
A mathematical introduction to Neural Networks
and Neural Ordinary Differential Equations

Argimiro Arratia
argimiro@cs.upc.edu

http://www.cs.upc.edu/~argimiro

CS, Universitat Politécnica de Catalunya

A. Arratia NNet + NODE (2023)

II. Neural Networks are Universal

Approximators

A. Arratia NNet + NODE (2023)

Summary: Neural Network paradigm

Forward evaluation (training)

F(x) = ψ(W [D+1]a[D] + b[D+1])

with z[µ] = W [µ]a[µ−1] + b[µ] and a[µ] = ϕ(z[µ]), µ = 1, . . . D.

Measure of quality of approximation (Cost function)

Cost(θ) =
1

N

N∑

i=1

C(y[i] − F (x[i]))

Backward propagation to improve approximation. By gradient
descent update through layers

θ → θ − η∇Cost(θ)

Remark: The functions in Cost are known and differentiable.

A. Arratia NNet + NODE (2023)

Neural Networks as Universal Approximators

The Representation Theorem (Hornik et al., Cybenko, 1989-91)

Feed-forward network with one hidden layer of large enough width
and a “squashing” activation function can approximate any

integrable function to any accuracy.a

aHornik, Stinchcombe, White (1989). Multilayer feedforward networks are
universal approximators. Neural Networks 2, 359-366

Remark (Bruno Després) Let f ∈ C1(R)

f(x) =

∫ x

−∞
f ′(y)dy =

∫

R
H(x− y)f ′(y)dy

≈
J∑

j=−J
φ

(
x

ε
− j∆x

ε

)
f ′(j∆x)∆x =

J∑

j=−J
ωjφ(ajx+ bj)

where H(x) is Heaviside and φ a sigmoid to approximate H.
Notice that a, b tend to infinity with precision.

A. Arratia NNet + NODE (2023)

Universal Approximation theorems

Let N (σ) be class of neural networks with fixed activation func. σ.
F Banach function space with norm ‖·‖F
universal approximation property

Conditions under which N (σ) is dense in F w.r.to the topology
induced by ‖·‖F
i.e. conditions such that ∀f ∈ F and ε > 0, ∃g ∈ N (σ) such that
‖f − g‖F < ε.

Universal approximation theory for NNet divides into:

study of shallow networks (1-hidden layer) with arbitrarily
large width, and

deep neural networks (DNNs) with bounded width and
arbitrarily large depth.

A. Arratia NNet + NODE (2023)

Shallow networks approximation theory

Cybenko et al. (1989), Kurt Hornik (1991), Allan Pinkus (1999),
and others. Consider multi-layer perceptron (MLP): n input
neurons, one output neuron, one hidden layer with an arbitrarily
large width k.
Let σ : R→ R and:

SN k
n(σ) = {

k∑

i=1

ci σ(wwwix+ bi) | ci, bi ∈ R,wwwi ∈ Rn} (1)

SN n(σ) =

∞⋃

k=1

SN k
n(σ) = span{σ(wwwx+ b) | b ∈ R,www ∈ Rn} (2)

Theorem (Universal approximation theorem)

Let σ ∈ C(R). Then SN n(σ) is dense in C(Rn), in the topology of
uniform convergence on compacta, if and only if σ is not a
polynomial.
(C(A) = {f : A→ R | f is continuous })

A. Arratia NNet + NODE (2023)

Ejercicio: Completar la Demostración del Teorema AU

Utilizar: El conjunto de funciones Ridge

R = span{g(a · x)|g ∈ C(R), a ∈ Rn}

es denso en C(Rn) .
Para reducir la demostración de Rn a R.

Prop. 1: Si SN 1(σ) es denso en C(R) entonces SN n(σ) es
denso en C(Rn)

Prop. 2: Sea σ ∈ C∞(R) y no un polinomio, entonces
SN 1(σ) es denso en C(R).
(Ayuda: usar Teorema Corominas-Sunyer (1954): Si
σ ∈ C∞(R) en un intervalo abierto A y no es un polinomio,
entonces existe b ∈ A tal que σ(k)(b) 6= 0, ∀k ≥ 0.
Con el teorema anterior demostrar que SN 1(σ) contiene
todos los monomios (y polinomios), y usar Teorema de
Stone-Weierstrass.

