules of the 
solvent that surrounds them. Here again, we have the analogy with the ideal gases. In 
an ideally dilute solution, that is to say that when xA Æ 1, the solvent obeys Raoult’s 
law. The chemical potential of the solvent A is then written as

µ µA A A( ) ( ) ln,T T RT xideal= +o  (1.14)

 The deviation from the ideal behaviour (for example when the concentration of B 
is no longer negligible in relation to that of A) can be taken into account by adding a 
correction term to the expression for the chemical potential

µ µ γA A A A( ) ( ) ln ln,T T RT x RTideal= + +o
 (1.15)

Since solutions become ideal when  xA Æ 1, we can see that at this limit  A Æ 1.
 As far as the solute is concerned, it obeys Henry’s law  pB = xB KB , where  pB  is 
the partial pressure of the solute B, xB the mole fraction of B in the liquid and KB the 
Henry constant which has the dimension of a pressure.

Fig. 1.2 Diagram of the partial pressure for a binary system. For small mole fractions (solute), 
the partial pressure is proportional to the mole fraction (Henry’s law). For mole fractions 
approaching unity (solvent), the partial pressure is proportional to the mole fraction (Raoult’s 
law).

Ideally dilute solution

Ideal solution

Mole fraction

Pa
rt

ia
l p

re
ss

ur
e

0 1

K

p*
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Fig. 1.3  Variation of the chemical potential and the definition of the standard chemical potential 
at 25°C on the scale of mole fractions for an ideally dilute solution.

The chemical potential of the solute is then written as 

 µ µB B B( ) ( ) ln,T T RT xideal dil= +o  (1.16)

with B
o

 
,ideal dil  being the standard chemical potential on the mole fraction scale for 

ideally dilute solutions. It is important to note that the standard state is an imaginary 
state which we would have at the limit  xB Æ 1, that is to say an extrapolation of the 
chemical potential of the solute from the infinitely dilute case to its pure state. In other 
words, the standard state is a pure solution of B that would behave like an ideally 
dilute solution, i.e. a pure solution in which the molecules do not interact. The equality 
of the chemical potentials of B between the vapour phase and the liquid phase gives

µ µB B
Bo o
o

, ( ) ( ) lnideal dil T T RT
K

p
= +






  
(1.17)

The deviations from the ideal behaviour can also be taken into account by adding a 
correction term to the chemical potential.

µ µ γB B B B( ) ( ) ln ln,T T RT x RTideal dil= + +o  (1.18)

The term RT ln B then represents the work of interaction of the solute molecules 
among themselves. If the solute is a salt, the predominant energy of interaction will 
be the electrostatic one. We will show later on in this book that it is possible to model 
this interaction energy using statistical mechanics (see §3.4.2, the Debye-Hückel 
theory).

Ideally dilute solution

Ideal solution

mole fraction of B (xB)
10–2 10010–1

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

4

2

0

–2

–4

–6

–8

–10

–12

B
o

 
,ideal dil


/k

J·
m

ol
–1
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Given that solutions become ideally dilute when xB Æ 0, we can see then that  
B Æ1. The product B xB is called the activity aB of B and B the activity coefficient. 
The activity aB is a sort of effective mole fraction.

Molality scale

 For dilute solutions, we often use scales of molality (number of moles per kg of 
solvent) or of molarity (number of moles per litre of solution). In the case of molalities 
(scale of composition independent of the temperature) defined by

m
n

n MB
B

A A
=

 
(1.19)

where  MA  is the molar mass of the solvent (kg·mol–1), we have

x
n

n n

n M m

n n
x M mB

B

A B

A A B

A B
A A B=

+
=

+
=

 
(1.20)

which, substituted into the expression for chemical potential (1.18), leads to

 
µ µ γ

B B A
B A B( ) ( ) ln ln,T T RT m M RT

x m

m
ideal dil= + ( )[ ] + 





o o
o

 
(1.21)

where  mo is the standard molality whose value is 1 mol·kg–1.
 In fact, we can re-write this equation in the form

µ µ γB B B
B( ) ( ) ln,T T RT

m

m
m m= + 





o
o  

(1.22)

where B
o ,m is the standard chemical potential in the molality scale and B

m is the 
activity coefficient also in the molality scale.

Molarity scale

 To express the mole fraction of a constituent as a function of the molar concen-
tration defined by 

c
n

VB
B=  (1.23)

where V is the volume of the phase, we can first write

 
m

n

n M

n

n M n M n M

c

d c MB
B

A A

B

A A B B B B

B

B B
= =

+ −
=

−( )  
(1.24)

where d is the density of the solution in kg·1–1. Combining equations (1.18), (1.20) 
and (1.24), we obtain

µ µ γB B B
B( ) ( ) ln,T T RT

c

c
c c= + 





o
o  

(1.25)
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8 Analytical and Physical Electrochemistry 9Electrochemical Potential

where  co is the standard molarity of 1 mol·1–1. The standard chemical potential in the 
molarity scale is defined as a function of the molar volume VmA of solvent by 

µ µB B mA
o o o, ,( ) ( ) lnc ideal dilT T RT V c= + ( )  (1.26)

and the activity coefficient by 

 
γ γ γB

A B

B B
B

B

B

c mx d

d c M

d m

c
=

−
=0 0

 
(1.27)

where d0 is the density of the pure solvent (= MA / VmA ).
In the case of dilute solutions, the activity coefficients in the molality and molarity 

scales are equal. 

IMPORTANT NOTE 

In the rest of this book, we shall mainly treat chemical potentials in the molarity scale, 
and we shall write equation (1.25) ignoring the ‘mute’ term co  and will then have it in the 
following simplified form

µ µ γ µB B B B B B( ) ( ) ln ( ) lnT T RT c T RT a= + ( ) = +o o
 (1.28)

it being understood that the logarithmic term is dimensionless and that the standard chemi-
cal potential and the activity coefficient are relative to the molarity scale.

Application of chemical potentials

 Chemical potentials are important tools for studying the behaviour of chemical 
reactions. Let us consider the following reaction 

 aA + bB + cC + ...  o  xX + yY + zZ

The Gibbs energy of this reaction is defined as the work to add the products minus the 
work to add the reactants. So the Gibbs energy of a reaction can be written as a linear 
combination of the chemical potentials : 
 

 

∆G i i i ireaction
products reactants

= −∑ ∑ν µ ν µ
 

(1.29)

where vi represent the stœchiometric coefficients. This definition shows that at 
equilibrium, the Gibbs energy of a reaction is zero because the work to add the products 
cancels out the work to remove the reactants. Concerning chemical equilibria, it is 
perhaps a good idea to remember at this point the difference between the thermodynamic 
reversibility and the chemical reversibility of a reaction. The former corresponds to an 
infinitely slow transformation with a quasi-equilibrium existing at each infinitesimal 
stage of the reaction. The latter relates to the feasibility of the reverse reaction.
 In the case of charged species, the chemical potential also represents the work 
necessary to bring this species from vacuum into a phase, but this displacement implies 
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8 Analytical and Physical Electrochemistry 9Electrochemical Potential

an electrostatic work if  the phase is at a potential different from that of vacuum. In order 
to be able to quantify this work, we need to recall some basic electrostatics.

1.1.2  External potential 

Basic electrostatics

 Considering two charges q1 and q2, in a vacuum, the force exerted by q1 on q2,  
is given by Coulomb’s law, written as 

  
(1.30)

where r̂ represents the unit vector. The proportionality constant 1/40 is due to the SI 
units system, and has units of V◊m◊C–1 or m◊F–1 (40 = 1.111265 ◊10–10/F◊m–1). 0 is 
called the permittivity of vacuum.
 By definition, the electric field is expressed as the gradient of electrical potential 
(see the Annex A on vectorial analysis)

E = − gradV  (1.31)

Using spherical coordinates centred on the charge q1, a simple integration of 
equation (1.31) using equation (1.30) shows that the potential at the distance r from 
this charge is 

V r
q

r
( ) = 1

04πε  (1.32)

if the potential is taken equal to zero when r Æ • . For a discontinuous distribution of 
point charges, the electric fields are additive, and consequently, the total potential is 
the sum of the potentials generated by each charge qi.

V
q

r
i

ii
total = ∑1

4 0πε  
(1.33)

The Gauss theorem

 To calculate the potential due to a charged object, a relatively simple method is 
to apply Gauss’s theorem that shows that the flux of an electric field coming out of 
a closed surface is equal to the charge contained inside the surface divided by the 
permittivity of the medium.
 In the case of a spherical conducting object of radius R and total charge Q, the flux 
leaving a concentric sphere of radius r is 

 
(1.34)

where  r̂  represents the unit radial vector. By integration between infinity (V∞ = 0) and 
r, we deduce the potential at the distance  r from the centre of the object
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 V
Q

r
=

4 0πε
for  r > R  (1.35)

   
The potential at the surface of the object is then VS as shown in Figure 1.4. The 
potential and the charge of a conductor are proportional

Q    =   CV (1.36)

The constant of proportionality C is called the capacitance of the object.
 Another way of writing Gauss’s theorem is to apply the Green-Ostrogradski 
theorem in order to find what is often called Maxwell’s first equation, which links 
the divergence of the electric field leaving a surface to the volumic charge density  
contained in the volume defined by this surface 

div E E= ∇ ⋅( ) = ρ
ε0  

(1.37)

Coulomb’s theorem

 In this book, we shall consider conductors and metallic electrodes. To evaluate an 
electric field near a conductor, it is useful to use Coulomb’s theorem to show that near 
to a conductor at equilibrium, close to a point where the surface charge density is , 
the electric field is normal to the surface and is expressed by 

 (1.38)

where n̂ represents the unit normal vector to the surface. This equation is demonstrated 
by taking a Gauss surface that surrounds a surface element of area dS as shown in 
Figure 1.5, knowing that there is no electric field inside a conductor at equilibrium. 
In fact, if there was a field inside this conductor, currents would be circulating in it. 
Applying Gauss’s theorem to the inside of the conductor shows that it is electrically 
neutral at equilibrium. 

Fig. 1.4  Electrical potential around a spherical object of radius R having a charge Q. The Gauss 
surface is here defined as the outer concentric sphere of radius r.

V = Q/40r

VS = Q/40R

r

R
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 Note that the electric field near to a uniformly charged plane where the charge is 
spread over the two faces can be written as

 
(1.39)

due to the symmetry of the two sides of the plane.

EXAMPLE 

Let us calculate the capacity of a planar capacitor consisting of two conducting plates with 
a surface area  S  whose surface charge densities on the internal faces are respectively  
and – , and separated by a distance d.

The projection of the electric field on the z axis is given by Coulomb’s theorem. The field 
is constant between the two plates and is written as

E
V

d
= =σ

ε0

where V is the potential difference at the terminals of the capacitor. The charge of the 
capacitor is written thus

Q S
S

d
V CV= = =σ ε0

Outer potential and the Volta potential difference

 By definition, a potential difference (p.d.) is the difference in potential between 
two points. However, by an abuse of language, there is a tendency to use the term 
potential to designate a potential difference.

Fig. 1.5  Gauss’s surface surrounding a surface element of a charged conductor whose surface 
charge density is . By symmetry, the field is normal to the surface.
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12 Analytical and Physical Electrochemistry 13Electrochemical Potential

 The p.d. between the exterior of the surface of a charged object and a vacuum 
is called the outer potential and is designated by the Greek letter  in the Lange 
convention. The outer potential is a measurable quantity. If the object is positively 
charged, the outer potential is positive, whilst if the object is negatively charged, then 
so is the outer potential. In the example of Figure 1.4, the outer potential corresponds 
to the potential just at the surface of the sphere, being VS.
 The difference of two outer potentials between two charged objects A and B is 
called the Volta potential difference.

1.1.3  Surface potential

 For every condensed phase, the structure of the surface is different from the 
internal structure. In particular, the coordination number of the surface molecules is 
lower and this translates into the fact that these molecules have a higher potential 
energy than those found within the phase. To compensate for this difference in potential 
energy between the surface and the bulk, the surface region organises itself in such a 
way as to minimise this difference of potential energy.
 In order to treat the electrostatic consequences of this surface reorganisation, it 
is useful first of all to review briefly the polarisation of matter and introduce the notion 
of relative permittivity.

Polarisation of matter

 Given that an atom possesses a positive charge at the nucleus, surrounded by 
a cloud of electrons, the application of an electric field causes a shift  between the 
centre of the positive charges q and negative charges –q. The resultant dipole moment 
is written as

 p   =  q (1.40)

If there are N atoms per unit volume, the dipole moment per unit volume will therefore be 
Nq. By definition, we will call this volumic dipole moment the polarisation vector P

P p= N
 

(1.41)

As a first approximation, we will make the hypothesis that the polarisation vector is 
proportional to the electric field that induces it

P E= χ ε0  (1.42)

where  is called the electric susceptibility and expresses the ease with which the 
electrons can move, that of course depends on the atoms contained in the dielectric 
material.
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Relative permittivity

 Take a flat capacitor made of two conducting plates separated by a vacuum. Its 
capacity that links the charge to the potential of the capacitor is given by 

C
S

d
= ε0

 
(1.43)

If the space between the plates is now filled with a dielectric material, we observe that 
the capacity is greater, which means that the potential is smaller for the same charge, 
or again that the electric field between the plates is weaker. If we consider the atoms 
of the dielectric near to the plates, we can define a surface density of the polarisation 
charge pol.
 To obtain this quantity, we can calculate the resultant dipole moment per unit 
surface area, which is on one hand the product of the surface density of polarisation 
charge and the thickness of the capacitor, and on the other hand is equal to the product 
of the volumic dipole moment and the volume per unit area

σ pold
PSd

S
Pd= =  (1.44)

where Sd is the volume between the plates of the flat capacitor. Thus, we can see that 
the surface density of polarisation charge is equal to the magnitude of the volumic 
dipole moment vector. pol is of the opposite sign to the free charge  accumulated on 
the internal faces of the conducting plates of the flat capacitor.
 The polarisation charge is induced by the free charge. If we discharge the capacitor, 
the free charge will disappear by conduction in the contact wires, while the polarisation 
charge will disappear by relaxation. Applying Gauss’s theorem to the surface indicated 
by the dotted part of Figure 1.6, the electric field in the dielectric is then given by

E =
−σ σ
ε

free pol

0  
(1.45)

or again

E
P= − =

+
σ

ε
σ
ε χ

free free

0 0

1
1  

(1.46)

Fig. 1.6  Polarisation charges inside a flat capacitor made of two metal plates and filled by a 
dielectric.
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Given that the electric charge is uniform in the dielectric, the potential between the 
terminals of the capacitor is simply

V Ed
d= =

+
σ
ε χ

free

0 1( )  
(1.47)

and the capacitance

C
S

d

S

d
= + =ε χ ε ε0 01( ) r

 
(1.48)

where r is a proportionality factor which links the capacity of a capacitor filled with 
a dielectric material to that of the same capacitor in a vacuum. r is called the relative 
permittivity or dielectric constant and is defined as a dimensionless number. The 
terminology dielectric constant is not very appropriate as r is not constant, as it 
depends on the frequency of the potential applied on the terminals of the capacitor 
and on the temperature.
 In the case of liquids, the relative permittivity varies from about 2 for non-polar 
solvents such as alkanes, to more than 100 for formamide (HCONH2). Water has a 
static or low frequency relative permittivity of about 78.4 at 20°C. This high value is 
due to the coercive effects of the dipolar molecules.
 We also define the permittivity of a medium  as

ε ε ε= 0 r  (1.49)

If we apply a sinusoidal field to the terminals of the capacitor, the relative permittivity 
remains equal to the static value as the frequency increases as shown in Figure 1.7. 

Fig. 1.7  Variation of the relative permittivity of water as a function of the frequency of the 
applied electric field.
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This means that even at radio frequencies, the water molecules can reorient themselves 
at the frequency of the field imposed. At a frequency of about  = 108 Hz , the relative 
permittivity decreases because the molecules have too much inertia to be able to follow 
these repetitive ‘flip-flops’. The dipoles oscillate in a movement that is called libration.

At higher frequencies, the dipolar molecules are ‘frozen’, and only the atoms of 
each molecule try to follow the electric field. In this band of infrared frequency where 
the vibrational movements dominate, the relative permitivity has a value of about 
5.9. At even higher frequencies in the UV-VIS part of the spectrum  ( > 1014 Hz), 
the nuclei of the atoms ‘give up’ and in their turn remain ‘frozen’. Only the electrons 
continue to oscillate with the field. The relative permittivity, sometimes called the 
optical relative permittvity has then a value of 1.8.

Electric displacement vector

 Applying Maxwell’s first equation, we can see that it is possible to distinguish the 
charges inside a Gauss surface, between the free charge and a charge due to a non-
uniform polarisation

div
divfree pol freeE

P=
+

= −
ρ ρ

ε
ρ
ε ε0 0 0  

(1.50)

In the case of linear systems where the polarisation vector is proportional to the 
electric field, we can write 

div freeE
P+







=
ε

ρ
ε0 0  

(1.51)

or again, defining an electric displacement vector D ,

D E P E= + =ε ε0  (1.52)

we thus have 

div freeD = ρ  (1.53)

 The definition of the electric displacement vector is useful to express what 
happens at the contact surface between two dielectric materials. In effect, the 
application of Gauss’s theorem allows us to show easily that the normal component at 
the surface of the vector D presents a discontinuity at the surface of separation of the 
two media if it carries a free surface charge density  

 (1.54)

It is also possible to show that the tangential component of the electrical field is 
continuous at the separation surface of the two media.
 Thus, at a metal |  dielectric junction, the electric field is zero in the metal and 
consequently, the tangential components are also zero on both sides of the surface. The 
electric field in the dielectric is therefore normal at the surface. This is important when 
we consider the distribution of the electrical potential at the surface of an electrode in 
solution.
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Surface of polar liquids

In polar solvents, the intermolecular forces are, on average isotropic because of 
thermal agitation, and no particular orientation of the dipoles takes place.
 When a new surface is created, the molecules inside the solution with a strong 
negative potential energy have to be transferred towards the interface where their 
potential energy is higher (fewer intermolecular interactions).
 In order to minimise this increase in potential energy, the dipole molecules at the 
surface have a tendency to align themselves. In effect, the dipole-dipole interaction 
energies are more negative when they are aligned in the same direction. The difference 
in potential across this layer of oriented dipoles is called the surface potential. This is 
designated by the Greek letter  (Note that this is the same symbol used for electric 
susceptibility), which gives it the name ‘chi potential’ (Lange’s convention) used 
sometimes.
 This surface potential is considered as positive if the potential increases from the 
exterior towards the interior of the phase (dipoles oriented towards the interior). This 
quantity is not measurable, but can be estimated by various approximations.

The potential drop across a layer of aligned dipoles is equivalent to that of a 
capacitor 

χ = Q C/  (1.55)

where  C  is the capacitance for a flat capacitor given by

C
S

d
= ε ε0 r

 
(1.56)

where  0 is the permittivity of the vacuum, r the relative permittivity of the layer of 
dipoles, S the surface area and d the separation distance between the charged plates, 
which is the length of the dipoles.
 In the case of n perfectly aligned dipoles the surface potential is then

χ
ε ε ε ε

= =n

S

qd N p

0 0r

s

r  
(1.57)

where Ns is the density of dipoles per unit surface area and p the dipole moment.
 In the case of solvents that have a large number of hydrogen bonds, the surface 
molecules also try to minimise their excess potential energy by optimising the number 

Fig. 1.8  Surface potential of water represented by aligned dipoles.
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of hydrogen bonds. In the case of water, non-linear surface spectroscopy studies have 
shown that molecules at the air | water interface have a highly ordered structure. 

EXAMPLE

Let us calculate the surface potential  of water, knowing that the dipole moment of a 
molecule of water in a vacuum is 1.85 Debye. Compare this value to the one deduced 
experimentally at about 0.13 V.
We have seen that water has a relative permittivity of about 78.4 at 20°C, and that this 
high value is due to the coercive effect of the dipolar molecules. At a frequency of about 
v = 108 Hz, this value falls to 5.9 because the molecules can no longer follow the change 
of polarity of the capacitor, and keep the same orientation. For this example, we shall 
consider that the relative permittivity of a monolayer of oriented water is 5.9.
The number of water molecules per m2 is the number of water molecules per m3 to the 
power 2/3

N
N

VS
A

mH O

–2

2

m=




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





= ⋅
⋅









 = ⋅−
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6

2 3
196 02 10

18 10
1 03 10

/ /
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.

where NA is the Avogadro constant (Often by an abuse of language, NA is called 
Avogadro’s number, which is erroneous, because by definition, and contrary to a constant, 
a number has no units.) The molecular area per molecule is therefore 10–19 m2, which is 
reasonable, given that the average diameter of a molecule of water is about 300 pm.
The dipole moment of water in a vacuum is

p = ⋅ ⋅ ⋅ ⋅1 85 21.  Debye  =  1.85 10  /  (3 10 ) =  6.17 10  C m– 8 –30

We can note in passing that the dipole moment of water in the liquid phase is greater, 
approximately equal to 2.6 Debye, because of interactions between the molecules. For the 
surface molecules, this value diminishes towards the value in the gas phase.
Using the hypothesis that we can use the value in the gas phase as a first approximation at the 
interface, we can calculate the surface potential of a perfectly oriented monolayer of water

χ
ε ε

= = ⋅ ⋅ ⋅
⋅ ⋅

=N pS

r

19 –30

–12
(1.03 10 ) (6.17 10 )    

(8.8542 10 ) 5.9
  V

0
1 22.

It is about ten times the measured value, which illustrates that the electrostatic 
considerations are not the only ones to take into account; the thermal agitation, and the 
optimisation of the number of hydrogen bonds also plays a very important role at the 
surface of water.

Adsorbed ionised surfactants

 In the case of electrolyte solutions, the difference of the penetration of cations 
and anions into the surface layer may result in the formation of ‘ionic dipoles’, which 
generate a surface potential. This difference of position with respect to the interface 
is large when one of the ions is an amphiphile (half-lipophilic, half-hydrophilic) as 
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with cationic or anionic surfactants. In this case, the amphiphilic ion is adsorbed in 
a monolayer at the surface. This adsorption then generates a large surface potential.

Metal surfaces

 The free or conduction electrons inside a metal are submitted to a force field 
coming from ions fixed within a symmetrical network. When a new surface is 
created, the electrons and the ions at the surface are subject to asymmetric forces. 
The electrons are attracted to the vacuum, since an expansion of the electron cloud 
towards the exterior induces a fall in their kinetic energy, but they are then subject to 
a coulombic force pulling them back. In effect, it is possible to model a metal using 
a uniform distribution of localised positive charges and mobile electrons (the Jellium 
model). This electronic spill-over translates into the formation of a dipolar surface 
region as shown in Figure 1.10. The resulting surface potential is positive.

 In conclusion, whatever the nature of the phase under consideration, we can say 
that the surface potential in electrified phases results, in general, from the anisotropy 
of the forces exerted on the species situated at the surface.

Fig. 1.9 Specific adsorption of cationic surfactants at the air |electrolyte solution interface 
leading to the formation of a negative surface potential.

Fig. 1.10  Electron spill-over at the surface of a metal according to the Jellium model.
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1.1.4  Inner potential or the Galvani potential

 The surface potential and the outer potential have been defined from physical 
models. And so the work to bring one mole of ions from a vacuum towards a charged 
phase comprises two terms:

 • an electrostatic term associated with the crossing of the layer of interfacial   
 orientated dipoles zi F;

 • an electrostatic term associated with the charge on the phase  zi F.

Effectively, the charge of one mole of ions is zi F , F being the Faraday constant 
which is defined by F = NAe = 96 485 C·mol–1, NA being Avogadro’s constant and 
e the elementary charge, e = 1.60218·10–19 C.
 Thus, we can define the inner potential of a phase as the sum of the surface 
and outer potentials.

φ χ ψ= +  (1.58)

It is worth emphasizing that these potentials are really potential differences. The inner 
potential of a phase is in fact the potential difference between the bulk of the phase 
and the vacuum.
 For any conducting condensed phase, it is possible to define an inner potential 
that is constant across the whole of the interior of the phase. Excess charges can only 
exist at the surface of a phase. 

1.1.5  The Galvani potential difference

 If the Galvani potential is constant inside each phase, this supposes that all 
the differences in Galvani potential between two phases in contact happen in the 
interfacial region. This distribution causes accumulations of charges (positive or 
negative) generating a potential difference D

ag(charge) and some eventual dipolar 

Fig. 1.11  Radial distribution of potential for a metal sphere of radius R carrying a positive 
charge Q, illustrating the contributions of the outer potential and the surface potential. The inner 
potential is constant inside the sphere.

R r

Po
te

nt
ia

l

Sphere

f

 = Q/40R

c

© 2004, First edition, EPFL Press



20 Analytical and Physical Electrochemistry 21Electrochemical Potential

contributions generating a potential difference D
ag(dip).The latter p.d. should not to 

be confused with the surface potentials which are only defined for interfaces between 
a phase and an inert gas whose pressure may be very low (e.g. metal | vacuum)

∆ ∆ ∆α
β β α

α
β

α
βφ φ φ= − = +g g( ) ( )dip charge  (1.59)

This question of potential distribution between two phases in contact will be taken up 
in more detail in chapter 5.

1.1.6  Electrochemical potential 

 We shall now link these electrical potentials to a thermodynamic quantity. For 
this, let us consider the transfer of one mole of ions i from a vacuum into a phase. We 
will call the work required to effect this transfer the electrochemical potential which 
we shall designate by ~ i. In fact, strictly speaking, this definition of electrochemical 
potential is none other than the one for the chemical potential given by equation (1.6), 
the prefix electro- reminding us only that we are dealing with charged species and that 
the inner potential of the phase intervenes with the increase in internal energy when 
ions are added to a phase.
 In order to understand better the notion of electrochemical potential, it is more 
useful to come back to the initial definition of the work required to bring ions from a 
vacuum into a phase. This work comprises 3 separate terms:

 • a chemical term which includes all the short-distance interactions between the
  ion and its environment (ion-dipole interactions, ion-dipole induced reactions,
 dispersion forces etc.);

 • an electrostatic term linked to the crossing of the layer of oriented interfacial
 dipoles, zi F;

 • an electrostatic term linked to the charge of the phase, zi F.

And so, in the case of a mole of ions, the electrochemical potential is written as

˜ lnµ µ χ ψ µ φ µ φi i i i i i i i iz F z F z F RT a z F= + + = + = + +o  (1.60)

Fig. 1.12  Surface potential, the Volta potential and the Galvani potential differences for two 
phases in contact.

a 

 – a

a

f – fa

,,

© 2004, First edition, EPFL Press



20 Analytical and Physical Electrochemistry 21Electrochemical Potential

 Given that strictly speaking the electrochemical potential of the ion is in fact a 
chemical potential, we ought to call i the chemical term or the chemical contribution 
of the electrochemical potential. Even though often done by abuse of language, it 
is incorrect to call i  the chemical potential of the ion. However, given the absence 
of official vocabulary to designate the chemical term, we shall in this book commit 
the abuse of language, and call i  the chemical potential of the ion. The chemical 
potential can be decomposed as before, into a standard term and an activity term. 
Again, by abuse of language, o

i represents the standard chemical potential of the 
ion.
 If we use equation (1.3) relative to the variation of internal energy, we can write it

d d d d d

    d d d d d d

U p V T S n q

p V T S z F n p V T S n

i
i

i
i

i

i i
i

i i
i

i

= − + + +

= − + + +( ) = − + +

∑ ∑

∑ ∑

µ φ

µ φ µ̃
 

(1.61)

where dqi represents the variations in charge associated with the addition of the 
species i. The term f  dqi represents the electrical work with respect to the addition 
of charges to a phase having an inner potential f. Implicitly, we are making the 
hypothesis that the phase is large enough so that adding charges does not modify the 
inner potential significantly. 
 Thus, the general definition of electrochemical potential could be given by

˜
, ,

µ ∂
∂i

i p T n

G

n
j i

=






≠   
(1.62)

 The electrochemical potential is a measure of the work needed to move one 
mole of ions from a vacuum into a phase, at constant pressure and temperature. 
Nevertheless, absolutely speaking, it is impossible to add ions to a phase without 
changing its charge and therefore its outer potential. Consequently, the notion of 
electrochemical potential defined by equation (1.62) is a virtual one.
 In effect, the goal of thermodynamics is to establish a relation between measurable 
experimental quantities. We have just seen that this is not the case for the electrochemical 
potential, which is a value that cannot be determined experimentally. The notion of the 
electrochemical potential of a charged species is therefore an abstract notion which is 
a very useful mathematical tool for treating electrochemical phenomena, but which 
cannot, strictly speaking, be considered as a thermodynamic value.
 To conclude, we define the electrochemical potential of an ion as a virtual 
quantity defined by equations (1.60) & (1.62). Note the abuse of language in calling 
the chemical contribution of equation (1.60) the chemical potential. Like the chemical 
potential of neutral species, the electrochemical potential of charged species has the 
essential property of being a quantity that is independent of the phases when these are 
in contact equilibrium.
 It is also possible to define the standard electrochemical potential, i.e. the electro-
chemical potential of a charged species in a standard state, for example on the molarity 
scale for different values of inner potential.

̃
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µ̃ µ φi i iz Fo o= +  (1.63)

The standard electrochemical potential to a certain extent represents the part of the 
electrochemical potential that is independent of the concentration. This definition will 
be useful in chapter 7. 

1.1.7  Chemical potential of a salt

 In the case of a salt  C z
v
+
+ Az

v
–
– in solution, the chemical potential of the salt is a 

measurable quantity corresponding to the solvation energy of that salt. If the dissolved 
salt is totally dissociated, this chemical potential of the salt can be expressed as a 
linear combination of the electrochemical potentials of its constituent ions

µ µ ν µ ν µ
ν ν

salt
C A C A

= = +
+
+ +

+
z z z z

–
– –˜ ˜_

 
(1.64)

By developing, we get

µ ν µ ν µ ν ν
salt

C A C A
= + +











+
+ +

+

z z z z
RT a ao o_

– –

_
ln  

(1.65)

the terms linked to the inner potential of the phase can be eliminated because of the 
electroneutrality of the solution [v+z+ + v–z– = 0].
 For the activity coefficients on the molarity scale, we can define the activity 
coefficient of the dissociated salt as

γ γ γν ν
salt

C A
= +

+

z z –

_

 (1.66)

We then define the mean ionic coefficient as the arithmetic mean of the ionic activity 
coefficients 

γ γ ν
± = salt

1/  (1.67)

with v = v+ + v–. The term relating to the concentration is often a source of errors. By 
defining the stœchiometric concentration csalt as the number of moles of salt dissolved 
per litre of solvent,

c n Vsalt salt solvent= /  (1.68)

the term concerning the product of the ionic concentrations in equation (1.65) can be 
expressed in the form

c c c c c
z zC A

salt salt  salt+
+ + −

= ( ) ( ) = ( )+ −
±

ν ν ν ν νν ν ν–

_

 (1.69)

with  ν ν νν ν ν
±

+ −= ( ) ( )
+ −

.

 In summary, we can express the chemical potential of a dissociated salt in the 
molarity scale in terms of the standard chemical potentials of the respective ions, and 
the mean activity coefficient

µ ν µ ν µ ν γ νsalt
C A

salt= +








 + ( )+

± ±+z z
RT co o_

– ln  
(1.70)

̃

̃ ̃
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EXAMPLE 

The chemical potential on the scale of concentrations of MgCl2 is defined by

µ µ µMgCl Mg Cl2
= ++ −˜ ˜2 2  

and consequently

µ µ µMgCl Mg Cl2

o o o= ++ −˜ ˜2 2  

The activity coefficient of the salt is therefore

γ γ γ γMgCl Mg Cl2
= =+ − ±2

2 3
 

The average stœchiometric coefficient is then

ν± = ⋅ =3 21 2 4

Thus, the chemical potential of the salt is written as

µ µ µ γMgCl Mg Cl MgCl MgCl2 2 2
= +




+ ( )+ −˜ ˜ ln2 2 4 3o o RT c

1.1.8  Real chemical potential

 Given that  can be measured, it has been proposed to define the real chemical 
potential of the ion i in the phase as the electrochemical potential in the non-charged 
phase, that is to say

α µ χi i iz F= +  (1.71)

Thus, the electrochemical potential can be defined as the sum of the real chemical 
potential and an electrostatic term related to the charge of the phase.

1.2   ELECTROCHEMICAL POTENTIAL
  OF ELECTRONS 

1.2.1  Band structure 

 A solid crystal can be considered as a giant molecule and an approximation of 
the electronic wave function can be obtained by using the theory of molecular orbitals 
(MO). As with a classical molecule, the MOs are obtained using the linear combina-
tion of atomic orbitals (AO). Take for example the case of sodium, whose electronic 
structure is 1s2, 2s2, 2p6, 3s1  and suppose that the crystal contains  N  atoms. When 
two atoms of sodium are close to one another to form the dimer  Na2, the two AOs, 1s  
combine to form two MOs 1s and  *1s. For Na2, the overlap of the atomic orbitals 
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close to the nucleus is very weak, and consequently the energy level of the MOs is 
almost identical to that of the AO 1s  of the isolated atoms. For the  N  atoms of the 
crystal, the N AOs 1s form N MOs whose energies are more or less identical to those 
of the AO 1s  of the sodium atom. In the same way, the electrons of levels 2s and 2p 
interact and form N MOs whose energies are more or less identical to those of the AOs 
2s  and 2p. On the other hand, the electrons 3s, interact and form delocalised MOs. 
The energy difference between the upper and lower MOs is roughly the same as that 
separating the MOs  3s and *3s (a few eV) in Na2. If the number of atoms in the 
crystal N is large, the energy levels of the MOs will be so close that they will form a 
continuous band of energy levels.
 To summarize, we can say that an atomic energy level gives rise to a large band 
of energy levels if there is overlap of the orbitals. In the case of copper, whose isolated 
atom has the structure 1s2, 2s2, 2 p6, 3s2, 3p6, 3d10 and 4 s1, only the levels  3d  and  4s  
give rise to band a structure. The band structure in solids is seen in the X-ray emission 
spectra as rather diffuse lines, whilst the lines caused by transitions of inner orbitals 
are very sharp.

For an electron to be mobile in a solid, there have to be vacant levels inside a 
band. The highest filled band is called the valence band and the lowest empty band is 
called the conduction band.
Three cases are then possible according to the relative positions of the bands:

•  The conduction and valence bands overlap. The number of mobile charge carriers 
is then large and the solid has a conductivity known as metallic, e.g. Na, Cu, ...

•  The conduction band is empty at absolute zero. The conduction and valence 
bands are separated by a band gap greater than 5 eV. The solid is known as an 
insulator, because a simple thermal excitation  (≈ kT = 0.025 eV at 300 K) is not 
sufficient to move an electron from the valence band to the conduction band.

•  If the band gap is of the order of a few eV, thermal excitation is then possible. The 

Fig. 1.13  Distribution of the electronic energy levels for sodium.
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with N atoms

N sodium atoms
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conduction will be weak, but not negligible, and will increase with temperature. 
The solid is then called a semiconductor.

 Note that the electrical conductivity of a metal decreases with an increase in 
temperature, whereas that of a semiconductor increases.

1.2.2  The Fermi-Dirac distribution

 Because of Pauli’s exclusion principle, the distribution of electrons between 
the different energy levels does not obey Boltzmann’s statistical law but the Fermi-
Dirac law. The probability  P(E)  that an energy level between E and  E + dE  will be 
occupied is given by

P E f E E
E

E kT
e

( ) ( )
exp ( ˜ ) /

/

= =
+ −[ ]−

d
d

pze
M1 µ  

(1.72)

as shown in Figure 1.14.  ~M
e– ⁄ pze is the chemical potential of the electron expressed 

on the scale where the lowest electronic state (point of zero energy) is taken as the 
origin (see Figure 1.15).
 At absolute zero (T = 0 K), all the electronic states are filled in sequential order, 
and the energy which corresponds to the Highest Occupied Molecular Orbital 
(HOMO) at 0 K is called the Fermi energy Ef . Thus, the probability P(E) of the filling 
of an electronic state has a value of 1 if E < Ef  and 0 if E > Ef . At this temperature, the 
chemical potential is then equal to the Fermi energy ( ~M

e– ⁄ pze). Given that, for a metal, 
the electrochemical potential of the electron is hardly affected by the temperature, 
it is often called by an abuse of language the Fermi level, at all temperatures 
( ~M

e– ⁄ pze (T ) @ Ef ).
 At higher temperatures, the probability curve shows an inflexion point for 
E =  ~M

e– ⁄ pze (T ), but, taking into account the low value of kT relative to  ~M
e– ⁄ pze (T ) at 

the ambient temperature, the Fermi-Dirac function reaches levels very different from  

̃

Fig. 1.14  The Fermi-Dirac distribution function.
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0  and  1  only in a very restricted energy region around the Fermi level.
 The Fermi level is thus defined as the energy level having an occupation 
probability of 1/2.
 The Fermi-Dirac equation gives the probability that a given energy state will 
be occupied by an electron. To know the number of electrons per unit volume n(E) 
possessing an energy E, this probability is multiplied by the density of states 
– occupied or not – having that energy.

1.2.3  Work function

 The work needed to add one mole of electrons to a metal is by definition the 
electrochemical potential of the electron

 ˜ ( )µ µ φ µ χ ψ α ψ
e e e e

F F F F− − − −= − = − − = −M M M M M M M M
 (1.73)

where the electrochemical potential, the surface potential, the outer and inner 
potentials are defined with respect to a vacuum. Note that the chemical potential of 
the electron does not involve the definition of a standard state and we do not need to 
define an activity. Effectively, the number of electrons in a metal is linked to its nature, 
and the chemical term depends only on the nature of the metal.
 In solid state physics, the work necessary to extract an electron from an un-
charged metal can, for example, be measured by photoelectric emission. This work 
of extraction of an electron called the work function is designated by the Greek 
capital letter  (not to be confused with the inner potential f). By definition, we can 
see that the work function is the opposite of the real chemical potential defined by 
eqn.(1.71).

Fig. 1.15  Energy diagram for a non-charged metal.
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Φ
e e− −= −M Mα  (1.74)

The work function is defined as the energy necessary to extract an electron 
from the Fermi level of an uncharged metal. As a first approximation, we can say 
that the Fermi level is invariable with temperature. It is important to note that the 
work function depends on the structure of the surface at the atomic level and must 
consequently be defined for each crystal face. The work function of metals varies 
from 2.3 eV for potassium to 5.3 eV for gold (see Annex B).

1.2.4  Contact between two metals

 When two uncharged metals are put in contact with each other, the electrons 
flow from the metal M1 with the smaller work function towards the metal M2 with 
the larger work function, until the Fermi levels are equal in both metals, this being 
the thermodynamic equilibrium (see Figure 1.16). Thus, at equilibrium, M1 becomes 
positively charged and  M2 becomes negatively charged.
 The electrochemical equilibrium is described by the equality of the electrochemical 
potential of the electrons.

˜ ˜µ µ
e e− −=M M1 2

 (1.75)

By applying the definition of the electrochemical potential (1.73), we can calculate the 
Volta potential difference.

ψ ψM M M M2 1 2 1
− = − −( ) /Φ Φ F  (1.76)

̃ ̃

Fig. 1.16  Contact between two metals having different work functions.
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EXAMPLE

Let us calculate the Volta potential difference resulting from putting in contact a piece of 
gold and a piece of silver, knowing that the work functions for these two metals are 5.32 
and 4.30 eV respectively

ψ ψAg Au Ag Au− = − −( ) /Φ Φ F  

It is interesting to dwell for a moment on the units. The eV is a unit of energy which 
corresponds to the displacement work of an elementary charge 1.6·10–19 C under the 
action of a potential difference of 1 V. Thus 1 eV corresponds to 1.6·10–19 J. In equation 
(1.76), we are dealing with one mole of electrons and the work function must be multiplied 
by Avogadro’s constant. Faraday’s constant being the charge corresponding to a mole of 
elementary charges, we simply have:

ψ ψAg Au A
Ag Au

A
  V− = − − =N e

N e

( )
.

Φ Φ
1 02

1.2.5  The Kelvin probe

 The Kelvin probe is used to measure differences in work function and indirectly 
differences in surface potential.
 Let us consider two metal pieces a  and  separated by an air gap and linked 
together by an electrical circuit comprising a voltage source (E) and a current 
measuring device (A), as shown in Figure 1.17. To operate the set-up, the voltage 
source E is adjusted in such a way that no current flows through the circuit, thus 
ensuring that the pieces of metal a and  are not charged, and thus ensuring the 
equality of the external potentials of the two phases a and 

ψ ψα β=  (1.77)

 Two methods exist to experimentally create this condition. In the first approach, 
a - radiation source can be used to ionise the gas between the two metals a and . 
If the two metals a and  have different outer potentials , thus creating an electric 
field within the gap, the cations in the gas phase move towards the negatively charged 
metal, and conversely the anions move towards the positively charged metal. This 
movement of ions produces a current. The voltage source is then varied until the cur-
rent becomes zero, where the equality (1.77) is verified.
 In the second approach, given that AC currents are easier to measure than DC 
ones, the phase   is linked to a vibrator such that the distance d between the two pieces 
of metals a and  forming a capacitor varies at a frequency . If the two metals a and 
 have different outer potentials , a capacitive current of frequency  associated to 
the harmonic variation of the capacitor (see eqn. (1.48)) can be measured, for example 
using an oscilloscope. Similarly as above, the voltage source is adjusted so that the 
alternating current having the frequency of the vibrator becomes zero. 
 The voltage E provided by the source is a compensation potential that is by 
definition equal to the inner potential difference between the copper wires that 
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connect the source to the metal plates  and a , copper wires which we shall call Cu 
and Cu2 respectively. Thus

 (1.78)

since the chemical potential of the electron in the two copper wires is the same. For 
metals in contact, the electrochemical potential of electrons in each metal is equal 
(equation (1.75)), so that (1.78) becomes

 (1.79)

and using the condition (1.77) obtained experimentally, we conclude

E F= −( )Φ Φα β /  (1.80)

Then it follows from (1.76) that E is equal to the Volta potential difference 
between a  and  as if they were in contact.
 This apparatus can also be used to measure differences in surface potential. In 
the above example, the metal sample a has a compensation potential EI , and let us 
suppose that we pass only above the metal a  a gas whose molecules can adsorb onto 
the metal (e.g. adsorbtion of carbon monoxide on platinum). The surface potential of 
a is then modified and a new value of the compensation potential EII is measured. 

E FII
II= −( )Φ Φα β /  (1.81)

If it can be assumed that the work function of   remains unchanged then

E E FII I
II I II I− = −( ) = −Φ Φα α α αχ χ/  (1.82)

since the chemical potential of the electron is a constant property of the bulk metal a.
If the vibrating electrode is a very fine point, we can use a Kelvin probe to image 

the surfaces to show the arrangement of molecules.

Fig. 1.17  Vibrating electrode for the measurement of Volta potential differences.
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1.2.6  Electrochemical potential of the electron in solution

 Up until now we have looked at the electrochemical potential of the electron 
in a solid. Given its extreme reactivity, the electron can exist in aqueous solution as 
a dissolved species only for relatively short periods and consequently we shall not 
look at the electrochemical potential of the dissolved electron. Nevertheless, it can 
sometimes be useful to use the rather abstract notion of electrochemical potential or 
even the notion of the Fermi level for the electron in solution knowing that it resides 
on a reduced species.
 The energy levels of the electron will then depend on the reduced and the oxidised 
species. The major problem of energy levels in solution is that contrary to the case of 
a metal, these fluctuate with the polarisation fluctuations of the solvent.
 As a first approximation, we can make the hypothesis that the distribution of the 
energy levels is Gaussian and centred on the most probable value. We then have for 
the oxidised species

W E
kT

E E

kT( ) exp=
−

−( )
1

4

2

4

πλ
πλ

ox

 
(1.83)

and similarly for the reduced species

W E
kT

E E

kT( ) exp=
−

−( )
1

4

2

4

πλ
πλ

red

 
(1.84)

where  represents the reorganisation energy of the solvent.
And so we call the half-sum of the most probable energies of the oxidised and 

reduced species the Fermi level in solution or the redox Fermi level.

Fig. 1.18  Energy diagram for a redox couple in solution
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 We must be careful of the fact that these energy distributions around an average 
value are linked to temporal fluctuations and do not represent bands of levels like 
those in a solid. The most probable energy values are electronic states of the solvated 
species and the energy difference between the two levels is of the order of eV.
 By definition the Fermi level of the electron in solution measured from the 
vacuum level corresponds to the electrochemical potential of the electron in solution

 (1.85)̃
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CHAPTER 2

 ELECTROCHEMICAL EQUILIBRIA

 In the first chapter, we have established the basic thermodynamic principles 
to deal with electrochemical systems. Now, we are going to use the concept of 
electrochemical potential to study different types of electrochemical equilibria such as 
heterogeneous redox reactions, ion distribution, etc.

2.1  REDOX REACTIONS AT METALLIC ELECTRODES

2.1.1  Galvani potential difference between an electrode
 and a solution

 In the same way that the Gibbs energy, ∆G, of a chemical equilibrium 

  aA  +  bB   i  cC

is a linear combination of chemical potentials as described by equation (1.29):

 ∆G c b a= − + =µ µ µC B A( ) 0  (2.1)

an electrochemical equilibrium of a redox reaction in solution at a metal electrode

 OxS  +  ne–M   i RedS

Fig. 2.1  Redox reaction at a metal electrode in a solution containing a redox couple.
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e.g. the FeII/FeIII redox couple at a gold electrode (FeIII  +  e–Au   i  FeII), can be 
described as a linear combination of the electrochemical potentials of the reactant 
species, the electron being considered as a species in its own right.

 
∆ ˜ ˜ ( ˜ ˜ )G n

e
= − + =−µ µ µred

S M
ox
S 0

 (2.2)

where ∆G̃ represents the electrochemical Gibbs energy, that is to say the sum of the 
work necessary to add the products of the reaction and to extract the reactants. The 
adjective ‘electrochemical’ qualifying the Gibbs energy is to remind us that we are 
dealing with charged species. 
 By using equation (1.60) that defines the electrochemical potential in a chemical 
term and an electrical term, we can develop equation (2.2) to obtain

µ φ µ φ µ φred
S

red
S

red
S M M

ox
S

ox
S

ox
So o, ,ln ln+ +[ ] − −[ ] − + +[ ] =−RT a z F n F RT a z F

e
0   

(2.3)

where µi
o,S represents the standard chemical potential of the species i in solution in the 

molarity scale (or molality) and ai
S the activity of i in the molarity scale (or molality). 

Furthermore, noting that the number of electrons exchanged during the reaction is 
n = zox – zred, we then have

 

nF n RT
a

a

G RT
a

a
G

e
( ) ( ) ln

ln

, ,φ φ µ µ µM S
ox

S
red

S M ox
S

red
S

ox
S

red
S

− = − + +






= − +






= −

−
o o

o∆ ∆
 

(2.4)

where DG is the chemical contribution of the Gibbs energy of the reduction of O 
into R at an electrode, and DGo is the standard Gibbs energy. The difference fM – fS 

is the difference in Galvani potential between the metal and the solution. The term 
F(fM – fS) is the electrical work required to transfer one mole of elementary charges 
from inside the metal to the bulk of the solution.
 Equation (2.4) illustrates the major characteristic of redox reactions, i.e. the direct 
relation between the Galvani potential difference, between the electrode and the 
solution, and the concentrations of the species in solution. In the case of a chemical 
equilibrium in solution, 

 A  +  B   i  C  

the equilibrium constant Ke is defined uniquely by

 
K

a

a a
G RT

e
C

A B
= = −exp /∆ o

 
(2.5)

whilst for a redox equilibrium, we have

 
K

a

a
G RT nF RT

e
red
S

ox
S

M S
= = − − −exp exp/ ( )/∆ o φ φ

 
(2.6)
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and consequently the equilibrium constant for the redox equilibrium is not a proper 
constant, but depends on the difference in inner potential between the electrode and 
the solution. Thus for a redox reaction at an electrode, we can fix the concentrations of 
the oxidised and reduced species in solution and impose de facto the Galvani potential 
difference, or else, using a potentiostat (see §7.1), fix experimentally the Galvani 
potential difference, thus imposing the ratio of the activities of the species in solution. 
On the other hand, it is not possible to fix independently both the Galvani potential 
difference and the concentrations in solutions.

2.1.2  The Nernst equation

Empirical approach

 By the end of the 19th century, thirty years before the concept of electrochemical 
potential had been introduced, it had been observed experimentally that the difference 
in potential between a working electrode, at which a redox reaction occurs, and a 
reference electrode (see §2.5.1) obeys a law of the type

 
E V V E

RT

nF

a

a
= − = +





working reference

ox
S

red
S

o ln
 

(2.7)

 In fact, to measure a potential difference between the working and the reference 
electrodes, we use a high impedance voltmeter that ensures that practically no current 
passes through the circuit, and therefore no net electrode reactions can take place to 
disturb the equilibrium. If the reference electrode is a standard hydrogen electrode 
(SHE, vide infra) as illustrated in Figure 2.2, this relation is more commonly known 
in the form 

 
E E

RT

nF

a

a
SHE ox/red SHE

ox
S

red
S= [ ] +







o ln
 

(2.8)

Fig. 2.2  Electrochemical cell for measuring the electrode potential on the SHE scale. A salt 
bridge is an ionic conductor introduced to physically separate the two solutions, but keeping at 
the same time their inner potentials equal or almost equal.
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 In this case, the electrode potential E is the potential difference between the 
terminals of the two electrodes, and not the difference in Galvani potential between 
the working electrode phase and the solution phase containing the dissolved ox and 
red species. So the zero of this scale of electrode potential is a convention linked to 
the choice of the reference electrode. History has made the reference electrode of 
choice the standard hydrogen electrode (SHE) defined such that the proton activity 
in solution should be unity and the fugacity of the hydrogen should be the standard 
pressure of 1 bar (=100 kPa). In a practical and not terribly rigorous manner, we can 
make a hydrogen electrode by bubbling hydrogen through an acid solution of pH zero. 
(Working at an atmospheric pressure of 101 325 Pa rather than at standard pressure 
introduces an error of 0.17 mV).

A posteriori derivation of the Nernst equation 

 Nowadays, we can derive the Nernst equation from the inner potentials of the 
phases used. In order to do so, we have to define a complete system, including the 
copper wires going to the terminals of the voltmeter.
 Let us consider the following electrochemical cell

 Cu  |  Pt |  H , H .... || ....ox, red |  M |  CuI 1
2 2

II+

Such an electrochemical cell is called a galvanic cell or battery. By convention, the 
p.d. of a galvanic cell is defined as the potential of the right terminal less that of 
the left one. Thus, if we connect a voltmeter to the terminals of the cell above, the 
p.d. is by definition the difference in Galvani potentials between the terminals, here 
represented by the copper wires 

 E V V= − = −right left
Cu CuII I

φ φ  (2.9)

It is important to note that the two terminals of a galvanic cell must always be made 
of identical materials. The symbol | stands for an electrochemical interface and the 
symbol || stands for a liquid junction across which the potential difference is negligible, 
which means that the inner potentials of the solutions on either side of this junction are 
equal (see §4.5.2 for more detail). In fact, the official IUPAC (International Union of 
Pure & Applied Chemistry) symbol is a vertical double bar of dotted lines.

 We have thus four electrochemical equilibria:
 • at the contact M | CuII between the copper wire and the working electrode, there

 is an electronic equilibrium which implies that the chemical potentials of the
 electron in the two metal phases are equal

 ˜ ˜µ µ
e e− −=Cu MII

 (2.10)

 • at the working electrode, there is the equilibrium of the redox reaction

 ˜ ˜ ˜µ µ µox
S M

red
S+ =−n

e  (2.11)
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 • at the platinum electrode, there is the reduction of the proton and the oxidation 
of hydrogen,

 ˜ ˜µ µ µ
H
S Pt

H2+ −+ =
e

1
2  (2.12)

 • the contact between the platinum electrode and the copper wire gives us

 ˜ ˜µ µ
e e− −=Pt CuI

 
(2.13)

We can develop each one of these equations using equation (1.60), giving us

 F
e e

( )φ φ µ µCu M Cu MII II
− = −− −  (2.14)
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(2.15)
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(2.16)

 F
e e

( )φ φ µ µPt Cu Pt CuI I
− = −− −  (2.17)

If we make the hypothesis that the inner potential of the solution is the same on both 
sides of the liquid junction, the potential difference between the copper wires can be 
obtained by combining equations (2.14) to (2.17) 
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  (2.18)

 In the case of a SHE reference electrode (the activity of the proton in solution 
being unity and the hydrogen fugacity being the standard pressure of 1 bar), we then 
arrive at the Nernst equation (2.8).
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(2.19)

Thermodynamic approach

 We can also rationalise the Nernst equation (2.8) using a thermodynamic 
approach, by considering the redox equilibria taking place at the two electrodes of the 
cell shown in Figure 2.2: 

 (I) ox + n e–  i  red at the working electrode

 (II) n–
2
 H2

  i  n H+  + n e–  at the platinum reference electrode
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Even though we have a redox equilibrium at each electrode, the sum of these two 
electrochemical reactions gives a reaction which is not in equilibrium.

 (III) ox + n–
2
 H2   i  n H+  + red

In effect, equilibrium could only be obtained if the electrons were able to circulate 
freely in the external circuit, but this reactive path is blocked by the high impedance 
of the voltmeter.
 The Gibbs energy of this virtual reaction in solution is then

 
∆ ∆G G RT

a a p

a f

n n

nr r
red
S

H
S

ox
S

H

ln
2

= +
( ) ( )















+o
o /

/

2

2

 

(2.20)

Comparison of equation (2.20) with equations (2.18) and (2.19) allows us to link the 
electrode potential ESHE (which is an experimental value) to the Gibbs energy of the 
virtual reaction (III)
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(2.21)

 The standard redox potential of reduction EE o
ox/redRSHE for the redox couple 

ox/red can then be defined from the standard Gibbs energy of the virtual equilibrium

 
E G nF n

n
nFox/red SHE ox

S
red

S
H

S
H2

o o o o o o[ ] = − = − − +





+∆ / /, , ,µ µ µ µ
2  

 (2.22)

EE o
ox/redRSHE is therefore a measure of the work necessary to transfer an electron 

between a metal electrode and a redox couple in solution, on a scale relative to the 
proton/hydrogen couple. Expression (2.21) has the advantage of highlighting the 
Gibbs energy of reaction. If the virtual reaction (III) is exergonic (DGr < 0), this means 
that the hydrogen can reduce the oxidised species. The reaction can then produce 
work, which in the case of the apparatus in Figure 2.2 means that, if the voltmeter is 
replaced by a resistor, the work of the reaction can then be recuperated in the electric 
circuit linking the two electrodes. This electrical work corresponds to the passage of 
the electrons from the working electrode to the platinum electrode and is equal to 
–nFESHE.

2.1.3  Standard redox potential

 The standard redox potential scale shows us whether a reaction can take place. 
Consider, for example, the dissolution of zinc in an acid: 

 Zn  + 2H+  r  Zn2+  +  H2
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Since the standard redox potential for the reduction of Zn2+ is negative, the oxidation 
reaction of zinc dissolution takes place spontaneously. Nevertheless, the two redox 
half-reactions

 Zn  i  Zn2+  +  2e–

 2H+ +  2e–  i  H2

can take place in two separate places if an electrical circuit is used.
 Let’s take two beakers, one containing sodium nitrate, with a zinc electrode in it, 
and the other containing nitric acid with a platinum electrode in it. The two beakers 
are linked by a salt bridge containing sodium nitrate, and the two electrodes are 
connected together by a conducting wire. The Gibbs energy of reaction for this 
experimental setup is identical to that of the reaction dissolving zinc directly in acid. 
Note that in the system illustrated in Figure 2.3, the zinc electrode will dissolve, even 
though it is not directly in the acid. Thus, we have made an electrochemical battery 
capable of supplying energy. This setup differs from the one used to demonstrate the 
Nernst equation in that there is free passage of current in the circuit. 
 By definition, the standard redox potential for the reduction of a proton in water 
is zero, at all temperatures. 

 
E

H / H
SHE

1
2 2

V+






=o 0

The more positive the standard redox potential of a redox couple, the more difficult 
the oxidation is; the reduced species is then the stable species. For example, if we 
consider the Au+/Au pair, metallic gold is stable in the environment.

 
E

Au /Au SHE
V+[ ] =o 1 83.

Fig. 2.3  Electrochemical dissolution of zinc. The beaker on the left and the salt bridge are filled 
with a solution of sodium nitrate, and the beaker on the right is filled with nitric acid.
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Inversely, the more negative the standard redox potential of a redox couple, the more 
difficult the reduction is; the oxidised species is then generally stable in the natural 
state, such as the Li+ cation in the Li+/Li pair whose standard redox potential is

 
E

Li /Li SHE
V+[ ] = −o 3 045.

The oxidised species of a redox pair with a high standard redox potential can be used 
as an oxidant. For example, permanganate the standard potential of which is 

 
E

MnO ,Mn SHE4
2 1.51 V− +







=o

is used in organic chemistry or analytical chemistry as an oxidising species.  Inversely, 
the reduced species of a redox pair whose standard redox potential is negative can be 
used as a reducing agent. To compare accurately the oxidising/reducing abilities of a 
redox couple, the corresponding Gibbs energies should be calculated as illustrated in 
the example below.
 Standard redox potentials play a major role in bioenergetics, and an example of 
the different redox pairs involved in the respiratory chain is given in the appendix (see 
page 82).

EXAMPLE

Starting from standard redox potentials, let’s explain why FeCl3 is used for dissolving 
copper in the manufacturing process of printed circuits, knowing that 

E
Fe /Fe SHE

3 2  V+ +[ ] =o 0 77.            E
Cu /Cu SHE

2  V+[ ] =o 0 34.  

In the same way, let’s explain why FeCl3 does not attack the gold contacts, knowing that

E
Au /Au SHE

1.83 V+[ ] =o

Look at the equilibria

              2 x Fe3+  +  e–      i   Fe2+  [I]
  Cu                   i   Cu2+   + 2 e– [II]
  _______________________________

  2 Fe3+  +   Cu  i   2  Fe2+  +  Cu2+

Using equation (2.22), the standard Gibbs energy of this resulting equilibrium is then 
written as

∆ ∆ ∆G G G

F E F E

o o o o o o o

o o

= + = −[ ]+ −[ ]
= − [ ] + [ ] = − ⋅ <

+ + +

+ + +

2 2

2 2 83 0

˜ ˜
I II Fe Fe Cu Cu

Fe /Fe SHE Cu /Cu SHE

–1

2 3 2

3 2 2           kJ mol

µ µ µ µ
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The negative value obtained shows that the reaction is exergonic.

In the case of gold, we have

  Fe3+  +  e–    i   Fe2+     [I]
  Au                i   Au+   +  e–    [III]
  _______________________________
  Fe3+  +  Au   i Fe2+  +  Au+

The standard Gibbs energy of this resulting equilibrium is written in the same manner

∆ ∆ ∆G G G F E F Eo o o o o= + = − [ ] + [ ] = ⋅ >+ + +
˜ ˜

I III Fe /Fe SHE Au /Au SHE

–1
3 2 kJ mol102 0

Conversely, this positive value shows that the reaction is endergonic and therefore not 
favourable from a thermodynamic point of view.

Standard cell potential

 The standard redox potential Eo is related to a Gibbs energy that is a function 
of state, and has consequently additive properties. Thus, from tabulated values of 
standard redox potentials, we can calculate the standard potential of galvanic cells 
involving different redox pairs. For example, the standard potential Eo

cell of the 
following cell

 Cu  |  Ag |  Ag ........Zn  |  Zn |  CuI 2+ II+

can be calculated, knowing the standard redox potentials for the Zn2+/Zn and Ag+/Ag 
couples 

 
E

Zn /Zn SHE
2 V+[ ] = −o 0 763.

   
 and 

   
E

Ag /Ag SHE
V+[ ] =o 0 799.

In fact, the potential of the above cell can be considered as a series of two cells similar 
to the one illustrated in Figure 2.2

 Cu  |  Ag |  Ag .. || ..H , H  |  Pt |  Cu |  Pt |  H , H .. || ..Zn  |  Zn |  CuI 1
2 2

1
2 2

2+ II+ + +

The potential measured is then the difference of the respective Nernst equations

  
(2.23)

If the metal electrodes are made of pure zinc and pure silver, the activities of these 
pure metals are unity. The classic error is to take the activity of a solid electrode as 
unity; this is incorrect if the electrode is an alloy. Equation (2.23) then reduces to:

  
(2.24)
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The standard potential of the cell is simply

 
E E Ecell Zn /Zn SHE Ag /Ag SHE

2 Vo o o= [ ] − [ ] = −+ + 1 562.

Formal redox potential

 The thermodynamic approach of electrochemistry in solutions relies on the 
thermodynamic notion of activities, rather than on experimental quantities such as 
concentrations that can be directly measured. To alleviate this problem, it is customary 
to define the formal redox potential or apparent standard redox potential by
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(2.25)

This notation has the advantage of being able to show the Nernst equation in a form 
that is more directly related to experimental conditions
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(2.26)

It is important to note that the formal redox potential depends on experimental 
conditions such as the ionic strength of the solution. Of course, in dilute solutions the 
activity coefficients tend to unity and activities can be replaced by concentrations. In 
this case, the formal redox potential tends to the standard redox potential value.

2.1.4  Measuring standard redox potentials

Measuring directly with a standard hydrogen electrode

 In certain cases, it is possible to measure directly the standard redox potential by 
assembling galvanic cells. The cell 

 Cu  |  Pt |  H ,  HCl  |  AgCl |  Ag |  CuI 1

2 2
II

is a classic example of this. The potential at the terminals of this cell is simply given 
by the difference of the respective Nernst equations:
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  (2.27)

If the silver electrode is made of pure silver, the silver activity is unity. Also, by 
convention, the standard redox potential of the H+/¹

²̄ H2 pair is zero and equation 
(2.27) reduces to :
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(2.28)
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In as much as the silver chloride is not very soluble, we can introduce the solubility 
product KS of the silver chloride (KS=1.77 ◊10–10) in equation (2.28) in such a way that 
the activity of chloride ions is taken into account. The solubility product is defined as 
the equilibrium constant of the dissolution equilibrium

 AgCl  i  Ag+ + Cl–

Then, as long as AgCl is a pure substance, we have
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(2.29)

By substituting in equation (2.28), we obtain
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(2.30)

By re-grouping the constant terms in equation (2.30), we can define the standard 
redox potential for the silver | silver chloride couple

    
E E

RT

F
KAgCl/Ag SHE Ag /Ag SHE

S  Vo o[ ] = [ ] + = − =+ ln . . .0 799 0 577 0 222
  

  
(2.31)

If the fugacity of hydrogen is kept constant (for example at the standard pressure 
value so that the second term of equation (2.30) is equal to zero), we see that the cell 
voltage given by equation (2.30) is a direct function of the concentration of HCl. By 
extrapolation to dilute concentrations for which the activity coefficients tend to unity, 
we can obtain experimentally the standard redox potential value from

 
E E

RT

F
c ccAgCl/Ag SHE H ClHCl

o[ ] = + ( )



→ + −lim ln0

 
(2.32)

The example below illustrates this approach of measuring a standard redox potential.

EXAMPLE 

G.J. Hills and D.J.G Ives (J. Chem. Soc., 311(1951)) made precise measurements of the 
potentials of cells comprising both a hydrogen electrode and a calomel electrode.

Cu  |  Pt |  H ( ,    HCl  |  Hg Cl  |  Hg |  CuI 1
2 2

1
2 2 2

IIf p= o )

The values obtained are:

m/mmol·kg–1 1.6077 3.0769 5.0403 7.6938 10.9474
E / V 0.60080 0.56825 0.54366 0.52267 0.50532
m/mmol·kg–1 13.968 18.872 25.067 37.690 51.645
E / V 0.49339  0.47870 0.46490 0.44516 0.42994
m/mmol·kg–1 64.718 75.081 94.276 119.304
E / V 0.41906 0.41187 0.40088 0.38948
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Let’s calculate, from these data, the standard redox potential of the calomel (Hg2Cl2) 
electrode described in more detail in §2.51. As for the  Ag | AgCl  electrode described above 
(see equation (2.30)), the potential of the cell is written as
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The fugacity of the hydrogen being the standard pressure of 1 bar, we have, expressing the 
activities on the molality scale:
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Thus in order to obtain the standard redox potential for the calomel/mercury couple, we 
can plot E+2RT/F ln[mHCl] as a function of the molality of hydrochloric acid, and the 
standard value will be found by extrapolation to zero concentration.

Extrapolating from such a curve is difficult, but we can say that the standard redox 
potential is found between 265 and 270 mV. We shall see in chapter 3 how it is possible to 
refine this estimate using the Debye-Hückel theory. 

Measuring directly with a reference electrode

 In fact, the hydrogen electrode is not the most practical reference electrode to use. 
From an experimental point of view, the current preference is a silver | silver chloride 
electrode which is simple to construct and does not involve toxic components such as 
mercury as in the calomel electrode. The use of reference electrodes often involves 
liquid junctions across which a potential difference ELJ is established. (The method for 
calculating this p.d. will be covered in detail in Chapter 4). In a first approximation, 
this term is often considered as negligible. 
 The galvanic cell of a redox system compared to a silver/silver chloride reference 
electrode, as illustrated in Figure 2.4, is written as

 Cu  |  Ag |  AgCl |  KCl .... || ....ox, red |  M |  CuI
sat

II

mHCI / mol·kg–1
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Using equation (2.31), the equilibrium potential for such a cell is 
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(2.33)

When the silver electrode, covered with a fine layer of silver chloride is in contact 
with a saturated KCl solution, we can regroup the constant terms, including those 
relative to the activity of the chloride ions, and write 
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(2.34)

Eox/red Ag|AgCl|KClsat

o[ ] represents the standard redox potential of reduction for the ox/red 
couple on the scale of the ‘silver | silver chloride | saturated KCl’ reference electrode.
 As before, to measure the standard redox potential on the silver chloride/silver 
scale, we measure the formal redox potential at different concentrations and then 
extrapolate to infinite dilution. 

Spectroelectrochemical measurements

 Another method for measuring a formal redox potential value consists of coupling 
electrochemistry with absorption spectroscopy. Instead of fixing the concentrations 
of the reduced and oxidised species and measuring the cell potential at equilibrium, 
with the aid of an instrument called a potentiostat (see §7.1), we fix the potential of 
the cell and measure by UV-VIS or infra-red absorption, the concentrations of the 
species in solution. The acronym for this technique is OTTLE standing for Optically 
Transparent Thin Layer Electrode.
 Let’s look at a cell of the type illustrated in Figure 2.5. The volume of solution 
in the UV-VIS cuvette is very small so that a significant change in the ratio of 
concentration cox / cred is caused by a very small amount of electric charge passed 

Fig. 2.4  Electrochemical cell for measuring the standard redox reduction potential with an Ag 
| AgCl reference electrode. The salt bridge is made of porous glass.

Working electrode

Solution

Ag | AgCl
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at the semi-transparent electrode. The latter can either be made of a metal deposited 
as a thin layer by evaporation, or a very fine minigrid made of a wire that is a few 
micrometres in diameter.
 By applying an electrode potential different from the equilibrium potential, a new 
ratio cox / cred  is quickly established at the working electrode, then in the whole of the 
thin layer of solution crossed by the light. Thus, at each potential, we can record the 
UV-VIS absorption spectrum, e.g. the one shown in Figure 2.6, for the reaction

 OsCl6
–  +  e–  i  OsCl6

2– 

and therefore calculate the ratio cox / cred. In this way, we can determine the standard 
redox potential of new molecules such as organo-metallic or organic compounds. From 
a practical point of view, it is interesting to vary the value of the potential applied, first 
in one direction, then in the other. If the results of the return sweep do not correspond 
with those of the forward sweep, then the reaction is not chemically reversible. Also, 
the presence of isosbestic points (absorbance points which do not depend on the ratio 
cox / cred ) guarantee that we are talking about an elementary electron transfer reaction 
concerning only one oxidised species and one reduced species.  
 If the redox pair cannot react on the electrode itself, as in the case of proteins 
where the redox centre is wrapped up inside the protein, we can use mediators whose 
role is to provide a shuttle for the electrons. 

EXAMPLE

From the absorbance values in Figure 2.6 measured at 410 nm, let’s calculate the 
standard redox reduction potential for this reaction. To do this, we shall use the Beer-
Lambert law which expresses the ratio between the concentration of the absorbing species 
and the absorbance of the solution. Also we can consider that at 1.1 V the species are 
completely oxidised, and are completely reduced at 0.75 V. So at 1.1 V, we have maximum 

Fig. 2.5  Diagram of an OTTLE electrode. The working electrode is a fine metallic grid placed 
in a UV-VIS cell with a short optical path.
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absorbance of 178, whilst the absorbance at 0.75 V represents the base line. Starting from 
intermediate values, we can calculate the Nernst potential. 
For each value of the potential, we can estimate the ratio cox / cred knowing that the sum 
cox + cred is a constant.

Potential/V cox / cred log(cox / cred)

0.875 (52 – 45) / (178 – 52)  =  0.055  –1.255

0.900 (61 – 45) / (178  – 61)  =  0.1367  –0.864

0.925 (80 – 45) / (178 – 80)  =  0.357  –0.447

0.950 (117 – 45) / (178 – 117)  =  1.80  0.072

0.975 (146 – 45) / (178 – 146)  =  3.15  0.499

Plotting these on a graph, we have a straight line whose Y-axis at the origin gives us the 
formal reduction potential. This method is relatively precise and simple to use

Fig. 2.6  Absorbance as a function of applied potential for the redox couple OsCl6
–/OsCl6

2– 
(Personal communication from Dr. L. Yellowlees, University of Edinburgh, Scotland).
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Amperometric measurements

 The standard redox potential can be determined using amperometric methods 
such as those described in chapters 7, 8 and 10. The most commonly used method is 
cyclic voltammetry via the measurement of the half-wave potential, which is equal to 
the half-sum of the peak potentials (see §10.1).

Calculation of the standard redox potentials

 When the direct measurement of the standard redox potential is difficult, 
the recommended method is to use standard thermodynamic data tables of the 
formation enthalpy and entropy of the reduced and oxidised species to calculate 
directly the standard redox potential from equation (2.22). There is an example of 
this in chapter 3 (see page 91). 

2.1.5  Absolute redox potential

 The standard redox potential defined by the Nernst equation is a relative value 
linked to the choice of the reference electrode. Nevertheless, there are situations 
in which it would be preferable to have an absolute redox potential, having for its 
origin the electron at rest in a vacuum, in order to create an absolute scale of redox 
potentials. 
 Considering the Galvani potential difference between the metal and the solution 
as given by equation (2.4), it would be logical to define the absolute standard redox 
potential as the difference between the standard chemical potentials of the oxidised 
and reduced species

 
E F nF

eox/red abs

M S M
ox

S
red

So o o[ ] = − − = −( )−φ φ µ µ µ( / ) /, ,
 

(2.35)

F Eox/red
o[ ] abs then represents the sum of the work necessary to extract an electron 

from the Fermi level of the charged metal (= –µ̃e–) and the electrostatic contribution 
of the electrochemical potential of the electron in solution (–Ff S). [E o

ox/red]
abs then 

depends only on the standard chemical potentials of the redox pair. 
 Unfortunately, this approach is experimentally unfeasible because it is impossible 
to measure an absolute value of a Galvani potential. Another definition consists of not 
taking into account the electrostatic contribution due to the surface potential of the 
electrolyte. In this case, using the definition of the real standard chemical potential 
given by equation (1.71), we have

      
E F nF

eox/red abs

M S M S
ox

S
red

So o o[ ] = − − + = −( )−φ φ µ χ α α( / ) /, ,
 
(2.36)

This expression has the advantage to express the absolute standard redox potential as 
the difference between the real standard chemical potentials, which can be measured. 
Equation (2.36) can be reorganised as a combination of experimentally accessible 
quantities
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 E F F

F

e e

e

ox/red abs

M S M S M S

M M S                

o[ ] = − − + = − −

= − + −( )
− −

−

φ φ µ χ µ ψ

α ψ ψ

( / ) ˜ /

/

  
  

(2.37)

F Eox/red
o[ ] abs then stands for the work necessary to extract an electron from the Fermi 

level of the metal and transfer it to the surface of the electrolyte. –aM
e– stands for the 

work of extraction of the electron from the non-charged metal, and M – S stands 
for the Volta potential difference between the metal and the electrolyte containing the 
redox pair.
 The definition (2.37) of the absolute standard redox potential allows us to define 
the Fermi level of the electron in solution as it is presented in §1.2.6. In fact, by 
considering the equality of the electrochemical potentials of the electron in the metal 
and in solution, we can write 

 
E F Ef e e q

sol S M
ox/red abs, s

= = = − [ ]− − =
˜ ˜µ µ o

0  
(2.38)

Thus, when the charge on the solution is zero, i.e. when the outer potential S of the 
solution is zero, the concepts of the Fermi level of the electron in solution and the 
absolute standard potential of the electrode meet. 
 In the case of the standard hydrogen electrode that serves as the origin of the 
SHE scale of standard redox potentials, we can calculate the absolute standard redox 
potential 

E F F

F

eox/red abs

M S M S
H

,S
H

,G S

H
,S

H
,G

2

2
            

o o o

o o

[ ] = − − + = −( ) +

= −( )
− +

+

φ φ µ χ µ µ χ

α µ

( / ) /

/

1
2

1
2

 
 (2.39)

by determining the standard chemical potential of the gaseous hydrogen molecule 
and the standard real chemical potential of the aqueous proton. In order to calculate 
this difference, it is important to take the same reference state, e.g. the proton and the 

Fig. 2.7  Energy diagram of the metal | electrolyte interface.
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electron without interaction in a vacuum. In this case, the standard chemical potential 
of gaseous molecular hydrogen can be estimated from the ionisation energy of the 
hydrogen atom and the covalent bond energy of the hydrogen molecule

 Hg
+ + e–

g  i Hg  DGo  =  –13.613 eV

 Hg  i 1–
2 

H2g  DGo  =  –2.107 eV

whilst for the standard real potential of the aqueous proton we have 

 Hg
+  i H+

aq  α
H

,S
 

-1 –   eV  –   kJ mol+ ≅ = ⋅o 11 276 1090.

