Práctico 10

Isomorfismos, matriz asociada y rango

- 1. Probar que cada una de las transformaciones siguientes es un isomorfismo y hallar explícitamente su inversa.
 - a) $T: \mathbb{R}^3 \to \mathbb{R}^3$, definida por $T(x,y,x) = (4x+2y+3z,\,x+y+z,\,x+z)$, para todo $(x,y,z) \in \mathbb{R}^3$.
 - b) $T: \mathbb{R}^4 \to \mathbb{R}^4$, definida por T(x, y, x, t) = (x + y + z + t, y + z + t, z + t, t), para todo $(x, y, z, t) \in \mathbb{R}^4$.
 - c) $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$, definida por T(X) = AX, para todo $X \in M_2(\mathbb{R})$, siendo $A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$.
 - d) $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$, definida por $T(X) = X^t$, para todo $X \in M_n(\mathbb{R})$, $n \ge 1$ arbitrario.
- 2. Sean $w_1, w_2 \in \mathbb{R}^2$ dos versores¹ que no sean perpendiculares y consideramos $W_1 = [w_1]$ y $W_2 = [w_2]$. Definimos una transformación lineal $T: W_1 \to W_2$ mediante $T(v) = (v \cdot w_2)w_2$, para todo $v \in W_1$.
 - a) ¡Qué representa T geométricamente?
 - b) Probar que $\{T\}$ es una base de $\mathcal{L}(W_1, W_2)$.
 - c) Probar que T es un isomorfismo.
 - d) Hallar la inversa de T. Sugerencia: empezar encontrando una base de $\mathcal{L}(W_2, W_1)$.
- 3. En los casos siguientes, dadas las bases B y C de V y las coordenadas de un vector v en la base B, hallar la matriz de cambio de base de B a C, expresar v como combinación lineal de los elementos de C y hallar v.
 - a) $V = \mathbb{R}^2$, $B = \{(1,1), (2,3)\}$, $C = \{(0,3), (5,-1)\}$, $\operatorname{coord}_B(v) = (2,-1)$.
 - b) $V = \mathbb{R}^3$, $B = \{(1, -1, 0), (0, 1, -1), (1, 0, 1)\}$, $C = \{(3, 0, 0), (1, 2, -1), (0, 1, 5)\}$, $\operatorname{coord}_B(v) = (2, -1, 4)$.
 - c) $V = \mathbb{R}_2[x]$, $B = \{x^2, x, 1\}$, $C = \{x^2 + x + 1, x + 1, 1\}$, $\operatorname{coord}_B(v) = (2, -1, 0)$.
 - $d) \ \ V = \mathcal{M}_2, \ B = \left\{ \left(\begin{smallmatrix} 1 & 1 \\ 0 & 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 & -1 \\ 0 & 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 & 0 \\ 2 & 3 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 & 0 \\ 1 & 2 \end{smallmatrix} \right) \right\}, \ C = \left\{ \left(\begin{smallmatrix} 1 & 1 \\ 1 & 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 & 1 \\ 1 & 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix} \right) \right\}, \ \operatorname{coord}_B(v) = (1/2, 1/2, -1, 2).$
- 4. Consideramos la base $B = \{(1,1), (1,0)\}$ de \mathbb{R}^2 y la matriz $A = \begin{pmatrix} 5 & 7 \\ 3 & 4 \end{pmatrix}$.
 - a) Hallar una base C de \mathbb{R}^2 tal que $_B[\mathrm{Id}]_C=A$.
 - b) Hallar una base D de \mathbb{R}^2 tal que $_D[\mathrm{Id}]_B=A$.
- 5. Sean B, C y D bases de \mathbb{R}^2 . Hallar $D[\mathrm{Id}]_B$ sabiendo $C[\mathrm{Id}]_D = \begin{pmatrix} 5 & 7 \\ 3 & 4 \end{pmatrix}$ y $C[\mathrm{Id}]_B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.
- 6. Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida por T(x,y,z) = (3x+2y-4z,x-5y+3z). Hallar $_C[T]_B$ en los casos siguientes.
 - a) $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ y $C = \{(1,0), (0,1)\}$.
 - b) $B = \{(1,1,1), (1,1,0), (1,0,0)\}$ y $C = \{(1,0), (0,1)\}$.
 - c) $B = \{(1,1,1), (1,1,0), (1,0,0)\}$ y $C = \{(1,3), (2,5)\}$.
- 7. Sea $A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$ y $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definida por T(X) = AX (notar que T es una transformación lineal). Hallar $_C[T]_C$, siendo C la base canónica de $M_2(\mathbb{R})$.
- 8. Sea $T: \mathbb{R}_2[x] \to \mathbb{R}^3$ tal que $_C[T]_B = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$, donde $B = \{1, x+1, (x+1)^2\}$ y $C = \{(1, 1, 0), (1, 2, 3), (3, 2, 1)\}$. Hallar $T(x^2 + x 1)$.
- 9. Sean V y W dos espacios tales que dim V=3 y dim W=2. Sean $B_1=\{v_1,v_2,v_3\}$ una base de V y $C_1=\{w_1,w_2\}$ una base de W.
 - a) Probar que $B_2 = \{v_1 + v_2 + v_3, v_1 + 2v_2 + v_3, v_1 + 2v_2 + 2v_3\}$ es una base de V.
 - b) Sea $T \in \mathcal{L}(V, W)$ tal que $C_2[T]_{B_2} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix}$, siendo $C_2 = \{w_2, w_1\}$. Hallar $C_1[T]_{B_1}$.
- 10. Sea $T: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ dada por T(p(x)) = p(x) + p'(x) + p''(x), siendo $p'(x) \vee p''(x)$ las derivadas de p(x).
 - a) Hallar $_B[T]_B$, siendo B la base canónica de $\mathbb{R}_3[x]$.
 - b) Probar que T es un isomorfismo.
 - c) Hallar la matriz asociada a T^{-1} de B en B.

