CHAPTER |
Introduction

1, THE EQUATIONS OF HYDRODYNAMICS

Thig book deals with the application of hydrodynamiec theory to
selected physicochemical p#oblems. Modern hydrodynamical con-
cepts, such as the theories of viscous fluid flow, turbulence, and
boundary layers, are used to a considerable extent.

Full treatment of all of these problems is not within the scope of
this book, We have therefore assumed that the reader is familiar
with the basie principles of hydrodynamies [1]. Certain more
specialized aspects of hydrodynamics, however, are presented in
appropriate sections of the book. In addition, a brief summary of
[undamentals appears in this chapter.

The following discussion is limited to the motion of incompres-
sible liguids, and thus we assume that the fluid density is constant in
lime and space.

The state of 2 moving incompressible fluid is fully described if
[or each point in space and for each instant the following four quanti-
ties can be defined: the three components of the fluid velocity v and
the pressure p. In an incompressible fluid the velocity v satisfies
the equation of continuity

oty

. o L o,
dwv=.a—‘:—|—ﬁ+ =10, (1.1)
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which expresses the law of conservation of matter,

Three further relations required to determine the desired func-
tlons are the equations of motion of an element of the fluid. In
veclorial form the first is

')
P :I: = —prad p~4-pAv 4 1. (1.2)
I'hin, based upon a unit of fluid volume, is known as the Navier-
Hiokes equation, The left side comprisesthe product of the mass of
the unit and its acceleration and the right represents the sum of the

witernal forces acting on the unit, The vector | represenis the

I
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volume force exerted on the element of fluid; gravity is an example
of a volume force. The negative of the pressure gradient is that
volume force which acts onthe fluid element when pressure changes
from point to point. Thus, if we regarda certain volume of fluid as
isolated, the net force acting on it is equal to

—§pd51

where dS is an element of the surface enclosing that volume. Con-
verting the surface integral to a volume integral we obtain

_§pd5=-—fgradpdﬂ,

The latter integral represents the total force acting over the
enclosed wvolume, It follows that - grad p, is the force per unit
volume. Since it is not the pressure but only its gradient which is
required in the equation of motion, the pressure itself may be
reckoned from an arbitrary datum.

The term v, where U is the viscosity of the fluid, accounts for
the effect of the viscous forces. The viscous nature of the fluid, i.e.,
its internal friction, is manifested only when one region of tke fluid
moves relative to another, Faster moving layers of the fluid
entrain slower moving ones, and momentum istransferred from the
[aster to the slower layers, The particular volume force piv arises
in those fluids in which the transfer obeys Newton's law of friction,
und the viscous properties are described by a single constant value
of viscosity y. Such fluids are termed normal, or Newtonian.*

MNormal fluids include water and agueous solutions of inorganic
and many organic substances. A number of organic liquids, alechols,
hydrocarbons, liquid metals, glycerine, certain resins, glasses, and
gases are further examples,

The values of viscosity y for different fluids show an unusually
wide spread. Some examples are given in Table 1.

Despite this wide variation of viscosity, all of these fluids follow
Mewton's law of viscosity strictly. There is however a broad class
of [lulds for which Newton's law of friction does not apply. Such
[lulds are usually termed non-Newtonian, or anomalous (i.e., com-
plex),

*1i should be stressed that the viscous properties of a compres-

#ible Mewtonian fluid are characterized by two constants: the vis-
coslty I and a second viscosity p. The second enters the equation of
mollon as o coelliclent of the term involving the divergence of
valooity. Sinoe div v« 0 18 an Incompresaible fluid, this term does
nol nppenr in the eguation of motion above, and the second viscosily

I8 not shown,
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Table 1

Substance Viscosity Kinematic :L iscosity

at 20° C V= ———

o

Water 0.010 0,010
Air 1.8-10t 0.150
Mercury 0.0156 0.,0012
Glycerine 8.5 6.8

The properties of non-Newtonian fluids are considered in this
book although their study undoubtedly constitutes one of the subjects
of physicochemical hydrodynamies, Unfortunately no well-grounded
concepts for a theory of flow of non-Newtonian fluids exist at
present, Notwithstanding a very large number of theoretical studies
in this field, no consistent quantitative theory with which to treat
their hydrodynamic properties has been established,

If we break the acceleration into parts and assume the density
ol the fluid to be constant, we can rewrite equation (1.2) as

z—j+{7grad}v=—grad§+vﬁv+; (1.3)

or in component form as

g g aﬂu. - fi '
-—d‘!—--'—ilkm _??_l_ To [1,31
In equation (1.3"), as always hereafter, summation is to be taken
avor subscripts which appear twice. Thus, we sum over the sub-
poript k which has the values 1, 2, 3.
The quantity 1, where

L.l
g

=

{em2isea),

Io knevwn as the kinematic viscosity of the fluid.

It/ s omilted, the Navier-Stokes equation can be considerably
shimplifled, Using equation (1.1}, we rewrite equation (1.3") in the
furm

UL o e [ = phop = pvivy - (5 + Gt (1.4)

L, LK
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lwheni=k
0wheni#k

The equivalence of expressions (1.4) and (1.3°) is confirmed by
the fact that

where ik = 1‘

a du; iy dhr,
iy (im) L LT T
and

o 4 dop

ax; ﬂxg_ dx; G -

gince equation (1.1) written in component form is

L7 3
{}.x_p‘_

II' the bracketed expression in equation (1.4) is designated as pj

Pu=— Py oo tp ( """ -+ ﬂw. ) ' (1.5)

dxg

we obtain

devy  dpgy
S (1.6)

The quantity pii is known as the stress tensor, and since piji =

- phyj + W (2;:{ g;k + pVivl, it represents the total of the nine
quantities pxx, Pyys » Pxz, etc.

From its very d iuition it is elear that the siress tensor is
symmetrical in an isotropic medium, i.e.,

Fix = Pi-
Indeed, for example,

(U L i
Py l"({..l_-p =| [M)—i- PUy Ty = 1:(‘“ + l"..n) q,pwvuil = fup- (1.7)

Thus, only six of the nine guantities of pji are independent,

To clarily the meaning of the tensor pjk, let us integrate equation
(1.6) over an arbitrary volume, and apply the Gauss-Ostrogradsky
theoram to the right side of the equation, Because the summation
In with respect to the subsoript k, the right slde of equation (1.6) is
notunlly a divergenoce
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o f @’“’i?d"—f - dv —§ P s (1.8)

Consequently equation (1.8) describes the momentum change in an
arbitrary fluid volume. The change in momentum withinthe volume
is equal to the net momentum transfer acrossthe surface enclosing
that volume. Thus, pj; represents momentum transfer. For ex-
ample, component pgy is the x-component of momentum transfer
acroas a unit surface which is perpendicular to the y-axis,

duy

L
o =60 v, o+ )

The first term on the right is the x-component momentum trans-
fer accompanying physical transfer {(convection) of fluid volume
across a surface perpendicular to the y-axis., The second term
represents the momentum transfer caused by the fluid viscosity, The
viscous properties of the fluid assure the transfer of a portion of
the momentum from regions of greater velocity to regions of lesser
veloeity.

The system of equations of motion (1.1) and (1.2) must be sup-
plemented by a set of boundary conditions.

Numerous experimental studies of the flow of Newtonian liquids
past the surface of a solid body wetted by them have established
that the layer of fluid immediately adjacent to the surface remains
motionless, or, as often stated, the fluid adheres to the solid
surface, Velocity measurements have shown that the thickness of
this stationary layer is quite small — limited to several individual
molecular layers (see Section 132). Nevertheless, the absence of
ulip past the surface is highly important to fluid flow in general. An
unalogous phenomenon takes place ingases, when their densities are
nulficiently great.