A. Arratia NNet + NODE (2023)

Arbitrary depth networks approximation theory

The Scenario: DNNs with bounded width and arbitrarily large
number of layers.
Consider fully-connected DNN of input dimension n, L hidden
layers with w neurons, and output dimension m:

DNL
w({σi}) = {WWW [L+1]σ(WWW [L](. . . σ(WWW [1]x+bbb[1]) . . .)+bbb[L])+bbb[L+1]}

(3)
where at each layer we have activation function σ ∈ {σi}.
The family of arbitrarily deep DNN is:

DNw({σi}) =
∞⋃

L=1

DNL
w({σi}) (4)

In this setting we have a critical threshold on the width wmin of a
neural network that allows it to be a universal approximator.

A. Arratia NNet + NODE (2023)

Arbitrary depth NN

Theorem (Yongqiang Cai, 2023)

For any compact domain K ⊂ Rn and any finite set of activation
functions {σi}, DNw({σi}) with width w < w∗min ≡ max{n,m}
is not dense in Lp(K,Rm) nor C(K,Rm) in their respective usual
topologies.

A. Arratia NNet + NODE (2023)

Arbitrary depth NN

This minimal width w∗min can indeed be reached.

Theorem

Consider a compact K ⊂ Rn and

ReLU(x) = max(0, x) FLOOR(x) = bxc

Then, DNw({FLOOR,ReLU}) with w = max(n,m, 2), is dense
in C(K,Rm) under the topology of uniform convergence on
compacta.

A. Arratia NNet + NODE (2023)

Arbitrary depth NN

Theorem

Consider a compact K ⊂ Rn and

ABS(x) = |x|
leaky-ReLU(x) = max(x, αx) for a fixed α ∈ [0, 1].

Then, DNw∗
min

({ABS, leaky-ReLU}) is dense in Lp(K,Rm) in the
usual topology.

A. Arratia NNet + NODE (2023)

References of NNet approximation theory

G. Cybenko. Approximation by superpositions of a sigmoidal
function. Mathematics of Control, Signals and Systems 1989 2:4,
2:303-314, 12, 1989.
Kurt Hornik. Approximation capabilities of multilayer feedforward
networks. Neural Networks, 4:251-257, 1, 1991.
Allan Pinkus. Approximation theory of the mlp model in neural
networks. Acta Numerica, 8:143-195, 1999.
T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, Q. Liao, Why and
when can deep but not shallow-networks avoid the curse of
dimensionality: A review. Int. J. Autom. Comput. 14, 503-519
(2017).
T. Poggio, A. Banburski, Q. Liao. Theoretical issues in deep
networks. PNAS v. 117 (2020)
Yongqiang Cai. Achieve the minimum width of neural networks for
universal approximation. In The Eleventh International Conference
on Learning Representations, 2023.

A. Arratia NNet + NODE (2023)

Residual Neural Networks

A. Arratia NNet + NODE (2023)

Motivation: Vanishing Gradient

Optimization of Nnet parameters is achieved by updating :

θ → θ − η∇Cost(θ)

layer through layer (gradient descent)
But it could happen that ∇Cost(θ)→ 0.

A. Arratia NNet + NODE (2023)

Residual Neural Network (ResNet)

ResNet is a composition of residual blocks.
Let hhhb ∈ Rn be the hidden state before block b ∈ {0, ..., B}, and
F(·, θθθ) a neural network with parameters θθθ. A residual block
computes the next state by an additive transformation from the
previous one:

hhhb+1 = hhhb + F(hbhbhb, θθθ) (5)

Figure: Sketch of a residual block

A. Arratia NNet + NODE (2023)

ResNet: Forward propagation

If output of l-th residual block is input to the (l + 1)-th residual
block:

hhhl+1 = hhhl + F (hhhl)

Apply the recursive formula, e.g.

hhhl+2 = hhhl+1 + F (hhhl+1) = hhhl + F (hhhl) + F (hhhl+1)

we have

hhhL = hhhl +
L−1∑

i=l

F (hhhl)

where L index of later (or last) block, l index of earlier block. So
there is always a signal directly sent from shallower block l to
deeper block L

A. Arratia NNet + NODE (2023)

ResNet: Backward propagation

Given Cost (or loss) func. to minimized, take derivative w.r.to hhhl:

