CHAPTER IX

Motion of Particles in Electrolftic
Solutions

93. ELECTROKINETIC PHENOMENA

By particles in electrolytic solutions, we mean particles whose
dimensions are so large that they may be considered to form a
separate phase. Some examples are colloidal objects of various
nature and source, emulsified droplets of water in oil and of oil in
water, drops of mercury of relatively large dimensions, etc.

As has been repeatedly stressed above, a region of charged solu-
tion, lknown as the electric double layer, appears at the interface
between phases when one of the phases is an electrolytic solution.
The presence of an electric double layer onthe surface of particles
causes peculiar electrical, hydrodynamic effects which are mani-
fested in the motion of the particles through electrolytic solutions.
These effects are generally known as electrokinetic phenomena and
constitute one of the most important branches of colloid chemistry.
Certain electrokinetic phenomena also play an important role in
electrochemistry.

The study of this field began with the investigations of F. F, Reyss
[1], whose first published work involved liquid motion in dispersed
systems. Electrokinetic phenomena were later studied in detail both
experimentally and theoretically.

It should be noted at this point that the terminology which has
become established in physical chemistry is so involved that one
may get the impression that a large number of distinct various
electrokinetic phenomena can be observed in nature. Actually, the
mechanism of all such phenomena is the same and is associated with
the relative displacement of different phases, If a solution containing
suspended, dispersed particles is subjected to an external electric
field, the particles will begin to move. This has been termed elec-
trophoresis. Electrophoresis is characterized by arelative motion,
caused by the electric field, between the dispersed and the liguid
phases. Along with electrophoresis, a converse ellect is observed
in which, due to motion of the particles as a result of nonelectric
forces (for example, precipitation in a gravitational field), an elec-
trie field (the sedimentation potentinl) is established in the solution.
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Thus, the relative motion of two phases brings about a potential
difference in the solution,

The same behavior ean also be observed when the moving phase
is the solution rather than the dispersed particles. In other words,
if an electric field is applied to a solid body-solution interface, i.e.,
when the solid phase is not dispersed but represents an immobile
wall, the solution itself will start to move. It is clear then that only
the relative motion of the phases is significant, and that the physical
nature of hoth phenomena — particle motion relative to the solution
and motion of the selution relative tofixed walls under the action of
an external electric field — are the same even though they may be
manifested in different ways. The motion of a solution in a field is
termed electro-osmosis. Conversely, when an electrolytic solution
flows along an immobile wall, an effect known as the streaming po-
tential is observed, which is essentially the same as the sedimenta-
tion potential., Thus, as in the case of sedimentation potentials, the
motion of the solution relative tothe solid phase causes the appear-
ance of an electric field,

It ignatural then thata considerable amount of published material
should have been devotedto electrokinetic phenomena. Inparticular,
the electrophoretic process has been the subject of especially de-
tailed experimental andtheoretical studies whichare of considerable
practical significance, Since all electrokinetic phenomena are cloge-
Iy related, it is sufficient to examine the theory of electrophoresis in
order that all other phenomena can later be related to it.

In a theoretical examination of electrophoresis, the greatest diffi-
culties are encountered in the case of extremely small particles
whose dimensions are comparable to the double layer on their sur-
face., Electrophoresis of such particles has an applied value,
especially in biological studies, In most cases, however, we must
deal with much larger particles whose dimensions are considerably
greater than the thickness of the double layer,

We are concerned in what follows with the latter case, especially
in view of the fact that the theory of electrophoresis of small par-
ticles has not as yet been sufficiently studied, although in the final
analysis the difference in the electrophoresis of large and small
particles reduces toachange in the coefficient in the electrophoretic
law. This permits us to analyze the basic physical phenomena that oc-
cur during electrophoresis without going into unwieldy computations,

94, ELECTROPHORETIC MOTION NEAR A PLANE SURFACE
(ELECTRO-05MOSIS)

The simplest case of electrophoretic motion {8 the motion of a
solution along a glven plane,

Let us assume that the solution is bounded by a dielectric plane
at y = 0, Aneleotrio double layer will be set up on the surface of the
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dielectric, and near the infinite plane y = 0, a charged region in
the volume of the solution will appear whose potential satisfies the
Poisson equation

; 47

_E*r =— P (94.1)

In the solution let there be an electrie field E, whose direction i=

along the x axis tangential to the solid surface. Then, a force

Ft = pE¢ will be exerted per ecm® of charged solution (of the double

layer) tangential to the surface of the solid body and cause the solu-
tion to move according to the equation

o

HW=_F,. (94.2)

where v is the tangential component of velocity.
Replacing Ft in expression (94.2) by pEg, we have:

4o
B =—pE,. (94.3)

and, because of equation (94.1),

&% _ DE; d%
I"'?J:S-_ in d_}lg' (94;4}

Integration of equation (94.4) yields:

U= f—f;?i.u)-f- Ay+-B. (94.9)
As the distance from the solid wall increases, the velocity v must
remain finite, and, therefore, A=0. Furthermore, at a certain point
in the solution near the solid surface, the velocity of the ligquid will
be zero due to the absence of slippage. Now, although it is most dif-
ficult to determine theoretically the distance from the plane y = 0
{the plane of the solid wall) where the velocity becomes zero, experi-
ments show that it is approximately equal totwo or three molecular
diameters.
Let us then designate by ©g the potential in the region where the
veloecity becomes zero, so that

DE
B:—T; By (94.6)

Far from the wall, the potential ¢"has a constant value, «©y, equal
to the potential difference between the bulk of the solution and the
wall. Here, the veloeity is also constant and equal to
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The difference { ¢y — ¢g), which represents the drop in potential
across the mobile portion of the double layer, has been termed the
¢ -potential

=% Fa

go that equation (94.7) may then be expressedin a form that is com-
monly encountered in colloid chemistry:
DELS
= ?i- .

For later use, it is also convenient to introduce, instead of the
{-potential, the effective charge € and the thickness d of the double
layer as determined by the relation (which isvalid for a plane con-
denser)

dqed = [,

Then, the velocity of the motion near the solid plane surface can be
written in the form

Ty = % E.. (94.8)

This phenomenon of a liguid motion at a solid surface, when that

motion is caused by an electric field applied along the surface, is
usually termed electro-osmosis.

95, ELECTROPHORESIS OF SOLID DIELECTRIC PARTICLES

From a knowledge of the velocity of electro-osmotic motion in the
vicinity of an infinite plane it is now possible to compute without
undue difficulty the velocity of electrophoretic motion of colloidal
particles of rather large dimensions, If the size of the particles
is large compared tothe thickness of the double layer, every section
of the particle surface can, with sufficient accuracy, be considered
lo be a plane, Eqguation (94.8) may then be applied to the separate
sections of the surface,

Let us next pass on to a gystem in which the particle is at rest,
while the ligquid moves with a velocity U at infinity, We assume
lhat the particle is a sphere of radius a, and since the electropho-
retic veloeity is small for all fields attainable in practice, we can
also suppose that the motion of the liguid past the particle is of the
creeping fow type { He I'% = 1),

The equations lor ereoping flow past a sphere have the form of
equations (70.6), (70.0), and (70.7), To derive their solution, a sys-
tem of boundary conditions must be formulated,
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In accordance withwhat has been said earlier, the liquid far from
the particle will move with a constant velocity U which is parallel to
the electric field. If the direction of the electric field is chosen as
the x axis, the conditions at infinity are

v, — —Lcosh,

) D - {95.1)
oy — 4 LFsinf,

The boundary conditions on the surface of the particle may on the
other hand be formulated in the following manner: at a distance d
from the surface, the ligquid has a tangential motion with a veloeity
vy. Since the particle dimensions are extremely large compared to
the thickness of the double layerd, it is possible to assume with suf-
ficient accuracy that the liquid slips past the surface of the particle
with a veloeity vy. Thus, we require that

vy = + vy sinf, (95.2)
at r=a.

v, =0, (95.3)

Equation (95.2) represents an original way of accounting for the
external force acting on the particle. As soon as the liquid motion
along the surface is specified, there isno further need to account for
any other forces exerted onthe surface, andas a last boundary con-
dition we can therefore require that the viscous friction on the par-
ticle be zero. Actually, of course, the viscous friction is not zero.
Along with it, however, an extarnal driving force is exerted on the
particle which, for steady-state motion, develops precisely that
velocity v, and the corresponding viscous friction on the surface
of the objeet which matches the driving force. Thus, instead of
equating the driving force with the friction, we may assume that the
driving force creates the velocity v, and that the viscous surface
force on the particle equals zero. Now, the total viscous friction
exerted on the surface of a spherical particle is determined by the
expression

J»J‘{p,., cos ft — pq sin §) 45 :fj-(p,, cog i —— poqsin 0) sin 0 20 dy - a®,

so that the last condition which the solution must obey can be written
in the form

ff{p,,casﬁ—p,n sin ) sin 6 dfl dp - a* =10. (95.4)

Here, in evaluating pyp and Prg. we should account for the fact that
the liguid on the surface of the particle is not motionless, but that
it has a velocity given by formula (95.2),

, Let us now write down the expressions which characterize the
potential distribution in the solution, Outside the double layer the
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solution is electrically neutral, and the potential satisfies the La-
place eqguation

Ap=10. (95.5)

Far from the particle, the potential must approach that of the con-
stant electric field which is parallel to the x axis,

¢ — Ercos B, (95.6)

The electric field in the vieinity of the dielectric particle differs
from the uniform field at infinity: on the one hand, because of its
dielectric properties and, on the other hand, because of the convec-
tive transfer of ions by the moving solution. Indeed, the motion of the
solution entrains the ions, so that a convective electric current ap-
pears on the particle surface

Ja=ev,

where jg isthe density of the surface current and vy is the tangential
veloelty vector at the surface of the particle; vi varies from point to
point and its surface divergence, therefore, is not zero; divg jg =
=divg (evi) # 0. The law of conservation of charge requires than the
following condition to be fulfilled

((2) =i o) @50
where x@f‘i.q)r = g i8 the normal component of the current density

at the surface of the particle., The relation (95.7) is the direct gen-

eralization of formula {68.7) for the case of the transfer of ions,
The velocity distribution (Figure 74) and the pressure distribu-

tion in the liquid can be presented inthe form (70.28) to (70.30).

Flgure 74, Motlon of a posltively charged
partiole in an electric fleld,
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Substitution of the value of vt, derived in a manner analogous to
{73.10), into the law of conservation of charge (95.7) yields:

n(57), = Tt (95.8)

The solution of the Laplace equation satisfying conditions {95 6) and
{95.8) has the form

o=[r+(3— )& ] Ecoss, (95.9)

which, for vy =0, evidently becomes theusual potential distribution
near a spherical, nonconducting particle,

Substituting the values for the velocity components vy.and vg and
the pressure pfrom(70.28) to (70.30) into the general expression for
the components of the viscous stress tensor and introducing the ex-
pressions thereby derived for prr and py g into (95.4), we obtain:

fﬁp,,cosﬁ—;:r,&sin&}.ﬁnﬂdﬂd@ cate=— 2y =1,

from which it follows thatb ;=0. The constants b, and b, can on the
other hand be determined from boundary conditions (95.1) and (95.3).
Elementary caleulations yield:
2 ed (Eg)yp
Umg o= —tr=2, (95.10)

Also, from equation (95.9), we find that, for r = a:

E==(% E)E- (95.11)

Thus, by substituting this value for E; into (95.10), we derive the
expression

2 gy (95.12)

for the slippage wvelocity at the surface. The velocity of electro-
phoretic motion, therefore, can be put into the final form

U=—roy- (95.13)

Equation (95.13) determines the velocity of motion of the particle as
a function of the magnitude of the applied field E, the charge ¢ of the
mohile portion of the double layer and its effective thickness d, the
ridius a of the particle, and the liquid properties — viscosity p and
conductivity .
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It is immediately clear from this formula that one constant,

¢ =ed, is not sufficlent to describe the properties of the double
=2

layer, for, depending upon the magnitude of )f_p g,expreasion (95.13)

can be written in either one of two limiting formulas:

_wE, 2 a (95.14)
e weoood
awn g? d ..