Thus, we may assume that the boundary condition holds at all
wolid surfaces in contact with a moving liguid

v=0. (1.9)

i this situation the fluid exerts on each unit area of the solid a
foree which is numerically equal to the rate of momentum transfer
noross the surface.

Al the interface between two flowing phases, e.g., ﬂulds, ora
Hiuld and a gas, the velocity doesnotvanish. Instead, the following
Lioundary conditions must be satisfied:

I} The tangential components of velocity are equal

ol =P} (1.10)
4) The normal components of velocity vanish

v = v ] (1.11)
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3) The forces acting between the fluids are equal and opposite,
eay
i (1.12)

FI — F, (1.13)

where the indices 1 and 2 refer to the different fluids,
At the free surface of a fluid the tangential force component
vanishes:

£, =0. (1.14)

During the motion of a viscous fluid, energy is dissipated within
it. Analysis [2] shows that the energy dissipated in a unit volume
is given by

[ 3 =
=p.[—f(r{r!v}*cﬁf—l—fi—id_s—EfivmtvInds].

From a mathematical viewpoint, solution of the system of hydro-
mechanical equations presents considerable difficulty, because non-
linear partial differential equations are invelved. In practice their
general solution is possible in but a few special cases. Thus, an
offort is generally made to simplify the equations, and then to find
approximate solutions for the simplified system.

(1.15)

2. SIMILARITY OF HYDRODYNAMIC PHENOMENA

Dimensional analysis and similarity theory have been applied
widely to hydrodynamics and related subjects, especially to heat
transfer theory,

Here the exposition is limited to the simplest concepts of the
hydrodynamic theory of similarity.

It is to be noted that the methods of similarity theory and dimen-
sional analysis, which represent a scientific basis for the modeling
ol physical phenomena, are used not only intheoretical studies, but
in enginecring practice as well., They have found especially wide
neceptance in the USSR,

In this book we limit our treatment of similarity theory to a

determiniation of the conditions for similarity in hydrodynamie flow,
We make extensive use of this particular aspect of the theory later
for background on the theory of similarity. The reader is referred
Lov o number of orlginal papers and monographs [3].

Certaln specinl problems involving applieation of the theory of
similarity to heterogencous chemloal reactions are analyzed in

Hootlon 18,
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To establish necessary and sufficient conditions for the similarity
of two flows, let us consider the flow of a viscous fluid. The equa-
tions for flow must be expressed in dimensionless form and there-
fore all dimensional wariables that appear in the hydrodynamic
equations must be expressed in terms of factors characteristic of
these variables. For instance, let a fluid flow around a body whose
characteristic dimension is [ or let the fluid flow inside a tube
whose radius is I. Then the dimensions of the body or the radius of
the tube are the characteristic length factors for the regions in
which fluid motion occurs, All linear dimensions can therefore be

dimensionless ratios of the form Xj = % In like fashion let U,

represent the velocity of the stream flowing past the body or
entering the tube. Uy represents a characteristic velocity of the
motion and may be chosen as the velocity factor. All velocities can

then be expressed as dimensionless ratiosVi = %I—.Emplﬂying these
o

length and velocity factors, we canwrite the Navier-Stokes equations
for the steady flow of an incompressible fluid as

La ., avy 1 dp 1 [y 82V,
TV T T ok TR axt o
or
a ¥ aP v 4R
Vi -:rXI__t?_X;"'U_JTxf' (2.2)

whereP = p—%g is the dimensionless pressure.

]
Expressed in dimensionless form equation (1.2) containg a
dimensionless parameter known as the Reynolds number:

Re = -U"E- .

liguation {2.2) can now be rewritten

dv 1 %
V"dx — d)ﬁ + Re x? ax:’ (2.3)
Fountion (2.3) must be supplemented by the continuity equation,
which in dimensionless form is
Vg
=0, @9
Murthermore, if there isto be a single-valued solution of any hydro-
ynnmio problem, boundary conditions must be formulated for the

sl of surfnoes that enclose the space Inwhich fluld motion ocours,
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Let us consider two fluid streams moving in geometrically
similar regions (i.e., in regionsthat become interchangeable merely
by changing the scale of length),

If the boundary conditions for hoth flows are identical and if both
have identical Reynolds numbers, the dimensionless eguations of
motion for the two flows will be identical and the flows will be
similar both geometrically and dynamically. Thus, geometrical
similarity, identity of boundary conditions and equality of Reynolds
numbers are made up of sufficient conditions for the similarity of
two flows. For example, consider two spheresof radii R, and R, with
streams of the same fluid flowing past them at different velocities
U, and U, such that E_:;I g—f: compare this to two identical spheres
in flows of different velocities such that%‘—= EJ The Reynolds

1 ]

number contains the arbitrary quantities U,, ] and v, and viscosity
is a physical property of the fluid, The characteristic velocity and
dimension may have any values determined by the boundary condi-
tions, Dimensionless parameters, similar to the Reynolds number
and made up of arbitrarily chosen values, are known as the con-
trolling dimensionless numbers, All other dimensionless quantities
charasteristic of the moving fluid are functions of these controlling
numbers, Any hydrodynamic variahle may, therefore be expressed
as a function of the controlling numbers and the dimensionless
coordinates, For example, the wvelocity of the fluid may be ex-
pressed as

V= %=f(ﬂr.', ?}

In steady flow of an incompressible fluid there is only one con-
trolling number — the Reynolds number, Thus, the dimensionless
shear force acting on one square centimeter of the surface past
which the fluid streams is equal to

= f(Re).

In more complex cases, for unsteady flow or for flow in the
presence of an external field of volume forces, ete., other con-
trolling parameters enter along with the Reynolds number., In
these cases the flows are similar if the geometrical conditions are
similar, the initial and boundary conditions are identical, and all
the controlling dimensionless numbers have the same respective
numerical values.

The more complex cases arenot considered in this book. Instead
our discussion is confined to the steady flow of an incompreasible
fluid. For this case the flow regime I8 determined by the value of
the Reynolds number.
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3. FLUID FLOW AT HIGH REYNOLDS NUMBERS,
BOUNDARY LAYER

In practice the most frequent case encountered is fluid motion atl
high Reynolds numbers.
When Re = 1, the last term in eguation (2.3) may be ignored,

=3
provided the derivative g—XVgL, for one reason or another, does not
I

attain any exceedingly high values.
Omitting the last term in (2.3), we may write

v. Vi ___ 9P
LF>a ax"

or upon introducing dimensional quantities
by, _ d(p
Rl T T (P_)
In the general case of unsteady flow in the presence of external
forces we have

,g%+{v?}v=—gmd%—l—f~:1—- (3.1)

In equation (3.1) viscosity is disregarded. This indicates that
viscous forces at high Reynolds numbers are small and play n
secondary role.

A fluid with no viscosity usually is termed ideal. Equation (3,1),
expressing the law of motion of anideal fluid, is known as Euler's
eouation.

Elimination of the viscosity term, which converts the Navier-
Btokes to the Euler equation, constitutes a very important simplifi-
cntion, Euler’s equation is first order (unlike the Navier-Stoles
equation which is second order) and thus can often be integrated n
general form.

