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Scaling in biology

Andrew J. Spence

Ernest Rutherford is credited with 
the provocative assertion that 
all attempts to expand human 
knowledge are either physics or 
stamp collecting. Whatever your 
opinion of this statement, the two 
modes are not mutually exclusive, 
and some of the most interesting 
efforts to marry the two endeavours 
have looked at questions of scale 
in biology. Evolution may drive 
species to different sizes, shapes, 
energetic lifestyles and behaviours, 
but the laws of physics govern 
both the internal workings of life 
and its interaction with the external 
environment. For example, imagine 
taking a five centimetre tall shrew 
and multiplying each of its length 
dimensions by a factor of sixty to 
produce an elephant-sized shrew. 
What would happen? The weight 
that an animal’s limbs must support 
scales with its volume, yet the forces 
that its bones can withstand or its 
muscles can produce scale with 
area. And so this animal would be in 
serious trouble, to say the least. 

Comparisons between how 
a biological feature varies with 
predictions made by the laws of 
physics can offer explanatory power, 
testable hypotheses and guidance 
toward important open questions in 
biology. Scaling has been used, and 
must continue to be used, to shed 
light on these fundamental questions: 
How large can an animal be and 
still fly? Why do big animals have 
straight legs? How do bacteria propel 
themselves? This primer will provide 
an introduction to scaling, its  
mechanisms and limitations, and  
then focus on two fields — 
metabolics and biomechanics — for 
which there is both a rich history 
and thriving current research. Finally, 
I shall discuss a third area that 
appears ripe for future research 
in scaling: the neural control of 
locomotion.

Scaling in biology is an enormous 
subject, with a fascinating history. 
After Galileo’s early strides toward 
understanding how geometry 
and size affect the mechanical 
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 soundness of structures, the method 
of dimensional analysis emerged 
during the industrial revolution. 
This new tool then found utility 
across biology: first in physiology 
(now metabolics) starting in the 
1830s, then in the biomechanics 
of supporting structures (trees) 
in the 1880s, followed by a broad 
expansion into embryology and 
development, evolution and ecology, 
and animal locomotion in the early 
1900s. Most recently, starting in the 
1970s, scaling analyses have been 
applied to locomotion in microscopic 
environments. Overall, interesting 
scale effects appear in three different 
contexts: within the ontogenetic 
sequence of a single organism; within 
the members of a given species; 
and across species. I will focus on 
interspecific comparisons at the 
tissue and organismal levels; I do 
so, however, acknowledging the 
power of integrative approaches that 
consider the interaction across levels 
of biological organization.

Analysis of scaling
The analysis of scaling requires: 
first, measuring how a biological 
characteristic changes with size; 
second, understanding some 
useful properties of logarithms and 
statistical regression; and third, 
application of relevant physical 
laws. To get a feel for how it works, 
consider a cube of mass density ρ 
whose sides have length L. It has 
area proportional to L2, volume 
proportional to L3, a mass of ρL3 
and a weight of ρL3g, both of which 
are also proportional to L3. Now 
imagine manufacturing a set of such 
cubes in which each one has its 
linear dimensions multiplied by a 
random scale factor. One could then 
measure the weight, mass, length, 
area and volume of each, and plot 
the resultant quantities against each 
other. One would then expect to 
see, for example, that side length is 
proportional to mass1/3, surface area 
is proportional to mass2/3, and so 
on. This is referred to as isometric, 
or geometric, scaling, wherein the 
features of the object scale in the 
manner predicted by multiplication 
of all linear dimensions by a constant 
factor.

To make analysis easier, we can 
exploit the fact that taking the 
logarithm of a variable raised to some 
exponent brings that exponent down 
and makes it the slope of a line. If 
y = axb, then log y = log a + b log x. 
Thus, we can take the logarithm of 
our measured variables, regress a 
line onto a plot of one against the 
other, and the slope of that fitted line 
is the exponent that relates the two 
variables. Figure 1A and B illustrate 
this: they show four curves with 
different values of a and b, plotted 
over four orders of magnitude, on 
linear and logarithmic axes. Part of 
the utility of this approach stems 
from the fact that a large number of 
biological features do in fact appear 
to scale according to a power law of 
the form y = axb. That makes these 
features amenable to comparison 
with the scaling that would be 
predicted from the equations that 
govern physical processes. The 
scaling need not be isometric, and 
frequently is not; for example, the 
cross sectional area of a bone might 
increase with body mass much faster 
than would be predicted by isometric 
scaling. This could be one way to 
make our elephant-sized shrew 
mechanically viable. It also happens 
to be the case with rhinoceroses and 
their kin, whose long bones have 
diameters that scale with body mass 
to the power 0.5 rather than 0.33. 
In cases like this, when a scaling 
exponent is different from that 
predicted by isometry, it is termed 
allometric.