And so we have

 
E

H / H
abs

1
2 2

V+






≅ − − −[ ] = ±o – . ( . . ) . .11 276 13 613 2 107 4 44 0 05
 
(2.40)

(Numerical values : R. Parsons in Standard potentials in aqueous solutions edited by A.J. Bard, 
R. Parsons & J. Jordan, Marcel Dekker, New York).

The two scales of potentials are such that

 E Eox/red abs ox/red SHE
Vo o[ ] ≅ [ ] + 4 44.  (2.41)

2.2   CELLS AND ACCUMULATORS

2.2.1  Voltaic cells

 Voltaic cells are redox assemblies similar to that shown in Figure 2.3. Historically, 
we can cite the Daniell cell invented in 1836 that comprises a zinc anode and a copper 
cathode immersed respectively in solutions of zinc salts and copper salts. The cell 
reaction can be written as

 Zn  +  Cu2+   O   Zn2+  +  Cu

and the standard potential of the cell is then given by

 
E E E E ECell Cathode Anode Cu /Cu SHE Zn /Zn SHE

2 2   Vo o o o o= − = [ ] − [ ] =+ + 1 1.

 In a general manner, the cathode is defined as the electrode where the reduction 
reaction takes place and the anode as the electrode where the oxidation reaction 
takes place. In the case of a cell generating energy, the cathode will be the positive 
terminal and the anode the negative terminal. On the contrary, for an electrolytic 
cell consuming energy, the cathode will be the negative terminal and the anode the 
positive terminal. 
 The best-known commercialised cell is the Leclanché cell that can be described as

 Zns | Zn2+, NH4Cl | MnO2 s, Mn2O3 s | C
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 The anode is made of zinc and the cathode of carbon. During the discharge, the 
degree of oxidation of the manganese goes from IV (MnO2 s) to III (Mn2O3 s). The 
ammonium chloride serves at the same time as an electrolyte and as a buffer, the 
cathodic reduction generating hydroxide ions. The p.d. of this battery is 1.55 V at the 
outset. This reaction is not chemically reversible because the dissolved zinc can exist 
in several forms such as Zn(OH)2, Zn(OH)Cl, Zn(NH3)2 or even in the precipitated 
form ZnO·Mn2O3.
 The electrode reactions in this cell are far from being simple. The degree of 
oxidation of the MnO2 and its purity are two of the reasons for the difficulty in 
predicting accurately the nature of the reactions. In a schematic way, we can write:

 Zn  +  2 MnO2 +  H2O      r      Zn2+  +   Mn2O3 +   2 OH–

The Leclanché cell has the advantage of being cheap to make, and millions are 
manufactured every year. Six Leclanché cells can be mounted in series to make a 9 V 
battery.
 By replacing the electrolyte with KOH, it becomes a Leclanché cell known as 
‘alkaline’. The electrode reactions are then 

 Zn  +  2 MnO2 +  H2O      r      Mn2O3 s  +  Zn(OH)2
or
 Zn  +  MnO2 +  OH      r      MnO(OH) +  ZnO

 These batteries are better adapted for continuous regular discharges and have a 
longer lifespan than ordinary Leclanché cells. However, there are greater technological 
problems with the casing, because of the use of the KOH. 
 Among other types of commercial batteries, we can mention mercury or silver 
button batteries that are mostly used in watches and other small devices.

 Zn  +   HgO +  H2O   r   Zn2+  +   Hg +   2 OH–

 Zn  +   Ag2O +  H2O   r   Zn2+  +   2 Ag +   2 OH–

Fig. 2.8  Construction of a Leclanché cell.
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2.2.2  Accumulators

 Of all the electrochemical accumulators, the lead acid accumulator is without any 
doubt the most widespread, with several million units being sold every year for the 
automobile market alone. The chain can be schematically represented by:

 Pbs | PbSO4 s | H2SO4 |PbSO4 s , PbO2 s | Pbs

 When the molarity of the acid is 2M, the p.d. is about 2 V. Six cells in series are 
used to make 12 V batteries. These have a capacity of up to 100 A·h and are also able to 
deliver for a few seconds very heavy currents, e.g. 400-450 A, necessary to start a car. 
The electrode reactions of such an accumulator are in fact very complex, and a great 
deal of technology is involved in the production of modern accumulators. 

Fig. 2.9 Schematic representation of the working principle of a lead acid accumulator.

Fig. 2.10  Schematic diagram of the principle of a lithium battery (top) and a lithium ion battery 
(bottom).
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 Another accumulator that has been widely commercialised and above all used for 
high power applications is the Ni/Cd (nickel/cadmium) accumulator whose electrode 
reactions can be summarised in the form:

 2 NiO(OH)  +  Cd  +  2 H2O     r   2 Ni(OH)2  +  Cd(OH)2

The theoretical p.d. on open circuit is about 1.3 V. 
 More recently, Ni/MH (nickel/metal hydride) and lithium accumulators have 
been developed for the needs of portable electronic devices and electric cars. Lithium 
batteries offer a great amount of energy for a given mass and volume.  The material of 
the cathode is often an insertion-composite such as LiMnO2. The electrolyte can either 
be a liquid or a polymer and the anode is either directly lithium metal or an alloy, or 
possibly an insertion-composite based on graphite for example. The potential of the 
cells vary between 3 V and 4 V according to the materials used for the electrodes.

2.2.3  Fuel cells

 Another type of electrochemical power generating devices is the fuel cell, where 
the reactants are supplied from outside the cell. Since the first work of Grove, who 
showed in 1839 that a battery with hydrogen and oxygen as reactants could produce 
electricity, there are now three main categories of fuel cells:

 • Low temperature cells (<100°C) such as the one in Figure 2.11 comprising 
two porous electrodes separated by a cation exchange membrane (see §2.6). 
These cells are intended particularly to be used for powering electric vehicles. 

Fig. 2.11 Schematic diagram of a low-temperature fuel cell. Hydrogen and oxygen 
are introduced via the porous electrodes. The electrochemical reactions happen at the 
electrode | membrane interface (oxidation of hydrogen into protons at the anode, reduction of 
oxygen and the production of water at the cathode).

electrons

Porous anode Porous cathode

Cation exchange membrane

H2 O2H+
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The power needed varies from a few dozen kW for a car, up to about 250 kW 
for a bus.

 • Medium temperature cells (<200°C) function in a similar way to low-
temperature cells, but the membrane is replaced by a layer of phosphoric 
acid in a porous support. These cells, which are mainly intended for large-
scale electricity distribution, have a power of several MW. Their thermal and 
electrical yield is of the order of 40%.

 • High temperature cells, using a ceramic ionic conductor as electrolyte when the 
temperature is above several hundred degrees. The principal fuel is hydrogen, 
and in this case the maximum voltage is 1.23 V.

2.3  POURBAIX DIAGRAMS

 We have seen that the standard redox potential can be used to evaluate whether a 
substance oxidises or reduces more or less easily. In the case of metals, the oxidation 
is often accompanied by acid-base reactions, and, in order to determine the conditions 
for the stability of a metal at any given state of oxidation, it is useful to draw a 
potential-pH diagram also known as a Pourbaix diagram.
 For a given element, the limits between the different zones of stability are linked 
to equations of electrochemical equilibria, or of acid-base equilibria. To establish 
these zone diagrams, we have to fix arbitrarily a concentration for the dissolved 
species such as the ions. In the case of an electrochemical equilibrium between two 
dissolved species, the separation limit will correspond to the condition cox = cred.

EXAMPLE

Let’s take for example the iron | water system at 25°C, which introduces the thermody-
namic bases of corrosion. 
In order to simplify, we will only consider the following species:

Fe, Fe2+, Fe3+, Fe(OH)2 solid, Fe(OH)3 solid

We shall also ignore the oxidation state +VI that only occurs in the case of very alkaline 
pH.
The electrochemical equilibria to consider are :

Fe2+  +  2e–   i  Fe  E
Fe /Fe2  V+ = −o 0 44.  (I)

Fe3+  +  e–   i  Fe2+  E
Fe /Fe3 2  V+ + =o 0 77.  (II)

Fe2+  +   2 OH–   i  Fe(OH)2  p sK 3 38=  (III)

Fe3+  +   3 OH–   i  Fe(OH)3  p sK 2 15 1= .  (IV)

Fe(OH)2  +  2 H+  +  2 e–    i  Fe  +  2  H2O (V)

Fe(OH)3  +  3 H+  +  e–   i  Fe2+  +  3  H2O (VI)

Fe(OH)3  +  H+  +  e–   i  Fe(OH)2  +  H2O (VII)
Ignoring the activity coefficients and taking an arbitrary concentration of dissolved species 
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equal to 0.01 M, the Nernst equations related to the first two redox equilibria are written 
respectively 

Fe | Fe2+ :

E E
RT

F
c= + = −+ +Fe /Fe Fe2 2   Vo

2
0 499ln .

      
(I)

Fe2+  | Fe3+ :

E E
RT

F

c

c
= +









 =+ +

+

+
Fe /Fe

Fe

Fe

3 2

3

2

  Vo ln .0 77

     
(II)

These two equations translate into straight horizontal lines as illustrated in the Figure 
below. The position of straight line I is a function of the arbitrary choice of concentration 
(e.g. c = 10–2 M), whilst the position of straight line II is constant, being fixed by the 
condition of equality of the two concentrations.
The acid/base equilibria of the iron oxides are controlled by the solubility products KS.

Fe2+  | Fe (OH)2 :

K c c
c

c
S Fe OH

Fe

H

2

2

2
2 28

2
15 110 10= = =+ −

+

+

− − .

which yields the following equation for a vertical line

pH
Fe2= − +6 45 0 5. . logc

 (III)

Fe3+  | Fe (OH)3 :

K c c
c

c
S Fe OH

Fe

H

3

3

3
3 42

3
3810 10= = =+ −

+

+

− −

which yields

pH
Fe3= −( )+4 3log /c

                    (IV)

For the arbitrarily chosen concentration of 0.01 M, the limits between the zones of stability 
of the ions and their respective hydroxides give vertical straight lines at pH=7.45 and 
pH=2.0.
The limits due to the three redox equilibria (V-VII), where the oxidised form is in the form 
of a hydroxide, we obtain from equations (I-IV):

Fe | Fe (OH)2 :

E E
RT

F
c E

RT

F
K c

e
= + = + ⋅ ⋅( )
= − + − = − −

+ + + +Fe /Fe F Fe /Fe S H2 2

 pH pH

o o

2 2
10

0 44 0 38 0 059 0 06 0 059

2 2
28 2ln ln

. . . . .    
(V)

Line (V) has a negative slope of 59 mV/pH unit.
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Fe2+  | Fe (OH)3 :

E E
RT

F

c

c
E

RT

F

K c

c
= +









 = +

⋅ ⋅









= + − = −

+ +
+

+
+ +

+

+
Fe /Fe

Fe

Fe
Fe /Fe

S H

Fe

3 2

3

2
3 2

2

 pH pH

o oln ln

. . . . .

3
42 310

0 77 0 355 0 177 1 125 0 177  

(VI)

Line (VI) has a negative slope of 177 mV/pH unit.

Fe(OH)2 | Fe (OH)3 :

E E
RT

F

c

c
E

RT

F

K c

K c
= +









 = +

⋅ ⋅

⋅ ⋅











= − − = −

+ +
+

+
+ +

+

+
Fe /Fe

Fe

Fe
Fe /Fe

S H

S H

3 2

3

2
3 2

 pH pH

o oln ln

. . . . .

3
42 3

2
28 2

10

10

0 77 0 525 0 059 0 245 0 059  

(VII)

Line (VII) has a negative slope of 59 mV/pH unit.

By drawing the seven lines obtained by this method, we can define the different zones of 
stability of the different species as illustrated in the diagram above. 
In order to understand the stability zones of iron in an aqueous environment, we need to 
superimpose on this diagram the redox equilibria of water at atmospheric pressure

H+  +  e–    i   
1–
2 H2

Pourbaix diagram of iron in an aqueous medium

Fe(OH)3

VII

III

VI

Fe(OH)2Fe

pH
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0
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2.0                  7.45
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E E
RT

F
a= 





+ = −+ +H / H
SHE

H1
2 2

pHo ln .0 059

O2  +  4 H+  +  4 e–    i   2 H2O

E E
RT

F
a= [ ] + = −+O /H O SHE H2 2

 pHo

4
1 23 0 0594ln . .

Thermodynamics shows us that above the line  E = 1.23 – 0.059pH, the species are 
reduced by the water with oxygen given off, and that below the line E = – 0.059pH, the 
species are oxidised with hydrogen given off. Even if this is correct in theory, the speeds of 
oxidation and reduction of the water can be very slow, and certain elements can thus appear 
to be stable outside of their stability zone.

2.4   ELECTROCHEMICAL EQUILIBRIA AT THE
  INTERFACE BETWEEN TWO ELECTROLYTES

2.4.1  The Nernst equation for the distribution of ions 
          between two phases

 We have seen how the notion of electrochemical potential allows the derivation of 
the Nernst equation for redox reactions at an electrode, and we shall now see how to treat 
the ionic distribution between two phases, e.g. two immiscible electrolyte solutions.
 We can define the standard Gibbs transfer energy of a species i as the difference 
in standard chemical potentials between an aqueous electrolyte (w) and a non-aqueous 
electrolyte in an organic phase (o)

 
∆G i i itr

w o o w
,
, , ,o o o→ = −µ µ

 (2.42)
 At equilibrium, we have equality of the electrochemical potentials of the species 
i in the adjacent phases and by developing these for each phase using equation (1.60), 
we obtain 

 µ φ µ φi i i i i iRT a z F RT a z Fo o, ,ln lnw w w o o o+ + = + +  (2.43)

The Galvani potential difference between the two phases is then written as 

 
∆ ∆o

w w o
o
w

o

wφ φ φ φ= − = +




i

i

i

i

RT

z F

a

a
o ln

 
(2.44)

with  Dw
of i

o  the standard transfer potential equal to

 
∆

∆
o
w tr

w o

φi
i

i

G

z F
o

o

=
→

,
,

 
(2.45)

which expresses in a voltage scale the standard Gibbs energy of transfer.
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 The Nernst equation for the distribution of an ion between two immiscible elec-
trolyte solutions is expressed directly in terms of a difference of Galvani potentials. 
This Nernst equation has important applications in the domains of ion-selective 
electrodes, hydrometallurgy, and phase transfer catalysis. 
 It is customary in pharmacology to define the partition coefficient also called the 
distribution coefficient of an ion by

ln ln lnP
a

a
P

z F

RTi
i

i
i

i=






= +
o

w o
wo ∆ φ

 
(2.46)

 We can see that the distribution coefficient of an ion depends on the Galvani 
potential difference between the two phases. This is why, in the case of the distribution 
of an ion between two phases, it is more judicious to define the standard distribution 
coefficient 

ln
, ,

,
,

P
RT

G

RT

z F

RTi
i i i i

i
o

o o o
o= − − = − = −

→µ µ φ
o w

tr
w o

o
w∆

∆
 

(2.47)

2.4.2  Distribution potential 

 Let’s consider the distribution of a salt C+A– between two immiscible liquids. At 
equilibrium, we have an equality of the electrochemical potentials of both the cation 
and the anion:

    
 

µ φ µ φ
C

w
C
w w

C
o

C
o o

+ + + ++ + = + +o o, ,ln lnRT a F RT a F
 

(2.48)

 
µ φ µ φ

A
w

A
w w

A
o

A
o o

–– – –
, ,ln lno o+ − = + −RT a F RT a F

 
(2.49)

Fig. 2.12  The ion i has a more negative standard chemical potential in the organic phase than 
in the aqueous phase. When the two phases are put in contact, the ion has a tendency to transfer 
from the aqueous to the organic phase.
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By substitution, we can see that the distribution of the salt between the two phases 
polarises the interface, and that the Galvani potential difference is given by 

 

2F RT
a a

a a
∆o

w
C

o
C

w
A

o
A

w C
o

A
w

C
w

A
oφ µ µ µ µ= −( ) − −( ) + 







+ +

+ −

+

o o o o, , , ,
– –

–

ln

 
(2.50)

Taking into account the electroneutrality in each phase (cC+ = cA–), this equation 
reduces to

 

∆
∆ ∆

o
w o

w
C o

w
A C

o
A
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A
oφ

φ φ γ γ
γ γ
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+

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




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+ + −

+

o o
–

–

ln
2 2

RT

F
 

(2.51)

In the case of dilute solutions, the second term in this equation is negligible.
 The Galvani potential difference imposed by the distribution of a salt is 
independent of the volume of the phases in contact, and is called the distribution 
potential.

EXAMPLE 

To illustrate equation (2.51), let’s calculate the distribution potential at the interface 
water | 1,2-dichloroethane (DCE) for the distribution of different salts having the 
following standard Gibbs transfer energies 

∆G
tr,Na

w DCE –1 kJ mol+
→ = ⋅o , 56 ,  ∆G

tr,Cl
w DCE –1 kJ mol–

,o → = ⋅50

∆G
tr,TBA

w DCE –1 kJ mol+
→ = − ⋅o , 22 ,  ∆G

tr,TPB
w DCE –1 kJ mol–

,o → = − ⋅33  

where TBA+=tetrabutylammonium and TPB–=tetraphenylborate.
Thus, the distribution of NaCl, TBACl and NaTPB gives respectively the following 
distribution potentials  (F @ 105 C·mol–1):

∆DCE
w

NaCl  mVφ = 30 ,  ∆DCE
w

TBACl  mVφ = −360

∆DCE
w

NaTPB  mVφ = 445 ,  ∆DCE
w

TBATPB  mVφ = 55

These results show clearly that the distribution of a hydrophilic salt such as NaCl which 
is not very soluble in DCE or a lipophilic salt such as TBATPB which is not very soluble 
in water, gives rise to weak polarisations, whilst the distribution of a salt with a lipophilic 
cation and a hydrophilic anion gives rise to a strong negative polarisation. Inversely, the 
distribution of a salt with a hydrophilic cation and a lipophilic anion gives rise to a strong 
positive polarisation. 
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2.4.3  Distribution of an acid

 A problem that is often encountered in preparative or pharmacological chemistry 
is linked to the distribution of acid or base molecules. To treat this problem, let’s look 
at the simple case of the distribution of an acid between two phases.

 At the equilibrium, we have equality of the electrochemical potentials of the two 
ions A– and H+ in the two phases (ignoring the presence of OH– ions)

 
µ φ µ φ

H
w

H
w w

H
o

H
o o

+ + + ++ + = + +o o, ,ln lnRT a F RT a F
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and we have the equality of the chemical potentials of the acid AH in the two phases,

 µ µAH
,w

AH
w

AH
,o

AH
oo o+ = +RT a RT aln ln  (2.54)

We should also consider the acid-base equilibria in both phases
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The Galvani potential difference is in this case given by the distribution potential of 
the A– and H+ ions.
 The acidity constant in the organic phase is linked to that in the aqueous phase by
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(2.57)

 This equation shows that to calculate the pKa of an acid in the organic phase, 
knowing its pKa value in water, we need to know the standard distribution coefficients 
of the various species involved.

2.4.4  Distribution diagrams

 On the basis of the concept of Pourbaix diagrams, it is possible to make zone 
diagrams for the distribution of ionisable species such as acids or bases. To illustrate 

Fig. 2.13  Distribution of an acid in neutral and ionised form.
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A– + H+AH
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this, let’s first consider the distribution diagram for a hydrophilic AH acid in a biphasic 
water/organic solvent system. 
 At a high aqueous pH, the acid is in the anionic form and can exist in both phases 
according to the Galvani potential difference. The Nernst equation for the distribution 
of the anion, ignoring the activity coefficients is written as 
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(2.58)

Thus, the separation limit between the anionic form in water and the organic solvent 
(cA–

w = cA–
o ) is a horizontal straight line. As in the Pourbaix diagrams, the separation 

limit between the acid and basic forms in water is a vertical line given by 

 
pH p a

w= K
 (2.59)

Finally, the line separating the neutral acid in water and the anion Ao
– in the organic 

phase is given by including the acidity constant in equation (2.58) to give 
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As in the Pourbaix diagrams, we obtain a delimiting line that depends on the pH. The 
distribution diagram of a hydrophilic acid is shown in Figure 2.14.
 If the AH acid is lipophilic, we have to take into account the distribution of the 
acid in the organic phase
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(2.61)

and, neglecting the activity coefficients, the separation limit between the aqueous 
anion  Aw

– and the neutral form in the organic solvent is described by 

 
pH p a

w
AH= +K Plog o

 (2.62)

Fig. 2.14  Distribution diagram for a hydrophilic acid.
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 The separation limit between the two ionic forms is still the one given by the 
Nernst equation for the distribution of the anion. The separation limit between the 
anion and the acid in the solvent is given by 
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(2.63)

Again, this limit depends on the pH. The diagram in Figure 2.15 shows that the more 
lipophilic the AH acid is, the smaller is the stability zone of the anion Aw

–.

2.4.5  Redox equilibria at the liquid | liquid interface

 Let’s consider the transfer of electrons between an oxidised species O1 in a phase 
a and a reduced species R2 in a phase  as illustrated in Figure 2.16.

Fig. 2.15  Distribution diagram for a lipophilic acid.

Fig. 2.16  Heterogeneous redox reaction at a liquid | liquid interface
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At equilibrium

   O Rw o
1 2+   o  R Ow o

1 2+

we have the following equality of the electrochemical potentials
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 (2.64)

 Developing this, we obtain the equivalent of the Nernst equation for this reaction 
of electron transfer at the interface, i.e. 
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with Dw
of o the standard redox potential for the interfacial transfer of electrons 
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 It is interesting to bring into this equation the standard redox potentials defined 
with respect to the standard hydrogen electrode in water. To do this, we shall use 
equations (2.19) & (2.42) to get

∆ ∆ ∆o
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ET O /R SHE O /R SHE tr,O
w o

tr,R
w o

2 2 1 1 2 2
φ o o o o o= [ ] − [ ] + −[ ]→ →E E G G nF, , /

 
(2.67)

2.5   ANALYTICAL APPLICATIONS OF POTENTIOMETRY

2.5.1  Reference electrodes

 By definition a reference electrode is an electrode for which the Galvani potential 
difference f M – f S between the metal and the solution is constant. For it to be stable, 
only a negligible current can be allowed to pass through the reference electrode, not 
to disturb the conditions for equilibrium. 

Calomel electrode

 To illustrate the principle of a reference electrode, we are going to study the 
calomel electrode based on the redox couple ¹²̄ Hg2Cl2/Hg. This electrode was for a 
long time the most commonly used, before giving way to the one more often used 
nowadays, which is the silver/silver chloride electrode based on the redox couple 
AgCl/Ag. Hg2Cl2 is a solid salt called calomel, and a calomel electrode is fabricated by 
placing calomel and mercury in contact. An electrical contact is made to the mercury 
using a metal that does not form alloys with the mercury itself, such as iridium or 
even platinum. The mercury covered by calomel is kept in a small glass tube using 
for example some glass wool. This assembly as illustrated in Figure 2.17, is placed in 
a solution of KCl contained in a tube forming the body of the reference electrode. A 
glass frit is used to form a liquid junction between the internal solution of KCl and the 
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solution for which we want to measure the inner potential. The electrochemical cell 
for a calomel electrode is 

 Solution || KClsat (Internal Solution) | ¹²̄ Hg2Cl2 | Hg | Pt | Cu 

The electrochemical equilibria to consider are:

 •  the electronic equilibria between the copper wire, the platinum contact and the  
  mercury,

    
˜ ˜ ˜µ µ µ

e e e− − −= =Cu Pt Hg

 (2.68)

 •  the redox equilibrium related to oxidation of mercury

    
˜ ˜µ µ µ

Hg
Hg

Hg+ −+ =
e   (2.69)

 •  the solubility of calomel.

    
˜ ˜µ µ µ

Hg Cl Hg Cl2 2+ −+ = 1
2

 
(2.70)

These last two equations can be combined to give 

˜ ˜µ µ µ µ
Cl Hg

Cu
Hg Cl2 2− + = +−e

1
2  (2.71)

which can be expressed as

µ φ µ µ φ µ
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Cu Cu
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1
2  

(2.72)

Fig. 2.17  Calomel electrode with a liquid junction (Copyright Metrohm, CH).
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The difference of Galvani potentials between the copper wire and the internal solution 
(IS) then reads

 
F RT a

e
φ φ µ µ µ µCu IS Cu

Hg Cl Cl
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Hg Cl2 2
−( ) = + − −[ ] −− − −

1
2

o , ln
 

(2.73)

Thus, when the internal solution is saturated in KCl, aCl– is constant and therefore   
f Cu – f IS is also constant.
 When a calomel reference electrode is used to measure an electrode potential with 
a setup as the one illustrated in Figure 2.4, the electrochemical cell can be written as

 
Cu  |  Hg |  Hg Cl  |  KCl .... || ....ox, red |  M |  CuI 1

2 2 2 sat
II

The equilibrium potential E measured relative to a calomel electrode in a saturated 
solution of KCl is then 
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 Figure 2.18 shows a schematic potential distribution across a cell used to 
measure an electrode potential E with respect to a calomel reference electrode. The 
voltmeter measures the difference of the inner potentials between the two copper 
wires (E = f CuII – f CuI ). The Galvani potential difference between the copper wire 
(I) and the internal solution f CuI – f IS is constant as described by equation (2.73) 
and the Galvani potential difference between the copper wire (II) and the solution 
f CuII – f S  is determined by the ratio of activities of ox and red in the solution as 
given by equation (2.4). The liquid junction potential f IS – f S  is assumed to be 
negligible (see below).

Fig. 2.18 Schematic representation of the potential distribution in a cell. For clarity, the 
potential in the metal M and in the reference electrode is not shown.
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Silver | silver chloride electrode

 For a silver | silver chloride electrode for which the electrochemical cell reads 

 Solution || KClsat (internal solution) | AgCl | Ag | Cu

we can show by the same reasoning as above that 
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(2.75)

 In the same way, when the KCl solution is saturated,  aCl– is constant and there-
fore  f Cu – f IS is also constant.

 For the cell

Cu  |  Ag |  AgCl |  KCl .... || ....ox, red |  M |  CuI
sat

II

we have already seen (equation (2.33)) that the equilibrium potential is 
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or else
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Table 2.1 shows the standard redox potentials at different temperatures of the main 
commercialised reference electrodes.

Table 2.1  Potential (Volt) of reference electrodes on the SHE scale.
Compilation by Skoog, Holler & Nieman, Principles of instrumental analysis, 

Saunders College Publishing, 1998.

T/°C
Calomel

3.5 M KCl
Calomel

Saturated KCl 
Ag | AgCl
3.5 M KCl

Ag | AgCl
Saturated KCl 

15 0.254 0.2511 0.212 0.209

20 0.252 0.2479 0.208 0.204

25 0.250 0.2444 0.205 0.199

30 0.248 0.2411 0.201 0.194

35 0.246 0.2376 0.197 0.189
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Liquid junction potential

 The liquid junction between the electrolyte containing the redox species being 
studied and the internal solution of saturated KCl is in general supported by a glass 
frit. We can calculate the values of the potential differences across a liquid junction 
between two aqueous solutions S1 and S2, by calling on the thermodynamics of 
irreversible processes 

 

φ φS S
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1

2
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ai

ii
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(2.78)

where ti is the transport number of the species i across the junction (see §4.5). In 
the case of a junction between a concentrated KCl solution and any other not-too-
concentrated electrolyte solution (<<1M), the dominant diffusion salt transfer is that 
of KCl out of the internal solution. Given that these two ions have approximately the 
same mobility, their transport numbers are nearly equal and the potential difference 
across a liquid junction between a not-too-concentrated electrolyte solution and a 
saturated solution of KCl is almost zero, a few mV at most. A liquid junction whose 
potential difference is not negligible is indicated by a dotted vertical bar _.
 From a practical point of view, it is always preferable that the level of the internal 
solution inside the reference electrode body should be above that of the solution in 
which it is operating, in order to minimise the risk of contamination of the internal 
solution. Also, in the case of saturated KCl electrodes, it is important to check that 
KCl crystals are always present in the electrode.
 One of the main causes of errors when using reference electrodes comes from 
the liquid junction that can be ‘blocked’ in the glass frit following precipitations or 
contaminations.

2.5.2  Potentiometric Titration

 Nernst’s law for redox reactions is the basis for the potentiometric titration 
technique. The principle of this method is to titrate a redox species, e.g. hydroquinone, 
by adding an oxidising or reducing agent, according to the analyte, and by measuring 
the potential of an inert working electrode (platinum, vitreous carbon, etc.) compared 
to a reference electrode.
 For example, we can titrate  FeII  with a standard solution of  CeIV  since

 

 The potential of a platinum working electrode measured with respect to an SHE 
reference electrode will then be 
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By drawing a curve of the electrode potential as a function of the concentration of 
Fe3+, we have for the titration of an 1M Fe2+ solution

 
E

x

xPt = +
−





0 771 0 059

1
. . log

 
(2.80)

 We can see that when  x  is more or less equal to  0.5, the potential is approximately 
equal to the standard redox potential of the redox couple titrated. This is the redox 
buffer effect illustrated in Figure 2.19.

 On the contrary, if we plot the electrode potential curve as a function of added 
volume of titrant, we obtain a titration curve similar to those for acid-base titrations. 
The equivalence point, which is the inflection point of the curve, is then determined 
by tracing the derivative as shown in Figure 2.20.
 Titration analysis methods, although very old, are still widely used today in industry, 
because they are very precise, reliable and can often be automated. 

Fig. 2.19 The redox buffer effect.

Fig. 2.20  Titration of an iodine solution with thiosulfate on a platinum electrode. The potential 
scale is arbitrary.
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EXAMPLE 

Let’s calculate the titration curve for a solution 1 containing a reduced species R1 in a 
volume V1 by a solution 2 containing an oxidant O2.
The equations to consider are (1) the Nernst equations for the two redox couples O1/R1 and 
O2/R2,(2) the equations of mass conservation for these redox couples during the addition 
of the titrant solution 2, and (3) the mass balance of the redox reaction. Thus, by neglecting 
the activity coefficients, we have the following system of equations:

c
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Conservation of species 1 and 2
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c c c V V VO R a a2 2 2
+ = +[ ]/ 1

Mass balance for the reaction

V c V V c V c V V c1 1 1 2 1− +( ) ⋅ = − +( ) ⋅a R a a O1 2

where c1 and c2 are the initial concentrations of the reduced species 1 and the oxidised 
species 2, V1 is the initial volume of solution 1 and Va the added volume of solution 2.
As with pH titrations, it is much easier to calculate the added volume as a function of the 
potential than to calculate the electrode potential as a function of the added volume. We can 
easily show, e.g. with the help of a calculation software, that the solution of this system is 
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Thus we obtain the following curve
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Of course, in this calculation the volumes calculated for potential values very much below  
EO

o
1/R1 have no physical significance. In order to find the exact curve, the system must be 

solved to calculate E as a function of Va. Nevertheless, this simplified approach can be 
used to illustrate the redox buffer effect and to calculate the end-point titration volume.

2.5.3  Ion selective electrodes

 The Nernst equation for the distribution of ions is the basic concept for ion selective 
electrodes (ISE). An ISE is made up of three parts: the analyte, the membrane 
and the reference electrolyte. With the help of two reference electrodes, we can 
measure the relative Galvani potential difference between the analyte and the reference 
electrolyte as shown in Figure 2.21.

 The membrane can be either
 •  Glass, such as a borosilicate conducting glass for the detection of

 
Na+  and H+ 

ions, the main application being of course for the pH electrode.
 •  Hydrophobic polymer gel such as plasticized PVC or a supported organic liquid, 

for the detection of alkali metals by using natural selective ionophores such as 
the heterocyclic antibiotic valinomycin or synthetic selective ionophores such 
as dibenzo-18-crown-6 (see Figure 2.22) for the potassium ion.

 • Crystal, such as a mono-crystalline crystal e.g. lanthane fluoride  LaF3  for the 
detection of fluoride, or a polycrystalline crystal such as silver sulfite  Ag2S  for 
the detection of sulfite ions.

Thermodynamic approach

 The most important criterion for the correct working of an ISE is the establishment 
of an interfacial thermodynamic equilibrium between the three phases for the ionic 
species to be determined. This is written as 

Fig. 2.21  Diagram of an ion selective electrode.
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 ̃i
Analyte   =   ̃i

Membrane   =   ̃i
Reference (2.81)

The difference in Galvani potential f R – f A between the reference compartment and 
the analyte is expressed by

 
φ φ φ φ φ φR A R M M A− = −( ) + −( )

 
(2.82)

By using equation (2.44), we obtain
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(2.83)

Fig. 2.22  Complexation of the potassium ion by the dibenzo-18-crown-6 molecule.

Table 2.2  Applications of glass and membrane ion selective electrodes
(Copyright, Metrohm CH)

Analyte
Measuring
Range / M

Interfering species Examples

H+ 10–14 ... 1 Li+
Measurement of pH and 
titrations

Na+ 10–5 ... 1 pH>pNa +4, Ag+, Li+, K+ Water, clinical analysis, ...

K+ 10–6 ... 1 Cs+, NH4
+, H+, Na+ Soil, fertilizer, wine, 

clinical analysis , ...

Ca2+ 5 10–7 ... 1 Na+, Pb2+, Fe2+, Zn2+ Mg2+ Soil, food, milk, ..

NO3
– 7 10–6 ... 1 Br–, NO2

–, Cl–, OAc– Soil, vegetables, water, 
food, ...

BF4
– 7 10–6 ... 1 NO3

–, SO4
2–, ClO4

–, F–, OAc– Surface active agents, 
plating baths….
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because the sum of the standard transfer potentials DR
Mf i

o and DM
Af i

o
 is  zero. Thus, for 

the setup illustrated in Figure 2.21, the potential measured is written as

 E = − + − + −φ φ φ φ φ φCu R R A A CuII I

 (2.84)

 If the two reference electrodes are identical, e.g. two Ag | AgCl | KClsat ||… 
electrodes, then the terms f CuII – f R  and f A – f CuI given by equation (2.75) cancel 
out, and so the potential measured is directly f R – f A. Figure 2.23 illustrates the 
distribution of potential for an ion selective electrode comprising one membrane and 
two identical reference electrodes.
 Given that the concentration of the species i to be determined in the analyte is 
fixed in the reference compartment, the response of an ISE is 60/z mV per decade of 
concentration of the species i in the analyte.
 Notice that the concentration of the ion i in the membrane is not involved. 
Nevertheless, this should be high enough so that an equilibrium between the three 
phases can be established. It is also important to note that the equilibrium condition 
(2.81) applies above all to the distribution of the ion i, assuming that the distribution 

Table 2.3   Applications of crystalline ion selective electrodes
(Copyright, Metrohm CH).

Analyte Measuring
Range / M

Interfering species Examples

F– 10–6 ... sat OH–
Cosmetic products , 
pharmaceuticals, manure, 
...

Cl– 5 10–5 ... 1 Br–, I–, S2–, CN–, NH3, S2O3
– Food, paper,...

Br – 5 10–6 ... 1 Cl–, I–, S2–, CN–, NH3, S2O3
– Clinical analysis, gasoline, 

Chemical industry

I– 5 10–8 ... 1 Cl–, Br–, S2–, CN–, NH3, S2O3
– Clinical analysis, 

determination of Hg

CN– 8 10–6 ... 10–2 Br–, I–, Cl– Water,  plating baths

SCN– 5 10–6 ... 1 Cl–, Br–, S2–, CN–, S2O3
– Plating baths

S2–, Ag+ 10–7 ... 1 Proteins
S2–: Food, paper
Ag+: plating baths

Cu2+ 10–8...10–1 Ag+, Hg2+, S2– Water, plating baths

Cd2+ 10–7...10–1 Ag+, Hg2+, Cu2+ Soil, water, plating baths

Pb2+ 10–6...10–1 Ag+, Hg2+, Cu2+ Soil, water,  plating baths
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of the other ions can be neglected, i.e. that the concentrations of the other hydrophilic 
ions are negligible in the membrane and that the concentrations of the lipophilic ions 
are negligible in the two aqueous compartments. If this is not the case, diffusion of the 
different salts through the membrane will take place. When salt transport cannot be 
neglected, the equilibrium condition (2.81) applies to the activities of the species i at the 
boundaries and equation (2.83) applies to the surface concentrations at the membrane. 
However, the diffusion of a salt from one phase to the other is a slow process in relation 
to the time of the experiment, and a potentiometric measurement can be done with 
frequent calibration to take into account the departure from the ideal behaviour. 

pH electrode 

 The pH is defined by the equation 

 
pH

H
= − +loga

 (2.85)

 The most direct method for measuring the pH of a solution is to measure the 
potential of a hydrogen electrode working with a hydrogen fugacity equal to the 
standard pressure of 1 bar, versus a standard hydrogen electrode (SHE) as shown in 
the cell below.

 
Cu  |  Pt |  H ( = 1), H ( ).... || .... H ( ),H  |  Pt |  CuI

H
1
2 2

1
2 2

II
+

+ +a p po o

Neglecting the potential of the liquid junction between the two solutions, the equality 
of the hydrogen fugacities in the two compartments gives us directly 

 
E

RT

F
a

RT

FSHE H
pH= = −+ln

ln10

 
(2.86)

 If, in place of a standard hydrogen reference electrode, we use a hydrogen 
reference electrode operating with a buffer solution of a given pH (pHbuffer) then, by 
neglecting the potential of the liquid junction, and by keeping the hydrogen fugacity 
equal in the two compartments, we have 

Fig. 2.23 Potential distribution for an ion selective electrodes comprising two identical 
reference electrodes.
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E

RT

F
= [ ]ln10

pH – pHbuffer
 

(2.87)

 Nevertheless, as we have already seen, hydrogen electrodes are not practical 
to use, and glass electrodes are most commonly used. They are often found in the 
form of combined electrodes as illustrated in Figure 2.24. The internal compartment 
of the electrode contains a solution of constant pH with a reference electrode (e.g. 
Ag | AgCl). The external compartment contains a reference electrode in contact with 
the analyte via a liquid junction.

 The composition of glass pH electrodes varies with the manufacturer. The major 
components are SiO2, Na2O, CaO with a certain proportion of Li and Ba. The mobility 
of the cations Na+ and Li+ ensures the passage of a very small current in the glass and 
allows a thin layer to form on the surfaces of the glass in contact with the solutions 
where the alkali cations are replaced by protons. This thin layer, sometimes called the 
hydrated glass layer, is the basis of the functioning of the pH electrode.
 The pH electrode requires frequent calibrations in buffer solutions. Institutions 
such as IUPAC (the International Union of Pure & Applied Chemistry) or the NIST 
(National Institute of Standards and Technology, USA) have established lists of refer-
ence buffers, and certified standard buffer solutions are available on the market. The 
measuring cell of a pH electrode is written as 

     Ag | AgCl | KCl ≥ 3.5 M || Solution | Glass | Buffer Solution + 0.1 M NaCl | AgCl | Ag

Fig. 2.24  Glass pH electrode (Copyright, Metrohm,  CH).
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 Modelling the response of a glass electrode remains difficult, and the simple 
model of the response of an ion selective electrode developed above (equation (2.83)) 
is not really applicable in that it is not certain that the protons can be in equilibrium 
throughout the glass. Other models are based on the concept of hydrated glass layers 
where protons and sodium ions coexist. 
 The difference in Galvani potential fR – fA between the reference buffer solution 
and the analyte is then given by 

φ φ φ φ φ φ φ φ φ φR A R HGR HGR G G HGA HGA A− = −( ) + −( ) + −( ) + −( )
 

(2.88)

where the exponents HGR and HGA indicate the layers of hydrated glass on the 
reference solution side and the analyte side.
 Equation (2.44) for the equilibrium of the proton between the aqueous solution 
and the adjacent layer of hydrated glass allows us to write 
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and the one for the equilibrium of sodium between the layer of hydrated glass and the 
glass 
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G
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from which we obtain:

Fig. 2.25  Ionic equilibria in a glass electrode.
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(2.91)

The second term in equation (2.91) is sometimes called the asymmetry potential that 
can be measured by calibration. This corresponds to the exchange of ions.

 H+HGA  +  Na+HGR    i   Na+HGA + H+HGR

This term varies little, but its fluctuations are not negligible when the electrode is 
being used. Fortunately, these variations, also called ‘drifts’, in the response of the 
electrode are slow and may be compensated for by regular calibration. 

The Nikolsky equation

 In the presence of an interfering ion j that can also be partially dissolved in the 
membrane, the Galvani potential difference is not imposed solely by the distribution 
of the principal ion i but also by the distribution of the interfering ion j, and equation 
(2.83) becomes

 

φ φR A
A pot A

R− =
+ ( )











RT

z F

a K a

ai

i ij j
z z

i

i j

ln

/

 

(2.92)

where Kij
pot is the selectivity coefficient of the principal ion i with respect to the 

interfering ion j. This is an empirical relation known as the Nikolsky equation and the 
selectivity coefficients are measured directly from the response of the ISE.

Fig. 2.26  Response of an ion selective electrode in the presence of interfering ions. 
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 Let’s demonstrate the Nikolsky equation in the case where the principal ion and 
the interfering ion are monovalent. To do this, let’s consider the equilibrium relative 
to the penetration of the interfering ion in the membrane by an exchange reaction that 
can be written as 

iM +  jA    i    iA  +  jM

The equilibrium constant is independent of the Galvani potential difference between 
the membrane and the aqueous analyte solution and is given by 

 

K
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(2.93)

The Galvani potential difference across the membrane | analyte interface is then
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(2.94)

The electroneutrality condition in the membrane reads

 
c c ci j

M M
X
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(2.95)

Thus, the activity ratio between the analyte and the membrane can be expressed as
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The Galvani potential difference across the membrane | analyte interface is then
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In the same way, the Galvani potential difference across the membrane | reference 
electrolyte interface is also written as 
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© 2004, First edition, EPFL Press



78 Analytical and Physical Electrochemistry 79Electrochemical equilibria

with the hypothesis that the concentration of the interfering ion in the reference 
electrolyte is negligible. Finally, the potential at the terminals of the ISE is obtained 
by adding equations (2.97) and (2.98) where the elimination of the standard Gibbs 
energies gives
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If the concentration of the principal ion in the membrane is quasi-constant, then 
the activity coefficient is itself quasi-constant, and if, furthermore, we consider the 
activity coefficient of the interfering ion as almost equal to unity, then the selectivity 
coefficient  Kpot

ij  is given by

K Kij ij i
pot M= γ

 
(2.100)

2.5.4  Ion Selective Field Effect Transistor (ISFET)

 Let us consider a p-type field effect transistor with n-type source and drain. 
The principle of the field effect is to polarise the metal gate of the transistor with a 
positive potential with respect to the p-type semiconductor. In this way, just under 
the insulating layer (often made of silicon dioxide SiO2 or silicon nitride Si3N4), 
the semiconductor becomes n-type by the accumulation of electrons caused by the 
positive polarisation of the gate. As soon as this inversion from p-type to n-type has 
taken place under the gate, a current flows between the source and the drain.
 In a membrane ISFET the metal gate is replaced by a membrane that is similar 
to the ones used in ISEs. In this way, the Nernst’s law for the distribution of an ion  
i across the analyte | membrane interface (see equation (2.44)) is used to control the 
field effect in the transistor.

2.6   ION EXCHANGE MEMBRANES 

2.6.1  Structure

 Membranes play an ever increasing role in separation processes. The driving 
force for any separation process is always a gradient of electrochemical potential. 
These gradients can be generated either by pressure gradients (microfiltration, 
ultrafiltration, inverse osmosis), by concentration gradients (dialysis), or by electrical 
potential gradients. 
 Ion exchange membranes are principally polymer membranes treated by graft-
ing with anionic or cationic groups. The anionic groups are often sulfonates  (–SO–

3)
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or carboxylates  (–COO–), whilst the cationic groups are principally tertiary amines  
(–N+(CH3)3) .
 These polymers are generally strongly reticulated in order to avoid excessive 
swelling on contact with solutions. They come in a granular form, for example for 
ionic chromatography, or in the form of sheets with a polymer support incorporated. 
The characteristics of ion exchange membranes used in industry are the following:
 ∑  high charge selectivity
 ∑  good ionic conductivity
 ∑  good mechanical stability
 ∑  a charge density of 1 to 2 molal (1 mole of ions per kilogram of polymer).

2.6.2  Donnan potential

 A cation exchange membrane is impermeable to anions, while an anion exchange 
membrane is impermeable to cations (with the exception of protons). So, if a cation 
exchange membrane separates two electrolyte solutions (e.g. NaCl) and if a potential 
is applied to the terminals of the membrane, the electric current across the membrane 
will be carried only by the mobile cations. The exclusion of the mobile anion Cl–  from 
the membrane is due to the Donnan exclusion principle. In order to understand this 
principle, let’s consider a cation exchange membrane with anionic fixed charges R–

and sodium counter-ions in equilibrium with adjacent solutions of NaCl and calculate 
the concentration of chloride ions in the membrane at equilibrium.

Fig. 2.27  Anion exchange polymer.
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 The equality of electrochemical potentials of the mobile ions between the 
membrane phase and the liquid phase is written as 

µ γ φ µ γ φi i i i i i i iRT c RT z F RT c RT z Fo o, ,ln ln ln lnm m m m s s s s+ + + = + + +
 

(2.101)

Considering the standard states to be equal in the membrane and in the aqueous 
solution (i

o,m =  i
o,s) because the solvent is common to the two phases, we can see 

that the Galvani potential difference between the two phases is then 
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In general, the cation molality inside the membrane (e.g. Na+) is larger than in solu-
tion. This means that we have a difference in inner potential between the solution and 
the membrane. This is called the Donnan potential.
 To estimate the chloride concentration in the membrane, we therefore write that
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or again
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Ignoring in a first approximation the activity coefficients, this equation simplifies to 
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Fig. 2.28   Cation exchange polymer.
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The electro-neutrality of the two phases is written as 
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(2.106)

where  R–  is the anion fixed in the membrane
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By combining (2.104), (2.105) and (2.106), we obtain a quadratic equation for cm
Cl–

c c c c
Cl
m

Cl
m

R
m

Cl
s

− − − −( ) + = ( )2 2

 
(2.108)

Resolving this equation gives
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If  cs
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and
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(2.111)

The condition cm
R– > c s

Cl–  applies above all to membranes in which the space accessible 
to the electrolyte is restricted by narrow pores. 

Fig. 2.29  Cation exchange membrane. 
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APPENDIX : THE RESPIRATORY CHAIN

 Standard redox potentials play an important role in redox metabolisms such as the 
respiratory chain, photosynthesis and in a more general way, bioenergetic systems.
 It is important to note that the standard redox potentials in biology are not always 
expressed in relation to the standard hydrogen electrode (aH+ = 1), but in relation to a 
hydrogen electrode working at the physiological pH of 7. Thus the two scales differ by 
420 mV; the standard redox potential of oxygen on the biological scale being 0.82 V 
instead of 1.24 V on the SHE scale. 
 Also, the standard redox potentials of biological systems have mostly been 
measured in aqueous media even if the redox species operates in vivo in a membrane 
environment.
 Nonetheless, Figure 2.30 shows that in this chain, the two electrons generated 
by the oxidation of NADH tumble down this cascade of redox reactions eventually 
to reduce a molecule of oxygen. This transfer of electrons therefore happens in an 
exergonic fashion. The first stage of the chain is an enzyme reaction involving the 
enzyme NADH dehydrogenase whose prosthetic group is the flavine mononucleotide 
FMN. In fact, this first stage is itself a chain of redox reactions.

Fig. 2.30  Successive reactions taking place in the respiratory chain.

Respiratory chain

Global reaction

NADH + 1/2 O2 + H+ Æ NAD+ + H2O
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CHAPTER 3

ELECTROLYTE SOLUTIONS

3.1   LIQUIDS

3.1.1  Radial distribution function

 To consider the structure of a liquid, it is useful to define the radial distribution 
function g(r) which is the representation of the probability of finding a given atom 
or molecule in a shell of thickness dr from a central atom or molecule. The quantity 
n(r)dr is then the number of atoms or molecules whose distance from the origin is 
between r and r+dr and is given by

 n r r g r r r( ) ( )d d= ρ π4 2  (3.1)

where  is the density of the liquid.
 In the case of a crystalline solid, the distribution function is regular, and represents 
the order of the lattice. The distribution function of solid mercury clearly illustrates 
the order existing at short and long distances around the central atom. In the case of 
a liquid, the probability of finding an atom far away from the central atom becomes 
uniform, and this value is usually taken to normalise the radial distribution function 
of the liquid as illustrated in Figure 3.1 for liquid mercury. This figure shows that, 
for a liquid, there exists an order at short distances around the central atom which 
disappears very quickly after a few atomic radii.

Fig. 3.1 Distribution function for liquid and solid mercury (Adapted from D.Tabor: Gases, 
liquids and solids, Cambridge University Press, 1969, Cambridge).
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 This type of distribution function is characteristic of liquids. Even for a liquid as 
complex as water, we can see in Figure 3.2 that the order does not extend above three 
molecular layers.
 We can therefore conclude that a liquid differs from a solid by the value of the 
structural order. In a solid, this order extends over all the molecules with a few faults 
spread through the network. In a liquid, the structural order extends only to sub-
ensembles, whose size varies constantly. Thus the coordination number of a molecule 
in a liquid varies perpetually (between 4 and 5 in the case of water), whilst it is fixed 
in a solid. 

3.1.2  Water

 Water is the commonest solvent surrounding us, and above all the major 
constituent of our body (55 % of their mass, 70-80 % of the mass of our brain). 
Furthermore, water is a solvent with physical properties that are rather special. From 
a geometric point of view, water contains 8 electrons distributed in hybrid orbitals sp3, 
like methane and ammonia. The presence of two orbitals and two OH bonds facilitates 
a tetrahedral coordination of H2O, which is the reason for its specific properties. In the 
solid state, there are a large number of crystalline structures according to temperature 
and pressure. The form existing at 0°C and atmospheric pressure is Ice I, which has a 
hexagonal structure comprising cavities formed by six water molecules as illustrated 
in Figure 3.3. Each molecule is then tetracoordinated, and this results in a density of 
only 0.924 g/ml, rather amazing on first sight.
 At room temperature, water is a liquid, unlike similar molecules such as CH4, 
NH3 and H2S that are gaseous. This liquid state indicates the presence of very strong 
interactions that maintain cohesion and induce a certain organisation of the liquid. The 

Fig. 3.2  Distribution function for liquid water at room temperature, r represents the distance 
between two oxygen atoms (G. Hura et al, Phys. Chem. Chem. Phys., 5 (2003) 1981-1991, 
Reproduced by permission of the PCCP Owner Societies).
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hydrogen bonds play an essential role in the structure of water, whether it is liquid or 
solid. 
 In the case of liquid water, each molecule is surrounded by four or five molecules, 
which is very few compared to a model of rigid spheres where each sphere is 
surrounded by twelve neighbours, and is also few compared to simple liquids like 
argon where each atom is surrounded by at least eight neighbours.
 There are many models of liquid water. We can cite the Frank model, called ‘the 
mixture model’, where water is considered as a mixture of aggregates of molecules 
organised on the basis of the structure of ice and of free molecules. This model is 
based on the idea that the hydrogen bonds are highly directional. The other family of 
models considers water as a mixture of two or several types of water molecules, e.g. 
a mixture of tetra- and penta-coordinated molecules.

3.2  THERMODYNAMIC ASPECTS OF SOLVATION 
 We have seen that the work done in transferring an ion from a vacuum to a phase 
is by definition the electrochemical potential, and now we shall see how this value is 
linked to thermodynamic data of formation and solvation. The numerical values given 
in this paragraph come from various sources (which explains why sometimes there is 
a difference in the values) and are only given generally as an indication of the orders 
of magnitude involved.

Fig. 3.3  Structure of ice I. Each atom of oxygen is surrounded by four atoms of hydrogen, 
two for the molecule at 101pm and two for two neighbouring molecules at 175pm (from 
http://www.sbu.ac.uk/water).
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3.2.1  Standard enthalpies of ion formation

 The thermochemical data of formation such as the standard enthalpy of formation 
are expressed from gaseous, liquid or solid reference states (the most stable state of 
the element considered at 298 K). For example, the standard formation enthalpy of 
liquid water corresponds to the reaction 

 H O H O (H O kJ mol2 g 2 g 2 l f 2 l
1

( ) ( ) ( ) ( ) ) .+ → = − ⋅ −1
2 285 8∆H o

IMPORTANT NOTE 

The tables of thermodynamic data give the formation enthalpies and the Gibbs energies 
of formation, but give the absolute standard molar entropies for which the reference state 
is a perfect crystal at 0 K, except for ions in solution for which the reference state is the 
standard molar entropy of the proton in solution, taken to be zero.

The Born-Haber cycle for NaCl(s) 

 The standard formation enthalpy of a solid may be found by several methods. 
Let’s take the classic case of sodium chloride NaCl. The general reaction can be 
written as

 Na Cl NaCl(s)
1
2 2 g (s)+ →( )

In fact, this equation may be considered as the sum of five elementary reactions: 
the sublimation of solid sodium, the ionisation of atomic sodium, the atomisation of 
molecular chlorine, the electron affinity of atomic chlorine and finally the formation 
of NaCl(s) from the ions in the gas phase.

The change in standard enthalpy of the fifth reaction is the standard reticulation 
enthalpy (or lattice formation enthalpy) which corresponds to the formation of a 
crystalline solid from ions in the gas phase. 

 M X MX(g) (g) (s)
+ −+ →  

         
∆HR

o ≤ 0
 

 

All standard reticulation enthalpies are negative. The energy of reticulation is defined as 
the reticulation enthalpy at T = 0 K. The lattice energy (or lattice dissociation energy) or 
network energy is positive and equal to the opposite of the reticulation energy.

r

r

r

r

r

r

r

r
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 Figure 3.4 illustrates how to calculate the standard enthalpy of formation of 
NaCl(s) using experimentally accessible values.

The Born-Haber cycle for HCl(aq)

 Born-Haber cycles can also be used for determining the standard formation 
enthalpies of species in solution, which in the case of acids and salts is the standard 
formation enthalpy of the ions.

 
1
2 2 g g (aq)

–Cl   Cl( ) ( )
–+ →e           ∆Hf (aq)Clo ( )−

 

where the standard state in solution is in general either 1 mol·l–1 or 1 mol·kg–1.
 Because it is impossible, respecting the neutrality of the phases, to measure 
directly the formation enthalpies of the isolated ions in solution, it is necessary to make 
an arbitrary choice of scale, and a generally used convention is to take the standard 
formation enthalpy of the aqueous proton as equal to zero at all temperatures.

 
1
2 2(g) (aq)

+
gH H   → + e( )
–

          ∆Hf (aq)
+Ho ( ) = 0   

In the same way, we make the hypothesis that the Gibbs energy of formation is also 
zero at all temperatures 

 ∆Gf (aq)
+Ho ( ) = 0

and consequently that the absolute standard molar entropy is also zero. Be careful, this 
last hypothesis is often a source of confusion.

 So ( )H(aq)
+ = 0

 Thus, using these hypotheses, the standard formation enthalpy of the chloride 
anion in solution is equal to the standard formation enthalpy of HCl(aq) and can be 
determined by measuring experimentally the standard hydration enthalpy of HCl(g), 

Fig. 3.4  The Born-Haber cycle for solid NaCl. Numerical values in kJ·mol–1.
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the standard formation energy of HCl(g) being determined from the bond energies of 
H2, Cl2 and HCl as illustrated in Figure 3.5.
 Actually, it is possible to measure the hydration enthalpies of salts (e.g.NaCl(s) 
Æ Na+

(aq) + Cl–(aq)) and acids (e.g. HCl(g) Æ H+
(aq) + Cl–(aq)). From an experimental 

point of view, the method consists of placing a precise quantity of the salt in a glass 
bulb, immersing this in the solvent and measuring by calorimetry the heat generated 
by the dissolution of the salt when the bulb is broken. Table 3.1 shows some values 
obtained by this method. Note in passing that these values can be either positive or 
negative.

Fig. 3.5  The Born-Haber cycle for aqueous HCl. Numerical values in kJ·mol–1. The dotted 
arrow relates to the standard hydration enthalpies.

Table 3.1 Standard hydration enthalpies of salts in kJ·mol–1

(NBS Tables of chemical thermodynamic properties, 
J. Phys. & Chem. Reference Data, 11 (1982)).

F– Cl– Br– I– OH– CO3
2– NO3

– SO4
2–

Li+  4.9  –37  –48.8  –63.3  –23.6  –18.2  –2.7  –29.8

Na+  1.9  3.89  –0.6  –7.5  –44.5  –26.7  20.4  –2.4

K+  –17.74  17.22  19.9  20.3  –57.1  –30.9  34.9  23.8

NH4
+  –1.2  14.8  16  13.7  25.69  6.6

Mg2+  –17.7 –160 –185.6 –213.2  2.3  –25.3  –90.9  –91.2

Ca2+  11.5  –81.3 –103.1 –119.7  –16.7  –13.1  –19.2  –18.0

DH i
o  (H)  = 1311

H+
(g) +  Cl(g) + e–

(g) 

¹–
²
 DH o  (H–H)  = 218

¹–
²
 DH o  (Cl–Cl)  = 121

DH f
o  (Cl–(aq))  = –167

H(g) + Cl(g)

H+
(aq) + Cl(aq) 

H+
(g) + Cl–(g)

¹–
²
 DHo  (H – Cl) = –431

DH f
o  (HCl(g)) = –92

DH o
hyd

  (HCl(g)) = –75

¹–
²
 H2(g) + ¹–

²
 Cl2(g)

DHhyd
o  (Cl–(g)) = –1468.3

DHea
o  (Cl) = –348.7

HCl(g)
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The Born-Haber cycle of NaCl(aq)

 Knowing the standard formation enthalpy of the ion Cl–(aq), a Born-Haber cycle for 
NaCl dissolved in water allows the determination of the standard formation enthalpy 
of Na+

(aq) from the hydration enthalpy of the salt NaCl. as shown in Figure 3.6.

Electrochemical measurement of the standard formation enthalpies

 The Gibbs energy of formation of an ion in the aqueous phase is, for certain 
species, a quantity that can be measured by electrochemical methods. Still looking at 
sodium, let’s consider the reaction 

 
1
2 2(g) (aq)H   Na  + +

  o  H   Na(aq) (s)
+ +

The standard Gibbs energy of this reaction is equal to the opposite of the standard 
Gibbs energy of formation of the sodium ion in aqueous solution. Thus, using 
equation (2.22), it follows that

 ∆G F Ef (aq) Na /Na SHE
Nao o( )+ = [ ]+  

(3.2)

It is important to note that the choice of the arbitrary scale of standard formation 
enthalpies of ions in solution (Hf

o (H+
(aq)) = 0 kJ◊mol–1) is completely 

compatible with the arbitrary choice of the scale of standard redox potentials, i.e.

 
E

H / H
SHE

1
2 2

  V+






=o 0 .

Fig. 3.6  The Born-Haber cycle for aqueous NaCl. Numerical values in kJ·mol–1. The dotted 
arrows relate to the standard hydration enthalpies of the ions.
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 The standard formation entropy is then given by the temperature coefficient of the 
standard redox potential 

 

∆ ∆
S

G

T
nF

E

T
p

p

f
f SHEo
o o

= −






= −
[ ]











∂
∂

∂

∂
 

(3.3)

We deduce from this that the standard formation enthalpy of the sodium ion in 
solution is given by 

 

∆ ∆ ∆H G T S

F E T
E

T
p

f (aq) f (aq) f (aq)

Na /Na SHE

Na /Na SHE

Na Na Na

                    

o o o

o
o

( ) ( ) ( )+ + += +

= [ ] −
[ ]





























+

+∂

∂
 

(3.4)

EXAMPLE 

Let’s calculate the standard formation enthalpy of aqueous sodium, knowing that at 25°C  
[E o

Na+/Na]SHE = – 2.714 V and that

∂

∂

E

T
p

Na /Na SHE –1  V K
+[ ]













= − ⋅
o

0 000772.

By substituting in equation (3.2), we find the standard Gibbs energy of formation

∆Gf (aq)
–1Na  kJ molo ( ) .+ = − ⋅261 86

and by substituting in equation (3.4), we then deduce the standard formation enthalpy 

∆Hf (aq)
–1Na  kJ molo ( ) .+ = − ⋅239 7

Note that it is also possible to calculate the formation entropy from the standard molar 
entropies, which are 

So ( ) .Na  J mol K(aq)
– –+ = ⋅ ⋅60 25 1 1

So ( ) .Na  J mol K(s)
– –= ⋅ ⋅51 45 1 1

So ( ) .H  J mol K2(g)
– –= ⋅ ⋅130 684 1 1

to obtain

∆Sf (aq)
–1 –1Na J mol Ko ( ) . . . .+ = − − − ⋅[ ] = ⋅ ⋅51 45 60 25 130 684 74 141

2

which can be compared to the value obtained from the temperature variation of the 
standard redox potential given by equation (3.3) 

∆Sf (aq)
–1 –1Na J mol Ko ( ) . .+ = ⋅ = ⋅ ⋅96485 0 000772 74 48
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Calculation of the standard redox potential from thermodynamic data

 To calculate a standard redox potential, we can calculate the Gibbs energy of the 
equilibrium 

 ox + n–2 H2  i n H+ + red

and obtain the standard redox potential from equation (2.22).

EXAMPLE:

Take, for example, the reduction of ferric ions to ferrous ions 

Fe3+
(aq) + e–

  o Fe2+
(aq)

and calculate the Gibbs energy of the equilibrium 

Fe   +   H(aq)
3+ 1

2 2(g) o  
Fe H(aq)

2+
(aq)
++

We can break this equilibrium down into elementary equilibria by making formation 
reactions appear 

The numerical application of equation (2.22) gives us 

E G F G G G F
Fe /Fe SHE

f (aq) f (aq) f (aq)III II Fe H Fe

                     V

o o o o o[ ] = − = − + −[ ]
= − − +[ ] =

+ + +∆ ∆ ∆ ∆/ ( ) ( ) ( ) /

/ .

2 3

78 900 4 600 96 485 0 77

3.2.2  Standard enthalpies of ionic solvation

 The standard solvation enthalpy, e.g. of the sodium ion, corresponds to the 
reaction 

 Na         Nag aq( ) ( )
+ +→           ∆Hsol

o
 

The standard solvation enthalpy corresponds to the transfer of the ion from the gas in 
the standard state ( po = 1 bar ) to the solution in the generally considered standard 
state in the scale of molalities (mol·kg–1 ) or of molarities (mol·l–1 ). When water is the 
solvent, the solvation enthalpy is called the hydration enthalpy.
 As for standard formation enthalpies, the standard solvation enthalpies are in 
general given on a scale where the standard solvation enthalpy of the proton is taken 
to be zero.

 
H         H(g)

+
(aq)
+→

            ∆Hhyd H  kJ molo ( )+ −= ⋅0 1

r

rr

i

i

i

i

r
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 This is equivalent to saying that the hydration enthalpy corresponds to the transfer 
of an ion from the gas phase to the aqueous phase, associated to the transfer of a 
proton from the aqueous phase to the gas phase, as illustrated in Figure 3.7.
 Using the cycle of Figure 3.7, the standard hydration enthalpy of Na+ reads

 ∆ ∆ ∆ ∆H H H Hhyd f (aq) f (g) f (g)Na Na Na Ho o o o( ) ( ) ( ) ( )+ + + += − +

 Knowing that the standard formation enthalpy of the gaseous proton is 1529 
kJ·mol–1, and that the standard formation enthalpies of gaseous and aqueous sodium 
ions are equal to 603.1 and – 240.2 kJ·mol–1 respectively, we deduce that the standard 
hydration enthalpy of sodium is 685.7 kJ·mol–1 on the proton scale. The ionic standard 
hydration enthalpy can also be calculated from thermodynamic cycles such as the one 
illustrated in Figure 3.6 for aqueous NaCl.
 In order to have an absolute scale of standard hydration enthalpy, we need to 
know the standard enthalpy of the reaction having the proton at rest in the gas phase 
as the origin and the solvated proton as the final state. From an experimental point 
of view, we can for example make the hypothesis that the hydration enthalpy of a 
proton is about the same as the attachment energy of a proton to a group of molecules 
of water in the gas phase. Via this approximation, which neglects the fact that the 
aqueous phase has a surface potential, we get

 ∆Hhyd
1(H ) 1090 kJ molo + −= − ⋅

 Other experimental procedures based on other approximations have been 
suggested for evaluating the standard hydration enthalpy of the proton, and the 
values obtained vary ± 30 kJ·mol–1 around the above cited value which is often taken 
as a reference. It is clear that if, in the cycle of Figure 3.7, we take Ho

hyd(H+) = 
–1090 kJ◊mol–1, we then obtain the standard hydration enthalpy of sodium on the 
absolute scale i.e. 686 – 1090 = – 404 kJ·mol–1 (see Table 3.3).
 The fact that Gibbs energies and enthalpies of solvation of ionic species 
are not measurable is a major problem. In effect, it is not possible to add or 
extract an ion without disturbing the electroneutrality of the liquid phase. 
In the case of organic solvents, it is cumbersome to use the proton scale 
since the weak dissociation of acids in these solvents make the experiments 

Fig. 3.7  Thermodynamic cycle for the hydration of sodium.
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difficult. Another commonly used approach consists either of considering that the 
solvation enthalpy of an ion is equal to that of a similar neutral atom or molecule 
(e.g. ferrocene-ferricinium) or of considering that the Gibbs energies of solvation of 
a similar cation and anion are equal (e.g. tetraphenylarsonium tetraphenylborate). In 
the latter case, we have:

 ∆ ∆ ∆G G G
solv,TPA solv,TPB solv,TPA TPB+ += =o o o

– –
1
2  

(3.5)

Note that these last two methods provide also relative solvation enthalpy scales and 
not absolute ones.

3.2.3  The Born model

 We saw in chapter 1 that the electrochemical potential ̃i of a charged species 
i included a chemical contribution i (called by an abuse of language the chemical 
potential) which takes into account all the short distance interactions between the 
ion and the solvent, and two electrostatic contributions linked to the surface potential 
(ziF) on one hand, and to the external potential of the phase (ziF)  on the other.
 In 1920, Born proposed a model of ionic solvation based on a cycle as shown 
in Figure 3.8, which avoided the problems linked to the surface potential and the 
external potential. In this cycle, the work of transfer wt of an ion i from a vacuum to a 
solvent phase (or from a gas in the standard state) can be considered as the sum of the 
work wd of discharging the ion in vacuum to form a neutral sphere of the same size 
as that of the ion, the work wn of transferring this neutral sphere from the vacuum to 
the phase, and the work wc of charging this sphere in the solvent phase considered as 
a continuum dielectric. Thus, the overall work to transfer an ion is written as

 w w w wt d n c= + +  (3.6)

 The work wn to transfer an uncharged sphere can be taken a priori as the chemical 
potential of a rare gas of the same size in the given solvent. The solvation energies of 

Fig. 3.8   The Born solvation model. 
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rare gases are always positive since they correspond to a work of cavity formation in 
the solvent. Nevertheless, it is noticeable (Table 3.2) that the Gibbs energy of solvation 
of the rare gases decreases as their size increases. This is due to the fact that the 
polarisability of the atoms increases with their size, resulting in a greater atom-solvent 
interaction energy, translating into a negative contribution to the solvation energy. 
 Another approach for evaluating wn consists of considering that the work of 
formation of a cavity is equivalent to the work of formation of a spherical surface with 
a radius corresponding to that of the ion. From the definition of the surface tension 
given in §5.1, this work comprises a term relative to the creation of a new spherical 
surface 4r2  and a term relative to the volume of the cavity and the pressure
4/3r3p.
 The work of charging a neutral sphere of radius r in vacuum from the charge 
q = 0 to the charge of the ion q = ze where z is the charge number of the ion and e the 
elementary charge, is defined as

 
w V q q

ze
= ∫ ( ) d

0  
(3.7)

where V(q) is the electrostatic potential generated by the charge on the sphere, which 
is itself a function of the charge q and the radius rion

 
V q

q

r
( ) =

4 0πε ion  
(3.8)

 Thus, the work  of discharging the ion in vacuum is 

 
w

q

r
q

q

r

z e

r

ze

o

ze

d
ion ion ion

d= − = −








 = −∫ 4 8 800

2

0

2 2

0πε πε πε  
(3.9)

 In a similar way, the work wd of charging the sphere in a dielectric medium with 
a relative permittivity r is

 
w

z e

rc
r ion

=
2 2

08πε ε  
(3.10)

Table 3.2  Values of standard hydration and solvation energies in benzene for the rare gases 
(M.H. Abraham & J. Liszi, J. Chem. Soc. Faraday Trans. I, 74 (1978) 1604).

Gas Radius / pm G o
hyd / kJ◊mol–1

G o
sol / kJ◊mol–1

Benzene [r=2.3]

He 129 29.5 23.5

Ne 140 29.0 22.5

Ar 171 26.2 17.4

Kr 180 24.9 14.6

Xe 203 23.4 11.1
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 In conclusion, we can write that 

 
w w w w

z e

rt n d c
ion r

− = + = − −






2 2

08
1

1
πε ε  

(3.11)

This difference wt–wn represents the ion-solvent interaction Gibbs energy, DGIS, 
in as much as it represents the contribution of the ionic charge on the short range 
interactions. Since the electrostatic contribution is the dominant factor compared to 
wn, DGIS can be considered in a first approximation equal to the chemical potential of 
the ion, the Gibbs hydration energy corresponding to the real chemical potential. 

 
∆G

z e N

rIS
A

ion r
= − −







2 2

08
1

1
πε ε  

(3.12)

 Given that the relative permittivity of solvents varies from 2 to more than 100, 
we can see that this Gibbs energy is always negative and consequently the solvent 
stabilises the ion, as shown in the graph in Figure 3.9 for the case of aqueous 
solutions.
 These values of ion-solvent interaction energy can be compared to the energies of 
covalent bonds such as the energies of the carbon-carbon bonds which are 348, 612 
and 962 kJ·mol–1 for single, double and triple bonds respectively. As can be seen on 
the graph of Figure 3.10, for an ionic radius of 2 Å, the ion-solvent interaction Gibbs 
energy is about 300 kJ·mol–1 for a large range of solvents, that is almost as much 
energy as for a single covalent bond.
 An important hypothesis to note in this theory is that it neglects the dielectric 
saturation and assumes that the relative permittivity around the ion is the same as that 
in the bulk of the solution. In fact, near an ion, there is first of all a solvation layer 
of oriented dipoles (r ≈ 2), then a less structured layer which ensures the junction 
between the order imposed in the solvation layer and the order present in the solvent 
(see Figure 3.12).

Fig. 3.9 Variation in ion-solvent interaction energy as a function of the ionic radius for a 
univalent ion. 
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 Tests on the Born model corroborate it quite well. The Gibbs energy of ionic 
solvation is usually found to be inversely proportional to the relative permittivity 
and, for a given solvent, the solvation Gibbs energy is also found to be inversely 
proportional to the radius. It should be noticed, however, that the values of ionic 
radii do not correspond to the crystallographic ones but to a ‘corrected’ value. For 
water, the correction is +0.85 Å for the cations and +0.10 Å for the anions, as shown 
in Figure 3.11. This correction of radii values means that the Born model predicts 
ion-solvent interaction values larger than those observed experimentally.
 The numerical values presented in Table 3.3 are given only as an example. Values 
published in the literature can vary considerably, the main reason for the differences 
coming from the absolute hydration values used for the proton.

Fig. 3.11  Comparison of the ion-solvent interaction energy calculated and the experimental 
Gibbs energy of hydration values with modified ionic radii ( ). 