In the case of steady motion under the influence of conservative
oxternal forces, for which = - grad U, Euler's equation may ha
rewritten in the form

T
rrad) v = — grad (£ 4 =), K

(vgrad)v grac (P f } (3.9)

In order to integrate equation (3.2), wewlll Introduce the conoepl of

streamlines. A streamline is o curve whose tangent al avery polnl
hina the direction of the velocity veotor, In steady (low, the strenm

lines represent trajectories of the fluld particles, Using the ldentity

[ L]
|

grad S oms (v grad) v <= [v rol v



10 INTRODUCT 10N

and noting that the vector [vrotv] is perpendicular to the velocity
vector v, we can express the projection of (3.2) on an arbitrary
streamline [,

s )=~ [ema(2+ )

or

k]

S5+ 5+)=

where (for the given streamline)
? o
%—i—%-{-? = const, (3.3)

Equation (3.3) is known as Bernoulli's theorem. It represents
the general integral of the equations of motion for an ideal incom-
pressible fluid, This theorem is analogous, in some degree, to the
energy principle of ordinary mechanics, Bernoulli’s theorem shows
that as we go from regions of higher [(low velocity to regions of
lower wvelocity, the pressure of the fluid changes in the opposite
direction,

Since Euler’s equations, unlike the Navier-Stokes equations, are
first-order differential equations, the boundary conditions for an
ideal fluid must be changed. For example, vanishing of all velocity
components of a fluid at a solid surface is inconsistent with Euler’s
equations, In an ideal fluid, interaction with a solid body does not
exist, since viscosity is absent. Thus, the tangential velocity com-
ponent is not restricted, and only the normal velocity component
reduces Lo zero at the surface of the solid body:

o, =10 (at the surface of a solid body)
Another important conclugion may be drawn from Euler’s

equations: in an ideal fluid, velocity circulation is conserved in any
closed circuit that moves with the fluid

ci vidl = f ot v ds = const,

It follows from this that if initially rot v =0 for a given stream-
line, the motion along this streamline will remain irrotational there-

after, In particular, any motion of an ideal [uid, started (rom
rest, s irrotational, (This is valid for fluids [or which p = & (p).)
The motion of a [uld whose vElopity at every point equals zero

I8 termed “potentinl motion'’,
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In potential motion, the wvelocity of the fluid may always be
expressed as

v=grad g, (3.4)

whore g, afunction of time £ position, is termed the velocity potential,
When velocity is so represented, the condition rot v=0 is auto-
mutically satisfied.

Il we apply equation (3.4) to the continuity equation (1.1), we see
that the velocity potential must satisfy the Laplace equation

Ap=0. (3.5)

Al the surface of solid bodies which confine a region of fluid
mmotlon, the velocity potential must satisfy the boundary conditions

0y
'!Jn-—ﬁ—{l

(ult the surface of the solid body), where n is the normal to the
surfnoe,

In an ideal fluid the velocity potential and, consequently, the
volooity distribution may be derived from the solution of a boundary
vilue problem well-known in mathematical physics,

The pressure disiributjon may be determined from Euler's
piition, Since in potential flow rotv =0 everywhere in the [luid, it
I8 possible to write

W)y =grad 7.
Then Buler's equation assumes the form
orad (P41 2 L YN os
grad (G + 5+ 24T )=0;
hepow, It Tollows that
{:: -|--j:+1: |- ‘: == const, (3.6)

Anvther Tmportant simplification may be included [or the case ol o
sy fow reglme, in which ka' 0 and

4 | l.: | f;: conal, (3.7)

Unlithe (3,8), the constant in(3,7) has the same value (for all streams
Lo i tha lald,



It follows [rom Bernoulll's eguation (3,3) that when an ldeal {luid
flows noross n solid body, the greatest pressure 18 attained at that
point where the {luid velocity becomes zero (ignoring the influence
of gravity), Such apoint i8 known as the point of incidence of flow, or
the stagnation point,

When the potential flow of a fluid is steady, the conditions under
which that fluid may be considered incompressible are easily
defined, The change in density of an ideal fluid is always both
ndinbatic and reversible (hence isentropic), since no dissipationof
Gnergy ocours:

39:(%)3 5,

where S is the entropy.

FFrom the Bernoulli egquation (3.3) we may conclude that the
change in pressure of the fluid is related to its kinetic energy by
the approximation

Yy

#ince for steady motion %'f—z 0

Moreover, it is known that the velocity of sound in a fluid is

ogual to
—V ().
i (ﬁp_)s'
Hence,
35,,“5.'?,
or
gy
Pt

A [Muid may be considered incompressible when%«&: 1, This

ineguality is satisfied when the fluid velocity v is lcrw in comparison
with the speed of sound ¢ in the fluid.

Thus, the steady flow of an ideal fluid may be described by
cguations of motion whose solution and analysis are relatively
simple,

The approximations employed for an ideal fluid are inadequate,
however, for the motion of real fluids even at very high Reynolds



mbere, This polnt I8 well indicated by the so-called d’'Alembert

puradoxn, This paradox states that the drag on a solid body in steady
it lon through an ldeal luid is zero,

I'iip may be seen clearly in the example of a sphere moving
slondily through an ideal fluid, Reasoning based on the Bernoulli

pipuntion shows that the force acting on the front hemisphere is
punotly matehed by the force acting on the rear hemisphere.

I'he nbsurdity of this conclusion indicates that the laws of
mitlon for an ideal fluid, and Bernoulli’s eguation in particular,
lve limited application. It has been found that viscosity exerts a
vory slgnificant influence in the region immediately adjacent to the
purtpee of a solid body, Furthermore, in this region the law of
voneervation of velocity circulation is not walid. It has also been
phiwn that the equations of motion of an ideal fluid admit discon-
(nuous solutions, These solutions, moreover, are not single-valued.

'he ideal fuid approximation is unsatisfactory for describing
fulil motion near a phase interface, ' The character of flow in the
nolghborhood of a solid surface is usually treated in classical
hiydrodynamics, In Section 80 we also deal with the character of
{low In the vieinity of a liquid-gas interface,

The flow velocity must become zeroin areal fluid at the surface
ul 1 polid body, By the same token, it follows Irom the equations
ol motion of an ideal fluid — eguations inposing no restrictions on
the tangential component of fluid velocity near the solid surface —
thul the fluid in this region moves with a velocity comparable to that
ul the Ilow at a significant distance from the solid surface.

'hus, near the surface of the solid hody there must be a thin
vone in which the tangential velocity component undergoes a very
nhirupl change from a high value at the outer border of the zone to
poro ol the solid surface,

The retardation of the fluid in the boundary layer is caused by
vinoous forces alone, Mathematically speaking, the velocity gradient
i the boundary layeris very large ina direction normal to the wall,
Ihe viscosity terms in the Navier-Stokes equations, which depend
un derivatives in the same direction accordingly are large even if
[ Nuid viscosity is low.

Although the boundary layer occupies an extremely small volume,
Il exerts a significant influence on the motion of the fluid, The
phonomena that take place in the boundary layer are the source of
hiydrodynamic resistance to the motion of solids through fluids. Thus,
the boundary layer is highly important in many of the problems in
physicochemical hydrodynamics,

'or ease in manipulation the eguations of fluid flow in the
boundary layer may be simplified considerably. In a thin boundary
luyer, all guantities change rapidly inthe direction perpendicular to
[ wall while their tangential rate of change is comparatively small,

Moreover, for a sufficiently short length of the body, the flow in
the boundary layer may be reparded as laminar (provided the
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dimensions of the body are large compared to the thickness of the
boundary layer),

Let us consider the steady laminar motion of a fluid, choosing
the y-axis perpendicular to the surface of the body and the x-axis
along the surface in the direction of flow,

The equations of motion, (1.1) and (1.2}, for the components in
steady motion, take the following forms:

3 dve _ 1dp | (0%g | &,
% 32 +vy Gt =— e+ (G +55): (3.8)
dv v 1dp 0%y, . 0%
vt gy =—7 5+ (G +5) Sy
o i,
e+ Gk =0. (3.10)

If we designate the thickness of the boundary layer as 6, and the
dimensions of the body as I, it may be assumed that the change in
velocity along the y-axis takes place over distances of the order
of G4, and along the x-axis over distances of the order of I,

The entire zone of motion may be roughly subdivided into two
regions: a region of inviscid motion and a boundary layer region in
which viscosity plays an important part,

In the first region, we can omit the viscosity terms in the
Navier-Stokes equation and substitute Euler's equation.