Though scaling relationships 
are very powerful for illuminating 
biological function, they must 
be interpreted with caution. For 
example, examining the scaling of 
a feature across several species 
without considering how they 
are related to each other can 
lead to erroneous conclusions, 
because each species may not 
represent an independent sample 
of how that feature scales with the 
independent variable. As such, it is 
important to take into account the 
phylogenetic relationship between 
the examined species. This is 
illustrated in Figure 2A. It is also 
worth remembering that a statistically 
significant regression simply tells you 
something about the scatter of the 
points on your graph, and does not 
necessarily imply a biological cause. 
Scaling relationships are not, strictly 
speaking, biological laws, but rather 
are descriptions that may highlight 
underlying mechanisms. And one 
needs to be very careful when 
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Figure 1. Examples of scaling relationships and scaling in metabolics.

Examples of scaling relationships of the form y = axb, for four different values of a and b, plot-
ted over four orders of magnitude of x, on both (A) linear and (B) logarithmic axes. Since log  
y = log a + b log x, plotting y against x on logarithmic coordinates brings the exponent b down 
and makes it the slope of the curve, whilst a becomes a constant offset. (C) Kleiber’s law. 
Metabolic rate in birds and mammals scales with body mass to the ¾ power. This has been 
a long-standing puzzle, as a priori it could reasonably be expected to scale with surface area 
(2⁄3) or body mass (1), depending on whether it is limited by exchange through or over surfaces, 
or the volume of metabolic machinery under consideration. Adapted with permission from 
Schmidt-Nielsen (1984). (D) The metabolic-level boundaries hypothesis. Taking into account 
the physiological state of the animal, metabolic rate is found to vary systematically between 2⁄3 
and 1 depending on the animals’ activity level. It approaches 2⁄3 during states which are limited 
by surface area, such as resting, and 1 during those that are limited by volume, such as hiber-
nation or maximal exertion. Adapted with permission from Glazier (2008).
drawing conclusions about ranges 
of body size that lie off the end of 
a measured scaling relationship: 
extrapolating to other size ranges 
without a priori knowledge 
of potential discontinuities or 
constraints is hazardous.

Metabolics
Some of the earliest biological 
investigations into scaling were done 
by French physiologists in the 1830s, 
who considered how lung surface 
area and volume scale with body 
mass in humans. This early work 
led to broader examination of how 
metabolic rate scales with body mass 
across species, which disclosed a ¾ 
power law named for its originator, 
Max Kleiber (Figure 1C). Kleiber’s 
law has remained one of the most 
persistent yet perplexing scaling 
relationships in biology. Because 
respiratory gasses are exchanged 
across epithelia, one might predict 
that metabolic rate would be 
governed by surface area and hence 
scale with body mass to the 2⁄3 power. 
Alternatively, it might be governed by 
the volume of metabolic machinery 
in an organism, and hence scale with 
body mass directly. Yet metabolic rate 
consistently scales between the two, 
specifically to the ¾ power of body 
mass.

The mechanistic basis for Kleiber’s 
law is a source of on-going research 
and debate. Some have claimed a 
universal source of ¼ scaling laws 
in biology is the fractal nature of 
respiratory branching patterns. 
Others have revealed systematic 
variation in the metabolic activity 
levels underlying Kleiber’s law. 
Instead of measuring an average 
of metabolic scope, considering 
the state of the animal during 
metabolic measurements reveals a 
U- or V-shaped curve as the animal 
shifts from torpor, to rest, to field 
activity, to performing strenuous 
exercise (Figure 1D). This curve fits 
the ‘metabolic-level boundaries’ 
hypothesis which predicts that the 
exponent b for metabolic scaling 
should vary between 2⁄3 and 1 as 
metabolic level varies from being 
governed by heat flux through 
surfaces to being governed by 
heat production per unit volume 
(or mass) of an organism. At the 
two extremes of hibernation and 
strenuous exercise, volume effects 
predominate and b approaches 1. 
This is because in hibernation, the 
minimum metabolic level depends on 
body mass and surface area does not 
limit metabolic rate. Similarly, for brief 
periods of strenuous exercise the 
metabolic machinery throughout the 
body mass can be turned on. During 
rest, however, surface area effects 
dominate as excess heat is dissipated 
and b tends to 2⁄3, resulting in a  
U-shaped curve.