 $^{^{1}}$ Recordar que un versor es un vector de norma 1.

- d) Hallar T^{-1} .
- 11. Sea $T = L_A : \mathbb{R}^3 \to \mathbb{R}^3$, siendo $A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \end{pmatrix}$.
 - a) Hallar $_C[T]_C$, $_B[T]_C$, $_C[T]_B$ y $_B[T]_B$, siendo C la base canónica y $B = \{(-1,1,0),\,(1,-1,1),\,(0,1,-1)\}$.
 - b) Determinar si T es un isomorfismo.
- 12. Calcular los rangos de las siguientes matrices $\begin{pmatrix} 1 & 5 & 7 & 3 \\ 0 & 1 & 8 & 5 \\ 0 & 0 & 1 & 7 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 4 & 4 & 4 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 & 1 \\ 3 & 2 & 1 & 1 \\ 4 & 4 & 4 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.
- 13. Sean $a,b,c\in\mathbb{R}$ distintos entre sí. Calcular los rangos de las siguientes matrices

$$\begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix}, \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \\ a & b & c \end{pmatrix}, \begin{pmatrix} 1 & a & a^2 & a + a^2 \\ 1 & b & b^2 & b + b^2 \\ 1 & c & c^2 & c + c^2 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Sugerencia: notar que la primera es una matriz de Vandermonde.

14. Hallar la dimensión del núcleo de T, siendo T la transformación lineal del ejercicio 9.

Ejercicios extra

- 1. En los casos siguientes, probar que B es base de V y hallar las coordenadas del vector v respecto a la base B.
 - a) $V = \mathbb{R}^4$, $B = \{(1, 1, 0, 0), (1, -1, 0, 0), (0, 0, 5, 2), (0, 0, 3, 1)\}, v = (2, -4, 5, 7).$
 - b) $V = M_2$, $B = \{\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\}, v = \begin{pmatrix} 2 & 3 \\ -5 & 7 \end{pmatrix}$.
 - c) $V = \mathbb{R}_2[x], B = \{(x-1)^2, x-1, 1\}, v = x^2 + x + 1.$
- 2. En los casos que siguen hallar las coordenadas de un vector genérico $(x, y, z) \in \mathbb{R}^3$ en las bases $B_1 y B_2$.

$$B_1 = \{(1,0,0), (1,1,0), (1,1,1)\}; \quad B_2 = \{(2,1,1), (2,2,1), (1,1,1)\}.$$

- 3. En los casos que siguen, hallar el vector v sabiendo sus coordenadas en la base dada.
 - a) $V = \mathbb{R}^2$, $B = \left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right), \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \right\}$, $\operatorname{coord}_B(v) = (1, -1)$.
 - b) $V = M_2$, $B = \{\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\}, coord_B(v) = (1, 1, 1, 1).$
- 4. Sea $B = \{e_1, e_2, e_3\}$ la base canónica de \mathbb{R}^3 y $C = \{f_1, f_2, f_3\}$ la base de \mathbb{R}^3 obtenida rotando B alrededor del eje Oz un ángulo θ ($0 \le \theta < 2\pi$) en sentido positivo, cuando vemos el plano Oxy desde arriba.
 - a) Hallar explícitamente f_1, f_2, f_3 .
 - b) Hallar la matriz de cambio de base de B a C.
 - c) Hallar las coordenadas del vector (1, 1, 1) en la base C.
- 5. Sea C la base canónica de $M_2(\mathbb{R})$ y $B = \{1, 1+x, 1+x+x^2, 1+x+x^2+x^3\}$ base de $\mathbb{R}_3[x]$.
 - a) Hallar $_B[T]_C$, siendo $T: M_2(\mathbb{R}) \to \mathbb{R}_3[x]$ definida por $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + b + c + d + (a + b + c)x + (a + b)x^2 + ax^3$.
 - b) Hallar la transformación lineal $S: M_2(\mathbb{R}) \to \mathbb{R}_3[x]$ tal que ${}_B[S]_C = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.
- 6. Hallar una base del núcleo y una base de la imagen de las siguientes transformaciones lineales:
 - $a) \ \ T: \mathbb{R}^3 \to \mathbb{R}^3 \ \text{tal que } _B[T]_B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \ \text{donde } B = \{(1,1,0), \ (0,2,0), \ (2,0,-1)\}.$
 - b) $T: \mathbb{R}_2[x] \to M_2(\mathbb{R})$ tal que

$${}_{B}[T]_{C} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 1 & 2 \end{pmatrix},$$

2

donde $B = \{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \}$ y $C = \{x^2, x, 1\}$.