
A mathematical introduction to Neural Networks
and Neural Ordinary Differential Equations

Argimiro Arratia
argimiro@cs.upc.edu

http://www.cs.upc.edu/~argimiro

CS, Universitat Politécnica de Catalunya

A. Arratia NNet + NODE (2023)

Overview

1 Feed Forward Neural Networks. 1-layer and multi-layer.
Optimization through Gradient Descent. Mathematical
expressions for the gradient. General Nnet algorithm.

2 Pytorch Nnet programming

3 Deep Optimal Stopping problems (revisited with Pytorch
code)

4 Universal Approximation Results for Neural Networks

5 Residual Neural Networks and other variants

6 Neural Ordinary Differential Equations. Adjoint Method.
Numerical implementation. Errors in computation. Adaptive
Adjoint. Pytorch implementation.

7 Neural Ordinary Differential Equations and universal systems.
Applications.

A. Arratia NNet + NODE (2023)

Machine Learning Models

Machine Learning perspective

A. Arratia NNet + NODE (2023)

I. Feed Forward Neural Networks

A. Arratia NNet + NODE (2023)

Neural Networks (inspired by brain function)

x1

x2

x3

h2

h3

h1

h4

y

Figure: A 3-4-1 feed forward neural network with one hidden layer

x1, x2, x3 input nodes; y output node;
h1, . . . , h4 hidden nodes (neurons) in hidden layer (brain unit);
hj goes active and fires a signal to y if zj =

∑
i→j ωijxi − bj > 0.

(Mathematically apply the activation function
ϕ(z) = max(z, 0) to zj)

A. Arratia NNet + NODE (2023)

Neural Networks: Single hidden layer case

We have d inputs x = (x1, . . . , xd), one (or many outputs), and
one hidden layer with H1 units. Set H0 = d. For a single output:

F (x) = ϕ

(
H1∑

i=1

w
[2]
i a

[1]
i + b[2]

)
(1)

where

z
[1]
i =

H0∑

j=1

w
[1]
ij xj + b

[1]
i , (2)

a
[1]
i = ϕ(z

[1]
i), i = 1, 2, . . . ,H1 (3)

ϕ(·) is a nonlinear activation function (e.g.
ReLU(x) = max(0, x))1. Think of z[1] and a[1] as the output at
the hidden layer 1, before and after activation.

1We can have different activation functions but for sake of simplicity we
work with one

A. Arratia NNet + NODE (2023)

Nnet: Activation functions

A. Arratia NNet + NODE (2023)

Deep Neural Networks

Deep Neural Networks (aka. multilayer neural networks)

A. Arratia NNet + NODE (2023)

Deep Neural Networks

In vectorial notation (2), (3) are expressed as

z[1] = W [1]x + b[1], a[1] = ϕ(z[1]) ∈ RH1

And the output of 1-layer Nnet (Eq. (1)) as

F(x) = ϕ(W [2]a[1] + b[2]) =: a[2]

where ϕ(z) = (ϕ(z1), . . . , ϕ(zH1)) is activation function

A. Arratia NNet + NODE (2023)

Deep Neural Networks

If there are D > 1 hidden layers, each labelled by µ = 1, . . . , D,
and with Hµ neurons in each, the recursion can be written as

a[0] = x

z[µ] = W [µ]a[µ−1] + b[µ]

a[µ] = ϕ(z[µ]) ∈ RHµ

And the final output is the vector

F(x) = ϕ(W [D+1]a[D] + b[D+1]) =: a[D+1]

Forward evaluation (training)

consists of choosing weights and biases such that the output
approaches the actual values associated to input

A. Arratia NNet + NODE (2023)

Nnet Backward propagation (tuning)

Let training data {(x[i],y[i]) : i = 1, . . . , N} of N inputs
x[i] ∈ RH0 and corresponding N outputs y[i] ∈ RHD .

The parameters (e.g. weights and biases) are chosen so that some
error measure is minimized (e.g. mean square error MSE).

In general we have cost (or loss) function C on parameters θ and
measure of error

Cost(θ) =
1

N

N∑

i=1

C(y[i] − F (x[i]))

(e.g. in the case of quadratic cost, the objective to be minimized is

Cost(θ) =
1

N

N∑

i=1

1

2
||y[i] − F (x[i])||22

A. Arratia NNet + NODE (2023)

Optimization through Gradient Descent

Expand the cost objective using Taylor series (θ ∈ Rs):

Cost(θ + ∆θ) ≈ Cost(θ) +
s∑

i=1

∂Cost(θ)

∂θi
∆θi

= Cost(θ) +∇Cost(θ)>∆θ

where ∇Cost(θ) is the gradient vector and need to choose ∆θ so
that ∇Cost(θ)>∆θ is most negative at each iteration. This is
achieved by updating with small step size η:

θ → θ − η∇Cost(θ)

layer through layer (gradient descent)

A. Arratia NNet + NODE (2023)

Summary: Neural Network paradigm

Forward evaluation (training)

F(x) = ψ(W [D+1]a[D] + b[D+1])

with z[µ] = W [µ]a[µ−1] + b[µ] and a[µ] = ϕ(z[µ]), µ = 1, . . . D.

