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Preface

This book covers essential physics concepts for understanding and calculating problems in the physical energy
deposited in matter from ionizing radiation. The focus of application is on medical uses, both imaging and radiation
iherapy. There is more weight on radiation therapy throughout the book because of the much greater need for accu-
ey and precision in that field.

Modern protocols can guide a person toward uncertainties of only 0.5% in the energy deposited per unit mass, the
dose. In order to achieve this remarkably low level of uncertainty, one must fully understand all of the subtleties
along the way. That is the purpose of this book.

This book starts with the basic science of ionizing radiation and culminates with the modern calibration protocol
ased in ali U.S. radiotherapy clinics today—the American Association of Physicists in Medicine Task Group Report
Number 51 (TG-51) and its predecessor, TG-21. The important equations of TG-21 are derived and then connected to
1(-51, Since TG-21 is based on cavity theory more explicitly, this approach is something like teaching one how to
drive a car with a manual transmission before teaching the much easier automatic transmission.

The aim of this work i to provide a deep understanding of all the pieces that underlie these practical protocols.
‘The aim of this book is not to teach one how to use these protocols, 1t should be of interest to those who already have
4 hasic education in this field, but who wish to expand and deepen their knowledge without all of the overhead of a
large textbook. The information contained herein provides a more intuitive grasp of the physics concepts used in radi-
ation dosimetry in medial applications, especially, but not limited to, radiation therapy physics.

Our use of figures here is conceptual only, and the reader should not read precise values from any figure herein.

This book is based on course notes from Medical Physics 501, a quite famous course in the Medical Physics
Department of the University of Wisconsin—Madison. All of this material derives very heavily from Frank “Herb”
Atlix, the course’s original instructor. It also benefited from Thomas Rockwell Mackie, the course’s second instruc-
tor, who innovated by more properly organizing the material. It is imperative that gratitude also be extended to the
many students of this course over the years who have offered input and suggestions along the way, especially students
during the years 2010 to 2013 when D. Dunkerly, Q. Guererro, and N. Weiss were especially helpful to us in optimiz-
ing these class notes,

This work also draws upon many others, including Paul Del.uca and others in the University of Wisconsin-Mad-
ison medical physics and human oncology departments. Also helpful were many of the faculty of the nuclear engi-
neering departments of both Pennsylvania State University and the University of Wisconsin—Madison.

Michael W. Kissick and
Sharareh Fakhrael
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We dedicate this book to professor Thomas “Rock™
Mackie, the previous Medical Physics 531 instructor,
upon whose notes this book is founded.

Michael Kissick and
Sharareh Fakhraei
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lonizing Radiation
and What It Does in the Body

Among the very first applications of ionizing radiation were medical applications. The whole story starts when
Wilhelm Roentgen discovered the x-ray in the 1890s. He was experimenting with Crookes tubes (early gaseous
¢lectronics, Figure 1.1), which accelerated electrons from a simple cathode to a simple anode. A mysterious, pen-
clrating “ray” was observed to expose film that was out of sight in a desk drawer. The discovery of the x-ray was
(ollowed by the discovery of radiation by Henri Becquerel. Shortly after that, Marie Curie was the first to actu-
ally use radioactivity for cancer treatments with radium. She was also the first to measure the stopping power of
charged particles.

lonizing radiation has enough energy to remove electrons and leave atoms ionized. Since electrons are liber-
ated with 4-25 eV of energy, ionizing radiation is defined to have at least this energy. Photons are considered to
be ionizing with this minimum energy. A photon’s energy, E,

photon?

is conveniently calculated as follows:

-18 1 17 ;
- :hv:'%c— 00 B 10 ;“(2'998 410 3 (keV-s)(nm/s)zw, (L)

Here, A is the Planck constant, ¢ is the speed of light in vacuum, and A is the photon’s wavelength. With the help
of Equation (1.1), it is clear that ionizing photons should have wavelengths up to about 310 nm as follows:

1.24 keV -nm

E =4eV:>4><10'3keV:—l—:>/l:310nm. )

~ photon

Ultraviolet (UV) photons with wavelengths from 10 nm to 400 nm satisfy this condition. However, since UV
photons hardly penetrate tissues, they will not be considered “ionizing” for medical purposes.

The two types of ionizing photons are as follows, but note that they are not distinguished by energy:

* “y-rays” come from nuclear processes, such as nuclear shell transitions or anti-matter annihilation events.

Cathode Anode

Figure 1.1. The geometry of early gaseous electronics.
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Table 1.1: Specifying Different Types of X-ray Photons by Their Accelerating Voltage

0.1-20 kV Low-energy or “soft rays” or “Grentz rays” (mostly absorbed in skin)
20-120kV Diagnostic range

120-300 kV QOrthovollage

300 kV-1 MV Intermediate-energy rays or supervohiage {heroic efforts)

Above | MV Megavoltage (needs microwave technotogy)

*+ “x-rays” are caused by electronic processes (i.¢., bremsstrahlung or continuous x-rays from Crookes tubes)
or atomic processes such as electron shell transitions {i.e., characteristic or fluorescence x-rays).
Further, x-ray photons in the medical field have energies specified by their accelerating voltage. Table 1.}
demonstrates classification of x-ray types based on their energy range.

For comparison, some examples of typical energies and wavelengths are as follows:
* Thermal kinetic energy (K.E.): ~(2/ 30T =(2/3)(1.38 %1077/ K)295K)=17x107 eV
* Radar-super high frequency (SHF): 2 ~10cm, v =3.0GHz, hv=124x107 eV
* Radio-900 kHz: A ~333m, v = (6.63x107™J - s)}900x[0°s )= 3.7x 107V

*+ 35 MYV linac photon: A4 ~35.0x107nm << atomic size

There are two types of particles to consider in ionizing radiation. First, uncharged particles, such as photons
and neutrons, have random discrete interactions with other particles, but other than these stochastic interactions,
they do not interact with matter. Second, as charged particles slow down continuously, they lose energy in a pre-
dictable way aside from lateral scatter and range straggling. These charged particles transfer the particle’s energy
to matter from the many overlapping electromagnetic interactions. The charged particles, therefore, cause the
dose, the energy deposited per mass. They are considered “directly jonizing.” This is in contrast to the uncharged
particles, which are said to not have a range, but instead are attenuated exponentially. The uncharged particles
can penetrate a significant distance. The uncharged particles cause dose by first transferring some or all of their
energy to the charged particles. In this way, uncharged particles are said to be “indirectly ionizing.”

The S1 unit of dose is the gray (Gy), and the historical unit is the rad. Grays and rads are related to each other
and defined as follows:

100 rad = 1 Gy =1 J/kg. (1.3)

In the subject of “health physics,” often the uncharged particles—the photons and neutrons—are the main
focus because of their larger range for shielding concerns. The subject of this book is “radiation dosimetry.” The
focus here is the transfer of energy first from uncharged to charged particles (step 1), and then from the charged
particles to matter (step 2). This two-step process is iltustrated in Figure 1.2,

Note also in Figure 1.2 that there are two common uncharged particles to consider: photons and neutrons.
Both can be thought of as carriers of encrgy with discrete interactions that transfer energy. Neutrons differ in that
they are much more likely to induce nuclear reactions. In a water-rich environment like the human body, proton
recoil events are the main way that energetic charged particles are generated by neutrons. However, many of
these recoil protons will create energetic electrons as well. Neutrons are more complicated and much less com-
mon in medical applications at this time. This book concentrates on photons. Photons are, by far, the uncharged
particle that most medical applications use.
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Photon Interacts: Scattered photon

photon Ry

/\/\/\/\/ M . Electron delivers energy

to matter: step 2

Inclastic collision: step 1

e
neutron ___\’/(nl.
—_— | N
N /_~ " Proton delivers energy
Elastic collisions to matter: step 2

(Vacuum) (Matter)

Figure 1.2. Energy transfer to the matter by indirectly ionizing radiation. Note that the dotted lines are where
dose gets deposited.

The energy deposited causes both ionizations and excitations, and one difficulty we have is that dosimeters
tend to be sensitive to either one or the other. This is one reason we need to calibrate dosimeters. Biological dam-
age will come from both types of radiation.

