El organismo modelo *Caenorhabditis elegans*

"the worm"

-Curso Biología del Desarrollo 2022-Facultad de Ciencias, PEDECIBA

Inés Carrera

Laboratorio de Experimentación Animal Área Farmacología, Departamento de Ciencias Farmacéuticas Facultad de Química

Hoja de ruta

C.elegans como organismo modelo (1963)

Sydney Brenner 1927-2019

Premio Nobel 2002

- Casi todos los problemas de la biologia molecular ya estan resueltos o se resolveran en los proximos 10 años. El futuro está en la extension de la investigacion a otras áreas
- Preguntas mas importantes para Brenner: mecanismos desarrollo de un organismo multicelular y el sistema nervioso
- Utilizar las ventajas de un organismo simple multicelular y aplicar el enfoque de la genética microbiana

Caenorhabditis elegans en la naturaleza

Pequeño nematodo de vida libre

Largo: ~1 mm adulto

Habitat natural: materia en descomposición, suelo.

Alimentacion: bacterívoro

Caenorhabditis elegans en el laboratorio

Alimentación: E. coli.

Ciclo de vida: ~3 días. Incluye 4 estadios larvarios con mudas.

Reproducción: Hermafrodita (XX)/ machos (X0)

Progenie: >300 embriones de una hermafrodita

Genoma: ~19,000 genes, 100Mb. 5 autosomas, 1 sexual

Anatomía: 959 células hermafrodita adulto.

Mantenimiento a largo plazo: cepas se congelan en viales.

C. elegans "lo tiene todo"

Proximal gonad

Muscles

http://www.wormatlas.org

Órganos y tejidos Epidermis Sistema Digestivo Sistema Reproductor Sistema Muscular Sistema Excretor Sistema Nervioso

Microscopía Nomarski para identificar tipos celulares

Ablación de celulas con láser

Rol de las células en el desarrollo (interacciones celulares), en comportamiento (neuronas)...

John White

Hermafroditas suficientes

http://www.wormatlas.org

Desarrollo de la línea germinal

http://www.wormbook.org/

Célula de la punta distal (DTC) mantiene núcleos mitóticos

Célula de la punta distal (DTC) mantiene núcleos mitóticos a través de la vía de Notch

Desarrollo de la línea germinal (II)

Hermafroditas suficientes

C. elegans machos (<0.1%)

1033 células

Hermafroditas suficientes y machos: lo mejor de los dos mundos para genética

LINAJE celular invariante

Historia completa durante el desarrollo de cada célula desde la primera división celular

John Sulston 1942-2018

Premio Nobel 2002

Cómo John Sulston pasaba sus días:

Linaje celular invariante

Brenner & Horvitz- Linaje post-embrionario (1976)

Robert Horvitz Premio Nobel 2002, muerte celular programada (apoptosis)

Linaje celular invariante

Precursores del endodermo, celulas musculares, germinales y neuronas deben ingresar al interior del embrión

66 células se internalizan durante la gastrulación (150min)

C. elegans gastrulation

E founder cell

¿Como identificar hacia dentro o hacia afuera en el embrión?

Screen genéticos: PAC-1

Constricción apical empuja a precursores Ea y Ep hacia adentro

Nance and Golstein, 2020 Wormbook.

Reporteros fluorescentes

Proteinas Fluorescentes

Transgénesis utilizando microinyección

Conectoma completo

The Mind of a Worm White, Southgate, Thomson & Brenner (1986)

339 páginas!

Julio 2019

C. elegans presenta sistemas de transmisión por neurotransmisores clásicos

Serrano-Saiz, Pereira, Gendrel et al. Genetics Vol 206, 1251

Otras ventajas de *C. elegans* :

Conocemos la secuencia completa del genoma

- 100 Mb, ~19 000 genes,
- 70-80% genes humanos tiene ortólogo en *C. elegans*

- 40% de genes asociados con
enfermedades humanas tienen
ortólogo en el genoma de *C.elegans*

Kaletta and Hengartner, 2006 Culetto and Sattelle, 2000

Caja de herramientas genéticas

Genética directa:

mutagénesis

Identificar todos los genes que producen un fenotipo que queremos estudiar

Screens genéticos para la locomoción

Uncoordinated

Mutantes unc

unc-1
unc-2
unc-3
unc-4

- •
- •

Screens basados en reporteros fluorescentes

(Flames and Hobert Nature 2009)

Screens genéticos con reporteros flurorescentes

Factores que especifican y mantienen neuronas dopaminérgicas

DOPY-3 = Trp-4 (Transient Receptor Potential (TRP) mechanosensory channel)

Como identifico el gen mutado?

-Whole Genome Sequencing (secuenciación del genoma completo)

Basado en SNPs

Mapeo de mutaciones por WGS

Genética Reversa:

RNAi CRISPR

ARN de interferencia (ARNi)

RNAi screen para buscar potenciadores o supresores de la agregración

his-72 marcada endógenamente por CRISPR

his72::gfp

Dickinson *et al.* 2013, Nat Met

Ideas para llevarse....

-C.elegans es un excelente organismo modelo: facilidades de trabajar con organismos unicelulares pero en uno multicelular.

-Ha contribuido al desarrollo de nuevas técnicas que han sido aplicadas a otros organismos (RNAi, GFP)

-Un poco mas de 50 años de su introducción 3 premios Nobel (2002, 2006, 2008) (Brenner, Sulston, Horvitz, Fire, Mello, Chalfie).

-Excelente modelo génetico para screens y descubrir genes involucrados en procesos básicos de biologia celular y desarrollo o en modelos de enfermedades (~ 70% de genes humanos tienen un homólogo claro en el gusano)

- Vías y moléculas conservadas en el desarrollo de *C.elegans* como en el de otros animales (por ej. Notch). Tambien otras no tan conservadas....queda para la próxima..

Referencias

WORMBASE http://www.wormbase.org/

WORMATLAS http://www.wormatlas.org/

WORMBOOK http://www.wormbook.org/

Openworm.org

Comentarios, consultas, quejas..... inescarrera@fq.edu.uy