Fig. 3.10 Variation of ion-solvent interaction energy as a function of the relative permittivity of 
the medium for a univalent ion.
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Table 3.3 Standard absolute Gibbs energies, standard absolute enthalpies, standard hydration 
entropies of ions and standard partial molar volumes, Y. Marcus in Liquid/liquid interfaces 

Theory and methods, p 39-61, Volkov & Deamer Eds, CRC Press, 1996, Boca Raton (USA). 
The standard states are 1 bar for the gas phase and 1 mol·l–1 for the aqueous phase at 298.5 K.

Cations Radius / pm
G o

hyd/

kJ◊mol–1

H o
hyd/

kJ◊mol–1

S o
hyd/

J◊mol–1◊K–1

V
–

m
o/

cm3◊mol–1

H+  –1055  –1090  –131  –5.5

Li+  69  –475  –530  –161  –6.4

Na+  102  –365  –415  –130  –6.7

K+  138  –295  –330  –93  3.5

Rb+  149  –275  –305  –84  8.6

Cs+  170  –250  –280  –78  15.8

NH4
+  148  –285  –325  –131  12.4

Me4N+  280  –160  –215  –163  84.1

Et4N+  337  –130  –205  –241  143.6

Mg2+  72  –1830  –1945  –350  –32.2

Ca2+  100  –1505  –1600  –271  –28.9

Fe2+  78  –1840  –1970  –381  –30.2

Ni2+  69  –1980  –2115  –370  –35

Fe3+  65  –4265  –4460  –576  –53

Anions

F–  133  –465  –510  –156  4.3

Cl–  181  –340  –365  –94  23.3

Br–  196  –315  –335  –78  30.2

I–  220  –275  –290  –55  41.7

OH–  133  –430  –520  –180  –0.2

NO3
–  179  –300  –310  –95  34.5

ClO4
–  250  –205  –245  –76  49.6
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3.2.4  Enthalpy and entropy of the ion-solvent interaction 

 The ion solvent interaction entropy can be found from the Gibbs energy DGIS by

 

∂
∂ µ

∆ ∆G

T
S

p i

IS
IS





 = −

,  
(3.13)

Bringing the Born equation (3.12) into equation (3.13), we have 

 
∆S

N z e

r TIS
A

r

r= 



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2 2

0
28

1
πε ε

∂ε
∂  

(3.14)

from which we can deduce the enthalpy of the ion-solvent interaction 

 
∆H

N z e

r

T

TIS
A

r r

r= − − −










2 2

0
28

1
1

πε ε ε
∂ε
∂  

(3.15)

In the case of water ∂r / ∂T = – 0.3595, and the third term of equation (3.15) is 
approximately – 0.0176 at 298 K.

3.2.5  Electrostatic Gibbs energy

 Another way to calculate the work of charging an ion in a dielectric medium is to 
consider the electrostatic Gibbs energy 

 
w

Vc d= ⋅∫∫∫1
2

D E v
 

(3.16)

This energy corresponds to the energy stored in the dielectric when the ion is 
charged. In fact, if we consider a dipole as made of two charges of opposite sign 
attached by a spring, the electric field generated by the ion increases the distance 
between the two charges and consequently the dipolar electric field. Thus, we can say 
that the presence of an ion in a dielectric increases its internal energy. This energy 
corresponds to the work of charging the ion in a dielectric. The equation (3.16) is 
almost similar to the one used in the Born model for calculating the charging work in 
the dielectric, the only difference being the integration variable (the charge in the first 
one, the volume in the second). 
 This second approach is more appropriate when we wish to calculate the 
solvation Gibbs energy of an ion close to a wall. In fact, when the ion approaches the 
wall, it interacts with its image. However, this type of problem is beyond the scope of 
this book. Let’s look at the simple case of an ion in a large volume of dielectric, and 
develop equation (3.16) 

w
V V Vc

r rd d d= ⋅ = = − ⋅∫∫∫ ∫∫∫ ∫∫∫1
2 2 2

0 2 0D E E Ev v vε ε ε ε φgrad
 
(3.17)

Using the identity

 div divφ φ φE E E( ) = ⋅ +grad  (3.18)
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we obtain

 
w

V Vc
r rdiv d div d= − ( )∫∫∫ ∫∫∫ε ε φ ε ε φ0 0

2 2
E Ev v

 
(3.19)

By applying the Poisson equation to the volume external to the ion 

 div E = 0  (3.20)

we obtain, using the Green-Ostrogradski theorem

 

w s

s

V S

S

c
r r

r

div d d

   d

= − ( ) = − ⋅

= ⋅

∫∫∫ ∫∫

∫∫

ε ε φ ε ε φ

ε ε φ φ

0 0

0

2 2

2

E E n

n

v ˆ

ˆgrad
 

(3.21)

where the integration surface is the surface of the ion (r̂ = n̂).
 In the homogeneous dielectric medium where the ion of a charge ze is located, the 
potential generated by the ion is

 
φ

πε ε
= ze

r4 0 r  
(3.22)

and the integral in equation (3.21) is then written as

 
I

ze

r r
s

S
=





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⋅∫∫4
1 1

0

2

πε εr
dgrad n̂

 
(3.23)

The integration surface is the one from which the field lines come, i.e. the surface of 
the ion, considered as spherical. Knowing, as shown in §4.4.1, that 

 grad r = r̂  (3.24)

and therefore that

 
grad

1
2r r




 = − r̂

 
(3.25)

we can calculate the integral in spherical coordinates

 0
3

0

2
1 4

π π
θ θ φ π∫ ∫ =

r
r r

r
sin d d

 
(3.26)

In conclusion, the volumic electrostatic Gibbs energy due to the presence of an ion is 
written as:

 
w

ze

rc
r ion

= ( )2

08πε ε  
(3.27)

Thus we find again equation (3.10).
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3.3   STRUCTURAL ASPECTS OF IONIC SOLVATION
 The presence of an ion in a polar solvent causes an orientation of the dipolar 
molecules around the ion. This zone where the ion induces an order by reducing the 
rotation freedom of the molecules is in general called the solvation layer, and for 
water the hydration layer as shown schematically in Figure 3.12.
 This induced order differs from the structural order of the solvent, and between 
these two different orders, there is a disorganised region. If the number of molecules of 
water is greater in the hydration layer than in the disorganised layer, the ion is called a 
structure-maker (Li+, F–, Mg2+ ) whereas in the opposite case, it is called a structure-
breaker (Cs+, Rb+, ClO4

–). A structure-maker ion is characterised by a very negative 
hydration energy and a negative standard partial molar volume (see Table 3.3).

3.3.1  Solvation time

 By various methods, such as nuclear magnetic resonance relaxation, it is possible 
to measure the times of residence of the solvent molecules in the first solvation layer. 
The residence time of a molecule of water around an ion varies enormously as shown 
in Figure 3.13. The shortest times, of the order of picoseconds are around the Cl–, I–, 
Br– anions or cations such as Me4N+; for the alkaline ions the residence time is of the 
order of nanoseconds, whilst for doubly-charged ions the times vary from 10 ns for 

Ca2+, 100 ns for Fe2+, 10 s for Ni2+ and Mg2+, up to several days for Cr3+.

3.3.2  Solvation number

 Numerous methods have been used to estimate the number of solvent molecules 
forming the first solvation layer. Among others, we can mention (UV-VIS, Raman 
and NMR spectroscopies), methods based on transport in solution, and radiotracer 
measurements. The values obtained are highly dependent on the method used and 
vary mostly between 4 and 9, the value 6 being the most frequent.

Fig. 3.12 Two-layer solvation model in a continuum.

Continuum Solvation layer

Transition layer
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 The interaction energy of an ion with the solvent molecules surrounding it is an 
essential parameter in estimating the solvation enthalpy. In this respect, it is interesting 
to compare the interaction enthalpies of an ion in the gas phase with clusters of solvent 
molecules.

 From the values in Table 3.4, we can see that for the cations, the hydration 
energy corresponds by and large to the interaction energy with the nearby hydration 
molecules, whereas for the anions, this interaction energy only represents about half 
of the hydration energy. In order to understand these results better, we need to study 
the ion-dipole interactions in more depth.

Table 3.4  Ion-n water molecules interaction enthalpies in kJ · mol–1

(A. Gerschel, Liaisons intermoléculaires, Interéditions, 1995, Paris).

Ion n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 Liquid

Li+  –142  –250  –338  –405  –463  –513  –515

Na+  –100  –181  –248  –305  –357  –401  –405

F–  –97  –166  –223  –280  –335  –505

Cl–  –55  –108  –157  –203  –370

Fig. 3.13 Exchange rate constant for a molecule of water around a metal ion (S.F. Lincoln and 
A.E. Merbach, Adv. Inorg. Chem., Vol. 42 (1995) 1-87, Academic Press, with permission from 
Elsevier Science).
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3.3.3  Potential of a dipole

 Let’s look at a dipole made up of charges –e and +e separated by a distance 2l, 
the polarisation vector p pointing from –e towards +e as in Figure 3.14. At a point M 
in space, the distances to the charges –e and +e are respectively r– and r+ .
 In vacuum, the potential created by this dipole is therefore 

 
V

e

r

e

r
( )M = −

+ −4 40 0π ε π ε  
(3.28)

 To calculate the potential created by an ideal dipole (l Æ 0 when p remains 
constant), we write the potential V(M) in the form

 
V

e e
( )M =

−
−

+
1

4 0π ε r l r l  
(3.29)

since

 r r l r r l+ −= − = +et  (3.30)

 Given that l is small compared to r, we can do a second order series expansion

1 1 1 1
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and
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(3.32)

from which we obtain
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r r
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4
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40
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(3.33)

Fig. 3.14  Potential of a dipole at a point M in space.
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3.3.4  Energy of ion-dipole interaction

 If, in a homogeneous dielectric medium, we place an ion of a charge ze at a point 
M, the interaction energy between the ion and a dipole will be

 
w V q

r
q

ze p

r

ze ze
ion dipole

r r

d d− = = ⋅ =∫ ∫0
0

30
0

24 4

p r

π ε ε
θ

π ε ε
( ) cos

 
(3.34)

 This equation shows that for a cation, the ion-dipole interaction energy will 
be negative and maximum if the dipole is aligned with the vector of the electric 
field generated by the ion itself, and conversely, the interaction will be positive and 
maximum if the dipole is pointed towards the ion. In the case of water, the cation-
water interaction is very strong for small ions such as lithium.

EXAMPLE

Let’s calculate the interaction energy between a monovalent ion, such as sodium, and a 
single water molecule considered as a dipole with a moment of 1.85 Debye in the gas phase 
and 2.6 Debye in the liquid phase (1 Debye = 3.336·10–30 C·m ). We shall calculate this 
energy in the liquid phase and in the gas phase, taking 100 and 150 pm for the radii of the 
ion and the water respectively.
If we consider that the relative permittivity of water is 78, then we have 

w
ze p N

r
= = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅

− − −
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                             kJ mol
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1 5

0
2

19 30 23 1

10 1 1 2 24 2

1

If we consider that the relative permittivity in the first hydration shell is 2, then we have a 
value of 60 kJ·mol–1.
For the gas phase, taking the permittivity of vacuum, the numeric value resulting from 
equation (3.34) is then 85 kJ·mol–1, which comes near to experimentally measured values 
(see Table 3.4).

3.3.5  Average ion-dipole interaction energy

 In a polar solvent, the thermal agitation leads to a free rotation of the dipoles. 
The presence of an ion orients the dipoles in contact with it, but also influences the 
orientation of the dipoles outside the first solvation layer. To quantify this effect, we 
can calculate the average interaction energy between an ion and the solvent molecules 
by using the Boltzmann distribution function 
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(3.35)
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By substituting expression (3.34) for the ion-dipole interaction, we have

< > =−

−

−

∫∫

∫∫

w

ze p

r

ze p

r kT

ze p

r kT

ion dipole
r

r

r

d d

d d

( )
exp cos sin

exp sin

( ) cos

( ) cos
4 0

2

2

0

2

0

2

0

2

0

4

4

0

0

π ε ε
θ θ θ φ

θ θ φ

θ
π

θ
π

ε εππ

ε εππ

(3.36)

To calculate these two integrals, we define the variables
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We have thus
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(3.39)

where L(a) is the Langevin function as represented in Figure 3.15.
 For small values of a, i.e. for quite large values of the ion-dipole distance r, a 
series expansion of the Langevin function gives 
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(3.40)

Fig. 3. 15  Langevin function
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We finally obtain
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 This relationship shows that the average interaction energy at large distances is 
inversely proportional to the temperature and depends on the distance as 1/r4.

EXAMPLE

Let’s calculate the average interaction energy between a sodium ion and a water molecule 
at a distance of 250 pm and at 2.5 nm.
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When the distance is 2.5 nm, we have

< w > = 0.01 kJ◊mol–1

Meaning that, as soon as the second solvation layer is reached, the ion-dipole interactions 
become weak. 

3.3.6  Comments

 It is difficult to go further in the modelling of the structural aspects of solvation, 
because the degree of complexity increases rapidly as soon as we try to go further than 
these few energetic considerations of ion-dipole interactions. 

3.4   ION-ION INTERACTIONS

3.4.1  Electrostatic interaction energy and the activity coefficient

 In solution, the ions interact mainly by coulombic forces, either repulsive or 
attractive according to the signs. These electrostatic interactions increase when the 
concentration increases, as the distance between the ions diminishes. 
 If we consider that an ideally dilute solution is a solution in which the solutes 
do not interact, then an electrolyte solution looses its ideal behaviour at very low 
concentrations (micromolar range in water) whereas a non-ionic solution looses its 
ideal behaviour at higher concentrations (millimolar range in water). This is due to 
the fact that electrostatic forces are longer range than those involved in molecular 
interactions.
 For an ideally dilute solution, the dilution work from a concentration c1 to a 
concentration c2 is purely osmotic and is given at constant pressure and temperature by
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w nRT
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1  
(3.42)

where n is the total number of moles of solutes. Equation (3.42) shows that during a 
dilution (c2 < c1) , the reaction is exergonic (wosm < 0).
 For a real solution for which the activity coefficients cannot be neglected, the total 
dilution work is expressed more generally by 
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(3.43)

where a2 and a1 are the activities, e.g. on the concentration scale. If we assume that the 
solutions are sufficiently dilute that the deviation from the ideal behaviour is caused 
mainly by the electrostatic interactions, the dilution work of an electrolyte solution is 
then written as 
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 The dilution work therefore comprises two terms, one osmotic and the other 
electrostatic

 
w nRTelec =





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ln
γ
γ

2

1  
(3.45)

 Given that the activity coefficient  tends to unity when the concentration 
decreases, the result is that the electric component of the dilution work welec is 
positive. Indeed, the reaction that consists of breaking the ion-ion interactions is 
endergonic. In order to calculate this work of ion-ion interaction, we can calculate the 
variation in Gibbs energy DG associated to the passage from an ideal solution formed 
of discharged ions to a real solution formed of charged ions where ion-ion interactions 
prevail. This is the gist of the Debye-Hückel theory presented below.

3.4.2  The Debye-Hückel theory (1923)

 The objective of the Debye-Hückel theory which is based on the ionic atmosphere 
model, is to calculate the activity coefficient  of an electrolyte as a function of is 
concentration in order to determine the work of ionic interaction given by equation 
(3.45).
 Around a central ion, chosen arbitrarily inside a solution and taken henceforth as 
a reference, there are statistically always more ions of opposite charge than ions of 
the same charge; there is therefore a distribution of charges whose temporal average 
is well-defined in the moving frame which accompanies the central ion. This ionic 
cloud, also called the ionic atmosphere, contains ions of both signs, but with a 
majority of ions having a charge opposite to that of the central ion. The total charge 
of this ionic atmosphere is equal and opposite to that of the central ion, so that the 
electroneutrality of the solution is ensured. To calculate the interaction energy, the 
Debye-Hückel theory is based on the following hypotheses
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 1. Only coulombic forces are taken into consideration; molecular interactions such
 as the Van der Waals forces occuring at smaller distances are ignored;

 2. At all concentrations, the electrolyte is completely dissociated;
 3. The relative permittivity of the solution is that of the pure solvent, variations

 wih the concentration are therefore ignored;
 4. The ions are considered as rigid spheres, i.e. unpolarisable, whose charge causes

 a symmetrical spherical electric field;
 5. The electrostatic interaction energy is weak compared to the energy due to the

 thermal agitation in the solution.

 Before calculating the ion-ion interaction energy in solution, we have to establish 
the average electric potential distribution around a central ion, chosen arbitrarily 
inside the solution and considered as the origin of a reference frame. The quantities 
relative to the central ion carry the index c, and those concerning the positive or 
negative ions of the ionic atmosphere an index i.
 In the following calculations, all the quantities are temporal averages, in order not 
to have to take into account the molecular agitation. 
 Let’s consider that the average volumic density of the ions i carrying a charge zi e 
is Ni

•. First of all, we shall assume that the ions are distributed throughout the solution 
according to a Boltzmann statistics. Thus, the density Ni (r) of ions i in an elementary 
volume at a distance r from the the central ion is given by 

 N r N ei i
iz e r kT

( )
( ) ( ) /= ∞ [ ]− − ∞φ φ

 
(3.46)

where f(r) is the electric potential at the distance r from the central ion. The term 
zie[f(r) – f (•)] is the electrostatic work to bring an ion i from infinity to a distance r 
from the central ion.
 Taking the bulk potential inside the solution f (•) as zero, equation (3.46) reduces 
to

 N r N ei i
iz e r kT

( )
( ) /= ∞ − φ

 (3.47)

 The electric charge density (r) is then obtained by the summation of the charges 
of all the ions present

 
ρ φ

( ) ( )
( ) /

r z e N r z e N ei i i i
ii

iz e r kT= = ∞∑∑ −

 
(3.48)

 A hypothesis of this theory considers that the electrostatic interaction is weak 
compared to the thermal agitation (zief(r) << kT), allowing the linearisation of 
expression (3.48).

NUMERICAL APPLICATION

Let’s consider numerically the conditions imposed by zief(r) << kT. Knowing that:
 e = 1.6·10–19 C, 40 = 1.11·10–10 J–1·C–2·m–1, k = 1.38·10–23 J·K–1, we have kT/e = 
25.7 mV.
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In the absence of an ionic atmosphere, the potential generated by a monovalent cation is 
V(r) = e/40rr.
In a first approximation, we shall assume that f (r) = V(r), and the resulting numerical 
values of the potential for different distances are tabulated below

r / nm f(r) / mV ef(r)/kT exp(–ef(r)/kT) 1 – ef(r)/kT

 0.1  185  7.21  7.40 10–4  –6.21

 1  18.5  0.721  0.486  0.279

 10  1.85  0.0721  0.930  0.928

 3  6.18  0.240  0.787  0.760

This brief calculation shows that we need a distance of at least a few nm for the 
approximation zief(r) << kT to be valid. 
Now let’s calculate the average distance between the ions in solution for different 
concentrations.
A 1 M solution of a monovalent salt contains 2000NA = 12·1026 ions per m3.
If the volume of each ion is 4a3/3, the radius of each co-sphere is

a
N c

c= = ⋅ ⋅− −3
8000

6 103
10 1 3

π A
  /

which numerically reads

c / M a / nm

 1  0.6

 0.1  1.3

 0.01  2.8

 0.001  6

This brief calculation, based on an oversimplified sphere packing model, shows that the 
condition zief(r) << kT requires that the concentration must be less than 0.01 M.

 With the approximation zief(r) << kT, a first order series expansion of the 
exponential in equation (3.48) yields

 
ρ φ

( )
( )

r z eN
z e r

kTi i
i

i

≅ −





∞∑ 1
 

(3.49)

The electroneutrality of the solution implies that 

 
z eNi i

i

∞ =∑ 0
 

(3.50)

from which we obtain an expression of the charge density that reads
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ρ φ φ( )

( )
( )r

z e N r

kT

e

kT
N z ri i

i
i

i
i= − = −













∞
∞∑ ∑

2 2 2
2

 
(3.51)

The term in brackets being a constant, equation (3.51) indicates that there is a direct 
linear relationship between the charge density and the electric potential. 

Calculation of the electric potential f(r)

 Poisson’s equation defined by equation (1.37) expresses in a general manner the 
relationship between the charge density and the electric potential 

 
div div

r
E = − = − ∇ =gradφ φ ρ

ε ε
2

0  
(3.52)

In spherical coordinates centered on the central ion, Poisson’s equation can be written as

 

∂ φ
∂

∂φ
∂

ρ
ε ε

2

2
0

2( ) ( ) ( )r

r r

r

r

r+ = −
r  

(3.53)

which, by substitution of equation (3.51), reads 

 

∂ φ
∂

∂φ
∂ ε ε

φ κ φ
2

2

2

0

2 22( ) ( )
( ) ( )

r

r r

r

r

e

kT
N z r ri

i
i+ =













=∞∑
r  

(3.54)

with

 
κ

ε ε
2

2

0

2= ∞∑e

kT
N zi i

ir  
(3.55)

  is a constant with the dimension of a reciprocal length, and its precise physical 
significance will become clear later.
 The integration of the differential equation (3.54) is facilitated by using the 
following identity 

∂ φ
∂

∂
∂

∂ φ
∂

∂
∂

∂φ
∂

φ ∂ φ
∂

∂φ
∂

2

2

2

2 2
[ ( )] [ ( )] ( )

( )
( ) ( )r r

r r

r r

r r
r

r

r
r r

r

r

r

r
= 



 = +



 = +

 
  (3.56)
which gives

 

∂ φ
∂

κ φ
2

2
2[ ( )]

[ ( )]
r r

r
r r=

 
(3.57)

By putting y = r f(r), we see that we have quite a simple differential equation of the 
type

 

∂
∂

κ
2

2
2y

x
y=

 
(3.58)

for which the general solution is 

 y C e C ex x= +−
1 2

κ κ
 (3.59)
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In the present case, the solution of equation (3.57) is therefore

 r r C e C er rφ κ κ( ) = +−
1 2  (3.60)

for which it remains to calculate the two integration constants C1 and C2. To do this, 
we shall make use of two properties of the system, namely that the potential becomes 
constant far from the central ion and that the solution is electroneutral.
 In the bulk (r Æ •), the potential is taken equal to zero by convention, therefore 
C2 = 0. Moreover, the electroneutrality of the solution requires that the total charge of 
the ionic atmosphere should compensate that of the central ion 

 
4 2π ρr r r z eca

( )d = −
∞
∫  

(3.61)

where a is the minimum approach distance to the central ion. By combining equations 
(3.51), (3.55) and (3.60), the charge density around an ion reads

 
ρ φ ε ε κ ε ε κ κ( ) ( )r r

C

r
e r= − = − −

0
2 1 0

2

r
r

 
(3.62)

By substitution of equation (3.62) into equation (3.61), we have

 
4 1 0

2π ε ε κ κC e r r z er
a cr d−∞
∫ =

 
(3.63)

Knowing that

 
e r r

re
e r

r er
r

r
r

−
−

−
−

∫ ∫= −








 − − = − +









κ
κ

κ
κ

κ κ
κ
κ

d d
1 1

2
( )

 
(3.64)

we obtain the constant C1 as being equal to

 
C

z e e

a
c

a

1
04 1

=
+









πε ε κ

κ

r  
(3.65)

 The electrical potential distribution around the central ion is finally given by

Fig. 3.16 Radial variation of the electrostatic potential in the presence and absence of an ionic 
atmosphere. 
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φ

πε ε κ

κ κ
( )r

z e e

a

e

r
c

a r
=

+










−

4 10 r  
(3.66)

where a  can in fact be considered as an average inter-ionic distance 

 a  = rc + ri (3.67)

 Figure 3.16 illustrates the difference between f(r) the electrostatic potential 
around the central ion in the presence of the ionic cloud, and V(r) the electrostatic 
potential generated only by the central ion in the absence of other ions (V(r) = zce/
40rr). We see that very close to the central ion the two functions merge as the 

influence of the ionic atmosphere diminishes.

Ionic atmosphere 

 The density of the charge in the ionic atmosphere is written as

 
ρ κ

π κ

κ κ
( )r

z e e

a

e

r
c

a r
= −

+

−2

4 1  
(3.68)

 In fact, this regularly decreasing function gives the density of the excess charge 
around the central ion. In order to understand better the distribution of ions in the ionic 
atmosphere, let’s consider the infinitesimal charge qsph(r) carried by each shell with a 
radius r and thickness dr

 q r r r rsph d( ) ( )= 4 2π ρ  (3.69)

or by substitution of equation (3.68)

 
q r z e

e

a
re rc

a
r

sph d( ) = −
+

−κ
κ

κ
κ2

1  
(3.70)

The function qsph(r), shown in Figure 3.17, has a minimum; in effect, its derivative 

Fig. 3.17  Variation of the charge contained in each shell of thickness dr.
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d

d
sphq r

r

z e e

a
e rj

a
r( )

( )= −
+

−−κ
κ

κ
κ

κ
2

1
1

 
(3.71)

is equal to zero when rmax = 1/ . At this distance, the excess charge of opposite sign 
around the central ion is the largest. Thus, it appears that the constant 1/ represents the 
most likely cation-anion distance and  is often called the reciprocal Debye length.
 Actually, the reciprocal Debye length is often considered as the average radius of 
the ionic atmosphere. In effect, qsph(r)/zce represents the distribution function of the 
counter-ions of the central ion, and the average radius is defined by 

< > = = −
+

= + +
+

∞ ∞
∫ ∫ −r r

q r

z e
r

e

a
r e r

a

aca a

a
r

atm
sph d d

( ) ( )
( )

κ
κ

κ
κ κ

κ
κ

2
2

2

1
1 1

1  
(3.72)

This expression reduces to –1 if a << 1. Figure 3.18 shows in a schematic illustration 
of the ionic atmosphere.
 By bringing the molar ionic concentration ci in mol·l–1 

 c N Ni i= ∞ / 1000 A  (3.73)

into equation (3.55) which gives 2 , we have 

 
κ

ε ε ε ε
2

2

0

2
2

0

1000 2000= =∑e N

kT
c z

F

RT
Ii i

i
c

A

r r  
(3.74)

where Ic is the ionic strength in the molarity scale

 
I c zc i i

i

= ∑1
2

2

 
(3.75)

 When the concentration increases, the average radius of the ionic atmosphere 
decreases parabolically (see Figure 3.19).
 The average radius of the ionic atmosphere has an important physical significance, 
since it represents the screening distance of a charge. Effectively, any other charge 
situated at any distance greater 1/  from a central charge ‘will hardly see’ and will 
not be able to interact with this charge, since seen from outside, the central charge is 
practically screened off by its cloud.

Fig. 3.18  Schematic view of the ionic atmosphere around a central ion.
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 When we compare the numerical values of the reciprocal Debye distance as 
a function of the concentration with those of the radii of the co-spheres (see the 
numerical application page 108), it becomes apparent that both are of the same order 
of magnitude. This implies that when a salt is in solution, the ions spread out more or 
less homogeneously in order to occupy all the space. 

Calculation of the ionic activity coefficient

 The potential f(r) results as much from the charge of the central ion as from the 
charge of the ionic atmosphere. The central ion alone would give the potential 

 
V r

z e

r
c( ) =

4
1

0πε εr  
(3.76)

Using the principle of the superposition of potentials, we deduce that the part of the 
electric potential due to the charge of the ionic atmosphere is the difference: 

 
φ φ

πε ε κ

κ κ
atm

r
( ) ( ) ( )r r V r

z e e

a

e

r r
c

a r
= − =

+
−











−

4 1
1

0  
(3.77)

The potential fatm(r) is illustrated in Figure 3.20.
 At a distance a from the central ion, the value of the potential produced by the 
ionic atmosphere is therefore 

 
φ

πε ε κ πε ε
κ
κ

κ κ
atm

r r
( )a

z e e

a

e

a a

z e

a
c c

a a
=

+
−









 = −

+

−

4 1
1

4 10 0  
(3.78)

the distance a being the minimum distance to which an ion can approach the central 
ion.
 The interaction between the central ion and its atmosphere corresponds to the 
work of charging this ion from zero to zce as in the Born model, the difference being 

Fig. 3.19 Variation of the reciprocal Debye distance with the concentration of a monovalent 
salt.
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that the potential to consider is not the potential generated by the ion V(rion) as in 
equation (3.9) but the potential generated by the ionic atmosphere fatm(a) when the 
central ion carries the charge q

w N a q
N

a
q q

N z e

a

z e z e cc c
ion ion A atm

A

r

A

r
d d− = = −

+
= −

+∫ ∫φ
πε ε

κ
κ πε ε

κ
κ

( )
( )

0 0 0 0

2

4 1 8 1  
(3.79)

 We should notice that we have taken rion as being equal to a, which is not strictly 
correct. However, this approximation is of little consequence (see below equation 
(3.89)), and is completely justified for dilute solutions where a <<1.
 By combining this result with equation (3.45), we can calculate the electrical 
work of dilution from an ionic solution of a given concentration to an infinitely dilute 
solution as the opposite of the ion-ion interaction energy and thus obtain an expression 
for the activity coefficient on the scale of concentrations 

 
ln

( )γ
πε ε

κ
κi

c iw

RT

z e

kT a
= − = −

+
−ion ion

r

2

08 1  
(3.80)

Also, by replacing  by expression (3.74) and using common logarithms, we get 

 
log10

2

1
γ i

c
i

c

c
z

A I

aB I
= −

+  
(3.81)

where A and B are constants. B is simply defined from equation (3.74) as being equal 
to

 
B

I
F

RTc
= =κ

ε ε
2000

0 r  
(3.82)

and A can be written as

 
A

e B

kT
=

2

08 10πε εr ln( )  
(3.83)

Fig. 3.20  Variation of the ionic atmosphere potential as a function of the distance relative to 
the central ion. 

��

��

��

��

��

����������������

r / Å

a = 2Å
Ic = 0.01 M

f a
tm

/m
V

© 2004, First edition, EPFL Press



114 Analytical and Physical Electrochemistry 115Electrolyte Solutions

If Ic is expressed in mol·l–1 and a in metres, the values for A and B for water at 25°C 
are respectively 0.509 mol–1/2·l1/2 and 3.29·109 mol1/2·l–1/2·m–1.

Calculation of the average ionic activity coefficient of a salt

 Let’s consider the case of a binary electrolyte Cn+An- . The chemical potential 
of a salt is a linear combination of the ionic electrochemical potentials (see equation 
(1.64)).

µ ν µ ν µ ν µ ν µ µ γ γ µ γν ν
salt salt salt salt= + = + = + ( ) = ++ + − − + + − − + −

+ −˜ ˜ ln lnideal idealRT RT  
(3.84)

since the electroneutrality of the solution requires that 

 ν φ ν φ+ + − −+ =z F z F 0  (3.85)

 Given that we cannot a priori distinguish in an experimental manner the 
contribution of the cation and that of the anion when we observe the deviation from 
the ideal behaviour of an electrolytre solution upon increase of concentration, we 
define an average ionic activity coefficient ± 

 γ γ γ γν ν ν ν
± + −= ( ) =+ −

1 1/ /
salt  

(3.86)

This value can be calculated from equations (3.81) and (3.84)

 
log10

2 2

1
γ ν

ν
ν
ν±

+ + − −

±
= − +





 +

c c

c

z z A I

a B I  
(3.87)

The electroneutrality condition allows us to write 

  

ν ν
ν

ν ν
ν

ν ν
ν

+ + − − − − + + + −
− +

− +
− +

+ =
−( ) + −( ) = − + = −z z z z z z

z z z z
2 2

 
(3.88)

from which eventually we obtain

log10 1
γ ± + −

±
=

+
c c

c
z z

A I

a B I  
(3.89)

where a± is often considered as the minimum approach distance between the cation 
and the anion. For dilute solutions, equation (3.89) reduces to 

 log10 γ ± + −=c
cz z A I  (3.90)

which, for a 1:1 electrolyte, reads

 logγ ± = −c A csalt  
(3.91)

 Equations (3.91) and (3.89) are shown on Figure 3.21 for solutions of NaCl, 
CaCl2 and LaCl3. In the linear approximation as given by equation (3.90), the slopes 
are respectively A, 2AM3, 3AM6, because of the different stoichiometries. The a± 
coefficients are respectively 400, 475 and 570 pm. Values of a± coefficients for other 
electrolytes are given in Table 3.5.
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 The comparison of activity coefficients on the molarity scale to values in the 
literature published on the molality scale can be a source of error and confusion for 
concentrated solutions. It is for this reason that in this paragraph, the scale used is 
carefully indicated using a superscript. Applying equation (1.27), we have

 
γ γ± ±=c m d m

c
0 salt

salt  
(3.92)

where d0 is the density of the pure solvent expressed in kg·l–1 . Remembering that 

 
m

c

d c Msalt
salt

salt salt–
=

 
(3.93)

Table 3.5  Values of the a± parameter.

Salt a± / pm

HCl 450

HBr 520

LiCl 430

NaCl 400

KCl 360

Fig 3.21 Experimental verification of the linear approximation (3.90) and the Debye-Hückel 
law (3.89). The experimental values (markers) are taken from: R.A. Robinson & R.H. Stokes, 
Electrolyte Solutions, Butterworth, London 1959.
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where Msalt is the molar mass of the salt in kg·mol–1. For example, in the case of NaCl 
and using experimental values given in the appendix (see page 131), we can express 
the molar concentration and the density in kg·l–1 as a function of the molality with the 
aid of a second order polynomial expression 

 c m mNaCl NaCl NaCl
2= ⋅ − ⋅0 99921 0 018859. .  (3.94)

and

 d m mNaCl NaCl NaCl
2= + ⋅ − ⋅1 0 039243 0 0010746. .  (3.95)

 For dilute solutions where the density of the solution changes negligibly, the two 
scales overlap.

Average ionic activity coefficient of a concentrated salt 

 We can see in Figure 3.22 that at high solute concentrations, the activity 
coefficient attains a minimum before rising again. This is due to the fact that at 
such salt concentrations, a certain quantity of the solvent molecules are fixed in the 
hydration spheres of the ions. 
 If nT is the total number of moles of solvent molecules (S) and nH the total 
number of moles of hydration solvent molecules linked directly to the ions, the total 
Gibbs energy for a solution containing n moles of salt, is either written as 

 G n n= +T S saltµ µ  (3.96)

Fig 3.22  Verification of equation (3.107) for NaCl in water. The experimental values (points) are 
taken from: R.A. Robinson & R.H.Stokes, Electrolyte Solutions, Butterworth, London 1959.
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or as

 G n n n h= −( ) +T H S saltµ µ  (3.97)

where h
salt is the chemical potential of the hydrated salt. Because these two 

expressions are equal, we can write

 0 = + −( )n n h
H S salt saltµ µ µ  (3.98)

 To develop the chemical potential expressions, it is more convenient to work with 
the mole fraction scale rather than the concentration scale (molality or molarity). In 
this way, we can write

 
n n n RT a nRT

x

x
h

h hH S salt salt H S
salt salt

salt salt

µ µ µ γ
γ

o o o+ −( ) = − −






, ln ln
 

(3.99)

The mole fractions of the salt and the hydrated salt are respectively 

 
x

n

n nsalt
T

=
+    

and
   

x
n

n n n
h
salt

T H

=
−( ) +  

(3.100)

such that their ratio is

 

x

x

n n n

n nh
salt

salt

T H

T
=

−( ) +
+  

(3.101)

 For very dilute solutions, the solvent activity tends towards unity and so do the 
activity coefficients of the salt  h

salt  and h
salt. Since the ratio xsalt/xh

salt also tends 
towards unity for very dilute solutions, we see that equation (3.99) is equal to zero 
for dilute solutions. This means that the linear combination of the standard terms 
(left hand side of equation (3.99)) is independent of the concentration and is equal to 
zero.
 By introducing the average ionic activity coefficients on the mole fraction scale 
(superscript X), and taking into account equation (3.86), we therefore find that 

 
ν γ ν γn n n a n

n n n

n n
hln ln ln ln± ±= − − − +

+






X X

H S
T H

T  
(3.102)

 In order to be able to make comparisons with the data of Figure 3.22 on the scale 
of concentrations, we need to calculate c

± . To do that, we have to convert hX
±  into hc

± . 
Applying equation (1.27), and expressing the mole fraction of the solvent

 
x

n

n n

d c M

d c M MS
T

T salt

salt salt

salt S salt
=

+
= −

+ −( )  
(3.103)

we have

 
γ γ γ± ± ±= − =

+ −( )h hc hcd c M

x

d c M MX salt salt

S 0

salt S salt

0dd  
(3.104)

Next, we need to calculate the total number of moles of water
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


 ⋅

 
(3.105)

Putting nH = hn, where h is the number of moles of water linked per mole of salt, the 
last term of equation (3.102) is written as

 
ln ln

n n n

n n

d c M M h

d c M M
T H
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salt salt S

salt S salt
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(3.106)

Substituting in equation (3.102), we then find

 
ln ln ln ln

/

γ γ
ν

ν

± ±= − −
− + −( )[ ]



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c hc h
a

d c M M h

ds
salt salt S 1
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(3.107)

 The term hc
± corresponds to the interaction energy of the hydrated ions and 

is given by the Debye-Hückel expression (3.89), and it is possible to calculate an 
expression for c

± that depends on nH and on the solvent activity aS. 
 The solvent activity can be calculated from the equation

 n nT S saltd dµ µ+ = 0  (3.108)

which can be developed to yield

 
d dS

T
saltln ln( )a

n

n
cc= − ±γ

 
(3.109)

Otherwise, the water activity can be measured and for example, for NaCl in water, the 
following polynomial can be used 

a c cw NaCl NaCl= − ⋅ − ⋅1 0 030931 0 0015192 2. .  (3.110)

 The second term in equation (3.107) corresponds to the work due to the 
disappearance of free water molecules into the solvation layers, and the last term to 

the work due to the increase in the effective salt concentration. 
 Figure 3.23 shows the experimental activity coefficients of alkali metal halides, 
which illustrate that the more the cation is hydrated, the more important the last two 
terms of equation (3.107) become. Table 3.6 gives values of the coefficients h and 
a±for different salts

Table 3.6  Experimental values of h and a±. 

LiCl NaCl KCl RbCl HCl CaCl2 MgCl2
h  7  3.5  2  1  8  12  14

a± / pm  430  400  360  350  450  475  500
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3.4.3  Electrochemical measurement of activity coefficients

Measuring the potential of cells such as those studied in §2.1.4

 Cu  |  Pt | H ( ,    HCl  |  Hg Cl  |  Hg |  CuI 1
2 2

1
2 2 2

IIf p= o )

allows us to determine the average activity coefficient of the electrolyte, here hydro-
chloric acid 

 
E E

RT

F

RT

F
mm m= 





− [ ]− [ ]+1
2 2 2

–Hg Cl /Hg
SHE

H Cl HCl
o ln lnγ γ 2

 
(3.111)

EXAMPLE 

Let’s take the numerical values from example §2.1.4, and calculate the standard redox 
potential of the calomel electrode given by equation (3.111).
Given that we are talking about dilute solutions, the scales of molarity and molality 
overlap, and so expressing the activity coefficients by equation (3.90) , we have

E E
RT

F
A m

RT

F
m= 





+ − [ ]1
2 2 2Hg Cl /Hg

SHE
HCl HCl

o 2 10 2ln
ln

Fig 3.23 Influence of hydration on the activity coefficients of alkali metal halides. The experi-
mental values (markers) are taken from : R.A. Robinson & R.H. Stokes, Electrolyte Solutions, 
Butterworth, London 1959.
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Thus we can plot 

E
RT

F
m+ [ ]2

ln HCl

as a function of mHCl and obtain the standard redox potential as the ordinate at the 
origin.
Thus, taking into account the activity coefficients we have a much better extrapolation 
that allows us to determine the standard redox potential to a tenth of a millivolt. The slope 
should be 2ARTln10/F which is 0.06 V/(mol·kg)1/2 but in fact the linear extrapolation 
gives us a lower slope that indicates that equation (3.90) is not completely respected.
Actually, this example also illustrates another experimental method for measuring activity 
coefficients based on measuring the cell potential. Knowing the standard redox potential, 
from equation (3.111) we can measure the cell potential and from there determine the 
activity coefficents. This equation gives 

log
ln

logγ ± = 





−




− [ ]HCl Hg Cl /Hg

SHE
HCl1

2 2 2

F

RT
E E m

2 10
o

This graph where the standard redox potential taken is 0.2681 V confirms that equation 
(3.90) is not completely respected. Therefore, we must refine the evaluation of the standard 
potential by successive iterations. The final value obtained is 0.2679 V.

3.4.4 Kinetics of reactions between ions

 It has been experimentally observed that second order reaction rate constants 
between charged species vary with the ionic strength (see Figure 3.24). When the 
ionic reactants have a similar charge, the speed increases with the ionic strength, 
whilst when they have opposite charges, the opposite happens.
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Brønsted suggested that the rate of a reaction between two species A and B could be 
written as 

 
k k A B= o γ γ

γ #
 

(3.112)

where k o is the standard rate constant, and # is the activity coefficient of the activated 
ionic complex, i.e. the transition state.
 By applying the Debye-Hückel equation (3.81) in the linear approximation to 
express the activity coefficients of the ions, we obtain

 log log ( ) log/ /
10 10

2 2 2 1 2
10

1 22k k A z z z z I k Az z IA B A B A B= − + − +[ ] = +o o
 

(3.113)

This equation has been tested on several systems, and generally describes the pheno-
mena quite well. The results of Figure 3.24 illustrate the screening effect well. It is 
clear that for two ions of the same sign to be able to react, it is necessary to screen 
them, as much as possible to favour the reaction. Thus, an increase in the ionic 

Fig. 3.24  Variation of the rate constant for reactions between ions as a function of the square 
root of the ionic strength (Laidler, Chemical Kinetics, Harper & Row, 1987, New York, USA).
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D [Cr(urea)6]3+ + H2O   zAzB = 0
 CH3COOC2H5 + OH–  zAzB = 0
E H+ + Br– + H2O   zAzB = –1
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strength reduces the screening distance and consequently increases the rate of the 
reactions between two ions of the same sign. Inversely, two ions of opposite sign will 
be attracted to each other at longer distances in dilute solutions, and in this case, an 
increase in the ionic strength will slow down the reaction.

3.4.5  Comments

 The Debye-Hückel theory based on electrostatics predicts very well the average 
ionic activity coefficents, in spite of the hypothesis that the electrolyte solution is 
considered as a homogeneous medium having a relative permittivity equal to that of the 
pure solvent. Thus, in spite of the complexity of the system, this statistical mechanics 
model provides a simple equation (3.89) with a single adjustable parameter a± that 
accounts reasonably well for the behaviour of electrolytic solutions up to concentrations 
of the order of 0.1 M. 
 A very important conceptual aspect of this theory is the notion of reciprocal 
distance   which shows that the electrostatic interactions are screened by the presence 
of the electrolyte.

3.5  ION PAIRS
 The Debye-Hückel theory considers that ions are isolated charges that are 
surrounded by an ionic atmosphere of the opposite charge. Nevertheless, it is possible 
that ions of opposite charge approach each other close enough for the coulombic 
attraction to become stronger than the kinetic energy of thermal agitation. When that 
happens, they form an ion pair that can be represented as a fluctuating dipole. The 
question is to know what is the concentration of the ion pairs. 

3.5.1  The Bjerrum theory (1923)

 Take a spherical shell of radius r and thickness dr around a central reference 
cation. Noting, that near to the central ion, the potential is mainly that created by the 
central ion itself (see Figure 3.16)

 φ φ φa a a V a( ) >> ( ) ≈atm     or     ( ) ( )  
(3.114)

the number of negative charges dna(r) in this shell is defined from a Boltzmann 
distribution 

 d d d rn r r N r r r r N ea a a

z z e
r kT

( ) ( )= = ∞
− + −

4 42 2

2

04π π πε ε
 (3.115)

where Na(r) is the density of anions around the central cation.
 If we plot the function dna(r) as in Figure (3.25), we observe that it is very high 
at a short distance, passes through a minimum and again becomes very high at longer 
distances as the volume of the shell becomes greater. 
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 This minimum can be found by differentiating equation (3.115)

d
d

r

r

rn r

r
rN e

r N z z e

kT r
ea

a
a

z z e
r kT

z z e
r kT( ) = + =∞

∞
+ −

− + − − + −

8
4

4
0

2

0
2 2

0
2

2

04 4π π
πε ε

πε ε πε ε

 
(3.116)

Thus, the minimum takes place when

 
r q

z z e

kT
= = − + −

2

08πε εr  
(3.117)

 The gist of Bjerrum’s model is to define an ion pair as existing when the distance 
between the centre of two ions of opposite sign is less than q (see Figure 3.26).
In water (r = 78.5), q is 357 pm while in organic solvents such as 1,2-dichloroethane 
(r = 10), q  is 2.8 nm.
 The radii for alkali metals found by crystallography vary from 60 pm for lithium 
to 169 pm for cesium and those for halogens vary from 136 pm for fluorine to 216 pm 

Fig. 3.25 Variation with distance of the number of counter-ions in shells of thickness dr.

Fig. 3.26  Maximum formation distance for ion pairs as a function of the relative permittivity 
of the solvent. 
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for iodine (see Table 3.3). Comparison with q shows that cesium iodide cannot form 
ion pairs in water, at least in the sense of Bjerrum’s theory.
 This choice of q as the maximum separation distance to is not accidental. Firstly, at 
r = q the electrostatic interaction energy –z+z–e2/40rr  is equal to 2 kT, kT being the 
thermal agitation energy. Secondly, the number of anions in the sphere of radius q is

 
θ π= =∫ ∫∞d d dn r r N r e raa

q
a a

q q r( ) /4 2 2
 

(3.118)

where a is the minimum approach distance. By definition,  must take a value between 
0 and 1, i.e. the fraction of counter-ions around the central ion. Thus, by choosing 
the minimum of the function dna(r) as the upper limit of the integral, this integral 
converges and can be calculated numerically.
 Because the density of free counter-ions around the ion Na

• depends both on the 
salt concentration, and on the fraction of ion pairs, the best way to calculate  is by 
iteration.

3.5.2  Association constant

 The equilibrium between the dissociated ions and the ion pairs can be written as 

 C+ + A–  oIP

The constant of this equilibrium is written as 

 
K

a

a aA
IP

C A

=
+ −  

(3.119)

If  is the fraction of ion pairs, we have 

 
K

c

c c c
A

IP

C A

IP=
− −

=
−+ − ±

θ γ
θ γ θ γ

θ
θ

γ
γ( ) ( ) ( )1 1 1 2 2

 
(3.120)

where c is the salt concentration, IP the activity coefficient of the ion pair and ± the 
average activity coefficient of the salt ±

2 =  C+A–. From the fact that IP is a neutral 
species, and that we attribute the deviations of the activity coefficients from unity to 
electrostatic effects only, the value of IP is taken to be 1.
 Given that the association constant KA is the same for all concentrations, the most 
judicious method is to calculate it for very dilute solutions, for which the activity 
coefficients can be considered as unity. 

 
K

c cA =
−

≈θ
θ

θ
( )1 2

 
(3.121)

 By replacing  by equation (3.118) and expressing the ionic density Na
• (number 

of ions per m3) in terms of molar concentrations and Avogadro’s constant, we have

 
K N r e rq r

a

q
A A d= ∫4000 2 2π /

 
(3.122)
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 This shows that association constants can be calculated numerically and that the 
association constant is quite independent of the concentration. 
 To calculate  in concentrated solutions, we can work iteratively in the following 
manner :
 •   calculate KA 
 •  assume that ± is unity and calculate  
 •  having obtained , calculate ± from the Debye-Hückel formula modified in 
such a way that the ionic strength takes into account ion pairs. For 1:1 electrolytes, 
this is written as 

 
log

( )
( )

γ θ
θ±

+ −= −
+ −

A z z c

Bq c

1
1 1  

(3.123)

 The choice of q as the value of the a parameter is rather arbitrary, but can be 
justified by the fact that this distance is the interaction distance of the ions when they 
form a pair in the Bjerrum sense.
 •   substitute the value obtained in KA and recalculate 
 •   And so on . . .

EXAMPLE 

Let’s calculate the proportion of ion pairs in a 10–3 M solution of tetrabutylammonium 
bromide in 1,2-dichloroethane, knowing that r = 10, rTBA+ = 383 pm, and rBr– = 196 pm.

First of all calculate the Bjerrum distance q (3.117): 

q
z z e

kT
= − = ⋅

× × ⋅ × × ⋅ ×
=+ −

−

− −

2

0

19 2

12 238
1 6 10

8 3 14 8 85 10 10 1 38 10 298
2 8

πε εr
nm

( . )

. . .
.

and the equilibrium constant with (3.122). To do this, we can use a calculation software 
that can do numerical integrations. By taking the sum of the radii for a we then obtain :

KA = −5222 1M

The first value of  is then the root of the quadratic equation (3.120) taking ±
 = 1. Next, 

we calculate the average activity coefficient, taking into account the fact that the constants 
A and B in equation (3.89) depend on the solvent, and here have values of 11.20 M–1/2 and 
9.21·109 M1/2·m–1

The results obtained for 4 iterations are:

± 

 1  0.648

 0.722  0.550

 0.702  0.541

 0.701  0.541
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3.5.3  The Fuoss theory

 The main defects in Bjerrum’s theory are related to the arbitrary character of the 
distance q which defines the formation of ion pairs, and also the fact that the ions 
do not need to be in physical contact for an ion pair to exist. In the Fuoss theory, we 
only consider as ion pairs those ions that are of opposite charge, and in contact for an 
arbitrary length of time. 
 Let’s consider a solution of a monovalent salt containing free ions and ion pairs. 
The number of free anions n f

a is equal to the number of free cations n f
c, that is to say 

to the total number of anions or cations nt respectively, less the number of ion pairs 
existing np

 n n n n n n na
f

a
t

p c
f

c
t

p
f= − = = − =  (3.124)

 If we add dn ions of each species to this solution, one part will form pairs and 
the other part will remain free. The variation in the number of free anions will be 
proportional to dn and the fraction of the volume not occupied by the cations will be 

 
d dn

V n V

V
na

f c
t

c= −
 

(3.125)

where V is the volume of the solution, and Vc the volume occupied by a cation. For 
dilute solutions, it is possible to neglect the volume occupied by the cations with 
respect to the volume of the solution, and equation (3.125) reduces to 

 d dn nf ≅  (3.126)

 The variation in the number of ion pairs is also proportional to dn, but this 
time proportional to the fraction of the volume occupied by the free ions, the whole 
being corrected by a Boltzmann distribution factor which brings in the cation-anion 
interaction 

 
d dn

n V n V

V
e np

c
f

c a
f

a U r kT= + − ( )/

 
(3.127)

Combining these two expressions, we get

 
d dn

n V V e

V
np

f
c a f

U r kT

=
+( ) − ( )/

 
(3.128)

Then by integration we obtain

 
n

n V V e

Vp

f
c a

U r kT

=
( ) +( ) −2

2

( )/

 
(3.129)

 The interaction energy then corresponds to the coulombic interaction energy 
between an ion and a central ion when they are in contact. Knowing the expression 
for the electric potential around a central ion (see equation (3.66)), we then have

U a
z z e

a a
( ) =

+






+ −
2

04
1

1πε ε κr  
(3.130)
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 In conclusion, the concentration of ion pairs can be calculated directly. By making 
the extra approximation that the average exclusion volume of an ion is 4/3pa3, we 
have

 

n

V

n

V

a
ep

f
z z e

a kT a=

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
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(3.131)

By defining the fraction of ion pairs  as 

 

n

V
c Np = θ 1000 A

 
(3.132)

where c is given in mol·l–1 , V in m3, and the fraction of free ions by

 
n

V
c N

f

= −( )1 1000θ A  
(3.133)

this fraction is obtained as the solution of the quadratic equation
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(3.134)

Thus the equilibrium constant for the dilute solutions is written as

 
K

c
N

a
e

z z e
a kT a

A A
r=

−
=







−
+

+ − 



θ

θ
π πε ε κ

( )1
1000

4
32

3
2

04
1

1

 
(3.135)

 The dependence of KA as a function of the relative permittivity (Figure 3.27) 
clearly shows that the formation of ion pairs is an important phenomenon for all 
weakly polar and non-polar solvents.
 Experimental evidence corroborates fairly well both the Bjerrum and Fuoss 
theories. The association constants can be found from measuring the conductivity of 
solutions (see §4.2).

Fig. 3.27  Logarithm of the association constant for an 1:1 electrolyte as a function of the 
relative permittivity.
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EXAMPLE

Let’s calculate, this time by the Fuoss method, the proportion of ion pairs for a 10–3 M 
solution of tetrabutylammonium bromide in 1,2-dichloroethane.
By taking a as the sum of the radii, we have  KA = 1895 M–1 and  = 0.49. These values are 
of the same order of magnitude as those obtained previously using the Bjerrum method.

3.6  COMPUTATIONAL METHODS

3.6.1  The Monte-Carlo method

 The Monte-Carlo method consists of considering a group of N+1 particles in 
a cubic box with a volume of (N+1)L3. The initial configuration of this group is 
completely random. The configuration energy U(q) is calculated as the sum of all the 
interaction energies between all the particles, which is 

 
U uij

j

N

i

N

=
==
∑∑

11  
(3.136)

 The method consists of choosing a particle at random and moving it in a random 
and incremental manner, and calculating the energy of each new configuration. At 
each movement, the new configuration is accepted if its energy U(t+1) is smaller 
than that of the preceding step U(t). If it is not the case, the new configuration can 
be accepted only if the quantity exp[–U(t+1)/U(t)] is smaller than a number chosen 
at random between 0 and 1. These calculations stop when the configuration energy 
converges towards a minimum value. The calculations are in general repeated for 
various initial positions, in order to verify that the optimal configuration attained by 
convergence really is a property of the system.
 When modelling an electrolyte solution, the ions are often considered as rigid 
spheres as in the Debye-Hückel theory, and the interaction energy between two ions is 
purely of a coulombic nature, i.e. 

 
u

z z e

r
r aij

i j

ij
ij= ≥

2

0
24πε εr

     for   
 

(3.137)

 u r aij ij= ∞ ≤                   for    (3.138)

 From the optimal configuration, it is possible to calculate the correlation functions 
of pairs formed by ions of the same sign g and by ions of opposite sign g+/– .
 The correlation functions obtained using the Monte-Carlo method corroborate 
quite well those predicted by the Debye-Hückel method using equations (3.46) and 
(3.66).
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 In a completely general way, the mean value of a property P of the canonical 
ensemble of particles can be calculated by taking a Boltzmann distribution function 
of the energy of the system

< > =
−

−
∫
∫

P
P q q

q

U q kT

U q kT

( )exp

exp

( )/

( )/

d

d
 

(3.140)

3.6.2  Molecular dynamics

 More and more, molecular dynamics is being used for the study of the physical 
properties of liquids and electrolytic solutions. 
 In a nutshell, the principle of molecular dynamics consists of studying the 
behaviour of a system containing N particles, which can represent different species, 
by making the hypothesis that the system obeys the laws of classical mechanics. 
 What differentiates molecular dynamics from the Monte-Carlo methods comes 
from the fact that in molecular dynamics, the initial configuration contains not only 
a spatial distribution of the particles, but also a distribution of their velocity vectors. 
The system is allowed to evolve at constant kinetic energy (3/2 NkT) by calculating 
the displacements of the particles in steps of a few femtoseconds. This approach has 
the advantage of allowing the study of the trajectories of the different particles and 
obtaining information about the mode of transport of the species. The results of these 
calculations are enormously dependent on the interaction potentials between species, 
but there is no doubt that the increase in computational power of new computers has 
made molecular dynamics a standard tool in the study of solutions.
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APPENDIX 
Table 3.6  Physico-chemical data for NaCl solutions.

R.A. Robinson & R.H. Stokes, Electrolyte Solutions, Butterworth, London 1959.

mNaCl
/mol·kg–1

cNaCl
/ mol·l–1

dNaCl
/ kg·l–1 aw c

NaCl nT

0 0 1 1 1 55.5556

0.1 0.100126 1.00391 0.996888 0.777019 55.4478

0.2 0.199481 1.00781 0.993769 0.736911 55.3414

0.3 0.298459 1.01168 0.990633 0.713665 55.2351

0.4 0.39706 1.01553 0.987479 0.698131 55.1287

0.5 0.495284 1.01935 0.984308 0.687484 55.0224

0.6 0.593131 1.02316 0.981119 0.680794 54.9161

0.7 0.6906 1.02694 0.977915 0.676079 54.8099

0.8 0.787692 1.03071 0.974693 0.672344 54.7037

0.9 0.884407 1.03445 0.971456 0.670619 54.5975

1 0.980745 1.03817 0.968203 0.669899 54.4913

1.2 1.17229 1.04554 0.961652 0.66946 54.2791

1.4 1.36232 1.05283 0.955042 0.673114 54.067

1.6 1.55085 1.06004 0.948377 0.677822 53.855

1.8 1.73787 1.06716 0.941658 0.685667 53.6432

2 1.92338 1.07419 0.934888 0.694611 53.4315

2.5 2.38055 1.09139 0.917758 0.722522 52.9027

3 2.82829 1.10806 0.900366 0.757347 52.3747

3.5 3.26661 1.12419 0.88275 0.799301 51.8474

4 3.69549 1.13978 0.864948 0.84752 51.3209

4.5 4.11494 1.15483 0.846996 0.903293 50.7952

5 4.52497 1.16935 0.828932 0.965753 50.2703

5.5 4.92556 1.18333 0.81079 1.03623 49.7461

6 5.31673 1.19677 0.792604 1.1271 49.2228
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CHAPTER 4

TRANSPORT IN SOLUTION

4.1  TRANSPORT IN ELECTROLYTE SOLUTIONS 
 Two types of mass transport are usually considered in electrolyte solutions:
 • convection due to thermal or mechanical agitation 
 • transport due to a gradient of Gibbs energy.

Fig. 4.1  Flux lines across a surface element of area dS.

Convection involves the movement of neutral or ionic species i with the solution that 
surrounds them as shown in Figure 4.1. The flux of these species through an element 
of area dS is a vector written as 

 J vi ic=  (4.1)

where c is the molar concentration (mol·m–3) and v the velocity vector. The norm of 
this flux vector is a number of moles per unit time and area (mol·m–2·s–1).

4.1.1  Gradient of electrochemical potential

 Ionic species in solution can also move under the effect of an electrochemical 
potential gradient, such that the driving force causing the displacement of an ion is

 
F = − 1

NA
grad µ̃

 
(4.2)

where ̃ is the electrochemical potential for a mole of ions given by equation (1.60) 
and NA is Avogadro’s constant. The movement of the ion in a viscous solvent is 

v
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limited by a viscous friction force f proportional to the velocity vector of the ion as 
illustrated in Figure 4.2. 

 f v= −ζ  (4.3)

The resolution of Newton’s equation

 f F a+ = m  (4.4)

shows that the velocity tends rapidly towards a steady state value (as for the free fall 
of a ball in a viscous liquid, see example below).

EXAMPLE

Let’s calculate the velocity of a ball falling in a viscous liquid under the action of gravity 
in a laminar manner.
From equation (4.4), the differential equation to solve is :

f F+ = − + =ζv mg m
v

t

d
d

The solution of the homogeneous equation is 

v
t

m=
−

exp
ζ

and considering the fact that the velocity is zero at the time t = 0, the equation for the 
velocity is written as

v
mg

t

m= −












−

ζ

ζ

1 exp

We can thus see that the velocity tends towards a steady state value equal to mg/.

 In the case of the movement of a species down an electrochemical gradient, the 
steady state velocity is

 
v = − 1

NAζ
µgrad ˜

 
(4.5)

By combining equations (4.1) & (4.4), the flux of the species i is then written as

 
J vi i

i
i i i ic

c

N
c u= = − = −

Aζ
µ µgrad grad˜ ˜ ˜

 
(4.6)

Fig. 4.2  Forces acting on a species in a viscous medium.

ƒ = – F = –        grad ~1
NA
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where ũi is called the electrochemical mobility. A mobility is generally defined 
as the ratio of the velocity to the driving force. The units here are mol·s·kg–1 or
mol·m2·s–1·J–1. By definition, the electrochemical mobility is always positive both for 
cations and anions.
 If we consider that the ion is a sphere of radius r, hydrodynamics (see appendix, 
page 171) tells us that the friction constant  can be calculated as being equal to 

 ζ πη= 6 r  (4.7)

This expression is valid in the case of solid spheres where the velocity of the solvent 
molecules at the surface of the sphere is the same as that of the sphere (the stick 
condition),   being the viscosity of the solvent (kg·m–1·s–1). On the other hand, in the 
case of a fluid sphere, e.g. air bubbles rising in water, the surface velocity differs (the 
slip condition), and the friction constant is given by

 ζ πη= 4 r  (4.8)

 It is interesting to note in passing that this hydrodynamic theory is based on a 
macroscopic hydrodynamic approach that considers the liquid as a homogeneous 
viscous medium, and that equation (4.7) holds here at the molecular level for the 
movement of ions in a solvent, which is itself made up of molecules with translation, 
rotation and vibration modes. 
 By developing the expression for the electrochemical potential of a species i in an 
ideally dilute solution, taking into account the osmotic term linked to the pressure, we 
have 

 ˜ lnµ µ φi i i i iRT c V p z F= + + +o
 (4.9)

where V
–
i is the partial molar volume. Thence, we obtain the general expression for the 

flux under the electrochemical potential gradient 

 Ji i i i i i i i i ic u z Fc u c u V p= − − −˜ ˜ ˜grad grad gradµ φ  (4.10)

This phenomenological equation is the general equation for the transport of a species 
i when gradients of chemical potential (i.e. concentration), of electrical potential and 
of pressure occur. Other gradients such as those linked to gravitational or centrifugal 
forces can also be included in a similar manner. In the following paragraphs, we 
shall look at how the general law (4.10) is related to the empirical laws observed for 
diffusion, migration and osmosis.

4.1.2 Fick’s law for diffusion

 Fick’s first law states that diffusion is a process driven by concentration gradients 
(gradf = grad p = 0 ), and that the diffusion flux is directly proportional to this 
concentration gradient. In the case of one-dimensional gradients, the diffusion flux 
(i.e the norm of the diffusion flux vector) is therefore given by 
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J D

c

xi i
i

p

= − 





∂
∂ φ,  

(4.11)

where Di is the diffusion coefficient expressed in m2·s–1, and more familiarly in 
cm2·s–1.
 It is important to stress that diffusion phenomena in solution can only be 
observed if the thermal agitation, and or mechanical agitation, do not homogenise 
the concentration of the solutes in the solution. Diffusion phenomena in solution 
occur in particular close to solid walls. In effect, at the solid | liquid interface there is 
a ‘stagnant’ layer of solution, called the diffusion layer which has a thickness of the 
order of micrometres (see chapter 7). Thus, diffusion phenomena also occur in porous 
systems (a glass frit membrane, polyacrylamide gel, dialysis membranes, etc…) 
where convection phenomena are negligible.
 Fick’s first law is easily verified by measuring the flux, for example of dyes 
between two containers with different concentrations separated by a porous 
membrane. It can be observed that the initial flux is proportional to the difference in 
concentrations and inversely proportional to the thickness of the membrane. The dye 
concentration in each container is uniform because of the thermal agitation. 
 By comparison with the phenomenological equation (4.10), we get

 
D RT u

kT

ri i= =˜
6πη  

(4.12)

because for dilute solutions for which we can neglect the activity coefficients, we have

 
grad gradµi

i
i

RT

c
c=

 
(4.13)

 The relation between the diffusion coefficient and the electrochemical mobility 
is called Einstein’s law, and the relation between the diffusion coefficient and the 
viscosity is called the Stokes-Einstein equation. We shall see in §4.6 that diffusion 
can be explained by a statistical approach.

4.1.3  Ohm’s law for migration

 An electric current density j is defined as a flow of positive charges through a 
surface element as shown in Figure 4.3. For metallic conductors, this flow is equal to 
the opposite of the flow of electrons through this surface. The current is equal to the 
current density multiplied by the cross-sectional area of the conductor; the electrical 
current is expressed in amperes (A = C·s–1).
 Ohm’s Law is an empirical law of proportionality between the current flowing 
between two equipotential surfaces A and B and the potential difference VA–VB.

 R I V VA B A B→ = −  (4.14)

where R is the resistance expressed in ohms (W = V·A-1).
 In ionic conductors, a similar law is also observed for each ionic species and the 
current density j which is a flux of charge is related to the flux J of the species i by
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 j J Ei i i i iz F= = − =σ φ σgrad  (4.15)

where i is defined as a proportionality coefficient called ionic conductivity with 
the dimension W–1·m–1 or S·m–1, a Siemens being defined as S = W–1. Conductivity 
should not be confused with conductance G expressed in Siemens, the latter being 
defined as the inverse of the resistance. 
 A comparison with the phenomenological equation (4.10), when the only driving 
force is the electric field (gradc = gradp = 0) shows us that 

 
σ λi i i i i i i i i i

i iz F c u z F c u c z F
D c

RT
= = = =2 2 2 2˜

 
(4.16)

where u  is called the electric mobility or sometimes the electrophoretic mobility 
(m2·V–1·s–1). This mobility is related to the electrochemical mobility by

 u z F ui i i= ˜  (4.17)

The electric mobility is defined as the ratio of the velocity to the electric field 

 v E Ei i i i i iz F u z F u u= − = =˜ ˜gradφ  (4.18)

By definition, the electric mobility is positive for cations and negative for anions. 
i is called the molar ionic conductivity and is defined as:

 
λ σ

i i i
i

i
z F u

c
= =

 
(4.19)

having a unit of S·mol–1·m2 or more usually S·mol–1·cm2.
 This part of physical chemistry is encumbered with a multifarious vocabulary 
that is often rather old-fashioned. This is due to the fact that experimental studies 
preceded theoretical ones and so this domain progressed from empirical laws with 
their concomitant vocabulary. In particular, one must be wary of the old definition 
of electric mobility defined as the absolute value of the ratio of the velocity to the 
electric field. In this case, the ionic conductivity is the product of the absolute value 
of the charge, the electric mobility and the Faraday constant. Furthermore, certain old 
publications talk about the equivalent ionic conductivity (an equivalent being defined 
as a mole of monovalent cations); this equivalent ionic conductivity was defined as
i / |zi |.

Fig. 4.3  Current distribution in a conductor.

A

A

j
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4.1.4  Osmotic flow

 The flux of a species i generated by differences in pressure e.g. as in filtration by 
reverse osmosis, is written as 

 Ji i i ic u V p= − ˜ grad  (4.20)

4.2   CONDUCTIVITY OF ELECTROLYTE SOLUTIONS

4.2.1  Limiting molar conductivity

 We have defined above the concept of molar ionic conductivity i for a single 
species. In this paragraph, we shall look at the relation between the current density and 
the potential difference in an electrolyte solution containing several ionic species.
 For an electrolyte Cv+Av–, the total current density is 

 j j j E= + = − +( ) = − =+ − + −σ σ φ σ φ σgrad grad  (4.21)

Comparison with Ohm’s law shows us that the conductivity   (sometimes written  ) 
is the inverse of the resistivity

 σ ρ= 1 /  (4.22)

 We define the molar conductivity of an electrolyte as the ratio of the conductivity 
to the concentration 

 
Λm = = + = + = ++ − + +

+

− −

−
+ + − −

σ σ σ ν σ ν σ ν λ ν λ
c c c c  

(4.23)

Its dimension is usually expressed in S·mol–1·cm2. (It is wise to watch the units; if the 
conductivity is given in S·cm–1 and if the concentration is given in mol·l–1, then we 
have Lm = 1000 /c)
 In the case of very dilute electrolyte solutions where the ion-ion interactions 
can be neglected, the molar ionic conductivity tends to a limiting value o

i called the 
limiting molar ionic conductivity. We then define the limiting molar conductivity of 
the electrolyte as the linear combination of the limiting molar ionic conductivities. 

 Λm
o o o= ++ + − −ν λ ν λ  (4.24)

For example, the limiting molar conductivity of ZnCl2 is

 
ΛZnCl

o
Zn
o

Cl
o 2

2 2 76.3 = 258.2 S cm mol= + = + × ⋅ ⋅+ −
−λ λ2 105 6 2 1.

 From a purely electrical point of view, we can consider an electrolyte as a system 
of resistances in parallel, each resistance corresponding to the transport of the current 
by an ion, as illustrated schematically in Figure 4.4.
 For a circuit of resistors in series, the total resistance is the sum of the resistances 
comprising the circuit, whereas when they are in parallel, it is easier to talk about 
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conductance, because the total conductance of a circuit of resistors in parallel is the 
sum of the conductances comprising the circuit. This explains why, in the case of 
electrolyte solutions, we speak more easily in terms of conductance than resistance.
 For dilute solutions, each ion transports current in its branch of the circuit without 
interacting with the movement of the other ions. For the electrolyte Cv+Av–, the 
cation’s transport number is given by 

 
t

j

j+
+ + + += = =σ

σ
ν λ
Λm  

(4.25)

 For KCl, the limiting molar ionic conductivities are almost equal as shown in 
Table 4.1. This is equivalent to two roughly equal resistances in parallel, the current 
being transported nearly equally by the two ions (tK+ = 0.49, tCl– = 0.51). If we replace 
the potassium ion by a proton that has a much larger limiting molar ionic conductivity, 
the majority of the current (82%) is then carried by the proton and only 18% by the 

Fig. 4.4  Equivalent electric circuit for migration in a KCl solution.

Table 4.1  Limiting molar ionic conductivity at 25°C,
R.A. Robinson & R.H. Stokes, Electrolyte Solutions, Butterworth, London 1959.

Cation o
i /cm2·W–1·mol–1 Anion o

i /cm2·W–1·mol–1

H+  349.8 OH–  198.3
Li+  38.7 F–  55.4
Na+  50.1 Cl–  76.4
K+  73.5 Br–  78.1
Rb+  77.8 I–  76.4
Cs+  77.3 NO3

–  71.5
NH4

+  73.6 ClO4
–  67.4

Me4N+  44.9 SCN–  66.0
Mg2+  106.1 SO4

2–  160.0
Ca2+  119.0 Fe(CN)6

3–  302.7
Fe3+  204.0 Fe(CN)6

4–  442.0

K+

Cl–
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chloride ion (tH+ = 0.82, tCl– = 0.18). For ZnCl2, the transport numbers are respectively 
tZn2+ = 0.41, tCl– = 0.59.
 The reason the limiting ionic molar conductivity of the proton is so high stems 
from the proton mobility mechanism that differs from that of the other ions which 
move by successive jumps, taking with them part of their hydration layer. In 1806, 
de Grotthus proposed a mechanism which considers that protons move rather in 
‘chain reactions’, breaking covalent bonds and reforming in their place hydrogen 
bonds as illustrated in Figure 4.5. This transport mechanim is also called structural 
diffusion.
 Furthermore, we must take care when we write the proton in the chemical 
oxonium form H3O+, because this is already a major simplification. In fact, because 
the proton H+ cannot exist in isolation in solution, certain theoretical work tends 
to prove that a stable complex of the aqueous proton is H9O4

+ , i.e. an H3O+ core 
strongly hydrogen-bonded to three H2O molecules sometimes called ‘Eigen cation’. 
Another proposed structure is one where a proton is shared by two H2O molecules to 
form the ‘Zundel cation’ H5O2

+. Anyway, the topic of proton mobility is a rather open 
debate, and recent works suggest that the proton influence can be spread over several 
hydrogen bonds.

4.2.2  Measurement of conductivities

 In the same way that the electric resistance of a material depends on its resistivity 
and on its geometric dimension, the resistance of an electrolytic solution will depend 
on its conductivity and the geometrical characteristics of the measuring cell. In a 
general manner, Ohm’s law can be written as the circulation (or path integral) of the 
electric field vector (see Annex A), which for a linear conductor reads

Fig. 4.5  Schematic illustration of proton mobility by ‘structural diffusion’ (Adapted from A.A. 
Kornyshev et al, J. Phys. Chem. B., 107 (2003) 3351).

Initial state

H3O+

Final state

© 2004, First edition, EPFL Press



140 Analytical and Physical Electrochemistry 141Transport in solution

 
V V jlA B A

B

A

B
d d− = ⋅ = ⋅ =∫ ∫E l j lρ ρ

 
(4.26)

and the current as the flux through a cross-section is

 
I S jS

S
= ⋅ =∫∫ j n d

 
(4.27)

Thus, the resistance of a linear conductor (Figure 4.6a) is written, using equation 
(4.14), as

 
R

V V

I

l

S
= − =A B ρ

 
(4.28)

For a current I between two concentric hemispheric electrodes (Figure 4.6b), the 
resistance can be calculated using the same method 

 
V V

I

r
r

r r
I RIA B A

B

A

B

A B
d d− = ⋅ = ⋅ = −







=∫ ∫ρ ρ
π

ρ
π

j r
2 2

1 1
2

 
(4.29)

 A cell to measure the conductivity of electrolyte solutions usually comprises 
two parallel electrodes usually face to face. Given that the exact geometry of such a 
measuring cell, made up of two planar and parallel electrodes, is difficult to determine 
accurately, and that the distribution of the current lines is not uniform as illustrated 
in Figure 4.7, we call cell constant kcell, the geometric factor equivalent of the ratio 
l/S, the units being m–1. Thus, for each measuring cell, it is easier to determine the 
cell constant by calibration, i.e. by measuring the resistance of solutions with a well-
known conductivity (e.g. KCl)

 k Rcell KCl Measured= ⋅σ  (4.30)

 From a practical point of view, the conductivity of a solution is measured by 
applying an AC potential difference between the two parallel electrodes in order to 
avoid changes in the chemical composition of the solution by oxidation at the anode 
and reduction at the cathode, that one would get with an applied DC voltage. With 
an AC applied potential difference, it is important to reduce the capacitive effects, 
and for this we use electrodes with large specific surfaces such as platinum black 
electrodes and operate at frequencies of the order of a few hundred Hz.

