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A. Arratia NNet + NODE (2023)

II. Neural Networks are Universal

Approximators

A. Arratia NNet + NODE (2023)



Summary: Neural Network paradigm

Forward evaluation (training)

F(x) = ψ(W [D+1]a[D] + b[D+1])

with z[µ] = W [µ]a[µ−1] + b[µ] and a[µ] = ϕ(z[µ]), µ = 1, . . . D.

Measure of quality of approximation (Cost function)

Cost(θ) =
1

N

N∑

i=1

C(y[i] − F (x[i]))

Backward propagation to improve approximation. By gradient
descent update through layers

θ → θ − η∇Cost(θ)

Remark: The functions in Cost are known and differentiable.
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Neural Networks as Universal Approximators

The Representation Theorem (Hornik et al., Cybenko, 1989-91)

Feed-forward network with one hidden layer of large enough width
and a “squashing” activation function can approximate any

integrable function to any accuracy.a

aHornik, Stinchcombe, White (1989). Multilayer feedforward networks are
universal approximators. Neural Networks 2, 359-366

Remark (Bruno Després) Let f ∈ C1(R)

f(x) =

∫ x

−∞
f ′(y)dy =

∫

R
H(x− y)f ′(y)dy

≈
J∑

j=−J
φ

(
x

ε
− j∆x

ε

)
f ′(j∆x)∆x =

J∑

j=−J
ωjφ(ajx+ bj)

where H(x) is Heaviside and φ a sigmoid to approximate H.
Notice that a, b tend to infinity with precision.
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Universal Approximation theorems

Let N (σ) be class of neural networks with fixed activation func. σ.
F Banach function space with norm ‖·‖F
universal approximation property

Conditions under which N (σ) is dense in F w.r.to the topology
induced by ‖·‖F
i.e. conditions such that ∀f ∈ F and ε > 0, ∃g ∈ N (σ) such that
‖f − g‖F < ε.

Universal approximation theory for NNet divides into:

study of shallow networks (1-hidden layer) with arbitrarily
large width, and

deep neural networks (DNNs) with bounded width and
arbitrarily large depth.
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Shallow networks approximation theory

Cybenko et al. (1989), Kurt Hornik (1991), Allan Pinkus (1999),
and others. Consider multi-layer perceptron (MLP): n input
neurons, one output neuron, one hidden layer with an arbitrarily
large width k.
Let σ : R→ R and:

SN k
n(σ) = {

k∑

i=1

ci σ(wwwix+ bi) | ci, bi ∈ R,wwwi ∈ Rn} (1)

SN n(σ) =

∞⋃

k=1

SN k
n(σ) = span{σ(wwwx+ b) | b ∈ R,www ∈ Rn} (2)

Theorem (Universal approximation theorem)

Let σ ∈ C(R). Then SN n(σ) is dense in C(Rn), in the topology of
uniform convergence on compacta, if and only if σ is not a
polynomial.
(C(A) = {f : A→ R | f is continuous })
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Ejercicio: Completar la Demostración del Teorema AU

Utilizar: El conjunto de funciones Ridge

R = span{g(a · x)|g ∈ C(R), a ∈ Rn}

es denso en C(Rn) .
Para reducir la demostración de Rn a R.

Prop. 1: Si SN 1(σ) es denso en C(R) entonces SN n(σ) es
denso en C(Rn)

Prop. 2: Sea σ ∈ C∞(R) y no un polinomio, entonces
SN 1(σ) es denso en C(R).
(Ayuda: usar Teorema Corominas-Sunyer (1954): Si
σ ∈ C∞(R) en un intervalo abierto A y no es un polinomio,
entonces existe b ∈ A tal que σ(k)(b) 6= 0, ∀k ≥ 0.
Con el teorema anterior demostrar que SN 1(σ) contiene
todos los monomios (y polinomios), y usar Teorema de
Stone-Weierstrass.
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Arbitrary depth networks approximation theory

The Scenario: DNNs with bounded width and arbitrarily large
number of layers.
Consider fully-connected DNN of input dimension n, L hidden
layers with w neurons, and output dimension m:

DNL
w({σi}) = {WWW [L+1]σ(WWW [L](. . . σ(WWW [1]x+bbb[1]) . . . )+bbb[L])+bbb[L+1]}

(3)
where at each layer we have activation function σ ∈ {σi}.
The family of arbitrarily deep DNN is:

DNw({σi}) =
∞⋃

L=1

DNL
w({σi}) (4)

In this setting we have a critical threshold on the width wmin of a
neural network that allows it to be a universal approximator.

A. Arratia NNet + NODE (2023)



Arbitrary depth NN

Theorem (Yongqiang Cai, 2023)

For any compact domain K ⊂ Rn and any finite set of activation
functions {σi}, DNw({σi}) with width w < w∗min ≡ max{n,m}
is not dense in Lp(K,Rm) nor C(K,Rm) in their respective usual
topologies.
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Arbitrary depth NN

This minimal width w∗min can indeed be reached.

Theorem

Consider a compact K ⊂ Rn and

ReLU(x) = max(0, x) FLOOR(x) = bxc

Then, DNw({FLOOR,ReLU}) with w = max(n,m, 2), is dense
in C(K,Rm) under the topology of uniform convergence on
compacta.
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Arbitrary depth NN

Theorem

Consider a compact K ⊂ Rn and

ABS(x) = |x|
leaky-ReLU(x) = max(x, αx) for a fixed α ∈ [0, 1].