As a thought experiment, imagine many close, discrete interactions for a charged particle that has a typical
stopping power of about 2 MeV/cm (for a kinetic energy of a few MeV for an electron say, and stopping power
will be further defined in later chapters). Now consider a 1 g/cm® material and assume 20 eV/event. Then the
number of events per cm is something like the following:

6
events _2 x 10" eViem 10° events / cm. (1.4)
20 eV /event

cm charge

The charged particles we will mostly be interested in here are electrons, but Table 1.2 lists other charged par-
ticles that have been used or considered in medicine.

Electrons can be accelerated by many means such as Van de Graft generators, linear accelerators, betatrons,
microtrons, and cathode ray tubes (and Crookes tubes). Note how very much lighter these particles are relative to
other particles in Table 1.2. Negatrons are electrons, and positrons are anti-electrons. Beta particles are electrons
emitted from the nucleus. Knock-on electrons, or delta rays, are electrons emitted from atoms by another charged
particle. An Auger electron is an electron emitted by the atom as a whole in an electronic transition.

Muons are heavy electrons, and are leptons that have spin 1/2 and follow Fermi statistics.

Table 1.2: Charged Particles That Have Been Used for Radiotherapy
(Note that if the atomic number of an ion, Z>1, it may not be completely ionized.)

Electron/ Pion Proton Deuteron Triton Alpha “Heavy”
Ranslo Positron Nitton not 0 'H ’H *H ‘He lons
Charge +] +1 +1 +1 +1 +1 +2 +7Z.
Rest mass |0.511 105.7 139.6 938.3 1875.6 2809 3727 Nuclear
(MeV) Mass
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Charged pions are produced by charged particle collisions with a nucleus. They have some use in experimen-
tal radiotherapy. They have two quarks: ud . Note:

+/

A TR A (1.5)
n*”—)e””rv:". (1.6)

Protons are used clinically in radiotherapy. Neutrons will release protons from collisions. Protons are usually
produced in synchrotrons and various types of cyclotrons.

Alpha particles are helium nuclei emitted as alpha decay from unstable nuclei. They are often spallation
products, for example from carbon, which can be thought of as three alphas stuck together.

The heaviest nuclei typically conceived of for radiotherapy is carbon, often not completely ionized.

Biology is not a focus of this book. Physical dose is the focus. Very briefly, though, biological effects are
caused by chemical effects that are originally caused by physical effects from the charged particle’s deposition of
energy. To get an idea of magnitude in radiation therapy, a typical dose that kills a tumor is about 60 Gy = 60 J/
kg. Note that 4,18 J = 1 calorie. Assuming a tumor is mostly water with 1 g/cc, and say it has a volume of 30 cc,
it requires 1 calorie to raise 1 g of water 1 degree Celsius.

0.001 kg \( 1 calorie
cc 4]

(60 J/kg)(30 cc)[ j: 0.5 calorie. (1.7)

Therefore, radiation therapy is not killing tumors by injecting high amounts of energy. In fact, one could
argue that it kills by injecting very low-entropy energy. The high-energy photons create a lot of free radicals that
can damage DNA. For the most part, a tumor cell is killed by trying to reproduce itself with badly damaged
DNA. The amount of energy from a lethal therapy photon beam is extremely small. The energy density of a ther-
apy radiation field on our body is about 107 calories/g, but by contrast, the energy density from food as our body
processes it is around 10° calories/g. An example would be sugar metabolism:

6
(20 Mi/kg)| & || 20 (lca] = 4.8 keal/g. (1.8)
10° ¢ )\ 1MI J\ 4187

Note that we are only about 5% to 10% efficient in getting food energy: i.e., celery has negative net calories.
Most of the biological effects are mediated by the process of radiolysis of water, and the simplest possible view
of water radiolysis is the following':

¢ —> H,0 > H,0" — H+0H, (1.9)

which leads to free radicals®:

g = H,0—> HO" + €, (1.10)
which leads to ion radicals. Whether ionizations or excitations dominate, the damage will depend on time scales.
Both ion radicals and free radicals, as well as the original fast-charged particle, can cause DNA damage, but free
radicals last the longest (see Table 1.3), and they diffuse and bind to the DNA backbone (ribose, a sugar). If the
bond breaks one strand of the DNA, it can more easily be repaired over a few hours. Hence, dose rate is important
to consider (but never is handled well for health physics considerations, which is very unfortunate).

# = excitation
4+ = jonization

lie
il
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DNA

H,0

r

OH

Figure 1.3. Direct and indirect action.

Photon

gl

Direct Action: about 25%

Photon

) J\J\J\J\J
o Indirect Action: about 75%

We learned above that uncharged particles are indirectly ionizing, and charged particles are directly ionizing.
These terms need to be strictly distinguished from “direct action” and “indirect action.” Indirect action refers to
DNA damage from radicals and other byproducts of ionizations and excitations. Contrast this with direct action,
in which the charged particle damages the DNA directly (Figure 1.3). Free radicals, part of indirect action, cause
ihout 70% to 75% of DNA damage in radiotherapy. The time scales of various processes in radiation therapy are
listed in Table 1.3: note the time scale span of almost 30 orders of magnitude.

The chemistry and biology quickly gets very complicated from here.

There is a related quantity to dose called dose equivalent, /. The dose equivalent is used to estimate risk for
health physics applications from longer-term exposures; it is not meant to calculate damage or risk in specific

LISCS.

H = DON.

Table 1.3: The Biological Process from First Principles Would Require Decades
of Orders of Magnitude in Characteristic Time Scales

(1.11)

Process

Time Scale

I'hoton interaction

107°-10""* s photon travel, atom

Iust electron

107~107" s electron travel, cell

lon radical

107"°-107° s ion radical lifetime

I'ree radical

10°~107 s free radical lifetime

(‘hemical changes, breaking bonds

107-107% s reaction rate dependent

|
Hiuman DNA repair*
|

10°-10* s based on clinical data

Mological effects

10°-10° s depends on effect

*Sce Bentzen 1999; in vivo repair is longer than in in virro studies.
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D = Ag/Am
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Figure 1.4. There is an optimal sensitive volume in which to measure dose.

Here, H is dose equivalent, and N is the product of all other factors, including demographic factors like age,
health, etc. We will always assume N is unity here. The quantity Q is quality factor, a weighting for the type
(includes energy) of radiation, and I is physical dose.

The SI unit for dose equivalent is the sievert, or Sv. The historical unit is the rem’, where 100 rem =1 Sv =1 J/
kg. We will not use H in this book, but it is good to understand it. The International Commission on Radiological
Protection (ICRP) values for quality factor are listed in Table 1.4,

An essential point to be made is that finding the absorbed physical dose is harder than you might think (see
Figure 1.4). The quantity “dose” is defined as the energy absorbed, Ag, per unit mass that absorbed this energy,
Am. We will see that our dosimeters only directly measure part of the energy (except for a good calorimeter,
which actually measures the total energy that eventually ends up as heat). As we have already seen, that thermal

Table 1.4: The ICRP Values for Quality Factor

1 Photons, Electrons, Muons All

5 Neutrons E<10keV
10 Neutrons 16 keV < E < 100 keV
20 Neutrons 100 keV < E <2 MeV
10 ' Neutrons 2 MeV <E <20 MeV
5 Neutrons 20MeV < E

5 Protons E<2MeV
20 Alphas, other... All

"The term rem stands for roentgen gquivalent in man.
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1. lonizing Radiation and What It Does in the Body 7

energy produced is extremely small. The other issue is that the size of Am can affect the Himit away from a few
sindom events toward many events—recall the central limit theorem.

We will want to move in a limit from the stochastic nature of radiation toward a continuous field approach to
sadiation i order to determine dose analytically, the expectation value of the energy deposited per mass. We will
lormally define dose again later.