— _g__:' = ; _:P:"'-‘? [ {95.15]

Thus, the veloeity of electrophoretic motion, at small ¢, is pro-
portional to ¢, while, at large e, it is inversely proportional to it
and, as a function of ¢, passes through a maximum at

T (95.16)

Equation (95.14) was first derived by M. von Smoluchowski [3], who
also pointed out the need to introduce into the formula corrections
for convective conductivity, which becomes significant in cases
where electrophoresis oceurs in a poorly conducting medium, with-
out, however, making the necessary computations,

It is not difficult to see that (95.14) i= obtained as a particular
case of (95.13) when the correction for convective conductivity can
be disregarded. Indeed, the appearance of the second term in the
denominator of this expression relates to the convective transfer of
ions along the surface of the drop. Letus characterize surface con-
ductivity by the gquantity wng, determined, by analogy with the usual
conduectivity, from the expression

—wggrad, =], =ev, (95.17)
Taking into account the fact that the magnitude of the potential gra-

dient along the surfaceis|gradg :c-| 35" and|!.rt| . sin @, and utiliz-
ing expressions (95.9) and (95.13), we obtain:

1 dp 3 pEsind i p .
TH =3 e g — 3 Usint.
[ +T iy
whence
|y | £irg sin 1) __ e
he | grad, ¢ | ] [ T F- - {95'131
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represents, to an order of magnitude, the ratio of the surface con=-

vective current, jg,r= Mg % g—g— a, to the current in the volume,

jvol = E SJS- a®, of a conductor with a cross section equal to the area

of the particle. This ratio is vsually small, and the term ;—%‘ in the

denominator of (95.13) may be neglected, Conversely, in weakly con-
ducting solutions, the convective current predominates over the cur-
rent in the volume, and formula (95.13) reducesto (95.15). Thus U,
as a function of ¢, should pass through a maximum, a conclusion
which unfortunately cannot be verified from available experimental
data,

Electrophoresis is used in actual practice to determine the
charge ¢ of the mobile portion of the double layer or, what amounts
to the same thing, the £-potential of the particle,

It should also be noted that many authors have developed a theory
of surface conductivity, especially Bikerman [4] and Hermans [5].
Bikerman pointed out that, in addition to convective surface conduc-
iivity, it is necessary to consider the surface electrical conductivity,
which is related to the presence of an excess of ions adsorbed onthe
particle surface. Thus, if ¢=0Dbutif equal amounts of adsorbed ca-
tions and anions are present on the surface, the surface electrical
conductivity will evidently be equalto F(Ug +Uy) - T, where T is the
amount of adsorbed material in equivalents perunit area, and Ug and
Uy are the mobilities of the cations and anions, respectively, in the
surface layer. In the case of motion near a solid wall, this effect
should be of the same order of magnitude as the convective effect.

Indeed, the ratio %: F(Ug +Ug) - I'is of the order of £: % , Where
|

ey and ry are the charge and radius of the ion respectively, D is the

dieleetric constant of the medium, and £ :ﬁ-erﬂ'- = 1. However, it is

difficult to accept the method of calculation adopted by Bikerman,
who, in computing the total surface conduetivity, simply added the
convective and conductive terms, The error in this procedure be-
comes clear as soon as one examines the case of a surface layer
containing ions of only one sign, cations, for example. The amount
of electricity carried by the charges in the surface layer in a field
of unit intensity, according to Bikerman (but with our notation),

Lx]
should then be equal to j €y (Up + vy) dy, where €y and vy are, re-
0
spectively, the charge density and the velocity of the liquid at a
distance y from the wall. It is evident, however, that in reality, when

the distances betwoeen lons of the same sign are amall on the average
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compared with the distances of the ions fromthe wall, the liquid me-
dium should move together withthe ions as a unit, and that the quan-

tity of electricity transported should equaljntyv},dy, or, for a linear
0

potential distribution, —‘-"‘;ﬂ. In the opposite case, i.e,, when the dis-

tances between the ions are large compared to the distances of the
ions from the wall, the amount of electricity transferred should be

equal tafsy Ugydy, where Ucy, the mobility of the cation, is slightly
0

changed by the proximity of the wall, Inthe general case, the surface
conductivity should lie between these values, rather than be equal to
their sum as Bikerman assumes. The equations set forth inthe pres-
ent study account for only the convective term because these equa-
tions are necessary for comparison with the equations of electrocap-
illary motion, where, as will be shown later, convective conductivity
exceeds the electrical conductivity by several orders of magnitude.

In his investigation, Hermans considers polarization of a double
layer by an applied electriec field with, however, an incorrect bound-
ary condition for the charge density. In other words, he setsthe
change in the surface charge density of the particle under the action
of an external field equal to zero, whereas the actual boundary condi-
tion requires that the normal component of the current be equal to
zereo. As forthe charge density, computation shows that its change is
by no means equal to zero on the surface, formwhich it follows that
the conclusions of this study are erroneous.

In the preceding, we have confined our discussion to an examina-
tion of electrophoretic motion of solid, spherical, nonconducting par-
ticles whose dimensions are large compared to the effective thickness
of the double layer. In actual practice, however, electrophoresis in-
volves particles which may not satisfy all these conditions. Electro-
phoresis of metal particles is examined separately in the next section.

Strictly speaking, colloidal particles probably cannot be expected
to be exactly spherical in shape. Anadditional factor of the order of
unity which takes intoaccount the deviation of the particle shape from
the spherical should therefore be introduced into formula (95.13).
Unfortunately, the computation of that factor for the complex geomet-
rical shape of an actual particle appears to be impossible from a
practical pointof view, and this fact should be borne in mind whenever
one evaluates those studies in which the electrophoretic veloeity of
extremely small particles (a <= d) was determined. Caleulations [6]
have shown that, for a<= d, the velocity of the motion is less than
what is predicted by equation (95.14) by a lactor whose limiting value
is 2/3, and that the computation of the electrophoretic velocity of
small particles is beset with many serious mathematical difficulties
that often lead to n serliesn which does not have o well =defined conver-
gence [7],
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Considering the fact that all changes in the formula for electro-
phoretic veloeity invelve only the numerical coefficient, which is
difficult to caleulate in most cases, we have decided to omit the de-
tailed analysis,

96. ELECTROPHORESIS OF IDEALLY POLARIZABLE METAL
PARTICLES. CALCULATION OF FORCES FOR THE CASE
OF A DIFFUSE DOUBLE LAYER

So far, we have examined the electrophoresis of nonconducting
particles, Let us now pass tothe electrophoresis of metal particles
and let us first find the forces that act on a spherical, metallic
particle in an electrolytic solution in the presence of an electric
field. We shall start by assuming that the particle is ideally polari-
zable, i.e,, that the potential differences at the metal-solution inter-
face are such that there occurs neither a discharge of ions of the
solution nor the formation of new ions [8]. Under these conditions,
the normal component of current at the surface of the particle, and,
therefore, the normal component of the field in the solution outside
the double layer, becomes zero, which means that the distribution of
the lines of force outside the double layer is the same as in the case
of a nonconducting particle.

Let us then calculate for the case of a diffuse double layer the
magnitude of the force (Ft)y acting at a distance y from the metal-
solution interface. We shall limit ourselves to a system with a plane
interface at y = 0 (i.e., a sufficiently large particle whose curvature
may be neglected), since the extension from a plane to a spherical
particle will not add anything conceptually new. For a plane inter-
face, the field intensity in the electrolyte outside the double layer
can be considered constant. As before, let us designate by E; the
field strength in a direction parallel to the surface of the metal at
a distance which is large compared to the thickness of the double
layer. Also we suppose that the positive direction of the y axis is
into the solution perpendicular to the surface of the metal, and that
¢ =0 atx=0andfor a sufficiently large y. Then, outside the double
layer, we have ¢ = -Etx.

In the presence of an external electric field, the equilibrium in
the double layer is destroyed, and anelectric current flows through
it. On the surface of an ideally polarizable particle, however, the
normal component of current is zero. The equation of continuity
for the current is

o tliy .

v ‘r";,';,-_—l] (96.1)
and, since all gradients parallel to the wall are small compared to
the gradients in the perpendicular direction,

= (), ar J'Iu - COnet mm (),
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Therefore, for a sufficiently large particle whose curvature can be
neglected, the equilibrium may be considered asundisturbed, which
means that the equation for the diffuse double layer (for a monovalent
electrolyte) will take the form

{7+ B P (z+Eum) P ]
RT

£ﬂ=—{ﬁ.}}{f BT ¢

2% (96.2)

where ¢, is the concentration of the solution.

As in equation (96.1), we have, on account of their smallness,
neglected derivatives parallel to the wall. The electrical force acting
in a direction parallel to the surface of the metal on a volume ele-
ment of the diffuse double layer lying between y and y + dy, and
whose base is 1 em?, equals p(y) (Et)ydy, where (Et)y i8 the tangen-
tial component of the field and o (v) 15 the charge !eusity at a dis-
tance y from the interface, so that

i D
(EDyp () dy =3t g% dy.
In addition, in a polarized, diffuse double layer, a gradient of osmotic
pressure also exists (since the ion concentration varies from point
to point); this gives a ponderomotive force equal to -aaj;ﬂdy, where

p(y) is the osmotic pressure at a distance y from the interface. Thus
the resultant ponderomotive force (Fy)ydy is

D a i a
(Foydy={ 1 ok - o5 — 5N Lay. (96.3)

Let us designate by (cg)y and (cg)y the concentration of cations and
anions, respectively, a ty a distam:e y from the interface, Then

BB F (e Emp
P () = [(edy+(ea)y} RT = EDRT{ e BT .y, kT }
Integrating equation (96.2) from y to wm, we obtain:

[ (v+EmF (7+Eux) F

8%(%)32,:“}2?13 BT L, BT _2J=PU]—ﬁm, (96.4)

which can be combined with equations (96.2) and (96.3) to yield:

{ _pEm)F (ew,af}?} .
(Fy=— e B — i B |(22)
{ _(vHEm) P (F+Em) F
befle BT —e BT }('EE‘I'E:=E:FU]-

(96.5)

Thus, by taking the osmotic pressure gradient into account, we
arrive not only at the same expression for the ponderomotive force
in the double layer of the metal particle ag in the case of a non-
conducting partiols, bul we also obtaln the same dependence on
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distance as determined by the quantity g (y).* The difference between
the two cases boils down to the fact that the force acting on the inner
sheet of the double layer on the surface of the metal is equal to zero,
or, more correctly, that the point at which it is applied is displaced
by a distance of the same order of magnitude as the particle radius.
The possibility of utilizing equation (96.5) for a determination of the
ponderomotive force in a double layer of arbitrary structure or in
the presence of specific adsorption forces has not vet been clarified,
In the most general case, therefore, we are limited to the method of
Section 99, which is based on the Lippma.rm-Helmhﬂltz equation,
ap(y)

We shall now show that the terms a—y‘ﬁ 3 Sy dy

in equation (96.3) are of comparable mag;mtude. Indeed,

dy and

o

[osso-20-3]-2 fayo-- 50,

* In anunpolarized, diffuse double layer, the excess lateral pres-
sure on anelement of the surface layer of thickness dy, whose inte-
gral overthe entire surface layer gives the magnitude of the decrease
in surface tension, is equal to the sum of the excess osmotic pres-
sure [p{y) - p.| dv of ions inthe double layer and the Maxwell pres-

D 3 \ .
sure g— (?;3) dy. The terms in this sum are equal to each other,
However, if we wereto try to find the force {Fijdy from the relation

_a (D fap\
Py dy =— 5 = (52) + 1r ) —per } 2y, (n
we would arrive at an incorreect result. The reason for this can be
traced back to the fact that, in expressingthe electric portion of the
ponderomotive force in the double layer by means of the components
of the Maxwell stress tensor, not only the Ty, components, but the

Txy components as well must be considered. The latter are absent
in an unpolarized double layer. In this case, by neglecting the term

2
that contains -g%) in the expression for Ty, we can arrive at the

correct expression for the electric portion of the ponderomotive
force, as follows:

(St ) = 2D (B 2 (2200 Dt

The quantity Ty, becomes zero at both boundaries of the double
layer, and, as a consequence,integration of the incorrect relation
(1) doea lend to a correct result,
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and, according to equations (96.2) and (96.4),

? dy = f& W dy—— ) Ee.

-1: Ti'yg ’

where, as before, ¢ is the charge on the inner sheet of the double
layer. The ratio of the electric component of the ponderomotive
force to its osmotic component is then

I g% d
SE O ()(RrE). 060
At relatively large distances from the particle, this becomes infinite,
and the ponderomotive force is consequently determined solely by
its electrical component. On the contrary, at sufficiently amall dis-
tances, this ratio becomes zero, which means that the ponderomotive
effect depends entirely on the osmotic term.

97. ELECTROPHORESIS OF IDEALLY POLARIZABLE
METAL PARTICLES. CALCULATION OF FORCES
FOR THE CASE OF A HELMHOLTZ DOUBLE LAYER

Let us assume now that the double layer has a Helmholtz struc-
ture, i.e., that the centers of gravity of the ions forming the outer
sheet of the double layer lie on the surface of a sphere of radius
a + d, which is concentrie with the particle surface. It is usually
postulated that the outer sheet of a Helmholtz double layer is rigidly
bound to the surface of the metal. One could suppose, however, that
there could exist a layer of adsorbed molecules on the surface of the
metal which would act as adielectric in the double layer, keeping the
ions of the outer sheet at aconstant distance from the surface of the
metal in such a way that these ions would retain their mobility. Re-
gardless of the soundness of such an assumption, we shall use here
the simple Helmholtz model of the double layer in order to investigate
the electrokinetic behavior of metal particles, since such a layer
enables us to illustrate best the relations under discussion,

Under our assumptions, the distribution of the lines of force for
a positively charged particle is illustrated in Figure 75. The direc-
tion of the x-axis has been taken parallel to the lines of force at a
great distance from the particle. Let us designate by E the field
intensity far from the particle, by rthe distance measured from the
center of the sphere, and by 6 the angle between the radius vector
and the x-axis (0= 8 = ). Let us also choose our zero of potential

in the solution at ¥ = a4+ d and 8 = %, Then

| {.J 1 g.r]ﬂ
forraan+d  frwte {r 7 } cos 0, (97.1)
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s0 that, at r=a +d
¢=— 5 E(a-d)cosh. (97.2)

Inside the metal and on its surface, i.e., for r= a,
$=1% (0 isa constant). - (97.3)

The solution of the Laplace equation satisfying boundary condi-
tions (97.2) and (97.3) has the form

e=w("To—1)7—% 1_?%@_"::')' (97.49)
a+td

The quantities which characterize the double layer and the forces
acting on it can thenbe determined with the aid of relations (97.1) to
(97.4),

Figure 75. Schematic illustration of the

double layer of an ideally polarizable

metal particle in an external electrie
field.