To simplify the Navier-Stokes equations within the boundary
layer, we can then utilize the fact thatthe thickness of this layer is
very small compared to its length along the body. Let us first
introduce dimensionless coordinates into equations (3.8) to (3.10)
and define

z=IX, y="uY. (3.11)
These coordinates range between the limits

=g, gE-u (HIE - (3.12)

With the new variables, equations (3.8) to (3.10) take the following
formas:

Updue | Uwduy _  10p | v Py, V OUp ’
19X T a0r  wak T Eaxt Tl are (3.8

v Uy | Uy dr,r,.!._ 1 dp w oy, v By, (3 g'}
DaX T, af = by ar T ax® g aye i

1 dugy , 1 v, a.10°
TINTE Y . (3.10)
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15
To compare the magnitudes of the velocity components vy and vy,
we see from (3,107) that
1
fig o
o, = — o0 | Mgy (3.13)
¥ ] if X

The derivative a;—g has no unusual features, and its integral, within

lhe limits zero and 1, is of the order of vy, Therefore, in the
boundary layer,

i

L]
ﬂuwth{f:um.

{3.14)
Using equation (3.14) the different terms in eguation (3.8) may
b evaluated, Since Y varies withinthe limits prescribed by equation
(3.12), the derivatives

vy

i
Y T are T Ve
In similar fashion

s Pz
daX ax? o
Therefore, we can disregard the term from the right side of equa-
Lion (3.87

v My U
Faxr "

ne compared to the term

rOY  Un,
2 T 2 "
B dY u

tm the left side of (3.8"), however, both terms have the same
urder of magnitude:

2
s My s,
§oaX i
In view of (3.14),
vy duiy _ Uatly ll';

t'|| -‘”.- ' r'n - T

KBguation (3.8) can therefore be written in ite finnl form:
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wx%+-w,9;‘?*=—iﬂi+ud—ﬁ. (3.15)
Knowing that all terms in equation (3.15) are of the same order
of magnitude, we canestimate the thickness of the boundary layer

T fte v ity
T (3.18)
If the velocity vy at the outer edge of the boundary layer attaing the
value Uy, then, from equation (3.16), we get
Uy
!

—

e =

or

Wl n I
3&,._,,],-" b_ru,._,'l.-" RI"-'H‘"_I'\.!;' (3.17)

Thus, 6, is smaller than the length of the body by a factor approxi-
mately equal to the reciprocal of the square root of the Reynolds
number, Of course, it is essential here that the inequality }Re = 1
be fulfilled. This estimate may be confirmed by more rigorous
calculations (see below),

However, it should be emphasized that the concept of a well
defined thickness of the boundary layer requires qualification. The
transition from wviscous flow in the boundary layer to inviscid flow
in the main stream is smooth and gradual. The quantity §; repre-
sents the thickness of the region across which the principal change
in velocity from zero to U, takes place.

It also follows from equation (3.15) that the derivative

1ap s
Tar T (3.18)
Evaluating the terms of equation (3.9), we find their order of
magnitude to be E i,e,, smaller than that of the terms of equa-

tion {3.8) by the factar—?;’—.

From this it follows that the pressure gradient normal to the
surface, which appears in equation (3.9), eguals

N 2
1 dp Bl
p ooy [

Comparing this with (3.18), we obtain the following approximation

.Jlrr .?nll ri;l
iy L I dx'
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This means that the pressure gradient in the direction of the
normal is semall compared to the change of pressure along the sur-
lnoe, Therefore, excluding second-order terms, we can write in
pluce of equation (3.9)

,
=0 (3.19)
Fguation (3.19) shows that the pressure does not change in the
normal direction but remains equal to the pressure outside the
boundary layer, Therefore the pressure variation inthe x-direction
within the boundary layer is determined by the change in pressure
tilslde, The latter may be determined from Bernoulli’s theorem.
The boundary layer equations admit an exact solution for the case
ol llow past a semi-infinite plate when its leading edge encounters
i Huld moving at a velocity U, (Figure 1),
In order to find solutions to equations (3.15) and (3.18), for the
houndary conditions

wpy=u,=0 at y=0, (3.20)
o, = LUy as y— co (outside the boundary layer), {3.21)
Wi note at the outset that the velocity in the outer region is constant.

Il follows from the Bernoulli equation that the pressure in the outer
toglon 18 also constant. As a result, the term containing the pres-
smire gradient in equation (3.15) can be omitted and the equation
mwritten

du itz dty
pxa—;’—FﬂHE:‘lﬁ. {3.22}
—
I
P — }
::?“r_t
— [l ™ &,
S— i I
— I - ;
— = ‘-——-.-’-_-J —
=

Figure 1. Flow past a plate,

Lo il the distribution of the houndary layer velocities vy and vy
silinlying the continuity equation (3,10), we use the stream function
¥ talined by

. # (3.23)

ay !
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v, =—2. (3.24)

In this case, equation (3.10) becomes an identity.

Equations (3.10) and (3.22) and the boundary conditions contain
no characteristic parameter having the dimension of length, It is
therefore convenient in eguation (3.22) to define a new dimensionless
variable

_ 1 0
n=ty/ Doy (3.25)

Let us put the stream function ¢ in the form

p=Vlpx-f(3). (3.26)

Here it is evident that f(n) =satisfies an ordinary differential equa-
tion, Thus, we have

vy =5 =5 Uaf” (3. (3.27)
vy=—20= Ly Yo _p (3.28)
¥ dx 2 x ' =

a ] L
%Z_T%q; . (3.29)

e _ Uss /g o
?I?ETQ T;f . {3.30)

o, 1 Ly prer
=5 Uoref". (3.31)

On substituting the corresponding quantities intoequation (3,22), we
ohtain

4 frf=0. (3.32)

Substitution of v, and v, into the boundary conditions (3.20) and

(3.21) gives .
f=F =0 at n=0, (3.33)
fr=2 at - oo (3.34)

If we let {"{0) = @, the solution of equation (3.32) can be written in
the form suggested in [4]

f oyl oty 1ale®

) 5 o (3.38)
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I'or large values of 7, the series is inconvenient to use, In such
vnses the limiting value of £ that satisfies condition (3.34) is obtained
by means of numerical integration,

The following value has been determined in this manner [4]

e=1.33.
The drag force Fy acting on one side of the plate is given hy

b I anl]? -
Fm=‘n/'!!a(%)pndxdz=%bflf o (3.36)

where b is the width of the plate,
Instead of the drag force, a so-called drag coefficient is often
omployed, It is defined as

Fep =
= =R (3.37)
P <

I the thickness of the boundary layer §, is defined as the distance
from the surface of the plate to the point where vy attains a value
siuil to 90 percent of the velocity of the main stream, Uy, then, by
mumerical computation, we obtain the following value for 6, (Fig-
ure 2):

=52} . (3.38)