Fig. 4.6  Linear conduction (a) and hemispherical conduction (b).

  (a) (b)

l

E
BA A
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EXAMPLE

A measurement with a conductivity-measuring cell at 25oC shows a resistance of 747.5 
 for a 0.01 M solution of KCl, and a value of 876  when the electrolyte is a 0.005 M 
solution of CaCl2. Calculate the conductivity and the molar conductivity of the solution of 
calcium chloride. Compare this value with the limiting molar conductivity using the data 
of Table 4.1.
First of all, we calculate the cell constant with the aid of equations (4.24) & (4.30) using 
the values from Table 4.1.

k R R ccell KCl KCl KCl KCl
o

KCl

2 –3 1         cm mol mol cm cm

= ⋅ = ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ =− −

σ Λ

Ω Ω747 5 149 9 10 1 12051 1 5. ( ) . ( ) ( ) .– –

In fact, the molar conductivity of a 10–2 M solution of KCl is 141.3 (cm2·–1·mol–1) , but 
by simplification we consider it dilute enough to take the limiting values of the molar ionic 
conductivity. Experimentally, it is clear that we must measure the cell constant for various 
dilutions and extrapolate to zero concentrations.
With this value, we can calculate the conductivity of the calcium chloride solution.

σCaCl
cell

CaCl

1 1cm2
2

1 1205
876

1 28 10 3= = = ⋅ ⋅− − −k

R

.
. Ω

and thus the molar conductivity

Λ Ω ΩCaCl
CaCl

CaCl

1

3
1 1cm

(mol cm )
cm mol2

2

2

1 28 10

5 10
255 8

3 1

6
2= = ⋅ ⋅

⋅ ⋅
= ⋅ ⋅

− − −

− −
− −σ

c

. ( )
.

This value is less than the limiting molar conductivity value of CaCl2

Λ Λ Λ Ω
CaCl
o

Ca

o
Cl
o 1 1

2+ – cm mol
2

2 119 2 76 4 271 8 2= + = + ⋅ = ⋅ ⋅− −. .

This is due to ion-ion interactions as described in §4.3.1.

Fig. 4.7  Field lines between two parallel electrodes.

Direct electric field

Edge effect
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4.2.3 Measurement of acidity constants

 For many years, conductometric measurements were frequently used for 
measuring the acidity constants of weak acids. Indeed, the very notions of weak and 
strong acids have their origin in their conductivity characteristics. In effect, a strong 
acid is by definition an acid whose molar conductivity follows Kohlrausch’s law (see 
§4.3). A weak acid is therefore an acid whose molar conductivity is small at medium 
concentrations, but which increases rapidly when the concentration is reduced. 
 Let’s look at the dissociation of the acid AH

 AH + H2O  i  A– + H3O+

The corresponding disssociation constant is then (neglecting the activity coefficients)

 
K

c c

c
ca

H O A

AH
total

3≅ =
−

+ − α
α

2

1  
(4.31)

Fig. 4.8  Molar conductivity of acetic acid in solution. Lm
o = 390.7 cm2·W–1·mol–1 (Numerical 

values: R. A. Robinson & R. H. Stokes, Electrolyte Solutions, Butterworth, London 1959).

Fig. 4.9  Graph of equation (4.34).
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where a  is the degree of dissociation of the acid and ctotal is the total acid concentration 
(ctotal = cA– + cAH). For low concentrations, we can make the hypothesis that the 
degree of dissociation becomes equal to the ratio of the molar conductivity to the 
limiting molar conductivity. 

 α = Λ Λm m
o/  (4.32)

 The data in Figure 4.8 show values of the molar conductivity of acetic acid as a 
function of concentration. The problem is that it is experimentally difficult to obtain 
a precise value for the limiting molar conductivity. To circumvent this, we use the 
additive properties of molar conductivities, as for example 

 Λ Λ Λ Λm(AH)
o

m(HCl)
o

m(NaA)
o

m(NaCl)
o= + −  (4.33)

Thus by combining equations (4.31) & (4.32), we obtain Ostwald’s law of dilution

 
c

K
Ktotal m

m
o

a

m
a m

oΛ
Λ

Λ
Λ=

( )
−

2

 
(4.34)

that allows the determination of the dissociation constant by plotting ctotalLm 
against Lm

-1. From the data in Figure 4.8 carried forward to Figure 4.9, we obtain a 
dissociation constant of 1.77·10–5 M.

EXAMPLE

In 1894, Kohlrausch & Heydweiller measured the conductivity of water as 6.2·10–6 S·m–1. 
From the values in Table 4.1, let’s estimate the ionisation constant of water.

Λ Ωm(H O)
o

H
o

OH
o

2 + – cm mol= + = ⋅ ⋅− −λ λ 548 1 2 1 1.

And so, applying equation (4.23) we can calculate the concentration c of dissociated 
water and make the hypothesis that the molar conductivity is equal to the limiting molar 
conductivity 

c = = ⋅ ⋅ ⋅ ⋅

= ⋅

− − − −

−

σ / . ) / . ( )

.

–Λ Ω Ωm(H O)
o

2
(m cm mol

                        M

6 2 10 548 1

1 13 10

6 1 1 2 1 1

7

which gives 

K cH O
2

2
M= = ⋅ −2 141 28 10.

.
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4.3  INFLUENCE OF CONCENTRATION ON    
 CONDUCTIVITY

4.3.1  Kohlrausch’s law

 Kohlrausch’s law is an empirical law that expresses the dependence of the molar 
conductivity of an electrolyte as a function of its concentration for dilute solutions, as 
illustrated in Figure 4.10 for sodium chloride and potassium chloride

 Λ Λm m
o= − K c  (4.35)

Kohlrausch’s law is a consequence of the ion-ion interactions when the ions are 
subjected to an electric field, and can be justified either simply by a thermodynamic 
approach or more phenomenologically by a microscopic modelling of the ion 
transport in solution.

4.3.2  Thermodynamic approach

 Actually, considering ion-ion interactions means that the solution cannot be 
treated as ideal, and therefore we can no longer write that 

 
grad gradµ = RT

c
c

 
(4.36)

Taking into account the activity coefficients, we have 

 grad grad grad gradµ γ= = +[ ]RT a RT cln ln ln  (4.37)

Thus in one-dimensional systems, we see that 

 
J RT c u

x c

c

x
D

c

xi i i
i

i

i
i

i= − +








 = −˜

ln∂ γ
∂

∂
∂

∂
∂

1

 
(4.38)

which yields a concentration dependence of the diffusion coefficient 

Fig. 4.10  Molar conductivities of aqueous solutions of NaCl and KCl. 
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D RT u c

x

x

ci i i
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
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



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
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
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(4.39)

By substituting Einstein’s law (4.12), we finally get

 
D D c

ci i i
i

i
= +















o 1

∂ γ
∂
ln

 
(4.40)

Using the Debye-Hückel law for 1:1 electrolytes given by equation (3.91)

 log γ i
c

i cz A I A c= − = −2
 (4.41)

we obtain 

 
D D A ci i= −





o 1
1
2

'
 

(4.42)

To demonstrate Kohlrausch’s law, we can make use of the additive property of molar 
ionic conductivities (4.23) and the definition of the electric mobility (4.17)

 

Λm

        

= + = +

= + = +

+ + − − + + + − − −

+ + + − − − + + + − − −

ν λ ν λ ν ν

ν ν ν ν

F z u z u

F z u z u
F

RT
z D z D

( )

( ˜ ˜ ) ( )2 2 2
2

2 2

 

(4.43)

By substituting the concentration dependence of the diffusion coefficient given by 
equation (4.42), the concentration dependence of the molar conductivity for an 1:1 
electrolyte reads

 
Λm

o o= + −



+ + + − − −

F

RT
z D z D

A
c

2
2 2 1

2
( )

'ν ν
 

(4.44)

which reduces to the empirical Kohlrausch’s law

 Λ Λm m
o= − K c  (4.45)

4.3.3 Electrophoretic effect

 When an electric field is applied, the central ion moves in the opposite direction 
with respect to its ionic atmosphere, as shown schematically in Figure 4.11. The 
central ion and the ionic atmosphere drag solvent molecules into their motion by 
friction. This causes a reduction in the conductivity.
 The electrophoretic velocity of the ionic atmosphere can be calculated as that 
which would affect a sphere of radius 1/ (the average radius of the ionic atmosphere 
defined by equation (3.72)) and whose charge would be the opposite of that of the 
central ion, equal to zce. In a steady state regime, the force of the electric field on the 
atmosphere is equal to the viscous friction force given by equations (4.3) & (4.7), 
from which we deduce that 
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v

E E
E

c cz e z e= − = −
ζ

κ
πη6  

(4.46)

This equation, obtained rather simplistically, is in fact the first degree approximation 
of the Onsager & Fuoss theory.
 Onsager & Fuoss’s approach consists of going from an equilibrium of forces 
kS acting partly on the solvent molecules, and partly on the cations and anions in a 
solution at rest.

 n n z n z eS Sk E= − +( )+ + − −  (4.47)

where nS , n+  and n–  are respectively the concentrations of solvent molecules, cations 
and anions in the solution. The sum of the forces df acting on a spherical shell of 
thickness dr around a central ion is written as 

 
d dshell shellf E k= +( ) +[ ]+ + − −n z n z e n r rS S 4 2π

 
(4.48)

making the hypothesis that the solvent concentration is uniform. If we consider that 
each shell is subject to a friction force such as that described by equations (4.3) & 
(4.7), by elimination it follows that

 
v

E
E r a

e

r
n n z n n z r r= −( ) + −( )[ ]+ + + − − −=

∞
∫ 6

4 2

π η
πshell shell d

 
(4.49)

Assuming that the distribution of ions in the spherical shell obeys a Boltzmann 
distribution (see equation (3.47)) 

 n n z e r kT
± ±= − ±shell exp ( )/φ

 (4.50)

which we can linearise for dilute solutions as we did for the Debye-Hückel theory, and 
assuming that the electric potential around the central ion is given by equation (3.66)
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κ κ
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z e e
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e

r
c

a r
=

+








4 10 r  

(4.51)

equation (4.49) becomes

Fig. 4.11  The electrophoretic effect.
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(4.52)

The last term in brackets is twice the ionic strength defined by equation (3.75), and can 
be expressed as a function of the reciprocal Debye length defined by equation (3.55)

 
n z n z

kT

e
+ + − −+[ ] =2 2 2 0

2κ ε εr

 
(4.53)

By substitution, we obtain

 
v

E
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cz e

a
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+




6 1πη

κ
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(4.54)

The term 1+a is linked to the consideration of the size of the ions. If we neglect this 
term, we find ourselves again with equation (4.46).

4.3.4 Relaxation effect of the ionic atmosphere

 This effect is due to the relaxation time of the ionic atmosphere that varies 
between 1 ms and 1 ns according to the concentration. As a first approximation, the 
relaxation time can be estimated from the Einstein-Smoluchowski equation (4.162).

 τ κ
R = ( )1

2

2/
D  (4.55)

In effect, when there is a movement of the central ion and its atmosphere under the 
action of the electric field, there is a break in the spherical symmetry. This translates 
to a restraining force of the ionic atmosphere on the central ion, and R represents a 
characteristic time for the central ion to move with respect to its atmosphere. 

Fig. 4.12  Relaxation of the ionic atmosphere.
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 The Onsager-Falkenhagen theory that allows the modelling of ionic atmosphere 
relaxation phenomena involves a mathematical complexity that is beyond the scope of 
this book. However, the principal concept of this theory is to consider that the electric 
field E is partially compensated by a ‘relaxation field’ DE such that
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012 1 1πε ε
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(4.56)

with 
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(4.57)

The parameter q reduces to a factor of 1/2 for symmetrical electrolytes.
 Thus the force exerted on a shell of thickness dr around a central ion is written as 

 
n z n z e n r r+ + − −+( ) +( ) +[ ]shell shell dE E k∆ S S 4 2π

 
(4.58)

and a calculation similar to the previous one gives us an expression similar to equation 
(4.54) i.e.
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(4.59)

So the velocity of the central ion slowed down by the relaxation of the atmosphere is

 v E ER c cu z F= +( )˜o ∆  (4.60)

By combining the electrophoretic effect and the relaxation effect of the ionic 
atmosphere, we can calculate the molar conductivity of an electrolyte as follows
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(4.61)

The resulting electric mobility is then written as 
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(4.62)

Thus, the molar ionic conductivities defined by equation (4.19) are given by 
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(4.63)
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(4.64)

The molar conductivity of the solution is then obtained by a classic linear combination 
of the molar ionic conductivities. 
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(4.65)

Neglecting the second order terms and the term 1+a for the size of the ion, we 
obtain
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(4.66)

Given that the reciprocal Debye length varies with the square root of the ionic force, 
we arrive again at Kohlrausch’s empirical law (4.45). 

EXAMPLE 

Let’s develop equation (4.66) for NaCl, CaCl2 and LaCl3 and compare the results to the 

experimental values.

o
+/cm2◊–1◊mol–1 o

– /cm2◊–1◊mol–1 q

NaCl  50.1  76.4  0.500  0.2929

CaCl2  119  76.4  0.464  0.2760

LaCl3  209.1  76.4  0.384  0.2371

For the reciprocal Debye length, we can use equation (3.82).

  = BMIc = 3.29 ◊109 m–1

Thus the variation in molar conductivity of sodium chloride is given by:
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For calcium chloride :
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and for lanthanum chloride
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The experimental values for these three graphs shown as markers are taken from: R. A. 
Robinson & R. H. Stokes, Electrolyte Solutions, Butterworths, London 1959. The straight 
lines represent the respective equations.

 These results validate the modelling of the Kohlrausch’s law based on the 
combined action of the electrophoretic effect and relaxation on the ionic atmosphere. 
We can thus conclude that the experimental Kohlrausch’s law is caused by ion-ion 
interactions.
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4.3.5  Relaxation effect at high frequencies

 The relaxation time of the ionic atmosphere is of the order of 10 to 100 ns, and so 
if we measure the conductivity of a solution using a high frequency potential source, 
in the radio frequency band, e.g. 10 MHz, the ionic atmosphere can no longer follow 
the speed of movement of the ions, and so the conductivities measured are higher. 
This effect, predicted by Debye and Falkenhagen, was verified experimentally in 
1928 by Sack, and so takes the name of the Debye-Falkenhagen effect or the Sack 
effect.
 Another effect can be observed by placing an electrolytic solution in an electric 
field strong enough so that the central ion passes through its ionic cloud so quickly 
that the latter cannot follow. The ion, no longer being retarded by an electrophoretic 
effect, has a greater mobility, and the conductivities measured are higher. This second 
effect is called the Wien effect.

4.4  DIELECTRIC FRICTION
 In the latter section, we looked at the reduction in conductivity induced by ion-ion 
interactions. In this section, we are going to look at the reduction in conductivity in 
polar solvents induced by ion-dipole interactions. Before launching into this question 
of dielectric friction of the solvent on the ion movement, it will be useful to complete 
our knowledge of ion-dipole interactions and consider the electric field induced by a 
dipole.

4.4.1  Electric field created by a dipole

 With the electric field being defined as the gradient of the electric potential 

 E = − grad V  (4.67)

the expression for the potential generated by a dipole (equation 3.33) is written as
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1 1
0 3 3 3πε E
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
 = − ⋅( ) 
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 − ⋅( )grad grad grad

r r r  
(4.68)

and is by the definition of the vector gradient equal to p. In effect, we have
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(4.69)

Also, we have
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And, if r2 = x2 + y2 + z2 ,
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since
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Thus, the field is written as 
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By developing the scalar products, we obtain

 
4

3 3 3
0

2 2

5 5 5π ε E
x r

r
p

xy

r
p

xz

r
px x y z= − + +

 
(4.74)

 
4

3 3 3
0 5

2 2

5 5π ε E
yx

r
p

y r

r
p

yz

r
py x y z= + − +

 
(4.75)

 
4

3 3 3
0 5 5

2 2

5π ε E
zx

r
p

zy

r
p

z r

r
pz x y z= + + −

 
(4.76)

which, in tensor notation, reads

 E p= − ⋅T  (4.77)

where the negative sign is due to a convention, and where the tensor T  is given by
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In tensor notation, we would write

 
T I I= − ⋅
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(4.79)

where I is the unity tensor and T  is called the tensor of a dipolar field.

4.4.2  Relaxation of the dielectrics

 From a macroscopic point of view, polar solvents can be considered as 
homogeneous dielectric media (see §1.1.3). We have already seen that at high 
frequencies, dielectrics have a certain inertia as illustrated by the diminution of the 
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relative permittivity when the frequency of the perturbation increases. Thus for time 
dependent systems, their response time to a perturbation has to be taken into account. 
In order to understand dielectric friction phenomena, it is necessary to study briefly 
the principles linked to the relaxation of dielectric media following perturbations.
 We defined by equation (1.52) the electric displacement vector as being 
proportional to the electric field, the proportionality constant being the permittivity 
of the medium. This definition is valid for steady state or harmonic systems. For 
transitory systems, the inertia of the dipoles will cause a retarded response of D with 
respect to E. If we apply an electric field pulse to a dielectric at a time t0 for a duration 
dt , the orientation inertia of the dipoles means that the response of the displacement 
vector will relax back to zero, but with a slight delay as shown in Figure 4.13. In 
general, part of the dielectric reacts instantaneously (electronic polarisation) and so 
the response of the electric displacement vector to the impulse of an electric field 
pulse is written as 

 

D E E

D E
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t t t t t t t t t t

t t t t t t t t

− = + < < +
− = − +

∞0 0 0 0 0 0 0

0 0 0 0

ε ε α
α

d                  for  d

d                                  for  > dt  
(4.80)

where • is the relative permittivity at frequencies tending to infinity, also sometimes 
called the optical relative permittivity for frequencies corresponding to those of 
light. The function a(t – t0) is a damping function, also sometimes called a memory 
function, which we assume to be constant during the time interval dt.
 If we now apply, at time t = 0, an electric field E(t), by the principle of superposition 
of responses given by equation (4.80) for intervals of time dt, the displacement vector 
is then written in the form of an integral 

 
D E E( ) ( ) ( ) ( )t t u t u u

t
= + −∞ ∫ε ε α0 0

d
 

(4.81)

We can take as a first approximation an exponential damping function 

 α α τ( ) ( )exp /t t= −0  (4.82)

Fig. 4.13  Response of an electric displacement vector to the impulse of an electric field. 
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Knowing that 
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(4.83)

we have, by differentiating equation (4.81) and multiplying by 
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(4.84)

By substituting equation (4.81) in equation (4.84), we get
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ε ε ε ε τα
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t t t t tD E D E E( ) ( ) ( ) ( ) ( ) ( )−[ ] + −[ ] =∞ ∞0 0 0
 

(4.85)

To eliminate a(0), let’s look at the static case where D = 0rE. Then we have:
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(4.86)

and thus

 τα ε ε ε( )0 0= −( )∞r  (4.87)

The damping function is then written as

 
α

ε ε ε
τ

τ( ) exp /t t=
−( )∞ −0 r

 
(4.88)

Let’s look at the relaxation of the dielectric in a flat capacitator following a graded 
variation of the charge. The approach to equilibrium in these conditions is described by

 

∂
∂
D( )t

t
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(4.89)

and D(t) = D0 since a constant charge on the capacitor implies a constant polarisation. 
Equation (4.85) becomes
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which integrates to give
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(4.91)

L is called the longitudinal relaxation time. Now, if we look at the relaxation of a 
dielectric following a graded variation in potential, the approach to equilibrium is in 
these conditions given by
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d
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(4.92)

and E(t) = E0 since a constant potential difference implies a constant electric field. 
Equation (4.85) becomes
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which integrates to give

 
D = −[ ]−ε ε τ

0 1r exp /t
 

(4.94)

The relaxation time for a variation in potential is called the Debye relaxation time
D. For the two kinds of perturbations, we have an exponential approach to 
equilibrium. The two relaxation times defined above are linked by 

 
τ ε

ε
τL

r
D= ∞

 
(4.95)

For water, L is 25 ps. This corresponds to a wavelength of about 1 cm which is in the 
range of microwaves. 

4.4.3  Dielectric friction coefficient 

 In order to model the mechanisms of dielectric friction, let’s first of all look 
at an immobile ion in a solvent. The molecules of polar solvents around the ion 
are subjected to an orientation polarisation, but by symmetry, no resultant force is 
exercised in return on the ion. On the other hand, if the ion is moved by the action of 
an external force, while the polarisation has remained ‘frozen’, the resultant broken 
symmetry will produce a force corresponding to a restoring force as illustrated in 
Figure 4.14.
 For small displacements, we can make the hypothesis that the restoring force is, 
like in the case of a spring, proportional to the displacement, and thus write 
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 ⋅

∂
∂  

(4.96)

where the exponent d relates to the restoring force of the dielectric.
 If the ion is displaced by the effect of an external force F e, we can write that in a 
steady state regime equation (4.4) has an extra term due to the dielectric friction 

 F F fe d visc= +  (4.97)

where f visc is the force of the viscous friction proportional to the velocity defined by 
equation (4.5). This equation may be rewritten in tensorial notation by using the unity 
tensor I  

 f vvisc o= ⋅ζ I  (4.98)
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We recall that in the case of ‘stick’ friction, the friction coefficient is written as 

 ζ πηo = 6 a (4.99)

where a is the radius of the ion and  the viscosity of the solvent (see appendix page 
171).
 To link the displacement to the velocity, let’s look at the displacement of an ion 
under an external force, as illustrated in Figure 4.14. If the ion moves rapidly with 
respect to the solvent that we can consider it as ‘frozen’, the ion displacement will 
happen up to the moment where the external force is compensated for by the dielectric 
restoring force. At that moment, the ion stops and the solvent can relax with a 
relaxation time characteristic of the longiditudinal relaxation time L of the dielectric. 
By considering the movement of an ion as a series of elementary displacements dl 
followed by relaxation, the speed of the ion is dl/L , and thus the elementary distance 
travelled is therefore vL. The friction force can then be written as
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and equation (4.97) in tensorial notation gives
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where  is the effective friction coefficient such that 
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(4.102)

Now, we can try to evaluate the restoring force. The electric field due to the ion at the 
distance r  is

 
E(r r) ˆ= q

r4 0
2π ε εr  

(4.103)

Fig. 4.14  Restoring forces of dipoles ‘frozen’ during the displacement of an ion 
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The polarisation of an element with a volume d3r at the point r due to the molecular 
orientation caused by the presence of the charge q is then written as

 
p r r E r r r r( ) ( ) ˆd d dr

r

r

3
0

3
2

3

4
= −( ) = −



∞

∞ε ε ε ε ε
π ε

q

r  
(4.104)

Note that we must subtract from the total polarisation (Ptotal = 0E = (r – 1)0E) 
the contribution due to the electronic polarisation which is quasi-instantaneous 
(P• = (• – 1)0E).
 The force exerted in return on the ion by the polarisation induced by this volumic 
element is
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since all the dipoles are considered as ‘frozen’ and the relative permittivity of the 
medium is thus •. T(r) is the tensor of the dipolar field previously defined by 
equation (4.79).
 In order to make this vectorial calculation more comprehensible, we will develop 
it step by step.
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which, in vectorial notation is
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If the ion is displaced by the distance dr = dxi + dyj + dzk, the variation in the force 
can be expressed by the Jacobian force matrix defined by 
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By developing each term in the matrix, we arrive at 
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which simplifies to
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which is again
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Hence, we get
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The integral of the tensor can be calculated by changing to spherical coordinates 
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all these non-diagonal terms are equal to zero.
And so we have 
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 (4.113)
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The coefficient of dielectric friction finally reads 
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From a practical point of view, it is clear that the smaller the ion and the higher the 
relative permittivity of the solvent, the more the effect is non-negligible.
 This calculation is presented as an example of the type of vectorial calculation 
one is confronted with when investigating ion-dipole interactions.

4.5  THERMODYNAMICS OF IRREVERSIBLE SYSTEMS

4.5.1  Onsager’s phenomenological equations 

 To understand transport phenomena from a thermodynamic point of view, it 
is important to be able to link the flux that represents directionality in time of an 
evolution with the driving forces. The transport phenomena are therefore characterised 
by the fact that the system is not at equilibrium and produces entropy by continually 
dissipating energy when an external driving force is applied. This increase in entropy 
is expressed from the definition of the dissipation function f,

 
φ = = ∑T
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t i i
i

d
d

J X
 

(4.116)

where Ji is the flux of the species i and Xi the driving force acting on that species. If 
the systems are linear, i.e. if the flux is proportional to the driving forces, we have 

 
J Xi ij j

j

L= ∑
 

(4.117)

Onsager’s theory shows that the coefficients of symmetrical coupling are equal 

 L Lij ji=  (4.118)

In the case of an electrolyte we have

 
J X X

C C C C C A A– –+ + + + += +L L
 (4.119)

 
J X X

A A C C A A A– – – – –= ++ +L L
 (4.120)

4.5.2  Diffusion potential

 An interesting phenomenon is the potential difference established in solution when 
a salt diffuses. For example, if we place in contact a concentrated NaCl solution and 
a dilute NaCl solution, the salt will diffuse from the region where its concentration is 
higher to the region where its concentration is lower. However, the ionic mobilities of 
the two ions are not equal (see Table 4.1) and consequently their diffusion coefficients 
are not equal. As it happens, chloride ions are faster than the sodium ions. To maintain 
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electroneutrality, an electric field is created during the diffusion process of species of 
different mobilities. In the case of NaCl, the electric field acts as to slow down the 
chloride ions and to speed up the sodium cations.
 To quantify this phenomenon, let’s consider a volume element of thickness dx 
crossed by a concentration gradient of a salt C+A–. If the cation and the anion have 
different mobilities, their fluxes can be expressed from equations (4.119-4.120).
 The electroneutrality condition for the volume element is written as 

 
z F z F

C C A A– –+ + + =J J 0
 

(4.121)

By substitution, we have

      
z FL z FL z FL z FL
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(4.122)

For a salt, we shall limit ourselves to the transport by diffusion-migration, and the 
driving force is simply 

 Xi i i iz F= − = − −grad grad gradµ̃ µ φ  (4.123)

Thus, taking
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we obtain by substitution a relation which shows that a potential difference is 
established by the diffusion fluxes
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The resulting potential difference is called the diffusion potential.
 We can show that
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Actually, 
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and by multiplying the denominator and the numerator by gradf, we get
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In the same way, knowing that tC+ + tA– = 1, it follows that
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(4.130)

From this we deduce an equation for the diffusion potential as a function of the 
transport numbers of the ions.
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(4.131)

This relationship indicates that the greater the difference in transport number (e.g. 
HCl), the greater is the diffusion potential, whilst it is small for salts for which the 
transport numbers of the cation and anion are similar, e.g. KCl.

4.5.3  The Planck-Henderson equation

 Consider a liquid junction such as that illustrated in Figure 2.17 and let’s calculate 
the diffusion potential across the glass frit. To do this, we need to integrate equation 
(4.131) between x = 0 and x = l , where l is the thickness of the junction.
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If we make the hypothesis that the solutions are ideal, equation (4.132) integrates to 
give
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For an 1:1 electrolyte, we have
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(4.134)

If the salt concentration (e.g. KCl) in the reference electrode is in excess with respect 
to that of the solution in which the reference electrode is submerged, then the transport 
number of the ions from the solution diffusing through the glass frit will be negligible. 
Equation (4.134) thus applies mainly to the salt from the internal compartment of the 
reference electrode diffusing through the glass frit to the solution. If this salt is KCl, 
the values in Table 4.1 show us that  tC+ @ tA–  and therefore the potential of the liquid 
junction is very small.
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4.6  STATISTICAL ASPECTS OF DIFFUSION
 We have seen for macroscopic systems that diffusion corresponds to a flux of 
species in a concentration gradient. In this section, we shall treat this type of mass 
transfer statistically.

4.6.1  Random motion in one dimension

 Let’s consider a particle moving along an axis by a series of jumps of length l. 
Each jump, either forwards or backwards, has a probability of 1/2. After N jumps from 
the position  x = 0, the particle may find itself at any position between –Nl and Nl 

 –Nl  –(N–1)l  ···0···   (N–1)l  Nl

 Now let’s try to calculate the probability W(m,N) that the particle will arrive at a 
point  m after N jumps.
 The probability for any sequence of N jumps is (1/2)N if all the jumps have the 
same probability. Therefore, the probability W(m,N) is (1/2)N times the number of 
distinct sequences which lead to m after N jumps. To arrive at the point m, (N+m)/2 
jumps were in the right direction, and (N–m)/2 jumps were in the opposite direction. 
Of course, if N is even, m must also be even and the converse if N is odd.
 The number of distinct sequences is
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 The probability W(m,N) is given by
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The probability of going to position 2 in 4 jumps is therefore 0.25.
 For the case where N is large and/or m << N , we can apply the Stirling 
approximation to this equation 

Fig. 4.15  Diffusion on an axis. Example of displacement to position 2 in 4 jumps. 
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and thus obtain 
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By developing to the second order the terms ln 1+
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Thus, for large values of N, the probability that the particle gets to the point m is

 
W m N

N
m N( , ) exp ( / )= −2 2 2

π  
(4.139)

The probability that the particle gets to the space between x = ml, where l is the length 
of a jump, and x +Dx ( with Dx >> l ) after N jumps is such that

 
W x N x W m N

x

l
( , ) ( , )∆ ∆= 



2  

(4.140)

the factor 1/2 being due to the respect for the common parity between m and N. 
Actually, m can only take even or odd values if the number of jumps is even or odd 
from which comes the probability 1/2. Thus,
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2 22
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(4.141)
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Supposing that the particle makes n jumps per unit time, the probability that it will be 
at a position between x and x + Dx is then

 
W x t x

Dt
xx Dt( , ) exp ( / )∆ ∆= −1

4

2 4

π  
(4.142)

putting

 
D nl= 1

2
2

 
(4.143)

Equation (4.142) is a gaussian, as shown in Figure 4.16, that describes the enlargement 
of an initial Dirac distribution by linear diffusion such as you can observe in a 
chromatographic column.

4.6.2  One-dimensional random motion with an absorbent wall 

 Consider an absorbent wall at a distance m = m1 . The first point to consider is 
the probability that a particle can get to the wall in N jumps. The second point is the 
average speed of the particles arriving at the wall.
 In the first case, it is clear that to calculate the probability W (m,N;m1) of going 
to position m knowing that there is an absorbent wall at position m1, we should take 
into account the fact that the particles cannot get past the absorbent wall or even 
touch it. Thus, compared to the previous calculation, there are forbidden trajectories 
which must be subtracted from W (m,N), i.e. those which arrive in the absence of the 
absorbent wall at the image of point m with respect to the wall, i.e. at 2 m1 – m . We 
have then

 W (m, N; m1)   =   W (m, N) – W (2 m1 – m, N)  (4.144)

 In the example of Figure 4.17, there are 5 ways of getting to m = 3 in 5 jumps. 
However, one of the trajectories goes by the absorbent wall and is therefore forbidden. 

Fig. 4.16  Concentration profile with unidirectional diffusion.
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In this example, the forbidden trajectory goes by the plane located at 2 m1 – m = 
8 – 3 = 5, the image of m with respect to the absorbing path.
 When N is large, by using equation (4.139) we then get

 
W m N m

N
m N m m N

( , ; ) exp exp/ ( ) /
1

2
1

22 2 2 2= −





− − −
π  

(4.145)

or again

 
W x t x

Dt
x Dt x x Dt

( , ; ) exp exp/ ( ) /
1

2
1

21
4

4 2 4= −





− − −
π  

(4.146)

Note in passing that 

 W (x1, t; x1)   =   0 (4.147)

and that N and m1 must be of the same parity.
 Concerning the velocity of arrival at the wall, we can say that the number of 
permitted ways of arriving at m1 in N jumps is the total number of ways of arriving at 
m1 in N  jumps in the absence of the wall, less twice the number of ways of arriving 
at m1+1 in N –1 jumps, still in the absence of the wall.
 The factor 2 takes account of the particles which, in the absence of the wall, have 
actually attained the position m1+1 as well as particles which have attained m1–1 in 
N – 1 jumps, but whose trajectories have crossed the absorbent wall. Given that the 
number of trajectories arriving at m1 – 1 in N – 1 jumps having crossed the wall is the 

Fig. 4.17  Number of ways of arriving at m = 3 in 5 jumps. Absorbing wall at m1 = 4.
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same as the number of trajectories attaining the image of m1 – 1 at 2 m1 – (m1 – 1) = 
m1+1 still in N – 1 jumps, we can see that the arrival speed is
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(4.148)

For the case where N is large, equation (4.139) gives us an arrival speed of 

 

m

N N
m N1 1

22 2

π
exp

/−

 
(4.149)

Thus, the probability that a particle arrives at x1 during the time interval between t 
and t + Dt is

 
q x t

x

t Dt
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W x t x

x
x Dt
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1 1
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∂
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(4.150)

And so we find again a diffusion flux as defined empirically by equation (4.11).
 These two examples in one and two dimensions illustrate how diffusion can be 
treated in a statistical manner. Naturally, the method may be extended to a two- or a 
three-dimensional system. 

4.6.3   Brownian Motion

 Brownian motion was discovered in 1827 by the biologist Robert Brown who 
studied the movement of pollen in suspension on water. It was only in 1905 that 
Einstein succeeded in explaining Brownian motion by combining the stochastic 
principle of the random walk with the distribution concept of the Maxwell-Boltzmann 
statisitics. The main idea of this theory is the following:
 In a non-viscous system, the collisions cause variations in velocity. On the other 
hand, in a viscous system, the variations in velocity are rapidly dissipated and, in 
fact, collisions only lead to a change in direction. The principal hypothesis is that 
the collisions cause jumps in random directions. The trajectory of a particle is then a 
random walk.

Langevin’s equation

 Langevin’s approach considers the movement of a colloid particle in suspension, 
making the hypothesis that the particle is submitted to a friction force and a fluctuating 
random force F(t) , which is a characteristic of Brownian motion.
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(4.151)

As a first approximation, we can consider that the friction force obeys Stokes’ law 

 ζ π η= 6 r  (4.152)

The fluctuating force has two specific characteristics:
 •  F(t) is independent of the velocity of the particle
 •  F(t) varies in an infinitely rapid way when compared to the displacement of the

   particle.

 By expressing the Langevin equation as a function of the velocities on the x-axis, 
vx , by multiplying by x we get

 
mx

v

t
x v F t xx

x
d
d

= − +ζ ( )
 

(4.153)

By using the two identities
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and
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(4.155)

we get
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(4.156)

Taking the average of this equation, the fluctuating term Fx disappears and we have 
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 (4.157)

Using the energy equipartition theorem
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(4.158)

we get
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(4.159)

Putting

 
u

x

t

x
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d
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d
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(4.160)

the differential equation is written as 

 

m u

t
u kT

2 2
d
d
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(4.161)
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The solution of this equation is of the type 

 
u

kT
A t m= + −2

ζ
ζexp /

 
(4.162)

where A is an integration constant.
 If the ratio t/m is large, that is to say for particles of small mass in suspension in 
viscous media, the second term of this equation becomes negligible. If this is the case, 
then by integration of equation (4.160) we get

 
< >[ ] = [ ]x
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t

x2

0 0
2∆
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τ

 
(4.163)

or again

 
< > = =∆x
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D2 2

2
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τ τ
 

(4.164)

Einstein’s diffusion equation in one dimension

 Another approach, still for modelling the diffusion, is based on the probability 
of transition. Consider a system containing f particles at a time t in an elementary 
volume contained between x and x + dx. After a period , consider the volume element 
situated at x' . During the period  , particles have gone into and come out of this 
volume. The first hypothesis that we will make is to consider that the probability of 
a particle entering into the volume element only depends on the distance x' – x and 
the period  . This is f(x'– x, ) a probability density sometimes called the transition 
probability. Thus, the density at the time  is

 
f x t f x t x x x( ' , ) ( , ) ( ' , )+ = −

−∞

∞
∫τ φ τ d

 
(4.165)

By putting X = x – x' and fixing x', equation (4.163) becomes

 
f x t f x X t X X( ' , ) ( ' , ) ( , )+ = +

−∞

∞
∫τ φ τ d

 
(4.166)

Note in passing that the function f is even in as much as the probability of a 
movement to the right is the same as that of a movement to the left, and therefore 
that  f (X,) = f (–X,). 
 By developing equation (4.166) in a series expansion, we get
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f (X,r) being a normalised even distribution function, the following properties are 
verified: 
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By neglecting the higher order terms, we thus have 
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(4.171)

f being a density of particles (in other words a concentration), a comparison with 
Fick’s first law 
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(4.172)

leads to

 
D

x= < >2

2 τ  
(4.173)

And we thus arrive again at equation (4.164). This equation is very important, since it 
gives access to the time scale of diffusion phenomena.
 The solution of differential equation (4.172) is

 
f x t

Dt
e x Dt( , ) /= −1

4

2 4

π  
(4.174)

We find again that the distribution law is gaussian as described previously by equation 
(4.142) and the graph in Figure 4.16.
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APPENDIX:  ELEMENTS OF FLUID MECHANICS
 Since the transport phenomena treated in this chapter take place in liquids, let’s 
take a basic look at fluid mechanics. 

Continuity equation

 For a liquid, the divergence of the mass flux density (here v ) across a surface 
containing a volume is equal to the variation over time of the volumic mass, which is 

 
div( ) ( )ρ ρ ∂ρ

∂
v v= ∇⋅ = −

t  
(4.A1)

[This equation is parallel to the equation of conservation of charge in electro-
magnetism 

 

∂ρ
∂t

+ =divj 0
 

(4.A2)

where in this case  is the volumic charge density and j the current density.]
 By developing equation (4.A1), we obtain the relation

 
div div( )ρ ρ ρ ∂ρ

∂
v v v= + ⋅ = −grad

t  
(4.A3)

which by regrouping gives
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+ = + =v v vgrad div

d
d

div 0
 

(4.A4)

The term dr/dt represents the variation in volumic mass over time for a fluid element 
which we follow during the flow.
 If the liquid is incompressible, its density is constant and the hydrodynamic 
continuity equation reduces to 

 divv v= ∇⋅ = 0  (4.A5)

Tensor constraint for a viscous fluid

 The tensor constraint is a mathematical tool that allows us to treat the deformations 
of an elastic body. Take a volume element of which one element of the surface is 
subjected to a force F. We will call Six the ratio of the projection of the force acting on 
the surface element perpendicular to the x-axis to the surface area

 
S

F

y zix
ix

i x y z

=
=∂ ∂ , ,  

(4.A6)

The first index relates to the direction of the force component, and the second index 
refers to the normal direction at the surface (see Figure 4A.1).
 The tensor constraint S is defined such that the force Sn acting on any surface 
element perpendicular to the unity vector n̂ 
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S S ni ij

j x y z
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=
∑

, ,  (4.A7)

 In a fluid at rest, the only force acting on a surface element, and perpendicularly 
to it, is the pressure. In this case the tensor constraint is a diagonal tensor since there 
is no shearing force on the volume element 

 S pij ij= − δ  (4.A8)

where p is the hydrostatic pressure. The negative sign expresses the fact that the 
volume is compressed by the fluid. 
 In a moving fluid, the friction forces due to the viscosity of the solution are exerted 
tangentially to the element. In addition to the pressure term, the tensor constraint also 
contains elements linked to the viscous friction, which for incompressible fluids 
gives 
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(4.A9)

where  is the viscosity and v  the velocity vector. S ' , sometimes called the viscosity 
tensor, is a symmetrical tensor. 
 In the absence of external forces exerted on a volume element, Newton’s equation 
applied to it is generally written as 

 

d
d

d d
t

s
V S
ρv n∫∫∫ ∫∫[ ] = ⋅v S ˆ

 
(4.A10)

This equation translates that the variation over time of the momentum is equal to the 
forces exerted on the surface of the volume. By applying the Green-Ostrogradski 
theorem, we get

 
ρ d

d
div

v
t

= S
 

(4.A11)

Fig. 4.A1  The force F on a surface element dydz perpendicular to the x axis decomposes into 
3 components.
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The term dv/dt represents the acceleration, i.e. the variation in velocity of the particles 
forming the fluid during their movement in space, and not the variation in velocity 
with respect to a fixed starting point.
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The acceleration is therefore made up of two terms 
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(4.A13)

The first is the derivative ∂v/∂t  at a position x,y,z fixed in space. The second term 
is relative to the difference in velocities at the same instant at two points in space 
separated by a distance dr, where dr is the distance covered by the fluid during the 
time dt.
 Thus by substituting in equation (4.A11) we have
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(4.A14)

This equation is called the Navier-Stokes equation if there are no external forces. 
For incompressible fluids with weak velocities, the term (v ◊ —)v is negligible (small 
Reynolds number) and the Navier-Stokes equation reduces to the following linear 
form 

 
ρ ∂
∂

ηv
v

t
p= ∇ − ∇2

 
(4.A15)

Flow friction of a liquid around a sphere

 Consider the movement of a sphere in a fluid and let’s calculate the friction 
coefficient acting on the sphere of radius R. For this, we need to consider an immobile 
sphere in a liquid flux, of uniform speed u when far away from the sphere (Figure 
4A.3). The problem is to resolve equation (4.A15) for a steady state regime, which is

Fig. 4.A2  Acceleration in a fluid medium
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 ∇ − ∇ =p η 2 0v  (4.A16)

with the boundary conditions v  = 0 for r = R and v = u  when r tends towards infinity. 
We will take a system of spherical coordinates such that the axis corresponds to the 
velocity of the fluid ( = 0).
 The solution of this equation is 
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(4.A17)

We thus verify that v = u when r tends towards infinity.
 The expression of the velocity in spherical coordinates obtained from equation 
(4.A17) is
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(4.A18)
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(4.A19)

We verify that at the surface of the sphere r = R, the two velocity components are 
zero. 
 The friction force is then defined as the resultant of the forces exerted on the 
surface of the sphere S

F = − + −[ ]∫∫ p S S Snn ncos cos sinθ θ θθ
/ /

S
d

 (4.A20)

where  is the angle between u and r.
 The components linked to the viscosity of the constraint tensor in spherical 
coordinates are 
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(4.A22)

Fig. 4.A3  Viscous flow around a sphere. 
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Putting into these equations the velocity vector components (4.A18) & (4.A19), we 
have

 Snn
/ = 0 (4.A23)
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R
unθ

η θ/ = − 3
2

sin
 

(4.A24)

The pressure at the surface of the sphere is not uniform in the moving fluid. It is given 
by 
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(4.A25)

Developing in spherical coordinates, this becomes

 
p p
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2 2
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(4.A26)

The pressure at the surface of the sphere due to the movement of the fluid is then 

 
p

R
u= − 3

2
η θcos

 
(4.A27)

The integration of equation (4.A20) reduces to 

 
F = − = −∫∫3

2
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4 2η η πu

R
S
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(4.A28)

which gives

 F u= − 6πηR  (4.A29)

We can therefore justify equation (4.7).
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CHAPTER 5

ELECTRIFIED INTERFACES

 We saw in chapter 1 that the bulk of all phases is neutral, and that all the excess 
charges are distributed at the interfaces. The presence of these charges generates 
interfacial electric fields that can be modified by changing the experimental 
conditions, in order, for example, to control charge transfer reactions. But before 
considering the structure and distribution of charges at electrified interfaces, we need 
to remind ourselves a little about interfacial thermodynamics.

5.1  INTERFACIAL TENSION

5.1.1  Surface Gibbs energy

 Consider a liquid in contact with its vapour. At equilibrium, there is a dynamic 
exchange of molecules between the two phases. In order to understand how such an 
equilibrium is attained, let’s take a vessel containing a liquid and air, and evacuate 
the air using a vacuum pump. Equilibrium is obtained when the rate of evaporation 
is equal to the rate of condensation. The molecules of the vapour phase have a 
greater potential energy than those in the liquid phase that are stabilised by isotropic 
molecular interactions. The molecules at the interface are submitted to anisotropic  
intermolecular forces which result in a force of attraction towards the centre of the 
phase as shown in Figure 5.1 and have thus a potential energy value which lies 
between the two bulk values. The difference between the average potential energy 
of a molecule in the vapour and in the liquid phase defines the molar vapourisation 
enthalpy Hvap,m (= 40.7 kJ·mol–1 for water)

 
∆ ∆< > =ε H N

vap,m A/
 

(5.1)

where NA is the Avogadro constant.

Fig. 5.1  Intermolecular forces at a liquid | gas surface.
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 The energy transfer from the surroundings to the system to increase the area of 
the interface by an elementary quantity dA, is called the surface Gibbs energy density. 
If <  > is the energy required to break the interactions between neighbouring 
molecules, the surface Gibbs energy density is the energy required to break some of 
these interactions. This can be expressed empirically as a function of the vapourisation 
enthalpy

 
γ ρ= 





0 3
2 3

.
/∆H

N

N

M
vap,m

A

A

 
(5.2)

where  is the mass density, M the molar mass of the liquid. The last term represents 
the number of molecules per unit surface area. For rare gases, this equation predicts 
the experimental values quite well, as shown in Table 5.1. 

In the framework of a thermodynamic description, which has the goal of 
establishing a relation between observable experimental quantities, it appears that the 
work that the surroundings has to do on the system to increase the area of the interface 
by an elementary quantity dA is directly proportional to this increase in the surface 
area

 d dW A= γ  (5.3)

The surface Gibbs energy density  is expressed in N·m–1 and appears as a force 
parallel to the surface, trying to reduce the area of the interface, in the same way as 
pressure appears as a perpendicular force to an interface, trying to increase the volume 
of a gas phase. In the absence of gravity, the equilibrium geometry for a liquid phase 
is a sphere, i.e. the smallest surface per unit volume. 

Table 5.1  Surface tension calculated using equation (5.2) and the corresponding values 
measured experimentally, (D. Tabor : Gases, liquids and solids,

Cambridge University Press,1969, Cambridge).

gcalculated  / mN·m–1 gobserved  / mN·m–1

Argon  14  13

Neon  4  5.5

Nitrogen  11  10.5

Oxygen  13  18

Mercury  630  600

Benzene  110  40

Water  78
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5.1.2 How is the surface Gibbs energy density linked 
 to the mechanical properties of the interface?

 From a mechanical point of view, there are two ways to modify a surface: 
stretching and shearing. We define a line tension Tij (force per unit length) as the force 
in the direction j per unit of length of edge of a normal surface in the direction i .
 To increase a surface element with an area of dA = dxdy by stretching, the work 
required is 

 δ δ δ γ δγ γ δW T y x A A Axx= = = +( ) ( )d d d d d  (5.4)

where dA (= dx dy)  is the variation in area of the surface element. We then have
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(5.5)

with

 δε δ
∂εxx

yx

x= d  (5.6)

for the stretching on the x-axis which follows. For a shear force, we have

 δ δ δγW T x x Ayx= =( )d d d  (5.7)

because dA = 0 (no change in area), from which we get
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 δε δ
yx
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y
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d
 

(5.9)

 This brief introduction shows that we can define a surface force tensor whose 
elements are written as 

 

Tij ij
ij

= +






γ δ ∂γ

∂ε
other deformations 

(5.10)

ij being the Kronecker symbol (= 1 if i = j and = 0 if i π j ).

Fig. 5.2  Stretching and shearing forces on a surface element dxdy.
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 If the surface is isotropic and homogeneous as in the case of a liquid surface, the 
stretching forces are independent of the direction and there are no shear force. Thus 
for liquid | liquid and liquid | gas surfaces, the surface force tensor reduces to the 
diagonal elements

 
T A

Aii = + 



 = + 



γ ∂γ

∂ε
γ ∂γ

∂  
(5.11)

 When the molecules at the centre of a phase can move rapidly towards the surface 
when its area increases, the system reaches a thermodynamic equilibrium. The 
term  ∂/∂A is then zero, and the surface Gibbs energy density  is equal to the line 
tension.
 In these cases, the surface Gibbs energy density is called the interfacial tension 
for liquid | liquid interfaces, or surface tension for liquid | gas interfaces

5.2   INTERFACIAL THERMODYNAMICS

5.2.1  The Gibbs adsorption equation

 There are two thermodynamic approaches for treating interfaces. The oldest was 
put forward by Willard Gibbs, and the more recent by Edward Guggenheim. 
 The fact that it is not possible to determine a physical boundary of separation 
between two phases is a dilemma for treating an interface: there is always a region of 
space where the two phases mix. We shall adopt here Guggenheim’s approach, based 
on the definition of an interphase.
 An interphase is defined as a phase that contains all the discontinuities. Its 
boundaries are arbitrary as long as the phases separated by the interphase are 
homogeneous.
 Consider two phases a and  separated by an interphase   (see Figure 5.3) .

Even though the boundaries a |  and  |  are arbitrary, the total volume V remains 
the sum of the volumes of the three phases

 V V V V= + +α σ β
 (5.12)

Fig. 5.3  Schematic diagram of an interphase  between two phases a and .

Phase a

Interphase 

Phase 
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In the same way, for all the extensive variables X of the system (ni,U, S, etc.), we will 
have

 X X X X= + +α σ β
 (5.13)

At equilibrium, all the intensive variables (T, p, i , etc.) must be equal in the three 
phases. Consequently, we can write the variations in internal energy of each phase as 

 
d d d dU T S p V ni

i
i

α α α αµ= − +∑
 

(5.14)

 
d d d d dU T S p V A ni i

i

σ σ σ σγ µ= − + +∑
 

(5.15)

 
d d d dU T S p V ni

i
i

β β β βµ= − +∑
 

(5.16)

The internal energy being a homogeneous first order state function, we can apply 
Euler’s theorem of integration with constant intensive variables and write

 

U
U

X
X

jj k j

j=






∑

≠

∂
∂

 

(5.17)

which, in this instance, reads 

 
U TS pV ni i

i

α α α αµ= − +∑
 

(5.18)

 
U TS pV A ni i

i

σ σ σ σγ µ= − + +∑
 

(5.19)

 
U TS pV ni i

i

β β β βµ= − +∑
 

(5.20)

 By differentiating these equations and subtracting respectively equations (5.14) to 
(5.16), we get

 
S T V p ni

i
i

α α α µd d d− + =∑ 0
 

(5.21)

 
S T V p A ni

i
i

σ σ σγ µd d d d− + + =∑ 0
 

(5.22)

 
S T V p ni

i
i

β β β µd d d− + =∑ 0
 

(5.23)

Equations (5.21) and (5.23) defined for the phases a and  are the Gibbs-Duhem 
equations for these phases, which show that we cannot independently vary the 
temperature, the pressure and the composition of a phase.
 The Gibbs-Duhem equation for the interphase is called the Gibbs adsorption 
equation 

 
− = − +∑A S T V p ni

i
id d d dγ µσ σ σ

 
(5.24)
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Equation (5.24) provides a thermodynamic definition of  

 

γ ∂
∂

σ
=







U

A
S V ni, ,  

(5.25)

but this is not a practical definition since U depends on the arbitrary boundaries.

5.2.2  Surface excess concentration

 The Gibbs adsorption equation is a very useful tool in surface studies, and the 
following paragraph is an example of how it can be used.
 Consider a water | air interface in equilibrium at constant temperature and 
pressure. To keep the system simple, we make the hypothesis that the gas phase 
only contains a neutral gas (G) and water vapour (S). In the same way, we shall limit 
ourselves to a liquid phase containing only water as the solvent (S) and a neutral non-
volatile solute (N).
 In this very simple case, the Gibbs adsorption equation (5.24) with T & p constant 
reduces to

 − = + +A n n nd d d dN N S S G Gγ µ µ µσ σ σ
 (5.26)

We define the surface concentration as the number of moles of a given species in the 
interphase divided by the geometric area of the interface, i.e.  = n/A . By definition, 
the surface concentration depends on the arbitrary choice of the boundaries a |  and 
 |   and the arbitrary thickness of the interphase. Equation (5.26) can then be written 
as

 − = + +d d d dN N S S G Gγ µ µ µΓ Γ Γ  (5.27)

The Gibbs-Duhem equation for the liquid phase is written as 

 n n nN
l

N S
l

S G
ld d ifµ µ+ = ≈0 0  (5.28)

Similarly, the Gibbs-Duhem equation for the gas phase becomes 

 n n nS GS
g

G
g

N
gd d ifµ µ+ = ≈0 0  (5.29)

These two equations establish a link between the variations in chemical potential of 
the three components S, N and G.

 
d dS

N
l

S
l Nµ µ= − n

n  
(5.30)

and

 
d dG

S
g

G
g Sµ µ= −

n

n  
(5.31)

By substituting these expressions into the Gibbs adsorption equation (5.26), we get 

 
− = − +









d dN

N
l

S
l

S
g

G
g

N
l

S
l G Nγ µΓ Γ Γn

n

n

n

n

n
S

 
(5.32)

© 2004, First edition, EPFL Press



182 Analytical and Physical Electrochemistry 183Electrified interfaces

The bracketed term 
N
(S) is called the surface excess concentration. Neglecting 

the second order terms (n
S
g << n

G
g) and (nN

1 << n
S
1), the surface excess concentration 

can simply be expressed as

 
Γ Γ ΓN

(S)
N

N
l

S
l S= − n

n  
(5.33)

 The surface excess concentration of N with respect to S is the number of moles of 
N per unit surface area (surface concentration) minus the number of molecules of N 
which one would have if the bulk concentration ratio nN

1 / n
S
1 was maintained down to 

the interfacial region where the surface concentration of the solvent is  S as shown in 
Figure 5.4.
 Whilst N is a function of the arbitrary choice of the boundaries a |  and  | , 
the surface excess concentration 

N
(S) is independent of this arbitrary choice, as long as 

this choice guarantees that the adjacent phases a and  are homogeneous. This justifies 
a posteriori the Guggenheim approach and the arbitrary definition of the interphase.

  
N
(S) is experimentally accessible by measuring the dependence of the interfacial 

tension as a function of the concentration of N in the aqueous phase. For dilute 
solutions, we have

 
ΓN

(S)

N N
= − ≅ −∂γ

∂
∂γ
∂RT a RT cln ln  

(5.34)

Fig. 5.4  Schematic definition of a surface excess concentration. 
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EXAMPLE

Let’s demonstrate that the surface excess defined by equation (5.33) does not depend on 
the arbitrary boundaries.
To do this, we will consider the displacement of the right-hand boundary from the solid 
line to the dotted line as illustrated in Figure 5.4. Doing this, the quantity of neutral solute 
N in the interphase becomes nN

 + dnN and that of the solvent nS
 + dnS, whilst in the liquid 

phase these quantities become respectively nN
1 – dnN and nS

1 – dnS. Nonetheless, if the 
volume of the liquid phase is large enough, we can neglect these reductions. Taking into 
account these variations, equation (5.33) becomes

Γ Γ ΓN
(S)

N
N N

l

S
l S

Sd d= +








 − +











n

A

n

n

n

A

σ σ

In the volume added at the time of the displacement of the boundary, we have

d

d
N

S

N
l

S
l

n

n

n

n

σ

σ =

since the solution is homogeneous to the right of the boundary marked with a solid line. By 
substitution, the expression above reduces to equation (5.33) in spite of the displacement 
of the boundary.

5.3  THERMODYNAMICS OF ELECTRIFIED INTERFACES
 There are various types of electrified interfaces between conducting phases that 
can be metallic, semi-conductors, ionic crystals (e.g. AgI), molten salts, electrolyte 
solutions etc.
 It is convenient to distinguish between polarisable and unpolarisable interfaces. 
A polarisable interface is one where we can apply a Galvani potential difference 
without causing noticeable changes in the chemical composition of the phases in 
contact, in other words without the passage of any noticeable faradaic current. So a 
polarisable interface is, from a thermodynamic point of view, always in equilibrium, 
and the Galvani potential difference is therefore an adjustable parameter of the system 
in addition to the classical adjustable parameters that are the concentrations of the 
different species, the temperature or the pressure.

5.3.1  Mercury | electrolyte interface

 Consider a mercury electrode in an aqueous solution of NaCl. This interface 
is polarisable over a large range of electrode potentials. Effectively, if we polarise 
the interface with negative electrode potentials, no current will be observed until 
we reach a potential where a reduction takes place and where a noticeable cathodic 
current starts to flow. Given the present species, the first reduction will be that of the 
proton. For kinetic reasons explained later in chapter 7, this reduction does not take 
place around the standard redox potential of 0 V, but at much more negative electrode 
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potential values between –1.5 V and –2 V depending on the pH of the solution. If the 
interface is polarised with positive electrode potentials, no current will be observed 
until potentials where an oxidation takes place and where a noticeable anodic current 
flows. For the system under consideration, we shall oxidise mercury at potentials 
close to the standard redox potential of the ¹̄²Hg2

2+/Hg couple, that is, about 0.2 V in 
the presence of chloride. Between these two limits, we have what is commonly called 
a polarisation window as illustrated in Figure 5.5, where no noticeable current flows 
when the electrode potential is varied.
 In this paragraph, we shall present the thermodynamic aspects of the polarised 
mercury | electrolyte interface by way of example. Let’s choose the example of 
a cadmium-mercury amalgam in contact with a solution of MgCl2 and HCl. The 
polarisation window for this system is limited on the side of positive electrode 
potentials by the oxidation of cadmium that takes place at electrode potentials of 
about – 0.5 V as shown in Figure 5.6.
 The Gibbs adsorption equation whose general formulation for an interface 
containing ions can be written either as a function of the chemical potentials of the 
neutral species (metal, salt etc.) or as a function of the electrochemical potentials 
of the corresponding charged species (ions, electrons etc.). To illustrate this second 
approach, we can write

 

S T

A

V p

A i
i

i

σ σ
µ γd d

d d− + = −∑Γ ˜
 

(5.35)

Fig 5.5  Polarisation window for a mercury drop electrode in a solution of NaCl. 

Fig 5.6  Polarisation window for a mercury-cadmium amalgam drop electrode in a solution of 
MgCl2+HCl.
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which, at constant temperature and pressure, in the present case reads

 

Γ Γ Γ Γ

Γ Γ Γ
Cd Cd Hg Hg Mg Mg

H H Cl Cl H O H O

d d d d

                    d d d d

2 2

2 2

2 2+ + + + − − + +

+ + − −

+ + +

+ + + = −

˜ ˜ ˜ ˜

˜ ˜

µ µ µ µ

µ µ µ γ
e e

 

(5.36)

Since this equation contains a large number of variables, before we go any further, 
we need to calculate the degree of freedom or the variance of the system – i.e. the 
number of independent variables.
 By definition, the variance is the sum of the number of intensive variables of 
each of the adjacent phases minus the number of relations that link them.
 Considering the charged species, we can define 5 intensive variables for the 
metallic phase 

 
T p e, , ˜ , ˜ ˜µ µ µ

Cd Hg2 and+ + −

Similarly, we can define 6 intensive variables for the aqueous phase 

 
T p, , ˜ , ˜ , ˜µ µ µ µ

Mg H Cl H O2 2
and+ + −

There are 5 equilibrium relations between the two adjacent phases 

 •  the pressure equilibrium
 •  the thermal equilibrium
 •  a Gibbs-Duhem equation for each bulk phase
 •  the electroneutrality of the system

 The variance of the system is therefore 6 , which reduces to 4 at constant T & p. 
This means that we can independently vary four variables in the system, which in fact 
fixes all the other variables.
 The Gibbs adsorption equation (5.36) contains 8 variables; we therefore need to 
make use of relationships among these 8 variables to reduce their number to only 4 
independent variables, which should preferably be experimentally accessible.
 To start with, we can consider the ionic equilibria

 Mg2+ + 2 Cl–  o  MgCl2

and

 H+ + Cl–  o  HCl

and apply equation (1.64) which in this case reads 

 
d d dMgCl Mg Cl2 2µ µ µ= ++ −˜ ˜2

 
(5.37)

and

 
d d dHCl H Cl
µ µ µ= ++ −˜ ˜

 
(5.38)
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Thus, the sum in equation (5.36) involving the ionic species Mg2+  d̃Mg2+  + H+ 

d̃H+ + Cl–  d̃Cl– can be re-written as a a linear combination of the chemical poten-
tial of the salts 

        

Γ Γ Γ

Γ Γ Γ Γ Γ
Mg Mg H H Cl Cl

Mg MgCl H HCl Mg H Cl Cl

d d d

                      d d d
2

2 2

2 22

+ + + + − −

+ + + + − −

+ +

= + − + −

˜ ˜ ˜

( ) ˜

µ µ µ

µ µ µ
  

 (5.39)

The term in brackets in equation (5.39) represents the surface density of ionic charges 
in solution at the interphase

 
σ E

Mg H Cl2= + −+ + −( )2Γ Γ Γ F
 

(5.40)

In the same way, the sum Cd2+ d̃Cd2+ + Hg+ d̃Hg+ + e– d̃e– can be written as a 
linear combination of the chemical potentials of the metals and of the electrochemical 
potential of the electron

 

Γ Γ Γ

Γ Γ Γ Γ Γ
Cd Cd Hg Hg

Cd Cd Hg Hg Cd Hg

2 2

2 2

d d d

                     d d d

+ + + + − −

+ + + + − −

+ +

= + − + −

˜ ˜ ˜

( ) ˜

µ µ µ

µ µ µ
e e

e e
2

 

(5.41)

where the term in brackets represents the surface charge density on the metal  M 

 
σM

Cd Hg2= + −+ + −( )2Γ Γ Γ
e

F
 

(5.42)

The electroneutrality of the interphase imposes the condition E = – M , and the 
Gibbs adsorption equation (5.36) now reduces to 

 

Γ Γ Γ Γ

Γ

Mg MgCl H HCl Cd Cd Hg Hg

H O H O

M

Cl

2 2 2

2 2

d d d d

                         d d d d

+ + + +

− −

+ + +

+ + − = −

µ µ µ µ

µ σ µ µ γ
F e

( ˜ ˜ )
 

(5.43)

 The Gibbs-Duhem equation for the aqueous phase at constant T & p can be 
written considering either the ionic species or the salts. In the latter case, we have

 
n n nH O

E
H O MgCl

E
MgCl HCl

E
HCl2 2 2 2

d d dµ µ µ+ + = 0
 

(5.44)

Substituting for dH2O into equation (5.43) provides a definition of the surface excess 
concentration of aqueous cations

 
Γ Γ Γ

Mg
(H O)

Mg
MgCl
E

H O
E H O2

2
2

2

2
2+ += −

n

n  
(5.45)

and

 
Γ Γ Γ

H
(H O)

H
HCl
E

H O
E H O

2

2
2+ += − n

n  
(5.46)

 For the amalgam, the Gibbs-Duhem equation can also be written considering 
either the ionic species or the metals. In the latter case, we have 
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 n nCd
M

Cd Hg
M

Hgd dµ µ+ = 0  
(5.47)

and similarly substituting for dHg into equation (5.43) provides a definition of the 
surface excess concentration of the cadmium ions at the surface of the amalgam

 
Γ Γ Γ

Cd
(Hg)

Cd
Cd
M

Hg
M Hg2 2+ + += − n

n  
(5.48)

We have now eliminated two more variables and the Gibbs adsorption equation (5.43) 
thus reduces to

     
Γ Γ Γ

Cd
(Hg)

Cd Mg
(H O)

MgCl H
(H O)

HCl

M

Cl2 2
2

2
2

–d d d d d d+ + + −+ + + − = −µ µ µ σ µ µ γ
F e

( ˜ ˜ )
 
(5.49)

 Since the variance of the system is equal to 4, equation (5.49) describes the 
variation of the interfacial tension as a function of 4 independent variables. Written 
in this way, the term (d̃Cl– – d̃e–) is not very explicit. To explain it, let’s consider the 
electrochemical cell as a whole 

 Cu  |  Ag |  AgCl |  MgCl  HCl  ||   Cd Hg |  CuI
2

II+ +

Considering the equilibria

 Ag+ + e–  I Ag

and

 Ag+ + Cl– I AgCl

And applying equation (1.64) we can first write

 
d d d

Ag
Ag

Ag˜ ˜µ µ µ+ −+ = =
e

0
 

(5.50)

and

 
d d d

Ag Cl AgCl˜ ˜µ µ µ+ −+ = = 0
 

(5.51)

since silver and silver chloride are pure substances (aAg = aAgCl = 1). As we have an 
electronic equilibrium between CuI and Ag (d̃e–

CuI = d̃e–
Ag), by substituting equations 

(5.50) & (5.51) we therefore obtain a direct relationship between d̃e–
CuI  and d̃Cl–

 
d d d dCu Ag

Ag Cl

I
˜ ˜ ˜ ˜µ µ µ µ

e e− − + −= = − =
 

(5.52)

The variation in electrical potential at the terminals of the cell dE is thus

      d d d d d dCu Cu CuII CuI

Cl

II I
E F Fe e e= − = − − = −− − − −( ) ( ˜ ˜ ) / ( ˜ ˜ ) /φ φ µ µ µ µ   

  (5.53)
taking into account the electronic equilibrium between CuII and the amalgam
(d̃e–CuII =  d ̃e–Cd+Hg  =  d ̃e–). By substituting equation (5.53), the Gibbs adsorption 
equation (5.49) finally reads
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Γ Γ Γ

Cd
(Hg)

Cd Mg
(H O)

MgCl H
(H O)

HCl
M

2 2
2

2
2d d d d d+ + ++ + + = −µ µ µ σ γE

 
(5.54)

This equation tells us that by fixing experimentally the concentration of cadmium in 
the amalgam (Cd), the concentration of magnesium chloride in solution (MgCl2

), 
the concentration of hydrochloric acid in solution (HCl), and the potential difference 
E applied to the terminals of the cell, then the interfacial tension will be determined 
unequivocally by the choice of these four independent experimental values. 
 Equation (5.54) also tells us how to determine experimentally the surface excess 
concentrations. For example, we can measure the interfacial tension for different 
amounts of cadmium in the amalgam, and obtain the surface excess concentration of 
cadmium by plotting  as a function of lnaCd keeping all the other variables constant, 
and by taking the slope of this graph to obtain

 

Γ
Cd
(Hg)

Cd salt, acid, applied potential
2+ = −







∂γ
∂µ

 
(5.55)

 Similarly, we can determine experimentally the surface excess concentrations 
of Mg2+ and that of H+, by plotting  as a function of ln aMgCl2

 and  as a function 
of ln aHCl respectively. The surface excess concentration of Cl– can be determined 
indirectly by measuring the interfacial charge density E = –M. Indeed, it is worth 
pointing out that the interfacial charge density is in fact a surface excess quantity that 
we can also write as

       
σ E

Mg H Cl Mg
H O

H
H O

Cl
H O

2 2
2 2 2= + − = + −+ + − + + −( ) ( )( ) ( ) ( )2 2Γ Γ Γ Γ Γ ΓF F

 
(5.56)

The surface charge density E is therefore, from a thermodynamic point of view, a 
surface excess charge. It can be experimentally determined for a given system by 
measuring the interfacial tension as a function of the applied potential difference 
and plotting what is called an electro-capillary curve, and by determining the slope 
according to 

 
σ ∂γ

∂ µ

M = − 

E T p i, ,  

(5.57)

Electrocapillary phenomena were investigated as early as 1875, and equation (5.57) is 
called the Lippmann equation.
 By differentiating equation (5.57), we can define the differential capacity of the 
interface Cd as

C
E E

T p i

d

M

= = −






∂σ
∂

∂ γ
∂ µ

2

2
, ,  

(5.58)

 This thermodynamic approach developed above can be used more generally 
to investigate how a mercury drop electrode behaves when it is polarised in an 
electrolyte solution. Figure 5.7 shows the results originally reported by Grahame 
(1947) for a mercury electrode polarised in different electrolyte solutions. 
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 At negative electrode potentials, the slope of the graph is positive and equation 
(5.57) indicates that the surface excess charge density on the metal is then negative. 
In solution, the cations are more numerous at the interface than the anions, giving 
an excess of positive charges in the solution. The fact that the interfacial tension is 
the same for Na+  and K+ indicates at first sight the absence of specific interactions 
between the cations and the mercury. When the interfacial tension is at its maximum, 
the excess charge is zero both on the metal and in solution. The corresponding potential 
is called the potential of zero charge (pzc). At positive electrode potentials, the anions 
are more numerous than the cations, and it can be observed that the interfacial tension 
varies with the nature of the anion. The stronger the short-range interactions between 
the mercury and the anions, the more the interfacial tension diminishes.
 Therefore, for metal | solution interfaces, there is a physical separation of the 
charges when the interface is polarised, with electrons on one side and ions on the 
other. The interaction between these excess charges produces a reduction of the 
potential energy of the charged species at the interface, and thus a reduction of the 
interfacial tension. A classic mistake is to think that the interfacial tension is reduced 
because of the repulsion of ions of the same sign accumulating on the aqueous side 
of the interface. In fact, the interfacial tension schematically pictured in Figure 5.1 
is defined as a force that appears parallel to the interface but that is in fact due to the 
unbalanced forces perpendicular to the interface and oriented towards the inside of 
the respective phases. Thus, the reduction of the interfacial tension with the applied 
electrode potential is due to the compensation of these unbalanced forces by the 
coulombic interaction between the two excess charges (electronic on the metal and 
ionic in the electrolyte).

Fig. 5.7  Electrocapillary curves on a mercury electrode (Adapted from David C. Grahame, 
Chem. Rev., 41 (1947) 441).
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5.3.2  Electrolyte | electrolyte interface

 Consider, for example, an interface separating a solution of tetrabutylammonium 
tetraphenylborate (TBA+TPB–) in 1,2-dichloroethane in contact with an aqueous 
solution of lithium chloride. This interface is also polarisable. In fact, if the aqueous 
phase is polarised positively with respect to the organic phase, no current crosses 
the interface before the noticeable transfer of either a cation from the aqueous phase 
towards the organic phase, or an anion from the organic phase to the aqueous phase. 
In the present case, TPB– transfers first and limits the potential window at positive 
Galvani potential differences. Conversely, if the aqueous phase is polarised negatively 
with respect to the organic phase, no current crosses the interface before the noticeable 
transfer of either an anion from the aqueous phase to the organic phase, or a cation 
from the organic phase to the aqueous phase. For the system studied here, the chloride 
ion transfers first and limits the window at negative Galvani potential differences (see 
Figure 5.8).

The Gibbs adsorption equation (5.35) for this example (at constant temperature 
and pressure) is written as

 

Γ Γ Γ

Γ Γ Γ
TBA TBA TPB TPB DCE DCE

Li Li Cl Cl H O H O

d d d

                      d d d d
2 2

+ + − −

+ + − −

+ +

+ + + = −

˜ ˜

˜ ˜

µ µ µ

µ µ µ γ
 

(5.59)

Let’s calculate the degree of freedom or variance of the system, i.e. the number of 
independent variables. 