The arrows show the direction of the field
lines,

Let us next introduce the following notation: A¢ asthe jump in
potential between the metal and the solution in the double layer, ¢ as
the charge per unit area of the inner sheet of the double layer, ¢’ as
the charge per unit area of the outer sheet, Et as the field intensity
tangential to the double layer, considering E¢ positive when it forms
an acute angle withthe x axis, Ey, asthe field component normal to
the surface at the boundaries of the double layer and directed into it,
and E,_. as the same directed outward from the double layer. In
order now to compute the forceswe consider a section of the double
layer consisting of a surface element of the inner sheet, dS, and a

i -]
a+d dS, ineluded in the same

surface element of the outer sheet, ¥
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solid angle. We designate by I';dS the tangential force exerted on this
element, and by FpdS the normal force, where the positive direction
of F;is the same as the positive direction of E¢, while the positive
direction of Fy is from the center of the sphere (see Figure 74).

In determining the value of each of these quantities, we shall
assume that d = a and also limit all final expressions to the first

term of the series expansion in powers of g. To derive these results

however, it becomes necessary to determine the intermediate values
of By and ¢ up to an aceuracy one order of magnitude higher.
It follows from equations (97.1) to (97.4) that:

Ap = go -+ Ea cosb. (97.5)

The dependence of Aw on@corresponds (for Ag > 0) to the distribu-
tion of the lines of force in the double layer (schematically presented
in Figure 75), which indicates the polarization of the double layer
under the influence of an external field,

Furthermore,
Endyea=—(32) _=w(g+7)+3Eacost(z+3). (97.6)
(En,}r_a+,,=(%)r_m= — % (& - %) S Eacosb-+,  (97.7)

where the values of g_r‘Eare determined from equation (97.4),

(Endya =1{En)_gua="0 (97.8)
: L fd _ 3
Edymasa= 7577 (?ﬁ')r-m,{" 5 Esinb, (97.9)
)
e = {(En)y gt (En), o) =

=%{%(di—{-%}-}-%famsﬁ(%-i-—g-)}. (97.10)

(ﬂ I “)‘.c = f’; {En)m gyt Endyogial ("t t : ) =
o ) . 5 ; 2y (97.11)
=—w{nlz+3)tzEecost(z+2)}=—e
(Ep,_,=0, (97.12)

Here D is the dielectric constant of the medium in the double layer,

The quantities Fy and Fp can be easily obtained from equations
(07.6), (97.10), and (87,12), Limitingour final expressionto only the
first term of the serles expanslon, we [ind that
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Fy=(Ep _, e+ (E)maia® (“ 1‘ d )‘= ~—(Eymara®  (97.13)

and, consequently,
F,=.—~Eild{qu—|—%.£amsﬂ}§-£ sinb=Lcap e =100 (97.14)
where C = 4%- is the capacitance of the double layer per unit area
iy ClAg?
for d = a, and Ag = —5 The quantity Ag, in the case of a

Helmholtz double layer, expresses the lowering of the interfacial
tension due to the surface charges., The directionof the force F; is
shown in Figure T4,

We have, for the normal component,

Fa= __é {(Endraa — (Endyo) @ +% )y gsa—
E faddy  Cidg)r 24 (97.15)
—¢ ( a )__ =g

“=}r-a+dl e a )

It is seen from equation (97.15) that the absolute value of Fy is
greater in the right hemisphere than in the left hemisphere. The
directions and the relative values of the force Fy for 8= 0 and =17
are shown in Figure 74.

The resulting forces acting on the particle as a whole can be
derived from equations (97.14) and (97.15). The force Fy has a com-
ponent parallel to the x axiz equal to Fi 8in 8, 2o that the tangential
force acting on the element of the double layer between the angles
Band 8 +df is

=a?F, sin 0 sin § 4l =

= Zzasin®h %igi di = — 3zaEC sin® (»p.;.—i— % Eacos 9) dil,

which can be integrated over the entire surface to yield:

—f3:raQEC3:I|:159(:p“—[—%ﬁacnsﬂ)d[]:—-'i-.-..-ﬁ-C:FDE= (97.16)
1]

= — dma¥e F = —eF,

where g; =Cueyis the charge density on the surface of the metal in
the absence of an external field, and e= 47a® ¢, is the total charge
on the metal surface. Thus, the forces acting on the double layer in a
direction tangential to the surface of the metal give rise to a com-
ponent which is parallel to the field intensity and equal in magnitude
to the force acting on a particle with a free charge e, but opposite
in" sign since this force originates from the charges on the outer
sheel of the double layer,
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On the other hand, the component of the force Fy parallel to the
¥ axis is Fp cos @, which when integrated over the entire surface of
the particle reduces to:

—E!‘21m9Fncnsﬂsi.1ﬂda=4mnj'-.~..: snfcoshdo = oo

= dna* Ty, E =k,

Thus, the sum of the tangential and normal forces acting over the
entire double layer is equal to zero, This should have been expected.
The results are different, however, if instead of the surface as a
whole only a portion of the particle, for example the spherical seg-
ment which is included withinthe angles Gand 7 - £, is considered.
The sum of the forces parallel to the x axis is evidently

==0
Ora? }‘ (Fysin®f — F, sin 0 cos 0) dfl =
;

=—h
o f (sineo - 828 2 8asin Ecnsﬁ)dﬂ'= (97.18)
L]

-5
= Zma Ao sin? G |:_] =%5Ecﬂsﬁsinzﬂ'.

The expression vanishes at 8 = 0, in accordance with what has
been said above, and passes through amaximum fqﬁ at cos® @= %
Since the force exerted on the surface of the particle, consisting of
two spherical layers — one defined by the range of angles from 0 to
g, and the other, by the range from 7- 8 to 7 — is equal in magni-
tude and opposite in sign to the derived value, so-called Maxwellian
stresses should appear in the solid metal particle under the action
of these forces. These siresses are absent in the case of a non-
conducting particle. In a liguid metal particle (see below), the same
forces, applied at points separated by distances of the order of
magnitude of the particle radius, should give rise to a motion far
more intense than what is usually observed in electrokinetic phenom-
ena. The derivation set forth here, baseddirectly on a consideration
of the eleectrical forces operating on the charges in the simplest
model of a double layer, is somewhat involved and depends in addi-
tion on the specific assumptions concerning the structure of the double
layer as set forth in the model. Nevertheless, it clearly shows the
origin of the forces exerted on a metal particle,

Let us now consider the forces acting on an element of the par-
ticle's surface betweon the angles 8 and & +d@. The resultant of
all surface tensions acting onthis portion of the surface is evidently
directed along the x axis and is equal to
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— 3 (2rassin? §) db — — 2xasin® 0 0% 4 —
= (97.19)
— 2ra? sin B cos 0 —~ df = (F,sin§ — F,, cos ) dS5.

The first term in expression (97.19) gives the magnitude of the
tangential forces projected onto the x axis, while the second gives
the projection of the normal forces. Duringthe integration over the
entire surface of the sphere, the quantity Ft sin 8 does not change its
sign, but the gquantity Fy cos § has opposite signs in the two hemi-
spheres separated by the plane O,0(Figure 74). But, since the value
of the surface tension (for ¢ =0) in the left hemisphere is greater
than inthe right hemisphere, the resultant of all the normal forces is
positive and exactly cancels out the resultant of all the tangential
forces, because, according to (87.19), we have that

T

anEﬂSﬂffS=fF,51nﬂ ds.
1]

]

In the absence of a field, i.e., for o = const, each of these inte-
grals vanishes and all the forces reduce to a uniform compression
2y /a. Thus, detailed examination of the forces acting on the surface
of an ideally polarizable particle shows that, despite its metallic
nature, forces are generated in every portion of its surface which
set the solution into motion (we assume the particle to be motionless).
The magnitude of these forces is no different from the forces exerted
on the surface of a nonconducting particle. An ideally polarizable
metal particle must therefore pass into the same electrophoretic
motion as a dielectric particle, with its velocity given by equation
(95.13), which is general for nonconducting and for ideally polariz-
able, conducting particles. This conclusion is infull agreement with
data obtained by N. A. Balashovaand A, N. Frumkin [9] in a study of
the electrophoresis of metal sols known to be free of oxide films
{platinum sols, for example), and other substances.

The problem of the electrophoresis of metal particles has been
considered theoretically by Henry [6], whoarrived at the erroneous
result that this phenomenon cannot be present under such circum-
stances, This erronecus conclusion came about because the author
failed to account for the polarizing properties of metal particles in
solutions,

98, ELECTROCAPILLARY MOTION OF MERCURY
DROPS IN AN ELECTRIC FIELD

+The motion of mercury drops under the influence of an electrie
current was [irst deseribed In detail by Christinnsen (107, who
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showed that, when a current passes through a drop of mercury placed
in an electrolytic solution, the potential difference across the
mercury-solution interface changes, inducing changes in the
boundary layer. If the mercury in the solutionis initially positively
charged, the interfacial tension increases at the point where the
current enters the drop (the negative pole of the drop) and decreases
at the point of exit (the positive pole) thereby causing the mercury to
move from the positive to the negative pole along the surface and in
the opposite direction within the drop itself. The surface motion
drags along the adjacent layers of the solution, and this results in
a reactive movement of the drop as a whole along the lines of cur-
rent. This motion, named electrocapillary motion by Christiansen,
can be observed, for example, in the deviation from the vertical of
mercury drops falling in an electric field. The velocity of the motion
is very great, considerably exceeding that of the ordinary electro-
kinetic motion, but as the solution is diluted, the velocity of the drop
in the field, for the same potential gradient, decreases. Besides the
motion of the drop as a whole, Christiansen described the changes
in shape which itundergoes. The curvature decreases at the positive
pole and increases at the negative pole, sothat the drop moves with
the blunt end forward.

It follows from the theory of electrocapillarity that the drop will
remain motionless in the field if its initial potential corresponds to
the maximum on the electrocapillary curve, i.e., to the point of zero
charge. This conclusion was eonfirmed by Frumkin [11]for falling
drops, and by Bodforss [12] and Craxford [13] for drops at rest on a
glass surface.

The motion of mercury drops in an electric field was first in-
vestigated throetically by Craxford, Gatty, and McKay [14], who con-
cluded that the electrophoretic force acting on the drop is equal to
the electric field intensity multiplied by the charge of the inner sheet
of the double layer, as measured by the usual electrocapillary
methods. It is obvious, however, that the sum of the electric forces
acting on a system whose total charge is zero cannot itself be dif-
ferent from =zero, so that such a conclusion must be incorreet.
These authors consider the motion of mercury drops under small
potential gradients as a particular and, at the same time, the
simplest instance of ordinary electrophoresis,

In addition to observations onthe motion of relatively large drops,
published data are available onthe electrokinetic motion of mercury
particles of colloidal dimensions (10 ~* cm) in mercury sols in the
presence of low concentrations of electrolytes. The veloecities ob-
served in such instances do not differ in order of magnitude from
those common in electrokinetic motion,

M. A, Bakh [15] studied the potential difference occurring in a
shower of mercury drops falling inacolumnof an electrolyte. This
is an effect aimilar to the currents caused by the fall of solid par-
ticles In ligulds, the theory of which has been glven by Smoluchowski
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[@]. The potential differences induced by mercury droplets falling
in a normal KNO; solution are, however, about 10° times greater
than those possible for solid particles, and the ratio, in the case of
10°% N KNO,, is approximately 10. Thus, the ohserved potential
differences, especially in the case of highly conducting solutions,
cannot be interpreted as ordinary electrokinetic effects. This
phenomenon was explained as a reversal of the Christiansen effect.
As the drop falls through the solution, the surface of the merecury,
along with the charges of the double layer, is pulled toward the rear
of the drop. Thus the charge density ofthe double layer on the for-
ward part of the drop decreases, while it increases at the rear, which
in turn leads to potential differences in the electrolyte between the
ends of the drop and, hence, to induced currents.

Interest in electroeapillary motion increased markedly in con-
nection with the problem of the maxima on the current-voltage
curves for a mercury electrode (see Chapter X). In a study by A. N.
Frumkin and B. P. Bruns [16], it was shown that the high values of
the current observed at these maxima were due to the agitation of
the solution by the electrocapillary motions of the mercury surface.
The electrocapillary motions giving rise to these maxima were later
studied in detail, both for the case of a mercury electrode with a
constant surface area [17], and for the case of a dropping mercury
electrode. The latter systemwasalso investigated, in particular, by
Antweiler and Stackelberg [18]. Antweiler considered that the mo-
tions of the mercury surface were electrokinetic, and that high
velocities were attained because of the absence of strong friction,
which exists on the surface of a solid body, and because of the mo-
bility of the charges inthe inner sheet of the double layer, which re-
sults from the high conductivity of mercury. In this case, and in
contrast to the electrokinetic motion at a solid surface, the double
layer at the mercury surface moves as a single unit, Antweiler’s
point of wview is that the passage of current through the metal-
solution interface is essential for the appearance of motion. This is
especially stressed by Stackelberg [19], according to whom the
motion desecribed by Christiansen is related to the presence of
dissolved oxygen in the solution, Thus, if in the case of an ideally
polarizable drop the oxygen is completely removed, then the motion
should cease.