We will see as this book progresses that the big issues for dosimetry are the following:

1. conversion o energetic charged particles,

2. ionization versus excitation,

3. deposition of only a small amount of energy, and

4. the incorrect cancellation of fluence effects due to spatial equilibrium concerns, especially at material

interfaces.
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Radiation Fields
and Their Statistics

finizing radiation is stochastic (random) and quantized by its basic nature. Randomness comes from at least
dyee sources: (1) more than two-body collisions are indeterminate, (2) photon and neutron interactions are spa-
sttty random, and (3) radioactive decay is femporally random. The latter two sources are luckily well character-
izl by Poisson statistics. However, we want to approximate ionizing radiation with a continuous field
description, a non-quantized description that has values at every point. Consider that a stochastic quantity, N,
zimhes from the /™ measurement of # measurements. The mean value and the standard deviation of all n measure-

inents are defined respectively as follows:

N:_le.& 2.1

aiicd

(2.2)

With enough particles (interactions/decays/ctc.), the Poisson distribution for each particle interaction
sreomes a Gaussian, with its mean getting closer to the expectation value.

—_ ‘N
N, =limN = lilnLi, (2.3)

[ty 22 HIES et ]I

Thie larger the number of measurements » becomes, the smaller the potential deviation from N, would be. For a
sinigle random set of measurements, the standard deviation is as follows:

o =N, =N (2.4)

Accuracy refers to systematic type errors in N,. Precision refers to estimates of proximity to N,. The variance
il 1he mean of these n values will be given by:

oy =0 /. (2.5)

simple Problem: To survey background radiation over a certain open field, one would measure the number of
ssaints detected at a few locations. At each location, there is a choice to keep retaking and keep averaging the data
i+ inerease precision for that location’s reading. By what factor does the precision improve when five readings
averaged at each location instead of just taking one reading?

9
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Solution: At each location, there is a reading based on n instances averaged together. Here we compare n=5 (o
n=1. The average counts per reading at each location is N. The uncertainty will be estimated from the standar]
deviation for Poisson statistics; radioactive decay detection often follows Poisson statistics. Therefore, the Pois
son uncertainty for each reading instance is o =+ N . If one averages n=5 readings, then the variation of the
average will be o, =ao/ Ji. The overall counts will be reported for each location as N+ o, Even il ¥
remains the same between n=1 and n=5, such that the “accuracy” is the same, the “precision” will improve by i

factor \/__ =2.24. If one were to have worked in count rate, the answer remains the same. The time window, AJ,

L. .. e | -
is just divided through all steps to make the stated count rate result as N + O = Z—(N Tog)
i ’ i

Fluence and Fluence Rate

The first non-stochastic field quantity we define is fluence, &d. Fluence is a scalar quantity for a vector ficld of
particles. The most straightforward definition of fluence uses the concept of a differential volume, dv, aboni #
point, P Consider every bisecting circle area, da, and count the expectation number of particles that cross if, N
(Figure 2.1). Thus the fluence is defined as the following:
D = ﬂ (26
da

and has units of fluence in cm ™ or particles per area.

There is another fluence definition referred as Chilton’s fluence. In this alternative, the volume, V, is usid
instead of the subtle area above. This definition uses the sum of all /* particle’s path lengths, [, that are consid:
ered 1o be straight through V. That is:

1 E
) - , N1
= lim( Z! ) (2.7
Va0 i
/ / N,
Figure 2.1. Geometry of imaginary volume dv Figure 2.2. Geometry of Chilton’s fluence.

around point P
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ifi=L any i then the Chilton’s fluence is defined as Equation (2.8):
G (2.8)
%

I'he units of Chilton’s fluence (Figure 2.2) will remain the same as the previous fluence.
I'he fluence rate is simply defined:

=90 (2.9)
dr

I'he units of fluence rate is cm™ - s™' or the rate of particles per area.

Energy Fluence and Energy Fluence Rate

ltefer back to Figure 2.1. Energy is imparted from every direction. Radiant energy, R, is the expectation value of
(he (kinetic) energy carried by N, particles, which strike the differential volume, dv. For particles with mass, like
protons or electrons, radiant energy is given by the following:

R=T-N,, (2.10)

where T is the kinetic energy of the particles (assuming they are monoenergetic). For massless particles, such as
photons, with frequency v, however, T is replaced by the photon’s energy, hv, as follows:

R=hv-N,. (2.11)
Now, we can define the next non-stochastic quantity, energy fluence, ‘¥, as follows:

_dR

¥Y=—,
da

(2.12)

I'nergy fluence has the units of J - cm™ or energy per area. It is also appropriate to express the energy fluence in
units of eV - cm ™, Recall that “eV” is the energy of singly charged particles accelerated in 1 volt. Energy fluence
ol monoenergetic particles with mass is given by the following:

Y=7T.0 (2.13)
ind for massless monoenergetic particles:
VY =hy O. (2.14)

As above, the energy fluence rate is defined by the following:

g aY (2.15)
dt

and has the units of eV - cm™ s™' or the rate of energy per area. If there is an energy spectrum of particles, then
one can consider these relations as valid for each energy bin, and one can then integrate over all the energy bins.
“ince energy is the end goal for dosimetry, and since the energy spectrum is often fundamental and needs to be
considered, the energy fluence is more often useful, and the energy can cancel to make integrals easier: see the
¢xample at the end of this chapter.
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Angular Distributions

We can calculate differential distributions if the above fluence variables are continuous, and this is a prime
advantage for a field description. The limits in the definitions provide us with a particle field description. Each
particle has a position, direction, energy, and time, and these are all independent, continuous quantities that com-
prise a multi-dimensional phase space. Therefore, consider that there are at least eight parameters that describe a
particle: type (species, charge, mass, spin, etc.); current position (x,, y,, z,); direction to the next position (polar
angles: 6,); energy (kinetic, T or ~v); and time. For a field of particles of the same type, there is a seven-dimen-
sional (phase) space that allows for a seven-dimensional characterization of the radiation field, spectrum, or dis-
tribution of all these quantities:
d'®

dxdydzdOdBdTdt

®'(x,y,2,8,B,T,1)= (2.16)

The field is completely specified at point P at location coordinates (x, y, z). The differential fluence rate is
defined by the following:
d'd

O, O=D"(.)=—.
(at) ) d(variables)

2170

In fact, many analytical treatments result in a differential cross section, fundamentally. It is important to
understand some key aspects of the analytical geometry associated with this math. In Figure 2.3, the quantity d€2
is a differential solid angle. The units of dQ is steradians (sr). The following differential solid angle is more eas-

ily understood by referring to Figure 2.3

— sin0dOdp. (2.18)

1O = F*sin tid@dﬁ

¥

A

Figure 2.3. The geometry of angular distributions and solid angle where P is located at position (X, Yo, z,).

I
1l

§
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. Figuie 2.4. Average radius of a disk using angular distributions.
te 18
247) Often the interaction is azimuthally symmetric, and the following notion is used for a differential solid angle
ihat hay integrated over the azimuthal angle, 3, as follows:
int 1o
27 sin 0dO :
y d€2 dQ, = e = 2 5in 8d6. 2.19)
> cas- r
It is important to note that often both versions of the differential solid angle are used, and sometimes in the
saine treatment. With integration over the polar angles, one obtains the foliowing:
(2.18)
dn . r  a )
[ d@da= | | dsinodoap. (2.20)
Q=0 Gl el

Note that the integrand, the sin(#) is a Jacobian. It is a conversion essentially between polar and spherical
cuiordinate aspects of the integrand. This is an important factor. Here is an example of how to use the sin(&) factor:
fisample Problem: Refer to Figure 2.4 above. Find the average radius of a disk at a distance away from the cen-
i 1hat equals the radius of the disk.
sidution: In order to find the average of a given quantity, y, one generally performs the following integral:

_ [ oN(E)aE
y= (2.21)
N(E)dE

=0

z,).
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In the above equation, the variable E in the distribution N(£) could be the particle energy, for example. Thercfore,
using the general concept in Equation (2.21), the average radius is calculated as follows:

214 M afd 2
F= [ ] r@.pysin(@)d0ap | | [ sin@)dodp
9=0 =0 et fi=0
1 ald 27

o — r(8, B)sin(8)d0d B
2m(2- \/5) /2 u:[() ﬁ'[cs

1 In

" sin(0)
= | df | —db
2;1(2“\/5)/2,3{0 GL) cos(0)

:....—2.7?#.»“«--—
22(2-2)12

[-Intcos@)] " =2a+(0.3466)/ 2 =V2) = (1.18)a

Often, the problem is independent of the azimuthal angle, B.so O(6) =2 sinf @'(Q). It is also common to
see a mixture of fand Q.

