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Supplemental Information 1 

 

This supplemental information consists of four sections, 

 

1) Brief explanation of original RD model 

Summary of the Turing’s original paper is explained without using mathematics.  

2) Intuitive explanation of Turing instability (diffusion-driven instability) from 

mathematical point of view 

The most important and strange output of the RD model is its ability to generate 

patterns without any pre-pattern. This section is a mathematical explanation of such 

behavior of the system. 

3) Guide to the RD model simulator and the Mathematical information related to the 

simulation 

A user-friendly simulator of RD model is provided as the supplemental material 2. 

The program runs on the web browser. This section explains some important 

mathematical information that is required to set the parameters. 

 



 

1-1) Brief explanation of original RD model 

 

Here, we describe the aim and the result of Turing’s study briefly. This information is 

enough to give the rough image of the RD model to the biologists who are not familiar 

to the theoretical models, but not enough for accurate understanding of the theory. For 

the details of the mathematical analysis of the theory, please refer the original paper of 

Turing or some specific textbooks. (See references in the main text) 

 

Alan Mathison Turing (23 June 1912 – 7 June 1954) was an English mathematician, 

logician, and computer scientist who is now recognized as one of the founder of 

computer science. He is also famous by the fact that he played a definitive role in the 

codebreaking of German naval cipher Enigma during the WW2. The paper titled “The 

Chemical Basis of Morphogenesis” was written two years before his committing suicide 

by an apple containing potassium cyanide. The reason why the mathematician Turing 

got interested in the mechanism of biological morphogenesis is unknown. But, the 

strategy he took to solve this biological question is certainly that of mathematician. For 

Turing, the complex morphology of living things was the complex theorem of 

mathematics to be solved by the basic axioms. He tried to solve the question of 

morphogenesis by assembling well-known basic physical laws. 

 

He selected chemical reaction and diffusion as the basis of his study, and analyzed the 

behavior of a hypothetical system (reaction-diffusion system) composed of two kinds of 

diffusible and interacting chemicals. In 1950’s, biochemistry was the forefront of 

biological science and the detailed information of cell biology was unknown yet. 

Therefore it is quite reasonable that Turing selected reaction and diffusion as the basis 

of his analysis. If he were alive now, he might have analyzed a system of cells 

interacting by the ligands and receptors that is more familiar for the biologist of present 

day. Here, we use a hypothetical system in which cells release and react to two kinds of 

ligands. (Supplemental figure 1) Of course, this alteration does not change the essence 

of Turing’s study.  

 



 
Supplemental figure 1: Schematic drawing of the hypothetical system assumed in this text. 

 

 

Supplemental figure 1 shows the system we are going to analyze. Each cell produces 

two diffusible ligands, u and v, and has the receptors for them. The released ligands 

diffuse in the space around the cells at their specific diffusion constants, bind to the 

receptor and enhance (or repress) the production of themselves. 

Following equation represent the rate of concentration change at each position. 

 
∂u
∂t

= F(u,v) − duv + DuΔu

∂v
∂t

= G(u,v) − dvv + DvΔv

 

 

 

 
Supplemental figure 2: Mathematical description of the condition shown in supplemental figure 1, and the 

meaning of what each column represents. 

 

 



Here, x and y are the local concentration of ligands U and V at each position. F and G 

are the functions governing the production rates. du and dv are the degradation rates. 

Replacing F and G by following linear function, we get the partial differential equation 

identical to that of Turing’s original paper. 

 
F(u,v) − duu = auu + buv + cu

G(u,v) − dvv = avu + bvv + cv

 

 

He solved this differential equation, and found that this system can take several 

interesting dynamic states (figure 3) depending on the values of the parameter. 

Followings are the 6 different cases described in the Turing’s paper. (Please refer the 

main text.) 

 

 
Supplemental figure 3: Solutions of the Turing’s reaction-diffusion equation. The system converges one 

of these states shown in above. Note that case IV needs three (or more) morphogens. 