T. A, Kryukova and B, N, Kabanov [20] drew attention to the mo-
tion which arises in a solution near the surface of the falling mer-
cury drop and which is caused by the very process of dropping. They
found such motions to be especially noticeable at relatively high
concentrations of the electrolyte (higher than 0.1 N).

The papers cited above do not throw sufficient light on the ques-
tions concerning the influence of the electrolyte on the motion of the
mercury surface, the hydrodynamic properties of this surface in
cohducting solutions, and the relationship between electrocapillary
and electrokinetie motions, Wherens the majority of authors have
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treated these two phenomena as completely independent, in the in-
vestigations conducted by Craxford et al., both were considered to
be identieal, despite the enormous differences in the observed veloc-
ities of motion, A, N, Frumkinand the author of this book developed
a theory forthe electrocapillary motion of mercury drops and estab-
lished the relationship between this phenomenon and the electro-
kinetic motion of solid particles.

In Section 96 we examined the system of forces exerted on the
surface of a metal particle immersed in an electrolytic solution in
an eleectric field. A mercury drop is a particular case of a metal
particle. The only difference between it and a solid particle is that
the forces acting on the surface of a drop are balanced by viscous
rather than by elastic forces.

99. MOTION OF LIQUID METAL DROPS IN AN
ELECTRIC FIELD

Let us examine the motionof a liquid metal particle in a solution
under the influence of an applied electric field, The conductivity of
the metal particle may be considered infinitely high compared to
that of the solution [21]. Let us also assume that the radius of the
particle is large in comparison with the effective thickness of the
double layer and suppose at first that the particle is ideally polariz-
able. This latter assumption implies that, in the given solution at a
given potential onthe surface of the particle, no discharge or forma-
tion of ions can oceur and that no current can flow through the
particle.

The electric field potential ¢ in the solution is determined by
the Poisson equation

4w
Ag=—-]

where p isthe volumetric charge density and D is the dielectric con-
stant of the medium.

The potential ¢ at a great distance from the particle coincides
with that of the applied field E. Ithas a constant value, which we shall
later select as the zero of potential, on the surface of the metal
particle itself.

If the direction of the external field is assumed to be posgitive in
the direction of the x axis, the potential at infinity is

m— Ercos, {99.1)
while, on the surface of the particle, at r = a,

il {09.2)
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Let us now introduce spherical coordinates with the origin at the
center of the particle, The entire solution surrounding the particle
may be subdivided into two regions: the region of the double layer
where the charge density is not zero, and the region of the electrically
neutral solution. Ifdisthe effective thickness of the double layer, in
the first region r < a +d, and in the second, r >a +d. Here, we as-
sume that a = d.

Let us further suppose that the field gradient at the surface of the
metal outside the double layer is small compared to the potential
gradient in the double layer along the normal to the surface, and that
the radius of the particle is sufficiently large so that the interfacial
tension is not a function of the radius. With these assumptions, the
state of the surface layer and, consequently, the surface tension o at
the metal-solution interface, are uniquely determined, for each point
of the metal surface, by the potential difference between the metal
and the solution Ag = ¢ - ¢s{where @4 i the value of the potential
in the solution atthe surface of the metal, but outside the double lay-
er) or, since ¢y =const, oisdetermined by ¢y itself and is independ-
ent of the potential difference atthe neighboring points, If Ay were
constant, ¢ would also have a constant value, and no tangential forces
would exist on the surface of the metal. In the case of a polarized
particle, however, A¢ and, hence, o vary from point to point. The
tangential force is Fi =gradoand, since ¢ is a function of 8 only and
Fi is considered positive if the tangential forceis in the direction of
decreasing values of 8, then

1 d=
PEE’S:_EE‘_&JS, (99.3)

It is known now that the surfacetensionis related to the jump in
potential A at the mercury-solution interface and to the surface
charge ¢ by the Lippmann-Helmholtz relation

d% — (99.4)
If the jump in potential A¢ varies from point to point on the

particle surface, the surface tension at any point on the surface,

characterized by the angle 8, may be expressed in the form

B

&
. ds DAy o day
il =zt fﬁ'ﬁ'ﬁdﬂ—”*ﬁ_‘ fE' ar 40,
=2 i

where §/2 is the surface tension at the drop’s equator.

We assume, in what follows, that the appliedfield is sufficiently
wealk to allow us to neglect all second order (guadratic) quantities.
It is obvious then that ¢ will correspond to the density of the surface
charge of the drop inthe absence of a field — a charge which is not a



MOTION OF PARTIGLES IN ELECTROLYTIC SOLUTIONS 495

function of the angle 8 and which can therefore be placed outside the
integral sign. Thus,

Ll

d &
G=dgn—& fﬁdﬂ:#m—eﬁt,ﬂ. (99.5)
!_.'ﬂ
The presence of varying surface tension leads tothe appearance

of normal ;EI?I? = Fp and tangential p(rﬂé} = - Ft stresses, acting on the
boundary of the metal-solution interface,
22 oy, Isdy
Fn=7= 2 a ° {99’.6}

d An
Fi=grado = —egrad;4g Z_;W (99.7)

The ratio in (99.6) differs from formula (97.15) only in that it con-

2er
tains the term %

. It is absent in eguation (87.15) because the
latter represents the part of the forcethat is electrical in origin,

The derivation of the expressions for the forces exerted on the
surface — based on an application of the thermodynamic Lippmann-
Helmholtz formula — is more general thanthe derivations set forth
in Sections 96 and 97. It is independent of any model regarding the
structure of the double layer, and yet at the same time, it has the
disadvantage that it can only leadto expressions for the total forces
and not for their spatial distribution.

Since field intensities different from zero are applied to the liguid
boundary, the liquid cannot remain at rest and must move. The
velocity of this motion will then be such that viscous stresses will
match the surface stresses described above.

In order todetermine this motion, it is necessary, as may be seen
from formulas (99,6) and (99.7), to find how the potential difference
A in the double layer surrounding the particle depends on the polar
angle @, andtoaccomplishthis, we mustknow the potential distribu-
tion in the outer sheet of the double layer (the sheet that faces the
solution), since we have taken the value of the potential in the metal
ag zero., This potential distribution can be derived from a solution
of the equation for the potential outside the double layer in the
neutral solution

Ap =0 (99.8)

with appropriate boundary conditions. In this way wedo not need to
consider specific models of the double layer,

The requirement that the potential must coincide withthat of the
applied field, i.e., equation (99.1), serves as the boundary condition
at infinity. In order to formulate the boundary condition at the neutral
solution-double layer interface, it is necessary, as shown below, to
take into account the motion of the solution and the corresponding
convective transfer of lons,
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If, under the action of the applied field, the liquid surrounding
the particle moves with avelocity v, the liquid motion in a direction
tangential to the surface of the particle willlead to a convective ion
flow.

Let ¢ be the charge per unit area of the mobile portion of the
double layer. For liguid metal particles we assume that the entire
double layer is mobile, so that e represents the entire charge per

o
unit area |e =Lr p (r)ydr). Also let Vg be the tangential component
0

of the fluid velocity in the mobile portion of the double layer (more
exactly, at the interface 8 betweenthe two liguids). Then the convec-
tive surface current flowing across the surface of the particle has a
density of jg = e vy,

The tangential velocity varies from point to pointon the surface
of the particle, which means that the surface divergence of the con-
vective current is not zero:divg(evy) #0. In other words, the con-
vective transfer of ions by the flowing liguid leads to a situation in
which the ions leave the double layer inorder to enter the region of
neutral solution at some points of the surface, while at other points
they enter the double layer from the outside (it follows from the as-
sumption that the particle is ideally polarizable that the ions cannot
lose their charge on the surface).

The law of conservation of charge requires now that condition
{95.7) be fulfilled at the interface between the double layer and the
electrically neutral solution. The required boundary condition is
therefore

2 3 — div, (evy). (99.9)

Thus, it may be seenfrom (99.9) that, the hydrodynamic problem
must first be solved, before the electrical problem can be tackled
and that these two problems are inseparable. In particular, even
though problems of this type cannot usually be solved exactly, the
high degree of geometric symmetry in this case (a spherical drop
a uniform external field) permits the construction of a solution under
certain assumptions.

In formulating the hydrodynamic equations, we shall assume that
the particle motion occurs at small Reynolds numbers Re= % hard
U is the velocity of the drop and p is the kinematic viscosity of the
solution. It is convenient, in what follows, t®use a system of co-
ordinates related to the drop in such a way that the drop is consid-
ered at rest, while the liquid is supposed to move relative to it with
a veloeity which is equal in value bul opposite in direction to the
actual motion of the drop proper, Takingthe symmetry of the prob-
lem into account, let us then use the Navier-Stokes and continuity
equations in spherical coordinates — equations (70.6) to (70.7).
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The boundary conditions for vy and vg at infinity are

U= =L cos f, 49.10
wy =+ LUsinf, W Fog, (89.10)
where U is the veloecity of liguid motion at infinity (velocity of the
drop relative to the solution). The velocity of the inner ligquid must
remain finite at the center of the drop (the origin of the coordinates),
while the normal veloecity components of the exterior and interior
liquids on the surface of the drop must vanish, i.e.,

o, =10,
v =0, a r=a (99.11)

Lastly, the tangential velocity component of both liguids must be
continuous

Y= at r=a. (99.12)

In addition, however, the condition of continuity for the normal and
tangential components of the stress tensor must be fulfilled at the

interface between the ligquids, which means that if p(n} and p{ue) are

the normal and tangential components of the v15cuus stress tensor,
we must require that at the interface

PO po =pl (99.13)
at r=aua.

L el (99.14)

Now, in order tosolve this system of hydrodynamic and electro-
dynamie equations with the indicated boundary conditions, we should
alzo note that the electric field and the velocity of fluid flow far from
the particle must be parallel tothe x axis;i.e,, conditions (99.1) and
(99.10) must be obeyed. In a similar manner we shall assume that
the field potential near the drop is a function of the external field
and of the angle in such a manner that

w=aEr cost, (99.15)

where ¢ is an unknown constant whose value will be derived later in
the course of the solution.

Let us also assume that the drop retains its spherical symmetry
during its motion, so that the expressions for the radial and tangen-
tinl components of velocity and the pressure, satisfying the hydro-
dynamic equations and condition (99.10) at infinity, may be written
in the form of the firat terms of an expansion in spherical harmonic
functions, l.e., in the form of formulas (70.28) to (70.33). The five
unknown constante = a,, ag, by, by, and by — contained in these
exprossions must then be determined (rom boundary conditions. The
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latter include the value of Ap as obtained from the solution of the
electrical part of the problem.

We shall show next that, for a consistent choice of the constants,
all the boundary conditions of the electrical and hydrodynamic prob-
lems can be satisfied and that in this fashion the complete solution
can be found. This in turnwill justify our original assumption about
the form of the solution, which should be sought in the same fashion
as was done for the similar problem of the motion of a drop in the
presence of surface-active agents.

For the tangential component of the velocity onthe surface of the
drop, let us first write the expression

(W), =Tsinf, (99,16)

where v; is a new unknown constant which has to be determined.
Then, for the surface divergence of the velocity entering into bound-
ary condition (99.9), we have an expression analogous to (73.10)

Zetrgcos B
o ]

div, (zv,) = ﬁ (;ﬂ {1 sin @) )

If we substitute the above for divg( € vi) into expression (99.9), we see
that

Fe=d

iy _ Zewgcosh
(), =2 o510

where we suppose that ¢ is constant along the surface and that the
value of 3¢/ar is taken at r= a and not at r = a+ d. The first as-
sumption follows from the postulate that all perturbations are amall,
and the second is due to the inequality a = d.

Solution of equation (99.8) for the potential satisfying boundary
condition (99.17) gives

. [,.,.(%_:_;;) :;:]E.:usr.a. (99.18)

and therefore the value of the constant ¢ in (99.15) is (% l % .

Thus, from a knowledge of the potential outside the double layer,
we can obtain the expression

\ 3 5
8% = —Fpeit Prmgra ="+ ¥yoa =5 — %) Eacosd  (99.19)

for the potential jump at the metal-solution interface.
Consequently, because of (99.6) and (99.7),

. .
. ,,1{ d e .
Pl - 2|3 . £ cosl,

B piy { r ::"'}H. gin b,
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Similarly, from the stress distributiononthe surface of the drop
we can determine the constants with the aid of the boundary condi-
tions for the hydrodynamic problem. By substituting the values of

(o) (o) ’ i
Prp » Prgs Prps and Prg from expressions (70.9) into the boundary

conditions (99.13) and (99.14), we have:

coﬂ[—(%—k E"*“)+2 E(——--"‘“ ) +6w'aya] <o,

— by +s.-£( -—E;;)=—apa.a :

and by substituting the values of the velocities from expressions (70.
28) to (70.33) into the boundary conditions (99.11) and (99.12), we
obtain

B b=0,  aeta=0,
b
Ty = 2;5_%_'&:*- —2a @t —agy=u,

Finally, from equation (99.10), we find that
by=—"U,

The unknown quantities by, bs, a,, a5, v, and U can be found from
this system of equations, which may be solved by elementary trans-
formations

e a =t (99.20)
a0t = - %U. .=§L{, ’
ﬂu=%U=; !Eﬂ i
2 B’
ek,
U= (99.21)
94 B’ 45

Thus, the velocity distribution in the flowing liquid has the form
(in a coordinate system related to the drop)

U = U(%— l)msﬂ, (99.22)
-u.l,__t {‘,‘,4 I)alnl'] (99.23)
Vp == H{l ”_,)L'U:i"], (99.24)

i i irt
v T {/ |'L - I)“'“”. (99,25)
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and the potential distribution is given by the relation
p=E[r (3 —3 1) %] cose. (99.26)

The velocity of the particle in the electric field is evidently de-
£
termined by formula (99.21). For 2 E"ﬁ! %1, i.e., at high values of
viscosity and electrical conductivity and low surface charge, the drop
velocity is

U=ﬁ- (99.27)

r
while for the reverse inequality Q—Eﬁ’%& < 1, i.e., at low values of

viscosity and electrical conductivity and for a high surface charge,
the drop velocity is
U ke (99.28)

*
L

The physical meaning of both limiting values of U is simple.
The first limit corresponds to the case where the convective current
around the drop, which tends to equalize the potential in the solution
near the surface of the drop, is so small that it can be neglected.
Then, it may be assumed that the potential difference in the solution
near the dropis not equalized by the conductivity of the solution. The
forces exerted on the surface of the drop can be balanced only by
viscous stresses in the moving liguid. Thus U, as given by formula
(99.27), is the velocity of the drop corresponding to such a balance
of forces. In particular, the drop velocity is very low for the case
of a very high viscosity y’of the interior liguid. In the transition to
a solid particle, i.e., withp" tending toward infinity, the interior mo-
tion cannot be maintained and the drop will cease to move. The
system of surface forces isthen matched by a system of stresses in
the solid particle. In reality, however, the particle can still pass
into the usual electrophoretic motion.