Energy Distributions
The energy spectrum of the fluence rate is the following:

. ') T 2 )
DT = ﬂ = j B, T)sinHd0d 3, (2.22)
ar 3, B0

therefore,

Then
O = j HATVAT. 2.2%)
T

0
Note that T here is the particle energy. Since the fluence rate is related to the energy fluence rate by the following:

YI(TY = TDH(T), (2.24)
thus,
L T
Y= j $(T)dT = j ThH(TYAT. (2.25)
1=0 T=0
Of course, for photons, 7 will be replaced with iiv.

Because one is often concerned with the energy distribution, it is often more convenient to work with energy
fluence. Here is a simple example of how using the energy fluence can be helpful. The following piecewise func-
tion describes the spectrum of fluence rate in Figure 2.5.

N a '
'y (T):_;F for 0<7T<T,
G'(Ty= b for T'<T<T

max '

By integrating over energy we can get the fluence rate as the following:

I T

. a

B = —dl+ | bdT = alndI" 1 0y+b(T,, ~T").
faar ] .,
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fore,
W) :
wi(T)
) S : a
T’ ‘T;nnx T’ 1:1111)&
Higure 2.5. Fluence rate spectrum for the example. Figure 2.6. Energy fluence rate spectrum for the
example.
10n to

Iy upplying Equation (2.24), the spectrum of energy fluence rate is given by the following (see Figure 2.6):

Wiry=a for 0<T<T',
WiIy=bT for T'<T<T

max *

Sometimes we want to work with energy fluence instead of fluence by integrating over energy the energy flu-
(2.22) ciie, like the following:

Toax
e fadr + j bTdT = aT'+b(T2_ -T")/2.
0 T

(2.23)
I'urther, one can use the condition at the discontinuity that @ = bT". Note that the units of a, a distribution
- keV ;
owing: ilie, would be or energy rate per area per energy bin.
2
cm”-s-keV
(2.24)
References

(2.25) Wik, 1L Introduction 1o Radiological Physies and Radiation Dosimetry. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2004,

energy

se func-



Photon Interactions

lunizing photons are primarily known by two names: x-rays and (gamma) y-rays. They are electromagnetic, indi-
ivutly ionizing particles with energies ranging from hundreds of eV to tens of MeVs or greater.

X-rays are electromagnetic radiation caused by electronic processes. Photons emitted by electrons when
iansiting from higher to lower atomic energy levels are called characteristic or fluorescent x-rays. Photons emit-
wil when charged particles interact with a strong electrostatic field are called bremsstrahlung or continuous
« tnys. However, y-rays are electromagnetic radiation caused by processes other than from electromagnetic force.
Iiix type of radiation is emitted from either the nuclear decays or from the annihilation of matter and antimatter.
“ute that there is no distinction between x-rays and y-rays based on energy, hv.

PPhoton interactions with matter generally result in charged particles being liberated, thereby transferring
Jierpy to matter from the charged particles. In general, six interactions will be considered in radiological phys-
In photoelectric effect, Compton effect, pair production, triplet production, Rayleigh scattering, and photonu-
enr interactions, Among these interactions, photoelectric effect, Compton effect, and pair/triplet production are
lportant interactions for medical dosimetry. The main variables or dependencies of these interactions are
iuimic number, z, and energy of the incoming photon, Av.

luble 3.1 summarizes the emission properties of six interactions. In the photoelectric effect, the Compton
“Ilect, and triplet production, fluorescent photons are not always emitted. In pair and triplet production, annihila-
i photons are emitted when a positron annihilates with an electron, generally away from the site of the photon
teraction. Also, fluorescent x-rays can be emitted from triplet production. Rayleigh scattering, which happens
when scattering body size is much smaller than the photon wavelength, is only a redirection of photons, and the
iwison why the sky is blue. Rayleigh scattering is important in radiological physics only for scattering out of nar-

Table 3.1: Principal Photon Interactions and Their Products
(Note that many more photonuclear interactions are possible, but most with very small cross sections.)

T Ihieiacticn Scattered Uncharged Charged Particle | Charged Particle
i Photons Particle Emitted Emitted Created
Mintoelectric Effect yes yes
L umpton Effect yes yes yes
1l Production yes yes
fiplet Production yes yes yes
Huyleigh Scatter yes
Mstonuclear (xn) Je8
Hlernctions

(%p) yes yes

17
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row beams, and it is purely elastic. Photonuciear interactions—such as (3 and (3#2a), for example—are also
possible, and so forth.

Cross Sections and the Attenuation Coefficient

The key concept 1o describe interactions of particles in matter is the cross section. Consider n photons in a radia-
tion field of arca a hitting a thin slab of thickness &/ of matter (Figure 3.1).

The differential probability of a certain interaction occurring between a photon and an atom’ of the matter in
the slab, dP, is proportional to the thickness of the siab, d/, the number of targets per unit volume in the matter,
and also the type of the interaction. The number of targets per unit volume is N, p/A, where N, 1s Avogadro’s
number (N, = 6,022 x10* mole™"), A is molecular weight (with units of g/mole), and the quantity pis gravimetric

. : . L . “H(glem® 3
density (with units of g/cm®). It is important to note that N, p/A has the units of (mole )(g/em’) =cm™

g -mole™
The cross section, o, is then defined as follows:

dP=dI(N,p]A)c. (3.1)

A common unit for the cross section is the barn (1 barn = 107" cm?). It represents the probability of some-
thing hitting a target such as an atom or a nucleus. Someone once said “big as a barn!™.

The number of interactions, like thinking in probabilities, is obtained by a product of the field density or the
fluence, @ (=n/a), and the area of each target’, ¢ (the atomic cross section, as indicated by the preceding sub-
script “a”). Therefore, the number of interactions per target is o -®.

*a

2 -3
- . . . i ; . . cm™ om -
The number of interactions per unit volume is then [ (N, p/A}] - (n/a) with the units of e = em™.

cm”

(N ,p/A): Targets per unit volume

Photons trajectory

A 4

Figure: 3.1. General geometry for the derivation of the attenuation coefficient.

“The photoelectric effect treats electrons not as individuals, but as a group. Other interactions treat them individually.
“Here cach largel is an atom, bul a cross section is a general term that can apply to larger or smaller units of matter.
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(‘onsider that the number of interactions is equal to the loss of fluence from the photon field, such that a pos-
itive interaction means a loss (=) of a photon (fluence). Therefore, we have the following:

[.o(N,p/A)]-(nla)= ,o(N,plA)D = %. (3.2)

\weording to Equation (3.2), the rate of fluence loss is proportional to the fluence itself. Therefore, an exponen-
il loss results:

% =—(,0N,p/A)D. (3.3)

I'he attenuation coefficient is defined as the following:

u=_oN,plA (3.4)
The units of the attenuation coefficient is cm™'. Therefore, Equation (3.3) will turn into the following:

a0 _

= — 1. (3.5)
di )

The solution of this differential equation is the uncollided fluence at a distance [ as follows:
Dy ="Dsa7", (3.6)

Hure, @, is the fluence at the surface of the material. The first listings of u/p started with Barkla and Sadler
(1907), then upgraded by Allen (1935), Victoreen (1949), McMaster (1969), and Johns and Cunningham (1983).