 

As above 6 cases are the solutions of differential equation, boundary condition 

influences the resulting pattern. (patterns shown in FigS1 are the cases with periodic 

boundary condition)  Giving a very specific boundary condition is very similar to 

having a pre-pattern in the real system.  In case I, if the concentration of morphogen U 

is kept high at the end of the field, the resulting pattern becomes a gradient of a single 

peak. This is identical to that of morphogen gradient model. 

 

The most important finding of the Turing’s study is that this simple system can develop 

the spatial pattern. This behavior of the system is apparently against our intuition. To 



explain why such strange phenomenon occurs in this system, a fully mathematical 

explanation is required. But, with following narrative explanation, it is possible to get 

the rough image of it. The key is that the difference of the diffusion constant of activator 

(u) and inhibitor (v). 

 

 

Supplemental figure 4: the schematic representation of the process of Stationary pattern formation (Case 

VI) 

 

Graph1 shows the initial condition of the system. Suppose that the concentration of the 

activator is relatively higher than in other regions by random fluctuation. By the 

self-enhancing property of the activator, the concentration of activator increases at the 

center region (graph2), followed by the increase of inhibitor at the neighboring region A. 

As the diffusion rate of inhibitor is much larger than that of the activator, substantial 

amounts of inhibitor move toward the lateral regions. This depresses the activator 

function, resulting in the decrease of the activator concentration there (graph3). 

Decrease of activator causes the decrease of inhibitor in the wider region (graph4). At 

the region B, as inhibitor concentration is gotten lower, activator becomes relatively 

dominant than inhibitor. This situation is enough to start the local self activation at 

region B (graph5). 

 

This process is visible with the simulator provided as the supplemental material 2. 

Computer simulation is one of the best ways to gain insight into the pattern-generating 

power of the Turing mechanism. 

 

 



 

1-2)  Intuitive explanation Turing instability (diffusion-driven instability) from 

mathematical point of view 

 

Here we give a very intuitive explanation of Turing instability (diffusion-driven 

instability) from mathematical point of view. For full detail of the analysis, the reader 

should consult Murray (2003). 

 

“Turing instability” means growth of specific spatial wavenumber component induced 

by diffusion. To show this, we begin with the simplest possible reaction-diffusion model 
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u and v represents activator and inhibitor respectively. fu, fv,gu,gv  are constants and 

represents the interaction between activator and inhibitor (Fig. S5a). For detailed 

explanation how this equation is derived from reaction and diffusion process, see Miura 

and Maini (2004). We can approximate arbitrary 2-species reaction-diffusion model to 

this form by appropriate transformation.  
 

Since this governing equation deals with time course of two variables which have 

spatial distribution, it is very difficult to understand the dynamics of this system directly. 

To simplify the problem, we use Fourier transform. We separate initial random 

perturbation into each wavenumber components (Fourier transform, Fig. S5b). Next, we 

consider the amplitude of one specific wavenumber component (k).  
If  and  at t=0, rate of change of u is proportional to 

 because 

u = u0 sin(kx) v = v0 sin(kx)

sin(kx) fuu0 sin(kx)+ fvv0 sin(kx) = ( fuu0 + fvv0)sin(kx) (reaction term) and 

Du
∂ 2

∂x 2 u0 sin(kx) = −k 2Duu0 sin(kx) (diffusion term). As a result, a specific wavenumber 

component does not affect the other wavenumber components by the governing 

equation. Therefore, each wavenumber component evolves independently, which makes 

this problem much easier. 



 

It is known that the time evolution of a specific wavenumber component can be 

described as: 
 

u0e
λt sin(kx) 

 

This means that a certain wavenumber component will grow or decay according to the 

sign of λ . If λ  is larger than 0, the wavenumber component grows exponentially with 

time. If λ<0, the wavenumber component of initial perturbation should decay and 

result in spatially homogeneous initial state.  
 

λ  is dependent on k and other parameters. The relationship between λ  and k is called 

dispersion relation (Fig. S5c). In some parameter range, dispersion relation becomes 

vault-like form, and λ  is positive only in certain small region of k. When this happens, 

only wavenumber component within the region grows exponentially, resulting in the 

formation of periodic structure (Fig. S5d). 