We can consider 5 intensive variables in the organic phase 

 
T p, , ˜ , ˜µ µ µ

TBA TPB DCE– and+

and 5 intensive variables in the aqueous phase 

 
T p, , ˜ , ˜µ µ µ

Li Cl H Oand
2+ −

There are then 5 equilibrium relations between the two phases:

 •  The pressure equilibrium and the thermal equilibrium
 •  A Gibbs-Duhem equation for each phase
 •  The electroneutrality of the system

Fig. 5.8   Polarisation window for an interface between a TBATPB solution in 1,2-dichloroethane 
and an aqueous solution of LiCl.
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The variance of the system is therefore 5, which reduces to 3 at constant T & p. This 
means that we can independently vary 3 variables of the system, which then fix all the 
other variables.
 The Gibbs adsorption equation (5.59) contains 7 variables; as previously, we shall 
use relationships to reduce this number to only 3 independent variables, which should 
preferably be experimentally accessible.
 To begin with, we consider the ionic equilibria in the organic phase

 TBA+ + TPB–   i TBATPB

and in the aqueous phase

 Li+ + Cl–  i LiCl

Thus, neglecting the formation of interfacial LiTPB or TBACl ion pairs in a first 
approximation, and by making use of equation (1.64) for the two salts, we have 

      Γ Γ Γ Γ Γ
TBA TBA TPB TPB TBA TBATPB TBA TPB TPB

d d d d– – – –+ + + ++ = − −˜ ˜ ( ) ˜µ µ µ µ   
  (5.60)
and

 Γ Γ Γ Γ Γ
Li Li Cl Cl Li LiCl Li Cl Cl

d d d d– – – –+ + + ++ = − −˜ ˜ ( ) ˜µ µ µ µ  (5.61)

The terms in brackets in equations (5.60) & (5.61) represent the surface densities of 
ionic charges in respectively the organic solution and the aqueous solution 

 
σDCE

TBA TPB–= −+( )Γ Γ F
 (5.62)

and

 
σH O

Li Cl
2

–= −+( )Γ Γ F
 (5.63)

Taking into account the electroneutrality of the interphase H2O = –DCE, the Gibbs 
adsorption equation (5.59) may now be written as 

 

Γ Γ Γ Γ
TBA TBATPB DCE DCE Li Li l H O H O

H O
TPB Cl

d d d d

                          d d d

2 2

2
– –

+ ++ + +

+ −( ) = −

µ µ µ µ

σ µ µ γ

C

˜ ˜
 

(5.64)

By neglecting the respective solubilities of water in dichloroethane and that of 
dichloroethane in water, the Gibbs-Duhem equations for the organic and aqueous 
phases can be written as

 n nDCE
DCE

DCE TBATPB
DCE

TBATPBd dµ µ+ = 0  (5.65)

and

 
n nH O

H O
H O LiCl

H O
LiCl2

2
2

2d dµ µ+ = 0
 (5.66)
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By substituting the terms relative to the solvents, we can define the surface excess 
concentration of the organic and aqueous cations respectively

 
Γ Γ Γ

TBA
(DCE)

TBA
TBATPB
DCE

DCE
DCE DCE+ += − n

n  
(5.67)

and

 
Γ Γ Γ

Li
(H O)

Li
LiCl
H O

H O
H O H O

2
2

2
2 2+ += −

n

n
 

(5.68)

We have in this way eliminated two variables and the Gibbs adsorption equation 
(5.64) reduces to

 
Γ Γ

TBA
(DCE)

TBATPB Li
(H O)

Li l
H O

TPB Cl
d d d d d2 2

– –+ ++ + −( ) = −µ µ σ µ µ γC ˜ ˜
 (5.69)

 We can now develop the term  (d̃TPB– – d̃Cl–), considering the electrochemical 
cell as a whole 

 Cu  |  Ag  |  AgCl |  LiCl  ||   TBATPB |  AgTPB |  Ag  |  CuI I II II

In this cell, the reference electrode is an Ag | AgTPB electrode submerged directly in 
the organic solvent. From a practical viewpoint, the stability of this electrode is not 
ideal, but we shall use it as an example. With equilibrium across the whole cell, we 
can write by analogy with equation (5.52):

Fig. 5.9  Electrocapillary curves for an interface between a solution of tetrabutylammonium 
tetraphenylborate in nitrobenzene and a solution of: 1) 0.01M, 2) 0.1M & 3) 1M LiCl in water. 
[ T. Kakiuchi & M. Senda, Bull. Chem. Soc. Jpn, 56 (1983) 1753, with permission from the 
Chemical Society of Japan.
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d d d dCu Ag

Ag Cl

I I
˜ ˜ ˜ ˜µ µ µ µ

e e− − + −= = − =
 

(5.70)

and also

 
d d d dCu Ag

Ag TPB

II II
˜ ˜ ˜ ˜µ µ µ µ

e e− − + −= = − =
 

(5.71)

The potential difference at the cell terminals dE is

d d d d d dCu Cu CuII CuI

TPB Cl

II I
E F Fe e= − = − − = − −− − − −( ) ( ˜ ˜ ) / ( ˜ ˜ ) /φ φ µ µ µ µ  

  (5.72)
Thus, we finally have the Gibbs adsorption equation in the form

 
Γ Γ

TBA
(DCE)

TBATPB Li
(H O)

Li l
H Od d d d2 2

+ ++ − = −µ µ σ γC E
 

(5.73)

 Equation (5.73) indicates that we can determine experimentally the interfacial 
charge density by measuring electrocapillary curves such as those in Figure 5.9. As 
for the Lippmann’s equation, we have

 
σ ∂γ

∂ µ µ

H O2

LiCl TBATPB

= 



E ,  

(5.74)

Similarly, we can measure the surface excess concentrations, using for example 

 

Γ
TBA
(DCE)

TBATPB ,LiCl

+ = −






∂γ
∂µ µ E  

(5.75)

5.4   SPATIAL DISTRIBUTION OF 
   POLARISATION CHARGES 
 Electrified interfaces are places where heterogeneous charge transfer reactions 
happen. And so it is important to know for the different types of interface the 
spatial distribution of charges and the distribution of the electric potential across the 
interphase. In this section, we shall review various electrified interfaces; model ones 
such as the mercury | electrolyte interface or others such as liquid | liquid interfaces or 
those between two semiconductors.

5.4.1  Metal | electrolyte interface

 We have seen that excess charges can only exist at interfaces. The distribution of 
the excess electronic and ionic charge is therefore an important facet of the metal | 
electrolyte electrochemical interface. Since the excess of electronic charge is spread 
over a very small thickness of 100 to 200 pm maximum, most of the Galvani potential 
difference will take place in the electrolyte.
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 The distribution of the ions near the electrode then becomes a major point of 
interest.

The Gouy–Chapman theory

 Gouy (1910) and Chapman (1913) independently proposed a model of charged 
metal | electrolyte interfaces. This model has common hypotheses with the Debye-
Hückel theory, i.e.

 • The interactions are purely electrostatic
 • The ions are considered as point charges. The polarisability of ions is neglected 
 • The model also considers that the metal can be represented as a planar surface  

 supporting a surface density of charge 
 • The distribution of ions follows Boltzmann’s statistics

From the last condition, we can define the spatial distribution of ionic charges

 N x N ei i
iz e x kT

( )
( ( ) ) /= ∞ ∞− −φ φ

 (5.76)

where f • is the inner potential of the solution when x Æ •. Ni(x) is the volumic 
density of ions in the elementary volume defined by the planes of abscissae x and 
x + dx . The term zie(f (x) – f •) represents the work to bring a species i from the bulk 
to the interfacial region at a distance x from the metal.
 For this volume element, the Laplacian of the potential is a function of the 
volumic charge density  as given by Poisson’s equation (1.37) 

 
∆φ ρ

ε ε
= −

0 r  
(5.77)

where due to the present geometry, only the x-axis perpendicular to the surface of the 
electrode is considered, and equation (5.77) reduces to

 

∂ φ
∂

ρ
ε ε

2

2
0

( ) ( )x

x

x= −
r  

(5.78)

where 0 is the permittivity of vacuum and r the relative permittivity of the electrolyte 
solution. The volumic charge density in solution is simply expressed as

 
ρ( ) ( )x z e N xi i

i

= ∑
 

(5.79)

By substituting equation (5.79) in Poisson’s equation (5.78), we have 

 

∂ φ
∂ ε ε

φ φ2

2
0

1( ) [ ( ) ]/x

x
z e N ei i

i

i

z e x kT= − ∞ ∞− −∑
r  

(5.80)

 This differential equation is known as the Poisson–Boltzmann equation. The 
boundary conditions for  x Æ •  are

 
φ φ ∂φ

∂
( )

( )
x

x

x
→ →∞ and 0
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Even though it is possible to solve this differential equation for different types of 
electrolytes, we shall content ourselves with studying the systems of 1:1 univalent 
electrolytes.
 In this case, the Poisson-Boltzmann equation reduces to

 

∂ φ
∂ ε ε

ε ε
φ φ

φ φ φ φ
2

2
0

0

2

( )

sinh
[ ( ) ]

[ ( ) ]/ [ ( ) ]/x

x

eN
e e

eN e x

kT

e x kT e x kT= −





= −









∞ ∞ ∞

∞ ∞

− − −

r

r
          

 

(5.81)

since

 2sinh x e ex x= − −
 (5.82)

By using the identity

 
2 2 2

2

2

2∂ φ
∂

∂
∂

∂φ
∂

∂
∂φ

∂φ
∂

∂φ
∂

∂
∂φ

∂φ
∂x x x x x x







= 



 = 


















 = 

















⋅

 
(5.83)

the differential equation (5.81) becomes

 

∂
∂φ

∂φ
∂ ε ε

φ φ
x

eN e

kT
x

















= −





∞
∞

2

0

4

r
sinh ( ( ) )

 
(5.84)

Integrating between x and •, we thus obtain

 

−

 = −





= − −





∞
∞

∞
∞

∞

∫∂φ
∂ ε ε

φ φ φ

ε ε
φ φ

φ

φ

x

eN e

kT
x

N kT e

kT
x

x

2

0

0

4

4
1

r

r

d

           

sinh ( ( ) )

cosh ( ( ) )

( )

 

(5.85)

Using the relation

 1 2 2 2− = −cosh (sinh )x x  (5.86)

we get an expression of the electric field as a function of the distance from the 
electrode

 

∂φ
∂ ε ε

φ φ
x

N kT e

kT
x= −









 −





∞
∞8

20

1 2

r

/

sinh ( ( ) )
 

(5.87)

The choice of sign, taking the square root of equation (5.85) is due to the fact that if 
the potential difference f (x) – f • is positive, the slope must be negative. 
 Equation (5.87) gives us the variation in the electric field as a function of the 
distance normal to the electrode. The interphase has to be overall electrically neutral. 
Thus, the electronic surface charge density on the metal is equal and opposite to the 
ionic surface charge density in solution.
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σ ρM d= −

∞
∫0 ( )x x

 
(5.88)

which, by substituting the Poisson equation (5.78), gives

 
σ ε ε ∂ φ

∂
ε ε ∂φ

∂
M

r rd=






= − 





∞

=
∫ 00

2

2 0
0

( ) ( )x

x
x

x

x x  
(5.89)

Knowing the electric field at the interface given by equation (5.87), we then get 

 
σ ε ε φ φM

r= [ ] −





∞ ∞8
2

00
1 2

N kT
e

kT

/
sinh ( ( ) )

 
(5.90)

This equation links the potential drop in the electrolyte (f (0) – f •) to the charge on 
the metal, and this relation is shown in Figure 5.10. Equation (5.89) also represents the 
Gauss equation (1.38) for the case of a metallic conductor in contact with a dielectric 
medium with a relative permitivity r .

In order to find the potential distribution f (x), we can integrate equation (5.87)

  
sinh

( ( ) )
( ( ) )

( )

( )
/

e x

kT
x

N kT
x

x xφ φ φ φ
ε εφ φ

φ φ −














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

− = −



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




∞ −
∞

−

− ∞

∞

∞
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1

0 0

1 2

0
d d
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 (5.91) 
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(5.92)

Introducing the Debye-Hückel reciprocal length defined by equation (3.55)

 
κ

ε ε
=











∞2 2

0

1 2
N e

kTr

/

 
(5.93)

we finally get

Fig. 5.10  Potential drop in the diffuse layer as a function of the charge on the electrode for dif-
ferent concentrations of an 1:1 electrolyte.
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tanh ( ( ) ) tanh ( ( ) )

e

kT
x e

e

kT
x

4 4
0φ φ φ φκ−
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

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


∞ ∞−

 
(5.94)

The potential distribution thus obtained is shown by the solid lines in Figure 5.11. 
The layer of electrolyte close to the electrode where the potential varies is where the 
ionic surface excess charge is distributed. As a result, it is called the space charged 
region or the diffuse layer; the latter should not be confused with the diffusion layer 
discussed in chapters 4 & 7.

In fact, the potential distribution more or less resembles a function of the type 

 
φ φ φ κ= −[ ]∞ −( )0 e x

 
(5.95)

as shown by the dotted curves in Figure 5.11. This is why the reciprocal Debye length 
is often taken as a measure of the diffuse layer thickness.
 From the potential distribution, we can calculate the corresponding distribution of 
the cations and anions by applying Boltzmann’s distribution law as given by equation 
(5.76). The concentration profiles thus obtained and illustrated in Figure 5.12 clearly 
show the asymmetry of the distribution between the accumulation of anions and the 
depletion of cations. Because the size of the ions is neglected, the concentration of 
anions at the surface of the electrode tends to very high and unrealistic values.

From equation (5.90), we can define the Gouy-Chapman capacity CGC 
corresponding to the volumic distribution of ions predicted by the Gouy-Chapman 
theory by differentiation of the surface charge density with respect to the potential 
drop in solution 

C
N e

kT

e

kTGC

M
r=

−
=









 −
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∞
∞∂σ

∂ φ φ
ε ε φ φ
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cosh ( ( ) )

/

0

2
2

0
2

0
1 2

 
(5.96)

Fig. 5.11  Potential distribution for different electrolyte concentrations. Potential drop = 100 mV.
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To test the validity of the Gouy-Chapman theory, it is common to compare the 
capacity measured experimentally from impedance measurements (see chapter 
9) with that predicted by equation (5.96). The graphs in Figure 5.13 show these 
values for a mercury electrode in contact with an aqueous KF solution for different 
electrolyte concentrations. 

Fig. 5.12  Ionic concentration profile.

Fig. 5.13  Capacity of a mercury electrode in a KF solution (pzc = –0.433V) with the respective 
Gouy-Chapman capacity [Paolo Galleto, EPFL thesis].
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We can see that at low electrolyte concentrations, the theory corroborates the 
experimental results only for potentials close to the pzc. At higher concentrations, 
the diffuse layer becomes thinner, and the experimental capacity becomes dominated 
by the presence of a water layer close to the electrode that is neglected in the Gouy-
Chapman theory that considers ionic charges as point charges, not taking into account 
the ionic hydration layer.

Influence of the metal and the inner layer 

 The experimental curves in Figure 5.13 show clearly that at potentials far from the 
pzc, the Gouy-Chapman theory is not sufficient to model the capacity of the electrified 
interface. To alleviate this problem, we can consider, as a first approximation, that 
the capacities measured correspond in fact to two capacitors in series: one purely 
dielectric corresponding to the presence of a monolayer of water on the electrode as 
illustrated in Figure 5.14 and whose capacity is called the Helmholtz capacity CH.

The second capacitor is the one associated with the charge distribution in the 
diffuse layer and whose capacity is the Gouy-Chapman capacity. Thus, the observed 
capacity can be written as 

 

1 1 1
C C Cobs H GC

= +
 

(5.97)

Figure 5.15 illustrates schematically that when two capacitors are in series, 
the total capacity is always dominated by the smaller one. Therefore, near the pzc, 

Fig. 5.14   Molecular dynamics illustration of the ionic double layer of a 3M NaCl solution. 
The charge on the electrode is –1mC·cm–2 (Personnal communication, Prof. Michael Philpott, 
Singapor University).
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the Gouy-Chapman capacity is dominant at low concentrations, whereas, when the 
surface charge density is large, the Helmholtz capacity is dominant.

In fact, CH can, as a first approximation, be taken as equal to Cobs when the 
electrolyte concentration is large (>1M). By doing so, the solvent model allows a 
reasonably good prediction of the experimental results as shown in Figure 5.16. 
The most important conclusion from this model is that the potential distribution 

Fig. 5.15  Schematic illustration of two capacitors in series. The Gouy-Chapman capacities are 
the solid lines, calculated from equation (5.96); the Helmholtz capacity is taken constant at 0.25 
F·m–2. The resultant capacities are shown as dotted lines. 

Fig. 5.16 Experimental capacity compared to that calculated using equation (5.97) for a 
mercury electrode in a 0.001M KF solution. CH is the experimental value for a 1M solution of 
KF taken from Figure 5.13 (Paolo Galetto, EPFL thesis).
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takes place principally in the solvent layer when the electrolyte concentration is 
high, or when the relative permittivity of the solvent is large. Thus, it is important 
to realise that a polarisation of 0.3V with respect to the pzc of a polarisable electrode 
submerged in a concentrated electrolyte generates very strong electric fields – of the 
order of gigavolts per metre (10–9 V·m–1), given that the potential drop occurs over a 
monolayer of water whose molecule diameter is around 300 pm.
 To estimate the Helmholtz capacity from experimental results, it is usual to trace 
a Parsons-Zobel plot at fixed charge density with on the y-axis the inverse of the 
experimental capacity per unit surface, and on the x-axis the inverse of the Gouy-
Chapman capacity. It is clear that if equation (5.97) is to be verified, the slope must 
be unity and the intercept must correspond to the Helmholtz capacity. If the graph 
is not linear, other phenomena such as specific adsorption of ions have to be taken 
into account. Furthermore, if a straight line is obtained, this method can be useful 
for measuring the geometric surface area of the electrode, as in the case of mercury 
drops, for which measuring the exact area can prove difficult. In this case, we plot 
the inverse of the experimental capacity as a function of the inverse of the Gouy-
Chapman capacity, and the slope gives the surface area.
 For the case of KF and the values shown in Figure 5.13, the Helmholtz capacity 
obtained at the pzc is 29.5 F·cm–2. If the whole capacity were due to the solvent 
layer, this value would allow us to estimate the relative permittivity of the first water 
monolayer. Knowing that CH = 0r /d, and taking as a first approximation that the 
thickness of the monolayer is 300 pm, we get a value of 10 for the relative permittivity. 
Taking up again the arguments of Figure 1.7, this value indicates that the molecules of 
water at the surface have libration modes.
 We have assumed so far that the solvent layer is ion-free, as it is expected for 

Fig. 5. 17 Parsons-Zobel plot at the pzc from the data in Figure 5.13.
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the case of KF on mercury. Electrocapillary data such as those shown in Figure 5.7 
suggest, however, that some anions, such as chloride, bromide or iodide, do specifically 
adsorb on mercury. In this case, we have to consider that the anions enter the solvent 
layer, loosing some hydration water molecules and interacting directly with the metal. 
The interfacial layer containing solvent molecules and specifically adsorbed ions 
is often called the Stern layer. Because cations tend to be more strongly hydrated, 
specific adsorption of cations is more seldom. If some ions are specifically adsorbed, it 
is clear that the capacity CH will depend on the presence of ions in the Stern layer.
 In fact, CH varies not only with the charge density on the metal, but also with the 
nature of the metal, and in the case of solid electrodes with the crystallographic face. 
This shows that the solvent model is incomplete, and that the metal itself plays a role. 
The Jellium model (see Figure 1.10) shows that the spillover of the electrons from 
the metal depends on the charge density. If the interaction between the electrons from 
the metal and the solvent are weak, we can then consider that the Helmholtz capacity 
is itself made up of two capacitors in series, one for the electronic spillover, and the 
other for the solvent monolayer.

 

1 1 1
C C CH metal solution

= +
 

(5.98)

The smallest possible value for Csolution corresponds to the dielectric saturation of 
the solvent (molecules of water ‘frozen’) being  r = 2 which is about 6F·cm–2. This 
brief calculation shows that the contribution of the metal is more or less of the same 
order of magnitude as that of the solvent.

Potential of zero charge 

 The potential of zero charge of a metal is linked in a certain way to the work 
function of the metal, as illustrated in Figure 5.18.

Fig. 5.18 Potentiel of zero charge versus the work function (Adapted from W. Schmickler, 
Interfacial Electrochemistry, Oxford University Press, 1985).
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Effectively, for a metal M, the pzc measured with respect to, say, a standard 
hydrogen reference electrode with the cell

 Cu |  Pt |  H ,  H ...  ||    Solution  |  M |  CuI + 1

2 2
II

can be written as

  Epzc pzc[ ] = −



 = −



 + −( ) + −( ) + −



SHE

Cu Cu Cu M M S S Pt Pt CuII I II
R

I
φ φ φ φ φ φ φ φ φ φ

 
  (5.99)
This equation implies that the potential difference across the liquid junction between 
the solution S and the acid solution of the reference electrode SR is negligible. By 
using the definition of the electrochemical potential given by equation (1.60), the first 
term and the last term can be combined as follows

 
φ φ φ φ µ µCu M Pt Cu Pt MII I

−



 + −



 = −( )e e

F– – /
 

(5.100)

The term relative to the metal | solution interface can be written using equation (1.59)

 φ φM S
S
M

S
Mdip ion− = +∆ ∆g g( ) ( )  (5.101)

and reduces to M
S g(dip) at the pzc, as by definition there is no potential distribution 

associated to ionic species at the pzc.
 Finally, the term related to the reference electrode can be written using equation 
(2.37)
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Pt SR
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2 2
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− ( ) ++E F
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(5.102)

By substituting equations (5.100)-(5.102) into equation (5.98), we get

 

E F E g

F E g

epzc[ ] = − ( ) −  


+ +

= − 
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+ + −
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SHE
M
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M
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M S N

1
2 2

1
2 2

dip

                  dip

µ χ

χ χ

– / ( )

/ ( )

o

o

∆

Φ ∆
 

(5.103)

where M and M are respectively, the work function and the surface potential of pure 
mercury.
 The dipolar contribution M

S g(dip) to the Galvani potential difference can be 
split into a metallic dipolar contribution (Jellium type) and a solvent contribution. On 
the metal side, the electrons overspill less in the presence of water than at the metal | 
vacuum interface. In the case of mercury, the difference gHg(dip) – Hg is estimated to 
be of the order of 0.32 V. On the water side, the molecules of the mercury | solution in-
terface are less aligned than at the air | water interface and the difference gS(dip) – S 
is roughly –0.06 V. It has been proposed to use equation (5.103) to determine the ab-
solute standard potential of the standard hydrogen electrode. The results thus obtained 
vary between 4.3 V and 4.8 V, and correspond quite well to the value calculated in 
§2.1.5 using thermodynamic data on hydrogen. It must be noted however, that the two 
approaches are not completely independent, and it is therefore not surprising to find 
the same values.
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Streaming electrode 

 For a liquid metallic electrode such as mercury, a reasonably simple method 
for measuring the potential of zero charge consists of flowing the mercury into the 
electrolyte solution whilst spraying the jet. In this way, the surface of the electrode 
is constantly renewed, and therefore carries no excess charges. By doing this, and 
by measuring with a voltmeter the potential diffence between the mercury electrode 
and a reference electrode placed in the solution, the potential of zero charge can be 
measured directly. 

5.4.2  Electrolyte | electrolyte interface

 When two immiscible electrolytes are put in contact with each other, it is possible 
to polarise the interface. In the absence of specific adsorption, the excess charges are 
distributed in the two diffuse layers back to back. As a first approximation, we can 
apply the Gouy-Chapman theory.

The Gouy–Chapman theory

 Consider an interface between an organic solution (o) and an aqueous solution 
(w) such that the interface is defined by the coordinate x = 0.
 Using the same hypotheses as in §5.4.1, in the case of two 1:1 electrolytes in 
contact, the Poisson-Boltzmann equation to be solved is still equation (5.81) which 
reads
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∂ ε ε
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eN e x
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


∞ ∞

r  
(5.104)

The boundary conditions for x Æ – • are 
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∂
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(5.105)

and for x Æ  •    
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(5.106)

By integrating in the organic phase between x  and  –•, we get
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(5.107)

and in the aqueous phase between  x  and  •
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(5.108)

The choice of signs is dictated by the fact that if (fw – fo) x 0, then (f(x)– fo) x 0 
and (f(x)– fw) X 0 and therefore the slope is positive.
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The surface excess charge density in the organic solution is 
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and in the aqueous solution 
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The electroneutrality of the interphase then gives us 
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(5.111)

From this equation, we can calculate the potential difference in one phase in terms of 
the total potential difference
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(5.112)

In the case of a water | 1,2-dichloroethane interface for which the relative 
permittivities  w and o are respectively 78 and 10, Figure 5.19 shows that the applied 
potential difference is spread between the two phases according to the ratio of the 
concentrations. To find f as a function of x, we can integrate equations (5.105) and 
(5.106) which gives for each phase

Fig. 5. 19  Potential drop in the organic phase as a function of the applied potential difference 
for different ratios of concentration. The top curve corresponds to a ratio of 100 and the 
bottomone to a ratio of 0.01.
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The potential distribution thus obtained is shown in Figure 5.20
In a general manner, the Gouy–Chapman theory predicts the form of capacity 

curves, as shown in Figure 5.21. Contrary to metal electrodes, the capacities measured 

Fig. 5.21  Capacity of the water | 1,2-dichloroethane interface (D) KCl, (O)LiCl, (l) HCl. 
Ag | AgCl | 0.01M XCl | TBATPB 0.01M | TBACl 0.01M | AgCl | Ag. The dotted curve is the 
Gouy-Chapman capacity [C. Melo Pereira et al, J. Chem. Soc. Faraday Trans.,90 (1994) 143, 
with permission from the Royal Society of Chemistry).

Fig. 5.20  Potential distribution at a 1,2-dichloroethane | water interface for different interfacial 
polarisations: 0.1, 0.2 and 0.3 V.
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experimentally at liquid | liquid interfaces are higher than those predicted by the Gouy-
Chapman theory. This can be explained by considering either an inter-penetration of 
the diffuse layers (coulombic attraction) or a certain roughness of the interface due to 
the capillary waves present at all liquid interfaces.

Potential of zero charge

 The potential of zero charge at liquid | liquid interfaces is a parameter which 
is easily measured with a streaming system similar to the one used for the mercury 
electrode. The Galvani potential difference at the pzc is simply w

og(dip). This 
quantity is probably small if the two solvents have little dipole-dipole interactions, 
and the Galvani potential difference at the pzc can be taken in a first approximation as 
the origin of this potential scale.

5.4.3  p|n junction

Intrinsic and extrinsic semiconductors 

 We saw in §1.2 that a solid could be considered as a macromolecule containing N 
atoms whose molecular orbitals of close energy levels form bands. For diamond (1s2, 
2s2, 2p2 ), the carbon atoms form four equivalent bonds with hybrid orbitals sp3. Thus, 
instead of making a full 2s band and a partially-occupied 2p band which one would 
get if there was no hybridisation of the 2s and 2p orbitals, we have a 2s-2p bonding 
band containing 4N electrons, therefore completely filled, and also a completely emp-
ty anti-bonding band also able to contain 4N electrons. The energy difference between 
these two bands is about 5 eV, which is about 500 kJ · mol–1.
 For silicon (1s2, 2s2, 2p6 3s2, 3p2) and germanium, the crystal also has the 
tetravalent structure of diamond, but the energy differences between the bonding 
and anti-bonding bands are less (1.2 and 0.7 eV, respectively). Thus at ordinary 
temperatures, the Fermi-Dirac distribution function shows that certain electrons have 
access to energy levels in the anti-bonding band. When an electron goes from the 

Fig. 5.22  Electron distribution for an intrinsic semiconductor. 

Eg

Ec

Ev

EF

T=0K

P(E) P(E)

T=298K

© 2004, First edition, EPFL Press



208 Analytical and Physical Electrochemistry 209Electrified interfaces

valence band to the conduction band, it leaves an unoccupied level called an electron 
hole. This hole can migrate in the valence band and can therefore be considered as 
a positive charge carrier. A semiconductor containing electron-hole pairs is called 
intrinsic. The number of charge carriers is of the order of 1010 to 1016 per cm3 
compared to 1022 for a metal (number of atoms/cm3 of Ge , Si or GaAs ≈ 5 ¥ 1022).
 In the case of an intrinsic semiconductor, the Fermi level is found in the middle of 
the band gap.
 It is possible to modify the number of electrons and holes by adding an electron 
donor or acceptor. The semiconductor thus obtained is called doped or extrinsic. It is 
known as n-type when it contains donors and p-type when it contains acceptors. 
 For silicon that is tetravalent, phosphorus (pentavalent) can serve as a donor, 
and boron (trivalent) can serve as an acceptor. The doping densities are of the order 
of 1015 to 1017 atoms/cm3. The Fermi level of an n doped semiconductor is near the 
conduction band, and of a p doped semiconductor near the valence band. 

Junction between a p-type semiconductor and a n-type semiconductor

 When two doped semiconductors, one n-type, the other p-type, are put in contact, 
the electrons flow from the n-type semiconductor until the Fermi levels are equal in 
the two phases. At equilibrium, the n-type semiconductor is positively charged, whilst 
the p-type is negatively charged. The excess charge in the semiconductor is on the 
surface, but distributed in a surface layer with a certain thickness. The subsequent 
electric field, which forms in this region, leads to a curving of the valence and 
conduction bands. The curve of the bands rises at a positive charge and dips when the 
semiconductors are negatively charged, as shown in Figure 5.24.

Fig. 5.23  Electron distribution in extrinsic semiconductors. (a) n-type semiconductor, (b) p-
type semiconductor.
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 After the flux of electrons from the n-type to the p-type until the equalisation of 
the Fermi levels, the excess charges remaining on the n-side are those of the fixed 
positively-charged donor ions, and on the p-side, those of the negatively charged 
acceptor ions. A junction then happens between two depletion layers containing equal 
but opposite fixed charges (see Figure 5.25). The effective width and the capacity of 
this layer can be easily calculated by solving Poisson’s equation (1.37), expressed in 
a one-dimensional axis corresponding to the normal of the interface. 

 

∂ φ
∂

ρ
ε ε

2

2
0

( ) ( )x

x

x= −
r  

(5.114)

Fig. 5.24  Curvature of the bands at the interface with equalisation of the Fermi levels. 

Fig. 5.25  ‘Very schematic’ diagram of charge and potential distribution at a p | n junction.
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If the volumic density is constant (homogeneous doping), we can integrate 
directly on the n and p sides between x  and the limits –ln & lp respectively (see Figure 
5.25).
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and
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Outside of the depletion layer, the field is equal to zero. It should be stressed that the 
notion of layer width is obviously a simplified view in as much as the volumic charge 
density (x) is not a true step function.
 The electroneutrality condition at the interface gives 

 − = =ρ ρd a d al l N l N ln p n por  (5.117)

with N the number of doping atoms per unit volume.
By integrating equation (5.115) & (5.116) between x=0 and x, we obtain the 

potential distribution in the adjacent layers:
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The potential drop on the n-side and p-side are then respectively equal to

 ε ε φ φ ρ0 0
2 2r d( ) /n nl− =  (5.120)

and

 ε ε φ φ ρ0 0
2 2r a( ) /− = −p pl  (5.121)

The total potential across the junction then simply reads
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The surface charge being

 Q e N ln= d  (5.123)

equation (5.122) can be written as 
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from which we can express the capacity of the junction by 
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We therefore note that the p | n junction can be used as a capacitor whose capacity 
varies according to n

pf–1/2. This is the working principle of the variable-capacity 
diode or varactor, used in modulation circuits and frequency synchronisation. 
 We can calculate ln from the equation (5.122) taking into account the 
electroneutrality condition (5.117)

 
N

N l

N
N l

N

N
N N l

e
n

n na
d

a
d

d

a
d a

r





+ = +( ) =
2

2 2 02ε ε φ∆

 
(5.126)

from which we obtained
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The width of the p | n junction is therefore given by
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EXAMPLE
Knowing that generally we have  Na = Nd = 1015 cm–3 and that r = 11.9 for silicon, let’s 
calculate the width of the p | n junction.

If f is 1 volt, we have :

W = =
−

−
2 11 9 8 8510 1 2 10

1 6 10 10
1 6

12 21

19 42
. .

.
.  mµ

 This example shows that the width of the charge distribution in doped 
semiconductors is of the order of micrometres, compared to a few nanometres for 
electrolytic solutions and a few picometres for metallic conductors.

Fig 5.26  Photogeneration of an electron-hole pair at a p | n junction.
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 One of the applications of the p | n junction is the conversion of solar energy. 
Under illumination, the absorption of photons whose energy corresponds to the 
width of the band gap results in the creation of electron/hole pairs. These can either 
recombine or separate under the effect of the interfacial electric field, this separation 
causing the generation of an electric current.

5.4.4  Semiconductor | electrolyte interface.

 In order to understand the structure of the semiconductor | electrolyte interface, 
we shall first study different types of charged regions in a semiconductor with 
capacitors of the type semiconductor | insulator | metal, where all charge transfers can 
be ignored. 

Flat band case

 Consider a semiconductor | insulator | metal capacitor such as Si | SiO2 | M, used 
in field-effect transistors. At equilibrium, neither of the two phases is charged. The 
absence of charged regions in the semiconductor means an absence of electric field. 
The energy levels are therefore constant and this situation is known as flat bands.

Fig. 5.27  Non-charged metal | insulator | semiconductor interface. The Fermi levels are 
arbitrarily taken as equal.

Accumulation, depletion and inversion layers

 Consider, for example, an n-type semiconductor in the capacitor shown in Figure 
5.27. If we charge the metal positively by lowering its Fermi level with respect to that 
of the semiconductor, we will create a region of negative charges in the semiconductor. 
To do this, we transport electrons, which are the majority carriers, from inside the 
crystal to the surface, where they will accumulate.
 The accumulation layer is the region of the interphase where there is an 
accumulation of majority carriers. This accumulation of charges induces a curving 
of the bands downwards for a n-type semiconductor, and upwards for a p-type. Also 
note that there cannot be any charge transfer across the insulator and consequently the 
Fermi level in the bulk of the semiconductor remains constant. 
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 Still looking at an n-type semiconductor, consider what happens if we charge the 
metal negatively by increasing its Fermi level with respect to that of the semiconductor. 
As previously, we will create in the semiconductor a positively charged region. The 
majority carriers being the electrons, they will move from the surface towards the 
centre of the crystal, leaving behind them an almost homogeneous region of donors. 
The depletion layer is the region of the interphase impoverished in majority carriers. 
This depletion causes a curving of the bands upwards for a n-type semiconductor, and 
downwards for a p-type semiconductor.

Fig. 5.28  Accumulation layer in a negatively charged n-type semiconductor. 

Fig. 5.29  Depletion layer in a positively-charged n-type semiconductor. 

insulating layer

n-type semiconductor
metal

EF

Ec

Ev

EF

V < 0

C
ha

rg
e

insulating layer

n-type semiconductormetal

EF

Ec

EvEF

V > 0

C
ha

rg
e

© 2004, First edition, EPFL Press



214 Analytical and Physical Electrochemistry 215Electrified interfaces

 When there is a very large depletion, the minority carriers, in this case the holes, can 
contribute to the positive charge of the semiconductor, thus creating an inversion layer 
in which the accumulation of holes locally transforms the n-type semiconductor into a 
p type one. In this case, the Fermi level is near to the energy of the valence band.

Potential distribution in the semiconductor | electrolyte interphase

 We have already studied the potential distribution in metal | electrolyte interfaces 
and shown that this potential is spread mainly in the electrolyte between a compact 
Helmholtz or Stern layer and a diffuse Gouy-Chapman layer.
 In the case of semiconductor electrodes, the potential distribution in the curved 
region of the bands also needs to be considered. In the polarisation regions where an 
accumulation layer forms, the electrode behaves rather like a metal and the potential 
difference between the semiconductor and the solution is distributed mainly in the 
electrolyte. In the polarisation regions where a depletion layer forms, any variation 
in electrode potential is distributed mainly in the semiconductor. The result is that the 
position of the edges of the surface bands remains fixed when the electrode potential 
is varied. The edges of the surface bands are then said to be pinned.

5.4.5  Conclusion

 In a general manner, we can conclude that if a phase is charged, the charge is 
distributed at the surface. The thickness of this charged region varies from a few 
picometres for electronic conductors, to a few nanometres for ionic conductors such 
as electrolyte solutions where the ions are mobile, and to a few micrometres for doped 
semiconductors where the charged sites are fixed in the solid matrix.
 Additionally, the potential drop happens mainly in the phase with the lowest 
dielectric constant and/or the smallest concentration of charge carriers (ions or 
electrons).
 It is good to remember that the bulk of each phase is globally electro-neutral.

5.5  STRUCTURE OF ELECTROCHEMICAL INTERFACES

5.5.1  Monocrystal | electrolyte interface

 One of the major advances in electrochemistry at the end of the 20th century was 
the study of monocrystalline electrodes, where only one of the crystal faces is put in 
contact with the solution. The simplest way of making such an electrode is to melt the 
end of a wire and let it cool in an inert atmosphere. The ball of molten metal at the end 
of the wire crystallises to form a monocrystal with several faces. Note in passing that 
the surface of an almost spherical monocrystal behaves like that of a polycrystalline 
metal. After having determined the axes of symmetry of the monocrystal obtained, it 
can be trimmed and polished in such a way as to expose a particular crystallographic 
face. As shown below, the crystallographic faces have different topographies.
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 It is perhaps useful to recall the Miller principle of indices for crystals. From the 
three axes x, y, and z, we define the crystallographic planes according to the Miller 
indices (h,k,l) obtained as follows:
 • Identify the intercept of the plane on the x, y and z axes as a function of the units

   of the lattice a, b and c
 • Take the inverse of these figures
 • Multiply them by the same factor in order to get only integer numbers
 • If the intercept is negative, put a bar over the index

EXAMPLE

Let’s define the Miller indices for these three planes

The first has intercepts : 1, 1, 1 and it is therefore the plane (111)
The second has intercepts : 1, •, • and it is therefore the plane (100)
The third has intercepts : 1, 1, ∞ and it is therefore the plane (110)

For platinum and gold that crystallise in a cubic face-centred system, the various 
planes have therefore different surface densities of atoms, as shown in Figures 5.30 
and 5.31.

In order to put only one crystal face in contact with the solution, a common 
method is to bring the face close to the solution until a meniscus forms. This technique 

Fig. 5.30  Surface of a monocrystal (110) and (100).
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allows the measurement of the capacity by cyclic voltammetry as shown in Figure 
5.32 for a platinum (111) electrode in sulphuric acid.
 The measuring principle is to apply, between the monocrystalline working 
electrode and a reference electrode in solution, a potential ramp with a sweep rate n 
such that the potential of the working electrode is 

 E E ti= +ν  (5.129)

where Ei is an initial value of the electrode potential. Thus, in the absence of a faradaic 
reaction, the current measured is a capacitive current given by 

 
I

q

t
C

E

t
C= = =d

d
d
d

ν
 

(5.130)

where C is the capacity of the electrode. When the sweep rate is rather slow, the 
measured capacity is representative of surface phenomena such as adsorption, and the 
contribution of the diffuse layer, such as illustrated in Figure 5.13 is negligible. This 
electrochemical method of studying surfaces is called cyclic voltammetry (developed 
in more detail in chapter 10 for the study of faradaic reactions) and is a very sensitive 
method to study adsorbed monolayers using a rather simple equipment.
 In the example in Figure 5.32 relating to a platinum (111) electrode in a solution 
of sulfuric acid, the current below 0.3 V corresponds to the states of adsorption of the 
hydrogen atoms on the platinum. The charge obtained by integration corresponds to 
one electron per atom of platinum at the surface. The current measured between 0.3 
and 0.5 V is not observed in perchloric acid and the signal obtained is no doubt related 
to the adsorption of the anion HSO4

–. Above 0.5 V, there is adsorption of Pt-OH 
hydroxides and then at even more positive potentials, formation of an oxide layer.
 Recent developments of scanning microscopies (STM: Scanning tunnelling 
microscopy, AFM: Atomic Force Microscopy, etc.) have allowed the observation 
of the surface of the electrode in situ with atomic resolution. The basic principle of 
an STM is to scan the surface of the electrode with a point sharpened to the atomic 
level by etching, and to measure the current obtained by tunnelling when the distance 

Fig. 5.31  Surface of a monocrystal (111).
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Fig. 5.33  Cyclic current-potential curve for Au(100) in 0.1 M H2SO4, starting with a freshly pre-
pared reconstruction surface at –0.2 V vs. SCE. Scan rate: 50 mV·s–1. Lifting of the (hex) recon-
struction during the positive scan is seen by a pronounced current peak. The subsequent scan in 
negative direction reflects the electrochemical behaviour of Au(100)-(1×1). [Dakkouri & Kolb, 
in Interfacial Electrochemistry, Marcel Dekker, 1999, with permission from Marcel Dekker].

between the point and the surface is small. The basic principle of AFM is to scan 
the surface of the electrode with a point mounted on a cantilever and to measure 
the topography of the surface. These two methods thus allow atomic-resolution 
cartography that can be combined to electrochemical characterisation.

Fig. 5.32  Cyclic voltammogram of a Pt(111) electrode having just been polished, 
flame-treated and cooled in air. Solution: 0.5 M H2SO4. Sweep rate 50 mV·s–1 
(J. Clavilier, R. Faure, G. Guinet and R. Durand, J. Electroanal. Chem., 107 (1980) 205, with 
permission from Elsevier Science).
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 These techniques of scanning microscopy have been used for example to 
investigate surface reconstruction phenomena. In fact, the surface atoms experience 
different forces to those inside the metal, and as for the molecules in Figure 5.1, these 
atoms have a higher potential energy. The first consequence of this effect is a slight 
contraction of the distance between the first and second atomic layers, followed by 
an expansion of the two following layers. This is called the surface relaxation effect. 
The second consequence is the breaking and formation of covalent bonds between 
the atoms in the surface layer. These phenomena are observed during surface 
reconstruction. To minimise their excess potential energy, the surface atoms move 
in order to create new surface structures. A well-characterised reconstruction is that 
of gold (111) which, in spite of its high density reconstructs into a (M3 ¥ 22) structure 
which is characterised by a lateral compression of 4.4% of the surface atoms in one of 
the three 110 directions such that the 23rd atom of a row is repositioned under the 22nd 
atom of the next structure below. These surface reconstructions can also be observed 
by cyclic voltammetry as in the case of gold (100) where the surface reconstructs in 
the compact hexagonal structure as shown in Figure 5.33.

5.5.2  Electrolyte | electrolyte interface

 The electrolyte | electrolyte interface is a molecular interface with a certain 
dynamic. There are no experimental methods at the moment for studying the structure 
of this interface. A few preliminary results obtained using neutron reflectivity do not 

Fig. 5.34 Molecular dynamics image of the water|1,2-dichloroethane interface. (Personal 
communication from Prof. I. Benjamin, Santa Cruz, USA).
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give clear information about the thickness of the interphase layer. The only interfacial 
images which we have, come from molecular dynamics simulations as shown in 
Figure 5.34.

Even if molecular dynamics produces beautiful images, we must bear in mind that 
they are only the visualisation of a model...   
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 CHAPTER 6

ELECTROKINETIC PHENOMENA AND 
ELECTROCHEMICAL SEPARATION METHODS 

6.1  ELECTROKINETIC PHENOMENA

6.1.1  Definitions

 We saw in chapter 5 that at the interface between a charged solid phase and 
an electrolyte solution, there is a volumic distribution of excess charge in solution 
that can be modelled using the Gouy-Chapman theory. We have so far considered 
electrolyte solutions next to polarised metals or semi-conductors, but interfaces of 
interest also include for example:
 ∑  the surfaces of metal oxides in solution, such as those illustrated in Figure 6.1,

for which the surface charges depend on the pH of the solution
 ∑  soft interfaces formed by self-assembled layers e.g. soap bubbles, lipid bio-

membranes
 ∑  the surface of ion exchange resins, etc.
 Electrokinetic phenomena are associated with the movement of an electrolyte 
solution near a charged solid, and in fact four types can be distinguished.
 Electro-osmosis is the phenomenon associated to the movement of an electrolyte 
solution near a charged interface under the influence of an electric field parallel to 
the surface. Electro-osmosis has many applications, one of the most recent being 
electrophoresis in a silica capillary.

Fig. 6.1  Surface ionisation of metal oxides in aqueous solutions 
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 Electrophoresis of charged colloids is the movement of colloids in a solution 
under the effect of an electric field, and the term is applied especially to solid particles 
whose radius is larger than the thickness of the diffuse layer.
 Streaming potential corresponds to the forced streaming of a liquid electrolyte 
near a charged interface, which thus generates a potential difference opposing the 
flow of the solution. These potentials must be taken into account when considering the 
passage of electrolytes across porous materials by convection.
 Sedimentation potential is the potential generated by sedimentation of charged 
particles in an electrolyte.

6.1.2   Electro-osmosis

 Before we study the phenomena of electro-osmosis, it is perhaps useful to revise 
the macroscopic definition of viscosity. Consider two parallel plates separated by a 
distance L and a liquid phase. One plate is fixed and the other moves at a constant 
velocity vy as shown in Figure 6.2.
 At steady state, the moving plate is subject to a frictional force proportional to 
the velocity of the plate, but also inversely proportional to the separation distance 
between the two plates. The steady state velocity profile between the two plates, 
called the two-dimensional Couette flow, is a linear profile going from zero to vy

 

F

S

v

L

v x

x
y y y= − = −η η

∂
∂

( )

 
(6.1)

 Thus, the viscosity is defined as the proportionality coefficient between the 
frictional force which would act on a unit surface plate parallel to the direction of the 
moving liquid and the velocity of the liquid. The molecular explanation of viscosity is 
based on the transfer of momentum that takes place during the molecular collisions. 
The molecules that have a low velocity on the y-axis going towards a zone, where the 
molecules have a higher velocity, will slow them down, and vice-versa. 

Fig. 6.2  Summary of forces on a moving plate in a viscous liquid.
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 Consider a charged interface, and suppose we apply an electric field parallel to the 
interface. The ions in the diffuse layer are then subjected to a coulombic force parallel 
to the interface and drag the surrounding solvent molecules with them by friction. 
Take a volume element of electrolyte solution dxdydz where the volumic charge 
density is (x). At steady state (no acceleration), the coulombic force exerted on this 
volume element is equal to the sum of the friction forces.
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(6.2)

where vy (x) is the velocity of the solution parallel to the wall.
 If we take it that the viscosity is independent of the distance to the solid surface 
and therefore of the velocity gradient (Newtonian liquid), then expression (6.2) can be 
written as
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If we replace (x) by the Poisson equation in one dimension (see equation (5.78)), we 
have 
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(6.4)

The velocity of the solution near a solid surface is zero (stick condition). Thus, we can 
integrate equation (6.4) with the following boundary conditions 
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where vE is the electro-osmotic velocity of the liquid attained by the fluid outside the 
diffuse layer and where  is the potential at the shear plane. This potential is called 
the zeta potential or the electrokinetic potential. Note that in Figure 6.3,  is negative 
since the wall is negatively charged. 

Fig. 6.3  Electric field parallel to the negatively charged surface of a solid phase and forces 
acting on the volume element.
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 Therefore, integrating between x and infinity, we have
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  (6.5)
which yields, considering that far from the surface, the gradients on x of the electric 
potential and that of the velocity vy (x) are zero
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A second integration between the shear plane and x leads to 
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With the above boundary conditions, we get
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(6.8)

 Furthermore, making the approximation (5.95) to estimate the potential profile 
f(x) and considering that the shear plane coincides with the boundary separating 
the first solvent layer on the solid (either the Helmholtz or the Stern layer) from the 
diffuse layer (see Figure 5.14), we then have 
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(6.9)

Substituting in equation (6.8), we obtain
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where  is the reciprocal Debye length characteristic of the thickness of the diffuse 
layer. The negative sign shows that the velocity is positive, i.e. in the direction of the 
electric field when the zeta potential is negative. 
 Equation (6.10) also shows that the velocity of the solution reaches a constant 
value vE outside the diffuse layer whose thickness depends on the ionic strength of the 
solution (see Figure 5.11). This velocity is then given by the Smoluchowski equation, 
which is written as
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 It is often interesting to link the zeta potential to the surface charge density on the 
wall. The latter is defined by equation (5.88) that is, taking into account approximation 
(6.9)
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This equation shows that the zeta potential is directly proportional to the surface 
charge density and inversely proportional to the reciprocal Debye length.
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6.1.3  Electrophoresis of charged colloids 

 In this section, we shall limit ourselves to the study of electrophoresis of non-con-
ducting charged spheres. The Gouy-Chapman theory for spherical objects requires us 
to solve the Poisson equation (3.53) with spherical coordinates, i.e. 
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We have already seen the integration of this equation in §3.4.3 in the framework of the 
Debye-Hückel theory. The solution is therefore
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where C1 is an integration constant. In the Debye-Hückel theory, this constant was 
determined using the electroneutrality of the solution as a boundary condition. The 
same approach can be used here if we take care not to forget that equation (3.66) was 
obtained using the hypothesis that the electrostatic interaction energy between the 
sphere and the solution is weak with respect to the thermal agitation, which implies 
that we must limit ourselves to cases of small zeta potential values. Thus, we have 
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where rs can be considered equal to the radius of the charged sphere. At the surface 
of the sphere, this expression can be taken as the sum of the potential generated by 
the charges on the sphere and the potential generated by the charges in solution. So, 
equation (6.15) can be re-written as 
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Consider now the movement of a charged sphere in an electric field. For dilute 
solutions where –1 is large, the zeta potential is given directly by equation (6.16)
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The balance of forces exerted on the sphere including the electrostatic force qE 
and the friction force –6prsv gives 
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This equation, sometimes called the Hückel equation, gives a direct relationship 
between the electrophoretic mobility defined by equation (4.18) and the zeta 
potential
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It is possible to calculate the electrophoretic mobility in solutions of high ionic 
strength. However, the calculations required are too extensive to be presented here. 
It is also possible to take into account the effects of the relaxation of the ionic 
atmosphere as we did in §4.3.4.

6.1.4  Streaming potential

 The streaming potential is linked to the movement of ionic excess charges in the 
diffuse layer swept along when a liquid flows near a charged wall.
 Consider a tube of length L and radius a, and a laminar flow generated by a 
pressure difference Dp between the ends of the tube (see Figure 6.4). The current due 
to the displacement of the ionic surface excesses near to the charged wall of the tube 
will generate a potential difference between the two ends of the tube. This potential 
will, in turn, generate a compensating current since it is clear that if, for example, we 
circulate a sample of phosphate buffer solution under pressure in a silica capillary, the 
ingoing and outgoing solutions will be electroneutral. 

Fig. 6.5  Velocity profile in a cylindrical tube 

Fig. 6.4  Experimental set-up for measuring a streaming potential 
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 In a first instance, we will calculate the current due to the flow of ions in the 
diffuse layer, and then the potential difference across the tube.

The velocity profile of a liquid in a tube of radius a and length L is a parabolic 
profile, as shown in Figure 6.5,  given by the Poiseuille equation
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The electric current due to convection of the ions in the diffuse layer is written as 
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Since the excess charge is located close to the wall in the diffuse layer, it is clear that 
the resulting current will also have its field lines close to the wall. In this part of the 
tube, within a thickness of a few nanometres, it is possible to linearise equation (6.20) 
to get
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since when r Æ a, then a2 – r2=(a + r)(a – r) Æ 2a(a – r).
 If the diameter of the capillary a is very much greater than the thickness of the 
diffuse layer ( –1 << a ), we can express the volumic charge density as a function of 
the Poisson equation in one dimension (see equation (5.78)). Strictly speaking, we 
should use cylindrical coordinates but this tends to complicate the calculation. So, 
combining equations (6.21) and (6.22), we have
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By integrating twice by parts, and still using the approximation (5.95)
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 (6.24)

we get

I
a p

L

r

r
r a r

r

r
a r r

a
a

= − 



 −( )





− 



 −( )









∫πε ε

η
∂φ
∂

∂φ
∂

0

0
0

2r d
∆ ( ) ( )

 

I
a p

L
r a r r r

a a
= −( )[ ] +



∫πε ε

η
φ φ0

0 0
2 2r d

∆
( ) ( )

 
(6.25)

I
a p

L
a e

a p

L
a

a p

L
a r

a

= − + 











= =− −πε ε

η
ζ ζ

κ
πε ε

η
ζ ε ε π ζ

η
κ0

0

0 0
2

2
1r r r∆ ∆ ∆( )

 
Still using the hypothesis that –1 << a, the compensation current is defined by

 I a Ec = π σ2  (6.26)
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where E is the electric field induced and  the conductivity of the solution.
 Given that the total current across the tube is zero, we can write 
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and the potential difference between the two ends of the tube is
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Looking at the current lines inside the tube, we have loops of current that can be 
drawn schematically as in Figure 6.6.
 It is interesting to compare the phenomena of electro-osmosis and streaming 
potential. The irreversible thermodynamic approach described by equation (4.117) 
shows that both the flow velocity of the solution in a tube, and the current can be 
written as a linear combination of the two forces resulting from the pressure gradient 
and the electric potential gradient.
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 The Onsager reciprocity relation (L12 = L21) predicts that the electro-osmotic 
mobility ueo is equal to the ratio of the electric current generated by a pressure driven 
flow to that pressure gradient.
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6.1.5  Sedimentation potential

 Like the streaming potential, the sedimentation potential is generated by the 
movement of charged colloids in an electrolyte solution. Each sphere brings with it the 
diffuse layer surrounding it, and so, to maintain the electroneutrality, a compensating 
electric field is generated. The movement of the colloids can be induced by gravity 
or, in an ultra-centrifuge whose rotational speed may reach more than 75 000 r.p.m. 
The Onsager equations also show the link between electrophoresis and sedimentation 
potential.

Fig. 6.6  Current loops during electrolyte streaming in a tube with negatively charged walls.
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6.2   CAPILLARY ELECTROPHORESIS

6.2.1  Capillary electro-osmotic flow

 The principle of electrophoresis in a silica capillary (internal diameter of the order 
of 100 m) is the establishment of an electro-osmotic plug flow, as shown in Figure 
6.7). In effect, because the silica is negatively charged in a wide range of pH, the ap-
plication of an electric field of about 10 to 100 kV·m–1 can generate a flow of a few 
nanoliters per second towards the cathode. The plug flow has a flat velocity profile 
compared to the parabolic profile of a pressure driven flow. This is due to the fact that 
the driving force of an electro-osmotic flow is located in the diffuse layer as explained 
in §6.1.2, and that there is no friction within the solution inside the capillary. As a 
result, the solution moves within the capillary with a uniform speed.

The rate of the electro-osmotic flow is simply obtained from the definition of the 
zeta potential given in equation (6.11) that is written as
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where ueo is the electro-osmotic mobility and DV is the absolute value of the high 
voltage applied across the capillary of length L. The negative sign is due to the fact 
that the flow goes with the electric field when  is negative. It is important to note 
that equation (6.31) holds for capillaries of different shapes, such as a serpentine, 
and sizes, as long as the zeta potential can be considered constant and not too large 
over the whole capillary surface. As a consequence, the easiest way to calculate the 
velocity profile in a micro-structure is to calculate the electric field distribution that 
can be easily obtained by solving the Laplace equation (—2V = 0).
 In fact, strictly speaking, we should solve the Navier-Stokes equation (4.A14), 
taking into account the force exerted by the electric field on the volumic charge 
distribution. This resolution should be made in cylindrical coordinates if the 
diameter of the capillary is very small, or in unidimensional coordinates as in §6.1.1 
if the thickness of the diffuse layer is negligible compared to the capillary diameter
(–1 << a ). However, in steady state conditions, the simplified approach presented 
here is sufficient to describe the electro-osmotic plug flow.

Fig. 6.7  Schematic plug flow in a capillary 
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 For a capillary of diameter a, the volumic flow rate is therefore
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(6.32)

 To calculate the equivalent pressure we need to exert to have the same flow rate, 
we can apply the Poiseuille formula (6.20) which, by integration, gives
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(6.33)

 It is interesting to notice that for very narrow capillaries, electro-osmotic pumping 
becomes advantageous (∆ ∆p u V a= 8 2

eoη / ).
 The zeta potential varies with the surface charge density, which in the case of 
silica depends on the pH as shown in Figure 6.8. This type of curve, in fact, represents 
an acid-base titration curve at the wall of the silica capillary. At high pH, the silica is 
negatively charged, and the mobility is at its maximum. At the lowest pH, the wall is 
neutralised and the electro-osmotic mobility decreases. At very acidic pHs, the wall 
becomes positively charged and the flow direction is inversed.

EXAMPLE

Consider that the charge on a silica capillary is approximately –0.01C·m–2 (= –1C·cm–2). 
Let’s calculate the zeta potential for a 0.01M solution of a 1:1 salt.
The calculation of equation (5.93) yields
 = [(2·10·6.02·1023)/(8.85·10–12·78·1.38·10–23·298)]1/2·1.6·10–19 = 3.3·108 m–1

corresponding to a diffuse layer thickness of 3 nm as shown in Figure 5.11.
The zeta potential given by equation (6.12) is therefore about –43 mV. If the viscosity 
is 0.001 N·s·m–2, the electrophoretic mobility defined by equation (6.31) is then 
3·10–8 m2·V–1·s–1 . This can be compared to the experimental values in Figure 6.8 showing 
that the order of magnitude of the surface charge density of silica is about 0.01C·m–2.
For this surface charge density, a field of 10 kV·m–1 gives a volumic flow rate of 

Fig. 6.8  Variation of the electro-osmotic mobility as a function of the pH for a silica capil-
lary pre-washed in 0.1M NaOH (Adapted from P.D. Grossman & J.C. Colburn: Capillary 
Electrophoresis. Academic Press).
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2.4·10–12 m3·s–1, i.e. 2.4 nl·s–1 for a capillary with an internal diameter of 50 mm.
The pressure gradient per linear metre of capillary that we would have to apply for the 
same flow is about 104 (N·m–3) that is about 0.1 atm·m–1.

 Separation techniques using electro-kinetic flow in a glass capillary comprise 
three classes of methods: 

 ∑  electrophoretic separation
 ∑  micellar electro-kinetic separation
 ∑  electrophoretic/chromatographic separation.

6.2.2  Zone electrophoresis in a capillary 

 The principle of this separation technique is simply based on the difference in 
electrophoretic mobility of the charged species. The velocity of a given species in 
the capillary is then the sum of the electro-osmotic velocity and the electrophoretic 
velocity. At neutral pH, silica is negatively charged and the cations then move forward 
faster than the solvent and the anions are retarded. In steady state conditions, the 
velocity of the ion is then 

 
v u u

V

L
= +( )eo

∆
 

(6.34)

where u is the electrophoretic mobility defined by equation (4.17) and DV the absolute 
value of the voltage drop in the capillary. Note that often the electro-osmotic mobility 
is greater than the electrophoretic mobility, which allows the separation of both the 
cations and anions by a single injection. 

The retention time, defined as the duration of the ion’s journey in the capillary, is 
then simply given by 
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∆  
(6.35)

 If we consider that the mass transfer is limited to the electro-osmotic flow of 
the solution and the diffusion-migration of the species injected into the capillary, 
the concentration distribution of the ionic species in the capillary is given by the 
differential equation 

Fig. 6.9  Scheme of the movement of the solvent and ions in zone electrophoresis in a glass 
capillary.
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To solve this differential equation, it is useful to change the variable y to

 Y y v ty= −  (6.37)

in order to eliminate the term relative to the velocity. In effect, the partial derivatives 
with respect to y remain identical
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and those with respect to time are found by considering the total differential
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Thus, equation (6.36) reduces to a Fick equation without a convection-migration 
term
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(6.40)

In the case of an injection of a Dirac impulse of samples, the Laplace transformation 
of the Fick equation (6.40) becomes (see §8.1.1)
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The solution of this equation is 
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The concentration when Y tends towards minus infinity and plus infinity is zero. From 
this, we deduce that the constant B is also zero and that the constant A is
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We now have in fact two functions according to the sign of Y 
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Knowing the following Laplace transformation,

© 2004, First edition, EPFL Press



232 Analytical and Physical Electrochemistry 233Electrokinetic Phenomena

 

L
t s

a t a sexp exp/− −











=
2 4

π
 

(6.45)

the solution of equation (6.40) is a Gaussian distribution centred on Y given by 
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Thus, we find again the results in Figure (4.16) for linear diffusion.
 The width of the peak represented by the variance is solely due to the axial 
diffusion 
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and the number of theoretical equivalent plates is
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 In electrophoretic separation, it is interesting to compare the friction coefficient with 
the mass of the species. For a sphere, the friction coefficient is = 6r (see equation 
(4.7)) and is therefore proportional to m1/3. 

(N.B. Do not confuse the zeta potential and the friction coefficient, even if these two quantities are 
represented by the same symbol). 

 In the case of long charged polyelectrolyte chains, the electrophoretic friction 
coefficient is directly proportional to the mass. Therefore, we cannot separate DNA 
molecules of different lengths by zone electrophoresis in a capillary, since the charge 
(2 charges per base) and the friction coefficient are directly proportional to the mass. 
Nevertheless, we can separate small oligo-nucleotides (up to 20 or 30 bases). This 
remark for the separation of DNA also applies to proteins denatured by a detergent such 
as SDS (Sodium DodecylSulfate) where the charge is proportional to the size. For these 
biopolymers, a porous matrix, such as a gel, has to be used for the separation.

6.2.3  Micellar electrokinetic capillary chromatography 

 This approach is based on the distribution of species to be separated between the 
mobile phase (electro-osmotic flow towards the cathode) and a negatively charged 
micellar phase (e.g. sodium dodecylsulfate) travelling more slowly. The charged or 
neutral lipophilic molecules reside partially in the micellar phase (pseudo-stationary 
phase) migrating to the anode and are therefore held back relative to the hydrophilic 
molecules moving together with the electro-osmotic flow towards the cathode. The 
separation is at the same time electrophoretic due to the migration of the micelles 
under the influence of the electric field and chromatographic due to the distribution 
of the lipophilic molecules between the aqueous eluent and the organic pseudo-
stationary phase.
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6.2.4  Capillary electro-chromatography (CEC)

 This method uses an electro-osmotic flow to circulate the mobile phase in a 
capillary column filled with particles forming a stationary phase. The plug flow is, in 
general, only slightly perturbed by the filling. The retention principle is the same as 
for HPLC chromatography.

Fig. 6.11  Electro-chromatography with electro-osmotic pumping.

6.2.5  Capillary separation techniques not using electro-osmosis

 Commercially available capillary electrophoresis equipment offers other 
separation techniques that do not use properties linked to the electro-osmotic flow, 
but those associated with the small diameter of the capillary such as the elimination 
of natural convection phenomena. These techniques are just adaptations of the classic 
electrophoresis methods described in §6.3, such as:

 ∑   electrophoresis in a gel
 ∑   isoelectric focusing
 ∑   isotachophoresis

 For these techniques, the electro-osmotic flow has to be suppressed, for example 
by covering the inner wall of the silica capillary with a fine layer of a viscous polymer 

Fig. 6.10  Retarded movement of a micelle in an electro-osmotic flow.
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such as linear polyacrylamide. In effect, equation (6.8) shows us that to eliminate 
the electro-osmotic flow, all we need is a high viscosity in the few nanometres of the 
diffuse layer. This high surface viscosity slows down the movement of the ions in the 
diffuse layer, and thus inhibits the onset of the electro-osmosis flow of the solution.

6.2.6  Experimental methods

 A capillary electrophoresis system consists of a high volatge power supply, two 
reservoirs of buffer solutions, a sampling unit, a separation capillary and a detector, as 
illustrated schematically in Figure 6.12.

Fig. 6.12  Schematic representation of a capillary electrophoresis system.

Electrokinetic injection

 Electrokinetic injection, or injection by electromigration, simply consists of 
placing the anodic end of the capillary and the high voltage electrode into the recipient 
containing the sample for a short duration, and then replacing these two again in the 
buffer reservoir.
 The electrophoretic and electro-osmotic velocities of the sample may be calculated 
from their respective mobilities and from the injection voltage Vinj imposed during 
the injection

 
v v v u u
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(6.49)

where L is the length of the column.
 The length of the sample plug then depends on the duration of the injection

 
l v v t= +( )ep eo inj (6.50)

The weight of the sample injected is then
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where c is the mass concentration in kg·l–1. Using the electrokinetic injection method, 
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we control the amount injected by varying the applied potential or the injection 
duration. Also, this method allows the differentiation of the cations and anions from 
the neutral species as soon as the injection is made. In effect, the quantity of cations 
injected is larger than the quantity of neutral species that is in turn larger than the 
quantity of anions, which is not necessarily an advantage. 

Injection under pressure

 This injection method consists of putting the end of the capillary into a closed 
vessel containing the sample and putting the latter under pressure. The quantity of 
sample injected using this technique is 
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P r c t
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∆ π
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(6.52)

Commercial equipment often uses either electrokinetic injection or injection under 
pressure. Nevertheless, other techniques exist, among which we might mention the 
following methods:

Gravity injection 

 This method consists of raising the sample reservoir to a height of h for a 
duration t . The injected volume is then simply given by 
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(6.53)

Note that the amount of sample injected under pressure or by gravity does not depend 
on its electrophoretic mobility.

Electrokinetic sample loop

 This injection method, applicable mainly to micro-manufactured capillaries in 
glass, silica or polymer plates, consists of using the law of addition of currents to drive 
the samples when they pass over the junction between two capillaries. As in Figure 
6.13, we first make the sample circulate by electro-osmosis between the source and the 
drain (shaded zone). Then, we apply a potential difference between the entry and exit of 

Fig. 6.13  Electrokinetic injection using a double ‘T’. (a) The sample circulates in the part of 
the capillary between the source and the drain, (b) The potential is applied to the terminals of 
the capillary.
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the separation capillary. The part of the sample in the separation capillary between the 
source and the drain is then sent along the length of the capillary by electro-osmosis.

Columns and the effect of temperature

 The capillaries are in general made of hollow silica fibres with an internal diameter 
of less than 100 m. This allows the application of high potential differences whilst 
having a good thermal dissipation of the Joule heating. The capillaries are usually 
covered in polyimide, which makes them much less fragile and easier to handle.
 The electric current passing in the capillary causes heating by the Joule effect. 
Using equations (4.21) and (4.23), the electrical power to be dissipated per unit length 
is 
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where m is the molar conductivity of the solution.
 A thermal balance on a silica capillary covered with a fine layer of plastic can be 
found by resolving the thermal conductivity equations in cylindrical coordinates. 
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where qr is the heat flux per unit length and the second term is the power generated per 
unit volume. A first integration gives 
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Fourier's law is written as
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where t is the thermal conductivity of the buffer solution. If it is a constant, then we 
have 
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This relation shows that the temperature profile inside a capillary is parabolic. In the 
same way, the temperature drop in the silica capillary is given by the integration of 
equation (6.57)
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where G is the total quantity of heat lost per unit length. The temperature difference at 
the edges of the silica tube is therefore written as 
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whilst that in the polymer layer is 
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where s and p are respectively, the thermal conductivities of the silica and the 
polymer. The coefficient of heat transfer between the polymer and the cooling system 
(air or water according to the apparatus used) is such that 
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where h is the heat transfer coefficient.
Thus, the temperature difference between the centre of the capillary and the 

outside is written as 
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(6.63)

The last term dominates the temperature distribution.
 This calculation clearly shows that controlling the temperature of the column is 
an essential factor in assuring reproducibility of retention times.

Detection methods

 The small quantities of samples introduced into the separation capillary render the 
detection of peaks rather difficult. We can distinguish five classes of detectors: 

 ∑   UV VIS
 ∑   fluorescence
 ∑   refractive index
 ∑   electrochemical
 ∑   contactless conductivity

Fig. 6.14  Temperature profile during the electro-osmotic pumping in a capillary. 
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 For the optical methods, the polymer protection layer that surrounds the quartz 
capillary has to be removed. The sensitivity of UV-VIS methods is limited by the short 
optical path imposed by the diameter of the fibre. Fluorescence is a more sensitive 
method, but often requires a ‘derivatisation’ of the reactant if it is not fluorescent 
itself.
 Electrochemical detectors comprise potentiometric, conductometric and 
amperometric detectors. For potentiometric detectors, ion selective microelectrodes 
are usually used. Amperometric microelectrodes are also among the most sensitive 
methods for detecting redox components. However, electrochemical detection 
cannot be used directly in the electric field lines used for electro-osmotic pumping. 
To circumvent this difficulty, the detector can be placed at the end of the capillary as 
in a wall jet cell configuration (see §7.4.1). If the detector is placed directly in the 
capillary, it is important to electrically uncouple the high voltage electric circuit from 
the 3-electrode measuring circuit (see §7.1).
 Conductive coupling can be used to measure the conductivity of the solution in 
the capillary by placing electrodes outside. In this case, it is important to operate at 
higher frequencies compared to classical conductometry with the electrodes directly 
in contact with the solution.
 In addition to the detection methods cited above, note that coupling with mass 
spectrometry can be done relatively easily using an electro-spray ionisation.

6.3   ELECTROPHORETIC METHODS OF ANALYTICAL  
  SEPARATION
 There are about five types of electrophoretic separation.

6.3.1  Moving boundary 

 The phenomenon of the moving boundary can be simply illustrated by considering 
the system in Figure 6.15. 

Fig. 6.15  Scheme of the moving boundary principle.
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 At time t = 0 , we form an interface between a KCl solution (on the right, zone 1) 
and a NaCl solution (on the left, zone 3). From an experimental point of view, a 3-way 
tap allows the formation of such interfaces. We then apply an electric field from left 
to right. Given that the mobility of the Na+ ions (uNa+ = 51.9.10–9 m.V–1.s–1) is lower 
than the mobility of the K+ ions (uK+ = 76.2.10–9 m2.V–1.s–1), the cations will migrate 
at different speeds, thus generating an intermediary zone of NaCl (zone 2) with a 
different concentration from zone 3. The boundary between zones 2 and 3 remains 
immobile while the current passes. 
 Given that the current density j is constant across the three zones, but that the 
concentrations and therefore the conductivities are different, the electric field will be 
different in each zone. The electric field in zone 2 may be obtained by measuring the 
progress velocity v12 of the moving boundary between zones 1 and 2. In effect, using 
equation (4.18), we have 

 
v E12 2 2= +u

Na ,  
(6.64)

 The difference in electric field between zones 1 and 2 has for consequence to 
maintain the separation boundary sharp (self-sharpening effect). For example, if a 
sodium ion went into zone 1, it would find itself in a zone where the field would be 
too weak with respect to its mobility and it would therefore rejoin zone 2. To calculate 
the concentrations of the different ions in the different zones, we have to consider the 
variation in volume of zone 2 per unit charge, W12 , defined by
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where Q represents the charge that passes during the time t and V2 the variation 
in volume of the zone 2 formed. The quantity W12 is a function of the progress 
velocity of the interface 1 | 2,
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where S is the cross-section of the tube and j the current density. The amount of 
sodium in zone 2 equals the flux of sodium going into this zone during the period t
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Using equation (4.21), the sodium flux is given by 
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and we can write that
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In the same way, the amount of potassium initially present in zone 2 equals the 
potassium flux going out of this zone during the time t, and thus we have
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Relations (6.60) & (6.70) allow the calculation of the progress velocity of the 
boundary
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Furthermore, using equations (4.16) & (4.21), we have
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We deduce from this that
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These equations show that the concentration of NaCl behind the KCl lead solution is 
solely determined by the salt concentration in the head zone and the electric mobility 
of the different species. 

EXAMPLE

Consider a system where the initial concentration of KCl in zone 1 is 0.01 M, and let’s 
calculate the concentration of NaCl in zone 2.
With the data of Table 4.1 and by making use of equation (4.16), equation (6.74) shows that 
this concentration is 0.008 M.
It is interesting to note that this value does not depend on the initial concentration of NaCl. 
Of course, from an experimental point of view, the moving boundary is observed if the 
initial concentration of NaCl is of the same order of magnitude as that in the head zone. 
Thus, if this initial concentration is 0.01 M, the distribution of the electric field in the three 
zones is that shown in Figure 6.15.

 Now consider a more complicated situation where zone 1 contains a mixture of 
NaCl and KCl. As before, a mass balance for the K+ ion gives

J J tS
u c u c

Q c c V
K K

K K K K
K K+ +

+ + + +

+ +−( ) = −
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= −( ), ,
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, ,1 2
1 1

1

2 2

2
1 2 2∆ ∆

σ σ
 (6.75)

which is

 

u c u c
W c cK K K K

K K

+ + + +
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1 1

1

2 2

2
12 1 2σ σ  

(6.76)

In the same way for the chloride ion, we have
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(6.77)

 For the sodium ion, equation (6.69) remains applicable, and the conservation 
of the flux at the boundary between zones 2 and 3 allows the calculation of the 
concentration of Na+ ions in the intermediary zone
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2
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σ
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(6.78)

 The concentrations in the different zones can be calculated by the solution of the 
system of equations given above. The analytical resolution can prove difficult and 
numerical methods are often required. 

6.3.2  Isotachophoresis

 This technique, whose name tells us that all the species migrate at the same 
velocity, is used for separating species with identical charge. Let’s look, by way of an 
example at a separation of cations from a mixture of salts with common anions (e.g. 
Cl–), placed between a solution with high electric mobility (e.g. HCl) and a solution 
with very low mobility (e.g. an organic salt such as tetrabutylammonium chloride 
TBACl). The passing of a current not only causes a separation of the cations, but also 
leads to the formation of distinct bands.

 In effect, when the potential is applied, potential gradients form in such a way that 
all the ions move at the same velocity; the electric field is weak in the zones where the 
ions are highly mobile, and strong in the zones where the ions are not very mobile; 
the electric field is thus constant in each band. So the separation between the bands is 
very clear, as shown in Figure 6.17.

Fig. 6.16  Scheme of the principle of isotachophoresis.
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6.3.3   Zone electrophoresis 

 It is possible to separate small samples by using electrophoresis in an electrolyte 
solution (often a pH buffer) supported in a rigid matrix such as filter paper or in a 
capillary tube. The solid matrix prevents convection and ensures that the only mass 
transports possible are diffusion and migration.