If scaling relationships such as 
Kleiber’s law can be criticized as 
oversimplifications of more detailed, 
underlying mechanisms, then one 
might question the utility of  
describing broad ranges of life with 
power laws. But the ‘metabolic-level  
boundaries hypothesis’ grew out 
of considerations of how data 
varied systematically away from 
a ¾ rule. Therefore, it may never 
have been proposed without the 
starting point of Kleiber’s law. This 
certainly highlights the utility of 
scaling for guiding and refining 
the iterations inherent in scientific 
research and discovery. In addition 
to answering broad questions about 
how life varies, the ways in which 
such analyses are wrong, which are 
termed the secondary signals of 
scaling relationships, can be just as 
important as the primary signal itself.

Biomechanics
Two of the critical roles of the 
metabolic machinery are the 
maintenance of support structures, 
such as tree trunks or appendages, 
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Figure 2. The importance of historical relatedness in scaling, and using novel design to overcome the effects of scale.

(A) The phylogenetic relationship between animals must be considered before invoking a scaling law. Raw data across species concerning the 
density of spatulae versus body mass in the adhesive structures of arthropods and reptiles results in statistically significant positive scaling with 
an exponent of 0.5 (solid black line). However, correcting the data for historical relatedness using the method of independent contrasts results in 
an insignificant relationship (inset). Because each species is more and less closely related to each other species, the data from all species can-
not be considered to form a set of independent samples of how the dependent variable varies with body mass, and must be corrected. Adapted 
with permission from Peattie and Full (2007). (B) Leg posture and effective mechanical advantage (EMA) change with size. Small animals such 
as the chipmunk exhibit a crouched posture, while larger animals are more straight-legged. By altering the input (r) and/or output (R) lever arms 
of a muscle acting about a joint, modification of posture allows a muscle to produce more output force for a given input, and can result in safe 
muscle loads despite an increase in body weight. Adapted with permission from Biewener (1989, 2005).
and what is perhaps the signature 
behaviour of animals, locomotion. 
Within stable environments, the 
fossil record shows trends of 
animals evolving to larger size, a 
principle known as Cope’s rule. 
With increasing size, however, 
isometrically scaled support 
structures can quickly become 
untenable, as we have seen in our 
shrew example. The stress that a 
supporting structure can withstand 
under bending scales with cross 
sectional area, or mass to the 2⁄3 
power, yet the force of body weight 
scales directly with mass. Thus, a 
supporting structure with a safe 
cross sectional area in a tiny sapling 
could immediately buckle if scaled 
isometrically and placed inside a 
giant adult redwood. To compensate, 
a structure may adopt two different 
length scales, one for longitudinal 
length (l), and another for diameter 
(d), and then scale the diameter such 
that adequate cross sectional area 
is provided to support body weight. 
This is referred to as elastic similarity, 
and predicts allometry such that  
d ∝ l3/2. Indeed, both the diameter of 
tree trunks and the midshaft diameter 
of bovid (cloven-hoofed mammal) 
long bones scale with length to the 
3/2 (or equivalently, mass to the 0.5) 
power.

There are many ways in which 
to compensate for the effects of 
scale, including: allometric scaling of 
dimensions, novel design, changes 
in material properties, or changes 
in behaviour. The aforementioned 
allometric scaling of tree trunk and 
bovid humeri diameter are examples 
of the first method. An elegant 
example of the second, utilizing novel 
design, came from examination of 
leg posture in mammals (Figure 2B). 
The peak mechanical loads that 
muscle and bone endure depend 
on the input mechanical lever arm 
between a muscle and a joint, and the 
output lever arm between that joint 
and, for instance, the ground. These 
comprise the effective mechanical 
advantage of the muscle. Not only do 
larger animals adopt a more upright 
posture, such that a given muscle 
force produces greater output force, 
but the exponent at which the effective 
mechanical advantage of the muscle 
scales is such that peak stresses are 
maintained to within a safety factor 
of two to four. This shift to straight-
legged posture also ensures that 
bones are loaded more in compression 
(being squeezed along the long 
axis) and less in bending, which is 
advantageous as they are much 
stronger when loaded in compression.

