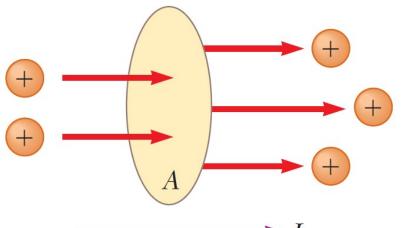

4-CORRIENTE, RESISTENCIA, FUERZA ELECTROMOTRIZ Y CIRCUITOS DE CORRIENTE CONTINUA


Dos lamparillas de luz: de igual potencia de salida lumínica, pero la lámpara fluorescente de la izquierda, produce esta lluminación con mucho menos potencia eléctrica que la incandescente de la derecha. Las lámparas fluorescentes ("de bajo consumo"), es menos costosa de operar , pues consume menos potencia y resulta más económica.

Líneas de transmisión eléctrica transportan energía a hogares e industrias.

La energía se transfiere a un voltaje muy elevado, hasta de cientos de miles de volts.

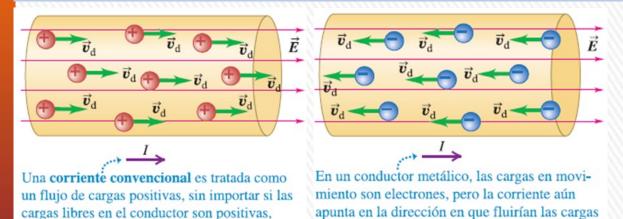
Si bien es peligroso, el elevado voltaje origina una menor pérdida de energía, debido a la resistencia en los alambres.

CORRIENTE ELÉCTRICA

negativas o ambas.

Corriente eléctrica a través de un área de sección transversal *A es la carga neta que fluye a través del área por unidad de tiempo:*

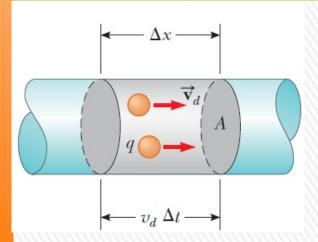
Corriente instantánea


I límite diferencial de la corriente promedio cuando Δt →0

$$I_{prom} = rac{\Delta Q}{\Delta t}$$
 $I = rac{dQ}{dt}$

Unidad en SI para la corriente: ampere (A): 1 A = 1 C/s

Convencionalmente se asigna a la corriente el mismo sentido que el del flujo de la carga positiva.


En conductores eléctricos metálicos (cobre o aluminio) la corriente se origina por el movimiento de electrones con carga negativa.

positivas.

En cualquier conductor, el sentido de la corriente es la opuesta al sentido del flujo de los electrones.

Corriente, velocidad de arrastre y densidad de corriente

Conductor con área de sección transversal *A y campo eléctrico E dirigido de izquierda* a derecha.

Cargas libres en conductor positivas: velocidad de arrastre (v_d) tiene el mismo sentido del campo que suponemos igual en todas.

Hay *n partículas con carga* **q** *en movimiento por unidad de volumen:* **n densidad de portadores de carga** (m⁻³ ó 1/ m³).

En un intervalo de tiempo dt, cada partícula se mueve una distancia $\Delta x = v_d$ dt.

La carga total ΔQ del volumen es igual a

$$\Delta Q = n(A\Delta x)q$$

$$\Delta Q = n(A\Delta x)q = n(Av_d\Delta t)q$$

$$I_{prom} = \frac{\Delta Q}{\Delta t} - nqAv_d$$

La rapidez de los portadores de carga v_d es una rapidez promedio que se conoce como rapidez de arrastre (v_d)

$$v_d = \frac{I_{prom}}{nqA}$$

En un alambre de cobre de 2 mm de diámetro, cuando se conduce una corriente de 10 A, la velocidad de arrastres de los electrones es de 2,2×10⁻⁴ m/s (0,22 mm/s), En una hora recorren sólo 80 cm!!!