In the second instance, for a low electrical conductivity of the
medium, the convective current along the surface of the drop is so
large that it completely equalizes the potential difference along the
drop. The potential in the solution near the drop surface is then
constant along the drop, which, therefore, behaves as a completely
unpolarizable metal particle with a current flowing through it,

In order that the potential jump at the drop-solution interface
may remain constant at all times, it is necessary that the convective
current of the ions of the outer sheet of the double layer, carried by
the liquid moving along the surface of the drop, be equal to this elec=
tric current. The convective current of the charges in the inner
shoot I8 then short-clreulted by a conduction current Mlowing within
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the mercury drop, and, since the electrical conductivity of mercury
is high compared with that of the solution, the potential difference
thus established can be ignored. This canditicrn is fulfilled when the

velocity of the drop’s surface motion isv, = — U, where U is deter-
mined by formula (99.28).

it is convenient next to introduce a quantity Z expressing the mo-
bility of the particle, i.e., the ratio of the velocity U to the strength
of the external field,

£l
ARG

or a quantity z called the specific mobility, i.e., the mobility of the
particle with a radius equal to unity,

i
L=F= {99.29)

&
=

20+ 3+ (99.30)
The dual role of the surface charge density is revealed with par-
ticular clarity in formulas (99.29) and (99.30). The charge, on the
one hand, is the source of the motion of the drop and, on the other,
causes a self-retarding action, which, forlarge ¢, leads to a damp-
ing of the motion. The mobility reaches its maximum value at a

charge density € max,

e = VA @1 3, (99.31)

and is equal, at the maximum, to

1 l;’ %
Zmuzi m. {99,32]

It follows from formula (99.26) that the guantity 3Ea is equal to
the maximum potential difference between two points on the surface
in the absence of motion. Letus denote this quantity by A®;. Equa-
tion (99.21) may then be written in the form:

Ue l £ [AdDy) .

LT =320,

(99.33)

It is also interesting to observe that equation (99.21) for the
velocity of a metal drop isvery similar in form to the corresponding
expression (95.13) for a solid (metal or dielectric) particle. As a
matter of fact, if we ignore the difference in the numerical coeffi-
clents of the u quantities, equation ($9.21) can be derived from
formula (96,13) by substituting a for d in the coefficients for ¢ and
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2
%. This result may be interpreted in the following manner. In the
case of a solid particle, the viscous motion of the liquid due to the
field should decay within the limits of the double layer, i.e., over
distances of the order of d. For a liquid metal particle, however,
it should decay within the particle itself, i.e., over distances of the
order of its radius a. Hence, the viscous stresses in the second case
are smaller, while the corresponding mobility is greater than in the

first by the ratio %. Similarly, in the transition from a solid to a

liquid particle, the convective conductivity of the surface and, conse-
quently, the retardation of the motion duetothe electric field of the
charges that are carried by the convective current on the particle
surface also increase in the same ratio.

Let us now consider the mobility of mercury particles which are
moving in an extremely viseous medium, and letthe first regime of
motion apply where the following inequalities are satisfied

ol o
T{\f:[b and pf == .

For the velocity of the drop, we have

=3 (99.34)

A simple computation shows that the mobility of a mercury drop
in an extremely viscous and highly conducting medium is equal to
three guarters of the mobility that would be possessed, in a non-
conducting medium, by a solid particle carrying afree charge equal
to that of the inner sheet of the double layer of the mercury drop
{and to one half the mobility of the same particle if it were liquid).
Since the charge density in the double layer can be many times
greater than the possible density of a free charge, mercury drops
in a viscous, highly conducting solution have especially high mobili-
ties.

It is also of interest to compute the surface conductivity of a
metal drop and to compare it withthat of a solid particle in electro-
phoretic motion. Because of equation (95.17) and on the basis of
expressions (99.17), (99.19), (99.20), and (99.21), we have

|ewg] _ =%m

n S Tema, AT w (39.30)

A comparison of this value for » 4 with expression (95.18) will show
then that the surface electrical conductivity of a liquid metal drop
exceeds that of a solid particle by the ratio a/d. Since the computed
surface conductivity evidently represents the convective conductivity,
which is related to the transfer of lons by the motion of the solution,
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high velocities of motion on the surface of the drop correspond to
very high values of » .

In addition to convective surface conductivity, the dropalso pos-
sesses the usual ohmic conductivity. The latter is somewhat higher
on the surface than in the bulk of the solution because the ion concen-
tration in the double layer is greater thanin the main stream. It is
evident, however, that, in the case of particles of macroscopic di-
mensions (a = d), ohmic surface conduction can be neglected in
comparison to convective conduction.

In deriving formula (99.21) it was assumed that in electrocapil-
lary motions the surface tension at all points on the surface of the
drop should depend only on the potential. This condition will not be
fulfilled if, forexample, surface-active materials are present in the
solution and if the establishment of anequilibrium between the sur-
face and the bulk of the solution requires time due to the slowness of
the process of adsorption or diffusion of the adsorbed material. The
surface tension in this case, even for constant Ay, is greater on
those parts of the drop where the mercury surface is distended (in
the right portion of the drop in Figure 75), and less where the sur-
face is contracted (the left portion of the drop). This increases the
drag on the drop and reduces its mobility Z.

It should be possible to observe similar phenomena even in the
absence of specifically adsorbed materials, provided that the estab-
lishment of equilibrium between the boundary layer and the bulk of
the solution at a given potential is not instantaneous. Thus, for ex-
ample, if the mercury surface is negatively charged and if both
monovalent and polyvalent cations are present inthe solution, there
will be a relative excess of polyvalent cations in the surface layer,
and, when the surface contracts, the adjacent layers of the solution
will become richer in these polyvalent cations. The result is that
the interfacial tension is different at various parts of the surface
even though they are at the same potential. It is clear then that the
current flowing through the solution does not equalize the changes
which occur in the composition of the solution. This is possible only
by diffusion, i.e., in a relatively slow manner, 8o that the retarding
effects that take place can be very considerable.

The applicability of the theory developed above is also restricted
to low velocities and small potential gradients. Thus, according to
this theory, if the change in the interfacialtension over the surface
is small compared to its initial value and if the motion of the drop
falls within the region of amall Reynolds numbers, the shape of the
drop remains spherical throughout the process. Numerical estimates
show, however, that, for large values of ¢ and sufficiently large
drops, the drop's velocities U, as caleulated by equation (99.21), are
go great that the Reynolds number Re = % ia by no means small
compared to unity., Under these conditions, then, equation (99.21) is
not valld and must acoordingly be modified,
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The motion of liquid bodies for Reynolds numbers greater than
unity has not been studied in hydrodynamics in sufficient detail
either theoretically or experimentally. Under these conditions a
drop losges its spherical shape and becomes egg shaped, with the
blunt end pointing forward, Furthermore, it follows from general
considerations that the viscous drag is then small compared with
the dynamic pressure on the drop and can therefore be neglected,

The dynamic pressure per cm® of drop surface can be presented
in the form

where Ky is the drag coefficient, which is a complicated and as yet
unknown function of the Reynolds number for the case of the liquid
drop which concerns us. It may be assuined, however, that it is not
very different from the analogous function for a solid, egg-shaped
hody and that the drag coefficient first decreases rather rapidly with
a rise in Re and then remains almost constant over a wide range of
Reynolds numbers.

The wvelocity of the drop may be estimated very roughly for
values Re == 1 by equating the driving force and the dynamic pres-
sure. Then

. eE == Kpll®,
i.e.,
Uy E (99.36)
~V - .

Since Kf here is an unknown function which, only in the roughest
approximation, may be considered constant, the nature of formula
(99.36) is gualitative. It shows that at large Reynolds numbers the
velocity of the drop should increase with the charge more slowly than
would follow from formula (99.21). Also, it should be a weak func-
tion of the viscosity of the mercury and of the solution,

It may also be assumed that certain changes in the shape of the
drop, described by Christiansen [10], are precisely related to this
effect (simple estimates show that the value of Re in his experiments
was considerably greater than unity) and not tothe change in inter-
facial tension of the drop, as was postulated by Christiansen. This
is also apparent from the fact that if the change in the shape of the
drop were caused by the variation ir interfacial tension, the drop
would become egg shaped with the pointed end forward, instead of
backward as is actually observed, Indeed, the interfacial tension in
the forward section of the drop would he lowered, and, if the devia-
tion from a spherical shape were caused by changes insurface ten-
sion, it is this part which would jut forward, forming a pointed end
on the drop,
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Up to this point we have assumed in the course of the computa-
tions that the maximum variation in ihe potential along the drop is
gmall compared to the initial potential jump

E
Fo= "

where C is the specific capacitance of the double layer. However,
the maximum change of the potential jump inthe double layer is, in
accordance with expression (29.26),

2p 3" dEa
,, 82 27
% -+ 3’

and hence, for the theory to be applicable, the following inequality
must hold

2 ) -
- lf 3::3:___ Ea<z . (99.37)

This will always be satisfied for Ea << ¢,. Conversely, if inequality
{99.37) is not met, the variation in charge density over the surface of
the drop can no longer be neglected in the computations. In fact,
the wvariation may then be so great that one side of the drop is
positively charged and the other negatively. In sucha case, motions
of the type deseribed here should arise at both of the oppositely
charged ends of the drop, but these motions will be in opposite direc-
tions. The over-all velocity of the drop should then ocbviously de-
crease sharply, and the drop itself might even break up. This is
what Christiansen observed.

Let us alsonote that the motion of emulsified drops in an electric
field can be examined in the very same manner as for the similar
motion of mercury drops. The appropriate computations were made
by A, I. Fedosov [26].

An emulsion drop differs from a mercury drop in that the elec-
trical conductivity of the interior phase is then comparable to that
of the exterior phase. In view of this, an electric field exists inside
the drop, and condition (99.9) must be satisfied for both the interior
and the exterior liquids.

Computations lead to the following expression forthe velocity of
electrocapillary motion of emulsion drops in an electric field:

; ek
U ! 5 (99.38)

L w

where ' 1s the conduotivity of the interlor Pl s,
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For emulsions of water in oil %' = x, and equation (99.38) be-
comes (99,21), Here, it should be borne in mind, however, that water
emulsion drops in oil will in fact not move at high velocities due, on
the one hand, to the small value of ¢ for water drops and, on the
other, to the low value of E in oil,

In the case of emulsions of oil inwater, equation (99.38) acquires,
in view of the smallness of »', the form

U — sEa Lt Ea
W L (99.39)

go that the velocity of the electrocapillary motion of oil drops is
proportional to %' and inversely proportional to €. In particular, in
view of the smallness of »’, this velocity is always very low,

100, MOTION OF NONIDEALLY POLARIZABLE
DROPS IN AN ELECTRIC FIELD

Up to this point we have examined only the motion of ideally
polarizable liquid particles.

Let ug now pass [22] to anexamination of a partially polarizable
particle, Since we assume that the change of the potential jump at the
metal-solution interface, upon the passage of acurrent, is small, it
follows that for adropto be incompletely polarizable — i.e., for ions
to be formed or lose their charge on its surface — there must be,
prior to the application of a current, aninterchange of ions between
the metal and the solution, as is the case, for example, with a drop
of mercury in a solution containing Hg**ions, or with a drop of zinc
amalgam in a solution containing Zn** ions.