A

Figure 2. Boundary layer

thickness and shear stress as

functions of the coordinate x
along a plate,

Gualltatively, the formulas derived for a plate are applicable to
Wi nrbltrary body with a small curvature,

Lot us write the digtribution of veloecities for n <= 1 in explioit
form®* (Figure 3):

a a0
I would be Incorrect to verily the ineguality %‘;'.& -b_]'rx?ii by sub-

slituting the sxpansion (3,20) in it, In the nelghborhood of the polnt
y = 0 the behavier of the continuous function vy 18 delined by the
Iindary condition (3,20),
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[N g L3y S Uay? | Ugy
'U==?(IIT]—T+-.-)M_4 l,f'"{ et {3.29)
ks Uﬂ“# ® ':-"zg,'fa “-"‘IE {3 4‘]}
i — = m— .
Uy =y x T geVade ]
1o
U
Uy
M—
0 L I i L . i
! 2 J ]

& F
o\
Figure 3, Distribution of
the tangential component of
velocity in the boundary
layer on a plate,

Circles designate experi-
mental values,

4, TURBULENT FLOW

At high Reynolds numbers, the nature of fluid flow usually differs
from that examined in the preceding sections.

At a certain value of the Reynolds number, steady laminar flow
gives way to distinctly unsteady, chaotic motion in which only on the
average ig there net flow in a particular direction,

The steady advance of a fluid in separate layers is known as
laminar flow, The unsteady, chaotic motion in which the flow velocity
fluctuates about some average value is known as turbulent flow,*

Studies of the transition to the turbulent regime have shown that
it is related to the inherent instability of laminar flow at Reynolds
numbers in excess of some critical value Regy.

*Very often in general literature, and especially in physico-
chemical literature, the discussion of turbulent motion emphasizes
its rotational nature, While it is true that turbulent motion is usually
rotational, it may sometimes be irrotational, or potential motion
{although in such a case the motion is noticeably damped), Further-
more, laminar flow of a viscous fluid is also rotational. The disting-
uishing feature of the turbulent regime is the chaotic and distinetly
unsteady nature of the motion of the [luld particles, and not the
rotationn]l charaoter that this motion may have,
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The grossover-all motion of a fluid is always subject to infinites-
imal disturbances, At Re < Regnp, disturbances that occur in the
[uid are rapidly damped. At Re > Repp, disturbances are not
dnmped, but rather reinforce each other, If these disturbances are
periodic in nature and if their frequencies are incommensurable, the
olfect of their superposition will be the establishment of a chaotic
rogime, Random eddies are also superposed onthe basic motion. In
thie region Re = Repp the magnitudes of the eddy velocities are
oomparable to the average velocity.

Il we observe the trajectory of a particular mass of fluid in
turbulent flow, we find it highly complicated and involved; its
londency toward a systematic advance can only be described in
torms ol averages, The trajectory inthis case is somewhat similar
to the motion of a gas molecule in a stream of gas, This indicates
thult the theory of turbulent flow must be statistical in nature, A
junniitative theory of turbulence has not been perfected. However,
(ks to the work of Soviet acientists A, A, Fridman, L., V. Keller,
A, N, Kolmogorov, L, D, Landau, A, M. Obukhova, L. G. Loitsyansky
wnd M, D, Millionshchikov, as well as von Karman, Prandtl,
Hiolpenberg, Lin, Taylor and others it has been advanced consider-
abily, We can, therefore, state that a qualitative, or perhaps a semi-
iunntitative, theory of turbulent motion has evolved [5].

Lot us first* examine qualitatively the general nature of turbulent
motlon at Re =>Repp. Such motion is known as developed turbulence,

lddy velocities of extremely varied magnitudes are superposed
Upun the average motion of a fluid having a velocity U, Turbulence
wlidies must be characterized by their velocities, and by the dis-
lunoes over which these wvelocities change significantly, These
iptnnees are known ag the scale of motion, The most rapid eddy
motlon: also has the largest scale of motion. The velocities v of
Hw moel rapid eddies are approximately

o = AL, (4.1)

whore AU is the change inthe average velocity over a distance equal
b the menle of an eddy I, Thus, for the example of turbulent motion
i i tube, the largest scale 1 of turbulence eddies is egual to the
limoter of the tube, and the eddy velocities vary within the range
ol nverage velocity over that distance, i,e,, they are of the order ol
e mnxdmum value of the velocity at the center of the tube,

Huoh large scale eddies contain the main part of the kKinetio
sy ol turbulent motion,

e Heynolds numbers of these mollong, delined as -, have

AU
v

Viluew ogual to the Reynolds number of the stremm taken as o whole,

*What lollows 18 In aocordance with the L, D, Landau and M, M,
Lilfuhite presentation (6],
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Together with these large scale eddies, turbulent flow also includes
eddies of smaller scale A, with lesser velocities v). Although the
number of such small eddies is very large, they represent only a
small portion of the kinetic energy of the stream. Nevertheless,
small eddies play an important part in turbulent flow,

To clarify their role, let us examine the Reynolds number that

corresponds to an eddy of scale A, i.e., Re) =£‘::";L. The smaller

the value of A and of the corresponding velocity v, the smaller is
the value of Re). For large scale eddies the Reynolds number is
very large, Therefore, in fluid motion with a scale X\ e [, viscous
forces actually have no effect. Such motion takes place without
energy dissipation, The superposition of large scale eddies on each
other creates small scale eddies, for which the Reynolds numbers
rapidly decrease with decreasing A,

At a certain valueof A = A the Reynolds number for the corre-
Vioto

v

sponding motion Rey o = is approximately unity. This means

that in the region of A, viscous forces begin to have a noticeable
effect on the motion of the fluid, Eddy motion of a scale A, is ac-
companied by dissipation of energy.

With a large quantity of small scale motion, there is a consider-
able dissipation of energy, which is transformed to heat. This
energy is continually drawn by small scale motions from the large
scale motions, so that one may visualize the existence of a con-
tinuous transfer of energy from large scale eddies to eddies
progressively smaller in scale, until in eddies with scale on the
order of Ag it iz converted to heat., Small scale motions serve as a
“bridge’ by means of which the kinetic energy of large scale
motions may be converted into thermal energy. For steady state
fluid flow the process of energy transfer is also steady in nature,
Eddies of a given scale receive as much energy {rom larger scale
eddies as they in turn pass on to smaller scale eddies, Thus,
although turbulent motion occurs only at relatively high Heynolds
numbers, it is accompanied by considerable dissipation of energy.
From this standpoint it is possible to define a certain effective
“‘eddy viscosity’' urh appropriate to turbulent flow. This “eddy
viecosity’' expresses energy losses occurring in the flow per
second, per unit volume, by an equation analogous to (1.15):

_ _dE__ FALNE

= _p'iurhlk_f") : (4.2)

The order of magnitude of the eddy viscosity may be determined
from considerations of similarity.

dld
I [
not a function of the scale of the motion but i8 a characteristic con=-
astant for agivenflow, Inparticular, forthe largest scale motions, i

It is clear from the foregoing that the magnitude of € is
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equals the energy dissipated in the process of creating the smaller
scale motions, This process occurs at high Reynolds numbers and
can not be a function of the molecular viscosity y of the fluid, There-
[ore, € must be determined from quantities characteristic of large
peale turbulent motion, These include the following: the velocity
All, the scale of motion | and the density of the fluid p (no other
fquantities besides these and g enter into the hydrodynamic egua-
tions), We can combine AU, ! and p into a single dimensional
uantity, [¢] in whose units are erg/cmssec

ya
p‘“}‘ . (4.3)