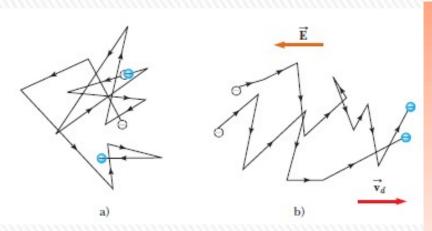
Corriente, velocidad de arrastre y densidad de corriente

La corriente por unidad de área de la sección transversal se denomina densidad de corriente J:

$$J = \frac{I}{A} = n|q|v_d$$

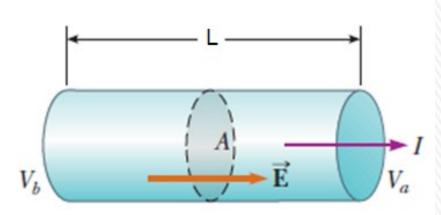
Unidades de la densidad de corriente son amperes por metro cuadrado (A/m²).

Se define también el **vector densidad de corriente J** que incluye el sentido de la velocidad de arrastre:


$$\overline{J} = nq\overline{v}_d$$

Si q es positiva \mathbf{v}_d tiene el mismo sentido que \mathbf{E} , si q es negativa \mathbf{v}_d es opuesta a \mathbf{E} . En cualquier caso \mathbf{J} y \mathbf{E} tienen el mismo sentido.

Un conductor puede tener varias clases diferentes de partículas con carga en movimiento $q_1, q_2, ...,$ concentraciones $n_1, n_2, ...$ y velocidades de arrastre con magnitudes $v_{d1}, v_{d2}, ...$ (por ejemplo en un flujo de corriente en una solución iónica)


El vector densidad de corriente se calcula para cada tipo de partícula con carga:

$$\overline{\boldsymbol{J}} = n_1 q_1 \overline{\boldsymbol{v}}_{d1} + n_2 q_2 \overline{\boldsymbol{v}}_{d2} + \cdots$$

- a) Movimiento térmico de dos portadores de carga en un conductor en ausencia de un campo eléctrico: v_d es cero.
- b) Movimiento de portadores de carga en presencia de campo eléctrico: movimiento aleatorio modificado por el campo los portadores tienen \mathbf{v}_d opuesta al sentido del campo eléctrico. Sin embargo, la rapidez de arrastre es mucho menor que la rapidez promedio de origen térmico (~ 1/10¹⁰).

RESISTENCIA Y LEY DE OHM

Conductor uniforme de longitud *L* y área de sección transversal *A*.

La diferencia de potencia $\Delta V = V_b - V_a$ que se mantiene de un extremo al otro del conductor establece un campo eléctrico **E**, que produce una corriente I.

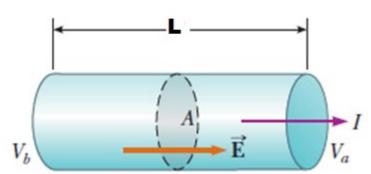
Resistencia (R) del conductor - relación de la diferencia de potencial aplicada a un conductor entre la corriente que pasa por el mismo.

 $R \equiv \frac{\Delta V}{I}$

Unidad de resistencia en el S.I. ohm (Ω)

LEY DE OHM: En muchos materiales (inclusive la mayor parte de los metales) la relación de la densidad de corriente **J** al campo eléctrico **E** es una constante **σ** (**conductividad eléctrica**) que es independiente del campo eléctrico que produce la corriente.

El inverso de la conductividad es la resistividad $\sigma = 1/\rho$


Unidad de ρ : Ω .m.

 $\rho = \frac{E}{I}$

La resistividad de un material aumenta con la temperatura.

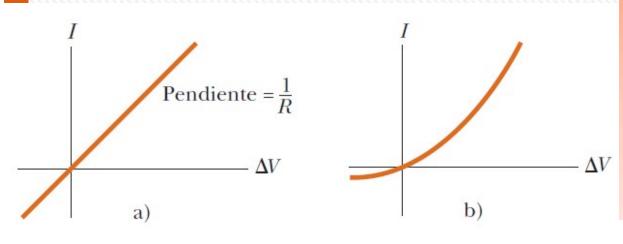
Resistividad de un conductor del orden de 10^{-8} , de un aislante de 10^{11} a 10^{15} , del axoplasma : $2,0~\Omega$.m

RESISTENCIA Y LEY DE OHM

Sea un conductor que verifica la ley de Ohm: $E = \rho.J$ Si el campo es uniforme: $E=\Delta V/L$

Como: J= I/A

$$R = \Delta V/I = E.L/(J.A) = \rho.J.L/(J.A) = \rho.L/A$$


$$R = \frac{\rho L}{A}$$

Un material que cumple la ley de Ohm se llama **conductor** *óhmico o* **lineal**. Para esos materiales, a una temperatura dada, ρ es una *constante que no depende del valor de E*.