The mean free path is the average distance traveled by the photon. The probability that the photon survives
i1 | without a collision is then ¢ . The probability that a photon survives to / and then in d/ at [ it has a collision
i then e! - udl. The mean free path, 4, is then found by the following average:

A=l pdl) = pfledl =1/ p. (3.7)
0 0

Il il << 1, a Taylor series expansion, keeping only the linear term, gives the following:
O =@ "'~ (1- pl). (3.8)

I 'vample Problem: Consider two photon attenuation processes, each with their own attenuation coefficients:
i, v, = i There are two questions:
A) What is the total number of interactions by process 17
[3) If the target is thin, how can the expression be simplified?
\ulution: First note that the total number of interactions of both types will affect the available (uninteracted) flu-

“iee at a given point, . So, the total number of interactions of both types is just (original fluence) — (uninteracted

Hience):

b, - DD =D (1-e*).
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H,
JTRE T
number of interactions by process 1 is the relative probability of interacting by process 1 times the total number

Next note that the relative probability of interacting by process t at any point is just Finally, the

of interactions, and this is the answer to question A:

H, _(1 —e“”").
My

Now for the next part. Note that if the target is thin, we can Taylor series expand and drop higher-order terms
to get the following:

By =)~ D, (1= (1= (pt, + )11},

Therefore:
- ! ,
B L=t B [ G+ ) )= gL
H, + 1, [T TR
and
=l !

This is the answer to the question B, but a common mistake is that many people make this the answer for A.
In Compton interactions, the target is each electron instead of each atom. In cases fike this, we need to
replace the atomic cross section with the cross section of each electron, for z electrons per atom, .0 as follows”:
T= 0. (3.9)
This leads us to the following: _
p=oN,pz/A. (3.10)

There are further groupings of these quantities. The density is often divided out as follows?:

Z
A./ N.‘!

L,
fol

(3.11)

This is the mass attenuation coefficient. Notice that the quantity N z/A is (atoms/mole) X (electrons/atom) /
(grams/mole). Except for hydrogen, if monoisotopic, when converted to atomic mass units, «, this ratio is mostly
constant near 0.5 and drops to about 0.4 at very high atomic numbers. It is basically the “proton” to
“neutron + proton” ratio. In this sense, the cross section for the electron here is just a probability of an interaction
as the following:

chg. (3.12)

Because the density is divided out in the mass attenuation coefficient, this coefficient is independent of the mate-
rial phase. i.e., water and ice have the same mass attenuation coefficient. Table 3.2 illustrates atomic number to

"Note how this just counts clectrans and ignores its bound state. 1t is very much a probability areument.
P g
*Note that most sources would have used a capital “2” instead of the lower-case 2 we use here.
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Table 3.2: Atomic Number to Mass Number Ratio

, the

nber

Heidropen - 1.00

friiem (Hydrogen -3) 0.33
Shtinm 0.50
0.50
0.55
erms
: 0.56
:‘s\.i%hium Flueride 0.46
" 0.50
sy number ratio (z/A) for various materials. Note that the number of protons and the atomic mass tend to be
geaportional 1f there are enough particles. Hydrogen is a special case, therefore,
'ma, Kerma, and Collision Kerma
&# we said in the first chapter, the main focus of this book is calculating physical dose. However, in order to get
sl Lo caleulate dose, we need {o first define some non-stochastic quantities that come from a field description
N if 1he radiation field.
‘ed_:, o The first non-stochastic quantity is terma. For photons, terma is defined as the total energy released per unit
WS gy, Torma is expressed by the following:
(3.9) H
7= (3.13)
Jol
(3.10) - . . _ . o - .
Bolie that the focus with this quantity is on the primary radiation beam or field’s energy and attenuation. No men-
. . . . . J
Hig al all 1s made of what happens with this beam energy that is released. Terma has the units of e It has the
' £
an sz units as dose, but is quite far from dose. Yet, it is the first step in that direction.
” Kerma is the second non-stochastic quantity that gets us closer to the calculation of dose. It is defined as the
slietic energy released per unit mass. In fact, kerma indicates how much of the released energy gets to charged
ttom) / garticies. These charged particles may subsequently radiate photons again, but that is not yet considered. Kerma
mostly i eapressed as the following:
on” 1o K= Moy
raction = ? . {3.14)
(3.12) Eivmia has the units of —lzm Again, the same units as dose, but is still not dose. Yet, it is the next step in that direc-
- g
sion, In this part, we need to define mass energy transfer coefficient, Ha_ 1t is defined via the average energy
= mate- _ P
nber to winslerred to charged particles per interaction, T, by the following:

_ﬁ_ﬁL:.}'{;.&. (3.15)
phvop
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. 1 ro . o .
Notice that £z < & , since I < 1. By means of Equation (3.15), the average fraction of energy transferred to
g P hv
charged particles per interaction is determined as follows:
T,
AL He (3.16)
oo

Critical to this definition is an understanding of 7. Assume that for each i of n photon interactions there is an
amount of energy given to charged particies, (£,),. Then,

T = (1/11)i(5,,_)(.. (317
i1

For a photon with energy /v interacting at a point, the energy transferred to charged particles, (€,);, will
depend on the rype of the interaction. Figure 3.2 represents some examples of how energy transferred, £,
depends on the type of interaction.

All one cares about here is the transfer at a point (o charges, but subsequent or other photons that carry some
energy clsewhere are not considered here. Eventually, what we really want is energy absorbed “Jocally.” Central
to the issue of what we consider “local” is the definition of dose in a subtle way.

The third quantity to define as we approach the concept of dose is collision kerma, which can be equal to
dose in some situations. It considers charged particles subsequently radiating photons again. A most critical shift
in focus now happens (o how the kinetic energy gets deposited, but not yet dose due to gecometry concerns of the

Flouro x-ray

Photoelectric cffect Auger

electron e,=T_+T,
P

Ytiger
Electron

'

Compton effect /M\ £, = T

Electron

Annihilation
hv rs
Positron
33 Pa, M —
Pair Production /VV\/L% 7777 £, = TL + 7—;4
)

Nucleus -
Electron

Figure 3.2. Examples of g, depend on the type of interaction. Note that in the photoelectric effect, Auger elec-
trons are not necessarily produced. Also, for pair production (if no annihilation-in-flight): ¢, = hv ~ 1.022 MeV
+ (1.022 MeV — 1.022 MeV). In other words, annihilation takes the rest mass and leaves with it right away,
depositing nothing locally. This is discussed further in later chapters.
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rudintion transport. The issue remaining, as we get close to dose, is locality: does what comes into a point equal
what leaves (handled more later). Collision kerma is defined as follows:

K, =tay (3.18)
P
(‘ollision kerma has the same units as dose, and it is close to dose. In order to define the mass energy absorp-

Hlon coefficient, ﬁ, we need to first introduce two new quantities. The first quantity is net energy transferred to

P
harged particles, e). Specifically, this quantity relates to energy deposited within the ranges of the charged par-
(ivles: the photons from radiative losses mostly deposit energy outside of these ranges. We want to stay local
lere, close to a “point.” However, we know that photons carry energy around, and those photons are not to be
included here. The second quantity to introduce is the average fraction of incident kinetic energy transferred by

photon radiation, g. It is expressed as the following:

- average subsequent photon radiation energy (3.19)
= :

Notice that for low-energy photons and low-z materials, g~ 0. The fraction of energy not radiatively trans-
lerred, and can thus be deposited locally, is (1—g). The local issue gets difficult at high energy because the

‘harged particle range is close to the photon mean free path. A measure of the amount of energy that stays local

In the following:

(1/n)D ("),
(1-g)=—=—. (20)
A1) (e,
i=l
Iherefore, the mass energy absorption coefficient is defined as follows:
ﬁz(l_g)ﬁ_ (3.21)

p P
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Figure 3.3. Calculating & for Compton effect and pair production. hv"’ represents bremsstrahlung photons.
Note that for pair production, if no annihilation-in-flight: g, = £ - hv — 1.022 MeV + (1.022 MeV - 1.022
MeV). tn the figure, annihilation-in-flight is implied, and the annihilation photons will carry the remaining

kinetic energy of the positron, 7%, as well as their rest mass.

Figure 3.3 shows examples of calculation of £ for Compton effect and pair production. Note that brems-
strahfung photons (/iv") and the annihilation photons are generally “far” from the point of interaction, yet are still
included in this quantity. These are non-stochastic field quantities that map ali subsequent energy transfers back
to the original point of interaction. That is why they are approximations of dose.

Figure 3.4 also demonstrates calculating &, for the photoelectric effect. It is important to mention that the
photoelectric effect dominates at low energy where the subsequent bremsstrahlung is negligible for the photo-
electron and, certainty, the Auger electrons. Therefore, hv''~0), and g = g, for this interaction.