Fig. 6.17 Isotachophoretic separation of a series of anions. Current density: 60mA·cm–2. 
Conductometric (top) and UV detection (bottom). 1=chloride, 2=sulfate, 3=oxalate, 4=naphthalene 
trisulfate, 5=malonate, 6=pyrazole-3.5-dicarboxylate, 7=naphthalene disulfonate, 8=adipate, 
9=acetate, 10=b-chloropropionate, 11=benzolate, 12=naphthalene monosulfonate, 13=glutamate, 
14=enanthate, 15=benzyldiaspartate, 16=morpholinoethane sulfonate (Electrophoresis, a survey 
of techniques and applications, Z. Deyl ed., Elsevier, Amsterdam, 1979).

Fig. 6.18  Scheme of the principle of zone electrophoresis.
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 Zone electrophoresis is the technique generally employed in capillary 
electrophoresis for separating the charged ions or molecules and even certain proteins. 
However, this method cannot be used for the separation of DNA or proteins denatured 
by charged surfactants (vide infra).

6.4   ELECTROPHORETIC SEPARATION OF 
  BIOPOLYMERS

6.4.1  PAGE Electrophoresis

 Electrophoresis on paper is not much used nowadays. However, electrophoresis 
in polyacrylamide gels (PAGE = PolyAcrylamide Gel Electrophoresis) remains the 
classic technique for the separation of proteins. This separation method based on 
zone electrophoresis has allowed the spectacular advances in molecular biology 
in the second half of the twentieth century. Polyacrylamide is a three-dimensional 
network obtained by polymerisation of acrylamide (CH2=CH–CONH2) using 
methylenebisacrylamide (CH2=CH–CO–NH–CH2–NH-CO–CH=CH2) for the reti-
culation, in the presence of a catalyst such as tetramethylenediamine (TEMED).

Protein separation

 Electrophoresis on a gel allows the separation of proteins according to their size, 
by using the porosity of the gel. The proteins are first denatured with detergents such 
as SDS (Sodium Dodecylsulfate) (1.4 g of SDS per g of proteins) and by reducing 
agents such as 2-mercaptoethanol to break the disulfur bridges (–S– S–). The proteins, 
denatured in this way can be assimilated into polyelectrolyte chains ‘wrapped up’ in 
ionic surfactant molecules. One of the goals of the denaturing process is to fix the 
mass to charge ratio that implies that the denatured proteins have nearly all the same 
electrophoretic mobility.
 The presence of the gel in fact allows the separation of the proteins principally by 
their size. The distance covered in the gel is then directly proportional to the logarithm 
of their molar mass. Models such as the reptation model presented in §6.4.2 can be 
used to describe the separation mechanism.
 One of the major drawbacks of this technique is the slowness of the operations 
of making the gel, running the electrophoretic separation and staining the proteins 
for visual identification, either with dyes (Coomassie Blue) or with silver salts.
 For molecules whose mass exceeds 1 MDa, the pores of PAGE are too fine to 
allow migration. In this case, we can use agarose gels that have a greater porosity. 
Electrophoresis in an agarose gel – a negatively charged polysaccharide – is also 
affected by electro-osmosis that causes a flow of the solvent towards the cathode. This 
flow is quite large, since the majority of proteins, even negatively charged, arrive at 
the cathode and only the immunoglobulins go towards the anode. 
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Separation of nucleic acids and the sequencing of DNA 

 Electrophoresis in a gel is one of the methods for separating nucleic acids. Gel 
electrophoresis in a capillary has recently been used on a large scale for the sequencing 
of the human genome. Fragments of single stranded DNA labelled with fluorescent 
molecules are generated by enzyme reactions, and analysed in parallel to allow rapid 
reading of the sequences as shown in Figure 6.19.

As with the denatured proteins, the separation of double stranded ds-DNA 
by electrophoresis in solution is not possible because the ratio of mass to charge 

Fig. 6.19  Schematic representation of a sequencing process (‘‘four-color Sanger’’) starting 
from many copies of the single-stranded DNA to be sequenced, bearing a known ‘‘marker’’ at 
the beginning of the unknown sequence, a short oligonucleotide ‘‘primer’’ complementary to 
this marker is hybridized (i.e., paired) to the marker, in the presence of DNA polymerase and 
free nucleotides. This hybridization initiates reconstruction by the polymerase of a single strand 
complementary to the unknown sequence (a). Including in the nucleotide bath in which the 
polymerization takes place a small fraction of fluorescently labelled dideoxynucleotides (one 
different dye for each nucleotide type), which miss the OH group necessary for further exten-
sion of the strand, one is able to synthesize at random complementary strands with all possible 
arrest points (i.e., all possible lengths with an integer number of nucleotides). These newly 
synthesized single-stranded DNA’s are then separated electrophoretically by size [see elec-
trophoregram in (b)]: consecutive peaks correspond to DNA fragments differing by one base, 
and each line corresponds to one given nucleotide. Automated analysis of the data allows the 
determination of the sequence (symbols above the peaks). The symbol N indicates ambiguous 
determination. In the present case, the sequence determination was faultless up to 435 bases. 
(Adapted from J.-L. Viovy, Rev. Mode. Phys., 72 (2000) 813-872).
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is constant. Thus, the electrophoretic mobility of a ds-DNA chain is practically 
independent of its composition in elementary bases. Nevertheless, the use of agarose 
gel, hydroxyethycellulose or entangled polymers which play the role of transitory gels 
allow electrophoretic separation. In the case of planar gels, the constant electric field 
is sometimes replaced by orthogonal pulsed fields applied alternately. 

6.4.2   Reptation theory

Movement of an ideal chain

 One of the ways of treating the movement of a polymer in solution is to consider 
that the position of the chain corresponds to random steps like those described in 
chapter 4. To simplify, let’s consider a chain in a flat geometry.

Fig. 6.20  Flat chain, or random steps in a plane.

The vector h that links the beginning and end of the chain is the sum of N step vectors 
ai , i.e.

 
h a= ∑ i

i  
(6.79)

Because of the random character of the chain, the step vectors have independent 
orientations, having the consequence that in the calculation of the average root mean 
square, the cross terms cancel out

 
< > = < ⋅ > = < > =∑∑ ∑h a a a2 2 2

i j
ji

n
i

Na

 
(6.80)

This relationship is valid for long chains that we shall call ‘the ideal chain’. So we 
define the average ‘end to end’ length of an ideal chain as 

 R a NN =  (6.81)

F

D

h
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Reptation

 In a gel, a biopolymer does not go forward randomly. In fact, we can consider 
that the biopolymer moves like a ‘snake in tall grass’. The theory of the reptation of 
biopolymers in a gel makes a first hypothesis that the sequence of pores via which 
the molecule travels forms a tube whose diameter can, in a first approximation, be 
considered as uniform. 
 Thus, we shall separate the sliding of the polymer chain in its tube and the random 
movement of the tube.
 If the polymer is flexible on the scale of the size of the pores, we name a ‘blob’ 
an element of length a characteristic of the porosity such that the linear length of the 
chain is

 L N a=  (6.82)

The time required for the chain to come completely out of its tube can be calculated 
by defining a sliding mobility us of the chain in the tube. This mobility can be defined 
by considering a force f due to an electrochemical potential gradient and the linear 
sliding velocity of the chain in the tube vs such that we have 

 v fs s= u  (6.83)

By definition, the sliding mobility must be proportional to the length of the chain and 
therefore inversely proportional to the number of blobs

 u Ns s= 1 / ζ  (6.84)

where s is the sliding friction coefficient for one blob.
 By analogy with the Stokes-Einstein law (see §4.1.2), we can also define a sliding 
diffusion coefficient Ds by 

Fig. 6.21  Reptation of a biopolymer in a porous matrix.
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Thus, we can calculate the time s for the chain to slide out of its tube by using 
equations (4.164) or (4.173). 
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(6.86)

where L is the linear length of the chain. This equation is a scaling law that shows that 
the time for a polymer to slide within its tube is proportional to the cube of the number 
of elements in the chain. 1 is the time to slide through an element of the tube.
 If, over the time s the whole length L has slid into its tube, the displacement in 
space corresponds to that of the ‘end-to-end’ length  RN. Thus, the diffusion coefficient 
by reptation is given by 

 
D

R D

N

kTN
rep

s rep
= = =

2
1
22τ ζ

 
(6.87)

D1 is the diffusion coefficient of an element in the chain. Equation (6.87) shows that 
the diffusion coefficient by reptation of a polymer is inversely proportional to the 
square of its length. The friction constant rep of an unstructured chain is proportional 
to the square of its mass. A random diffusion movement in a porous matrix will 
therefore be faster for smaller molecules than for longer molecules. 

Reptation in an electric field

 For a polyelectrolyte in an electric field E, each element of the chain will be 
subject to an electric migration force. The total force exerted on the chain in the 
direction of the field is

 
f E t E a i a= ⋅ = ⋅ = ⋅ =∑ ∑ ∑q
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qE
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qE

a
hi i

i
i

i
i

i
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ˆ ˆ

 
(6.88)

where q is the charge of a segment, and t̂i is the unit tangent vector of each element of 
the chain and î the unit vector in the direction of the electric field and hx the projection 
of the ‘end-to-end’ vector illustrated in Figure 6.20. Using equations (6.83) & (6.88), 
the sliding velocity is then given by
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(6.89)

To find the velocity of displacement of the centre of mass of the polymer in the 
direction of the field, we can write 

 
M mi

i
iR rcm = ∑
 

(6.90)

where M is the total mass, Rcm the displacement to the centre of mass, mi the mass of 
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a segment ( = M ai / L ) and ri its position vector. Differentiating with respect to time, 
we have 

 
M M

a

L
i

i
iV vcm s= ∑
 

(6.91)

Noting that the sliding velocity of an element of the chain is a constant 

 v ts si iv= ˆ
 (6.92)

we get
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(6.93)

Thus, the velocity of the centre of mass on the x- axis, Vxcm , is written as

 
V

v

L
hx xcm

s=
 

(6.94)

By combining with equation (6.89), we obtain a relation for the average velocity of a 
polyelectrolyte chain in an electric field

 
< > = < >V

qE

L
hx xcm

sζ
2

2

 
(6.95)

 Equation (6.95) is applicable as a first approximation for the electrophoresis of 
polyelectrolytes in porous gels. It shows that chains aligned with the electric field 
move faster than those placed perpendicular to it, and that the speed is inversely 
proportional to the square of the length.

Biased reptation in an electric field

 An essential aspect of reptation theory is the role played by the ‘head’ of the 
chain, which has to choose which pore to enter into. 
 In an electric field, the movement of a polyelectrolyte will also be influenced by 
the electrostatic force that is applied at the head of the chain when going out of the 
sliding tube. In the absence of a field, this direction is completely random whilst in 
the presence of a field this direction is ‘biased’ by the field. Thus, the influence of the 
field on the ‘charged head’ of the polyelectrolyte and the Brownian motion will be 
responsible for the direction taken by the chain when the head goes forward.
 To quantify these effects, we need to calculate <hx

2>. From equation (6.79), we 
can calculate

 
h ax xi

i

= ∑
 

(6.96)

and
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(6.97)
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If the chain is flexible, and the effect of the electric field on the orientation of the head 
is weak, there is little correlation between the orientations of the different segments. 
So, taking averages, we have 

 < > = < > + −( ) < >h N a N N ax x x
2 2 21  (6.98)

 To take into account the influence of the field, we make the hypothesis that ax is 
governed by a Boltzmann distribution of the electrostatic energy for the head segment 
which can move freely. The other segments inside cannot move in a lateral manner 
because of the gel and can only slide along the tube. By defining for each element an 
angle of orientation  with respect to the direction of the field, such that 

 a ax = cosθ  (6.99)

equation (6.98) becomes

 < > = < > + −( ) < >h Na N N ax
2 2 2 2 21cos cosθ θ  (6.100)

Now the problem is reduced to the calculation of < cos > and < cos2 >. To do this, 
we can calculate the average electrostatic energy due to the interaction of the electric 
field with the charged head segment

 w q qaEe cos= − ⋅ = −1
2

1
2E a θ  (6.101)

 Using the same reasoning as in §3.3.5 where we calculated the average ion-
dipole energy of interaction, we can say that the electrostatic energy we is given by a 
Boltzmann distribution 
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To calculate these two integrals, we put

 x aqE= cosθ / 2  
(6.103)

and

 u aqE= / 2  (6.104)

We have then
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(6.105)

where L(x) is the Langevin function described in Figure 3.15. For small values of u, 
the average electrostatic energy tends towards
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The average orientation angle is then defined by
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In the same way,
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which is
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For small values of u, the average electrostatic energy tends to

 
lim limeu uw u kTu L

u

kT

u
→ →< > = − 











=0
2

0
2

2

2
3  

(6.110)

and < cos2 > tends to 1/3 since
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By substituting in equation (6.100), we have
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 Finally, by doing a limited series expansion and replacing in equation (6.95) we 
have
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 The mobility <Vxcm> / E consists then of two terms: one independent of the field 
and inversely proportional to N and the other independent of the length that becomes 
negligible for weak fields. For small values of N, the first term of equation (6.113) 
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dominates accounting for the experimental dependence of the mobility with N–1. For 
large values of N and for strong fields, the mobility of long polyelectrolytes becomes 
independent of size and dependent on the field.
 The biased reptation model presented above can be amended to consider also 
the fluctuations of the end of the tube itself and not only the fluctuations of the first 
element of the chain, shown as the head in Figure 6.21. This means that we have 
to consider the internal modes of the tube itself. The mathematical considerations 
involved are too long to be presented here, but this model called the ‘biased reptation 
model with fluctuations’ corroborates rather well the experimental data.

6.4.3   Isoelectric focusing 

 This technique is used for separating ampholytes, such as proteins. Separation 
is effected in a pH gradient, from an arbitrary position. The negative species migrate 
towards the anode, whilst the positive species migrate to the cathode. These species 
become immobilised when they arrive in a pH zone where they become neutralised. 
The pH for which an ampholyte no longer migrates in an electric field is called 
the isoelectric point (pI) of the ampholyte. The pH gradient is usually created by 
distributing ampholytes of different pI or even polyampholytes (polymers containing 
for example at the same time amino and carboxylate groups). The buffer effect of these 
different molecules generates a pH gradient whose resolution reaches 0.001 pH units, 
which allows the separation of proteins with pI differences of the order of 0.02 pH 
units. It is important to note that isoelectric focusing is a steady state method that 
does not depend on the mode of application of the sample, nor on the total quantity of 
proteins as long as the buffer effect of the pH gradient is not disturbed. 
 The pH gradient can be immobilised in a gel structure by the polymerisation of 
acid or basic derivatives of acrylamide previously distributed in such a way as to 
form a pH gradient. After the polymerisation, the gradient is immobilised. (IPG = 
Immobilised pH gradient).
 The concept of focusing can be explained from transport equations. If Ji is the 
flux of a species i given by equation (4.10),

 Ji i i i i i i i i ic u c u c u z F= − = − −˜ ˜ ˜ ˜grad grad gradµ µ φ  (6.114)

the law of the conservation of mass in the steady state regime is written as
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By only considering unidirectional transport, this expression becomes 
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If we make the hypothesis that the applied electric field is not perturbed by the 
presence of a migrating protein or ampholyte (excess of supporting electrolyte) and 
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that it is therefore constant across the gel, the only terms in equation (6.116) depending 
on the distance x are the concentration and the charge of the proteins. The term in square 
brackets in equation (6.116) is therefore constant and equal to zero at the isoelectric 
point, where the concentration is at its maximum, and the charge is zero. Thus, it 
appears that the concentration gradient is directly proportional to the electric field E

 
RT

c

x
c z FEi

i i
∂
∂

=
 

(6.117)

The maximum concentration corresponds to the centre of the band, since as soon as a 
species leaves the band by diffusion, the electric field makes it ‘get back in line’.

Titration of a protein in a pH gradient gel 

 We take a pH gradient gel, and apply along its length a solution containing one 
protein only. Then, we apply an electric field perpendicular to the pH gradient. The 
proteins situated in a pH zone higher than their pI become negatively charged and 

Fig. 6.22  Scheme of the principle of isoelectric focusing. The ampholytes (the cross-hatched 
zones) migrate when an electric field is applied parallel to the pH gradient.

Fig. 6.23  Scheme of the principle of a pH titration of a protein deposited in a fine band all 
along the length of a pH gradient gel. The proteins migrate when an electric field is applied 
perpendicular to the pH gradient. 
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migrate to the anode, whilst those situated in a pH zone lower than their pI become 
positively charged and migrate to the cathode. Only proteins in a pH zone that 
corresponds to their pI will not migrate.
 The distance travelled by the charged proteins depends on their charge at a given 
pH. In effect, the electrophoretic mobility is proportional to the charge. 

Resolution of isoelectric focusing 

 In order to calculate the width of an isoelectric band such as shown in Figure 6.22, 
we need to solve the differential equation (6.117) all the while taking into account that 
the charge varies as a function of the pH and therefore of the distance. By linearising, 
the variation in the charge as a function of the pH around the corresponding pI value, 

 z p xi i= −  (6.118)

the negative sign being due to the charge becoming more negative when x increases 
(increasing pH values), we can write equation (6.117) in the form 

 
RT

c

x
c p FE xi

i i
∂
∂

= −
 

(6.119)

Integrating equation (6.119) then gives us

 c ci i

p FEx
RT

i

=
−max exp

2

2
 

(6.120)

 The steady state distribution in isoelectric focusing is therefore a Gaussian one, 
whose variance depends not only on the electric field applied and the temperature, but 
also on the factor pi

 
σ = RT

p FEi  
(6.121)

The parameter pi can be defined as being
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(6.122)

The resolution of two Gaussian distributions being defined as 

 
Rσ σ σ σ

= =
+

∆ ∆pI pI2

1 2  
(6.123)

we see that we can thus optimise the resolution by choosing a gel with an appropriate 
gradient. 

‘Off-gel’ isoelectric separation

 A method recently developed for the isoelectric purification of proteins in solution  
consists of streaming a solution of proteins under a pH gradient gel. Thus, by applying 
a p.d. parallel to the pH gradient, certain electric field lines pass through the channel 
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situated under the gel and take with them certain proteins, according to their charge. 
At the solution | gel junction, the penetration of the proteins into the gel will depend 
on the local pH. 
 Only the proteins whose pI is greater than the pH above the channel will be able 
to migrate towards the cathode, and conversely, only the proteins whose pI is less than 
this pH will be able to migrate towards the anode.
 Thus, at the exit of the channel, the solution contains essentially proteins whose 
pI corresponds to the pH range in the gel covering the channel.

Fig. 6.24  Scheme of the principle of ‘off-gel’ isoelectric separation.

Fig. 6.25 Separation of a sample of E. coli on a 2-D gel (Copyright : www.expasy.ch).
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6.4.4  Electrophoresis on a 2D gel

 2D electrophoresis comprises, as its name indicates, two methods of separation. 
The first consists of separating the proteins according to their pI on an pH gradient gel 
(separation by electric focusing).
 The second consists of doing a SDS-PAGE separation to differentiate the proteins 
by their molecular mass. 
 The gels obtained such as that shown in Figure 6.25 can then be compared to 
databanks to identify the proteins.

6.5   ION CHROMATOGRAPHY 

6.5.1  Ion exchange chromatography 

 This method consists of passing electrolytes over columns containing ion 
exchange resins and can be used equally well for organic or mineral species.
 For all chromatographic techniques, the capacity factor is defined as a function of 
a distribution coefficient KD,i
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(6.124)

where f is called the phase ratio, defined as the relation between the volumes of the 
stationary phase (VS) and the mobile phase (VM), c representing the concentrations.
 The key question is to know how to evaluate the distribution coefficient between 
the stationary phase and the mobile phase.
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Even if it is easy in partition chromatography, such as HPLC, to define the 
stationary phase and the physico-chemical retention mode (e.g. distribution 
between two phases), the definition of the stationary phase is not so easy in ion 
chromatography.
 In order to simplify, we can say that the stationary phase is a fine layer of solvent 
containing the hydration molecules of the fixed charges of the polymer which in a first 
approximation can be taken as the diffuse layer. It is difficult to define the thickness 
(few nanometers) and especially the water structure in this layer. Nevertheless, it is 
highly likely that the contact with the hydrophobic polymer and the fixed charges 
induces a solvent structure different from that in the bulk of the solution.

Consider a sulfonate resin and the exchange of a proton for a sodium ion. In a 
basic medium, this exchange is irreversible 

 R — SO  - - -  H     +   NaOH     R — SO  - - -  Na     +   H O3
– +

3
– +

2⇒

whereas in a neutral medium, this reaction becomes reversible 
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 R — SO  - - -  H     +   NaCl     R — SO  - - -  Na     +   HCl3
– +

3
– +⇔

Because of the Donnan exclusion principle, the chloride does not penetrate into the 
exchanger if it is a porous resin. Given that the counter-ion does not intervene, we can 
write a law of mass action 

 
K

H
Na

+
s

+
m

+
m

+
s

Na H

Na H
+
+

= [ ] [ ]

[ ] [ ]  
(6.126)

Fig. 6.26  Scheme of the principle of ion chromatography by ion exchange. 

Table 6.1  Equilibrium constants for the exchange of cations on  polystyrene sulfonate
at 4% reticulation (Dowex 50, Dionex, USA).

Cation Cation

H+ 1 Mg2+ 2.23

Li+ 0.76 Ca2+ 3.14

Na+ 1.2 Sr2+ 3.56

NH4+ 1.44 Ba2+ 5.66

K+ 1.72 Co2+ 2.45

Rb+ 1.86 Ni2+ 2.61

Cs+ 2.02 Cu2+ 2.49

Ag+ 3.58 Zn2+ 2.37

Tl+ 5.08 Pb2+ 4.97

UO2
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The constant KH
Na+

+ is called the selectivity constant between the stationary and mobile 
phases. This can be measured, and certain tendencies deduced from it. For alkali 
metals, we have 

 Cs+ > Rb+ > K+ > Na+ > Li+

whilst for alkaline earths metals, the series is :

 Ba2+ > Sr2+ > Ca2+ > Mg2+

It is possible to compare the selectivity coefficient to the distribution coefficient, and 
we have 

 
K KD

+
s

+
m

H
Na

+
s

+
m

Na

Na

H

H
= = +

+[ ]

[ ]

[ ]

[ ]  
(6.127)

6.5.2  Chromatography by ionic exclusion

 The separation is based on the Donnan exclusion principle, steric exclusion and 
adsorption phenomena. This technique is used for the separation of weak acids from 
acids that are completely dissociated at the pH of the eluent 
 In the example shown in Figure 6.28, the basic form of the acetic acid that is 
anionic is electrostatically repelled from the diffuse layer around the fixed charges of 
the polymer cation exchanger where the solution velocity is less than in the bulk. This 
phenomenon is the same as that described in §2.6.2. On the other hand, the neutral 

Fig. 6.27 Chromatography by cation exchange. Metrosep column. Eluent 4mM tartaric 
acid +1mM picolinic acid. Flow rate 1ml·mn-1: 1. Lithium, 2. Sodium, 3. Ammonium, 4. 
Potassium, 5. Calcium, 6. Magnesium, 7. Strontium, 8. Barium. Picolinic acid is added to 
complex possible traces of heavy metals (Metrohm, CH).
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form of the acid can reside in this stationary layer, and consequently its progress in the 
column will be retarded.

6.5.3  Ion pair chromatography 

 Here, the stationary phase is an apolar medium capable of extracting salts in the 
form of ion pairs. This method is very useful for separating ionic surfactants and also 
organometallic complexes. 

Fig. 6.29 Separation of acids. Column: Metrohm Hamilton PRP-X300. Eluent 1.5 mM 
perchloric acid. Flow rate 1ml·min–1. 1. Tartrate, 2. Malate, 3. Citrate, 4. Lactate, 5. Acetate, 6. 
Succinate (Metrohm, CH).

Fig. 6.28  Scheme of the principle of chromatography by ionic exclusion. 
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6.5.4  Experimental methods 

 An ion chromatography system consists of a pump to make the eluent circulate, 
an injector (10 to 100 l), a separation column and if necessary an ionic strength 
suppressor column, situated above the detector.
 The limits of detection are about 10 ppb for injections of 50 l, but can be lowered 
using pre-concentration techniques.
 The reason for the ionic strength suppression column is to facilitate the conducto- 
metric detection of samples. For example, consider the separation of a mixture of KCl 
and NaCl on a cation exchange column. The eluent being an acid, its conductivity will 
be higher than that of the samples and the signal obtained will be negative on a high 
background signal. If, after the separation column, we pass the eluent and the sample 
through an anion exchange column, we neutralise the eluent to form water with a low 
conductivity, and we exchange in the same way the chloride ions of the sample with 
hydroxides. Thus, the passage of the sample in front of the conductometric detector 
now gives a positive signal, namely that of a NaOH sample on a water background. If 
the conductometric detectors have a very good signal-to-noise ratio, the measurements 
can be made without a suppression column.

 These columns require frequent servicing, and other systems have appeared 
based on using ion exchange membranes such as shown in Figure 6.31 for the 
neutralisation of bicarbonate for anion exchange chromatography. In this approach, 
the neutralisation is effected by a counter-current passage of sulfuric acid. To reduce 
the consumption of acid, new systems based on electrodialysis (see §6.6.1) have 
recently been developed.

The detectors used in ion chromatography are mainly electrochemical, although 
UV VIS detectors can be used in certain special cases. 
 The most common method is either direct (sample with higher conductivity 
than the eluent) or indirect conductometry (sample with lower conductivity than the 
eluent).
 For certain redox components, amperometric detectors are often used, e.g. for the 
analysis of sugars in  alkaline media. 

Fig. 6.30  Scheme of the principle of a cation ionic chromatography system with an anion 
exchange suppression column. 
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6.6  INDUSTRIAL METHODS OF ELECTROCHEMICAL   
  SEPARATION
 Ion exchange membranes have allowed the development of several industrial or 
analytical processes. 

6.6.1  Electrodialysis

 The purpose of electrodialysis is mainly to desalinate solutions. The most 
important application of this is undoubtedly the desalination of seawater according to 
the principle shown below, but we can also note the simultaneous manufacture of soda 
and sulfuric acid from sodium sulfate. The separation of amino acids and proteins is a 
more recent application.

Fig. 6.31  Membrane suppressor.

Fig. 6.32  Working principle of desalination by electrodialysis. 
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 The principle of electrodialysis is shown in Figure 6.32. Under the effect of an 
electric field from the anode to the cathode, the ions in the solution to be desalinated 
migrate towards the respective ion exchange membranes according to their charge and 
concentrate in the enrichment compartments. These are placed alternately between 
the desalination compartments. In the case of seawater desalination, the electrode 
reactions can be used to make soda at the cathode (reduction of the protons and 
enrichment of the sodium ions) and hydrochloric acid at the anode (oxidation of water 
and enrichment of the chloride ions).

6.6.2  Donnan dialysis

 Sometimes, the separation of ions is more economical using a pH gradient rather 
than an electrical potential gradient. This is the case for the recuperation of metal 
ions from dilute solutions, e.g. that of Cu2+ from microelectronic plant effluents. In 
order to understand how we can concentrate metallic ions using a cation exchange 
membrane, consider the example of Figure 6.33. A concentrated acid solution is used 
to impose a Galvani potential difference between the two aqueous phases. Neglecting 
mass transport in solution, we can write the equality of the electrochemical potential 
of H+ between the two aqueous phases (1) & (2) separated by the membrane as

 
µ φ µ φ

H H H H+ + + ++ + = + +o oRT a F RT a Fln ln1 1 2 2
 (6.128)

Thus, the Galvani potential between the two phases is written as
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(6.129)

We can also write the equality of the electrochemical potentials for Cu2+ as

 
µ φ µ φ

Cu Cu Cu Cu2 2 2 2+ + + ++ + = + +o oRT a F RT a Fln ln1 1 2 22 2
 

(6.130)

and assuming that the excess of acid controls entirely the Galvani potential difference, 
we can calculate the ratio of concentrations of Cu2+ between the two phases

Fig. 6.33  Schematic illustration of the Donnan dialysis principle. 
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(6.131)

 We can see therefore that we can concentrate the copper ions against their 
concentration gradient from 30 ppm to 3 000 ppm. In this case, the distribution of 
the protons between the two phases fixes the Galvani potential, which in turn induces 
the transfer of the copper ions. We have therefore a chemical method, rather than an 
electrical method, for establishing a potential. 

6.6.3  Ion exchange dialysis.

 We have seen that anion exchange membranes have a rather poor selectivity for 
the transfer of protons. This weakness can be used as advantage, for example in de-
acidifying electrodeposition baths.
 As shown in Figure 6.34, an anion exchange membrane allows the dialysis of 
acids.

 

diluted solution of Ni2+
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acid solution
SO4

2–

Ni2+

H+

Fig. 6.34  Schematic illustration of the ion exchange dialysis principle. 
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CHAPTER 7

STEADY STATE AMPEROMETRY

7.1  ELECTROCHEMICAL KINETICS
 We saw in chapter 2 how we could measure the electrode potential E by using a 
reference electrode and a voltmeter. We also showed that if the reaction 

 Ox + ne–   o Red

takes place at a working electrode, the potential of this electrode at equilibrium obeys 
the Nernst law (2.8), which in a general manner can be written as 

 
E E

RT
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(7.1)

where Eo
O/R is the standard redox potential and Eo /

O/R is the formal redox potential or 
the apparent standard redox potential as defined by equation (2.25). 

(N.B. From here on in this book, values linked to oxidised and reduced species will have indices 
of just O and R, in order to lighten the notation)

 Now, instead of measuring the electrode potential, let’s impose this value with 
the help of a 3-electrode setup [Working electrode (WE), Reference electrode (RE), 
Counter-electrode (CE)] and an instrument called a potentiostat. A potentiostat controls 
the electrode potential, i.e. the potential difference between the working electrode and 
the reference electrode, by passing a current between the working electrode and the 
counter-electrode. In effect, it is not recommended to send an electric current through 
the reference electrode, since the equilibrium defining the p.d. between the reference 
electrode and the solution (see for example Figure 2.4) would be destroyed, and the 
potential of the reference electrode would no longer be constant.
 Therefore, the role of a potentiostat is to send a current through the circuit:

Potentiostat – Counter electrode – solution – working electrode – Potentiostat

As shown in the circuit of Figure 7.1, the nature of the current is of course: 
electronic conduction in the counter electrode – electrochemical reaction at the 
counter-electrode – ionic conduction in solution – electrochemical reaction at the 
working electrode – electronic conduction in the working electrode. 
 The potential of the working electrode is measured with respect to the reference 
electrode as shown in Figure 7.1. The measuring circuit comprises the part of the 
solution situated between the reference electrode and the working electrode (see 
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§7.8). Only a very small current, a few pA flows in this voltage measuring circuit, 
thus preserving the electrochemical equilibrium at the reference electrode. The low 
value of the current in this measuring circuit is controlled by the high input impedance 
of the voltmeter.
 Thus, so to speak, to ‘impose’ the potential of the working electrode with 
respect to the reference electrode, the potentiostat in fact applies a current between 
the counter-electrode and the working electrode. The voltmeter circuit measures the 
working electrode potential with respect to the reference electrode potential and the 
value measured is then compared to the electrode potential value that we wish to 
apply, and via a feedback system, the potentiostat applies the required current so that 
the measured potential is equal to the one desired. The response time of a standard 
potentiostat is of the order of a microsecond.
 What happens if we impose an electrode potential E that is different from the 
equilibrium potential Eeq given by Nernst’s law (7.1)?
 When the applied electrode potential is more positive than the equilibrium value 
(E > Eeq), we displace the interfacial redox equilibrium at the working electrode 
towards the oxidation of the reduced species, and the current resulting from the 
electrons being transferred to the electrode is called the anodic current, considered 
by convention to be positive (Careful when reading the literature and some other 
textbooks, some do not respect international conventions!).
 When the applied electrode potential is more negative than the equilibrium value 
(E < Eeq), we displace the interfacial redox equilibrium towards the reduction of the 
oxidized species, and the resulting current is called the cathodic current, considered 
by convention to be negative.
 The current associated to these displacements of redox equilibria is supplied by 
the potentiostat. The range of current usually employed varies from picoamperes for 
microelectrodes (see §7.4.2) to amperes in the case of large electrodes.

Fig. 7.1  A 3-electrode electrochemical cell with potentiostatic control of the working electrode 
potential. 
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 These considerations between current and electrode potential were obtained 
from thermodynamic principles. In fact, the amount of current crossing the working 
electrode | solution interface is a measure of the kinetics of the redox reaction, which 
can be broken down into three steps, as shown in Figure 7.2:

 • flux of the solution reactants towards the electrode (diffusion-migration)
 • interfacial electron transfer reaction

 • flux of the products from the surface towards the solution (diffusion-migration)

It is customary to recognise three cases:

 • The mass transfer, diffusion/migration flux of the reactants and the products
 of the electrode reaction, is rapid compared with the electron transfer reaction.
 The reaction is said to be ‘irreversible’. This expression has nothing to do with
 the chemical reversibility of the reaction, which indicates whether the reaction
 can happen in both directions, but indicates simply in electrochemical jargon
 that the limiting slow step for the reaction is the electron transfer reaction at the
 electrode. Note also that the notion of electrochemical reversibility also has no
 relation to thermodynamic reversibility.

 • The electron transfer is rapid compared to the arrival rate of the reactants at the
 electrode and the departure rate of the products. The reaction is then said to be
 ‘reversible’. In the same way, this expression signifies that the limiting slow step
 for the reaction is the arrival flux of reactants equal to the departure flux of the
 products of the reaction.

 • The two phenomena take place in comparable time-scales. The reaction is then
 known as ‘quasi-reversible’.

 In this chapter, we shall consider electrochemical reactions in a steady state 
regime (i.e. time is not a variable). The volume of solution containing the redox 
species is considered big enough that the quantities of species oxidised or reduced 
at the electrode remain negligible, and that the bulk reactant concentrations are 

Fig. 7.2  General scheme for a redox reaction at an electrode.
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considered as constant. Also, we will consider mostly electrodes of planar geometry. 
Therefore, the concentrations in solution c(x) depend only on the distance x from the 
electrode, x = 0 corresponding to the surface of the electrode.

7.2  CURRENT CONTROLLED BY THE KINETICS OF THE 
 REDOX REACTIONS
 Oxidation is a first order reaction with respect to the interfacial concentration of 
the reduced species, and the anodic current, representing the number of electrons per 
second transferred from the reduced species in solution is thus written as 

 I nFA k ca a R= ( )0  (7.2)

 Reduction can be considered as a pseudo-first order reaction with respect to 
the concentration of the oxidised species, if we consider that there is an excess of 
electrons in the metal with respect to the interfacial concentration of the oxidised 
species in solution, and the cathodic current is then written as 

 I nFA k cc c O= − ( )0  
(7.3)

where F is the Faraday constant, A the area of the electrode, and ka and kc are the 
electrochemical rate constants for oxidation and reduction respectively (units = m·s–1 
or more commonly cm·s-1). I is the current in amperes (C·s–1) and j the current 
density (j = I/A) . It is important to note that the product kc represents a mass flux 
(mol·m–2·s–1).
 Equations (7.2) & (7.3) show that the current measured using a potentiostat is 
proportional to the rate of the electrochemical reaction. In classical chemical kinetics, 
the variations in concentration of the reactants and products are measured over time 
to determine the rate of the reactions, whereas in electrochemical kinetics we measure 
directly the rate of the redox reaction. 
 Unlike the rate constants of chemical reactions that depend essentially on the 
temperature, electrochemical rate constants depend also on the applied electrode 
potential, that is to say the Gibbs energy used to displace the equilibrium. The 
question is now to find out how electrochemical rate constants depend on the electrode 
potential.

7.2.1  Standard case of an ideal solution 

 In the standard case, the bulk concentrations of the oxidised and reduced species 
are taken equal, [cO(•) = cR(•) = c] such that the equilibrium electrode potential Eeq 
is equal to the standard redox potential Eo

O/R  if the solutions are ideally dilute, i.e. if 
we can consider the activity coefficients equal to unity, or otherwise the equilibrium 
electrode potential Eeq is equal to the formal redox potential  E

o /
O/R.

 At equilibrium, the rate of oxidation is equal to the rate of reduction 
[kacR(0) = kccO(0)]. Given that we have made the hypothesis that the mass transfer 
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is rapid with respect to the kinetics of the electron transfer reaction, we can make the 
additional hypothesis that the concentrations at the surface of the electrode are equal 
to those inside the bulk of the solution [cO(0) = cO(•) = cR(•) = c], as long as the 
conversion rates of the reactants (oxidation or reduction) remain negligible.
 Thus, the activation energy barrier shown in Figure 7.3 is symmetrical, since 
in the standard case we have de facto ka = kc . This rate constant value is called the 
standard rate constant k o. According to the transition state theory, k o can be written 
as
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e
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−
δ
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act

/

 
(7.4)

where  is a distance and G o
act the standard Gibbs activation energy of the electron 

transfer reaction.  can be considered in a first approximation as the minimum distance 
separating the reactants from the electrode.
 The current measured at equilibrium is of course zero, since it is the sum of the 
anodic and cathodic currents which themselves are not zero, but equal in absolute 
values.
 Now, with the aid of the potentiostat, let’s impose an electrode potential increased 
by the quantity E – Eo /

O/R , written shortly E – E o /.
 This can be done experimentally, for example by maintaining the inner potential 
fM of the working electrode constant and lowering the inner potential fS of the 
solution by the value E – E o / [fS =  fS

eq
 – (E – E o /)].

 Thus, the standard electrochemical potential of O defined by equation (1.63), 
o

O
 + zOFfS, decreases by an amount zOF (E – E o /), whilst the standard electrochemical 

potential of R, o
R

  + zRFfS, is reduced by an amount zRF (E – E o /). Given that zO – zR
 = 

n, the number of electrons exchanged, the barrier is no longer symmetrical since its 
two sides do not decrease by the same amount.

Fig. 7.3  Activation barrier for a redox reaction in the standard case.
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The activation energy for oxidation, symbolically represented by the height of the 
barrier only decreases by a fraction a of the energy difference nF (E –  E o /)

 ∆ ∆G G nF E Ea act= − −o o /α ( )  (7.5)

as shown in Figure 7.4. a represents the fraction of the Gibbs energy operating on the 
transition state and is called the charge transfer coefficient.
 In a similar fashion, the activation energy for the reduction is increased by the 
complement to anF (E – E o /) which is

 ∆ ∆G G nF E Ec act= + − −o o /( ) ( )1 α  (7.6)

The total current, which is the sum of the anodic and cathodic currents, is obtained by 
combining equations (7.2) to (7.6)
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(7.7)

 Equation (7.7) shows that the the more positive the applied electode potential 
compared to the formal redox potential, the larger will be the anodic current and the 
more the cathodic current will become negligible. The current measured will then be 
the anodic current. 
 Conversely, the more negative the applied electrode potential with respect to the 
formal redox potential, the larger will be the absolute value of the cathodic current, 
and the more the anodic current will become negligible. The measured current will 
then be the cathodic current.

Fig. 7.4  Influence of the working electrode potential on the activation energy barrier for an 
oxidation, in the standard case.
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7.2.2  General case

 In the general case where the concentration of the oxidised and reduced species 
in solution are not equal (cR(•) π cO(•)), the activation energy barrier is no longer 
symmetrical at equilibrium, and consequently, the anodic and cathodic activation 
energies are no longer equal. Nevertheless, at equilibrium, we still have equality 
between the rates of oxidation and reduction [kacR(0) = kccO(0)], and the inequality of 
the surface concentrations means that the anodic and cathodic rate constants cannot be 
equal.
 From the transition state theory, the reaction rate is written as :

 
v = 











−
−

−δ γ
γ

δ γ
γ

kT

h
e c

kT

h
e c

G RT G RTR a
eq

R
O c

eq

O
( )

( )
( )

( )# #
/ /0

0
0

0
∆ ∆

 
(7.8)

taking into account the activity coefficients of the reactants and that of the activated 
complex (#), and where G eq

a and G eq
c represent the anodic and cathodic Gibbs 

energies of activation at equilibrium, shown in Figure 7.5.
 At equilibrium, the global reaction rate is zero, and we have

 
∆ ∆G G RT

c

c
c
eq

a
eq O O

R R

= +






ln

( ) ( )

( ) ( )

γ
γ

0 0

0 0  
(7.9)

As before, if we displace the equilibrium and impose an electrode potential increase 
by the amount E – Eeq, the anodic and cathodic activation energies become, by the 
same reasoning 

 ∆ ∆G G nF E Ea a
eq

eq= − −α ( )  
(7.10)

and

 ∆ ∆G G nF E Ec c
eq

eq= + − −( ) ( )1 α  (7.11)

Fig. 7.5  Influence of the working electrode polarisation on the activation barrier for an 
oxidation in the general case.

Oxidation

G
ib

bs
 e

ne
rg

y

Reaction coordinate

nF(E –  E eq)

DGa

DGc

DGc
eqDGa

eq

© 2004, First edition, EPFL Press



272 Analytical and Physical Electrochemistry 273Steady State Amperometry

 From these two equations, we can express the variation of the anodic and cathodic 
rate constants as a function of the electrode potential by regrouping all the terms that 
are independent of the electrode potential in the pre-exponential term 

 k k e nF E RT
a a

o= α /
 (7.12)

and

 k k e nF E RT
c c

o= − −( ) /1 α
 (7.13)

At the formal redox potential, the activation barrier is symmetrical, and the two rate 
constants ka

o and kc
o are linked to the standard rate constant k o by

 k k e k enF E RT nF E RTo o o/ /

= = − −
a
o

c
oα α/ ( ) /1

 (7.14)

The total current is then written as 

 
I nF A k c e k c enF E RT nF E RT= −[ ]− −

a
o

R c
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O( ) ( )/ ( ) /0 0 1α α
 

(7.15)

or as

 
I nFA k c e c enF E E RT nF E E RT= −
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(7.16)

In general, it is desirable to express the current as a function of the applied potential 
perturbation E – Eeq , which is called the overpotential and has the symbol  

  = E – Eeq (7.17)

Since the equilibrium potential is given by the Nernst equation (7.1),
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we get 
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Thus, we can express the current as a function of the difference in electrode potential 
imposed on the system to displace the equilibrium
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(7.20)

 Io is the exchange current, which represents the anodic current and the absolute 
value of the cathodic current crossing the interface at equilibrium, given by 

I n FA k c co R O= ∞[ ] ∞[ ]−o ( ) ( )1 α α
 (7.21)

If the current at the electrode is sufficiently small that the concentrations at the 
surface of the electrode remain equal to the concentrations in the solutions (i.e. if the 
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mass transfer can be considered as infinitely rapid) and if the volume of the solution 
is large enough that the concentrations in solution remain constant, we obtain the 
Butler-Volmer equation, which is the principal equation of electrochemical kinetics

 
I I e enF RT nF RT= −[ ]− −

o
α η α η/ ( ) /1

 
(7.22)

Figure 7.6 shows the variation of the current density as a function of the overpotential. 
The exchange current density jo is the value of the anodic current density for   =  0 V.
 The shape of the current-potential curve depends on the value of the exchange 
current. For large exchange current values, a small deviation of the electrode potential 
with respect to the equilibrium potential causes an electrochemical reaction. For 
small exchange current values, it is necessary to impose a large overpotential for the 
reaction to take place, as shown in Figure 7.7.

Fig. 7.6  Polarisation curves for a kinetically controlled electrochemical reaction (n=1, a = 0.5, 
T=298K).

Fig. 7.7 Influence of the exchange current on current-potential curves (n=1, a = 0.5, T=298K).
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The Butler-Volmer equation is often shown in the form of log|I| or log|j| graphs as a 
function of the overpotential , known as Tafel plots (Figure 7.8). These graphs allow us 
to measure graphically the exchange current by extrapolation of the two lines at   = 0 V, 
and the slope allows us to calculate the value of the charge transfer coefficient.

When nF/RT is well below unity, we can linearise the Butler-Volmer equation 
(7.22) to obtain

 I I nF RT= o η /  (7.23)

Fig. 7.8  Tafel plots (n=1, a = 0.5, T=298K). The extrapolated values for log|jo| are respectively 
3, 2, 1 and 0.

Fig. 7.9 Tafel curves for the corrosion of iron [D. Landolt, Traité des Matériaux, Vol.12, 
Corrosion et Chimie de surface des métaux PPUR, 3rd ed. 2003].
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By analogy with Ohm’s law, the term RT/nFIo is called the charge transfer 
resistance.
 The Butler-Volmer equation underlines the great difference between a classical 
chemical reaction and an electrochemical reaction. For a classical chemical reaction, 
the only way to vary the reaction rate is to vary the temperature (Arrhenius’ law). On 
the other hand, for an electrochemical reaction, we can see that the electrode potential 
controls the reaction rate represented by the current. If we take, for example, an aver-
age value for the charge transfer coefficient (a = 0.5), we can see that an increase of 
1 V leads to an increase in the ratio I/Io

 by a factor of 3·108 (= expF/2RT).
 In certain cases, oxidation and reduction reactions may be different. This is the 
case, for example, for an iron electrode in an acid solution. Oxidation corresponds 
to the corrosion and dissolution of the iron electrode, and reduction corresponds to 
the reduction of the protons. The Tafel curves obtained then have different slopes, 
as shown in Figure 7.9. We define the corrosion potential by the intercept of the two 
Tafel lines and the corrosion current at this potential corresponds to the exchange 
current defined above.

7.3  REVERSIBLE SYSTEMS: CURRENT 
 LIMITED BY DIFFUSION

7.3.1  Diffusion layer 

 If the electrochemical reaction

 Ox + ne– o Red

is infinitely rapid with respect to the rate of arrival of the reactants and departure of the 
products, the system is said to be reversible. For planar electrodes where the arrival 
of the reactants happens by semi-infinite linear diffusion, a system is reversible if 
k o > 0.01 to 0.1 cm·s–1, to give an order of magnitude (see equation (7.57) for more 
detail). For reversible systems, the Nernst equation is always valid for the interfacial 
concentrations 
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o / ln
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O

R

0

0  
(7.24)

thus creating concentration gradients between the surface of the electrode and the bulk 
of the solution. The current, which is the flux of electrons crossing the interface, is 
thus limited by the flux of species in solution reaching the electrode. We have seen 
that the flux of species in solution could be either a convection flux, a migration 
flux, a diffusion flux, or even an osmotic one. Close to any solid wall in solution, the 
convection flux tends to zero and the layer adjacent to the wall, where the convection 
is negligible, is called the diffusion layer or Nernst layer. If we have also added to 
the solution an electro-inactive salt (the supporting electrolyte) such that the transport 
number of the electroactive species is negligible, the flux that limits the current will be 
a diffusion flux. 
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 Consider an oxidation limited by the diffusion of the reduced species in solution 
to the electrode. We can write that 
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(7.25)

where the signs are determined by the convention that anodic currents are taken as 
positive and cathodic currents as negative. Of course, the arrival flux of the reduced 
species at the electrode is equal to the departure flux of the oxidised species from the 
electrode. 
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(7.26)

We can obtain a steady state current if the thickness of the diffusion layer can 
be fixed at a value  either hydrodynamically (e.g. using rotating electrodes), or by 
the actual geometry of the electrodes (e.g. using microelectrodes). In effect, the 
concentrations on both sides of the diffusion layer are fixed by the Nernst equation,  
the equality of the fluxes at the electrode surface given by equation (7.26), and by the 
convection in the bulk solution that maintains the bulk concentration constant. The 
steady state diffusion current can then be described by the Nernst approximation 

      
I nFA D c c nFA D c ca R R R R O O O O= ∞ −( ) = − ∞ −( )( ) ( ) / ( ) ( ) /0 0δ δ

 
(7.27)

Fig. 7.10  Concentration profiles for a solution containing an equimolar mixture of oxidised 
and reduced species at the standard potential and at an electrode potential value of E o / + 0.06V 
corresponding to an oxidation (n=1). The ratio cO/cR is then 10.  =  O =  R and D = DO =DR.
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The notion of a diffusion layer thickness provides an expression for the concentration 
gradient simply as a function of the difference between the interfacial and the bulk 
concentrations.
 Consider the example of Figure 7.10 of a solution containing an equimolar 
mixture of oxidised and reduced species. At equilibrium, the electode potential is 
equal to the formal redox potential and the concentrations of the two species are taken 
equal to 0.5 in solution. 
 Let’s now apply an electrode potential value 0.06 V more positive than the formal 
redox potential to oxidise the reduced species. Instantly, the interfacial concentrations 
are fixed by the Nernst equation (n = 1) which imposes the ratio cO(0)/cR(0) to be 
equal to 10. On the other hand, the equality of the fluxes imposes the concentration 
gradients to be equal in absolute value, if the diffusion coefficients DO and DR are 
equal. The interfacial concentration of the oxidised species is thus 0.909 whilst that 
of the reduced species is 0.0909. As we shall see below, the thickness of the diffusion 
layer is not an intrinsic value, but depends on the nature of the diffusing species and 
their diffusion coefficient. 
 A statistical analysis (see §4.6) shows that the time  to establish a diffusion layer 
is 

 
τ δ=

2

2D  
(7.28)

Thus, for an average value of the diffusion coefficient D of 5.10-6 cm2.s–1 , and for 
thicknesses of the diffusion layer of the order of micrometres, the characteristic times 
vary as in Table 7.1.

Table 7.1  Characteristic diffusion times across the Nernst layer.

  / m  / s
1 10–3

10 0.1
100 10

7.3.2  Limiting diffusion current 

 For an oxidation, if the electrode potential value imposed is sufficiently large, the 
ratio cO(0)/cR(0) satisfying the Nernst equation also becomes very large. Given that 
the interfacial concentration cO(0) cannot reach very large values, this means that the 
surface concentration of the reduced species cR(0) tends to zero. In equation (7.27), the 
surface concentration can therefore be neglected in comparison with the concentration 
in the solution [cR(0) << cR(•)]. The anodic current thus attains a limiting value 

 
I

nFA D c
nFA m cda

R R

R
R R= ∞ = ∞( )

( )
δ  

(7.29)

where mR is a mass transfer coefficient used above all in electrochemical engineering. 
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The notion of a limiting diffusion current allows us to make a graphic definition of the 
thickness of the diffusion layer, as shown in Figure 7.11. It is important to note that 
the notion of a limiting diffusion current requires that the concentration gradients at 
the electrode reach a maximum slope, but this does not mean that the whole profile 
of the concentrations should not evolve further once the limiting diffusion current has 
been reached. 

7.3.3  Current-potential curve

 To obtain a relation between the current and the electrode potential, we have to 
write the Nernst law at the electrode and substitute in it the interfacial concentrations 
expressed as a function of the steady state limiting diffusion currents 

 I nFA D cda R R R= ∞( ) / δ  (7.30)

and

 I nFA D cdc O O O= − ∞( ) / δ  (7.31)

By combining these equations with equation (7.27), we can express the interfacial 
concentrations as a function of the limiting diffusion currents
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and
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By substituting these values into the Nernst equation (7.1), we then obtain
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(7.34)

The shape of the curve given by equation (7.34) is shown in Figure 7.12.

Fig. 7.11  Concentration profile of a reacting species, corresponding to the limiting current.
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When I = (Ida + Idc)/2, the last term of equation (7.34) is zero and the potential is 
then called the half-wave potential
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Often DO;DR and therefore O = R. The measurement of the half-wave potential 
is then a method for experimentally determining the formal redox potential, or even 
the standard redox potential.
 In the case where only one species (oxidised or reduced) is present in solution, the 
current-potential curve varies from a zero current up to the limiting diffusion current 
(see Figure 7.13). Thus for an oxidation, equation (7.34) reduces to
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(7.36)

Fig. 7.12  Current-potential curve for a reaction limited by the diffusion of species in solution. 
n = 1, cO (∞) = 2 cR (∞),  = O = R and D = DO =DR.

Fig. 7.13  Current-potential curve for a reaction limited by the diffusion of species in solution. 
n = 1, cO (∞) = 0,  = O = R and D = DO =DR.
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 In this case, we trace a graph ln [I/(Ida–I)] as a function of the potential to 
get a straight line with the slope nF/RT. Such a graph is often drawn to verify the 
reversibility of the electrode reaction (see §7.5.1) and to determine the half-wave 
potential.
 From an experimental point of view as shown below in Figures 7.16 and 7.19, 
the limiting diffusion current does not necessarily appear clearly as a horizontal 
line, but rather as a slope. There can be several reasons for this, linked either to the 
capacitative current or to ‘parasite’ reactions. An empirical equation can be used to 
take this problem into account (Figure 7.14).
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(7.37)

The case B = 0 corresponds to equation (7.36)

7.4 ELECTRODES WITH A DIFFUSION LAYER 
 OF CONTROLLED THICKNESS 

7.4.1 Rotating disc electrode

 The rotating disc electrode, developed in the 1950s, was one of the first techniques 
capable of generating mass transfer controlled steady state diffusion currents. The 
principle is based on the fact that the rotation of a cylinder on its axis of symmetry 
causes a pumping of the liquid in which it is immersed towards the disc electrode at 
the end of the cylinder as shown in Figure 7.15.

This hydrodynamic movement controls the thickness of the diffusion layer  as a 
function of the angular velocity  (s–1 or Hz):

Fig. 7.14  Illustration of equation (7.37) with n = 1 and B =0.5.
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 δ ν ω= −1 61 1 3 1 6 1 2. / / /D    (7.38)

 is given in centimeters if the diffusion coefficient D and the kinematic viscosity v 
(equal to the ratio of the viscosity to the density) are both given in cm2·s–1 (v = 0.01 
cm2·s–1 for water).
 In the laboratory, rotation frequencies (f = /2  = rotations·s–1) vary approxi-
mately between

 
2

2
50< <ω

π
Hz

since at higher velocites, there is a risk of turbulence. In practice, current-potential 
curves are measured at different rotation velocities as shown in Figure 7.16.

Fig. 7.15  Hydrodynamic flux under a disc electrode and a rotating ring electrode.

Fig. 7. 16  Oxidation of 0.25mM ferrocenemethanol in 50mM NaCl on a rotating gold electrode 
(Diameter=3mm). Angular velocities : 200, 400, 800, 1400, 2000, 2600 & 3000 rpm. Potential 
scan rate =10mV·s-1 forward and reverse. At higher rotation speeds, current instabilities are 
noticeable (Olivier Bagel, EPFL).
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 Next, we plot the limiting diffusion current as a function of the inverse of the square 
root of the angular velocity (see Figure 7.17) to calculate the diffusion coefficient of 
the reactant, if we know its concentration, or to calculate the concentration if we know 
its diffusion coefficient.

For a rotating disc electrode, the half-wave potential is given by equations (7.35) 
and (7.38) i.e.
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(7.39)

 Rotating electrodes can have, not only a disc electrode as described above, but 
also a concentric ring electrode outside the disc electrode. This arrangement with both 
the disc and the concentric ring allows electrochemical study on the ring electrode 
of the species generated on the disc electrode that, under the effect of the pumping 
shown in Figure 7.15, pass under the ring. Obviously, only a fraction of the species 
generated can be oxidised or reduced on the ring electrode. This fraction depends on 
the geometric characteristics of the disc and the ring, and we define the collection 
factor as the ratio of ring/disc limiting currents. 
 The ‘wall-jet’ electrode has a jet of solution projected against a static electrode like 
a watering hose against a wall, and is another technique for which the hydrodynamics 
is similar in nature to the rotating electrode. 

7.4.2  Microelectrodes

 One of the major achievements in electroanalytical chemistry in the 1980s was 
the introduction of microelectrodes, i.e. electrodes of which one of the characteristic 
dimensions is of the order of a few micrometres (the radius in the case of microdiscs 
and microhemispheres, band width in the case of microbands, etc.). The characteristics 

Fig. 7. 17 Variation of the anodic limiting diffusion current as a function of the square root of 
the rotation velocity calculated from the data in Figure 7.16. Slope = 2 A·s1/2. This gives a 
value for the diffusion coefficient of D=6.9 10–6 cm2·s–1.
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of microelectrodes is the establishment of a cylindrical or hemispherical diffusion flux 
leading to a large increase in mass transfer. The diffusion layers thus created are either 
hemispherical in the case of microdiscs and microhemispheres (see Figure 7.18), or 
hemicylindrical in the case of microbands.
 The thickness of the diffusion layer is then entirely governed by the geometry 
of the electrode and hardly influenced by the convection in solution. Microdisc and 
microhemisphere electrodes have the characteristics to generate steady state limiting 
currents controlled by diffusion.

Microhemispheres

 For a hemispherical electrode with a radius of rhs , the expression for the diffusion 
layer  is

  = rhs (7.40)

and the steady state diffusion current is then directly proportional to the radius rhs, to 
the diffusion coefficient D and the bulk concentration c of the reactant in solution.

 Id = 2 nFD c rhs (7.41)

 To demonstrate this relationship, consider the molar flux Jm , which is the number 
of moles of reactants per unit time going into the concentric hemispheres. It is equal 
to the product of the diffusion flux due to the concentration gradient, here given in 
spherical coordinates, and the area of the concentric hemisphere of radius r

 
J r D

c

rm
d

d
= 2 2π

 
(7.42)

whatever the radius r. Integration at constant flux allows us to obtain the concentration 
at the electrode surface

 
c

J

Drr r

r

r r

r

[ ] =
−



=

=∞

=

=∞

hs
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2π
 

(7.43)

Fig. 7.18 Cross-section of microelectrodes – microdiscs and microhemispheres. Spherical 
diffusion: the equiconcentration curves are hemispheres. 

(a) (b)
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which is

 
c r t c t

J

Dr
( , ) ( , )hs

hs
= ∞ −

2π  
(7.44)

For the limiting diffusion current, the concentration at the surface of the hemispherical 
electrode is zero, and consequently, we come back to equation (7.41).

Microdiscs

 For a microdisc of radius rd , it is possible to show by a rather long calculation that 
the thickness of the diffusion layer  is

 
δ π= rd

4  
(7.45)

and the steady state diffusion current is then proportional to the concentration in the 
bulk of the solution c = c(•), to the diffusion coefficient D of the reactant and to the 
radius rd .

 Id = 4 nFD c rd (7.46)

Figure 7.19 shows an oxidation reaction on a microdisc electrode.

Recessed microdiscs

 For recessed microdiscs as illustrated in Figure 7.20, we have two diffusion 
geometries: linear diffusion in the microcylinder above the electrode, and 
hemispherical diffusion such as that obtained on a microdisc electrode.

The equation for the continuity of the flux of the reactants towards the electrode 
gives us that 
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Fig. 7. 19  Oxidation of ferrocenemethanol on a platinum microdisc electrode. Radius: 10 mm. 
Same conditions as in Figure 7.16. Potential scan rate =1mV·s–1 (Olivier Bagel, EPFL).
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 I nFADc L nFAD c cL Ld = = −( )/ / δ  (7.47)

where cL is the reactant concentration in the steady state regime at the top of the 
cylinder where linear diffusion takes place and where  is given by equation (7.45). By 
elimination of the concentration cL from equation (7.47), we obtain by substitution

 
I

nFADc

Ld =
+δ  

(7.48)

This recessed microelectrode behaves like a micoelectrode for which the apparent 
thickness of the diffusion layer is L + .

Half-wave potential

 For all these geometries of microelectrodes, the thickness of the diffusion layer is 
entirely determined by the geometry of the electrode and independent of the diffusion 
coefficient. Thus, the half-wave potential is given by 

 
E E

RT

nF

D

D1 2/ ln= +










o / R

O  
(7.49)

 Microelectrodes have many advantages compared to electrodes of millimeter (or 
more) dimensions. In particular, they allow voltammetry in highly resistant media 
such as frozen solvents, organic solvents without supporting electrolyte, or even in 
supercritical fluids. Effectively, the ohmic drop between the working electrode and the 
reference electrode is smaller for microelectrodes. This point will be taken up in more 
detail in §7.8.

7.4.3  Band electrode in a laminar flow

 Microband and microhemicylindrical electrodes do not provide limiting diffusion 
currents in stagnant solutions. The hemicylindrical diffusion observed for these 
systems is not as efficient as the spherical diffusion for the transport of reactants 
towards the electrode. However, if band electrodes are placed in flow channels of a 
thickness such that the flow is laminar (see Figure 7.21), then it is possible to measure 
limiting diffusion currents.

Fig. 7.20  Recessed microdisc electrode. 

L
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(7.50)

where c and D are the bulk concentration and the diffusion coefficient of the reacting 
species, l and L are the width and length of the band, FV is the volumic flow rate and 
2h and d are the height and width of the channel.

7.4.4  Membrane-covered electrode

 If an electrode is covered with a porous membrane as illustrated in Figure 7.22, 
e.g. a polymer membrane, where the diffusion coefficient is smaller than that in 
solution, the thickness of the membrane can be considered de facto as the thickness of 
the diffusion layer.
The limiting diffusion current is the 

 I nFAcD= m m/ δ  (7.51)

where Dm and m are the diffusion coefficient in the membrane and the membrane  
thickness respectively. This will be demonstrated more rigorously at the end of 
chapter 8. This approach to control the diffusion layer thickness is often used in the 
design of single-use (not to say disposable) electrodes in biosensing applications.

Fig 7.21  Band electrode in a microchannel with laminar flow. Side view and top view.
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l

Electrode Solution

Membrane

Fig. 7.22  Concentration profile of the reactant for an electrode covered with a porous membrane. 
The concentration gradient takes place mainly in the membrane.
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7.4.5  Liquid | liquid micro-interfaces

 There are two principal methods for constructing liquid | liquid micro-interfaces. 
The first is to micro-manufacture microholes e.g. by laser photo-ablation in polymer 
films (such as PolyEthylene Terephthalate (PET)). By placing a liquid phase either side 
of the film, we thus make liquid | liquid micro-interfaces (see Figure 7.23). The passage 
of ions across these micro-interfaces is characterised by limiting diffusion currents 
such as those obtained for metallic microelectrodes, the major difference being that the 
diffusion coefficients of the ion in the two adjacent phases are not the same. 
 The second method is to use glass micropipettes obtained by pulling glass 
capillaries. These micropipettes have tips whose diameter can be less than a 
micrometre. The microinterfaces on micropipettes have the peculiarity that the 
movement of ions (ingress) from the exterior to the interior of the micropipettes 

Fig. 7.23  Liquid | liquid microinterfaces supported on a microhole in a polymer film and on the 
tip of a glass micropipette. 

Fig. 7.24 Simulation of an ion transfer reaction across a liquid | liquid interface on the tip of a 
pipette with a 20 mm diameter, Df o

tr = 0 V (R. Ferrigno, EPFL).
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gives rise to a steady state limiting diffusion current (spherical diffusion) whereas the 
return movement (egress) from the interior to the exterior happens in a time dependent 
fashion (semi-infinite linear diffusion).

For micro-interfaces supported by a polymer film, the limiting diffusion current 
corresponds to that of an embedded electrode. Thus the half-wave potential for an ion 
transfer reaction is given by 

 
∆ ∆o
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L r
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(7.52)

where Lo and Lw are the depths of the interface compared to the surface of the film on, 
respectively, the organic side and the aqueous side. 

7.5  QUASI-REVERSIBLE SYSTEMS: CURRENT 
 LIMITED BY KINETICS AND DIFFUSION 

7.5.1  Current-potential curve

 In electrochemical jargon, a reaction is quasi-reversible if the current obtained 
is controlled at the same time by the kinetics of the electrochemical reaction at the 
electrode and by the mass transfer. Thus, the current can be written as a diffusion 
current 

      
I nFA D c c nFA D c c= − ∞( ) = − − ∞( )O O O O R R R R( ) ( ) / ( ) ( ) /0 0δ δ

 
(7.53)

and as a kinetically controlled current

 
I nFA k c k c= −( )a R c O( ) ( )0 0

 
(7.54)

By eliminating from this equation the concentrations at the electrode surface given by 
equations (7.32) and (7.33), we get an expression for the current as a function of the 
electrochemical rate constants 
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(7.55)

If the reverse reaction can be ignored (high overpotential), this equation reduces, e.g. 
for an oxidation, to 
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(7.56)

Equation (7.56) is useful for determining whether an electrode reaction is controlled 
by diffusion or by kinetics:

 
If         then       diffusion controlleda R
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R R
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(7.57)
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 For a rotating electrode, equation (7.55) can be written as 
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In the potential zone where ka >> kc , this equation reduces to the Koutecký-Levich  
equation
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Thus, by plotting I–1 as a function of –1/2 for different electrode potential values, we 
obtain the rate constant ka as a function of the potential and we can then verify whether 
the system obeys the Butler-Volmer law given by equation (7.22).

Figure 7.25 shows that the results from Figure 7.16 correspond more or less 
to a reversible reaction, since all the lines converge towards the origin (ka Æ •). 
Nevertheless, a closer study of the data in Figure 7.25 allows us to plot logka 
as a function of the potential when  Æ •, as shown in Figure 7.26. Thus, the 
value obtained at the half-wave potential E1/2 = 0.225 V gives us the standard rate 
constant i.e. ka

o = 4·10–2 cm·s–1. This value, obtained for one concentration only of 
ferrocenemethanol and one concentration only of the supporting electrolyte is just 

Fig 7.25 Application of equation (7.60) to the data from Figure 7.16.
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given to illustrate that the methodology reaches its limits when the points converge on 
the origin  (ka @10–2 cm·s–1). This value obtained can be considered as the upper limit; 
the methodology not allowing access to higher values.
 In the same way, for hemispherical microelectrodes of different sizes, we have 
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(7.61)

For an oxidation where ka >> kc , this equation simplifies to
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∞
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(7.62)

A graph of the reciprocal of the current as a function of the radius of the microelectrode 
used allows the measurement of the anodic rate constant.
 If, for practical reasons, it is not possible to vary the mass transport to the 
electrode, it is nevertheless possible to extract kinetic information by measuring just 
one steady state current/potential curve. 
 As equations (7.12) & (7.14) show, the ratio of the oxidation and reduction rate 
constants is a function of the applied potential 
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(7.63)

Thus, by combining this equation and the interfacial concentration values expressed 
as a function of their limiting currents (7.32) and (7.33), we get 
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(7.64)

In the case where cO(•) = 0 , the current equation becomes

Fig. 7.26  Potential dependence of the standard rate constants obtained from equation (7.60) 
from the data of Figure 7.25.

����

����

����

����

����

����

���������������������

Slope = 7.5 V–1

a = 0.2

lo
g(

k a
 / 

cm
·s

–1
)

E /mV

© 2004, First edition, EPFL Press



290 Analytical and Physical Electrochemistry 291Steady State Amperometry

 

I nFA k c
I

I

I e

nFA D

nF E E RT

= ∞ −






−
( )















− −

a R
da

O

O
( )

/

1
δ

o /

 

(7.65)

or again, substituting in equations (7.12) and (7.14)
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Fig. 7.27  Kinetic influence on the reaction for quasi-reversible systems, n = 1, 
D = 10–5 cm2·s–1,  =5.10–4 cm, a = 0.5, Eo /  =  0 .6  V.

Fig. 7.28  Graph of ln(I/(Ida – I)) as a function of potential for the values of Figure 7.27.
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Figure 7.27 shows the kinetic effect of the electrode reaction on the steady state 
current-potential curve: the smaller the diffusion coefficient, the more apparent the 
kinetic effect. 

The kinetic effect is very visible on graphs of ln [I/(Ida–I)] as a function of the 
potential. In effect, the linear behaviour obtained for reversible systems is no longer 
respected, as shown in Figure 7.28.

7.5.2  Influence of the ohmic drop

 If, for experimental reasons, the electrode potential cannot be precisely controlled 
(e.g. reference electrode far away, a very resistive solution, electrode materials not 
very conductive...), the potential applied with the potentiostat is no longer equal to 
the electrode potential, but also contains an additional factor associated to the  ohmic 
drop. Thus we have:

 E E R Ielectrode applied S= −  (7.67)

where RS is the equivalent resistor in series. The potential current curve is plotted of 
course as a function of the applied potential and not of the real potential. The curves 
produced in this way are deformed as shown in Figure 7.29.

7.5.3  Comments on the experimental measurement of rate constants 

 It can never be repeated often enough that to obtain reliable rate constant data for 
a redox reaction, we have not only to repeat the measurements for different reactant 
concentrations, but also for different concentrations of the supporting electrolytes.
 Enemy number one of electrode kinetic measurements is the un-compensated 
ohmic drop (see §7.8). The better the geometry of the cell is, and the higher the 
concentration of the supporting electrolyte is, the smaller is the ohmic drop and 
the more reliable are the results. Therefore, by increasing the concentration of the 

Fig. 7.29 Influence of the ohmic drop on a current-potential curve in a steady state regime 
(n = 1).
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supporting electrolyte, we decrease the ohmic drop and the rate constant values 
measured should not vary. 
 Enemy number two in the case of solid electrodes is without any doubt the state of 
the electrode surface. Polishing electrodes is a process often considered as tiresome. 
Nevertheless, good polishing is a sine qua non condition for reliable measurements. 
This is illustrated in Figure 7.30. The experimental data are similar to those used in 
Figure 7.25 with the one difference being the polishing of the electrode, for which 
Figure 7.30 can be considered as ‘botched’. Thus, on a badly polished electrode a 
reversible reaction can appear as quasi-reversible: the straight lines in Figure 7.30 do 
not converge on the origin. The standard rate constant obtained from this figure is one 
order of magnitude smaller than the one obtained from the data in Figure 7.25. It is 
useful to remember that the rate constants of electrochemical reactions measured by 
amperometry are limited in the upper range by the mass transfer.

A badly-polished electrode is not electro-active in a uniform manner across its 
whole surface in contact with the solution, and it can be shown that current-potential 
curves measured on partially blocked electrodes have the characteristics of slow 
electrochemical reactions.
 Given the practical difficulties in obtaining reliable experimental rate constant 
values, it is not surprising that some values published in the literature are rather due to 
experimental factors than to the reaction rate itself.

Fig. 7.30 Results similar to those in Figure 7.25 but on a ‘badly polished’ electrode. These 
measurements give a value for the standard rate constant of 2.5·10–3 cm·s–1 ( Olivier Bagel, 
EPFL).
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7.6 IRREVERSIBLE SYSTEMS: CURRENT LIMITED BY
 KINETICS AND DIFFUSION
 In electrochemical jargon, a system is said to be irreversible if the kinetics of the 
electron transfer reactions is slow. To give an order of magnitude, the standard rate 
constant ko would be less than 10–3 cm·s–1(see equation (7.58) for more detail). Thus 
for an oxidation, we can ignore the reverse reaction, i.e. the cathodic current. And so, 
by combining the Butler-Volmer equation
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with the interfacial concentration given by equation (7.32), we get 
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By expanding the above equation, we can express the current-potential curve in 
the same way as we did for reversible systems.

 
E E

RT

nF

D

k

RT

nF

I

I I
= +







+
−







o
o

/

α δ α
ln lnR

R da  
(7.70)

The following graph shows that for slow reactions, we find the same current-potential 
curves as those shown in Figure 7.27.

Fig. 7.31  Evolution of the current-potential curves for irreversible systems, n = 1, D = 10–5 
cm2·s–1,  = 5 mm, a = 0.5, Eo / =  0.6 Volt.
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7.7 QUASI-REVERSIBLE SYSTEMS: CURRENT LIMITED
 BY DIFFUSION, MIGRATION AND KINETICS
 When the concentration of a supporting electrolyte is not sufficient, it is no longer 
possible to neglect the migration. The migration diffusion flux is written as 

J = − +



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= − ⋅[ ]−D c x

zFDc x

RT
x De c x ezF x RT zF x RTgrad grad grad( )
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( ) ( )( )/ ( )/φ φ φ

  
  (7.71)

where f(x) is the potential in solution. In a steady state regime, the flux is constant and 
we deduce from this that 
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Thus, the current for reversible systems is given by
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or, for a kinetically controlled current, for quasi-reversible systems by

 
I nFA k c k c= −( )a R c O( ) ( )0 0

 (7.74)

By eliminating from this equation the concentrations at the electrode given for 
equations (7.32) and (7.33), we get an expression for the current as a function of the 
electrochemical rate constants 
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by putting f(0) = f2. If the reverse reaction can be ignored (high overpotential), this 
equation reduces, e.g. for an oxidation, to 
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Thus, taking the reciprocal of equation (7.76) we get
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Comparison with equation (7.56) shows the role of migration.
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7.8 EXPERIMENTAL ASPECTS OF AMPEROMETRY

7.8.1  Ohmic drop at a planar electrode 

 We saw in §7.1 that amperometry is done using three electrodes and a potentiostat. 
Here we shall explain how to position the electrodes with respect to each other. 
 The purpose of the potentiostat is to make the current flow between the working 
electrode and the counter-electrode. If we have two parallel electrodes of the same 
size, the current lines are normal to the electrodes, and the equipotentials are parallel 
to the surface of the electrodes as shown in Figure 7.32.
 In this case, to control the potential between the working electrode and the 
solution, the reference electrode needs to be placed as close as possible to the surface 
of the working electrode. Placing a reference electrode directly next to the working 
electrode is practically speaking not simple, and it is customary to place a salt bridge 
terminating with a capillary, known as a Luggin capillary.