The balance of the amount of electricity at the double layer-
electrically neutral solution interface can, inthe case of a nonideally
polarizable particle, be written in the form

. (%)M =2 o544, (100,1)
where i ig the current density flowing through the surface of the drop.
We assume this current to be sufficiently weak, so that the de-
parture from equilibrium in the double layer can be neglected,

The relation between i and the potential difference ¢ between the
metal and the solution depends on the particle’s polarization mech-
anism,

In the simplest case of chemical polarization (either a hindered
ion discharge or a particularly slow step in any of the other stages
of the electrochemical reaction on the surface of the particle), this
relation can be represented, for weak currents, by the linear Law

| == fpp, (100,3)
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where k; ma:,r be termed the conductance of the metal-solution
interface, B.mi~—- = w, its resistance,
Equation (101] 1) can then be rewritten in the form

dy
(#) =2 Bl 100

Now, the solution of equation (99.8) for the potential satisfying
boundary conditions (99,9) and (100,3) has the form

i-=_2).
:;-:E(r-i— S T Cton f;.)msa, (100.4)

and therefore the quantity o in equation (99.15) is, for a nonideally
polarizable particle,

By repeating computations similar tothose presented previously
we can derive the following expression for the velocity of the drop:

efEa

U= .
0 + (1445 )+ 5 (10%:5)

As should have been expected, the resulting conductance at the
metal-solution interface leads to a decrease in the velocity of the
particle (as compared to an ideally polarizable object), This reduc-
tion in the wvelocity of a nonpolarizable particle is related to the
fact that the ponderomotive forces of such a system are smaller than
those in an ideally polarizable particle, withthe ratio of the first to

the second being 1: (1 + am)‘ This applies both to the forces that

are a function of the external field and to those associated with the
self-retarding effect., Equation (100.5) should, therefore, be written
in the form

U oo i - — (100.6)
oot o+ (0 )

Also, since nocording to equation (100.4) we have for a nonideally
polarizable drop
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a -1
AD, =3Ea (1 +5s) (100,7)

we can in this case replace equation (100.6) by:

& (Ady)

23 4o (14 -g%)_l'

1
V=13 (100.8)

According to this result then, a decrease in w produces a de-
crease in the velocity of the moving drop, The significance of the
current’s origin disappears ifw is sufficiently large compared to %.
It is also unisiportant if the drop is in the second regime of motion
since the term (1 +%) will cancel cut in equation {100,6). Indeed,
if the external field is fully equalized by the convective current
caused by motion of the double layer, the fact that a current can flow
through the drop will have no effect on the velocity of the motion. As
has been pointed out above, however, the derivation of equation
(100.8) assumes that w is not a function of 8, This condition is not
fulfilled when the agitation of the solution is determined by the mo-
tion of the drop.

Let us consider qualitatively the phenomena which should be
observable in this situation, taking as an example a positively
charged drop of mercury in a mercury-salt solution, As the current
flows through the drop (see Figure 75), mercury ions form on its
right side, and the ion conceatration in the solution increases, On the
left side of its surface, however, the ions are discharged, and the
solution becomes depleted, However, the changes in concentration
which occur under these conditions differ in magnitude. Because of
capillary motion, a stream of fresh solution containing the free
stream concentration flows against the right side of the drop, whereas
the left side is in contact with that part of the solution which has been
enriched during its flow past the right side. Any excess ion concen-
tration is deposited from the soiution onto the mercury, so that the
stream flowing from the drop in the direction of negative values of
x has an average ion concentration equal to that of the bulk., Since,
during the motion of the stream, excess mercury ions have time to
diffuse to some extent from the surface of the drop into the bulk of
the solution, a layer that iz somewhat depleied compared to the free
stream will exist immediately adjacent to the left side of the drop,
while farther from the drop the solution will retain a higher con-
centration for a while, Atasufficiently great distance from the drop,
all these variations in composition should disappear, and the concen-
trations at all points should return to their initial value, With such a
distribution in composition, it is evident that deviations from the
initial concentration, and, consequently, the ghange In potential as
well, are greater near the right slde of the drop than near the left
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side, Inothe¥ words, as already pointed out above, the gquantity w is a
function of the angle § and decreases as § varies {rom 0 to 7. The
flow of current, under these conditions, should likewise cause a cer-
tain shift in the average value of the potential jump in the double
layer, tending to increase the positive charge of the drop,

On the other hand, if the drop is negatively charged, the picture
is reversed, The stream of liquid moves from left to right, with
respect to the drop, and the deposition of ions is from a solution
containing the initial concentration of metal ions, Thus depleted, the
solution arrives at the right side of the surface, where its concenti-a-
tion increases to its initial value, The shift in potential, under these
conditions, is larger in absolute value on the left side than on the
right, so that the average value of the potential of the drop is shifted
in a direction of an increased negative charge of the metal surface.

It is clear that, in the presence of such a complicated dependence
of w on the angle 8§, it is not possible to compute accurately the
effect of incomplete polarization on the velocity. An approximate
estimate can, however, be given, if equation (100.8) is retained with
acertain average value of w, which may be obtained from the expres-
sion for the limiting diffusion current ijjm, and from the relation

= z—-——-Fil: iTm . Wefound, in Section 72 and Seciion 14, that the average
density of the limiting diffusion current is determined from the
expressions:

b = 2Fj = 250 =0 6( 22 ) 2Fe, (100.,9)
and for a solid particle
by = ZFJ = :n"jF{a.ﬁ(%ﬂi)ﬁzﬁm. (100,10)

Here, I is the total diffusional flow to the drop; z and ¢y are fe-
spectively the metal ion valence and the initial concentration of the
ions of the drop metal (in gram equivalents per cm?®),

As an example, let us determine the magnitude of ihe coefficient
k=1 +$ with a=10"% in the case of the deviation in an electric
field of a mercury drop, falling by gravityin a solution containing a
neutral electrolyte of concentration c and mercury ions of concen-
tratien cpy. it 18 assumed in this example that the hydrodynamic

2

S \ £
conditions of drop motion are preserved = 1), Since
E P "Kl:.zﬂ- + Su'} )
U = 30 cm/sec,
a2 10%:  z=2,
@ 088U Fe fln_ (100,11)

P |r-. I
.

D=08.10
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Thus, the quantityk=1 +ﬁ, which may be termed the depolar-

ization coefficient, i8 a function of the ratio of the concentration of
the metal ions in the drop to the over-all concentration of the solution,

If %m":s 10-2, this coefficient is noticeably different from umity, and

for ¢y = ¢ (i.e., for a mercury drop in a solution containing only a
mercury salt) the deviation from the vertical of a falling drop in an
electric field is about 100 times less than in the case of an ideally
polarizable drop, Of major importance is the fact that, contrary to
some published statements, the incomplete polarizability of a drop
always leads to a decrease in its mobility as compared to that of an
ideally polarizable drop.

101, COMPARISON OF THEORY AND EXPERIMENT

An experimental verification of the theory was conducted [24b] by
means of an instrument (Figure 76) which was used to determine the
deviation from the vertical of falling drops of mercury in an electric
field, The mercury, under the pressure of a column of the metal,
flowed from a capillary tube in drops 0,036 cm in radius, They fell
through a solution of KBr in glycerine CaHg(OH)a. The drops were
spaced in time about 0.9 to 1 sec apart. The viscosity of the solu-
tions which were employed was about 2,6 to 3.3 poise, at 21 to 22°,
The welocity of fall of the drop due to gravity was about 1,2 to 1.3
em/sec, and the Reynolds number was, therefore, of the order of
0.04, The falling drops formed a column of mercury droplets along
the axis of the instrument, and were separated from each other by a
distance of approximately 1.3 cm,

As the drops grew on the end of the capillary they formed a
circuit with an auxiliary electrode (Figure 76) and were charged by
an applied emf that directed a charging current over the growing
drop. The charge density on the drop was calculated by measuring
this current and dividing it over the area of the drop.

The intensity of the electric field was varied from 0,25 to 1.8
v/cm, so that the potential difference in the solution did not exceed
0.1 v,

The mobility of the mercury drops inthe electric field was deter-
mined by their deviation from the vertical path, which is the one
followed by the drops when the electric field is absent,

The dependence of mobility on the charge per unit area was
determined by varying the value of the charging current on the drop,

The points in Figure 77 illustrate the experimentally determined
mobility of mercury drops in an electric field as a function of €,
while the solid curves represent mobilities as computed by means of
equation (99,30), Curves a refer to the most concentrated solution,
and curves b to the moat dilute,
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The general conclusion may be reached on the basis of the curves
in Figure 77 that the theory presented above is in good agreement
with the experimental results, Thus, in accordance with the theory,
the experimentally observed mobility of mercury drops first in-
creased with an increase in the absolute charge on the drop, and
then began to decrease, Inthe transitionfrom concentrated to dilute
solutions, the maximum value of the mohility of the mercury drops
decreased on both the positive and the negative branches of the
curve, The maximum, which is entirely absent in curves for con-
centrated solutions, is shown especially well in this case,

Figure 76, Instrument for determining the
mobility of mercury drops in a horizontal
electric field,

For the solutions which were tested, however, the values for the
observed mobility, as compared to the theoretical predictions, were
shifted in the direction of negative charges. Thus, the mobility of
the mercury drops passed through zero, not at a charge equal to
zero a8 expected theoretically, but at a Eli%htl}r negative charge
equal to approximately 3 to 6«107% coul/cm®, The mobilities ob-
gerved ln dilute solutlons were somewhat less than those computed,
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especially for <0, This is probably related to a certain drop in the
potential of the applied field across the droplet, which could have
led to a decrease in the drop's velocity in the région of a rapidly
charging U(¢) function (steep curve), Despite these small differences
between the computed and the observed mobilities, it is justified,
considering the complexity of the phenomenon and the absence of any
arbitrary constants in the theoretical formulas, to assert that a
satisfactory quantitative agreement between theory and experiment
has been established,
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Figure 77. Mobility of mercury drops in an electric field:
a—15NKBr, x=7-10"%b — 0,02 N KBr, x=1,9- 1075,

The observed deviations apparently are related to variations in
the charge during the fall of the drop,which could have been caused by
the action of remnants of dissolved oxygen that could not be entirely
eliminated from the solution,

102, FALL OF MERCURY AND EMULSIFIED DROPS
IN A GRAVITATIONAL FIELD

The presence of a charge on the surface of a mercury drop is of
very great significance in determining the motion of the drop not oniy
in an electric, but also in a gravitational field [22]. Let us then
examine the fall of a mercury drop in an electrolytic solution, The
resulting motion of the solution onthe surface of the drop causes an
entrainment of the ions in the outer sheet of the double layer, which
are thus carried to the rear of the drop. A convective current of
ions at its rear generates an electric field in the solution near the
drop, even though no external electric field is present,

The electric field that thus appears in the solution tends to
equalize the ion concentration on the drop surface by moving them
in a direction opposite to that of the fluid convection, However, in
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addition to the equalization of potential brought about in this manner,
the potential difference is also equalized by electric currents in the
bulk of the solution, which are passing throughthe solution from the
back to the front of the drop.

To obtain the velocity of fall of adrop of mercury in an electro-
Iytic solution, we must first determine the potential distribution in
the solution and the magnitude of the retarding forces that are
generated, Since there arenocharges inthe bulk of the solution, the
potential distribution in this region is found fromthe Laplace equa-
tion

Ap =10, (102, 1)
together with condition (99.9), Le.,
9 — div, (ev)), (102.2)

which evidently serves as the boundary condition on the surface of
the drop. Also, since there is no external field at infinity, we must
require that far from the drop

p— 0, (102,3)

For vidifferent from zero, it is obvious that the potential distri-
bution around the drop satisfying equation (102,2) cannot be spher-
ically symmetric, Along the drop, therefore, a certain change in
potential takes place which in turn causes a variation of surface
tension and the appearance of the corresponding surface forces, The
system of hydrodynamic equations which determines the velocity
distribution in the solution and in the dropmust be solved by taking
these forces into account, Let us restrict our further analysis fo
the case of small Reynolds numbers, for which equations (70,28) to
(70.33) can be written for the veloecity distribution inside and ocutside
the drop.

Equations (98.11) to (99,14) now serve as boundary conditions on
the surface of the drop, Here, aswasdone in Section 70, an effective
pressure 7 must be introduced into equation (99,13) for the normal
component in order to account for the volumetric effect of gravity on
the drop. Also, the surface forces Fi and Fp are given, as prev-
ipusly, by equations (99.6) and (99,7), while the veloecity at infinity
must satisfy equation (92.10).