Comparing (4.2) and (4.3), we have

g = P AUL (4.4)

The corresponding kinematic viscosity may be expressed as

I.I.
orh™ _?ibz aut. (4.5)

'hiese last equations can also be derived on the basis of analogy
ulrendy mentioned that exists between turbulent motion and random
motion of gas molecules, If the analogy between these two types of
maltion is closely followed, the scale of motion { may be considered
fip the analog of the length of the mean free path, and the eddy
vilooity as the analog of the average velocity of the gas molecules,

In this way equations (4.4) and (4.5) may be derived directly from
e well-known equations of the kinetic theory of gases. Developing
o analogy further, we can write the approximation for eddy
velocity as is usually done in the kinetic theory of gases:

alt

M~ (4.6)

I elfective eddy viscosity is very large in comparison with the

urdinary viscosity. Indeed, having set upthe relation UtTT?F’ we find

¥ W 1
=l (4.7)
"turh el Re
With the aid of g ., » we can express the drag acting on 1 em?® of a
pullil surfnce (shear stress) in the form
I (ALY T T T AN au
s 1‘;..r|1r\ [ } = Pt o ‘“'f’it(rar) 'F( ) ' (4.8)

Where & 1m0 certain numerioonl factor.



In the following we consider two speclal cases ol turbulent
motion: motion having o scale A <€ [, Le., small scale turbulence
at a distance [rom the solid walls, and turbulent motion close to the
solid walls, In these cases it is possible to determine the charac-
teristics of the turbulent flow on the basis of similarity.

Let us first examine small scale motion(A << 1)in a volume of
fluid. Let us assume, however, that A5 X,, sothat the type of motion
is inviscid, Let us find the velocity v of turbulence eddies in scale
A (or, in other words, the change in the motion velocity over a dis-
tance on the order of A),

The quantity v) can be a function only of p, A and the constant e,
since these characterize motion on any scale. The motion of the
fluid (at A = A5)cannot be afunction of the fluid viscosity v. Neither
can it be a direct function of the scale ! or of the velocity of the
flow U (since A << [).

The only combination of the quantities p, A and €, having the

dimensions of the velocity is ;—l)% Thus,

-r.r,,m(f:)ﬁ_ (4.9)

Using (4.3) to express € in terms of AU, we find
15
o aU(7) (4.9

Thus, the eddy velocities for motion of scale A are smaller than the
1
velocity of the main flow by the factor (i‘—) /A .
The reductions in velocity and scale are matched by a corre-
sponding reduction in the Reynolds number, according to the relation

.fl.{_.j.ﬁ_ (:)ﬁ

Rﬂlzﬂs

W ’ vfﬁ. o *

At certain scale Ay, known as the inner scale (microscale) of tur-
bulence, the Reynolds number Re), is found to be approximately
unity. Evidently,

~ ! "“(ﬂ)ﬁ- (4.10)

by o —
v Rk H

Starting at this scale level, the motion of the fluid is viscous in
nature, Turbulence eddies of a scale A = A5 do not suddenly dis-
appear, -bul are graduzlly damped due to the effects of viscosity.

Let us now examine the case of turbulent motion near a solid
surface by first considering fluid flowing past aflat plate of infinite
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pilont In the plane y = 0, Let the mean (low be In the x-direction
i the average velocity be vy = U, The average veloeity is, in
poneral, o function of the distance of the fluid layer [rom the surface

ol the solid body, and thusU = U{y). Upon the average motion of the
fluld In the x=direction, there is a superposed eddy motion in all
ilrections,

Lot us [ind the function U (y). Todothis we may employ equation
(4.8} by rewriting it in the form

altr T 1
= V = T (4.11)

Hoonuse all points of the infinite plane ¥ = 0 along which there is
[low are entirely equivalent, the shear stress Tis constant over all
plunes, This may be interpreted as follows. The quantity T repre-
ponts the momentum transferred from the flowing fluid to the wall.
Within the fluid flowing along the wall there is a continuous transfer
ol momentum {(a constant momentum flux equal to 7) from rapidly
moving, more distant fluid layers to layers adjacent to the wall.

Since the momentum transfer must satisfy the law of conserva-
tion of momentum, and, by assumption, isthe same along the entire
murface (i.e., it isnot afunction of the coordinate x), it must be con-
alant and in a direction normal to the wall (i.e., it can not be a
[unction of the coordinate y). This ignores changes in momentum
iransfer arising from energy dissipation caused by molecular
viscosity.

Considering that T is constant, we cannow rewrite ecquation (4.11)

_lf = [a = Vo[ A
= ‘“f ; —|—v;v|:u1uyi1.-‘"..'.._.1 “”—|—Cl, {4.12)

where C; i1s a constant of integration and v designates the quantity
W=y <. (4.13)

In order to integrate the equation (4.12), it is necessary to determine
the scale of the motion as a functionof the distance [ (v) separating
the fluid layer from the solid surface, The special feature of the flow
situation we are examining is that the conditions determining the flow
regime do not include the dimensions of the body or any other linear
quantity which could be used to deseribe a characteristic scale of
large turbulence eddies [ It is logical, therefore, to assume that

=y (4.14)

The approximation {4.14) shows that the eddy scale increases with
distance from the solid wall. And the latter is the only linear



quantity which can be used to describe the flow regime. Such an
assumption appears to be quite natural: the solid wall retards the
fluid moving nearby, so that the velocity gradually diminishes as
the wall is approached.

Using the approximation (4.14), we can derive from equation (4,12)

U:]ﬁ“:m}--kci. (4.15)

The physical significance of the quantity v, is clarified by noting
that the quantity v’, according to expression (4.1), is equal to

A = U (v D — U () =

Thus v, iz the veloeity of the turbulence eddies that are charac-
teristic of the flow. In order to determine the constant C, we must
remember that the reduction inthe scale of turbulence eddies as the
wall is approached is matched by a corresponding reduction in the
Reynolds number

Re = ! ()

Al

At a certain ! = 8, it is approximately equal to unity.

In the region v < G5, known as the viscous sublayer, the nature
of the flow is viscous., The thickness of the viscous sublayer is
given by the condition

oy
=1

or

b

By=n
0 ﬂﬂ'

(4.16)

where a is a proportionality factor, The constant in (4.15) is chosen
in such a manner sothataty~ §,the average flow velocity becomes
a small quantity on the order of the characteristic velocity of the
turbulence eddies v,

Then, for the average veloeity, the so-called logarithmic profile
is obtained (Figure 4):

U=_01n%f, (4.17)

¥Ya oav

Expressing v, in terms of T by means of equation (4.12), we
finally obtain
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Uwey/ in % v x. (4.18)

I'he eddy viscosity may be written in the form

Yough ~ Vo~ Ty~ v ﬁi' . (4.19)
I'he logarithmic profile of velocities (4.13) contains two unknown
vonstants: ¢ and a. Their values must be determined from experi-
mental data for the velocity distribution in the vicinity of the solid
mirfice, This may be done most conveniently by introducing the
illmensionless factor

I'he dimensionless ratio ;:—'T—is presented as a function of log v, in
n}

I"gure 4. The data for this plot were obtained from numerous meas-
uroments of veloeity distribution in the vieinity of the solid wall.

