Práctico 1

- 1. Hallar los conjuntos equilibrados de \mathbb{F} . ¿Cuáles son las topologías vectoriales de \mathbb{F} ?
- 2. Sea X un espacio vectorial. Se sobrentiende que todos los conjuntos mencionados a continuación son subconjuntos de X. Probar las siguientes afirmaciones:
 - a) $2A \subseteq A + A$, y la inclusión puede ser estricta.
 - b) A es convexo sii $(s+t)A = sA + tA, \forall s, t > 0$.
 - c) Toda unión de conjuntos equilibrados es equilibrada.
 - d) Toda intersección de conjuntos equilibrados es equilibrada.
 - e) Si Γ es una colección de conjuntos convexos totalmente ordenada por inclusión, entonces la unión de todos los elementos de Γ es convexa.
 - f) Toda intersección de conjuntos convexos es convexa.
 - g) Si A y B son convexos, también lo es A + B.
 - h) Si A y B son equilibrados, también lo es A + B.
- 3. La envolvente convexa de un subconjunto A de un espacio vectorial X es el conjunto de todas combinaciones convexas de elementos de A, es decir, el conjunto de todas las sumas $t_1x_1 + \ldots + t_nx_n$, donde $x_j \in A$, $t_j \geq 0$, $\sum t_j = 1$, y n es arbitrario. Probar que la envolvente convexa de A es convexa, y que coincide con la intersección de todos los conjuntos convexos que contienen a A.
- 4. Sea X un espacio vectorial topológico. Todos los conjuntos mencionados a continuación son subconjuntos de X. Probar los siguientes asertos:
 - a) La envolvente convexa de todo abierto es abierta.
 - b) Si X es localmente convexo, entonces la envolvente convexa de todo conjunto acotado es acotada (esto es falso cuando falta la convexidad local).
 - c) Si A y B son acotados, también lo es A + B.
 - d) Si $A \vee B$ son compactos, también lo es A + B.
 - e) Si A es compacto y B es cerrado, entonces A + B es cerrado.
 - f) La suma de dos conjuntos cerrados puede no ser cerrada.
- 5. ¿Se alterará el contenido de la definición de conjunto acotado dada en clase si se exige solamente que para cada entorno V de 0 exista $algún\ t>0$ tal que $A\subseteq tV$?
- 6. Probar que un subconjunto A de un espacio vectorial topológico es acotado sii todo subconjunto numerable de A es acotado.

- 7. Sean X un espacio vectorial topológico, Y un subespacio de X, y $q: X \to X/Y$ la proyección canónica. Se considera en X/Y la topología cociente (es decir: $A \subseteq X/Y$ es abierto si y sólo si $q^{-1}(A)$ es abierto en X). Probar que:
 - a) La aplicación q, además de ser continua, es abierta.
 - b) X/Y es un espacio vectorial topológico con la topología cociente.
 - c) X/Y es de Hausdorff si y sólo si Y es cerrado en X.
 - d) Si X es localmente convexo, Y también lo es.
- 8. Sean K = [0, 1], y sobre $\mathcal{D}_K := \{x \in C^{\infty}(\mathbb{R}) : x(t) = 0 \,\forall t \notin K\}$ consideremos las tres siguientes familias de seminormas, donde D = d/dx:
 - a) $||D^n x||_{\infty} := \sup\{|D^n x(t)| : t \in K\}, \forall n = 0, 1 \dots$
 - b) $||D^n x||_1 := \int_0^1 |D^n x(t)| dt$, $\forall n = 0, 1 \dots$
 - c) $||D^n x||_2 := \left\{ \int_0^1 |D^n x(t)|^2 dt \right\}^{1/2}, \ \forall n = 0, 1 \dots$

Probar que las tres familias definen la misma topología

9. Sean $\Omega \subseteq \mathbb{F}^m$ un abierto no vacío, y $(K_n)_{n\geq 1}$ una sucesión de compactos tales que $K_n \subseteq \overset{\circ}{K}_{n+1}, \forall n \geq 1, y \bigcup_{n=1}^{\infty} K_n = \Omega$. Sobre $C(\Omega)$ se considera la topología definida por las seminormas p_n tales que

$$p_n(x) = \sup \{|x(t)| : t \in K_n\}, \ \forall n \ge 1.$$

Probar que la topología de $C(\Omega)$ no depende de la sucesión $(K_n)_{n\geq 1}$ elegida.

Repetir el ejercicio para $C^{\infty}(\Omega) := \{x : \Omega \longrightarrow \mathbb{C} : x \text{ es infinitamente diferenciable}\},$ con la topología definida por las seminormas q_n , definidas como:

$$q_n(x) = \max\{p_n(D^{\alpha}x) : \alpha \in \mathbb{N}^m, \text{ con } |\alpha| \le n\}, \ \forall n \ge 1.$$

(si $\alpha = (\alpha_1, \dots, \alpha_m) \in \mathbb{N}^m$ es un multi-índice, entonces $|\alpha| = \alpha_1 + \dots + \alpha_m$).

10. Sean $\Omega \subseteq \mathbb{F}^n$ un abierto no vacío, $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ un multi-índice cualquiera, $K \subseteq \Omega$ un subconjunto compacto con interior no vacío, y

$$\mathcal{D}_K := \{ x \in C^{\infty}(\Omega) : x(t) = 0, \ \forall t \notin K \},\$$

con la topología heredada de la de $C^{\infty}(\Omega)$. Probar que las aplicaciones $C^{\infty}(\Omega) \longrightarrow C^{\infty}(\Omega)$ y $\mathcal{D}_K \longrightarrow \mathcal{D}_K$ dadas por $x \longmapsto D^{\alpha}x$ son continuas.

- 11. Espacios de dimensión finita
 - a) Probar que un espacio vectorial X de dimensión finita n admite una única topología vectorial de Hausdorff (para el caso n=1 puede ser útil el Ejercicio 1; para n>1 usar el Ejercicio 7 para probar, por inducción, que cualquier funcional lineal de X es continua).
 - b) Demostrar que todo subespacio de dimensión finita Y de un espacio vectorial topológico de Hausdorff X es cerrado en X.