In the example in Figure 7.32, the difference of the inner potentials of the anode 
and the cathode f A – f C is the sum of the metal | solution potential difference at the 
anode f A – f SA, the potential drop f SA – f SC in the solution due to the current passing 
through a resistive medium (Ohm’s law) and the potential difference at the solution | 
metal interface at the cathode f SC – f C . This is shown schematically in Figure 7.33.

When measuring the electrode potential, a negligible current (a few picoamps) 
flows between the cathode and the reference electrode, the whole salt bridge is 
therefore at the same potential (Figure 7.34). Thus, by placing the tip of the Luggin 
capillary on an equipotential, the difference in potential between the reference 
electrode and the cathode f R – f C is the sum of the potential difference at the surface 
of the reference electrode f R – f SR, the potential drop inside the capillary f SR – f LC 

which is negligible, the ohmic drop in that part of the solution between the top of the 
capillary and the cathode where the current flows between the anode and the cathode 

Fig. 7.32 Distribution of equipotential lines (horizontals) and current lines (vertical arrows 
from the anode to the cathode) in a cell with parallel plane electrodes.
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f LC – f SC (=10% of f SA – f SC in the example in Figure 7.32) and the potential 
difference at the surface of the cathode f SC – f C.
 We saw in §2.1.2 that the electrode potential defined as the potential difference E 
between the working cathode and the reference electrode is written as 

 E = − = − + − + −φ φ φ φ φ φ φ φCu Cu Cu C C R R CuII I II I

 (7.78)

where CuII and CuI refer to the copper wires linking the working electrode (the cathode 
in the example of Figure 7.32) and the reference electrode respectively to the voltmeter. 
Thus, the measured electrode potential Emeasured is equal to the electrode potential E 
plus part of the ohmic drop in solution f LC – f SC (=10% of f SA – f SC). This last 
contribution is called the ohmic drop. We shall thus write for equation (7.67)

Fig. 7.33  Distribution of the potential between the anode and the cathode. 

Fig. 7.34  Potential distribution between the reference electrode and the cathode. 
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 E E E IRapplied measured S= = +  (7.79)

where I is the current flowing between the working electrode and the counter-electrode 
and RS is the resistance of the solution for the part between the equipotential at the 
tip of the Luggin capillary and the equipotential in solution at the working electrode 
surface.
 It is good to remember that the potential difference between the working electrode 
and the solution includes a thermodynamic term (see chapter 2) and a kinetic 
overpotential term (see §7.2).
 The configuration of parallel electrodes such as shown in Figure 7.32 is sometimes 
used in electrosynthesis where it is often useful to separate the anode and the cathode 
by a membrane, either porous or ion-exchange. In this way the products generated 
on the two electrodes do not mix. Electrosynthesis cells are rarely operated by a 
potentiostat, and it is more normal to work either with the anode/cathode potential 
difference imposed, or using imposed currents.

7.8.2  Ohmic drop at a hemispherical electrode 

 In analytical electrochemistry, it is usual that the working electrode should have a 
smaller surface area than the counter electrode. In this way, the current lines converge 
towards the working electrode and the equipotential lines to the normal current lines 
will be closer when those converge, and more spaced out when they diverge. This has 
the advantage that the placement of the Luggin capillary is less critical, as shown in 
Figure 7.35 for a hemispherical electrode.
 In the case of planar electrodes the ohmic drop depends mainly on the position of 
the Luggin capillary and the resistivity of the solution. Using equation (4.28), we have

 
IR jS

l

S
ljS = ⋅ =ρ ρ

 
(7.80)

where j is the current density, l the distance between the working electrode and the 
tip of the Luggin capillary, and  the resistivity of the solution. The ohmic drop is 
therefore independent of the size of the electrode. 
 In the case of microelectrodes, the ohmic drop decreases with the size of the 
electrode. This is easily demonstrated for hemispherical electrodes. Effectively, in this 
case the ohmic drop is given by equation (4.29) written as

      
IR jS

r R
j r

r
jrS

electrode
electrode

electrode
electrode= ⋅ −







≅ ⋅






=ρ
π

π ρ
π

ρ
2

1 1
2

2
12

  
  (7.81)
making the hypothesis that R, the distance between the tip of the Luggin capillary and 
the centre of the microhemisphere is large with respect to its radius. Thus, equation 
(7.81) shows that the ohmic drop decreases with the size of the electrode, and that the 
position of the Luggin capillary is unimportant. Also, for microelectrodes where the 
currents are extremely small, it is possible to use the reference electrode as a counter-
electrode. In this case, the potentiostat can be replaced by a simple power supply.
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7.8.3  Compensating for the ohmic drop

 To alleviate the problems due to the ohmic drop, it is often possible to add to 
the required value of the electrode potential, a potential term equal to IRS. There are 
different experimental means to compensate for the ohmic drop, the most common 
being an analog electronic method based on the principle of ‘positive feedback’, the 
other being digital when using a digital potentiostat. 
 Nevertheless, it is useful to remember that the best way of combatting ohmic 
drop is to start with a good cell and electrode geometry, using Luggin capillaries. 
Electronic compensation is never better than partial, and cannot be used as a complete 
solution to the problem.
 Concerning the measurement of reaction kinetics, the electrochemical impedance 
described in chapter 9 is recommended because this technique measures the ohmic 
drop and does not require it to be compensated for.

Fig. 7.35 Schematic potential distribution for a ‘mini working electrode’ taken here as hemi-
spherical for example.
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CHAPTER 8

PULSE VOLTAMMETRY

 In this chapter, we shall study the current response as a function of time of a 
redox system when the electrode potential is varied by a sequence of potential steps or 
potential pulses. These methods should more generally be called chronoamperometry 
or transient amperometry, but are usually referred to as pulse voltammetry. We shall 
restrict the present study to reversible electrode reactions, i.e. those that are limited 
by the diffusion of the reactants and products. We will therefore make the hypothesis 
of infinitely rapid electrochemical reactions. Thus, the interfacial concentration of 
the oxidised and reduced species are imposed by the Nernst equation, whilst the 
concentrations in solution will depend on the distance from the electrode and on the 
time; they will thus be notated c(x,t).

8.1 CHRONOAMPEROMETRY FOLLOWING A 
 POTENTIAL STEP

8.1.1  Chronoamperometry with semi-infinite linear diffusion for a 
 complete interfacial oxidation.

 Chronoamperometry is a technique where the current is measured as a function 
of time. The simplest transient amperometric method consists in monitoring the 
current response following a stepwise variation of the electrode potential from an 
electrode potential value where only one redox species is stable in solution, either 
the oxidised form or the reduced form, to an electrode potential value where either a 
simple reduction or a simple oxidation occurs. In order to simplify the mathematical 
treatment, we shall only consider anodic oxidations, i.e we shall study the current 
response of a stepwise variation of electrode potential from an equilibrium value 
more negative than the standard redox potential of the redox couple under study 
(Eeq < Eo–120mV) to an applied electrode potential value greater than the standard 
redox potential value (Eappl > Eo+120mV). With these conditions, the ratio cO/cR is 
lower than 0.01 at the equilibrium electrode potential value, and it is greater than 100 
at the applied step potential value.

We shall consider an electrochemically reversible oxidation,

 Red r Ox + n e–

that is one whose rate is very fast and for which the current is therefore controlled 
by diffusion. If the electrode is planar and of classic dimensions (a few millimetres 
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or more), the diffusion of the reactants to the electrode and that of the products away 
from the electrode occurs in one dimension on the x-axis perpendicular to the surface 
of the electrode.
 With the conditions described above, the solution initially contains only the 
reduced species with a concentration value cR(x,0) equal to the bulk concentration cR. 
To satisfy the Nernst equation, the concentration of oxidised species is strictly speaking 
(cO = cR exp–nF(Eeq – E o /) /RT < 0.01cR), but we shall consider it as negligible and take 
the following initial conditions :

 c x cR R,0( ) =   and  c xO ,0 0( ) ≈  (8.1)

The electrolyte solution being considered as semi-infinite, we make the hypothesis 
that we have an infinite reservoir of reduced species, and therefore write:

 lim ( , )x c x t c→∞ =R R   and  lim ( , )x c x t→∞ ≈O 0  (8.2)

Finally, we shall consider a step variation of the electrode potential from the 
equilibrium potential where the redox couple is reduced to a potential value where it 
is completely oxidised at the electrode, which implies that the interfacial concentration 
of R becomes negligible, and then we can write a boundary condition for the interfacial 
concentration of the reduced species

 c tR 0 0,( ) ≈   for   t > 0 (8.3)

 In this situation, where only one reduced reactant is present in solution at 
equilibrium, and is then completely oxidised at the surface of the electrode following 
the application of a potential step, we only need to consider the mass transfer of this 
reactant to the electrode to calculate the current response. 
 For electrochemically reversible reactions, the current is limited by the rate of 
arrival of the reactants at the electrode (see Figure 7.2). In the presence of a supporting 
electrolyte, we can neglect migration, and the current is controlled by a diffusion flux. 
Consequently, it can be written as 

 
I nFA D

c x t

x x

= 



 =

R
R∂
∂
( , )

0  
(8.4)

The differential equation to be solved is the one for the conservation of mass, also 
called Fick’s second equation 

 

∂
∂

∂
∂

c x t

t
D

c x t

x
R

R
R( , ) ( , )=

2

2  
(8.5)

This type of differential equation is reasonably simple to solve using the Laplace 
transformation defined for a function F of the variable t by :

 
L F t e F t t F sst( ) ( ) ( ){ } ≡ =−∞

∫0 d
 

(8.6)
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Among the properties of the transformed quantities, note the transform of the 
derivative of the function F

 
L

F t

t
sF s F

d
d
( )

( ) ( )


= − 0
 

(8.7)

and more generally the transform of the nth derivative 

 
L F s F s s F s F Fn n n n n( ) ' ( )( ) ( ) ( ) ... ( ){ } = − − − −− − −1 2 10 0 0

 
(8.8)

The Laplace transform of Fick’s equation (8.5) is written 

 
sc x s c x D

c x s

x
R R R

R( , ) ( , )
( , )− = ∂

∂
0

2

2  
(8.9)

which, after rearrangement, reads

 

∂
∂

− = −
2

2
0c x s

x

s

D
c x s

c x

D
R

R
R

R

R

( , )
( , )

( , )

 
(8.10)

The solution of this equation, expressed here as the sum of the solution of the 
homogeneous equation and of a particular solution, is 

 
c x s

c x

s
A s e B s e

s
D

x
s

D
x

R
R R R( , )

( , )
( ) ( )= + +

−
0

 
(8.11)

The constants A and B can be determined from the boundary conditions. For the bulk 
concentration of the reduced species, knowing that F(t) = a then L{F(t)} = a/s, we 
have first of all 

 
lim ( , )
x

c x s
c

s→∞
=R

R

 
(8.12)

which leads to B = 0 and therefore equation (8.11) reduces to

 
c x s

c

s
A s e

s
D

x

R
R R( , ) ( )= +

−

 
(8.13)

The constant A can be calculated, knowing that the concentration of R at the electrode 
is zero. Thus, we have:

 c sR( , )0 0=  (8.14)

The Laplace transform of the concentration of the reduced species is therefore 
written 

 
c x s

c

s

c

s
e

s
D

x

R
R R R( , ) = −

−

 
(8.15)

The current being equal to the diffusion flux of the reactants towards the electrode 

 
− = = 



 =

J t
I t

nFA
D

c x t

x x
R R

R( , )
( ) ( , )

0
0

∂
∂  

(8.16)
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the Laplace transform of the current is given by 

 

I s

nFA
D

c x s

x x

( ) ( , )= 



 =

R
R∂
∂ 0  

(8.17)

or

 
I s

nFA D c

s
( )

/

/= R R
1 2

1 2  
(8.18)

The inverse transform of 1/Ms being 1/kllt , the limiting anodic current controlled by 
the diffusion is written as 

 
I t nFA c

D

tda R
R( ) =
π  

(8.19)

 This is called the Cottrell equation, and shows that, following a step in electrode 
potential, the current that is proportional to the slope of the concentration profile at 
the surface of the electrode, decreases as 1/kllt to tend to zero in the absence of 
convection in the solution. The current is called a limiting current by analogy with 
steady state diffusion currents treated in §7.3.2 as the interfacial concentration of the 
reactant R falls to zero when the potential step is applied. The difference between the 
present case and that illustrated in Figure 7.11 is that we here allow the diffusion layer 
thickness to extend to infinity (semi-infinite linear diffusion).
 From an experimental point of view, the diffusion current is masked at very short 
times by the charging current of the double layer. At very long times, the current decay 
is limited by the extension of the diffusion process into the convection zone, where the 
solution is homogenised, fixing in an arbitrary way a diffusion layer thickness.
 For the concentration profile of the reduced species, the inverse transform of 
exp – a''s/k x / s  being  erfc Ex/2a'kt R, we get from equation (8.15)

 
c x t c
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D tR R
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2
 

(8.20)

Fig. 8.1  Variation of current density according to the Cottrell equation (8.19),
D = 10–5 cm2·s–1, c = 1 mM.
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or again

 
c x t c

x

D tR R
R

erf,( ) =










2
 (8.21)

The concentration profiles obtained during reactions limited by diffusion are 
illustrated in Figure 8.2. 

8.1.2 Chronoamperometry with spherical diffusion for a complete 
 interfacial oxidation

 For a spherical electrode such as a mercury-drop electrode, the differential 
equation to be solved is the Fick equation in spherical coordinates
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(8.22)

To do this, consider the following change of variable 

 v r t r c r tR R( , ) ( , )=  (8.23)

which takes us to an equation similiar to equation (8.5)
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(8.24)

The Laplace transform of this equation has the solution 
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(8.25)

By using the Laplace transform of the interfacial boundary condition, we have

 v r sR e( , ) = 0  (8.26)

Fig. 8.2  Concentration profiles of the reduced species R after a potential step at which R is 
completely oxidised at the electrode. The diffusion is linear and semi-infinite. 
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where re is the radius of the electrode, and the constant A(s) is given by

 
A s

v r
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( , )= − R e e0

 
(8.27)

The Laplace transform of the concentration of the reduced species is then 
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(8.28)

and thus
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(8.29)

Therefore, the current defined in terms of the diffusion flux is written as 
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(8.30)

Fig. 8.3  Variation in the current density limited by spherical diffusion according to equation 
(8.30), D = 10–5 cm2·s–1, c = 1 mM, re = 10 µm.

Fig. 8.4  Concentration profiles for symmetrically spherical diffusion of the reduced species R 
after a potential step where R is completely oxidised at the electrode. 
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The principal difference between a planar and a spherical electrode comes from the 
fact that the limiting current tends to the non-zero steady state limiting current value 
given by equation (7.41).

The concentration profile is determined by taking the inverse transform of 
equation (8.28) to obtain
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(8.31)

 A comparison of Figures 8.2 and 8.4 shows that spherical diffusion happens in 
a zone that is closer to the electrode. For longer times than those shown in Figure 
8.4, the slope at the origin becomes constant when the steady state current becomes 
established. Nevertheless, it is important to note that even if the slope at the origin 
attains a limiting value, the concentration profiles continue to evolve away from the 
electrode over longer periods. 

8.1.3 Chronocoulometry with semi-infinite linear diffusion for complete 
 interfacial oxidation 

 Measuring the charge flowing, rather than the current, presents several 
advantages. Firstly, the integration gives a better signal-to-noise ratio. Secondly, the 
signal measured increases with time, and the effects of the double layer are also easily 
taken into account.
 Integration of the relation (8.19) with time gives 

 
Q t nF A c

D t
( ) = 2 R

R

π  
(8.32)

The graph of Q as a function of Mt gives a straight line going through the origin. If 
the intercept at x = 0 is positive, this means that either the double layer charge is 
large, or that the species R is adsorbed on the electrode. Conversely, if the intercept at
y = 0 is positive, this means that the reaction is limited by kinetics.

Fig. 8.5  Charge variation for a reaction controlled by linear diffusion after a potential step, 
according to equation (8.32), D = 10–5 cm2·s–1, c = 1 mM.
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8.1.4 Chronoamperometry with semi-infinite linear diffusion
 for a partial interfacial oxidation

 Consider again a system containing only a single reduced species, i.e. a system 
for which the equilibrium potential is at least 120 mV more negative than the formal 
redox potential.
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(8.33)

An electrode potential step from the equilibrium potential to an applied potential 
E greater than the equilibrium potential causes a partial interfacial oxidation and 
consequently a variation in the interfacial concentrations. If we make the hypothesis 
that the electrode reactions are electrochemically reversible, then Nernst’s law applies 
to the interfacial concentrations 
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(8.34)

 In this general case, we must take into account the diffusion of the two species, 
namely that of the reduced form to the electrode and that of the oxidised form away 
from the electrode. We then solve the two Fick equations 
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and
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with the initial conditions 

 c x cR R,0( ) =    and   c xO ,0 0( ) ≈  (8.37)

and the conditions linked to the hypothesis of a semi-infinite bulk solution 

 lim ( , )x c x t c→∞ =R R    and   lim ( , )x c x t→∞ ≈O 0  (8.38)

As before, it is good to remember that the Nernst equation forbids that the interfacial 
concentrations become absolutely zero. One must remain aware of the fact that 
equations (8.37) and (8.38) are only approximations.
 The third condition is the equality of the diffusion fluxes at the interface 
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(8.39)

To solve these differential equations, we shall use the Laplace transform method 
as before (see equation (8.13)). Thus, the transforms of the solutions of the Fick 
equations are 
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and
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 (8.41)

The transform of the boundary condition expressing the conservation of the flux is 
written as 
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(8.42)

or as

 − − =A s D s B s D s( ) ( )R O 0  (8.43)

From this, we deduce that 

 B s A s( ) ( )= −ξ  (8.44)

with
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O  
(8.45)

The Laplace transforms of the concentrations then read
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and

 c x s A s e

s
D

x

O
O( , ) ( )= −

−
ξ  (8.47)

The condition of electrochemical reversibility (fast electron transfer reactions) is 
written via the Nernst equation with the interfacial concentrations by introducing a 
dimensionless number q such that:

 
θ = = − −( )





c t

c t

nF

RT
E ER

O

( , )
( , )

exp
0
0

o /

 
(8.48)

 The transform of this equation becomes

 c s c sR O( , ) ( , )0 0= θ  (8.49)

or

 

c

s
A s A sR + = −( ) ( )ξ θ

 
(8.50)

The constant A is thus given by

 
A s

c

s
( )

( )
= −

+
R

1 ξ θ  
(8.51)
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The transforms of the concentration profiles are then

 
c x s
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D

x

R
R R

R
( , )

( )
= −

+

−

1 ξ θ  
(8.52)

and
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s

s
D

x

O
R

O
( , )

( )
=

+

−
ξ

ξ θ1  
(8.53)

The inverse transforms of these equations give us 

 
c x t c

c x

D tR R
R

R
erfc( , ) = −

+










1 2ξ θ
 

(8.54)

and

 
c x t
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D tO
R

O
erfc( , ) =

+










ξ
ξ θ1 2

 
(8.55)

The transform of the current is then

 
I s nFAD

c x s

x

nFAD c

sx

( )
( , )

( )

/

/= 



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=
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R
R R R∂
∂ ξθ0

1 2

1 2 1  
(8.56)

and so the inverse transform is

 
I t

nFAc D

t

I t
( )

( )=
+

=
+

R R da

1 1ξθ π ξθ  (8.57)

where Ida(t) is the limiting anodic diffusion current, which is the current obtained 
when the reduced species is completely oxidised at the surface of the electrode.

Fig. 8.6 Chronoamperograms at different potentials around the formal redox potential, 
according to equation (8.57), D = 10–5 cm2·s–1, c = 1 mM.
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The interfacial concentrations can simply be calculated from the current values 

 
c t c c

I t

I tR R R
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0 1
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1
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(8.58)

and
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(8.59)

EXERCISE

Proceed in the same way for a reduction (cR(x,0) = 0) and find the expression for the 
current 

I t
nFA c D

t
I t( ) ( )= −

+
=

+
ξθ
ξθ π

ξθ
ξθ

O O
dc1 1  

(8.60)

Also show that the concentration profiles are given by 

c x t
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D tR
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R
erfc( , ) =

+
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(8.61)

and

c x t c
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D tO O
O

O
erfc( , ) = −

+










ξ θ
ξ θ1 2

 
(8.62)

8.2 POLAROGRAPHY

8.2.1 Dropping mercury electrode

 Polarography is the oldest and most established of electroanalytical techniques, 
if perhaps not the most practical. Unfortunately, polarography is based on a dropping 
mercury electrode, and the restrictions, imposed in several countries on the use of 
mercury in the laboratory, make it rather out-of-fashion nowadays.
 In polarography, the mercury drips, drop by drop from the tip of a capillary tube. 
Originally, the dripping was natural, but in most modern devices, the dripping is forced 
by mechanical means so that the speed of formation of the drops is reproducible, and 
not dependent on the height of mercury in the reservoir with respect to the capillary. 
 The main advantage of polarography is the reproducibility of the measurements 
due to the fact that each measurement is made on a freshly-formed electrode. The major 
disadvantage of this technique is due to the fact that mercury oxidises very easily.
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In the presence of certain anions such as chlorides, these standard redox potentials 
decrease to about 0.2 V. Therefore, the electrode is above all used for studying 
reductions, particularly those of metal ions whose reduced form makes an amalgam 
with the mercury.

8.2.2  Staircase polarography with sampling (TAST Polarography)

 With each new drop, a new diffusion layer is freshly established by the drop 
passing through the solution as it falls. Thus, at the formation of each drop, the 
following initial conditions for a reduction are reset at every drop:

 c x cO O,0( ) =             and         c xR ,0 0( ) ≈  (8.63)

and the bulk conditions for a semi-infinite solution are

 lim ( , )x c x t c→∞ =O O      and         lim ( , )x c x t→∞ ≈R 0  (8.64)

 When the reduction is that of a metal ion that forms an amalgam in the mercury, 
the boundary conditions imposed on the reduced species are different if we take into 
account the finite size of the mercury drop. Equation (8.64) applies, strictly speaking 
only to reductions where the reduced species remains in the electrolyte solution.
 For each drop, we apply an electrode potential value, and after a certain time  (of 
the order of a second), we measure the current before making the drop fall.
 Consider a reduction with a formal redox potential Eo /. At applied potentials 
E >> Eo /, the oxidised species is stable in solution and the cathodic current for 
each drop is zero. At potentials E << Eo / where the oxidised species is completely 
reduced at the surface of the mercury drop electrode, we have for each drop a limiting 

Fig. 8.7  Staircase potential curve for a reduction, with schematic evolution of the response 
current for each step. 
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cathodic current given by the Cottrell equation (8.19). Thus, the current measured at 
the end of each drop is the same for every drop. Between these two regions, there is 
an intermediary zone where the reduction current sampled at the end of each drop is 
given by equation (8.60)

 
I nFAc

D

t
I( ) ( )τ ξθ

ξθ π
ξθ
ξθ

τ= −
+

=
+O

O
dc1 1  

(8.65)

 The advantage of measuring the current at the end of the lifetime of the drop is 
that we don’t have to take into account the variation with time of the drop area as it 
expands. In this way, the area in equation (8.65) can be considered as constant.
 Thus, if E >> Eo /, the ratio  defined by equation (8.48) tends to zero and the 
cathodic current defined by equation (8.65) is quasi-zero; if E << Eo /,  tends to 
infinity, and the current tends to the limiting current value for a complete reduction 
at the surface of the electrode. Looking at Figure 8.6, it is obvious that the longer the 
lifespan of the drop, the later is the sampling and the lower is the signal measured. By 
expanding the adimensional term , expression (8.65) can be rewritten in the form

 
E E

RT
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I I
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R

O
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1 2

1 2
τ τ
τ  

(8.66)

In this way, we again find a relation between the current and the electrode 
potential similar to that in (7.34), obtained for steady state methods.
 Figure 8.8 shows a polarogram for the reduction of Pb2+ in solution. We can 
observe a ‘sloping’ base line that renders difficult the reading of the limiting cathodic 
current, and thus the half-wave potential value. Equation (7.37) can help in the analysis 
of this kind of polarogram. From an analytical point of view, the direct proportionality 
between the limiting current Idc and the concentration represents the most important 
aspect of this technique, with detection limits for reactant concentrations in the 
micromolar range.

Fig. 8.8   Polarogram obtained by staircase polarography with sampling for a 10–5 M solution of 
Pb2+ in 0.05 M HCl. Step height: 5 mV, start potential: –0.1 V (Olivier Bagel, EPFL).
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8.2.3  Normal pulse polarography

 We have just seen that by applying to each drop a different potential in the form of 
a step function, the current measured at the end of each drop will be correspondingly 
smaller as the lifespan of the drop is longer. For mechanical reasons, the lifespans of 
the drops are of the order of a second and it is interesting to offset the application of 
the potential with respect to the birth of the drop as shown in Figure 8.9 in order to 
measure larger currents. Thus, in normal pulse polarography, for a reduction, a rest 
potential Er >>  Eo / is applied during the growth period of the drop, and before it falls 
a potential pulse (negative for a reduction) is applied for tens of milliseconds. The 
current is then sampled at the end of the pulse. For each drop, the value of the pulse 
potential is increased (by a negative value for a reduction).

Fig. 8.9  Normal pulse potential waveform and the current response shown schematically. 

Fig. 8.10  Polarogram obtained using normal pulse polarography for a 10–5 M solution of Pb2+ 
in 0.05 M HCl. Pulse height increment: 5 mV, duration 40 ms. Start potential: –0.1 V (Olivier 
Bagel, EPFL).
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 This technique generally known as normal pulse polarography gives results with 
a better signal-to-noise ratio than Tast polarography. The pulse duration during which 
the reduction occurs at the surface of the mercury drop is about 50 ms and the limits 
of detection are of the order of 10–6 to 10–7 M.
 Figure 8.10 shows a normal pulse polarogram for the same system as in Figure 
8.8. Comparing the two figures shows that the results obtained using these two 
methods are naturally quite similar, the limiting cathodic current being slightly larger 
for normal pulse polarography.

8.2.4  Differential pulse polarography 

 An adaptation of staircase polarography and normal pulse polarography, 
designated as differential pulse polarography allows the detection of lower 
concentrations down to the nanomolar range. The principle of this technique is, as in 
staircase polarography, to impose during the greater part of the lifespan of a drop, a 
constant potential, onto which is superimposed a potential pulse of fixed height, at the 
end of the life of the drop, as shown in Figure 8.11.
 During the application of the staircase potential (plateau potential), the interfacial 
concentrations follow the Nernst equation and thus, after a while, the concentrations 
of  O and R near the electrode can be considered as being those imposed by the Nernst 
equation. For a reduction, these surface concentrations can be calculated as a function 
of the plateau potential Ep, and by applying equations (8.61) and (8.62), the apparent 
bulk concentrations imposed by the potential Ep are

 
c t

c
cR

p O

p
R
app( , )0

1
=

+
=

θ
ξ θ

 
(8.67)

and

 
c t

c
cO

O

p
O
app( , )0

1
=

+
=

ξ θ
 

(8.68)

Fig. 8.11  Potential profile for differential pulse polarography. The current is measured at the 
end of each plateau (t = ) and at the end of each pulse (t = ').
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These concentrations now represent the boundary conditions of the Fick equations 
for calculating the current resulting from the potential pulse.

The differential equations are still the same Fick equations (8.35) and (8.36) and 
by defining the start of the pulse as the time origin (t = 0), the initial conditions are

 c x cR R
app( , )0 =    and   c x cO O

app( , )0 =  (8.69)

The other pseudo-bulk boundary conditions are

 lim ( , )x c x t c→∞ =R R
app

   and   lim ( , )x c x t c→∞ =O O
app

 (8.70)

Of course, this condition is not, strictly speaking, absolutely correct, but holds well 
when the length of the pulse is short with respect to the duration of the plateau.
 The transforms of the solutions of the Fick equations are 
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(8.71)

and
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(8.72)

The transform of the boundary condition expressing the conservation of flux (8.39) 
still gives 

 
B s A s( ) ( )= −ξ   

 
with

   
ξ = D

D
R

O    (8.73)

Nernst’s equation written adimensionally (8.48) thus gives
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(8.74)

from which we calculate
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−
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(8.75)

Thus the transforms of the concentration profiles are 
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and

c x s
c

s

c c

s
e

s
D

x

O
O
app

O
app

R
app

O( , )
( )

( )
= −

−
+

−ξ θ
ξ θ1  

(8.77)
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The transform of the current is given by
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(8.78)

By inverse transformation, the current reads 
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nFA c c D
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−( )
+

ξ θ
ξθ π
O
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R
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O

1  
(8.79)

By further substituting in the values of the apparent concentrations, we finally get 

 
I t

nFA c D

t
p

p

( ) = −
−( )

+( ) +( )
ξ θ θ

ξθ ξθ π
O O

1 1
 

(8.80)

As shown in Figure 8.11, the differential current (pulse – plateau) is obtained by 
subtracting from the pulse current I(¢) the residual plateau current I(). In order to 
better represent the difference I(¢) – I() as a function of the potential, it is useful to 
introduce the parameters  and  defined by :
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(8.81)

and
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

exp
nF

RT

E∆
2  

(8.82)

Thus, the adimensional parameters of Nernst’s equation are 

 θ σp = Θ /    and   θ σ= Θ  (8.83)

The current difference due to the potential step at E = Ep + E is then equal to :

 
I I
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τ τ

ξ σ
σ ξ ξ σ π τ τ
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Θ Θ
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(8.84)

Putting u =  Q , we show easily that the difference I(¢) – I() goes through a 
maximum when u=1 , i.e. when 
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D

D
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and
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+( )O

O 1
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(8.86)

The general shape of the difference I(') – I() is represented in Figure 8.12.
 Figure 8.13 shows the polarogram for the reduction of Pb2+ with the same 
experimental conditions as for Figures 8.8 and 8.10. Comparing to the other 
polarograms, we can note that the base line is better and that the peak obtained can be 
more easily used for analytical purposes. 
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 From a purely analytical point of view, it is worth noticing that differential pulse 
polarography is one of the most sensitive electrochemical techniques, allowing the 
detection of analytes at sub-micromolar concentrations. In general, it is not advisable 
to use equation (8.86) directly for determining the analyte concentration, but rather 
to use internal calibration methods such as the standard addition method. Apart from 
metal ions, the technique can be applied to the reduction of a good number of organic 
molecules.
 This technique, described here under the heading of polarography, is also 
applicable to redox reactions on solid electrodes – equally well for oxidations and 
reductions. We then speak of differential pulse voltamperometry or more simply 
differential pulse voltammetry. For oxidations, the potential jump for each plateau 
and for each pulse is positive, whilst it is negative for reductions.

Fig. 8.12 Differential pulse polarograms for different pulse heights according to equation 
(8.86). Start potential = 0.5 V.  = 1.

Fig. 8.13   Differential pulse polarogram for a 10–5 M solution of Pb2+ in 0.05 M HCl. Step 
height 5 mV, duration 400 ms. Pulse height 50 mV, duration 40 ms. Start potential –0.1 V 
(Olivier Bagel, EPFL).
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8.3 SQUARE WAVE VOLTAMMETRY 
 To understand more generally pulse voltammetry with different applied potential 
waveforms, it is useful to look first at a mathematical methodology based on the 
superposition principle.

8.3.1 Superposition principle

 Consider a system in equilibrium at a potential E0 with c0
R and c0

O the initial 
concentrations of the reduced and oxidised species. At a time t = 0, we impose a 
potential E1 for a time , then a step change in potential from the potential E1 to the 
potential E2 as shown in Figure 8.14.
 To calculate the concentration profiles as a function of time following a potential 
jump from E1 to E2 , we need first to calculate the concentration profiles at the time 
. To do this, we shall follow the method we used previously for chronoamperometry 
for a partial oxidation (see §8.1.4), but taking c0

R and c0
O for the initial concentrations 

values of the reduced and oxidised species.
 The differential equations are still the Fick equations for the oxidised species 
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2

2  
(8.87)

and for the reduced species
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c x t
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R( , ) ( , )=

2

2  
(8.88)

with now as boundary conditions

 c x cR R,0 0( ) =            and        c x cO O,0 0( ) =  (8.89)

 lim ( , )x c x t c→∞ =R R
0

    and        lim ( , )x c x t c→∞ =O O
0

 (8.90)

Fig. 8.14  Step potential variation. 
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To solve these differential equations, we shall use the Laplace transformation 
method as before. Thus, the transforms of the solutions of the Fick equations are (see 
equations (8.71) and (8.72))
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and
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(8.92)

taking into account the boundary condition expressing the conservation of the flux 
with
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(8.93)

or

 − − =A s D s B s D s( ) ( )R O 0  (8.94)

Substituting equations (8.91) and (8.92) into equation (8.94), we obtain a 
relation between the Laplace transforms of the interfacial concentrations and the 
concentrations in solution 

 
D c s

c

s
D c s

c

sR R
R

O O
O( , ) ( , )0 0 0

0 0

−








 + −









 =

 
(8.95)

which is, taking the inverse transform,

 D c t D c t D c D cR R O O R R O O( , ) ( , )0 0 0 0+ = +  (8.96)

If the coefficients DO and DR are equal, this equation reduces to 

 c t c t c c cR O R O Total( , ) ( , )0 0 0 0+ = + =  (8.97)

Equation (8.94) allows us also to calculate B(s) as a function of A(s). The electro-
chemical reversibility condition is again written in its adimensional form 
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(8.98)

or 

 c s c sR O( , ) ( , )0 01= θ  (8.99)

We then get
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(8.100)

still with ξ = D DR O/ .
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This allows the calculation of the constant A 

 
A s

c c

s
( )

( )
= −

+
θ

ξ θ
1

0 0

11
O R

 
(8.101)

Thus, the transforms of the concentration profiles are 
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( )
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+
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−0
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0 0
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ξ θ  
(8.102)

and
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+
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

−0
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0 0

11
θ

ξ θ
ξ

 
(8.103)

The inverse transforms of these equations give us the concentration profiles at the 
time  

 
c x c

c c x

DR R
O R

R
erfc( , )τ θ

ξ θ τ
= + −

+


















0 1

0 0

11 2
 (8.104)

and

 
c x c

c c x
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O R

O
erfc( , )τ ξ θ

ξ θ τ
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+


















0 1

0 0

11 2
 

(8.105)

 These expressions can be rearranged to make the interfacial concentrations 
imposed by the potential E1 appear, that is c1

R(0,t) = c1
R and c1

O(0,t) = c1
O. In order to 

do this, we use equation (8.96) coming from the hypothesis of the equality of the flux 
of products and reactants, which is now written as 

 ξ ξc c c cR O R O
1 1 0 0+ = +  (8.106)

By substituting equations (8.98) & (8.106) into equations (8.104) & (8.105), and 
knowing that erfc(x) = 1 – erf(x), we get

 
c x c c c

x

DR R R R
R

erf( , )τ
τ

= − −[ ] 







1 1 0

2
 

(8.107)

and

 
c x c c c

x

DO O O O
O

erf( , )τ
τ

= − −[ ] 







1 1 0

2
 

(8.108)

At times t > , we again need to solve the Fick equations in the form 

 

∂ τ
∂ τ

∂ τ
∂

c x t

t
D

c x t

x

( , )
( )

( , )−
−

= −2

2
 

(8.109)

By using the following theorem 

 
e F t t e f sst s− −− =

∞
∫ ( ) ( )τ τd
0  

(8.110)
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the transform of the differential equation is 

 
D

c x s

x
e s e c x s c xs s∂

∂
ττ τ

2

2
( , )

( , ) ( , )− −= −
 

(8.111)

or again

 

∂
∂

τ τ2

2
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( , )− = −
 

(8.112)

Thus, by expanding, we obtain for the reduced species 
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1 1 0
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

  
  (8.113)
It is possible to solve this equation analytically: however, it is laborious and ends up 
with rather complicated expressions. 
 A more elegant way of treating the problem is to decompose the potential function 
as the sum of two potential functions such that 

 E E E= +I II   t > 0  (8.114)

with

 E EI = 1 t > 0  (8.115)

and

 EII = 0 t ≤ τ  (8.116)

 E E EII = −2 1 t > τ  (8.117)

In the same way, the concentrations can be considered as the superposition of two 
virtual concentrations 

 c x t c x t c x tR RI RII( , ) ( , ) ( , )= +   (8.118)

with as boundary conditions 

 c t cRI R( , )0 1=  t > 0  (8.119)

and

 c tRII ( , )0 0=  t ≤ τ  (8.120)

 c t c cRII R R( , )0 2 1= −  t > τ  (8.121)

The virtual concentration profiles are then obtained by solving the respective Fick 
equations:

 

∂
∂

∂
∂

c x t

t
D

c x t

x
RI

R
RI( , ) ( , )=

2

2   (8.122) 
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and

 

∂ τ
∂

∂ τ
∂

c x t

t
D

c x t

x
RII

R
RII( , ) ( , )− = −2

2  (8.123)

For the first virtual concentration cRI , the boundary conditions are :

 c x cRI R
0 00( , ) =    and   lim ( , )x c x t c→∞ =RI R

0 0
  (8.124)

Thus, expressed as a function of the interfacial concentration imposed by the potential 
E1 , the concentration profile of the virtual concentration cRI is (see equation (8.107)):

 
c x t c c c

x

D tRI R R R
R

erf( , ) = − −[ ] 







1 1 0

2
           

t > 0
 

(8.125)

In the same way, for the second virtual concentration, the boundary condition is :

 c x tRII ( , ) = 0                                t ≤ τ  (8.126)

and so, by analogy with equation (8.104), we have

 
c x t c c

x

D tRII R R
R

erfc( , )
( )

− = −[ ] −








τ

τ
2 1

2
        

t > τ
 

(8.127)

The concentration profiles corresponding to the potential step are then given as the 
sum of the profiles cRI(x) and cRII(x,t).

Knowing that

 

∂
∂ πx

x

D t D t

x

D t
erf

R R R2
1
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
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
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





= −









exp

 
(8.128)

the expression for the current as a function of time is then :

 
I nFAD

c

x
nFA c c

D

t
c c

D

tx

= 



 = −( ) + −( ) −











=
R

R
R R

R
R R

R∂
∂ π π τ0

0 1 1 2

( )   
   (8.129)
where the second term disappears when t < .
 This approach, calculating the current for a potential step is called the 
superposition principle. It can be applied to a whole range of pulse techniques such 
as staircase voltammetry, differential pulse voltammetry, square wave voltammetry, 
etc.

8.3.2 Constant amplitude alternate pulse voltammetry 

 This technique resembles sine wave AC voltammetry, which is discussed later in 
§9.4, but here using a square wave of period  as shown on the next page.
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The applied potential can be described by the following two equations 

 
E t

E t

E t
( )

/

/
=

< <
< <





1

2

0 2

2

              

              

τ
τ τ  

(8.130)

and

 E t E t( ) ( )= +τ  (8.131)

c1
R and c2

R are the interfacial concentrations corresponding to the potentials E1 and E2. 
By applying the superposition principle, we can see that the concentration profiles can 
be written in the form of a series 

 c x t c x t c x t c x tR RI RII RIII( , ) ( , ) ( , ) ( , ) ...= + + +  (8.132)

The boundary conditions for the virtual concentration cRI for the reduced species are 
as before :

 lim ( , )x c x t c→∞ =RI R
0

      and      lim ( , )x c x t c→∞ =RI R
0

 (8.133)

and therefore the concentration profile of the virtual concentration cRI is given by :

 
c x t c c c

x

D tRI R R R
R

erf( , ) = − −[ ] 







1 1 0

2
                   

t > 0
 

(8.134)

Furthermore, for the virtual concentration cRII the interfacial conditions are also :

 cRII = 0                                                                           t ≤ τ / 2 (8.135)

 c c cRII R R= −2 1
                                                                t > τ / 2 (8.136)

and the corresponding concentration profiles are :

 c x tRII ( , ) = 0                                                                    t ≤ τ / 2 (8.137)

 
c x t c c

x

D tRII R R
R

erfc( , / )
( / )

− = −[ ] −








τ

τ
2

2 2
2 1

        t > τ / 2 (8.138)

Fig. 8.15  Constant amplitude alternate pulse variation, also called square-wave variation.
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In the same way, the concentration profiles of the virtual concentration cRIII are also:

 c x tRIII ( , ) = 0                                                                   t ≤ τ  (8.139)

 
c x t c c

x

D tRIII R R
R

erfc( , )
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1 2

2
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(8.140)

Generalising, the global concentration profile for any interval of time between (n) / 2 
and ((n + 1)) / 2 is given by :
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(8.141)

Thus, using equation (8.128), the current is expressed in the form 

 

I
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c c
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+
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(8.142)

If we define the alternating current I as the difference I(2j + 1) – I(2j), then we 
have:

 
∆I nFA c c

D= −( )2
21 2

R R
R

πτ   
(8.143)

If the potentials E1 and E2 are far from the formal redox potential, the difference 
c1

R – c2
R will be small. On the contrary, this difference will be the largest if the 

potentials are very close. Effectively, this means that the difference in interfacial 
concentrations imposed by the Nernst equation can be expressed as a function of the 
potential. 
 For an oxidation where the initial concentration of oxidised species is zero, by 
combining the two equations (8.98) and (8.106) we have:

 
c c cR R R

1 2 0 1
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21 1
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+
−

+



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




ξθ
ξθ

ξθ
ξθ  

(8.144)

By putting E1 = E + E/2 and E2 = E – E/2 , the second term of equation 
(8.144) varies with the electrode potential E as shown in Figure 8.16. Such a curve 
can be obtained experimentally points by points by varying the value of the electrode 
potential E or by adding a slow potential ramp to the waveform illustrated in Figure 
8.15. This technique is sometimes called Barker’s square wave voltammetry.

By analogy with differential pulse polarography, we can define the parameter  
such that :

 
σ = −





exp
nF

RT

E∆
2  

(8.145)

© 2004, First edition, EPFL Press



326 Analytical and Physical Electrochemistry 327Pulse Voltammetry

Thus we have:
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( ) ( )  
(8.146)

By differentiating with respect to u = , we can easily show that this curve passes 
through a maximum when u = 1, i.e. when:

 
E E E

RT

nF

D

Dmax / ln= = +





1 2
o / R

O  
(8.147)

The curve is therefore centred on the half-wave potential. It is interesting to compare 
this curve to the one in Figure (9.37) obtained using A.C. sine wave voltammetry. 

8.3.3  Staircase voltammetry 

 The theory of cyclic voltammetry developed later in chapter 10 is only strictly 
valid when an analog ramp generator that delivers a linear potential function is used. 
Most computerised apparatus have, nowadays, a staircase ramp generator of the type 

 E E j E j t ji= + ≤ < +∆                       τ τ( )1  (8.148)

where E is the potential increment and  the duration of the step.
In order to solve this problem, we can again use the superposition principle and 

write the concentration in the form of a series 

 c x t c x t c x t c x t( , ) ( , ) ( , ) ( , ) ...= + + +I II III  (8.149)

The boundary conditions for the virtual concentration cRI for the reduced species are 
as before:

 c x cRI R( , )0 0=         and       lim ( , )x c x t c→∞ =RI R
0

 (8.150)

Fig. 8.16 Constant amplitude alternate pulse voltammetry as a function of the applied potential 
according to equation (8.143).  = 1.
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and so the concentration profile for the function cRI is given by :
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(8.151)

Furthermore, for the virtual concentration cRII the interfacial conditions are also:

 cRII = 0                                                                           t ≤ τ  (8.152)

 c c cII R R= −2 1
                                                                  t > τ  (8.153)

and the corresponding concentration profile is:

 c x tRII ( , ) = 0                                                                    t ≤ τ  (8.154)
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(8.155)

In the same way, the concentration profile of cRIII is also:

 c x tRIII ( , ) = 0                                                                   t ≤ 2τ  (8.156)
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(8.157)

Generalising, the global concentration profile for any time interval between 
(n) /2 and ((n + 1)) / 2 is given by :
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  (8.158)

Fig. 8.17  Staircase potential ramp. 



DE

Time

E
le

ct
ro

de
 P

ot
en

tia
l

© 2004, First edition, EPFL Press



328 Analytical and Physical Electrochemistry 329Pulse Voltammetry

Thus, the current is expressed in the form 
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If we sample at the end of each potential step, the current is 
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(8.160)

For an oxidation where the concentration of oxidised species is initially zero, we 
have:
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  (8.161)
which is 
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  (8.162)

Figure 8.18 shows the current calculated point by point according to equation (8.162), 
the higher the potential step height, the fewer the number of points. The results are 
similar to classic linear sweep voltammetry as described in chapter 10 when the step 
height is small enough for the potential staircase to resemble a potential ramp.
 These calculations show that if we wish to increase the sweep rate to do linear 
sweep voltammetry, it is preferable to reduce the duration  of the potential plateau, 
rather than increase the height E of the potential steps. Otherwise the peak potential 
varies like in the presence of an ohmic drop.

Fig. 8.18  Staircase voltammetry according to equation (8.162).
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 The graph in Figure 8.19 shows the response of staircase voltammetry for the 
reduction of Pb2+ on a drop of mercury. Notice that the peak current is less than 
that obtained using differential pulse polarography (see Figure 8.13) or the limiting 
cathodic current in Figure 8.10 for normal pulse polarography. 
 It is also interesting to compare staircase polarography, that results in a wave 
similar to that we have on a rotating electrode or a microelectrode, and staircase 
voltammetry. The presence of a peak with the second method is due to the fact that the 
electrode is not renewed as in polarography, and therefore the diffusion layer between 
each measurement remains the same. 

8.3.4   Square Wave Voltammetry 

 This type of voltammetry is a combination of constant amplitude alternative pulse 
voltammetry and staircase voltammetry. Therefore, the resulting potential waveform 
is as shown in Figure 8.20.

The corresponding electrode potential for this scheme is

 
E E

j
E Ei

j= + +
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
 + −int ( )

1
2

1∆ s sw
 

(8.163)

where Ei is the start potential, Es is the height of the potential step between two 
plateaux, int( ) represents the integer truncation function and Esw is the amplitude of 
the alternate square signal.  is the period of this signal and 1/ the frequency.

Applying the superposition principle as before, we get:

 

c x t c c c
x

D t

c c
x

D t j
j j

j

n

R R R R
R

R R
R

erf

          erfc

( , )

( ( / ))

= − −[ ] 









+ −[ ] −








+

=

−

∑

1 1 0

1

1

1

2

2 2τ
 

(8.164)

Fig. 8.19  Staircase voltammetry on a static drop of mercury for a 10–5 M solution of Pb2+ in 
0.05 M HCl. Step height 5 mV, duration 100 ms, start potential: –0.1 V (Olivier Bagel, EPFL).
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Thus the current is again expressed in the form 
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Furthermore, if we sample at the end of each potential pulse, the current is 
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For an oxidation where the initial concentration of oxidised species is zero, we have:
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(8.167)

Fig. 8.20  Square wave voltammetry for an oxidation. 

Fig. 8.21  Square-wave voltammetry according to equation (8.169).
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For each period, we calculate the difference I(k) = I(2k+1)  –  I(2k)
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Neglecting the first term of the expression in brackets, this reduces to:
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  (8.169)
The curve obtained is then a peak centred on the formal redox potential.
 The results in Figure 8.22 still for the reduction of Pb2+ show that continuous 
square wave voltammetry gives peaks similar to those obtained using differential 
pulse voltammetry shown in Figure 8.13. This is not surprising given the similarity of 
the applied signals; the only difference being in the duration of the potential plateau 
before the pulse that in the first case is equal to the pulse duration, but is much larger 
than the pulse duration in the second case.

8.4   STRIPPING VOLTAMMETRY

8.4.1 Anodic stripping voltammetry 

 One of the most sensitive methods for the detection of heavy metals is anodic 
stripping voltammetry. The principle is to concentrate heavy metals existing in 
the form of ion traces in solution into a mercury electrode by reduction. This 
accumulation is generally done using reduction of the trace metal ions at a constant 

Fig. 8.22  Square wave voltammetry on a static drop of mercury for a 10–5 M solution of Pb2+ 
in 0.05 M HCl. Step height 5 mV, amplitude: 50 mV, frequency 20 Hz. Start potential: –0.1 V 
(Olivier Bagel, EPFL) 
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electrode potential. After a certain time, of the order of a few minutes, a potential ramp 
either continuous or pulsed is applied from the accumulation potential to a potential 
that is higher, but just below that of the dissolution of mercury. This potential ramp 
can be produced in various ways, the most common being that of differential pulse 
voltammetry. During this ramp, the heavy metals are sequentially re-oxidised and the 
corresponding anodic current is measured.
 The mathematical description of this technique depends mainly on the type of 
mercury electrodes used. These can be classified in two main families:

 • Hanging mercury drop electrodes (HDME) 
 • Mercury film electrodes electrodeposited on iridium or vitreous carbon

 electrodes.

The mathematical aspects of these techniques hold little interest from an analytical 
point of view, since they are mainly used with the aid of calibration procedures, such 
as for example the standard addition method.

8.4.2  Cathodic stripping voltammetry

 This category covers various variations on the same theme. The main idea is 
to allow the adsorption of metal-ligand complexes (preferably hydrophobic) at the 
surface of the electrode and to apply a potential ramp towards negative potentials and 
then to measure the cathodic current corresponding to the reduction of the adsorbed 
metal complexes.

Fig 8.23  Stripping voltammetry of Cd and Pb. Experimental conditions Electrolyte 0.05 M 
HCl, 30 s of degassing under agitation, pre-concentration in the drop 10s at –1.1 V. Differential 
pulse stripping: staircase (height 5 mV, duration 0.4 ps), pulse (height 50 mV, duration 0.04 s). 
[Cd]& [Pb] = 10–7 M, 2.5·10–7 M, 5·10–7 M, 7.5·10–7  M & 10–6  M (Olivier Bagel, EPFL).
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8.5 THIN LAYER VOLTAMMETRY

8.5.1 Chronoamperometry in finite linear diffusion
 for complete interfacial oxidation 

 With the miniaturisation of electrochemical detectors, the size of the measuring 
cell can have dimensions smaller than the thickness of the diffusion layers. In this 
case, the size and the geometry of the cell play a major role in the mass transfer. For 
simplicity, we shall treat here only systems known as ‘thin layer systems’ that is to 
say a planar electrode close to a planar wall parallel to the electrode and situated at a 
distance  from it. Still aiming for simplicity, we shall consider a complete interfacial 
oxidation under finite linear diffusion control, assuming that only the reduced species 
is initially present in solution and where the initial conditions (8.1) are therefore still 
valid. The difference between this and the case of semi-infinite linear diffusion is that 
we consider here the impoverishment of the reduced species in the volume of the cell 
and the condition imposed by the wall is a condition of zero flux

 

∂
∂ δ

c x t

x x

R( , )





=
=

0
 

(8.170)

The solution of Fick’s equation (8.5) remains 
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where the constant B(s) can no longer be considered as zero. To determine the 
constants A(s) and B(s), we take the derivative of equation (8.171) at the wall where 
the flux is zero 
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By substitution, we therefore get 
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and
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where cR is the initial concentration of the reduced species. So the Laplace transform 
of the current is given by:
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which is, by expanding
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 When  tends to infinity, the hyperbolic tangent tends to unity and we come back 
to equation (8.18),  The current response to the potential step is the Cottrel equation. 
Conversely, when  tends to zero, equation (8.176) reduces to:

 I s nFAc( ) = Rδ  (8.177)

since  lim xÆ0 tanh x = x, and the inverse transform of equation (8.177) is then

 I t nFAc t( ) ( )= ⋅R Diracδ  (8.178)

This equation means that the reduced species is instantaneously consumed.
 Between these two limits, the current response to a potential step has no easy 
analytical solution and the best way to circumvent this difficulty is to recur to 
computer simulations such as finite difference or finite element. Results obtained by 
simulation are shown in Figure 8.24 for different thin-layer thicknesses.
 The concentrations of the reactant in a thin layer cell decrease first close to the 
electrode and then through the whole cell as shown in Figure 8.25.

Fig. 8.24 Current response for a potential jump in a thin-layer cell of thickness . Same 
conditions as in Figure 8.1 (Jacques Josserand, EPFL).
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8.5.2  Electrode covered with a thin membrane 

 Consider an electrode covered with a fine membrane and placed in a solution as 
shown Figure 7.22. The solutions of the Fick equations for the membrane and the 
solution are 
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and
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As in the case for a non-covered electrode, we can immediately conclude that the 
constant D(s) is zero, since the concentration cannot tend to infinity.
 At the interface between the membrane and the solution, there is a condition of 
equality of the fluxes and one for the concentrations, which are respectively 
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and

 c t c tRm Rs( , ) ( , )δ δ=  (8.182)

Using the Laplace transforms of these equations, by substitution we have 
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Fig. 8.25  Concentrations profiles for a 20m thin layer cell. Same conditions as in Figure 8.1 
(Jacques Josserand, EPFL).
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and
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For a complete oxidation, the interfacial concentration is quasi-zero, and also we 
have 
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It is possible to solve this system of three equations with three unknowns. By 
substitution, we get 
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and
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As before, we define the Laplace transform of the current as 
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which, by substitution becomes

 I s nFA sD A s B s( ) ( ) ( )= − +[ ]Rm  (8.189)
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 This equation does not have an easily-expressed inverse transform. However, we 
can study the boundary conditions.

© 2004, First edition, EPFL Press



336 Analytical and Physical Electrochemistry 337Pulse Voltammetry

 • DRm = DRs. The second term in the square brackets of equation (8.190) cancels 
out and we find ourselves with Cottrell’s equation. The membrane plays no
 part.

 •  DRm << DRs. Equation (8.190) reduces to

     
I s nFAc x sD

s

D
( ) ( , ) coth= Rm Rm

Rm
0 δ

 
(8.191)

 Furthermore, if Ms/DRm Æ 0 then coth(Ms/DRm Æ –1 MDRm/s and the inverse 
transformation of the current is 

 I t nFAc x D( ) ( , ) /= Rm Rm0 δ  (8.192)

In this way, we demonstrate that we have a steady state current when an electrode 
is covered with a membrane, where the diffusion coefficient of the reacting species is 
smaller than that in solution.

8.6 AMPEROMETRIC DETECTORS FOR 
 CHROMATOGRAPHY
 Amperometric detection is sometimes used in HPLC chromatography for analyses 
of organic components such as sugar for example. The most common methods are 
constant potential amperometry and pulse voltammetry. The types of measuring cell 
include flow cell or wall jet cell as shown schematically in Figure 8.26.
 In the in-line version, the reference electrode is placed ‘upstream’ of the working 
electrode and the counter-electrode is placed ‘downstream’ so that the reaction 
products on the counter-electrode do not perturb the measurements. For the same 
reasons, the reference electrode and the counter-electrode are well-spaced from the 
working electrode in the ‘wall-jet’ version (see §7.4.1).
 For the in-line version, the thickness of the diffusion layer is fixed by the 
hydrodynamics of the flow and we again find conditions similar to those described by 
Figure 7.21. If the flow is slow, we approach the conditions described in §8.5.1. Thus, 
as a function of the geometric characteristics of the cell, the proportion of oxidised or 
reduced analyte varies approximately from 10 to 90%.

Fig. 8.26 Amperometric detector: in-line version and ‘wall-jet’ version. RE = Reference 
electrode, WE = Working electrode, CE = Counter-electrode.

RE WE CE RE WE CE
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 In the ‘wall-jet’ version, the thickness of the diffusion layer is controlled by the 
arrival of the solution, as in the case of the rotating electrode.
 The major problem with amperometric detectors is the fouling of the electrodes. 
To alleviate this, it is usual to clean the electrodes by submitting the working electrode 
to a series of strong anodic and cathodic pulses. 
 In certain cases, it is preferable to oxidise or reduce 100% of the sample passing 
in front of the detector. For this, porous electrodes are used to optimise the surface-to-
volume ratio, and often the charge passed is measured rather than the current in order 
to increase the signal-to-noise ratio.
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CHAPTER 9

 ELECTROCHEMICAL IMPEDANCE

 In the last chapter, we studied the current response of an electrochemical system 
for different electrode potential excitations (potential step, square wave, etc.). We 
considered only the influence of the mass transport on the response as a function of 
time, neglecting the kinetics of the electrode reaction. In other words, we consistently 
made the hypothesis that the Nernst equation applied to the interfacial concentrations. 
It is, of course, possible for the techniques studied previously, such as potential step 
amperometry, cyclic voltammetry, square-wave voltammetry, etc. to take into account 
kinetic effects by introducing Butler-Volmer type equations as boundary conditions of 
the diffusion equations. However, even though those techniques just mentioned can be 
used to study the kinetics of an electrode reaction, the result is often corrupted by side-
effects such as the charging currents of the double layer observed on a time-scale of the 
order of a millisecond, or by the ohmic drop associated to the experimental setup. We 
have already seen in chapters 7 and 8 that the response of reversible electrochemical 
systems studied in the presence of an ohmic drop unfortunately resembled the response 
of kinetically slow systems. The best way of differentiating the kinetics of an electrode 
reaction from experimental side-effects is to use an excitation function covering a large 
time domain. The most common of these techniques is electrochemical impedance 
where the electrode potential excitation function is a sine wave of variable frequencies.

9.1 TRANSFER FUNCTION 

9.1.1  AC response 

 As a first approximation, we can consider an electrochemical system as linear, i.e. 
that the current response for small potential perturbations is linear, and the potential 
response for small imposed current perturbations is also linear.
 To illustrate this, consider a steady state current-potential curve such as that in 
Figure 9.1, and let’s examine the system response if we vary the electrode potential 
sinusoidally at low frequencies around a constant value Ec with a small amplitude E. 
The current response follow the steady state curve at the same frequency around the 
constant current value Ic with an amplitude I which reflects the slope of the steady state 
curve. The two functions have the same frequency, but the current can be dephased with 
respect to the potential. Thus, basically, we can write 

 E E E t= +c ∆ sinω  (9.1)
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and

 I I I t= + +c ∆ sin( )ω φ  (9.2)

where  is the angular frequency, also called the pulsation, and f is the phase angle 
between the two signals.

9.1.2  Linear Systems

 In a more general way, we can say that for any linear system, there is a ratio 
between the input function x(t) and the output function y(t).

Fig. 9.2  Linear response of a system. 

A linear system with localised parameters is defined by a differential equation 
of order n
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or by a system of n first-order differential equations. A linear system obeys the 
superposition principle that states that the output function of a linear combination of 
input functions is equal to the linear combination of the respective output functions. 

Fig. 9.1  Linear current response to a sinusoidal potential excitation of small amplitude around 
a constant value Ec.
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Therefore, if the input functions x1 and x2 have the output functions y1 and y2 
respectively, then the output function of x3 = a x1 +  x2 is y3 = a y1 +  y2. In equation 
(9.3) the coefficients ai and bi are independent of time.
 In a time-independent regime, equation (9.3) reduces to

 a y b x0 0=  (9.4)

and the output function is directly proportional to the input function (linear system).
When the input function consists of small variations (pulses, sine-wave, noise, etc.) 
around a fixed value xo

 x t x x t( ) ( )= +o ∆  (9.5)

the output function varies around the corresponding static value yo

 y t y y t( ) ( )= +o ∆  (9.6)

In this case, equation (9.3) is written as
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The Laplace transform of a function F(t) previously defined by equation (8.6) can also 
be defined by considering the variable in the Laplace plane, s, as a complex number. 

 s = +σ ωj  (9.8)

The Laplace transform is then 
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By using the property of derivatives already used in the last chapter (see equation 
(8.8)), the Laplace transform of equation (9.7) becomes
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making the hypothesis that all the partial derivatives are zero at the origin. 
 The transfer function of a linear system is defined as the ratio of the Laplace 
transforms of the variations of the output to the input functions.
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9.1.3   Impedance and admittance

 For a sinusoidal excitation, we have 

 ∆ ∆x t x t( ) sin= ω  (9.12)
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the Laplace transform of which is 
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(9.13)

The output function is
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(9.14)

In view of the complex nature of s, it is useful to distinguish what we can call the 
frequency domain which depends on the angular frequency , and which consists of 
taking s = j in the Laplace transform. 
 Thus, in the inverse transform of equation (9.14) the frequency domain 
corresponds to the sinusoidal part of the output function

 ∆ ∆y t x H t( ) ( ) sin( )= +ω ω φ  (9.15)

where |H()| is the modulus of H() defined as a function of the real part ReH() and 
the imaginary part ImH()

 H H H( ) Re ( ) Im ( )ω ω ω= [ ] + [ ]2 2
 

(9.16)

and f is the argument defined by 
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(9.17)

 For an electric circuit or an electrochemical system, the transfer function from the 
potential (input function) to the current (output function) is called the admittance of 
the system and has the symbol Y. In the frequency domain, it is defined by 

 ∆ ∆I Y E( ) ( ) ( )ω ω ω=  (9.18)

In the same way, the transfer function from the current (input function) to the potential 
(output function) is called the impedance of the system and has the symbol Z. In the 
frequency domain, it is defined by 

 ∆ ∆E Z I( ) ( ) ( )ω ω ω=  (9.19)

Clearly, the admittance is the inverse of the impedance.

9.1.4   The Nyquist diagram

 The transfer function in the frequency domain being a complex number, it is 
useful to represent it by plotting the imaginary part as a function of the real part.

 H H H( ) ( ) ( )ω ω ω= +Re j Im  (9.20)

In electrochemistry in fact, it is more customary to trace –ImH() as a function of 
ReH(). The graph, obtained by doing this, is called a Nyquist diagram.
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EXAMPLE

Consider a system with a ‘first order’ transfer function (one pole in the denominator)

H
K

( )ω
ωτ

=
+1 j  

where  is the time constant of the system. Let’s plot its Nyquist diagram. By multiplying 
both the numerator and the denominator by the conjugated complex, we have 

H
K

( )ω
ω τ

ωτ=
+

−[ ]
1

12 2 j
 

The Nyquist diagram then gives a semi-circle going from the point at coordinates (K,0) 
when the angular frequency tends to zero, and finishing at the origin when the angular 
frequency tends to infinity.

9.1.5  The Bode Diagram

 Another way of representing a complex number is to plot the modulus as a function 
of the angular frequency. In electrochemistry, it is also the custom to plot log|H()| as 
a function of log(w) and the graph obtained by doing this is called a Bode diagram.

9.2 ELEMENTARY CIRCUITS 
 Before studying the transfer function of an electrochemical system, it is interesting 
to look at the response of some electric circuits containing simple elements such as 
resistors and capacitors

9.2.1  Resistor

 The potential difference at the terminals of a resistor is given by Ohm’s law 

 ∆ ∆E t R I t( ) ( )=  (9.21)

Fig. 9.3  Schematic representation of a resistor.
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and therefore the Laplace transform is simply 

 ∆ ∆I R E( ) ( )ω ω= −1
 (9.22)

The admittance of a resistor is therefore 

 
Y

I

E
R( )

( )
( )

ω ω
ω

= = −∆
∆

1

 
(9.23)

If the alternating potential is written as

 ∆ ∆E t E t( ) = sinω  (9.24)

the inverse transform of equation (9.22) in the frequency domain is given by equations 
(9.16) and (9.17). Thus, the alternating current Iac is

 
I I t E Y t

E

R
tac ( sin= = +( ) =∆ ∆ ∆

) ( ) sin arctan( )ω ω ω0
 

(9.25)

Thus, we arrive again at equation (9.21). A resistor does not introduce dephasing, and 
Ohm’s law applies equally to alternating currents and potentials. 

9.2.2 Capacitor

 The potential difference at the terminals of a capacitor is proportional to its charge 
(see page 11)

 Q t C E t( ) ( )=  (9.26)

The current is defined as the variation with the charge with time

 I t
Q t

t

C E t

t
( )

( ) ( )= =d
d

d
d

 (9.27)

and therefore the Laplace transform, using equation (8.8), is given by

 ∆ ∆I s Cs E s( ) ( )=  (9.28)

The admittance in the frequency domain is obtained, by taking s = jw

 
Y

I

E
C( )

( )
( )

ω ω
ω

ω= =∆
∆

j
 

(9.29)

If the potential is given by equation (9.24), then the inverse transform of equation 
(9.29) from equations (9.16) and (9.17) gives

Fig. 9.4  Schematic representation of a capacitor. 
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 I I t E Y t

E C t E C t
ac

       

= = + ∞( )
= + =

∆ ∆
∆ ∆

( ) ( ) sin arctan( )

sin( / ) cos( )

ω ω
ω ω π ω ω2

 (9.30)

The alternating current at the terminals of a capacitor is therefore dephased with 
respect to the applied potential by 90°. This is shown in Figure 9.5 that demonstrates 
the variations of potential and current as a function of the angle t.

9.2.3 Resistor – capacitor in series 

 The impedance of two circuits in series is the sum of the impedances of the 
elements of the circuit. In effect, the potential at the terminals of the circuit is equal to 
the sum of the potentials at the terminals of each element, and the current is the same 
through all the elements of a series circuit.

 
Z

E

I

E E

I
Z Z= = + = +∆

∆
∆ ∆

∆
1 2

1 2
 

(9.31)

Taking a resistor and a capacitor in series, we then have 

 
Z Z Z R

C
( ) ( ) ( )ω ω ω

ω
= + = −R C

j

 
(9.32)

The Nyquist diagram of the impedance gives a straight vertical line, which at high 
frequencies tends to the point ZR = R. On the contrary, the diagram representing the 

Fig. 9.5 Alternating current and potential at the terminals of a capacitor. The current is 
advanced by 90°.

Fig. 9.6  Circuit with a resistor and a capacitor in series. 
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imaginary part of the admittance as a function of its real part forms a semi-circle 
tending to the origin when the frequency tends to zero, and tending to the point 
YR = R–1 at high frequencies. The angular frequency at the apex of the semi-circle 
corresponds to the product RC. RC–1 represents the time constant of the circuit.
 This equivalent circuit corresponds to that of an ideally polarisable working 
electrode such as the one shown in Figure 5.5. The resistor represents the resistance 
of the solution between the working electrode and the reference electrode (see 
Figures (7.32) and (7.33)), and the capacitor corresponds to the capacity of the double 
layer (see equation (5.97)). Therefore, if we are trying to measure the capacity of a 
polarisable electrode, it is advisable to make measurements at different frequencies, 
and to plot –ZI as a function of –1, because the slope of this graph is the inverse of 
the capacity, as shown in equation (9.32).

Fig. 9.8  Bode diagram for a 1 k resistor in series with a 1 F capacitor. The angular frequency 
varies from 1 to 106 rad·s–1.

Fig. 9.7  Nyquist diagram of the impedance and the admittance for a 1 kW resistor in series with 
a 1 F capacitor. The angular frequency varies from 1 to 106 rad·s–1.
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 The Bode diagram can be illustrated schematically by two straight lines that 
intercept at the angular frequency 1/RC. At high frequencies, the impedance of the 
circuit tends to that of a pure resistance as shown in Figure 9.8.
 The phase angle diagram of the impedance in the frequency domain shows that 
the phase varies from –90° at low frequencies, where the influence of the capacitor 
dominates, to 0° at high frequencies, where the influence of the resistor dominates.

9.2.4  Resistor – capacitor in parallel 

 The admittance of a circuit of elements in parallel is the sum of the admittances 
of the individual elements. The current through the circuit is the sum of the currents 
through each element, and the potential is the same at the terminals of all the 
elements. 

 
Y

I

E

I I

E
Y Y= = + = +∆

∆
∆ ∆

∆
1 2

1 2
 

(9.33)

For a resistor and a capacitor in parallel, we have 

 
Y Y Y

R
C( ) ( ) ( )ω ω ω ω= + = +R C j

1

 
(9.34)

By taking the inverse, the impedance is

Fig. 9.9  Phase angle variation for a 1 kW resistor in series with a 1 F capacitor. The angular 
frequency varies from 1 to 106 rad·s–1

Fig. 9.10  Circuit with a resistor and a capacitor in parallel. 
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Fig. 9.11  Nyquist diagram of the impedance and admittance for a 1 k resistor in parallel with 
a 1 F capacitor. The angular frequency varies from 1 to 106 rad·s–1.

Fig. 9.13  Phase angle variation for a 1 k resistor in parallel with a 1 F capacitor. The angular 
frequency varies from 1 to 106 rad·s–1.

Fig. 9.12 Bode diagram for a 1 k resistor in parallel with a 1 F capacitor. The angular 
frequency varies from 1 to 106 rad·s–1.
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Z

R

RC
( )ω

ω
=

+1 j  
(9.35)

We can see that the impedance of this circuit is a first order transfer function.
 The Nyquist diagram of the impedance is therefore a semi-circle whose angular 
frequency at the apex corresponds to the inverse of the time constant of the circuit, RC. 
At low frequencies, the impedance tends to the point ZR = R, and at high frequencies it 
tends to the origin.

Conversely, the Nyquist diagram of the admittance is now a straight line cutting 
the real axis at 1/R when the frequency tends to zero.
 The Bode diagram can be drawn with two straight lines that intercept at the 
angular frequency 1/RC as shown in Figure 9.12.
 The diagram representing the phase angle of the impedance in the frequency 
domain shows that the phase varies from 0° at low frequencies where the influence 
of the resistance dominates to –90° at high frequencies where the influence of the 
capacitance dominates.
 From an electrochemical point of view, this circuit corresponds to a faradaic 
charge transfer reaction in parallel with the capacitance of the double layer.

9.2.5  Resistor in series with a parallel resistor-capacitor circuit 

 The impedance of this circuit is the sum of the impedances of the resistance R1 
and the circuit comprising the resistor R2 and the capacitor in parallel. From equation 
(9.35), we have

 
Z R

R

R C
( )ω

ω
= +

+1
2

21 j  
(9.36)

The Nyquist diagram of the impedance is a semi-circle translated on the real axis 
by R1. At high frequencies, the impedance tends to the point ZR = R1 and at low 
frequencies to the point ZR = R1 + R2. The angular frequency at the top of the semi-
circle corresponds, as before, to the time constant R2C.
 The Nyquist diagram of the admittance (see Figure 9.16) is now no longer a 
straight line, but is also a semi-circle with a maximum for an angular frequency 
(R1 + R2) / R1R2C. At high frequencies, the admittance tends to the point YR = 1/R1 
and at low frequencies to point YR = 1/(R1 + R2).

Fig. 9.14  Circuit with a resistance in series with a circuit comprising a resistance in parallel 
with a capacitance.

R1

R2
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Fig. 9.16 Nyquist diagram of the admittance for a 500  resistance in series with a 1 k 
resistance in parallel with a 1 F capacitance. The angular frequency varies from 1 to 106 
rad·s–1.

Fig. 9.17 Bode diagram for a 500 W resistor in series with a 1 k resistor in parallel with a 1 F 
capacitor. The angular frequency varies from 1 to 106 rad·s–1.

Fig. 9.15 Nyquist diagram of the impedance for a 500  resistor in series with a group 
comprising a 1 k resistor in parallel with a 1 F capacitor. The angular frequency varies from 
1 to 106 rad·s–1.
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 The Bode diagram can be drawn with three straight lines as shown in Figure 
9.17. At low frequencies, the system behaves as two resistor in series, whereas at high 
frequencies it tends towards the behaviour as in Figure 9.8.

The phase angle presents a minimum at an angular frequency between the two 
characteristic angular velocities 1/R2C and (R1 + R2 )/R1R2C as shown in Figure 9.18.

9.3 IMPEDANCE OF AN ELECTROCHEMICAL SYSTEM
9.3.1  Impedance of a redox reaction

 To calculate the transfer function of an electrochemical system, we need to linearise 
the equation expressing the current as a function of the potential and the interfacial 
concentrations. To do this, we shall make a limited first order series expansion, thereby 
making the partial derivatives of the current with respect to these variables to appear 
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(9.37)

The Laplace transform of this equation gives 
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(9.38)

since the partial derivatives refer to the static situation and do not vary at the frequency 
/2 like the potential, the interfacial concentrations and the current.
 The definition (9.19) of the faradaic impedance gives 
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(9.39)

Fig. 9.18 Phase variation for a 500 W resistor in series with a 1 kW resistor in parallel with a 
1 F capacitor. The angular frequency varies from 1 to 106 rad·s–1.
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We can see that the faradaic impedance is the sum of the three impedances. The 
first is the resistance of the charge tranfer linked to the kinetics of the charge transfer 
reaction

 
Z

E

IRtc
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
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∂
∂  

(9.40)

The two other terms of equation (9.39) are the impedances of concentrations 
linked to the mass transport and the kinetics of the charge transfer reaction
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9.3.2 Charge transfer impedance 

 If the kinetics of the redox reaction obeys the Butler-Volmer law (see equation 
(7.15)), then we have

 
I t nF A k c t e k c t enF E t RT nF E t RT( ) ( , ) ( , )( )/ ( ) ( )/= −[ ]− −

a
o

R c
o

O0 0 1α α
  

  (9.43)

By differentiating this equation with respect to the potential, for a steady state value 
of the potential E, we get 
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  (9.44)
where cR(0) and cO(0) are the steady state values of the interfacial concentrations. At 
the equilibrium potential, this expression reduces to 

 
R

nFI

RTct
–1 o=

 
(9.45)

Thus, the charge transfer impedance is

 
Z R

RT

nFIRct ct
o

= =
 

(9.46)

We arrive again at the definition of the charge transfer resistance that we have already 

Fig. 9.19 Faradaic impedance of a redox reaction, the sum of the charge transfer resistance and 
the concentration impedances of the reactants and the reaction products.