A further power of scaling analysis 
lies in that it can explain how 
different physical forces become 
important at different sizes. A 
popular example is in swimming 
and flying locomotion. For small 
animals, viscous forces dominate 
their movement in a fluid, whereas 
for large animals, inertial forces take 
over. This determines whether the 
animal is moving in something that 
feels like honey, versus something 
that feels like air. This has huge 
consequences for the animal, and 
successful locomotion in these 
environments requires shaping 
everything from behaviour (the 
movement of wings, or undulation 
of the body) to morphology (the 
shape of the body, wings, or fins). 
Here dimensional analysis provides 
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Figure 3. Consequences of scale for the neural control of locomotion.

An insect, cat, and human span three orders of magnitude in hip height, and have hierarchical 
neural control structures, with computation and integration centres (red) and transmission lines 
(blue). The nervous system activates muscles (insets) that exert forces about joints, moving 
appendages. With increasing size, neural control signals must travel further, with the potential 
to create long time delays that destabilize the animal. The physics governing the movement 
of appendages also changes with size. Whereas in small insects it is dominated by relatively 
strong muscle and tissue forces that easily overcome the inertia of limbs and the force of grav-
ity on the appendages, cats and humans have more massive limbs with significant inertia and 
weight that must be controlled by relatively weaker muscles. This variation offers insight into 
how nervous systems work by showing us how they have evolved to produce stable locomo-
tion under different physical regimes.
the Reynolds number, which takes 
in the properties of the fluid and 
the length of the animal, and 
determines which regime the animal 
will be in. The Reynolds number is 
one dimensionless parameter that 
describes a physical situation, and 
many others are used to describe 
how forces, lengths and times may 
scale. When all such parameters 
are made the same in two different 
systems, they are said to be 
dynamically similar.

A similar analysis applied to 
terrestrial locomotion leads to a 
reasonable prediction of when 
animals transition from a walk to a 
run. The Froude number — v2/gl,  
where v is velocity and l is hip 
height — is a dimensionless 
parameter that can be thought of 
as a normalized speed. It compares 
the magnitude of centripetal 
acceleration about the pivoting leg 
to the acceleration due to gravity. As 
an animal speeds up, gravitational 
acceleration becomes unable to 
keep the animal ‘stuck down’ to the 
leg, and it begins to have an aerial 
phase, which is the start of running. 
This occurs at a Froude number 
of 1.0. Examination of the many 
different animals photographed in 
Eadweard Muybridge’s 1887 book 
Animal Locomotion has confirmed 
that the Froude number is useful 
for separating walking and running 
gaits.
Neural control of locomotion
A future venue for scaling analyses 
is the neural control of locomotion. 
Integrative theories of how the 
nervous system controls movement 
are being formulated, the more 
ambitious of which reach from ion 
channels to center of mass forces. 
Scaling analyses will be useful to 
confirm or refute these frameworks 
and to guide us toward general 
principles. In order to understand 
how neural circuits have evolved 
and adapted, we can study how they 
vary in the face of changes in scale. 
The physics of appendages and the 
external environment will change with 
size, as will the delays inherent in the 
transmission of neural signals, and 
the volume available to the nervous 
system (Figure 3). These differences 
with size are important for the 
developing individual as well, whose 
proportions may change dramatically 
throughout ontogeny. In addition to 
the consequences of size, we can 
study how nervous systems have 
adjusted to the different time scales 
required for diverse behaviours. Each 
of these variations offers a window 
for future research into how nervous 
systems work to control biological 
motion.

The neural control architecture 
must reflect the physical forces 
that are governing locomotion, by 
sending commands to muscles 
that produce the desired outcome, 
and by responding to unexpected 
perturbations in an appropriate 
manner. For small animals, forces 
developed by muscles and 
connective tissue outweigh the 
effects of inertia and the gravitational 
force, such that appendages are 
highly damped, over-actuated, 
and have rest positions that don’t 
depend on orientation with respect 
to gravity. In large animals, inertial 
effects become important, and 
a limb that is set in motion will 
remain in motion, because its 
inertia overcomes the damping 
losses of joints, and the resistance 
to stretching of inactive muscles. 
These consequences of scale will be 
reflected in the commands sent to 
muscles, for example in the timing 
of bursts of motor neuron spikes. 
Thus, we can use size as a control 
parameter to look for principles of 
how nervous systems control limbs 
and bodies working in different 
physical regimes.