It is evident thatthe veloeity distribution canbe represented by a
wimple logarithmic relationship only at y, = 30, In that region
o 0.17. The determination of a directly from the curve in the
reglon y, = 30 has no meaning, however, since by definition, a
relates to the region in which Re = yg ~ 1, i.e,, to the viscous sub-
lnyer,

Contemporary hydrodynamics do not offer any singular point of
view regarding the velocity distribution in the viscous sublayer, Two
hypotheses have been suggested:

1) The Prandtl hypothesis [4], which has been accepted widely,
ptates that in the region y< §,,the fluid motion is entirely laminar.
I'randtl himself named this region the “‘laminar sublayer?’, and based
his hypothesis on the factthat aty <8, the Reynolds number is found
to b smaller than unity.

The shear stress T, in the laminar sublayer evidently may be
wypressed by the equation

aly
W= gy (4.20)

The veloeity distribution can, therefore, be expressed by the linear
puation

U=%_}r—l—ﬂ‘.

The integration constant must equal zero, since the velocity of
[he fluid at the solid surface is zero. Therefore, for v < 6,
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U=ty (4.21)

The linear and logarithmic velocity profiles over the respective
ranges up to and beyond their intersection do not provide satisfactory
agreement with the experimental distribution data shown in Figure 4.
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Figure 4. Distribution of average veloecity fortur-
bulent flow past a plate.

Von Karman, therefore, proposed a theory for the case of turbu-
lent flow past a solid plane, in which the flow is divided into three
regions: (a) a region of turbulent flow, (b) a “buffer’’ layer, and
(c) a laminar sublayer,

According to von Karman [4], the turbulent flow in the buffer
layer is damped as it approaches the solid wall, and the same law
(4.14) as for the turbulent flow region is also applicable here. In
the huffer layer, however, the effect of viscosity becomes signifi-
cant. Consequently the wvalues of the constants @ and a in the
logarithmic velocity distribution equation must differ from their
values in the main turbulent zone.

2) The other hypothesis, presented jointly by L. D. Landau and
the author of this book [1, 6], states that the turbulent motion in the
viscous sublayer does not suddenly disappear, but is gradually
damped as it approaches the wall. The equations for the damping
of turbulence eddies in the viscous sublayer, i.e., the dependence
of I on y, can no longer be applied on the basis of dimensional
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ponslderations, as 18 the onse for the reglon of developed turbulenos,
All quantition in the viscous sublayer may be funotions of viscosity,
il the distance (rom the wall is no longer the sole gquantity with a
linenr dimenslon, The equations for the dampling of the turbulent flow
In n viseous sublayer may be derived as follows, The distribution of
the average velocity in this layer has the same form as in laminar
fow, L.e.,

Uy~

Although turbulence eddies do not originate inthe viscous sublayer,
they enter it from the side y = b,. The eddy velocitiea have the
pnme magnitude as the average velocities in the sublayer. Thore-
fura,

'
'
f.llz_i-'—'_"l..

Il view of the continuity equation

# ¥,
du, v,

o Ty =0
the normal component of eddy velocity is
i)
’ i ]
o=—fFear~».

The proportionality coefficient in the expression for v, can be
ovitluated using the condition that, at ¥ = §,, the eddy vulﬂc)ity vy, At
the boundary of the viscous layer isof the same order of magnifude
u# the characteristic velocity of the turbulent flow v, Therefore,

] i
ﬂy=w-:’T. (4.22)

i

Thus, in a viscous sublayer the tangential and normal components of
the average velocity and of the eddy velocities vary as a funetion of
distance in the same way as the distribution of velocities Ina
laminar boundary layer. This, in essence, is the extent of the re-
semblance between a viscous sublayer and a laminar boundary layer,

In order to evaluate the coefficient of eddy viscosity in the
viscous sublayer, the scale of the turbulent motion must be deter-
mined. This may be done as follows. In a viscous sublayer He is
lizss than unity, and the second-order terms in the Navier-Stokes
cquations are small compared to the first-order terms. The
velocity distribution in a viscous sublayer can therefore be deter-
mined by linear equations only, If a certain spectrum of eddies
penetrates a viscous sublayer, the interaction between separate



eddies ceases. The flow then becomes a sum of Independent periodie
motions, whose periods T remain constant throughout the viscous
sublayer,

Thus, it may be assumed that the periods of the turbulence eddies
within a viscous sublayer are not a function of the distance y from
the wall., The scale of the eddy motion in the y-directicn is equal to

I=u,-T, (4.23)

or, since T is not a function of y,

[~ 2,
For ¥ = fg,the scale of the motion must equal that of the turbulent
boundary layer, i.e., ! = 65. Therefore, the normalization factor is

equal to -‘51—, and
Q

=4, (4.24)
]
The =scale of eddy motions in the viscous sublayer decreases with
the distance y from the wall more rapidly than in the turbulent
boundary layer.

By definition, the momentum transferred by eddies inthe direc-
tion of the wall is given by the equation

. a0 ppdll  prgyd all
Tourh™ P Vrurh gy =P :rI y T P dy” (4.25)
Therefore, the eddy viscosity is
Tyt ¥y
Vaugb~ T~ v {a_ﬂ) . (4.26)
(i}

At v > 65, the momentum transferred by eddies is less than the
momentum transferred by molecular viscosity, and the eddy vis-
cosity is less than the viscosity v. Inview of this, at y = §,, it may
be assumed that the shear stress T coincides approximately with
the quantity 75, and that the average velocity profile is defined by
equation (4.20), Nevertheless, turbulence eddies exist up to the
wall itself, It is shown later that the existence of turbulence eddies
in the viscous sublayer is of significant inportance in the transfer
of heat and mass toward a solid surface. In addition, knowledge of
the existence of turbulence eddies in the viscous sublayer provides
the basis for a theoretical approach in determining the velocity
distribution in the boundary region.

It should be noted that another point of view also exists concern-
ing the nature of damping of turbulence eddies in the viscous



sublayar | 7] = namaely, that the scale of eddy motion is nol exprosssd
by formuln (4,24) but by the same law (4.14) that applies to the
roglon v > 8,. This leads to an eddy viscoslty glven by

v~ (45) - (4.27)

A oholoe between the two hypotheses, and betweenthe two views=
polnts of the second hypothesis concerning the damping of eddies,
muy be made only on the basis of experimental data. Detection of
turbulence eddies and determination of equations describing thelr
dnmping in the proximity of the wall present a highly complicated
problem. Moreover, the existing measurement techniques do not
provide the means for a definitive selection of either one of the
hypotheses that have been advanced. It has been found that con=
vineing data could be obtained in studying the diffusion of dissolved
matter in turbulent flow,

An shown below (see Section 57T), facts exist which support the
hypotheais of the gradual reduction of turbulence in a viscous sub-
luyer in accordance with equation (4.24). We therefore accept this
pijuntion for the purpose of subsequent discussion and utilize ex-
prossion (4.26) for v,y in determining the velocity profile in the
boundary zone. In deriving the velocity distribution inthat zone, we
nuwume that the transfer of momentum is accomplished by turbul-
once eddies which have already been affected by the viscositly. The
plgnificance of this is that the expression of the reduction of eddy
vinoosity (4.19) is not applicable in the boundary zone. Thus, in the
houndary zone, it is convenient to choose an interpolation formula
for the coefficient of eddy viscosity (a similar formula was given
by @i, P. Piterskikh). The formula is intermediate between (4,18)
and (4.26)

'.mh=m(.§;)’, (4,28)
il for shear stress

"r=p[v—|—~¢mﬂ:]%=p[v—|—bv(i}z i—i:r, {4.29)

figy
where b is an undetermined constant.