If we designate the velocity of the liquid at the mercury-solution
interface by v,, we can set:

(m),_, ="ty sin (102.4)

which when introduced into boundary condition (102,2) yields:

iy 2 e
{Ii: l “ i " L Ti: it ”- "1“2'5]
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The solution for the potential satisfying aquaj:mni,'lﬂz 1) with bound-
ary conditions (102,5) and (102,3) is:

p=—22cos b, (102.6)

Thus, it follows from equations(99.6),(99.7), and (102.6) that the
forces exerted on the drop’s surface are:
pLE

2edp 2o Depy

FomZn 2P Bap 2 (102.7)
g A e .
Fi= gradgd—-—-mgradaﬁ:p——%W?=$smﬂ, (102.8)

Introducing expressions (102,7) and (102,8) into equations (99,13) and
(99,14), we have, at r = a:

&

P
—p+2u wr=—p 2]

1 du,  dwy L 1 E.'u dry I'.IH) eguo
» (? @ o = (r ® e —7 )t s (102.10)

Equations (102,9) and nlﬂz.m] reduce to:

2".,\..2 2: ""1] . B,, {102'9}

3b , 2.2
—p(P+ ) =—6ves— G —pga+ b (102.11)

Ak _apeet SR, (102.12)
by substitution of the appropriate expression for the velocities and
the pressure. The boundary conditions (99,11) and (99.12), together
with the conditions at infinity, yield

hbh _u=o, (102.13)
]

A4 U— D=, (102.14)

a3t g, =10, (102.15)

— 25, —ay = (102,186)

Following elementary transformations, we finally obtain v, and U:

{p—rlga®
- (102.17)

W=
3 TR Y W
J(_gl - Juf - }

» L
i 2{p . F:"} ra® e .'I-.r.* . L 102, IB}
s Du o B’ .'.
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For the sake of brevity, let us write down the velocity distribu-
tions inside and outside the drop without giving an explicit solution
for the other constants:

= {2:,,(__ 1)_|_(?_:_'l—i)(ap’—i—:-?j}wﬂms‘?, (102,19)
‘i'ﬂ=;.1'{l*{2~;)_"(gi:u+%i )(u._l.- )}-r.rus[nﬂ. (102.20)
( —E)ﬂumsﬁ. (102.21)

vp=(2 5;— 1) vysin. (102.22)

We may now present the final expressions for the distribution of
the potential and for the density of the electric current on the sur-
face of the drop

__slp—pga

a
cos 0,
(m+3 ’+—}t I (102,23)

(=]

d':F)r—G.:E. (Q:LP_:;:'TE)WSB (102.24)

Equation (102,18) shows that, as in the case of an electric field,
two limiting cases of motion in a gravitational field exist,

2
1) 2u + 3y’ :é‘#i- Here the velocity U for the fall of the drop is

equal to that of an uncharged drop, as given by the Hadamard-
Rybezyiski formula (70.35), This result may be giventhe following
physical interpretation, The potential differences is evened up
through the solution so rapidly that the convective current of ions
along the surface is compensated by currents through the adjacent
layers of the solution without any noticeable accumulation of charges
at the rear end of the drop., Thus, in this instance, the convective
transfer of ions along the surface is unhindered, and the electric
field thatl is generated does not retard the motion of the liquid along
the surface, The velocity Df fall of the dl‘ﬂ]] is, therefore, determined
by the Hadamard-Rybczynski formula in the same way as in the
absence of an electrolyte,

2
2) 2u+3u’ = i— Here the velocity of the drop’s fall coincides
with that of a solid sphere, as given by the Stokes formula

Us, 2 (p—p") gat ) (102,25)

1] n

This ia coused by the faol that no time {8 available for the equaliza-
tion of the potentinl, so that the fons pooumulate continuously at the
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rear end of the drop until the generated electric field fully retards
the convective transfer of ions along the surface, In other words, the
electric field generated in this instance arrests the motion of
mercury along the surface of the drop, and causes it to fall like a
solid sphere, The velocity of fall of such a **solidified’* drop is fully
described by Stokes’ law [25]:

Let us next examine the ratio of the veloeity of the drop’s fall to
that of a solid sphere, i,e.,the ratio of equation (102,18) to (102,25},

'L

3p -3’ - —
Ui=—_"_:_g. (102, 26)
SU a3

It is clear from/(102,26) thatthis ratio attains its highest value when
the viscosity p of the medium is considerably greater than the vis-
cosity y' of mercury, Under such conditions

a1
v _ ¥ty
Ust  auy 2

*

(102.27)

The dependence of the raticﬁ—[—lanthﬂcharge ¢ is shown by the solid
St

line in Figures T8 and 79, Atthe point € = 0, the ratio ﬁU— attains its
St

maximum value of 1.5.

Let us now clarify the region of validity of equation (102,18). To
assure its applicability, the following conditions must be fulfilled:

1) the Heynolds number must be extremely small comparesd to
unity;

2} surface conductivity must be low compared tothat of the bulk
of the solution;

3) the maximum potential variation along the dropmustbe small
compared to the initial jump in potential in the double layer;

4) the maximum variation in the surface tension must not exceed
a certain limit Adpgax;

5) surface tension must depend only in the charge per em? of the
drop’s surface,

The wvalue of A0y is determined by the condition that the
charge accumulation at the rear end of the drop must, at some
moment, generate an electrolysis between the two ends of the drop,
which could, for example, be related tothe passage of mercury ions
from the double layer into the solution (if the drop's charge ia
positive), The meaning of the first condition is obvious, The second
has been discussed in Section 99, so let us examine conditions 3)
and 4),
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The requirement that the potential difference alongthe drop be
emall compared to that in the double layer can be represented by
the expression

2 elp—p") gat £
O =F 7 = < T 102,28
1(241_'_3“.-7%) [ - ]

where C is the capacitance of the double layer. For the case of a
E

viscous solution, and for ;— =< 2y + 3y', equation (102,28) can be

written in the form

3L 1
SL
T ST

or

x> 5 Cls,. (102.29)

Thus, ecquation (102,28) is not applicable to very dilute solutions,
The fourth condition places a limitation onthe size of the falling
drops, Indeed, since

2 L
T Ry L] - B— PR
R
it follows that, for high charges,
2 . .
5 e —8ga® < (A,
or
ER (Azpne) Ya
a < e ———————— ] . 1“2.30}
V 2 Ve—re & {

The further accumulation of charges at the rear of the drop and an
increase in their retarding effect on it are impossible for values of a
exceeding app. This is so because, for large drops, the retarding
forces can no longer compete with the liquid’'s inertial forces, and
drops greater than apy must fall in a “liquid" regime, It may
normally be assumed that Aop,ay 12 20 to 30% of the total surface
tension, It should also be remarked that equation(102,30) coincides
with {78.4), which was derived for the case of the retarding action
of surface-active materials,

The kst Limitation, the [ifth, implies that surface-active materials
are absent from the solutlon.
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An experimental verification of equation (102,18) was made by
A, N, Frumkin and I, A, Bagotskaya [24a]. The fall of the drops was
studied, under conditions most favorahle for a verification of the
theory, in solutions of KBr and Na 50, inglycerine with a viscosity
of 5to 7 poises (which is considerably in excess of that of mercury,
which is 0.01 poise), The fall of drops 0.056 cm in diameter took
place, with intervals of 3 to 5 cm between drops, The solution was
carefully cleansed of oxygen, although traces of oxygen remained and
amounted to a2to 3 - 10-% molar solution, By diffusing to the surface
of the drop, the oxygen caused a gradual reduction in its charge
during the fall. The authors intreduced a correction for this effect by
computing the number of oxygen molecules arriving at the surface
according to equation (72,10), The ra.tioﬁugc whichwas computed in
this manner is presented by the broken curves in Figures 78 and 79,
while the circles in the same figures indicate the measured values
for this ratio,

i PR TR SRR W T NN (N S NS |
4§ =i -if =20
0E 2 8 & 0-4 5
Figure 78, Velocity of fallof a
mercury drop in 1 N KBr in
glycerine, as a function of the
surface charge density, ¥ = 7.2, a = 0.442 mm.

5+107%, u=4.8,a=0,434 mm,

R Solid line represents Ugglp ac-
Solid l'fne represents Ugalc cording to (102,26); dotted line
according tu[lUE.EE};brul::en shows Uggle according to
curve shows Ugale 8CCOTAINg 145 o6y taling account of (72.10)
to(102,26) taking into account and assuming € - €q =3.4+105;
(72.10) and assuming ¢ - €, = ngives Uﬂ b '

8:1078; 500 gives Ugps. Qoo ohs-

Figure 79, Velocity of fall of a
mercury drop in saturated Na_-
S0, in glycerine, x = 8,1-10-%,

The agreement of the theoretical formulas with the experimental
data is essentially complete,

1, A, Bagoiskaya pointed out that the introduction of mercury ions
into the solution brings about a considerable reduction of the retard-
ing action. This is in qualitative agreement with the conclusion in
Section 100 for an incompletely polarizable drop,

Equation (102,18) for the wvelocity of fall may now easily be
generalized for the case of falling drops of an emulsion, Here, how-
wver, a phenomenon should be noted which has no analogue in the
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case of mercury drops falling in a conducting medium, Namely,
where the motion takes place in a medium of low conductivity, the
effects noted in Section 100 may appear.

The transfer of ions in a dilute binary solution may lead to their
unequal distribution on the drop. This distribution will not have time
to be equalized by conduction (migration) and diffusion, and as a
result, an electrical convective-diffusion field will appear, The
total current in the drop will, in this case, be zero, and in order to
estimate the field thus generated, equation (51.24) may be utilized.
This formula may be conveniently rewritten withthe help of formula
(75.4"), so that

Dy—Dy RT wly & Dy—Dy RTwlg B

where only the ion concentration in the bulk of the solution and the
surface concentration appear,*

103, POTENTIALS OF FALLING DROPS

We saw in the preceding section that a potential difference A&,
given by equation (102.28), appears across the ends of a mercury
drop falling in an electrolytic solution, If a series of drops fall in
succession in the solution, a certain potential difference will be
established along the column of drops, This is termed the falling-
drop potential or sedimentation potential [25].

In order to compute this potential difference, letus assume that
the number of drops per unit volume of the solution is sufficiently
small, so that the distance between the drops is large compared to
their own dimensions. We can then consider that the drops fall
independently of one another and that the electric fields of the drops
are additive, The sedimentation potential can in this instance be
calculated exactly,

Let us first examine in more detail the case of a single drop
falling through a column of liquid, and let us find the average value
¢y of the potential in a plane S, which is situated above the drop at
a small distance compared withthe radius of the column, but in such
a manner that it does not intersect the drop, The cross-sectional
dimensions of the liguid column in this case are large compared to
the dimensions of the drop, Letus place the origin of the coordinates
in the center of the drop, The area of that element of the plane
situated between the angles 6 and 6 + dB is ——-zﬂ;:ssan 8 dg. With
the help of equation (102,23) ¢, may therefore be expressed as

*Proofreading note, This conclusionwas arrived at independently
by 8, 8§, Dukhin and B, V, Deryagin (see p, 286),
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) f wrt sin ¢
[P"‘_S cas 0 i

_ ?_“ =% f sin B =— & e —Fgat
S o+ +5) i
In the same manner, we obtain for the portion of the plane which
is situated below the drop:

- _ 3=  slp—p)gat )
Fa 5 h{'&’#-l- 3t _E;“)

so that the sedimentation potential caused by the drop falling in the
liguid eolumn is

- dr  clp—paly

P V=g o
u Sﬂ;(fpﬂ-ﬂg‘-g—f.;) (103,1)

Let us also designate by n the average number of drops per unit
volume, The sedimentation potential E in aliquidcolumn 1 em long
in which there is a shower of falling drops is, obviously,

- - dzre (p —p") pat 2natpanl}
E=nS(gg—p)= - P,}Ece = .=y (103.2)
31(?.“ + e -I—;) '*-(P--H* +E}

where 5 is the cross sectionof the tube in which the drops are fall-
ing, The magnitude of the potential E of the falling drops is propor-
tional to €—~. tothe number n of drops per cm? of solution,

2u +3H’+E{-

and to the radius of the drops. As with the mobility of a drop in an
external field acco to (99.30), this guantity E passes through a
maximum at Emﬂx%

When we complete the circuit formed by the ligquid column of
length L, and cross section S with an external resistance W, the
potential difference inthe external portion of the circuit balances, so
that a current I flows through the entire liquid column and the ex-
ternal resistance, This current is superimposed on the system of
local currents at the falling drops, Since the emf in this circuit is
EL, we have

hg (108.3)
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where I, is the current which flows when W = 0, i.e,, when the
column is short-circuited. According to equations (103,2) and {102,18)

[ — ESy— d=nSc (e —¢") gat _ Zra’nSllen
’ s(2e o +5)  wbwg SSESE
: % k2

In the case of positively charged drops, the current in the ex-
ternal circuit flows upward, while in the column itself it flows from
the top toward the bottom, i,e., in adirection opposite to that of the
local currents near each drop, Indeed, short-circuiting the ends of
the liguid column is equivalent to applying across it an external
potential difference equal in magnitude and opposite in sign to the
total sedimentation potential EL. In this case, the potential deter-
mined by equation (102,23) decreases, Let us find the magnitude of
this correction for a case which is especially important, namely,

2
when the drop is in a “liquid’’ motion regime where—;—--@: 2u + 3u'.

Then, according to equation (99.26), the potential in the liquid
column near the drop, caused by the flow of current I, is

_E{r—|——; f;:}cnsﬂ.

which leads to the following expression for the potential distribution
and eleciric current density on the surface of the drop, in place of
(102.23):

__elp—p'Ygacos b ja? 1 a®
g =20 e Tt (r 4 3 5 (103.5)

At the surface of the drop, i.e., at r = a, the ratio of the second
term in equation (103.5) to the first is small and equals émma® when
the distance between the drops is large compared to their radius, In
other words, the completion of the external circuit has no significant
effect on the potential distribution in the immediate vicinity of each
drop, thus justifying our use of (103.2) in equation (103.4).