The time it takes for neural signals 
to travel throughout the body has 
important consequences for control, 
and is also affected by animal size. 
As animals get larger, the distance 
over which neural signals must travel 
increases, and long transmission 
delays will result if conduction 
velocity remains constant. To 
interpret potential consequences 
of these delays, we can employ 
an interdisciplinary approach by 
turning to control theory. Control 
theory tells us that a delay in the 
signal coming from a sensor is 
critical to stability — to the point 
where even perfectly accurate 
sensory information is useless if it 
is outdated. The control engineer 
will tell you that a conduction 
delay of no more than 1/10th of the 
response time of the structure that 
is being controlled — in this case 
the musculoskeletal system — is 
acceptable. Beyond that, and you 
may be reacting to perturbations that 
have already happened, and could 
drive the system even further into 
instability. Hypothesizing about the 
consequences of neural transmission 
time within a larger control theoretic 
framework gives a way to make 
predictions about how conduction 
velocity might vary across animals 
and behaviours, and about how 
neurobiological control structures 
might adapt their strategies for 
different sizes.
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the fine arts [7]. To see if this also 
applies to museums, veterinary 
books and toy shops, we collected 
hundreds of walking depictions and 
tested whether or not they correctly 
display limb positions. We found 
that almost half of the depictions 
are wrong. This high error rate in 
walking illustrations in natural history 
museums and veterinary anatomy 
books is particularly unexpected in a 
time where high-speed cameras and 
the internet offer ideal possibilities to 
obtain reliable quantitative information 
about tetrapod walking.

Although humans have observed 
walking quadrupeds for thousands of 
years, the exact characterization of 
the walking of tetrapods had to wait 
for the advent of photography [1,2]. 
The usual sequence by which the 
legs of walking quadrupeds contact 
the ground, the so-called ‘foot-fall 
formula’, is: left hind leg–left foreleg–
right hind leg–right foreleg (LH–LF–
RH–RF). The biophysical reason for 
this uniformity is that this gait confers 
maximal static stability to the body [6]. 

To study how correctly this foot-
fall formula is represented in natural 
history museums, veterinary books 

Erroneous 
quadruped walking 
depictions in natural 
history museums
Gábor Horváth1,*, Adelinda Csapó1, 
Annamária Nyeste1, Balázs Gerics2, 
Gábor Csorba3 and György Kriska4

Since the work of the photographer 
Eadweard Muybridge in the 
1880s [1,2], experts know well 
how quadruped animals walk. All 
walking tetrapods advance their 
legs in the same sequence, and 
only the timing of supporting feet 
may differ [3–6]. Given the long time 
since Muybridge’s work, one would 
assume that this knowledge should 
be reflected in the depictions of 
walking quadrupeds made by work 
of painters, taxidermists, anatomists 
and toy designers. The postures of 
legs of walking horses, however, are 
frequently erroneously illustrated in 
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Figure 1. Erroneous three-foot-supported walking depiction of an aardwolf (Proteles cristatus).

(A) Sample at the Natural History Museum, Florence, Italy (photo by Balázs Gerics) and its leg pos-
ture (B). (C,D) Two possible corrections. Erroneously, stepping by the right hind leg is followed by 
raising the left foreleg, which does not occur in quadruped walking. Instead, it should be followed by 
raising right foreleg (C), or raising left foreleg should be preceded by the step of left hind leg (D).
Conclusion
Questions of scale in biology have 
a rich history, and an exciting 
future. The investigation of how 
life copes with changes in size 
has unquestionably advanced our 
understanding of basic biology. 
Nanotechnology, microfabrication, 
and microelectronics are providing 
new tools for biological investigation. 
They make it possible to sense and 
perturb previously inaccessible 
microscopic life in more and more 
sophisticated ways. Less appreciated 
but equally important is that for 
larger organisms they enable sensing 
and perturbation of multiple parts 
of intact, freely behaving animals, 
in complex or even native habitats. 
As we move towards integrated 
measurement of metabolism, 
biomechanics, and neural control in 
freely behaving animals, the future for 
questions of scale in biology looks 
extremely bright.
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