Muchos materiales cuyo comportamiento se aparta mucho de la ley de Ohm se denominan **no óhmicos** o no lineales.

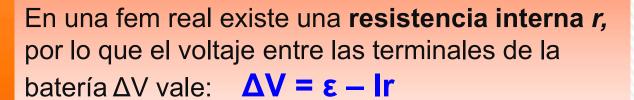
En estos materiales, J depende de E de forma más compleja

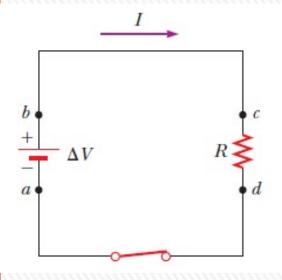
MATERIAL ÓHMICO Y NO ÓHMICO

La **resistividad** es una propiedad de una *sustancia*, en tanto que la **resistencia** es la propiedad de un *objeto*.

Para una temperatura dada, la resistividad será la misma para un elemento determinado.

Por ejemplo alambres de cobre tendrán la misma resistividad, pero su resistencia variará de las dimensiones que tengan (largo y diámetro).

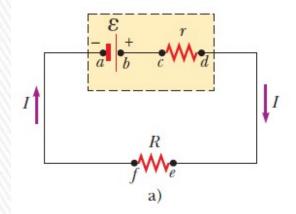

Fuerza electromotriz y potencia eléctrica

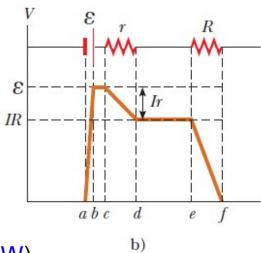

Se utiliza una batería o pila (**fuente de fuerza electromotriz**) como fuente de energía, o más comúnmente, fuente de fem.

La fem ε de una batería es el voltaje máximo posible que ésta puede suministrar entre sus terminales.

Si la fem es ideal: $V_{ab} = \Delta V = \mathcal{E}$

Y además: $\mathcal{E} = I.R$



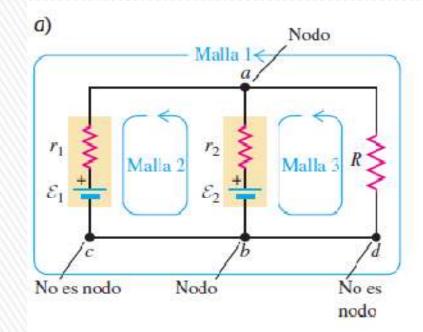


POTENCIA ELÉCTRICA

$$\mathcal{P} = I.\,\Delta V = I^2 R = \frac{\Delta V^2}{R}$$

Unidad SI de potencia es el watt (W)

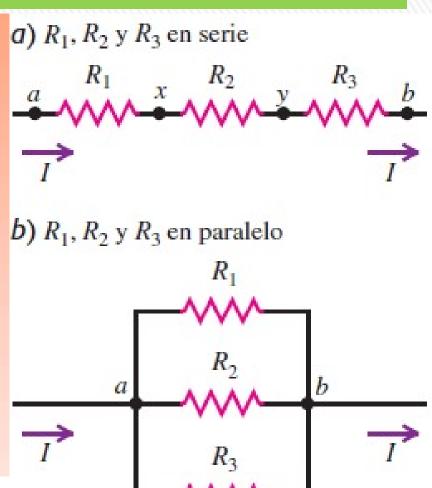
La pérdida de potencia en forma de energía interna (calor) en un conductor de resistencia R, a menudo se llama calentamiento Joule; esta transformación también es conocida como una pérdida I^2R .


REGLAS O LEYES DE KIRCHHOFF

Nodo (o unión) en un circuito es el punto en que se unen tres o más conductores.

Espira (o malla) es cualquier trayectoria cerrada de conducción.

Regla de Kirchhoff de los nodos: La suma algebraica de las corrientes en cualquier nodo es igual a cero: $\Sigma I = 0$


Regla de Kirchhoff de las mallas: La suma algebraica de las diferencias de potencial en cualquier malla, incluso las asociadas con las fem y las de elementos con resistencia, debe ser igual a cero: $\Sigma V = 0$.