 

This analysis only deals with very onset of pattern formation. With this linear reaction 

term, the amplitude of unstable wavenumber becomes infinitely large as time goes by.  
 

 



 

Supplemental figure 5 

a. Relationship between activator-inhibitor interaction and model parameter. b. Initial distribution of u or 

v. c. Dispersion relation, d. Time evolution of each wavenumber component.  



 

 

1-3) Guide to the RD model simulator and the Mathematical information related to 

the simulation 

 

A RD simulator that can run on many different platforms is provided as supplemental 

material 2. 

 

To get started: 

1. By double clicking the file named “simRD”, you see the window shown below. 

2. Select one of the parameter set. 

3. You can change parameters, dimension of the field and initial conditions, and can 

save the resulting patterns to make a movie. Set the parameter and initial conditions, 

then click “start” button to see the beautiful patterns develop. 

 

 
 

You may distribute this software to anyone who wants to play. If you have any question 

about this software please e-mail to following address. 

skondo@fbs.osaka-u.ac.jp



Followings are the important information about the parameters and resulting pattern. 

 

a) Quantitative “Local activation and long range inhibition” scheme does not always 

give the Turing pattern. It is known that the parameter range must satisfy 

f u + g v < 0
f u g v − f v g u > 0
D v f u + D u g v > 0
( D v f u + D u g v )2 − 4 D u D v ( f u g v − f v g u )> 0  

 

for Turing instability (Murray, 2003). To satisfy this condition, ratio of diffusion 
coefficient ( Dv /Du) must be sufficiently large. 

 

A simple method to find the parameters generating the Turing pattern is as follows. 
1) Set the diffusion rate of u and v ( Du,Dv ) to 0. 

2) Find a parameter-set that gives rise to oscillation. 
3) Set the diffusion rate of v ( Dv ) to 50 times larger than u. 

 

b) When the initial condition is completely uniform, no pattern is formed. Turing 

pattern is generated by amplifying specific wavenumber component of small 

random initial noise. Since there must exist some fluctuation in initial condition in 

the real system, this is natural assumption. You can experience this effect with our 

simulator – without pressing “noise” button, periodic pattern is not formed. 

 

c) When the number of the wave in the domain is large, the number of the peaks tends 

to vary (Bard and Lauder, 1974). 

 

d) Equations used in RD models normally neglect the effect of time delay. The process 

of transcription and translation inevitably gives rise to time delay. This fact is 

important because mathematical analysis have shown that introduction of the delay 

tends to force the system to oscillate. An experimental example in which the effect 

of time delay was shown is the somite oscillation of vertebrates (J. Lewis, 2006). 

However, the specific dynamics of Turing pattern is certainly observed in other 

cases explained in the main text of this paper. We guess that the effect of time delay 



is negligible if the time scale of pattern formation is much longer than transcription 

or translation. 

 

e) Numerical simulation does not always show correct behavior due to numerical error. 

For example, we can reduce computation time by increasing timestep (dt) and unit 

length of the field (dx). But the change of these parameters often results in artificial 

oscillation or burst of calculation. Intuitive explanation of this error is as follows: 

diffusion process represents flow of diffusible molecule from high concentration 

region to low concentration region. However, if we take dt too large, molecule 

concentration in initially high concentration region becomes lower than originally 

low concentration region. So we recommend that these parameters left to be as it is 

until the player gets accustomed to numeral simulations. 

 

References: 

1) J. Murray, Mathematical Biology, 4th edition. (Springer-Verlag, Berlin, 2003). 

2) Miura, T. & Maini, P. K., Periodic pattern formation in reaction-diffusion systems: an 

introduction for numerical simulation. Anat Sci Int, 79, 112-23 (2004) 

3) E.A. Gaffney, N.A.M. Monk, Gene expression time delays and Turing pattern 

formation systems, Bulletin Mathematical Biology, 68, 99-130 (2006) 

4) Lewis, J. Autoinhibition with transcriptional delay: a simple mechanism for the 

zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–-1408 (2003). 

5) Bard, J. & Lauder I, How well does Turing’s theory of Morphogenesis work? J. 

theor. biol. 45, 501-531 (1974). 