∂Cost

∂hhhl
=

∂Cost

∂hhhL

∂hhhL
∂hhhl

=
∂Cost

∂hhhL

(
1 +

∂

∂hhhl

L−1∑

i=1

F (hhhi)

)

=
∂Cost

∂hhhL
+
∂Cost

∂hhhL

∂

∂hhhl

L−1∑

i=1

F (hhhi)

OBS. even if the gradients of F (hhhi) terms are small, the total
gradient ∂Cost

∂hhhl
is NOT vanishing due to the added term ∂Cost

∂hhhL

A. Arratia NNet + NODE (2023)

Neural Ordinary Differential Equations

(NODE)

A. Arratia NNet + NODE (2023)

From ResNet to NODE

• Residual Network

ht+1 = ht + f(ht, θ)

• Neural ODEa

ht+1 − ht
∆t

=
f(ht, θ, t)

∆t
→ dz

dt
= f(z, θ, t)

aChen et al (2018) Neural ODE. In: Advances in
Neural Information Processing Systems, 31

A. Arratia NNet + NODE (2023)

Model as an IVP

The model has become an Initial Value Problem.
Let z0 := z(t0) = x. Forward evaluation is

F (z0) = z(tN) = z0 +

∫ tN

t0

dz

dt
dt = z0 +

∫ tN

t0

f(z, θ, t) dt

A. Arratia NNet + NODE (2023)

Forward pass computes integration with ODE solver

For instance use Euler method to convert integral into many steps
of addition

z(t+ ε) = z(t) + ε · f(z(t), θ)

with ε < 1.
Such ODE solvers are often numerically unstable (e.g. underflow
error due to small step size, etc).
So, some other more sophisticated (black-box) ODE solvers are
used.
Remark. f(z(t), θ), call it the ODE function, implicitly given from

data, approximates
dz

dt

A. Arratia NNet + NODE (2023)

Optimization

We can optimize: θ, t0, tN and z0.

Cost function

Cost (z(tN)) = Cost

(
z(t0) +

∫ tN

t0

f(z(t), θ, t) dt

)

= Cost (ODESolver(z(t0), f, θ, t0, tN))

L1, L2, . . .

We need to calculate the following gradients

dCost

dz(t0)
,
dCost

dθ
,
dCost

dt0
,
dCost

dtN

A. Arratia NNet + NODE (2023)

Adjoint sensitivity method I

As en example ∇θCost. We want to find

min
θ
Cost(z(tN)) s.t.

dz

dt
= f(z, θ, t)

Construct Lagrangian

L = Cost(z(tN))−
∫ tN

t0

λ(t)

(
dz

dt
− f(z, θ, t)

)
dt

integration by parts and chain rule differentiation gives

dCost(ztN)

dθ
=

∫ t0

tN

−a(t)
∂f

∂θ
dt

with a(t) the adjoint state, which is solution of IVP

a(tN) =
dCost(ztN)

dtN
,

da

dt
= −a(t)

∂f

∂z

Further algebraic manipulation yields gradient of cost w.r.to θ is solution
at time t0 of IVP

aθ(tN) = 0,
daθ
dt

= −a(t)
∂f

∂θ

A. Arratia NNet + NODE (2023)

Adjoint sensitivity method II

Similar calculations yield that the gradients of Cost w.r.to zt0 , t0
and θ, all result from evaluating IVPs on corresponding adjoint
states at time t0.
Define augmented state s(t) := [a(t), aθ(t), at(t)] as concatenation
of adjoints for z, θ and t

A. Arratia NNet + NODE (2023)

Adjoint sensitivity method III

Adjoint state at t0

s(t0) :=

[
dCost(z(tN))

dz(t0)
,
dCost(z(tN))

dθ
,−dCost(z(tN))

dt0

]

Solving backwards Initial Value Problem





s(tN) =

[
dCost(ztN)

dztN
, 0, −a(tN)f(ztN , θ, tN)

]

ds(t)

dt
= −a(t)

∂f

∂[z, θ, t]

A. Arratia NNet + NODE (2023)

Neural ODE paradigm

A Neural network with an ODE inside

Forward evaluation: an Initial Value Problem

F (z0) = z(tN) = z0+

∫ tN

t0

f(z, θ, t) dt = ODESolver(z(t0), f, θ, t0, tN)

Training (optimization): adjoint sensitivity method

A. Arratia NNet + NODE (2023)