RESISTORES EN SERIE Y EN PARALELO

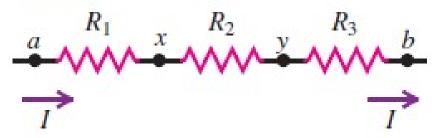
Cuando se conectan en secuencia varios resistores como en la figura a, con una sola trayectoria de corriente entre los puntos, se dice que están conectados en serie. Se dice que los resistores de la figura b están conectados en paralelo entre los puntos a y b. Cada resistor ofrece una trayectoria alternativa entre los puntos. Para los elementos de circuito conectados en paralelo, la diferencia de potencial es la misma a través de cada elemento.

Para cualquier combinación de resistores, es posible encontrar un resistor *único* (resistor equivalente) que podría reemplazar la combinación y dar como resultado la misma corriente y diferencia de potencial totales.

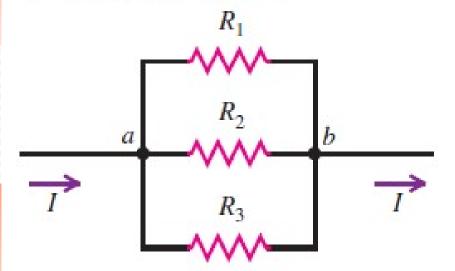
RESISTORES EQUIVALENTES EN SERIE Y EN PARALELO

EN SERIE:

$$R_{EQ} - R_1 + R_2 + R_3 \dots - \sum_{i=1}^{n} R_i$$


La resistencia equivalente de cualquier número de resistores en serie es igual a la suma de sus resistencias individuales.

EN PARALELO

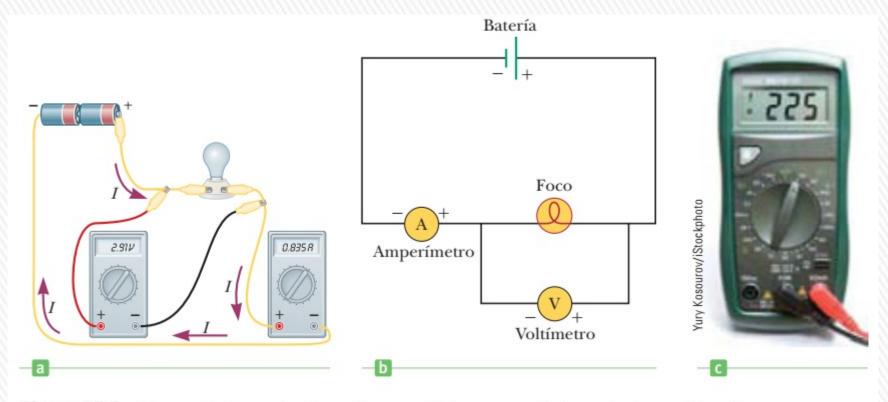

$$\frac{1}{R_{EQ}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

Para cualquier número de resistores en paralelo, el recíproco de la resistencia equivalente es igual a la suma de los recíprocos de sus resistencias individuales.

a) R_1 , R_2 y R_3 en serie

b) R_1 , R_2 y R_3 en paralelo

Para el caso especial de dos resistores en paralelo

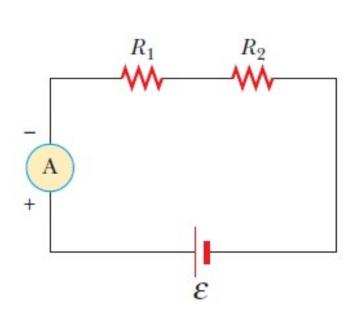

$$R_{EQ} = \frac{R_1 R_2}{R_1 + R_2}$$

MEDICIÓN DE CORRIENTE Y VOLTAJE EN CIRCUITOS

La fig. a) muestra el circuito real necesario para medir la corriente en el foco de una linterna y la diferencia de potencial a través de él.

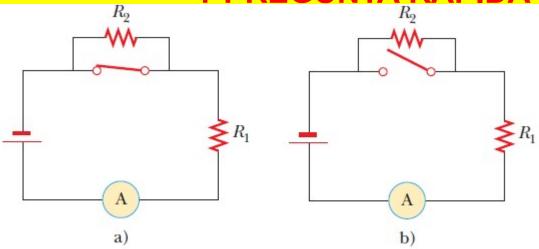
La fig. b) muestra el diagrama del circuito que representa el circuito real anterior. Este circuito sólo consiste en una batería y un foco (resistencia).