The central issue here is to connect measured (dose) and calculated (collision kerma) quantities. The quanti-
ties terma, kerma, and collision kerma are so-cailed “point-quantities,” meaning that they are ideally continuous,

Flowre x-ray, v’

M

hv < MeV

Photoeclectric effect E,W =7 _ + TAW,
. -

Auger cleciron, T,

Photoelectron, 1.

Figure 3.4. Calculating £ for photoelectric effect.
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such that mathematical operations like derivatives can be obtained. They are all proportional to energy fluence.
Dose, however, is a measured quantity (fundamentally), and can be related to the above in some circumstances.

The main focus of this book will examine how to connect dose to collision kerma.

Dose Definition

The calculated dose is an expectation value of energy imparted to matter per unit mass at a point. Dose is mea-
sured in a volume, so it is not a point quantity technically. There is a concept called “equilibrium” that allows for
all points inside that volume to be the same in the relevant ways, but that will come later. Consider just the energy
imparted, € the energy deposited in a specified volume, v. Figure 3.5 shows examples of calculated energy
imparted for photoelectric effect, Compton effect, and pair production.

Flouro x-ray
hv << MeV

! oul our
; e=hv-hv'-T""+T
Photoelectric effect hv - hv ( e Anger)

T(JHI'

Auger

our
i

Compton effect

e=hv-h'-T o

T()l!l'
o

Ta}i Ys

2

I'air Production

£=hv=[T"" +T"]-1.022MeV

figure 3.5. Calculating energy imparted, & for photoelectric effect, Compton effect, and pair production.
Notice that the photoelectric effect dominates at low energy, and here, too, it leads to a simplification that is

usually true for low energies: that is T, ~0 and Ty, ~0. The terms with “out” superscripts are the energies
with which these particles leave the volume, v.

.fjf_;?;?gn

L
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fluence. Therefore, the volume size of v is ideally v, but it is never that in practice. See Attix (2004) pages 26

26 Lectures on Radiation Dosimetry Physics: A Deeper Look into the Foundations of Clinical Protocols

The dose is now just the expectation value of the energy imparted divided by the mass of the smail’ volume.
It is expressed as the following:
AE
Doses ——— | (3.22)
{Am = pAV)

Note that it is not possible to write an equation relating the absorbed dose directly 1o the fluence or energy

and 27.

Narrow and Broad Beam Geometry of Photons

Any reasonable dose measurement needs to consider the effects of scatter and geometry. The volume v above
necessitates the move away from a pure point quantity. It aiso brings to mind the issue of the finiteness of geom-
etry. Therefore, we discuss two important kinds of geometry: narrow beam geometry and broad beam geometry.
A convenient stochastic quantity to define here is radiant energy. Radiant energy, R, is the energy contained
in the radiation, charged and uncharged. Consider the geometry of Figuse 3.6. Here, only a narrow beam gets
through. The rest is scattered away or absorbed. Therefore, in this geometry, ideally only lateral out-scattering or
no scattering exists. In this case, the attenuator, which also scatters, has a straightforward result: ideally, any
interaction at all will eliminate a photon from being detected. Therefore, the radiant energy detected, R, will be
as follows with the total attenuation coefficient:
R (D=R,, e (3.23}

Gedet ™

Now consider the geometry of Figure 3.7 with a Joss of collimation. Ideally here, Jateral in-scattering equals
lateral out-scattering. Thus, the radiant energy detected, R, will be as follows, approximated with the energy
absorption ceefficient:

Rclc[(l) = R c)&“m“,- (3'24)

Odet

However, we are not ever in the ideal situation, and the relationship between in-scattering (scattering into the
beam, laterally) and out-scattering (scattering out of the beam, laterally) can be complex. Mostly, though, out-

Allenuation/ Attenuation/
scatler scaller
I N NP SR - <
AN e A
/”\/\/'\/“\f* ' Delector //-\/\/\\/\/\ . N

N AT T TN
N N NN

CoHimator

Figure 3.6. Narrow beam geometry. Figure 3.7. Broad beam geometry

Tdeally, the region v or dv here should be small enough so that all photens escape.
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Attenuation/scatter (sphere)

Detector

Point source

Hyure 3.8. Example geometry showing in-scattering larger than out-scattering.

allering is greater than in-scattering. In that case, the relation between effective attenuation coefficient, /',
Jnerpy absorption coefficient, and attenuation coefficient is as follows:

i, LM, (out-scattering>in-scattering) (328}

If out-scattering is less than in-scattering (Figure 3.8), the effective attenuation coefficient is negative. This
iliition tends to happen at shallow depths. Also see Attix (2004) Figure 3.4, page 49.
I'his all leads to the concept of the buildup factor, B. buildup factor is a measure of the beam intensity to the
pilmary (i.e., photons that have not yet interacted) beam component intensity:

_ intensity of primary +secondary radiation (3.26)

B
intensity of primary radiation only

[I¥ there is no inverse-square law (not point source, parallel beam instead), then
R()=R,B(l)e " = Rye """ (3.27)

l'or more discussions about radiant energy and how it connects to the energy imparted, please see Attix
( 1004) chapters 2 and 3. The effective attenuation coefficient is defined as the following:

p = -2, (3.28)

Notice that in a narrow beam geometry, B=1, but in general, B>1. Also note that the effective attenuation
elficient is a function of distance or depth, I. A cautionary final note is in order here. It was pointed out to us in
\llix (2004) Chapter 3, that a mean effective attenuation coefficient is not well-defined there, but it is an average
vIth respect to distance and not energy, as one might think at first. As a result, it was pointed out to'us that the

iwlitionships between the backscatter factor, the mean attenuation coefficient, and a few figures and equations
aild have been tighter in Attix (2004) Chapter 3.
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Photoelectric Effect

In 1905, Albert Einstein won the Nobel Prize for explaining the photoelectric effect with quanta of energy. It was
an initial demonstration of quantum mechanics. Since the photoelectric effect dominates at low energies
(hv<<m,c?), it is a major contributor to imaging physics, especially in mammography, where this effect is com-
pletely dominant.

The photoelectric effect is a “coherent interaction” (an interaction with the entire atom) that results in the
photon being absorbed and its energy transferred to the kinetic energy of an orbital electron, 7,., once the binding
vnergy, E,, price has been paid. Subsequent relaxation often occurs”. Figure 4.1 shows the geometry of this effect.
[he photon is an electromagnetic, transverse wave. Therefore, the push is mostly in the electric field direction,
i the photoelectron tends to come off perpendicular to the direction of the incident photon. The angle of the
photoelectron relative to the incident photon is 6,.. At low energies, it is near 90 degrees, but as the energy
ilcreases, it becomes more forwardly directed from relativistic effects.

Based on conservation of energy, we can have the following expression:

T =hv-E,-T,=hv-E,. 4.1)

The atom recoil energy, T,, is typically neglected since the nucleus is usually so much heavier that it is
spproximately stationary. Note that the binding energy is only large enough for our interests for K and L transi-
llons typically, and mostly just K for therapy and most imaging issues. It is also worth mentioning that the bind-
g energy represents an energy well. It is actually negative in that sense, but here we just assume it is the
mngnitude (positive here).

Igure 4.1. Photoelectric effect geometry. Concentric circles emphasize its coherent nature.

Iliere is a subsequent relaxation by either fluorescent photons or Auger electrons or both, and there is ambiguity as to whether these
iclaxations are considered part of the “interaction” per se.

29
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The photoelectric effect cannot remove an electron from a given shell, n, if it does not have at least the bind-
ing energy for that shell, (£,),. The threshold for photoelectric effect is the following:

¢

I

(), = (E,), -(1 : 2(;—)-} (4.2)

Of course, (E,),<<M,c?, and note that (£,),>0 here. Therefore, (hv),,, ~(E,),. Participation of this particular
clectron is most probable at photon energy just above (E,}.. This leads to a property that materials tend to be
transparent (o their own characteristic radiation, i.e., tungsten filter of a tungsten target to gef tungsten character-
istic radiation separate from many bremsstrahlung photons. In other words, most often the photoelectric effect
will occur with an orbital shell that has a binding energy closer to, but fower than, the incident photon energy. For
example, gold K-shell electrons are bound with (£,), ..,= 80.7 keV. A photon with 80.6 keV could not liberate
the gold K-shell electrons, The next highest energy is the L, shell at 14.4 keV.