Rct ZcR ZcO
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obtained by linearising the Butler-Volmer equation at the equilibrium potential (see 
equation (7.23)).

9.3.3 Concentration impedance 

 The concentration impedances defined by equations (9.41) and (9.42) are the 
products of three terms; the first being the partial derivative of the current with respect 
to the interfacial concentration, the second being the charge transfer resistance, and 
the ratio of the Laplace transform of the interfacial concentrations to the Laplace 
transform of the current.
 The first term is simply obtained by differentiating equation (9.43) with respect to 
the interfacial concentration of the reduced species 

 

∂
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(9.47)

and with respect to that of the oxidised species 
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(9.48)

In order to calculate the ratios in the Laplace plane, we need to solve the Fick 
equations 
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with the boundary conditions for a semi-infinite linear diffusion 

 c x cR R,0( ) =                  and      c x cO O,0( ) =  

 lim ( , )x c x t c→∞ =R R    and      lim ( , )x c x t c→∞ =O O  

(9.51)

As we saw several times in Chapter 8, the transforms of the Fick equations are 
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taking into account the boundary condition for the conservation of the flux with 
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The current being equal to the diffusion flux of the reactants towards the electrode, the 
Laplace transform of the current is given by 
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We deduce from this a ratio between the Laplace transforms of the interfacial 
concentrations and the current 
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Thus, the terms we are looking for to calculate the concentration impedances are 
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By replacing the Laplace variable by j to access the frequency domain, we have 
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Equations (9.60) and (9.61) tell us that the concentration impedances are proportional 
to the inverse of the square root of the angular frequency.
 It is interesting to analyse the concentration profiles as a function of time using 
digital simulation methods, expressed for example in terms of dephasing (e.g. t, 
t + /4, t + /2, etc.). At each point of the solution close to the electrode, the 
concentration varies at the frequency of the potential perturbation and therefore at the 
same frequency as the interfacial concentrations.
 However, the amplitude varies with the distance to the electrode. It is interesting 
to notice that in Figure 9.20 the thickness of the diffusion layer varies with the 
frequency. The higher the frequency, the more compact is the diffusion layer, of the 
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Fig. 9.20  Normalised profiles of the concentration perturbation of the reacting species for 
different phase angles, D = 10–9 m2·s–1 [ Rosaria Ferrigno,EPFL].

-1.0

-0.5

0.0

0.5

1.0

4003002001000

  
  
  
  
  
  
  

0
π/4
π/2
3 π/4
π
3 π/4
π/2

-1.0

-0.5

0.0

0.5

1.0

403020100

  
  
  
  
  
    
  

0
π/4
π/2
3 π/4
π
3 π/4
π/2

����

����

���

���

���

�������

�
���
���
� ���
�
� ���
���

0
�/4
�/2
3�/4
�
–3�/4
–�/2

10 Hz

100 Hz

0
�/4
�/2
3�/4
�
–3�/4
–�/2

0
�/4
�/2
3�/4
�
–3�/4
–�/2

0.1 Hz

D 
c

D 
c

x / m

x / m

D 
c

x / m

© 2004, First edition, EPFL Press



356 Analytical and Physical Electrochemistry 357Electrochemical Potential

order of a few micrometers for a frequency of 100Hz. When the frequency decreases, 
the diffusion layer penetrates deeper into the solution and convection then risks 
perturbing the sinusoidal variation of the concentration profiles.

9.3.4  Warburg impedance

 It is usual in electrochemistry to group the two concentration impedances into a 
single impedance, called the Warburg impedance, symbolised by the letter W.
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At the equilibrium potential, by introducing the exchange current Io defined by 
equation (7.21), this expression reduces to 
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By substituting the expression for the charge transfer (9.46), we have
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Also, knowing that 
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equation (9.64) becomes
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








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

RT

n F A c D c D2 2 2

1 1

R R O O  
(9.67)

 The Nyquist diagram of the impedance is a straight line with a slope of unity as 
shown in Figure 9.22 and its Bode diagram is a straight line with a slope of –1/2 as 
shown in Figure 9.23.

W
Fig. 9.21  Schematic representation of the Warburg impedance. 
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The phase angle of the Warburg impedance is constant at –45° as shown in Figure 
9.24. We get this by applying equation (9.17) since arctan(–1) = –/4.

Fig. 9.23  Bode diagram for a Warburg impedance with  = 1000 W·rad1/2·s–1/2. The angular 
frequency varies from 1 to 106 rad·s–1.

Fig. 9.22  Nyquist diagram for a Warburg impedance with  = 1000 ·rad1/2·s–1/2 . The angular 
frequency varies from 1 to 106 rad·s–1.

Fig. 9.24  Phase representation for a Warburg impedance with  = 1000 W·rad1/2·s–1/2. The 
angular frequency varies from 1 to 106 rad·s–1.
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9.3.5  The Randles-Ershler circuit 

 During a redox reaction at an electrode, the current is in fact the sum of the 
faradaic current linked to the electron transfer and a capacitive current linked to the 
double layer charge

 I I I= +f c  (9.68)

Thus, we have two elements in parallel forming what is commonly known as the 
Randles-Ershler circuit.

The admittance of this circuit is the sum of the admittances of the elements in 
parallel 

Fig. 9.26  Nyquist diagram of the impedance for a Randles-Ershler circuit with the following 
parameters: solution resistance: 500 , charge transfer resistance: 1000 , double layer 
capacitance: 1 F, Warburg factor:  = 1000 ·rad1/2·s–1/2, the angular frequency varies from 
0.1 to 105 rad·s–1.

Fig. 9.25  The Randles-Ershler circuit in series with the solution resistance.
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+ −( )d W d

ct

j
j

ω σ
ω

1

1
 

(9.69)

and, therefore, the impedance is the inverse of this expression. 
 In addition to this impedance, it is often useful to add a resistance Rs that represents 
the ohmic drop between the outside of the double layer and the reference electrode. 
 The Nyquist diagram of the Randles-Ershler circuit is a semi-circle due to the 
charge transfer resistance Rct and the capacitance of the double layer. The top of the 
semi-circle corresponds to the inverse of the time constant RctCd when this constant 
is sufficiently small. At low frequencies, the Warburg impedance is predominant, and 
the Nyquist diagram becomes linear with a slope of unity as shown in Figure 9.26. 
 The Bode diagram, shown in Figure 9.27, comprises two linear parts with slopes 
of –1/2 and –1, corresponding to low frequencies where the Warburg impedance 
dominates, and to high frequencies where the circuit Rct and Cd in parallel dominates. 
At very high frequencies, the slope tends to zero, when the resistance of the solution 
is the principal element.
 These zones of predominance of the different elements, of course, resurface in 
the phase diagram shown in Figure 9.28. At low frequencies, the phase angle tends to 
–45°, and at higher frequencies we find the characteristic form of an RC circuit.

Fig. 9.27 Bode diagram for a Randles-Ershler circuit with the following parameters: solution 
resistance: 500 , charge transfer resistance: 1000 , double layer capacitance: 1 F, Warburg 
factor s = 1000 ·rad1/2·s–1/2, the angular frequency varies from 0.1 to 105 rad·s–1.

Fig. 9.28  Phase angle variation for a Randles-Ershler circuit with the following parameters: 
solution resistance: 500 , charge transfer resistance: 1000 , double layer capacitance: 1 F, 
Warburg factor  = 1000 ·rad1/2·s–1/2, the angular frequency varies from 0.1 to 105 rad·s–1.
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From an experimental point of view, the range of frequencies available is limited 
at high frequencies by the potentiostat, and in a more general way by the experimental 
setup; and at low frequencies by the duration of the acquisition time. At the level 
of determining an equivalent circuit, it is important to be circumspect with multi-
parameter optimisation softwares. It is often useful to elucidate an equivalent circuit 
by successive eliminations. Firstly, it is possible in general to determine the ohmic 
drop and the capacitance of the double layer reasonably accurately. Thus, these 
two elements can be conveniently subtracted from the experimental values of the 
impedance, and then the optimisation software can be used directly on the remaining 
electrode response.
 Electrochemical impedance measurements are the most reliable way of 
measuring the kinetics of redox reactions. The effects of the ohmic drop due to the 
resistance of the solution can be distinguished from the measurement of the charge 
transfer kinetics. However, for fast reactions, it remains sometimes difficult to 
separate the Warburg impedance, due to the semi-infinite diffusion, from the charge 
transfer resistance.

9.3.6  Concentration impedance for a diffusion layer of a fixed thickness

 When the thickness  of the diffusion layer is fixed, either hydrodynamically (e.g. 
using a rotating electrode), or statically (e.g. using a membrane-covered electrode), 
the concentration impedances can be calculated by resolving the Fick equations. Here, 
we shall look at systems with the diffusion layer fixed, using equations (9.49) and 
(9.50).
 The boundary conditions for the concentration are 

 c x cR R,0( ) =            and       c x cO O,0( ) =  (9.70)

 c t cR R( , )δ =           and       c t cO O( , )δ =  (9.71)

For the reduced species, the transform of the solution of the Fick equation is given by 
equation (8.11)

 
c x s

c

s
A s e B s e

s
D

x
s

D
x

R
R R R( , ) ( ) ( )= + +

−

 
(9.72)

On either side of the diffusion layer, we then have

 
c s

c

s
A s B sR
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(9.73)

and
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(9.74)
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The constants of equation (9.72) are therefore
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(9.75)

and
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(9.76)

The current is then given by
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or again
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(9.78)

From this, we deduce an expression between the Laplace transforms of the interfacial 
concentration of the reduced species and that of the current 
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(9.79)

So, the terms, we are looking for to calculate the concentration impedances, are 
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  (9.80)

and in the same way
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By replacing the Laplace variable by jw to access the frequency domain, we have 
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and
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In these two equations, we put an index (O or R) on the thickness  of the 
diffusion layer, since it can depend on the species itself, e.g. for a rotating electrode 
(see equation (7.38)). When  or  tend to infinity, equations (9.82) and (9.83) tend to 
the values of equations (9.60) and (9.61) respectively.
 As before, we can group these two expressions together and obtain the equivalent 
of equation (9.64), i.e.
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Knowing that for a complex number z = a  + jb
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and using equation (9.65), we get
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Taking the diffusion coefficients of the two species as equal, equation (9.84) reduces to

Z D D D D

D D

δ
σ

ω

ω δ ω δ ω δ ω δ

ω δ ω δ
= − +

+



















( )1 2 2 2 2

2 2
2 2

j
sinh cosh j sin cos

sinh cos
 

(9.87)
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where  is the Warburg factor defined by equation (9.67).
 Figure 9.29 shows the Nyquist diagram of the impedances for a fixed diffusion 
layer thickness, the form of this curve being a quarter lemniscate. Its main characteristic 
is that contrary to semi-infinite linear diffusion, the imaginary part becomes zero at 
low frequencies, whilst the behaviour at high frequencies is not perturbed by the 
limitation of the diffusion layer thickness. 

Figure 9.30 shows the variation of the modulus of the impedance as a function of 
the frequency. Again, the resistive behaviour at low frequencies is easily observable 
by the horizontal straight line and the value of the resistance can be calulated from the 
boundary condition of equation (9.87). A simple calculation shows that this resistance 
is kl2l/lllD, and it is clear that this resistance is directly proportional to .

Fig. 9.30  Bode diagram for a concentration impedance for a fixed diffusion thickness with 
parameters  = 1000 ·rad1/2·s–1/2 and 2/D = 1s. The angular frequency varies from 0.01 to 
104 rad·s–1.

Fig. 9.29 Nyquist diagram for a concentration impedance for a fixed diffusion layer thickness 
with parameters  = 1000 ·rad1/2·s–1/2 and 2/D = 1s. The angular frequency varies from 0.01 
to 104 rad·s–1.
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Fig. 9.32 Normalised profiles of the concentration perturbation of the reacting species for 
different phase angles for a fixed thickness diffusion layer of  = 10 m and D = 10–9 m2·s–1 
[Rosaria Ferrigno, EPFL].

Fig. 9.31  Phase angle variation for a concentration impedance for a fixed diffusion thickness 
with parameters  = 1000 ·rad1/2·s–1/2 and 2/D = 1s. The angular frequency varies from 0.01 
to 104 rad·s–1.
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Figure 9.31 shows the phase angle variation as a function of the frequency. 
The resistive character is clearly recognisable at low frequencies by the zero 
dephasing.

As with semi-infinite linear diffusion, it is interesting to observe the shape of the 
concentration profiles for a system with a fixed thickness diffusion layer as shown in 
Figure 9.32.

At high frequencies, the limit of the thickness of the diffusion layer, which can 
be fixed experimentally e.g. using a rotating electrode, has no effect on the sinusoidal 
variations of the concentration profiles, whilst at lower frequencies, the imposition of 
a diffusion layer fixes the concentration at a given distance from the electrode. Figure 
9.32 shows this effect very clearly for a diffusion layer thickness of 10 micrometers 
at a frequency of 10Hz.

9.3.7   Concentration impedance for diffusion in a thin layer cell

 For an electrode covered with a thin layer of solution and an inert wall, the 
boundary conditions for the Fick equation are 

 c x cR R,0( ) =      and     c x cO O,0( ) =  (9.88)
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(9.89)

For the reduced species, the transform of the solution of the Fick equation is again 
given by equation (9.72). The transforms of the conditions at the terminals are 
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The constants of equation (9.72) are therefore
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(9.93)

Thus, the current is again given by equation (9.77), i.e.
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As before, we deduce from this an expression between the Laplace transforms of 
the interfacial concentration of the reduced species and of the current 
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(9.95)

So the terms we are looking for to calculate the concentration impedances are 
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and in the same way 
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By replacing the Laplace variable by j to access the frequency domain, we have 
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As before, we can group these two expressions together to obtain an expression 
equivalent to equation (9.64). So, the impedance of the thin layer Zthin is 

© 2004, First edition, EPFL Press



366 Analytical and Physical Electrochemistry 367Electrochemical Potential

 

Z
RT

n F A

D

c D

D

c D
thin

R

R R

O

O Oj

coth
j

coth
j

= +



















2 2 ω

ω δ ω δ

 

(9.100)

Knowing that for a complex number z =a +j b
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and by using equation (9.65), we get
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Taking the diffusion coefficients of the species to be equal, equation (9.84) reduces 
to 
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where  is the Warburg factor defined by equation (9.67).
 The Nyquist diagram of the impedance shows a characteristic capacitive 
behaviour at low frequencies as shown in Figure 9.33.

Fig. 9.33  Nyquist diagram of the concentration impedance for diffusion in a thin layer cell with 
 = 1000 ·rad1/2·s–1/2 and 2/D = 1s. The angular frequency varies from 0.01 to 104 rad·s–1.
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 The Bode diagram and the phase angle variation as a function of the respective 
frequencies are shown in Figures 9.34 and 9.35. The capacitative character at low 
frequencies is clearly identifiable by a slope of –1 on the Bode diagram and a phase 
angle of –90° in Figure 9.35.
 Examination of the concentration profiles in Figure 9.36 shows that at low 
frequencies, the whole of the concentration in the thin layer cell follows the variations 
of the interfacial concentrations.

9.4 AC VOLTAMMETRY

9.4.1  Voltammetry using a superimposed sinusoidal potential difference 

 The principle of superimposed sinusoidal potential voltamperometry, more 
commonly called AC voltammetry, consists of adding a small-amplitude sinusoidal 
potential onto a linear potential ramp, and measuring the alternating current. The 
average values of the interfacial concentrations correspond to the DC polarisation 

Fig. 9.34  Bode diagram of the concentration impedance for diffusion in a thin layer cell with  
= 1000 ·rad1/2·s–1/2 and 2/D = 1s. The angular frequency varies from 0.01 to 104 rad·s–1.

Fig. 9.35  Phase angle variation of a concentration impedance for diffusion in a thin layer cell with 
 =  1000 ·rad1/2·s–1/2 and 2/D = 1s. The angular frequency varies from 0.01 to 104 rad·s–1.
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and are therefore obtained by resolving the Fick equations as we saw in §8.1.4. (see 
equations (8.58) and (8.59))

 
c t c cR R R

app( , )0
1

=
+







=ξ θ
ξ θ  

(9.104)

and
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(9.105)

with
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(9.106)

and
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O
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(9.107)

Fig. 9.36 Normalised profiles of the concentration perturbation of the reacting species for 
different phase angles in a thin layer of solution. 
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To calculate the Warburg impedance at different electrode potentials along 
the applied potential ramp, we introduce the average values of the interfacial 
concentrations into equation (9.67) instead of the bulk concentrations cR and cO. We 
have already used this ‘subterfuge’ in §8.2.4, which consists of saying that the system 
behaves as if, vis a vis the small sinusoidal variations of the interfacial concentrations, 
the average values represent the bulk concentrations of a homogeneous solution.

 
σ = +













RT

n F A c D c D2 2 2

1 1

R
app

R O
app

O  
(9.108)

The faradaic diffusion impedance, which is the module of the Warburg impedance 
is therefore 
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(9.109)

To simplify this calculation, we put 

 ξθ = ea
 (9.110)

or again

 
a

c t D

c t D

nF

RT
E E= = − −( )R R

O O

( , )

( , ) /
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0 1 2
 

(9.111)

Thus, by using the following equality, 

 
ξθ

ξθ
+ + = + + =−2

1
2 4 22e e aa a cosh ( / )

 
(9.112)

the faradaic impedance is 
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(9.113)

Fig. 9.37  AC Voltammogram for E = 10mV,  = 0.01 rad·s–1 and D = 10–10 m2·s–1, c = 1 mM.
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Thus, if we apply a potential ramp Edc with a superimposed sinusoidal potential of 
amplitude Eac

 E E E t= + ( )dc ac∆ sin ω  (9.114)

The resulting alternating current can be obtained using equations (9.15) and (9.16), 
i.e.
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ω
ω π ω π
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∆ ∆

 
(9.115)

This ‘bell-shaped’ curve has a maximum given by 

 
∆ ∆I

n F Ac D

RT
Emax

R R
ac=

2 2

4

ω
 

(9.116)

as shown in Figure 9.37.
The peak current increases with the square root of the angular frequency, but is 

directly proportional to the amplitude of the applied alternating potential provided that 
its amplitude is small enough, so that the electrochemical system can be considered 
as linear. So for fairly small amplitudes, the width of the peak at mid-height is 90.4/n 
mV. If experimentally the width of the peak at mid-height is larger, that means that the 
reaction is not electrochemically reversible but is limited by the kinetics of the charge 
transfer reaction.
 It is straightforward to show that equations (9.116) and (9.117) can be combined 
to give 
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(9.117)

9.4.2   Potential-modulated reflectance (fluorescence) spectroscopy

 The principle of this spectro-electrochemical technique is, for reflectance, to 
shine a light beam onto an electrode and measure the intensity of the reflected signal 
as it passes through the solution, and more particularly through the diffusion layer, as 
shown in Figure 9.38. To distinguish the response of the diffusion layer from the rest 
of the solution, it is worthwhile to modulate the electrode potential by a sinusoidal 
potential and to measure the relative response (DR/R) of the reflectance. If the nature 
of the diffusing species permits, it is interesting to measure the fluorescence coming 
from the diffusion layer.
 In total reflection from a metal electrode or from a liquid | liquid interface, the 
absorbance is given as a first approximation by the Lambert-Beer law, which, by 
integrating over the whole optical path gives 
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c x t
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∞
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(9.118)

where  is the molar absorption coefficient,  the angle of reflection and x the normal 
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distance to the electrode. The quantity of absorbing species present in the diffusion 
layer corresponds to the charge passed, and so we have 
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(9.119)

The Laplace transform of the absorbance is therefore
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  (9.120)
By using equation (9.114) as before, we have
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(9.121)

thus by making the hypothesis that 

 E E E t= + ( )dc ac∆ sin ω  (9.122)

then taking the inverse transform, we optain 
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(9.123)

From the definition of the absorbance

 
A T

I

I
= − = −
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(9.124)

where I is the light intensity of the reflected beam and  the intensity of the incident 
beam, we have 

 
d

d d
A

I

I

R

R
= − = −λ

λ  
(9.125)

Fig. 9.38  Schematic diagram of a system for measuring the reflectance from the diffusion 
layer.
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where R is the reflectance, the equivalent of the transmittance for a reflected beam. 
And so, by substitution, we get 

 

∆ ∆R

R

nFc D

RT a
E= − ε

θ
ω

cos cosh
R R

ac
/

( / )2 22
 

(9.126)

Equation (9.123) shows that this spectro-electrochemical method allows the indirect 
measuring of the alternating current with a phase shift of 90°. The advantage of this 
approach is that only the faradaic component of the electrochemical reaction is meas-
ured, whereas the amperometric approach described in §9.4.1 can be perturbed by 
capacitive currents associated with the presence of the double layer.
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375Cyclic Voltammetry 

CHAPTER 10

CYCLIC VOLTAMMETRY 

10.1 ELECTROCHEMICALLY REVERSIBLE REACTIONS
 WITH SEMI-INFINITE LINEAR DIFFUSION 

10.1.1  Integration method 

 Cyclic voltammetry is without any doubt the most universal electrochemical 
technique, used either to elucidate reaction mechanisms or to carry out quantitative 
analysis. In fact, it should be more accurately called cyclic voltamperometry, but 
cyclic voltammetry has become the accepted term.
 The technique consists of varying the electrode potential in a linear fashion 
between two limits: the initial electrode potential Ei and the final electrode potential 
Ef so as to probe the reactivity of the electrochemical system over a large range of 
potentials in a single sweep. By varying the sweep rate, we can also probe the kinetics 
of the reactions and/or the mass transfer process.
 For an oxidation, we usually start from an electrode potential value where no 
oxidation takes place and sweep, on the forward scan, the electrode potential to more 
positive values 

 E(t)   =   Ei + vt (10.1)

After reaching the final value usually set at electrode potential values just before the 
oxidation of the solvent or that of the supporting electrolyte, the electrode potential is 
scanned back to the initial value

 E(t)   =   Ef  –vt (10.2)

On the reverse scan, we reduce part of the species oxidised on the forward scan. 
 is called the sweep rate (or scan rate) and can vary from a few millivolts per second 
to a few million volts per second, according to the application and the size of the 
electrode.
 The differential equations for cyclic voltammetry are the differential diffusion 
equations for the oxidised or reduced species
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The boundary conditions for an oxidation on the forward scan usually assume that 
we start with only reduced species present in solution, and the initial conditions read

 c x cR R,0( ) =    and    c x cO O,0 0( ) = ≈  (10.5)

In effect, by fixing the initial electrode potential value more than 120 mV more 
negative than the standard redox potential of the oxidation process under investigation, 
we ensure that the surface concentration of oxidised species at the start of the scan is 
negligible.
 If we assume that the volume of the solution is large enough, the bulk boundary 
conditions are

 lim ( , )x c x t c→∞ =R R    and   lim O Ox c x t c→∞ = ≈( , ) 0  (10.6)

 The equality of the diffusion fluxes at the interface creates an additional boundary 
condition 
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(10.7)

To solve the Fick differential equations with the Nernst equation as a boundary 
condition, it is preferable to define the following dimensionless parameters:
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(10.9)

and

 
σ ν= nF

RT  
(10.10)

 To calculate the current-potential response, we shall first calculate the interfacial 
concentrations of O and R to substitute in the Nernst equation (10.8). As seen in 
Chapter 8, the Laplace transform for the concentration of the reduced species is 
obtained by solving the Laplace transform of equation (10.4)
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(10.11)

In turn, the Laplace transform for the current is
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(10.12)

Thus, the constant A(s) can be determined as :
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The Laplace transform of the interfacial concentration of the reduced species is then
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(10.14)

In order to calculate the inverse Laplace tranform of equation (10.14), we use the 
convolution theorem that provides the inverse transform of a product 
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(10.15)

The inverse transform of 1/Ms being 1/klt, the interfacial concentration of the reduced 
species is 
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(10.16)

By introducing f(), the interfacial mass flux defined by 
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(10.17)

equation (10.16) becomes
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(10.18)

The integral of equation (10.18) is what is commonly called the convoluted current, 
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(10.19)

In the same way, it is easily shown that the interfacial concentration of the oxidised 
species is given by:
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  (10.20)

From the two expressions for the interfacial concentrations  of O and R, and the Nernst 
equation, we obtain a relationship between the convoluted current and the potential
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from which we can express the convoluted current as 
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with  being a dimensionless number, previously defined by

 
ξ = D

D
R

O  
(10.23)
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To be able to integrate equation (10.22), it is handy to make the following change 
of variable

 z = στ     and    f g z( ) ( )τ =  (10.24)

so that equation (10.22) becomes
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(10.25)

the function  is dimensionless being defined as 
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This function  can be calculated numerically step by step after segmenting the 
variable z in n intervals.
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with

 z = n    and    t = n (10.28)

An integration by parts of equation (10.27) then gives 
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(10.29)

This last integral can be approximated in the form of a sum such that 
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(10.30)

Thus, we can calculate the values of  as a function of the electrode potential
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(10.31)

This calculation is done by successive iterations. For n = 1, we have simply 
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(10.32)

then for n = 2, we have
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then for n = 3
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  (10.34)

We now see the iteration that permits the calculation of (n) as a function of the 
previous values. A simple numerical calculation then allows us to determine the values 
of . The results of this numerical approach for the calculation of the dimensionless 
current  are shown in Figure 10.1. The main results of this numerical integration are 
the following:
 • Equation (10.26) can be re-written in the form 

   
I t nFA c D

nF

RT
t( ) ( )σ π ν χ σ= 



R R

 
(10.35)

that shows that the current is proportional to the square root of the scan rate and 
to that of the diffusion coefficient.

 • The maximum value of M is 0.4463 as shown in Figure 10.1, and the maximum 
current is then simply

     
I nF A c

nFvD

RTp R
R= 0 4463.

 
(10.36)

  This equation is known as the Randles-Sevcik equation.
 • The separation between the maximum current (at E1/2 + 28.5/n mV) and the

minimum current (at  E1/2 – 28.5/n mV) is therefore 59/n mV .
 • The potential values for the maxima and minima are independent of the scan 

rate.
 • If the reaction kinetics is not fast enough with respect to the mass transfer, an

increase in the separation of the peak potentials as the scan rate increases is
observed. 

Fig. 10.1  Dimensionless cyclic voltammogram. 
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 The methodology developed above applies to all charge transfer reactions limited 
by the diffusion of the reactants towards a plane surface and products away from this 
surface. Therefore, it applies just as well to redox reactions at an electrode as to ion 
transfer across a liquid|liquid interface.
 From an experimental point of view, it is always interesting to record voltam-
mograms at different scan rates as shown in Figure 10.2. A good voltammogram for a 
reversible system is characterised by the following points:
 • The position of the peaks is independent of the scan rate. Displacement is due

 to either a badly compensated ohmic drop or to slow electrochemical reaction
 kinetics.

 • The peak current is proportional to the square root of the scan rate. The ordinate 
 at the origin of the straight line obtained by plotting the peak current as a
 function of the square root of the scan rate should pass through the origin. A
 positive displacement is in general due to a high value of the capacitive current
 or an offset of the potentiostat.

 • An isosbestic point should be observed for I = 0. This can be used for working
 out the half-wave potential value. For n = 1, this point is at E1/2 + 0.046 V.

Fig. 10.2  Cyclic voltammogram of the transfer of tetramethylammonium ions across a water 
|1,2-dichloroethane interface [Murray Osborne, EPFL].

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

0.2 0.3 0.4 0.5 0.6

o
wf /V

I 
/ µ

A

© 2004, First edition, EPFL Press



380 Analytical and Physical Electrochemistry 381Cyclic Voltammetry 

10.1.2  Convoluted current

 It is interesting to come back to the notion of convoluted current, also called 
the semi-integrated current and to express the interfacial concentrations given by 
equations (10.18) & (10.20) in the form
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and
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In the same way that we have defined the limiting diffusion currents in steady state 
amperometry (see equations (7.30) & (7.31)), here we can define the limiting anodic 
convoluted current

 Î c Dla R R= π  (10.39)

so that equation (10.18) becomes
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By substituting equations (10.39) and (10.40) in the Nernst equation, we find an 
equation similar to equation (7.34) i.e.
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Figure 10.3 shows the variation of the convoluted current as a function of the 
potential 

Fig. 10.3  Variation of the convoluted current (normalised by the limiting anodic convoluted 
current) as a function of the applied potential.
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The interfacial concentrations can be easily calculated if we know the convoluted 
current as a function of the potential. In order to know the full concentration profiles 
at different electrode potentials, it is necessary to do a numerical simulation. The 
method consists of solving the Fick equations as a function of the distance from the 
electrode. Various methods using different algorithms have been developed. Figure 
10.4 shows a few concentration profiles of the reduced species at different electrode 
potentials with the conditions as in Figure 10.1, the simulation being obtained by the 
finite element method.

It is important to note that the surface concentration of the reacting species, 
normalised by the bulk concentration is 0.26 when the current reaches its maximum 
value. A widespread error is to think that the current reaches a maximum because the 
interfacial concentration becomes negligible. The data in Figure 10.4 show clearly 
that the concentration only becomes negligible when the applied potential is much 
greater than the formal redox potential. 

10.2  INFLUENCE OF THE KINETICS
 Cyclic voltammetry is quite a convenient qualitative method for determining 
whether a simple electrochemical reaction is limited by diffusion (so-called reversible 
systems) or completely limited (irreversible systems) or partially limited by kinetics 
(quasi-reversible systems).

10.2.1  Electrochemically quasi-reversible reactions

 For electrochemically quasi-reversible reactions, the surface concentrations are 
controlled both by kinetics and diffusion. As a consequence, the Nernst law (10.8) 

Fig. 10.4  Concentration profiles at different potentials: A: E1/2 – 28 mV (I = Ip/2), 
B: E1/2 + 28 mV (Forward peak, I = Ip), C: E = E1/2 + 250 mV (final potential), D: E = 
E1/2 + 46 mV (Return sweep, Ip = 0), E: E1/2 – 28 mV (Return peak). Sweep rate : 100 mV·s–1, 
Diffusion coefficient : 10–9 m2·s–1 [Rosaria Ferrigno, EPFL].
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cannot longer be used as a boundary condition. The interfacial concentrations under 
kinetic control are given by the Butler-Volmer equation (7.16)

    
I nF A k c e c enF E E RT nF E E RT= −





− − − −o
R O( ) ( )( )/ ( ) ( )/0 0 1α αo / /o

 
(10.42)

By using the notations of (10.8) and (10.9), this equation becomes

 
I nF A k S t c c S t= [ ] −[ ]−o θ θα( ) ( ) ( ) ( )R O0 0

 
(10.43)

By replacing the interfacial concentrations by equations (10.18) and (10.20), we 
have

 
f k S t
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D
S t c
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D
c( ) ( )

ˆ( )
( )

ˆ( )τ θ τ
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θ τ
π

α= [ ]
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


− +


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











− −o
R

R
O

O  

(10.44)

To simplify the calculations, we need to make the hypothesis that the diffusion 
coefficients DR and DO are equal. Thus equation (10.44) is rearranged as 

 

f

k c S t
S t

S t

c D
I

( )

( )
( )

( ) ˆ( )
τ
θ

θ
π

ταo
R R[ ]

= − − +
− 1

1

 
(10.45)

Again using the definitions (10.24 - 10.26), we have

 

χ στ
ψ θ

θ χ
σα

σ( )

( )
( ) ( )

S t
S t S t

z z

t z

t

[ ]
= − − +( )

−− ∫1 1
0

( ) d

 
(10.46)

with

 
ψ

π σ π ν
= =k

D
k

RT

DnF

o
o

 
(10.47)

Fig. 10.5  Calculated cyclic voltammograms for quasi-reversible reactions. (a)  = 1, (b)  = 
0.5 and (c)  = 0.1.
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As described in §10.1, we can calculate by numerical integration the dimensionless 
current .
 As the results in Figure 10.5 show, the separation of the peaks increases when the 
rate constant decreases or when the sweep rate increases. 
 Taking into account equation (10.46), it is important to note that the peak current 
measured experimentally will not be proportional to the square root of the sweep 
velocity. Effectively, the dimensionless current decreases as the sweep rate increases.

10.2.2  Influence of the ohmic drop 

 One of the major flaws in cyclic voltammetry is that a badly compensated 
potential drop for an electrochemically reversible system as studied in §10.1.1 
appears as the signature of a quasi-reversible reaction kinetic as described above. 
This is why cyclic voltammetry is not recommended as a quantitative method to 
measure electrochemical reactions rates. (Certain outspoken critics go so far as to 
claim that some of the rate constants published in the literature are nothing more than 
measurements of ohmic drops). Figure 10.6 shows this effect, already described in 
§7.4.2 for steady state amperometry.

10.2.3  Electrochemically irreversible reactions

 For electrochemically irreversible systems, the reverse reaction is so slow at 
electrode potentials larger than the standard redox potential that it can be ignored and 
so equation (10.42) reduces to

Fig. 10.6  Influence of the ohmic drop on cyclic voltammetry. Dotted line R = 0, continuous line 
R = E/1/2 = 0.1 V–1.

����

����

���

���

���

���� ���� ���� ��� ��� ��� ���

(E–E1/2) / V

1/
2 

© 2004, First edition, EPFL Press



384 Analytical and Physical Electrochemistry 385Cyclic Voltammetry 

 
I nF A k c e nF E E RT= 





−o
R( ) ( )/0 α o /

 
(10.48)

and consequently equation (10.46) becomes

 

χ στ
ψ θ

χ
σα

σ( )

( )S t

z z

t z

t

[ ]
= −

−− ∫1
0

( ) d

 
(10.49)

The results obtained by numerical integration are shown Figure 10.7. As with 
steady state amperometry (see Figure 7.23), we see a displacement of the same curve, 
away from the standard redox potential when the rate constant decreases. 
 Since it can be observed in Figure 10.7 that the peak current does not depend on 
the kinetic parameter , it is be, as for reversible reactions, proportional to the square 
root of the sweep rate.

10.3  EC REACTIONS 

10.3.1  ECr reactions

 One of the major advantages of cyclic voltammetry is to be able to study the 
mechanisms of complex reactions. To illustrate this, let’s look at what we shall call an 
ECr mechanism (Electrochemically reversible reaction at the electrode followed by a 
Chemically reversible reaction).

                              kf
 R i O + ne– i P
                              kb

Fig. 10.7 Cyclic voltammogram of irreversible reactions: (a)  = 0.01, (b)  = 0.001, 
(c)  = 0.0001.
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The differential equations must now take into account the rates of the chemical 
reactions

 

∂
∂

∂
∂

c x t

t
D

c x t

x
k c x t k c x tO

O
O

f O b P
( , ) ( , )

( , ) ( , )= − +
2

2  
(10.50)
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(10.51)

and for the product P

 

∂
∂

∂
∂
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t
D

c x t

x
k c x t k c x tP
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P

f O b P
( , ) ( , )

( , ) ( , )= + −
2

2  
(10.52)

The boundary conditions for an oxidation are such that we consider that only the 
species R is present in solution at the start of the scan

 c x cR R,0( ) =    and   c x cO O,0 0( ) = ≈   and   c x cP P,0 0( ) = ≈  (10.53)

We still consider that the volume of the reaction is large enough so that the bulk 
boundary conditions are

lim ( , )x c x t c→∞ =R R    and   lim O Ox c x t c→∞ = ≈( , ) 0   and   lim P Px c x t c→∞ = ≈( , ) 0   
  (10.54)

 We still make the hypothesis that the initial electrode potential is negative enough 
with respect to the standard redox potential such that the interfacial concentration of 
oxidised species is negligible at equilibrium at the initial electrode potential.
 The equality of the fluxes of O and R at the interface remains valid, as does the 
Nernst law for the interfacial concentrations.
 The best way of treating these problems of coupled reactions is to change the 
variables so that we return to something resembling Fick equations. Here, we define a 
virtual concentration ctot as

 c x t c x t c x t c x t Ktot O P O( , ) ( , ) ( , ) ( , )= + = +[ ]1  (10.55)

where K is the chemical equilibrium constant. The hypothesis pertaining to equation 
(10.55) is that we have a post-equilibrium to the redox reaction where kf and kb are 
high.

In this way, the sum of the differential equations of O and P reduces to 

 

∂
∂

∂
∂

c x t

t
D

c x t

x
tot tot( , ) ( , )=

2

2  
(10.56)

if we make the hypothesis that the diffusion coefficients of O and P are both equal 
to D. Since the boundary conditions for the interfacial flux of P is

 
D

c x t

x x

∂
∂

P( , )



 =

=0
0

 
(10.57)
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the condition for the equality of the fluxes is

 
D

c x t

x
D

c x t

xx x

∂
∂

∂
∂
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R

R( , ) ( , )



 + 



 =

= =0 0
0

 
(10.58)

By doing so, we are back to the case described in §10.1 and we can therefore calculate 
the interfacial concentrations as a function of the convoluted current 

 c t c I t DR R R( , ) ˆ( ) /0 = − π  (10.59)

and

 c t I t Dtot ( , ) ˆ( ) /0 = π  (10.60)

The convoluted current is obtained by substituting equations (10.59) and (10.60) 
in the Nernst equation

 
θ

π
π

S t
c I t D

I t K D
( )

ˆ( ) /
ˆ( ) /

=
−

+( )
R R

O1  
(10.61)

We can express the convoluted current as a function of the potential as before

 
ˆ( )

( )
I t

K D c

K S t
=

+( )
+ +

1

1

π
ξ θ

R R

 
(10.62)

  is a dimensionless number defined by:

 
ξ = D

D
R

O  
(10.63)

Fig. 10.8  Influence of the post-equilibrium constant on the cyclic voltammogram. (a) K = 100, 
(b) K = 10, (c) K = 1 and (d) K = 0.
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The current is then obtained by numerical integration as before, and the results 
are shown in Figure 10.8. A displacement of about (RT/nF)ln(1+K) between the 
voltammograms can be seen.
 If the chemical step is a pseudo-first order complexation reaction of the oxidised 
species O with m ligands L

                  kf
 O + mL  i OLm
                   kb

cyclic voltammetry can be used to measure the complexation constant Kc =
cOLm

/cOc m
L

10.3.2  ECi reactions

 Another type of complex reactions includes post-redox non-chemically reversible 
chemical reactions and whose reaction kinetics may be slow 

 R i O + ne–  r P

We shall called these reactions ECi reactions (Electrochemically reversible reaction at 
the electrode followed by a Chemically irreversible reaction).
 A classic example is the oxidation of para-aminophenol in quinone imine followed 
by its hydrolysis to form benzoquinone. Para-aminophenol is a redox molecule often 
used in the conception of amperometric biosensors.

Here, a change of variables is not necessary. We shall start directly from equations 
(10.50)-(10.52) taking kb = 0.

The Laplace transform of the concentration of R is still 

 
c x s

c

s
A s e

s
D

x

R
R R( , ) ( )= +

−

 
(10.64)

whilst the Laplace transform of equation (10.50) is
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x
k cO O O O

O
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( , )− ≈ = −0
2

2
∂

∂  
(10.65)

so the Laplace transform of the concentration of O is 

 c x s B s e

s k
D

x

O
O

f
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− +

 
(10.66)
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and that of the current is 

 
I s nFA D

c x s

x
nFA D A s

s

Dx

( )
( , )

( )= 





= −










=
R

R
R

R

∂
∂ 0  

(10.67)

and
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(10.68)

The constant A(s) can then be determined to be equal to

 
A s

I s

nFA D

D

s
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( )= −
R

R

 
(10.69)

The Laplace transform of the interfacial concentration of R is therefore
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(10.70)

and the constant B(s) is given by:
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(10.71)

The transform of the interfacial concentration of O is then simply :

 
c s

I s

nFA D

D

s kO
O

O

f
( , )

( )
0 =

+  
(10.72)

The interfacial concentrations are then
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(10.73)

and knowing that L–1{(s + a)–1/2} = e–at/MVVt, we have
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(10.74)

By substituting in the Nernst equation, we get 
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(10.75)

In order to integrate, we can expand this expression to give 

     
ξθ τ τ τ π τ τ ττS t f e t c D f tk tt t
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(10.76)
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which is again
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(10.77)

To integrate the term on the left, we put x = Ml(llt l– llzl).
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(10.78)

 is often called the kinetic parameter ( = kf/). Thus, equation (10.77) becomes

 
2 2 11

0

1

0

2
ξθ σ λ χ λ χ

λσ λσ
S t e x x x xxt t

( ) ( ) ( )− − −∫ ∫+ =d d
 

(10.79)

knowing that

 
erf d( )x e yyx

= −∫2 2

0π  
(10.80)

The first integral of equation (10.79) can be integrated by parts 

 
e x x x x x xxt t t−∫ ∫= [ ] −

2

0 0 02 2
χ π χ π χ
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( ) ( ) ( ) ( ) ( )d erf erf d

 
(10.81)

and in the same way, the second integral is 

 
χ χ χ

λσ λσ λσ
( ) ( ) ( )x x x x x x

t t t
d d

0 0 0∫ ∫= [ ] −
 

(10.82)

Fig. 10.9  Influence of the chemical reaction rate constant on the cyclic voltammogram. 
(a) =1000, (b) =10, (c) =0.1.
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By substitution, we then have
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(10.83)

When the kinetic parameter  is small, we have 

 
erf( )λσ

π
λσt t= 2

 
(10.84)

and so we fall back on equation (10.25).
 Equation (10.83) can be numerically integrated as before.
 We see here that cyclic voltammetry is an excellent tool to study the kinetics 
of chemical reactions in the bulk. Using ultrafast cyclic voltammetry with ultra-
microelectrodes, it is possible to access the nanosecond time domain.

10.3.3  ECcat reactions

 The last category of post-redox reactions that we shall look at is that of the 
catalytic reactions or ECcat reactions (Electrochemically reversible reactions at the 
electrode followed by a Chemical reaction catalycally regenerating the original 

reduced species)

 In order to simplify, consider that Z is always in excess, and then the differential 
equations are reduced to the following
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(10.85)

and
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(10.86)

with the initial boundary conditions for an oxidation given by 

 c x cR R,0( ) =     and    c x cO O,0 0( ) = ≈     and    c x t cZ Z,( ) =  (10.87)

with as before the hypothesis that the initial potential is far enough from the standard 
redox potential so that the initial concentration of the oxidised species can be 
neglected. Considering a large volume of the solution, we also have the following 
bulk boundary conditions
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 lim ( , )x c x t c→∞ =R R    and    lim O Ox c x t c→∞ = ≈( , ) 0  (10.88)

The Laplace transforms of reactions (10.85) and (10.86) are then 
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First, we have to solve equation (10.89) and bring the concentration of c̄O(x, s) 
into equation (10.90). The Laplace transform of the concentration of O is, as before 
(see equation (10.66))
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(10.91)

The Laplace transform of the current expressed as a function of the diffusion flux of 
O is 

 
I s nFA D

c x s

x
nFA D B s

s k c

Dx

( )
( , )

( )= − 





= +









=
O

O
O

f Z

O

∂
∂ 0  

(10.92)

which allows us to determine the constant B(s)

 
B s

I s

nFA D

D

s k c
( )

( )=
+O

O

f Z  
(10.93)

Thus, the Laplace transform of the concentration of the oxidised species is 
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Equation (10.90) then becomes 
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which is a differential equation of the type:

 

∂
∂

2

2
y x

x
a c y x dbx( )

( )+ ⋅ − ⋅ =−exp
 

(10.96)

The solution of this equation is the sum of a particular solution and the solution 
of the homogeneous equation. To solve the homogeneous equation, we can use, for 
example, the Laplace transformation method. The transform of the homogeneous 
equation is:
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(10.97)

which, by factorising, yields 
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(10.98)

Taking the inverse transform, we then get 

 y x u s v s w sx s x s bx( ) ( ) ( ) ( )= + +− −exp exp exp  (10.99)

Coming back to equation (10.95), the solution of the homogeneous equation is then 
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Applying the boundary conditions (10.88) shows that v(s) = 0 since the concentration 
cannot tend to infinity. 
 The particular solution is also given by equation (10.88) and so we have 
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To determine the two other integration constants, we can use the definition of the 
current:
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We can also use the transform of the mass conservation law 

 
c x s

c

s
x c x s xR

R
Od d( , ) ( , )−





+ =
∞ ∞
∫ ∫0 0

0
 

(10.103)

which is, by replacing
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In the simple case DO = DR, we find that u(s) = 0 and that 

 
w s

I s

nFA D

D

s k c
( )

( )= −
+ f Z  

(10.105)

Finally, the Laplace transform of the concentration of the reduced species is 
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Fig. 10.10  Influence of the kinetic parameter l on the cyclic voltammetry of catalytic reactions, 
the representation being normalised by the limiting current. (a)  = 0.01, (b)  = 0.1, (c)  = 10.

The Laplace transform of the interfacial concentration in O is then:
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and that of R 
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As before  L–1{(s + a)–1/2} = e–at/MVVt, and the interfacial concentration of O is 
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and that of R 
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Substituting in the Nernst equation, we get 

 

θ π
τ τ τ

π
τ τ τ

τ

τ
S t

c t

c t

c
D

f e t

D
f e t

k c tt

k c tt( )
( , )
( , )

( ) ( )

( ) ( )

( ) /

( ) /
= =

− −

−

− − −

− − −

∫

∫
R

O

R
f Z

f Z

d

d

0
0

1

1

1 2

0

1 2

0

  
  

(10.111)

�

�

�

��

���� ���� ��� ��� ���

(E–E1/2) / V

(
/

)1/
2 

(a)

(c)

(b)

© 2004, First edition, EPFL Press



394 Analytical and Physical Electrochemistry 395Cyclic Voltammetry 

 This equation can be integrated numerically by parts as before, by making the 
same change in the variables. Here, we define the kinetic parameter 

 
λ

σ ν
= =k c k c T

nF
f Z f ZR

 
(10.112)

We can see in Figures 10.10 and 10.11 that for high values of  the current tends to a 
limiting value. 

The limiting current is simply given by 

 I nFAc D k cZ∞ = R f  (10.113)

The wave obtained for large catalytic recyclings is simply given by 
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nF E E RT=

+ −
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(10.114)

 For efficient catalytic recycling, the current potential response is similar to that 
obtained in steady state amperometry (see Figure 7.13). The major difference here is 
that the limiting plateau current is controlled by the kinetics of the catalytic reaction.

Fig. 10.11  Influence of the parameter l on the cyclic voltammograms for ECcat reactions.
 (a)  = 0.01, (b)  = 0.1, (c)  = 10.
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10.4 ELECTRON TRANSFER AT LIQUID | LIQUID
 INTERFACES
 Electron transfer reactions at liquid | liquid interfaces, such as those shown in 
Figure 2.16, are interesting from a mass transfer point of view. In effect, we need to 
consider the arrival of two reactants at the surface and the departure of two products 
away from it. 
 For a reaction of the type 

 O
1
w + R

2
o  i  R

1
w + O

2
o

where the O1/R1 redox couple is in the aqueous phase and the O2/R2 redox couple is 
in the organic phase, there are then four differential equations to solve. Two for the 
aqueous phase
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and two for the organic pahse
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The initial boundary conditions are 
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and the bulk boundary conditions are
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(10.121)
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The equalities of the diffusion fluxes at the interface are 
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As in §10.1, going via the Laplace transformations of the Fick equations and the 
introduction of the notion of convoluted current allows us to obtain the Laplace 
transforms of the concentrations of the reactants and products 
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The Nernst equation (2.67) allows us to establish a ratio between the surface 
concentrations 
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Again using the notations of equation (10.8), we write 

  (10.130)

By substitution, we find that the convoluted current is the root of the quadratic 
equation 

 aI t bI t cˆ( ) ˆ( )2 0+ + =  (10.131)

with, taking all the diffusion coefficients as equal, 
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c c c S t c c= −O R R O1 2 1 2

θ ( )
 (10.134)

By defining the following parameters 

 
c c c1 = +O R1 1       

c c c2 = +O R2 2       κ = c c2 1/  (10.135)

© 2004, First edition, EPFL Press



398 Analytical and Physical Electrochemistry 399Cyclic Voltammetry 

 
α = c cR 11
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 (10.136)

the coefficients a, b and c reduce to 

 a S t D= −( )θ π( ) /1  (10.137)
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So the convoluted current is now 
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As before, we can do a numerical integration avoiding the discontinuity at a = 0 
and w

of   =  w
of  o  / . Thus, taking up the definitions in §10.1, we have 
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(10.141)

 For the case a  =  0.5, i.e. when there is an equimolar mixture of oxidised and 
reduced species in a phase, e.g. the aqueous phase, for small values of , the mass 
transfer is limited by the diffusion of the species in an organic phase, and the situation 
reduces to that of redox reactions on solid electrodes. When  increases, diffusion in 
the aqueous phase plays a role as demonstrated by the data in Figure 10.12.

Fig. 10.12 Cyclic voltammogram for electron transfer reactions at liquid | liquid interfaces. The 
curves are normalised by the ratio  of the concentrations. a = 0.5, (a)  = 0.001, (b)  = 0.1 
and (c)  = 1.
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 Another interesting case is when a ≈ 1,   ≈ 0 and  = 1. Here, there is a separation 
of about 120 mV between the peaks as if each reactant diffusing towards the interface 
carried a charge of 1/2. The forward peak current is such that MN = 0.4463◊M2.
 Apart from these two extreme cases, there are no particular criteria for studying 
electron transfer reaction at liquid | liquid interfaces, and a numerical integration is 
necessary to analyse each experimental case.

10.5  ASSISTED ION TRANSFER AT LIQUID | LIQUID
   INTERFACES
 Ion transfer reactions assisted by a ligand, either hydrophilic or lipophilic, 
represent an interesting class of electrochemical reactions where cyclic voltammetry 
provides precious information on the type of reaction. 
 It is possible to distinguish 3 types of ion transfer reactions from the aqueous 
phase to the organic phase assisted by the presence of a ligand or ionophore:

 • Aqueous Complexation reactions followed by Transfer (ACT)
 • Transfer reactions followed by Organic phase Complexation reactions (TOC),
 • Transfer by Interfacial Complexation, Transfer by Interfacial Dissociation 
   (TIC/TID)

 In the simple case of the transfer of an ion M+ by a ligand L, partially soluble in the 
two phases, we can consider three equilibria: the two equilibria of the complexation 
reactions in the adjacent phases and the equilibrium for the distribution of the ligand 
between the two phases

Fig. 10.13 Cyclic voltammogram of electron transfer reactions at liquid | liquid interfaces. 
a = 1,  = 0 and  = 1.
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 From a mass transfer point of view, we need to consider the diffusion of the ion, 
of the ligand and of the complex in the two phases. Therefore, we have three equations 
per phase. 
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with the following initial conditions
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and the following bulk boundary conditions for the aqueous phase
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and for the organic phase

lim
M
o

M
o

+ +x c x t c→−∞ =( , )
   

lim L
o

L
o

x c x t c→−∞ =( , )
  

lim
ML
o

ML
o

+ +x c x t c→−∞ =( , )
 (10.149) 

If we make the hypothesis that the kinetics of the complexation and decomplexation 
are rapid, it is convenient as in §10.3.1, to consider virtual total concentrations of the 
metal and the ligand. 

 
c c cMtot M ML= ++          

c c cLtot L ML= +
 (10.150)

Thus, by considering that all the diffusion coefficients in a phase are equal, equations 
(10.143)-(10.145) reduce to
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The conditions for the interfacial concentrations are given by the Nernst equation 
for the transfer of the M+ ion, i.e. 
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(10.153)

and by the Nernst equation for the complex 
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The standard transfer potential of the complex is calculated from that of the 
transfer of the ion and the different equilibrium constants. Thus, we have 
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With the total concentrations defined above, the equations for the equality of the 
fluxes are 
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f(t) is the total flux of ions and g(t) the total flux of the ligand.
 As before, we can solve the Laplace transforms of equations (10.156)-(10.157) to 
obtain
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and

 
c t c

D

g t

t

t
Ltot
w

Ltot
w

w
d( , )

( )
0

1
0

= −
−∫π τ

τ
 

(10.160)

 
c t c

D

g t

t

t
Ltot
o

Ltot
o

o
d( , )

( )
0

1
0

= −
−∫π τ

τ
 

(10.161)

This results in a system of two equations
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which is by substitution
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We have therefore a quadratic equation which allows us to calculate cw
M(0,t) and 

cw
L(0,t). From this, we then deduce the total interfacial concentration 
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 By replacement in equation (10.158), it is possible to calculate the total charge 
flux by numerical integration. The example in Figure 10.14 shows clearly the assisted 
transfer of the ion before the transfer of the ion itself. The higher the complexation 
constant in the organic phase, the more the transfer is facilitated and thus happens at 
more negative potentials.

10.6  SURFACE REACTIONS 

10.6.1  Thin layer cell

 We saw in chapters 8 and 9 the influence of a finite diffusion layer on the imped-
ance. For cyclic voltammetry, the effect of a diffusion layer with a limited thickness 
has also important consequences.
 As in §10.1.1, consider a system comprising a reduced species with the following 
initial conditions

 c x cR R,0( ) =     and    c x cO O,0 0( ) = ≈  (10.167)

Again, let us make the hypothesis that the redox reaction is reversible, and that the 
interfacial concentrations obey the Nernst equation 
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Fig. 10.14  Cyclic voltammograms for ion transfer assisted by a ligand. Without the ligand is 
the dotted line, from left to right Kao = 105 and Kao = 103 (KD = 1000, Kaw = 0.001).
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with
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and
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(10.170)

For restricted volumes of solution, we can consider an equation for the conservation 
of mass such that the concentrations are considered to be homogeneous throughout 
the volume 
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By substitution, we get
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The current can be defined from the amount of charge passed which is 

 
I nFV

c t

t
= − 





d
d
R( )

 
(10.173)

By differentiating equation (10.173), we get 
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Fig. 10.15  Linear sweep voltammogram for an oxidation in a thin layer cell. cR = 1 mM, 
 = 1 mV·s–1.
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One of the characteristics of cyclic voltammetry in a thin layer cell is that the peak 
current is directly proportional to the scan rate. Another major characteristic is the 
symmetry of the peak as shown in Figure 10.15.
 The current on the return sweep is the opposite of that on the forward cycle. The 
forward and return peaks are therefore both centred on the formal potential.

10.6.2  Cyclic voltammetry for adsorbed species 

 For adsorbed species, equation 10.174 can be expressed as a function of the total 
interfacial concentration. By the same demonstration, we can show that
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10.7  HEMI-SPHERICAL DIFFUSION 
 When carrying out cyclic voltammetry on hemispherical electrodes (or even on 
microdisc electrodes) we should obtain at low scan rates a voltammogram resembling 
the steady state current-potential response as obtained in §7.4.2. To demonstrate this, 
we shall consider the differential Fick equations in spherical coordinates 
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and
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(10.177)

with the initial boundary conditions 

 c r cR R,0( ) =     and    c r cO O,0 0( ) = ≈  (10.178)

and the following bulk conditions

 lim R Rr c r t c→∞ =( , )     and    lim O Or c r t c→∞ = ≈( , ) 0  (10.179)

The equality of diffusion fluxes at the interface simply reads
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(10.180)

As before, to use the Nernst equation as boundary conditions, it is always preferable 
to define the following dimensionless parameters:
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(10.181)
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with 
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(10.182)

and again

 
σ ν= nF

RT  
(10.183)

To solve the Fick equations in spherical coordinates, there are several methods 
involving changes of variables. The simplest method is the one used in §8.1.2, which 
consists of putting 

 
u r t r c r t cO O O( , ) ( , )= −[ ] (10.184)

and

 
u r t r c c r tR R R( , ) ( , )= −[ ]  (10.185)

Thus, the Fick differential equations become 

 

∂
∂

∂
∂

u r t

t
D

c u t

r
O

O
O( , ) ( , )=

2

2  
(10.186)

and
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The Laplace transforms of these functions are 
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To find the constants a(s) and (s), as in linear diffusion we can use the definition of 
the current 
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From the definition of u, we have
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and
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From this, we deduce that 
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and
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If we make the hypothesis that DR = DO, then a(s) = (s). In this particular case, 
given that a(s) and (s) are the Laplace transforms of uO and uR with r = re, the 
functions uO and uR are equal at the surface of the electrode. Thus, expanding and 
introducing the Nernst equation, we have 

 c c r t c r t c c c r t S tR R e O e O O O e− = − = −[ ]( , ) ( , ) ( , ) ( )θ  (10.195)
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So the u functions at the electrode surface are 
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The current is then given by 
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The first term corresponds to the spherical contribution and the second to the current 
that we would have with a planar electrode 
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Notice that the spherical contribution converges to the limiting value of the diffusion 
current given by equation (7.41)
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Let’s demonstrate that the second term in equation (10.199) really corresponds to 
the current of a cyclic voltammogram on a planar electrode. Effectively, the Laplace 
transform of the u function is
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and the Laplace transform of the spherical contribution is 
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Differentiating equation (10.201) we get 

 
I nFAD

s

Dp = φ
 

(10.203)

We then have an expression which is independent of the size of the electrode and 
which is identical to equation (10.14). The current Ip can be calculated as in §10.1 to 
get the function .
 The graphs in Figure 10.16 show the influence of the different terms on the 
voltammetry. Of course, the linear contribution depends on the scan rate, and we 
can draw these voltammograms with the aid of a proportionality factor  and the 
dimensionless current .

10.8  VOLTABSORPTOMETRY
 This is an optical technique that can be used during cyclic voltammetry, which 
consists of measuring the absorbance or fluorescence linked to the presence of 

Fig. 10.16 Cyclic voltammogram in spherical coordinates normalised by the limiting diffusion 
current. The dotted line is the planar contribution, the solid line the spherical contribution and 
the total current (  = 3).
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absorbent or fluorescent ions in the diffusion layer. The basic principle is shown in 
Figure 9.38, since the setup is the same as for reflectance with a modulated potential.
 As in §9.4.2, a first approximation of the absorbance is given by the Lambert-
Beer law, which, by integrating over the whole optical path gives 
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(10.204)

where  is the molar absorption coefficient, and  the angle of reflection. The quantity 
of absorbing species present in the diffusion layer is equal to the charge passed as 
shown in Figure 10.17
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(10.205)

Thus, the absorbance is directly proportional to the charge passed.
The maximum of the curve on the return sweep corresponds to the isosbestic 

point of zero current.

10.9  SEMI-INTEGRATION
 From an electrical point of view, we saw in chapter 9 that an electrochemical 
system often behaves as a linear system. Thus, for different excitation functions, we 
have different responses.
 In fact, it is interesting to note that the electrochemical responses that we have 
studied are all linked by semi-integration as shown in Figure 10.18.

Fig. 10.17  Voltabsorptogram for the data in Figure 10.1.
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Fig. 10.18  The response of a reversible electrochemical system. The oblique arrows correspond 
to semi-integrations, the vertical arrows to classic integrations.

 From a practical point of view, it is always easier to integrate numerically rather 
than to differentiate, and therefore it is preferable if the experimental method can give 
us directly either the bell curve of AC voltammetry described in §9.4.1, or a cyclic 
voltammogram; all the other curves being then obtainable by semi-integration or 
integration.
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ANNEX A

VECTOR ANALYSIS

1  COORDINATE SYSTEMS
 In a three-dimensional space, a vector defined by a point M can be represented in 
Cartesian coordinates by:

 
OM = + +x y zˆ ˆ ˆi j k

In cylindrical coordinates, we have:

 
OM = +r zˆ ˆu kr

as illustrated in Figure A1,

and in spherical coordinates:

 
OM = r ûr

as illustrated in Figure A2. The angle f  from the x-axis is called the azimuthal angle 
and q the polar angle from the z-axis. The vector k̂ orients the angle vector f  and the 
vector ûf  , perpendicular to k̂ and  ûr , orients the angle f. The vector ûq is defined by 
the cross product ûq  = ûf  × ûr. 

Fig. A.1  Representation in cylindrical coordinates.
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The line element dM shown in Figure A3 is then
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2  CIRCULATION OF THE FIELD VECTOR
 Let a the field vector at point M and dM the line element along the curve C. By 
definition, the following differential form is called the circulation of the the vector a.

 δC = ⋅a dM

Expressed in Cartesian, cylindrical and spherical coordinates, we have
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a r a r a r

x y z

r z
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The following path integral is called the circulation of  a  along the path C, also called 
the flow of  a  along C, and the integral is called the flow integral.

Fig. A.3  Circulation of a vector along a path.

Fig. A.2  Representation in spherical coordinates.
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It can be shown that if we know the parametric equation of the curve (C) as a function 
of t, this integral reduces to 
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3   THE VECTOR GRADIENT
 The vector gradient of the scalar function V(M) is a vector such that 

 d grad MV V= ⋅( ) dM

 Given that  dV  is a total differential (also called the exact differential), we obtain 
the following equalities:
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As a result, we can derive the expression for the vector gradient in Cartesian 
coordinates 
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Likewise, in cylindrical coordinates, we have:
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And finally, in spherical coordinates
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4   FLUX OF THE FIELD VECTOR
 Let’s consider a surface element dS in a field vector. The flux of the field vector 
passing through this surface element is defined by :

 d dΦ = ⋅a n( ) ˆM S

The flux leaving a surface  S  is obtained by integrating over the entire surface.

 
Φ = ⋅∫∫ a n( ) ˆM dS

S

The sign of the flux depends on the choice of the unitary vector. In the case of a close 
surface, the flux is positive.

5 THE GREEN-OSTROGRADSKI THEOREM  

 The Green-Ostrogradski theorem states that, for any closed surface  S  from which 
a vector field is leaving, there is a scalar function of M called the divergence of the 
vector a such that:

 
a n a( ) ˆ( ) ( )P P M⋅ =∫∫ ∫∫∫d div dS

S V
τ

Fig. A.5  Flux of a vector a through a closed surface.

Fig. A.4   Vector flux through a surface element. 
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 In Cartesian coordinates, the volume element d   is defined as the cube  dxdydz. 
The flux leaving through the planes of abscissa  x   and  x+dx  , and through the surface  
dydz   is given by:

 
d d d d dΦx x x

xa x x a y z
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x
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By using the same reasoning for the other planes, we have:  
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According to the Green-Ostrogradski theorem, we obtain 
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In the same way, it can be shown that in cylindrical and spherical coordinates:
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We refer to a scalar function defined as the divergence of the gradient as the Laplacian 
of the scalar function V(M) 
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In the same way, we obtain for cylindrical and spherical coordinates
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ANNEX B

WORK FUNCTIONS AND 
STANDARD REDOX POTENTIALS

Data taken from Standard Potentials in Aqueous Solutions, edited by Bard, Parsons and Jordan, 
Marcel Dekker, 1985, New York, USA.

Table B. 1  Work function of metals.
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Table B.2 Standard redox potentials in acid solutions.
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Data taken from Standard Potentials in Aqueous Solutions, edited by Bard, Parsons and Jordan, 
Marcel Dekker, 1985, New York, USA.
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SYMBOLS

a activity no units

A area m2

c concentration M = mol · l–1 (molar)

C capacity F = C  ·  V–1(Farad)

d density kg  ·  m–3 or kg · l–1

D diffusion coefficient m2 · s–1 or cm2 · s–1 
D electric displacement vector C · m–2

e elementary charge = 1.602177 · 10–19 C 

E energy J

E electrode potential V

Eo
ox/red standard redox potential V

Eo/
ox/red formal redox potential V

[Eo
ox/red]SHE

standard redox potential with respect to the 
standard hydrogen electrode

V

[Eo
ox/red]Ag|AgCl|KClsat

standard redox potential with respect to the 
silver-silver chloride electrode in a saturated 
KCl solution

V

Eabs absolute electrode potential V

Eeq equilibrium electrode potential V

ED Donnan potential V

ESHE electrode potential on the SHE scale V
E electric field vector V · m–1

f fugacity Pa

f( ) distribution function

F Faraday’s constant = 96485 C · mol–1

FV volumic flow rate m3 · s–1

g(r) radial distribution function

G Gibbs energy J

G
~

electrochemical Gibbs energy J

G
–

i partial molar Gibbs energy for the species i J

G conductance W–1

Gm molar Gibbs energy J · mol–1

DGo standard Gibbs energy of a reaction J · mol–1

DGo
act

standard Gibbs energy of activation J · mol–1

DGo
tr,i

a Æ b standard Gibbs energy of transfer 
for the species i from a  to b

J · mol–1
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h Planck’s constant = 6.626 10–34 J · s

H enthalpy J

Hm molar enthalpy J · mol–1

DHf
formation enthalpy J · mol–1

DHhyd
hydration enthalpy J · mol–1

DHi
ionisation enthalpy J · mol–1

DHsol
solvation enthalpy J · mol–1

DHsub
sublimation enthalpy J · mol–1

DHR
reticulation or lattice formation enthalpy J · mol–1

I electric current A

I
–

Laplace transform of the electric current

Î convoluted current M · m · s–1/2

Io exchange current A

Ia anodic current A

Ic cathodic current A

Id limiting diffusion current A

j current density A · m–2

Ji flux vector for the species i  mol · m–2 · s–1

k Boltzmann’s constant = 1.38066 · 10–23 J · K–1 

ko standard rate constant m · s–1

ka anodic rate constant m · s–1

kc cathodic rate constant m · s–1

KA association constant no units

KD distribution constant no units

Ki Henry’s constant for the species i Pa

KS solubility product no units

Kij
pot selected coefficient in potentiometry

m molality mol · kg–1

M molar mass kg · mol–1

NA Avogadro’s constant = 6.02214 · 1023 mol–1

p pressure Pa

P distribution coefficient or partition coefficient no units

Po standard distribution coefficient no units

po standard pressure = 1 bar = 100 kPa

p* saturation vapour pressure Pa
p dipole moment vector C · m

P vecteur polarisation dielectrique C · m–2

q charge C

R gas constant = 8.34151J · K–1 · mol–1 

R resistance W
Rct charge transfer resistance W
S entropy J · K–1

Sm molar entropy J · mol–1 · K–1

t transport number no units
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T temperature K

U internal energy J

ui electric (or electrophoretic) mobility m2 · V–1 · s–1

ũi electrochemical mobility m2 · J–1 · s–1

v velocity vector m · s–1

V volume m3

V electrostatic potential V

Vm molar volume m3 · mol–1

xi molar fraction for the species i no units

Y admittance W–1

Z impedance W
ZW Warburg impedance W

a real chemical potential J · mol–1

 electric susceptibility no units

 surface potential V

 diffusion layer thickness m
 molar absorption coefficient m2 · mol–1

 permittivity J–1 · C2 · m–1 

0 vacuum permittivity
= 8.85419 · 10–12

    J–1 · C2 · m–1 

r relative permittivity no units
 interfacial tension N · m–1

 activity coefficient (in the molarity scale unless 
specified otherwise)

G surface concentration mol · m–2

G( ) surface excess concentration mol · m–2

 viscosity kg · m–1 · s–1

 reciprocal Debye’s length m–1

 Solvent re-organisation Gibbs energy kJ · mol–1

i molar ionic conductivity S · m2 · mol–1

o limiting molar ionic conductivity S · m2 · mol–1

Lm molar conductivity S · m2 · mol–1

Lm
o limiting molar conductivity S · m2 · mol–1

 chemical potential J · mol–1

o standard chemical potential (for the gas phase in 
chapter 1, in the molarity scale otherwise)

J · mol–1

̃ electrochemical potential J · mol–1

i
stœchiometric coefficient for 
the species i

no units

 kinematic viscosity m2 · s–1

 scan rate V · s–1

 fugacity coefficient no units

f Inner potential or Galvani potential V
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Dw
o f oi

standard transfer potential for the species i from 
the phase w  to the phase o

V

F work function J

 volumic charge density C · m–3

 surface charge density C · m–2

 conductivity S · m–1

L longitudinal relaxation time s

D Debye relaxation time s

 outer potential V

 angular velocity rad · s–1

 zeta (or electrokinetic) potential V

 friction coefficient kg · s–1
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distribution diagrams, 60 
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Donnan dialysis, 262 
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Fick's second equation, 302 
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flow cell or wall jet cell, 337 
formal redox potential, 42,45,265,268,270, 

272,277, 279, 308,310, 312, 325, 331,382 
ftigacity, 4, 36-37,43-44, 73 
fugacity coefficient, 4 

galvanic cell, 36,44 
Gauss equation, 197 
Gauss theorem, 9 
gaussian distribution, 233 
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188, 191-194 
Gouy-Chapman theory, 195, 205, 207 
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hemi-spherical diffusion, 283-284, 404 
Henry's law, 5 

impedance, 339-368 
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interfacial tension, 177, 180, 183, 188-190 
inversion layer, 215 
ion exchange chromatography. 256 
ion exchange membranes, 78-79, 260-262 
ion pair chromatography, 259 
ion selective electrodes, 70-73 
irreversible reaction, 267 
isoelectric focusing, 234, 252-254 
isoelectric point, 252-253 
isotachophoresis, 234, 242 

Kelvin probe, 28 
kinematic viscosity, 281 

Laplace transformation, 232, 302, 320, 392 
Leclanche cell, 50-51 
limiting anodic convoluted current, 381 
limiting diffusion current, 277-280,282,284, 

286, 288, 407 
line tension, 179-180 
Lippmann's equation, 189, 194 
liquid | liquid micro-interfaces, 287 
liquid junction potential, 65, 67 
Luggin capillary, 296-298 

membrane-covered electrode, 286, 360 
micellar electrokinetic capillary 

chromatography, 233 
microdiscs, 282-284 
microelectrodes, 239, 266, 276, 282-283, 

285, 287, 290, 298 

microhemispheres, 282-283 
molar absorption coefficient, 371, 
moving boundary, 239-241 
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Nernst layer, 275, 277 
Nikolsky Equation, 76-77 
normal pulse polarography, 314-315, 329 
Nyquist diagram, 342-343, 345-346, 

348-350, 356-359. 363, 367 

ohmic drop, 285, 292-293, 296-299, 328, 
339,359-360, 380, 384 

OTTLE, 45-46 
outer potential, 11-12, 19, 21, 49 
overpotential, 272-274, 288, 295, 298 

p|n junction, 208-213 
PAGE Electrophoresis, 244 
Parsons-Zobel, 202 
partition coefficient, 58 
permittivity, 9, 12-17,94-96 
pit electrode, 70, 73-74 
pKa of an acid in the organic phase, 60 
Poisson-Boltzmann equation, 195 
polarisable interface, 184 
polarisation vector, 12, 15, 102 
polarisation window, 185, 191 
polarography, 311-315 
potential of zero charge, 190,203,205, 208 
potential-modulated reflectance, 371 
potential-pH diagram, 54 
potentiometric titration. 67 
potentiostat, 265-266 
Pourbaix diagram, 54, 56 

quasi-reversible reaction, 267 

Randles-Ershler circuit, 358-359 
Randles-Sevcik equation, 379 
Raoult's Law, 4-5 
real chemical potential, 23, 26, 49, 95 
recessed microdiscs, 284 
reciprocal Debye length, 112,148, 150, 198, 

224 
redox buffer effect, 68, 70 
redox Fermi level, 30 
reference electrode, 35-37,44-46 
relative permittivity, 12-17,94-96 
reptation theory, 246, 249 
reversible reaction, 267 
rotating disc electrode, 280, 282 
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selectivity coefficient, 76, 78, 258 
semi-integrated current, 381 
silverjsilver chloride electrode, 41-45 
space charged region, 198 
spectroscopy, 17, 45, 371 
square wave voltammetry, 319, 323. 325, 

329-331 
staircase voltammetry, 323, 326, 328-329 
standard cell potential. 41 
standard distribution coefficient, 58 
standard electrochemical potential, 21-22, 

269 
standard Gibbs transfer energy, 57 
standard hydrogen electrode, 35-36 
standard molality, 7 
standard pressure, 3-4, 36-37, 43-44, 73 
standard redox potential, 38-46 
standard transfer potential, 57,401 
Stern layer, 203, 215,224 
streaming electrode, 205 
streaming potential, 222, 226, 228 
superposition principle, 319, 323-324, 326, 

329, 340 
surface concentration, 182-183 
surface excess charge, 189-190, 198, 206 

surface excess concentration, 182-183, 
187-189, 193 

surface Gibbs energy, 177-180 
surface Gibbs energy density, 178-180 
surface potential, 12, 16-20,26,28-29,48, 

92-93, 204 
surface reconstruction, 219 
surface relaxation effect, 219 
surface tension, 94, 178, 180 

Tafel plots, 274 
thin layer cell, 334-335, 365, 367-368,402-

404 
thin layer voltammetry, 333 

valence band, 24, 209,215 
variance, 186, 188, 191-192, 233, 254 
viscosity, 135-136, 172,222-223 
Volta potential dilTerence, 11-12, 27-29, 49 
voltabsorptometry, 407 
Warburg impedance, 356-357, 359-360, 370 
work function, 26-29, 203-204,417 
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zone electrophoresis, 231. 243-244 
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