Measure of quality of approximation (Cost function)

Cost(θ) =
1

N

N∑

i=1

C(y[i] − F (x[i]))

Backward propagation to improve approximation. By gradient
descent update through layers

θ ← θ − η∇Cost(θ)

Remark: The functions in Cost are known and differentiable.

A. Arratia NNet + NODE (2023)

Neural Network training.

Formal details and algorithm

A. Arratia NNet + NODE (2023)

We derive a formula for the gradient. Consider a Deep Neural
Network of depth D + 2 (D hidden layers and input -layer 0- and
output -layer D + 1) with activation function ϕ, a dataset D and
MSE loss function. To drop the dependence of the loss function on
the input, we consider a single training point (x, y) ∈ D and write

L =
1

2
‖y − a[D+1]‖22 (4)

Let δ[µ] ∈ RHµ be defined by

δ
[µ]
j =

∂L

∂z
[µ]
j

j ∈ {1, ...,Hµ}, µ ∈ {1, ..., D + 1} (5)

which we call the error of the neurons at layer µ. Consider the
Hadamard or element-wise vector product, �:
if x, y ∈ Rn, x� y ∈ Rn, and (x� y)i = xiyi.

A. Arratia NNet + NODE (2023)

Formulae for the gradient

Lemma

δ[D+1] = ϕ′(z[D+1])� (a[D+1] − y) (6)

δ[µ] = ϕ′(z[µ])� (W [µ+1])T δ[µ+1] for µ ∈ {1, ..., D} (7)

∂L

∂b
[µ]
j

= δ
[µ]
j for µ ∈ {1, ..., D + 1} (8)

∂L

∂ω
[µ]
jk

= δ
[µ]
j a

[µ−1]
k for µ ∈ {1, ..., D + 1} (9)

The output a[D+1] is evaluated from a forward pass through the network,

starting at a[0] and computing z[1], a[1], z[2], a[2], ..., a[D+1]. Formulas 8-9

show that to compute the gradient we need the sequence {δ[µ]} and from

6-7 we see that after a forward evaluation and y we can get δ[D+1], and

then δ[D], δ[D−1], ..., δ[1], in a process known as backward pass

A. Arratia NNet + NODE (2023)

Algorithm 1: Training of a Neural Network

Input: neural network object of depth D + 2 with :
weights W [µ] and biases b[µ], µ ∈ {1, ..., D + 1}
activation function ϕ and its derivative ϕ′

data points D = {(x[k], y[k]) ∈ Rn × Rm}k∈{1,...,N}
number of epochs Niter; learning rate η
for epoch = 1 to Niter do

Choose an integer k uniformly at random from {1, 2, 3, ..., N};
a[0] ← x[k];
for l = 1 upto D + 1 do

z[l] ←W [l]a[l−1] + b[l];

a[l] ← ϕ(z[l]);

end

δ[D+1] ← ϕ′(z[D+1])� (a[D+1] − y[k]);
for l = D downto 1 do

δ[l] ← ϕ′(z[D])� (W [l+1])T δ[l+1];
end
for l = D + 1 downto 1 do

W [l] ←W [l] − ηδ[l]a[l−1]T ;

b[l] ← b[l] − ηδ[l];
end

end
A. Arratia NNet + NODE (2023)

Forecasting Time Series with NNet
Practical issues

A. Arratia NNet + NODE (2023)

Model Selection

The performance of the NNet -based forecasters depends on
the choice of the free parameters.

These are,

NNets: the size of hidden layer; the thresholds for activating
hidden nodes; connection bias; the weights for inputs; decay
factor (or learning rate).

Adapting the parameters is referred to as model selection.
R packages for Nnet: nnet: considers only one layer;
neuralnet is multilayer;
in caret + RSNNS has mlp a multilayer perceptron; keras
Python: sklearn.neural network; pytorch; tensorflow

A. Arratia NNet + NODE (2023)

Model training and testing

Let {(xt, rt) : t = 1, . . . , T} be the available data
rt is the return of some financial asset (but we could target PRICE
also) and xt is vector of inputs or features2:

lags of the series (its past behavior);

volume,

variance (volatility)

any fundamental indicator of the series
(e.g. Price-to-Earnings, Dividend-to-Price)

Model fitting for a NNet requires division of the data into
TRAINING (±75%) TESTING (±25%)

2One assumes inputs lie in some feature space, which one not need to know
A. Arratia NNet + NODE (2023)

Training

In this step build a few models by choosing the parameters (e.g.,
weights, the thresholds and connection bias) so that some
forecasting error measure is minimized

For NNet: use the mean squared error

MSE(w) =
1

N

N∑

t=1

(rt −modelF it(w,xt))2

A. Arratia NNet + NODE (2023)

Testing

The best fitted model build in training step is tested on the
subsample of data reserved for testing to predict some values and
compare estimations with actual sample values.
Usual measures of forecasting accuracy

MSE =
1

N

N∑

t=1

(rt−pred(rt))
2, MAE =

1

N

N∑

t=1

|rt−pred(rt)|,

RMSE =
√
MSE

But some experts recommend to use

Normalized RMSE

NRMSE =

√
MSE√

1
N

∑
t(rt − µ̂r)2

=

√
SE

(N − 1)V ar(rt)

A. Arratia NNet + NODE (2023)