There are sharp discontinuities of the probability of the photoelectric effect occurring at the binding energies.
These discontinuities are called “edges” (see Figure 4.2). The participation fraction, P,, is the fraction of photo-
electric events attributed to shetl n. It is calculated by finding the relative reduction in the cross section at the
shell “edge” discontinuity as the following:

P, = Tabove 87 Toclow i , 4.3)
T:lh()\*ci\’
where 7, and 7,,, . are the photoelectric attenuation coefficients just above and below the K-edge in Figure
4.2. The least rigorous aspect of the participation fraction is that it is assumed to be independent of energy above
the shell edge: consider the extension of the line from just below the K-edge.

The L-shell participation fraction, P, is the fraction of the events that an L-shell participates in energies
below the K-edge. The fraction of events from the L-shell, with an energy above the K-edge, is given by
(1-P )P, Iis the probability of not having a K-shell event times the probability of having an L-shell event.

105-

%)

104 o

10% ~

197 4

10! 4

Photoelectric Cross Section (<1025 i

100 ]

10° 10? 1(')3
Photon Energy (keV)

Figure 4.2. Photoelectric cross section for atomic number near 82. The dotted partial extension of L-shell
shows that the enhancement of the K-shell can be approximated as a constant factor, especially near the edge.
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iifferential Cross Section for Photoelectric Effect (K-shell)

ire the Heitler theory described below, there was only the Compton scattering Klein—-Nishina theory in 1929,
which is discussed more in the next chapter. The cross section for photoelectric absorption had to be found by
sibiiracting the Compton scatter from the total observed cross section. Note that at low energy, it 1s just these two
sractions:

(ul/py={o./p)=(oc,/p) (4.4)

Then in 1954, Heitler approximated just the K-shell contribution to the photoelectric differential cross sec-
siem. For an unpolarized beam, the photoelectric differential cross section is given by the following:

d T, z i ” m(62 " sin® @
e bl s a2 - . (4.5)

dCd 37 hy : |
) ( ~PE cos J
m,c’ ‘

Hare m, = 9.10938215 % 107 kg is the electron mass, r, is the classical electron radius’, P is the photoclectron
smamentum, and 73 = 7.94 x 107 cm®. The number 1/137 is the fine-structure constant, which is usually denoted
a8 61,

ol 2
e e 1

o= e
he he 137 (4.6)

137 2
it ix very common to see differential cross sections and related quantities plotted and described versus angle as
#unlly as versus solid angle, and even for an equation 10 mix the two. This is confusing, but quite common.

2
1Y mye? . o
Note that [—} —L=13.6 eV is the binding energy for the hydrogen atom.

Therefore, the K-shell contribution to the integrated cross section per atom, 7, is as the following (note that
i iust be per atom and not per electron since this reaction invelves the whole atom):

b 5 2 12
ro=2m | (d r./d)sing do =42l | 2| D | 47
a” K ijﬂ( a " K 0) ¢ ¢ [137} 0 { ]’.'V ( )

5

Notice that for K-shell, 7y . However, since A~Z for atomic numbers greater than 1 tend to have

L

()™
#7 A constant at about 0.5 (see Chapter 3, Table 3.2). For all shells, the integrated cross section follows by* the
fliowing:

455 3-54
7 T
N, 2

”T MX_' (hv)'_’----)} - {hv)z———ﬂ ) (48)

The photoelectric effect exhibits a rapid decrease with energy, and is dominant only at low energies. Also, the
ihotoelectric effect exhibits a strong dependence on alomic number, 2. Applications of this attenuation behavior

“Ihis comes Trom the days when they tried to find radiation resistance for electrons, r, is related to the width of speciral lines of freely radi-
ating atoms: AL = {47/33, = 1.18 x 107 m, See Feynman {1963) lectures 1-32-1.
G Allix page 140, Bq. 7.30, the upper end of the exponent range is chosen. Many textbooks neglees to tell that there is a range.
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include lead shielding, which is very effective at diagnostic energies (<100 keV) and bone, which is much more
visible on diagnostic radiographic x-ray film because of its high calcium content (Z,,, = 22 is a relatively high-z
material compared to water}. Note that for a mixture or compounds, one can define an effective atomic number,
z, The effective z is determined by elemental composition and energy. If Z, is the atomic number of the i"ele-
ment, then & is defined as the following:

. _ Number of electrons in clement {
&= CoF : : (4.9)
Total number of electrons

then the approximation for z,,for m21 would calculate as the foliowing:

tn = (X ez )" (4.10)

where, for photoelectric effect, 4<m<3, for Compton effect, m = 1 and for pair production, m = 2, It is important
to notice which process dominates at a given energy, because the exponent represents the dependencies for each
interaction. The z_, depends on energy mainly because it depends on which photon process dominates. The issue
of effective atomic number deserves more discussion. For more description of effective atomic number, such as
the m = 1 case, see Murty (1965) and Shivaramu (1999, 2000, 2001).

Fluorescent Photons and Auger Electrons

One method of de-excitation from the shell vacancy caused by the photoelectric effect is to release a fluorescent
x-ray (Figure 4.3} when an outer shell electron leaves an outer shell for the vacancy in the (more negative energy)
inner shell (recall that we are considering shell binding energies to be positive for now).

The energy of the fluorescent x-ray is determined by the following:

hv..’huu'u = (EJ )ilim'r - (Eb)mm'i' : (4 I )

The fluorescence yield, Y,. is the probability of a transition to shell n, resulting in a fluorescent photon. Flu-
orescence is more likely for high atomic number materials. For transition to K-shell the z-dependence in fluores-
cence yield is ¥,~z""". Recall that the photoelectric effect atomic cross section is ,7~7%. We should expect that
the fiuorescence probability will have the same dependence, since it’s Iike the reverse process. That is, except
that it happens between two bound states.

hv

HOYe

l.or M orN

Figure 4.3, Fluorescent photon and auger electron for a relaxation of K-shell.
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4. Photoelectric Effect 33

Auger electron emission competes with fluorescence. It is the emission of an electron from an outer shell to
ciry excitation energy away that resulted from the photoelectric effect shell disturbance. Assume for now that
ie probability of Auger emission ~z, Then, heuristically,

(probability/atom) ,, Y, az'? v (4.12)
e = ocuz’ Y,

(probability/atom) ..., 1-=Y% z

which leads to the following:

az]-m}-‘i ]
Y, m — . , (4.13)
S v w™ 1aw 2
I'is is not bad since empirically we find the following':
-4
(0.957)z (4.14)

K 084109420

For low-z materials, we find that Y, =0, and for high-z materials, it is ¥, =0.957, so the assumption about Auger
production being proportional to z seems reasonable. For more discussion on this topic, see Atlix (2004) pages
14223,
There is ambiguity as to whether subsequent relaxations are considered part of the energy and net-energy
irunster for a single photon interaction energy transfer calculation.
fvample Problems: Consider three cases related to Figure 4.4 and calculate energy transfer and net energy trans-
fir for each case.
Case 1 I no relaxations considered, or if all relaxations by fluorescence.
Case 2: If all relaxations are from Auger, and there is no fluorescence.
Case 3: If just the pictured single fluorescence photon is considered.
Solutions:
Case 1: If no relaxations considered, or if all relaxations by fluorescence, then:
g, =&y =T =hv—(E,); =100keV ~88keV =12keV.
Case 2: If all relaxations are from Auger, and there is no fluorescence:
g, =" =T +T,..=h=100keV.

Anger

Auger electron
M -

flowra X - ray

g =T +T,
.

Anger
Auger electron
Pheroeleciron Mor N
figure 4.4. Energy transfer for photoelectric effect. Let's assume in Figure 4.5. Auger emission.

ihis example it is Pb: {£,), = 88 keV, and (£,), = 16 keV.

“hee Hubble (1994).
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Case 3: If just the pictured single fluorescence photon is considered:
g, =& =hv—hv'=100 keV — (88 keV —16 keV) =28 keV.