Integrating (4.29), we obtain the relation deseribing the distribu-
tlon of the average velocity in the boundary zone,

Vi

The constants b and ¢ are determined by assuming that the velocity
distribution corresponds to (4.21) aty,~5, and to (4.17) for y,= 30,

U=LaretgVF & +c. (4.30)



In its final form the relations for the average velocity distributlon
may be expressed as

v . -
T.:, = Voo L] \.'_"_:_' Moo= {4.-3'1}

T —10arctg (0.1y)+ 1.2 5<y, €30, (4.32)
(1]

2 —554-251ny, ¥, = 30, (4.33)
i

These show better agreement with measured velocity distributions
(See Figure 4) than the previous expressions.

In reality we can never, of course, duplicate the condition of flow
past an infinite plane for which these relations were derived. Never-
theless, they can be applied quite effectively to the boundary layer
problems of flow pas a plate or within a tube.

Let us first examine the flow of a fluid past a semi-infinite plate.
As noted in Section 3, the Reynolds number of the boundary zone
increases with the distance from the leading edge. If it reaches the
eritical value Rep = Repp, the flow in the boundary layer becomes
turbulent (Figure 5). The critical value of the Reynolds number for
a flat plate is approximately 1,500, but this value is substantially
reduced by various types of disturbances in the boundary layer, such
as are produced by wire probes or other small protuberances, In
contrast to the case of the infinite surface examined above, the
turbulent boundary layer formed in the stream flowing past a smooth
plate not only varies withthe coordinate x, but has a finite thickness
d as well, (By convention we establish the origin at the leading
edge of the plate,) Internally, the boundary layer has a velocity dis-
tribution with the logarithmiec profile (4,17), At the border of the
boundary layer, i.e.,at y = d, the flow velocity is equal to the veloc-
ity of the main stream U,:

— U g Ve
Up= 7 tn e, (4.34)
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Figure 5. Formation of a turbulent bound -

ary layer on aplate.

Up to point B the flow in the boundary layer
layer is laminar, beyond that point it is
turbulent,




e thiokness of the boundary layer and the characteristic velocity
Vo vary with v in such a manner that this veloeity has a constant
vilus Ug at the border of the boundary layer,

The second equation relating v, to d may be derived in the fol-
lowing manner, The slope of the curve d (x) is equal to the ratio of
the velocities normal and tangential to the plate

dd (x) Ty

T

Howover, at the boundary of the layer vx =U , and the magnitude of
vy I8 on the order of the velocity vo. Thus,

dd () v
dax LGt

Blnoe v, is a weak function of x, the thickness of the layer d can be
oxpressed approximately as

PSR (4.35)

The thickness of the turbulent boundary layer is proportional to
the distance from the leading edge of the plate. Therefore,

(4.36)

The drag on the plate is equal to

B!
Uy
F=fftdxdz=-ﬁ’r'uT'H.
LU}

where Ky is the drag coefficient.
Simple computation shows that Ky may be determined from the
oquation given in [8)

1
VK,

=4.131g (Re K} {4.37)

For rough calculation of the drag coefficient in turbulent flow
past a plate, we can use the empiriecal relation of [8] as follows:

0074
Kry==—7" (4.37 )

Re®

All the other relations derived above for flow past infinite plane
may be directly applied to the case of a plate,



The velocity distribution curve shown In Flgure 4 applies pre-
cisely to the case of flow past a plate. The logarithmic profile of
the distribution of the average velocity may be applied to turbulent
fluid flow in a tube. Because of the slow change of the logarithmic
term in equation (4.17), this formula is applicable in calculating
the average fluid velocity in a tube. Thus, for tubes,

¥ 1p B

In
a fral
where Up is the flow velocity in the center of the tube and R is the
radius of the tube,
Figure 6 shows the velocity profiles for laminar and furbulent
flow regimes in a tube,

ip=

Figure 6. WVelocity distribution in laminar (left) and
turbulent (right) flow in atube.

It iz often important to relate the eddy velocity v, to the velocity

U,
T 3 [
o=V eV Eu =Y, (4.38)

For flow past a plate and for intermediate values of Reynolds num-
bers {(=10°) the approximation derived in [8] is applicable,

037 L7 (4
L e Hef‘ﬂ 7 - e (4.39)
Similarly, for a tube the following may be written [8]
06, 020
YR —— =—7 . (4.40)
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&, FLOW PAST A BODY WITH APPRECIABLE
CURVATURE

The flow of afluid past the surface of a solid plate was discussed
above, In practice it i= often necessary to study fluid motion past a
body having appreciable curvature, such as a cylinder, a sphere,

etc. Such bodies are usually deseribed as havinga non-streamlined
shape,



INTRODLUCTION 1]

The conllguration of the [ow past a non-streamlined surface is
more complex than In the case of a plate, By the same token, the
tranplor of mass toward such a surface is also more complicated.

An o typleal example, let us examine flow past a surface of a
uylinder whose axis is perpendicular to the direction of the fluid

Wl renm,

Direct hydrodynamic measurements have shown that the fluid
flows smoothly past the upstream portion of the eylinder forming
i boundary layer which differs in nature from the boundary layer
formed on a plate (Figure 7).

Figure 7. The appearance of sepa-
ration in flow pastacylinder,

The essential difference between the two boundary layers, i.e.,
that on the surface of a eylinder and that on a plate, lies in the fact
thul the veloeity and the pressure in the fluid passing around the
aylinder wvary from one point to the next. Beyond the boundary
lnyer, pressure and flow velocity are determined by the Bernoulli
suation (3.3). Therefore, as already noted in Section 3, the velocity
ol the fluid is least at the stagnation point on the cylinder, and
Increases uniformly up to the midpoint, beyond which it begins to
iecline, On the other hand, pressure is greatest at the stagnation
puoint, decreases up to the midpoint, and increases over the down-
slream portion of the cylinder,

Over the upstream portion of the cylinder the fluid in the
houndary layer moves in the direction of the pressure gradient; in
the downstream part, against the pressure gradient, It is clear that
this gradient initially will retard the slowly moving fluid layers
wiljacent to the surface of the body. The velocity profile will change
ns shown in Figure 7, At some point P, pressure in the opposite
dlirection (pressure drag) will completely stop the motion of the fluid



layers next to the surface. Beyond that point, there will be {low
reversal: fluid will move in the opposite direction at the surface,
Here the fluid layers within the boundary layer are lorced oul into
the mainstream flow, so that, effectively, the fluid layers formerly
within the boundary layer, are separated from the surface of the
solid body. The separated boundary layer forms ajet that flow into
the main fluid stream. The surface of the body in Figure 7 is shown
by a solid curve; the straight dotted lines indicate the streamlines;
and the dotted curved lines show the velocity profile,

It has been experimentally established (in agreement with theory)
that at point P eddies hegin to separate and are carried away by the
stream. The separation of eddies starts at Reynolds numbers
around 20, _

At higher Reynolds numbers (100 to 200) the motion of the jet is
unstable, and the fluid motion becomes turbulent beyond the point of
separation (Figure 8). This effect leads to a considerable increase
in the resistance of a non-streamlined body immersed in 2 moving
fluid, as compared to a plate. This resistance is known as the drag
and is associated with the energy dissipated in the zone of turbu-
lence, which is termed the wake. This resistance is considerably

o -

Figure 8. Appearance of turbulence in
the downstream region beyond the point
of separation.

greater than the usual viscous resistance. The preceding discussion
points to the role played by the boundary layer on the surface of a
body having appreciable curvature and on the regime of the flow
past that body. It has been found thatthe drag F experienced by the
body, may be expressed by the formula

U'Z
F=K0s, (5.1)

where Ky is a constant coefficient (for a body of a given configura-
tion),
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