For the case of an open external circuit, the total current through
each horizontal cross section of the liguid column is equal to zero,
which means that the amounts of electricity carried by the convective
current caused by the motion of the outer sheets of the double layer
and by the conduction current are equal and opposite in sign. One
might be tempted to conclude that the value of the conduction current
is equal to the “current of the falling drops'* which flows in the
external circuit and in the liquid column when the latter is short-
circuited., As may be easily proved by the following argument, how-
ever, this is not in accordance with the facts, Let us draw a hori-
zontal plane through the drop, and let 8, be the angle between the
vertical and the radius vector a, drawn from the center of the drop
to pointe where the surfaoe of the drop intersects this plane. The
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current emerging from the lower portion of the drop and entering the
upper portion, and passing, therefore, through the indicated cross
gection of the solution, is

6

L]

. 0T __ Zma{p—p") gatsint i, 103.6
VF=——x 2mat| " 1sin f df = — — e L, ( .6)
af (&) 3(2 +3 + )

The number of drops in the tube for 6,4 between 8 and 6 + df is
nSa sgin 6 df, so0 that the total current is

8 =melp—p')gatns 2

F= f F'nSa sin i df = - =g % (103,7)
b o+ '+ —

The reason for the difference betweenI” and 1, becomes apparent
if it is recalled that these two currents, the total current flowing
through the liquid when the column is short-circuited and the current
in the open circuit, are related to the corresponding potential differ-
ences at the ends of the column, In terms of absolute values, these
differences are eqgual. Howewver, the solution acts like a uniform
conductor for the current I, while the current lines of 1", which is
the sum of the local currents of individual drops, curve around the
drop surfaces and deviate from the shortest route.

It follows from equation (103.4) for the limiting “liquid** flow
regime that:

1, = 2=nea®Su uf_| : (103.8)

Since the quantity 4mea®nSU expresses the total charge on the inner
sheet of the double layer arcund the drops passing through a cross
section of the tube in unit time, the numerical value of the current
generated by the falling drops differs, in this instance, from that
which would result from the fall of spheres with a free charge equal
to the total charge onthe inner sheet of the double layer, only by the
coefficient

| S S *
pireay =0.2.

*At first glance, such a result appears paradoxical, It is simple
to understand, however, that inthe first limiting case the convective
current transfers aquantity of electricity of the order of 2raeU from
the lower to the upper part of the drop, i.e., through a distance a, The
product of these two quantities, 2ra®eU, is the same order of magni-
tude as the product of the veloeity of fall and the total free charge,
e, dma®eU in the case of a charged sphere,
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This reasoning loses validity in a ‘‘dense’ shower of mercury
drops, when the distance between the drops is comparable to their
radius, i.e.,%n = a. In this case, which, incidentally, is only of
theoretical interest because of the difficulty of achieving it in actual
practice, the electric fields near each dropcanno longer be viewed
independently from one another, and the local deviations from
equipotentiality are averaged out. This is akinto an increase in the
conductivity of the medium surrounding the drop, as a result of
which the retarding action of the charge onthe motion of the drop’s
surface iz decreased. In addition, the completion of the external
circuit has, under such conditions, a significant effect on the poten-
tial distribution near each drop, For the limiting case of a very
“*dense’ shower, the retarding action of the charge should disappear
on short-circuiting the external circuit. This would occur if the
liquid were pressed through a soliddiaphragm. The closing of the
external circuit in a *‘dense’’ shower would also have an effect on
the velocity of fall of the drops.

Equation (103.4) can be applied only if all the conditions which
were formulated in the preceding section are strictly fulfilled,

All the formulas presented here relate to the case of an ideally
polarizable drop. In the presence of mercury ions, the variation of
the potential jump across the double layer, due to convective cur-
rents, is partially equalized by a discharge on the surface of the
mercury, This leads to a reduction in the sedimentation potential,
At the same time, the retarding effect on the motion is also reduced.
However, just as for the similar case examined in Section 100, a
rigorous computation is impossible because of the complex nature
of the relation between the magnitude of the limiting diffusion current
and the angle 8. If the limiting diffusion current were not a function
of 8, then, for incompletely polarizable drops, equation (103,2) would
have to be replaced hy:
= meip—pT) gaik™! _ Mane(p—p') gat

&
E = — m—
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(103,9)
where
B=1-4 ,_,f—w .

In any event, this expression allows one to estimate approximately
the reduction in the sedimentation potential which is brought about
by the incomplete polarizability of the drops.

The fall of mercury drops in a liguid containing mercury ions
should cause a change in the mercury ion concentration in addition
to a separation of the electric charges,

For positively charged drops, the concentration will increase in
the upper portion of the column and decrease in the lower portion.
This should resull inthe appearance of adefinite potential difference
between meroury electrodes of the first kind in contact with the
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solution, the sign of which is opposite to that of the sedimentation
potential, In contrast to the latter, this potential difference does not
vanish when the fall of drops through the solution ceases, but re-
mains until such time as the concentration difference in the column
is equalized by diffusion, If the mercury entersthe upper part of the
column in the form of drops and these drops combine into a single
mass at the lower end, concentration differences that are well known
in the theory of the dropping electrode also appear, In this case, the
mercury ion concentration decreases inthe upper part of the column
and increases in the lower part; ie., the sign of the change is
opposite to that caused by the processof fall, It is possible that this
may explain some of the phenomena observed by Billitzer in his
experiments with dropping electrodes,

An experimental verification of equation (103.2) was made by
A, N, Frumkin and I, A, Bagotskaya [23]. To assure the condition
Re = 1, the mercury drops were allowed to fall in a solution of KBr

Figure 80, Instrument for determining the
potentinl of falling dropa,
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in glycerine (with a viscosity of about 10 poises), The instrument for
measuring the potential of the falling drops is shown in Figure 80,
These potentials were measured by means of electrodes 1, 2, and 3,
situated at distances of 4 and 5.7 cm from each other, The drops
were charged by means of the current from an external emf through
the auxiliary electrode 4, Drops 0,06 cminradius fell at a velocity
of 1 em/sec, The distance between them in the column was about
0,4 em, so that the shower would not be considered dense, The
potentials created by the drops may conseguently be assumed to be
additive when forming the total potential E, Inthe case of a viscous
golution, the viscosity of mercury in formula (103.2) can be neg-
lected, and we can write:

= gt 5 g (10810

Figure 81 depicts the curves which characterize the decrease in
the potential E over acolumn ofunitlength as a function of € in 0,03
N KBr in glycerine, The twocurves which are presented compare a
theoretical one, computed according to equation (103.10), and one
measured experimentally, It is seen that the agreement between
them is entirely satisfactory.
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Figure 81, Dependence of
the potential E of falling
drops on the charge den-
sity € in 0,03 N KBr in
glycerine:
- === theoretical curve:
H= 9.0,?!',: 1...1 ® 10-5; aoo
observed values for E.

The observed slight shift between the experimental curve relative
to the theoretical one is apparently caused by discharge of the drops
due to residual traces of oxygen in the solution, This is indicated
directly by a sharp inorease in the effect with an increase in the
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amount of dissolved oxygen (when the solution is cleaned less
thoroughly). It should also be pointed out that the observed potentials
of the falling drops exceeded those of a column of falling solid
particles by a factor of 10° to 108,

104, EFFECT OF A MAGNETIC FIELD ON THE FALL
OF DROPS OF MERCURY [27]

The effect of a magnetic field on the processes that occur in
electrolysis has been given little study to date., It would be of in-
terest, therefore, to clarify the question of whether a magnetic field
can have an effect on the motion of mercury drops,

We shall conduct the examination in a system in which the drop
is at rest, Let us assume that anexternal magnetic field of strength
H is applied to a drop falling in a gravitational field, Let the mag-
netic field be in a direction perpendicular to the vertical axis and
let us direct the y axis along the magnetic field and the z axis
vertically downward,

The total current flowing through the system (the falling drop) is
zero, We have seen, however, that there exists a distribution of
surface and volume currents in the system, which compensate each
other only in terms of the resulting net current. The potential dis-
tribution outside the double layer is determined by equation (102,23},
so there is acurrent inthe bulk of the solution around the drop, with
a density |

jmmz —xgrad o,
When a volume current flows, the Lorentz force per unit volume of
solution is

peoln__ _:, '[jsolnﬂl_ {104,1)

In addition to the volume current outside the drop, there is also
a current within the drop. Indeed, the surface current formed by the
motion of the charges in the inner sheet of the double layer forms a
volume current inside the drop as required by the law of conserva-
tion of charge, which states that

div (jg,.) +/mer=0, (104.2)
where jg,. is the surface current, equal to
i

sur - Sver

and jnmer

surface. By substituting the value for vy, we obtain:

is the component of the current in the drop normal to its

div] = 1L L (104.3)

sur i
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so that, with the aid of (104,2) and (104,3), the current inside the
drop is:

jmer QT:JE K
where k is the unit vector in the direction of the z axis, Then the
force exerted on a unit volume of the mercury drop is

pmer L [jmery] — 20ef (104.4)

where 1 is the unit vector in the direction of the x axis,

The force exerted by the magnetic field on the double layer is
equal to zero since the sheets of the double layer have opposite
charges and move in the same direction.

Now that the system of volume forces exerted on the solution and
on the liguid inside the drop has been determined, we may write the
equations of motion for both liguids., Namely, in the system of
coordinates in which the drop is at rest, we have for the exterior
liguid (the solution),

P Vig—2") soln
grad == v+ - gk +F*%, } (104.5)
dive =10,
Similarly, for the interior liguid (the mercury),
dii : A # mer
grad r=v&r +F } (104.6)
divy’ =0.

The following system of boundary conditions must be fulfilled at
the interface between the two liquids

P =P+

P =Py

p;i ;z?z o [ at r=a. (104.7)
v, =1,
ﬂ? = 1’;

In addition, the velocity of the interior liquid must remain finite at
r=10,

The difference between these equations and boundary conditions
and those for a drop falling by gravity in the absence of a magnetic
field is due to the fact that in the presence of a magnetic field the
velocity component v, and the corresponding components of the
gtress tensor cannol equal zero,
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We seek a solution of the ahove system of equations and boundary
conditions by assuming that the velocity acquired by the drop under
the action of the magnetic field is small compared to that which it
develops in the field of gravity., This assumption, which is fulfilled
for all reasonable values of magnetic field strength, permits a
solution of the problem by the method of successive approximations,

Let us write the velocities and pressures for the interior and
exterior liguids in the form )

V=",V
P=p+ P
vV =v,+V,
P =py+ o)

where the subscript zero designates the values of the quantities in
the absence of a magnetic field, and the quantities with the subscript
1 satisfy the following equations

o 4 pEoln
grd G =vav, +F } (104.8)
dive, =10,
grad£=v'ﬁv'—|;—Fm‘“
¢ 1 (104.9)
divwy =10,

We seek a solution of equations (104.8) and (104,9) in the form

o, = f(r)sinfcos e,

= Wirjcosbcos g,

v, ==sin ¢ [a (r) < {r)sin® 0],
p=py(r)sinfcos g,

where f(r), (1), @(r), andf(r) are unknown functions of the radius,
and where 6 and ¢ are the appropriate angles in a system of spherical
coordinates,

If equation (104,8) is expressed in spherical coordinates, it can
be shown that the above radial functions must satisfy the system of
equations

(104,10)

a(ri=—Tir)

’ 2w 2 A

-+ 2L E o,

P A o st
-1 +T+'Jf - cier® - I:Ir {1{}4'11]

1 - Da' P 2F 2 Jovgatt

—;—'—H +'E_+'ﬁ_”r" + e :-|2r" =0,
&y 28 & . Sewgad

B =t =t — i :’ITL : 0,
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Here the prime marks above the functions indicate differentiation
with respect to 1,

The liguid motion inside the drop is determined by means of
similar equations,

The solution of this system can be effected by standard methods
and results in the following expressions for the velocities and pres-
sure inside the drop

W= (F4+AXr¥)sinbcosg,
= (I" -+ -g R 2){!3) cos § cos g,

A 8 . (104.12)
v, = sin q:-[(—.F —g i — 2){!‘2)-1— Br35|n*ﬂ],

pr=10Xp"rsinbcos p 4 Hrsmﬂmﬁw,

where the gquantities F, X, and B are integration constants, These
velocities remain finite at the origin of the coordinates,
Also, we define

n=2eH, (104,13)

[

then the solution of a system of equations similar to (104.11) yields
for the velocities and the pressure outside the drop:

o :(ﬂ—kﬂ—]—ﬂ)shﬂmstp,
%_(A1—51+:$:+ .!.-U)cosﬂcm-?.
o[ 2o 48— B0+ (44 )]
p:p,(-,;%:-—i-%)sluﬂms?.

These velocities remain finite as r = w,

The constants F,, D,, E,, A,, ete,, appearing in the velocities
must be determined from boundary conditions (104,7), which yield the
following system of equations:

F+ Xo?=0,
El--g,—ﬁ-a-u=+:1
F4+22 oxe =21 — Q&“4.4‘“_1.
Ba*=F+F,
; 44 n
p'Ba = (--—-af- ""'zi)“'
— B.Xap' — zn_-_.fz‘_..qf;rfi_.ﬁf:_l*_.

fa a8y n 24,
|ul5\f'u | ) 0 ( ~ wlh r ”*).
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The solution of this somewhat involved system of equations yields
the velocity of the liquid motion at infinity relative to the drop. It is
found to be directed along the x axis, i.e., in a direction perpendi-
cular to the magnetic field, and equal to

i elf L
v=—= el 31*‘;:'*2’1, (104.14)

where v is the velocity on the surface, The velocity of the drop in
the direction of the x axis is finally found to be

(= &9 s (tude—pd
R LSy )

Equation (104,15) shows that, as a result of the action of the
magnetic field on the system of volume currents, the falling mercury
drop acquires a velocity that increaseswith increasing falling speed
and with increasing intensity of the magnetic field, The absolute
value of this velocity is not great, since the speed of light ¢ enters
into the denominator of (104,15), but numerical estimates show that
it has an observable magnitude in fields with an intensity of the order
of 10® gauss,
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