Then, DNw∗
min

({ABS, leaky-ReLU}) is dense in Lp(K,Rm) in the
usual topology.
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Residual Neural Networks
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Motivation: Vanishing Gradient

Optimization of Nnet parameters is achieved by updating :

θ → θ − η∇Cost(θ)

layer through layer (gradient descent)
But it could happen that ∇Cost(θ)→ 0.
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Residual Neural Network (ResNet)

ResNet is a composition of residual blocks.
Let hhhb ∈ Rn be the hidden state before block b ∈ {0, ..., B}, and
F(·, θθθ) a neural network with parameters θθθ. A residual block
computes the next state by an additive transformation from the
previous one:

hhhb+1 = hhhb + F(hbhbhb, θθθ) (5)

Figure: Sketch of a residual block
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ResNet: Forward propagation

If output of l-th residual block is input to the (l + 1)-th residual
block:

hhhl+1 = hhhl + F (hhhl)

Apply the recursive formula, e.g.

hhhl+2 = hhhl+1 + F (hhhl+1) = hhhl + F (hhhl) + F (hhhl+1)

we have

hhhL = hhhl +
L−1∑

i=l

F (hhhl)

where L index of later (or last) block, l index of earlier block. So
there is always a signal directly sent from shallower block l to
deeper block L
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ResNet: Backward propagation

Given Cost (or loss) func. to minimized, take derivative w.r.to hhhl:

∂Cost

∂hhhl
=

∂Cost

∂hhhL

∂hhhL
∂hhhl

=
∂Cost

∂hhhL

(
1 +

∂

∂hhhl

L−1∑

i=1

F (hhhi)

)

=
∂Cost

∂hhhL
+
∂Cost

∂hhhL

∂

∂hhhl

L−1∑

i=1

F (hhhi)

OBS. even if the gradients of F (hhhi) terms are small, the total
gradient ∂Cost

∂hhhl
is NOT vanishing due to the added term ∂Cost

∂hhhL
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Neural Ordinary Differential Equations

(NODE)
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From ResNet to NODE

• Residual Network

ht+1 = ht + f(ht, θ)

• Neural ODEa

ht+1 − ht
∆t

=
f(ht, θ, t)

∆t
→ dz

dt
= f(z, θ, t)

aChen et al (2018) Neural ODE. In: Advances in
Neural Information Processing Systems, 31
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Model as an IVP

The model has become an Initial Value Problem.
Let z0 := z(t0) = x. Forward evaluation is

F (z0) = z(tN ) = z0 +

∫ tN

t0

dz

dt
dt = z0 +

∫ tN

t0

f(z, θ, t) dt
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Forward pass computes integration with ODE solver

For instance use Euler method to convert integral into many steps
of addition

z(t+ ε) = z(t) + ε · f(z(t), θ)

with ε < 1.
Such ODE solvers are often numerically unstable (e.g. underflow
error due to small step size, etc).
So, some other more sophisticated (black-box) ODE solvers are
used.
Remark. f(z(t), θ), call it the ODE function, implicitly given from

data, approximates
dz

dt
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Optimization

We can optimize: θ, t0, tN and z0.

Cost function

Cost (z(tN )) = Cost

(
z(t0) +

∫ tN

t0

f(z(t), θ, t) dt

)

= Cost (ODESolver(z(t0), f, θ, t0, tN ))

L1, L2, . . .

We need to calculate the following gradients

dCost

dz(t0)
,
dCost

dθ
,
dCost

dt0
,
dCost

dtN
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Adjoint sensitivity method I

As en example ∇θCost. We want to find

min
θ
Cost(z(tN )) s.t.

dz

dt
= f(z, θ, t)

Construct Lagrangian

L = Cost(z(tN ))−
∫ tN

t0

λ(t)

(
dz

dt
− f(z, θ, t)

)
dt

integration by parts and chain rule differentiation gives

dCost(ztN )

dθ
=

∫ t0

tN

−a(t)
∂f

∂θ
dt

with a(t) the adjoint state, which is solution of IVP

a(tN ) =
dCost(ztN )

dtN
,

da

dt
= −a(t)

∂f

∂z

Further algebraic manipulation yields gradient of cost w.r.to θ is solution
at time t0 of IVP

aθ(tN ) = 0,
daθ
dt

= −a(t)
∂f

∂θ
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Adjoint sensitivity method II

Similar calculations yield that the gradients of Cost w.r.to zt0 , t0
and θ, all result from evaluating IVPs on corresponding adjoint
states at time t0.
Define augmented state s(t) := [a(t), aθ(t), at(t)] as concatenation
of adjoints for z, θ and t
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Adjoint sensitivity method III

Adjoint state at t0

s(t0) :=

[
dCost(z(tN ))

dz(t0)
,
dCost(z(tN ))

dθ
,−dCost(z(tN ))

dt0

]

Solving backwards Initial Value Problem





s(tN ) =

[
dCost(ztN )

dztN
, 0, −a(tN )f(ztN , θ, tN )

]

ds(t)

dt
= −a(t)

∂f

∂[z, θ, t]
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Neural ODE paradigm

A Neural network with an ODE inside

Forward evaluation: an Initial Value Problem

F (z0) = z(tN ) = z0+

∫ tN

t0

f(z, θ, t) dt = ODESolver(z(t0), f, θ, t0, tN )

Training (optimization): adjoint sensitivity method
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