Las cantidades más importantes que caracterizan cómo funciona el foco en diferentes situaciones son la **corriente** / en el foco y la **diferencia de potencial** △V a través del foco.


Figura 17.5 a) Bosquejo de un circuito real que se utiliza para medir la corriente en el foco de una linterna y la diferencia de potencial a través de él. b) Diagrama esquemático del circuito que se muestra en a). c) Se puede usar un multímetro digital para medir tanto corriente como diferencia de potencial.


MEDICIÓN DE CORRIENTE Y VOLTAJE EN CIRCUITOS

Para medir la corriente se coloca el amperímetro en la línea con el foco (en serie), de modo que toda la corriente que pasa a través del foco también debe pasar a través del amperímetro.


El **voltímetro** mide la **diferencia de potencial, o voltaje**, se conecta entre las dos terminales del foco (en paralelo).

Para que las medidas no afecten significativamente los resultados de las mediciones, un amperímetro debe tener la resistencia interna lo menor posible (idealmente $R_{amp} = 0$), mientras que el voltímetro debería tener una resistencia lo mayor posible (idealmente $R_{volt} = \infty$).

1-PREGUNTA RÁPIDA (QUICK QUIZ)

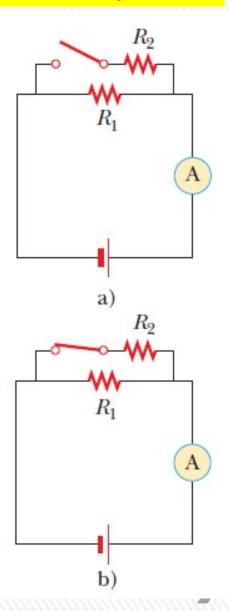
Cuando se cierra el interruptor del circuito de la figura a, no hay corriente en R_2 , porque la corriente encuentra una trayectoria alterna de resistencia cero a través del interruptor. Existe corriente en R_1 , la cual se mide con un amperímetro (dispositivo para la medición de corriente) en la parte baja del circuito.

Si se abre el interruptor (figura b), existe corriente en R₂.

- ¿Qué sucede con la lectura del amperímetro cuando se abre el interruptor?
- a) La lectura asciende,
- b) la lectura desciende, o
- c) la lectura no cambia.

Respuesta: b) la lectura desciende

Cuando se abre el interruptor, los resistores R_1 y R_2 están en serie, así que la resistencia total del circuito es mayor que cuando el interruptor estaba cerrado. Como resultado, la corriente disminuye.

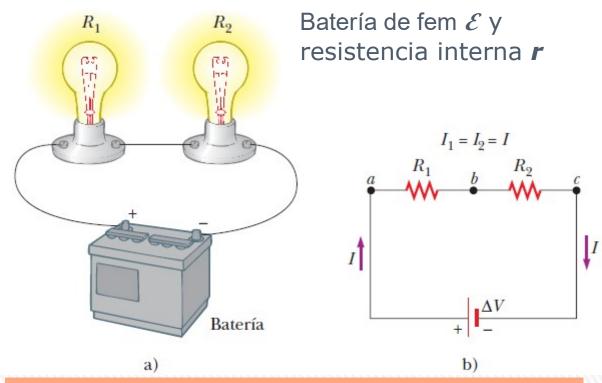

2- PREGUNTA RÁPIDA (QUICK QUIZ)

Con el interruptor abierto del circuito de la figura a, no hay corriente en R_2 . No obstante, hay corriente en R_1 , y se mide con el amperímetro que está del lado derecho del circuito. Si se cierra el interruptor (figura), existe corriente en R_2 .

- ¿Qué ocurre con la lectura del amperímetro cuando el interruptor se cierra?
- a) La lectura asciende,
- b) la lectura desciende, o
- c) la lectura no cambia.

Respuesta: a) La lectura asciende.

Cuando se cierra el interruptor, los resistores R₁ y R₂ están en paralelo, así que la resistencia total del circuito es menor que cuando el interruptor estaba abierto. Como resultado, la corriente aumenta.



PREGUNTA RÁPIDA (QUICK QUIZ)

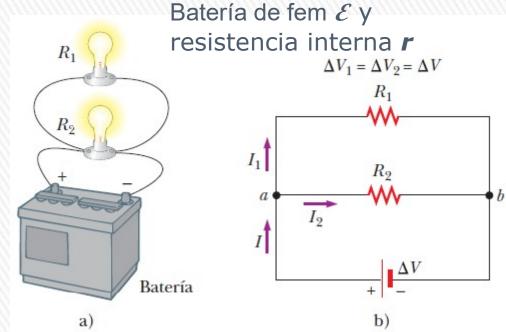
Considere las siguientes opciones:

- a) aumenta,
- b) disminuye,
- c) permanece igual.

A partir de estas opciones, elija la mejor respuesta para las siguientes situaciones. En la figura se agrega un tercer resistor en serie con los primeros dos. i) ¿Qué ocurre con la corriente en la batería? ii) ¿Qué ocurre con el voltaje entre las terminales de la batería?

Respuesta: i) -b) disminuye; y ii) a) aumenta

- i), b) Agregar otro resistor en serie aumenta la resistencia total del circuito y por tanto reduce la corriente en el circuito.
- ii), a). La diferencia de potencial a través de las terminales de la batería aumenta porque la corriente reducida resulta en una menor disminución de voltaje a través de la resistencia interna.


PREGUNTA RÁPIDA (QUICK QUIZ)

Considere las siguientes opciones:

- a) aumenta,
- b) disminuye,
- c) permanece igual.

A partir de estas opciones, elija la mejor respuesta para las siguientes situaciones.

i) En la figura se agrega un tercer resistor en paralelo con los dos primeros. ¿Qué ocurre con la corriente en la batería? ii) ¿Qué ocurre con el voltaje entre las terminales de la batería?

Respuesta: i), a – aumenta; ii) b) disminuye.

- a). Si se conectara en paralelo un tercer resistor, la resistencia total del circuito disminuiría y la corriente en la batería aumentaría.
- ii), b). La diferencia de las terminales disminuiría porque la corriente aumentada resulta en una mayor caída de voltaje a través de la resistencia interna de potencial a través.

EJEMPLO: Ejercicio 2.1.3

Un alambre de resistencia R, longitud L y sección transversal constante se estira para formar otro cuya longitud es tres veces la original.

Encuentre la resistencia del nuevo alambre en función de R suponiendo que la resistividad y la densidad del material no cambian durante el estiramiento

Sean L' y A' las nuevas dimensiones del material estirado y R' la nueva resistencia.

$$R = \frac{\rho L}{A}$$
 $R' = \frac{\rho L'}{A'}$

Al estirarse, la masa y por tanto en volumen se mantiene por lo que: L.A = L'A'

$$L' = 3L \qquad A' = A/3$$

$$R' = \frac{\rho^{3L}}{\frac{A}{3}} = 9\frac{\rho L}{A} = 9R$$

R'=9R

EJEMPLO: Ejercicio 2.1.8

Un calefactor eléctrico está alimentado con una tensión de 220 V y consume una corriente de 10 A.

Calcular la potencia y la energía consumidas si está funcionando durante 5,0 horas.

Pot. =
$$\Delta V$$
. I = (220 V) × 10 A = 2.200 W = 2,2 kW

La energía consumida es igual a la potencia por el tiempo que se consume dicha potencia.

U = Pot.
$$\Delta t$$
. = (2,2 KW) × 5,0 h= 11 kWh

U = 11 kWh = 11 × 1000 × 3600 =
$$3.96 \times 10^7$$
 J $\cong 4.0 \times 10^7$ J = 40 MJ

EJEMPLO: Ejercicio 2.1.5

Si una persona con las manos húmedas toma dos conductores y tiene una resistencia de 1,0 k Ω .

- a) ¿Qué diferencia de potencial es necesaria para producir una corriente de 10 mA, suficiente para dejar bloqueadas las manos en los conductores?
- **b)** ¿Qué diferencia de potencial se necesita para producir una corriente de 100 mA que causaría fibrilación ventricular en un segundo aproximadamente?

a)
$$\Delta V = I$$
. R = $(10 \times 10^{-3} \text{ A}) (1000 \Omega) = 10 \text{ V}$.

b)
$$\Delta V = I$$
. R = $(100 \times 10^{-3} \text{ A}) (1000 \Omega) = 100 \text{ V}$.