Itis very common for a test problem to omit this subtlety. In situations where the atom cannot or is less fikely
to emil a fluorescent photon, then Auger emission can release energy. For example, an M-shell releases energy
via Auger after a transition from L to K shells——presumably the K-shell vacancy was caused by a photoelectric
interaction (Figure 4.5),

The energy of the Auger electron is found by getting energy from electrons moving into X, and paying for
leaving L and then paying again for leaving M:

(7:‘-:4_@.-‘).%‘.' = (L) (), ~ (Eb)M‘ (4.15)
In generai, the energy of Auger electrons are calculated as follows:

7:110,'(’:' = (Eb )l'armn'_\' - (E'l'))_ﬁﬂ - (Eh )Au_m'r . (4 ] 6)

The Auger clectron can come from any shell, even the same as the filling shell. Then it is called a Coster—
Kronig clectron. Of course, there needs to be the condition met that {(E,), e = (E) il > (E3) g0 Nolice how we
are quickly led to a possible chain of vacancies and a potentially high charge until all the vacancy shell binding
energy is released and eventually conduction band electrons fill the vacancies. I can be complex.

Both fluorescent x-rays and Auger electrons are emitted isotropically as one might expect from a coherent,
whole-atom process like each of these.

Mass Energy Transfer Coefficient for the Photoelectric Effect

The finat result of this chapter is what gets transferred to charged particles. Both the photoelectron with iv — E, of
kinetic energy, and the Auger electrons, which also release a fraction of the E,, will contribute to the transfer of
energy to charged particle kinetic energy. If the atom de-excites with only Auger electrons, then all of the origi-
nal v will go to charged particles. i.e., the entire photoelectron binding energy is eventually all recovered. It can
be ambiguous as to whether relaxations are part of the photoelectric “interaction.”

Any fluorescent photons will decrease the energy transfer to charged particles, Above the K-edge, the mass
energy transfer coefficient for photoelectric effect is approximately as follows:

417

pop

T, T (hv =P Y (W), —(1-P) P Y, -(m?),}
hv )

The term (- F)F Y, (h), approximates the contribution of energy from fluorescent photons from vacancies
from the L-shell for incident photon energy above the K-edge and implicitly assumes that P, is independent of the
average photon energy, /. The quantities (h7), and (4v), are the fluorescence x-ray average energy for tran-
sitions into these shells from all other shells as weighted by the probability of each transition. They may be
approximated by their respective binding energies, (E,), like in biological tissues: low enough z, and high enough
A,

Below the K-edge, the mass energy transfer cocfficient is approximately as the following:

pop

T, T(h"_P.'_'Y;.'(thj @.18)

~ hv
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We are ignoring contributions from shells beyond L because they are small. What matters for the energ
sfer coefficients and for dosimetry is average energy transferred (o charged particles from a large number of
eHONS.
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Compton Scattering Effect

Aithur Holly Compton at Washington University in St. Louis discovered the Compton effect in 1923 and got the
Sabel Prize in 1927, The geometry of the Compton effect and respective energies and momentums of incident
st weattered photons and the electron are described visually in Figure 5.1.

The Compton effect dominates at intermediate incident photon energies, near the electron rest mass:
fv ~ e’ At these energies—which are much bigger than shell-binding energies——the scattering becomes
mslastic with energy given (o an electron that is ejected from the atom. However, the dominant physics is a sim-
slis two-body collision that treats the electron as unbound to first order.

Straightforward kinematics provides a complete solution as follows:

e (5.1)
l+eo,(1—cosg)

o, {1 -cosg)

T =hv-h'= , 52
¢ 1+, (1-cosg) (5:2)
1
tan @ == .
(I+a,)tan(¢/2) (5.3)

. hv . . . .
Hie o, = +. Note that here are three equations and four unknowns, (Av', T, &, 0), so given any of these
mc” ¢
siknowns in addition to Ay, then all quantities are determined.
For the low-energy limit (hv << m,c?), energy of the scattered photon would be almost the same as incident
ghioton (Av’ = v ) and independent of scattering angle. This is the completely elastic limit of Thomson scatter-

Incident photon

Figure 5.1. Geometry of the Compton effect, a simple two-body collision.
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ing. Also, v’ = Jiv is the result of ¢ = 0, and there is effectively no event. From Equations (5.1) and (5.2), it is
clear that for ¢ = 0, the energy of the electron would be zero, (T . =0) and then € would occur as the follow-

L1429

ing:

B =0, . =arctan S = 90" (5.4)
" (I+a,)tan(0)

In contrast, when the scattered photon has a minimum amount of energy, then it corresponds to the case

where ¢ = ¢, =180" and thus the scattered electron has the maximum energy as the following:
- - 2a
1 - = (1, )Tllil\ = h‘} 2 N (5.5)
‘ oo 1+2a,

There are also two other cases that are important for shielding, because scattered photon angles greater than
90° relative to a normally incident beam will backscatter out of the surface:

;.1‘”3] | (hv’[@;_w, ) =1, (5.6)
Jim (], )= e /2. (5.7)

Differential Cross Section for Compton Effect

The differential cross section for Compton effect per electron was derived by Klein and Nishina (1929), assum-
ing unpolarized photons and unbound electrons with azimuthal symmetry as in the following:

d,o zi[hi) [hv +hv —sin’¢ ], (5.8)
dQ,  2Uhv ) k' hv

Here, r, = 2.818 x 107" cm is the classical electron radius. The quantity Q, can be understood in Figure 5.2.
Note that the differential cross section is per electron and independent of z.

rsing

.
A dQ, =2 7sin pdp

Figure 5.2, Differential annuius for azimuthally symmetric interactions with a Jacobian sing.
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The number of scattered photons per unit azimuthal solid angle is illustrated in Figure 5.3. The peanut-
stuped plot in Figure 5.3 does change with polarization effects included’. Figure 5.4 demonstrates differential

d.0
Q- —-—> i,
(102 em¥electron)

Incident photon

figure 5.3. The number of scattered photons per unit azimuthal solid angle. Note that higher energies are for-
ward directed. This figure was calculated with Equation {5.8).

20°

108 ke
150%/

Seatered
photan

Incident photon

Electren

50"

figure 5.4, Differential cross sections per unit angle for Klein-Nishina scattering of photons for Compton elec-
fyons and scattered photons. Adapted from Hendee with permission.
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A0 tectures on k
cross sections per unit angle (not a solid angle as above). A plot of this differential cross section per angle would
have the lines pushed to the origin at #=0 and ¢=180 because of the sing.

By integration over angles, the Klein-Nishina cross section per electron is the fotlowing:

T dQd “
o= [T ey | 9.9 o sin . (5.9)
2 dQ,  dg o 4,
This gives us the cross section as follows:
o= 2m [+ :’xo 12(0+ay) CInd+2a)) N In(l+2¢,) _ 1+3q, Ny 5.10)
o, I+ 2a, o, 2e, (14 2e,)*
Pay attention that for low incident photon energy limit, O 1s expanded in powers of relative energy:
(5.11)

o= 8—?;5 {i -20, +5.20, ~13.3a] + }

¢

Notice how this approaches the Thomson limit as &, — (. The low-energy Thomson scattering Himit is then

the following:
(5.12)

5

Z{:‘; = %(1 A+ cos""’q‘)).

@

If one integrates this differential cross section, the answer would be as follows:

O =
) 0 d€Y,  dg

(3.13)

“d o
= | t— 2 sin g,
J:(IQ¢ bdg

a fo = 6.65x107(cm? / electron),

For large incident photon cnergy Hmit, (¢, >> 1), however, the cross section per electron is as follows:
T
O~ — 7 [1+2In(2e,)]. (5.14}

1]

It decreases with energy at high energies.
o N,z . .
= o242, and its units are cmYg.

The mass attenuation coefficient for the Compton effect js =
P
Remember that the cross section per atom is related to the cross section per electron as L= Oz

Differential Cross Section Relative to Recoil Electron Energy

One can obtain the differential cross section relative to recoil electron energy by performing the chain rule as fol-

Jows:

“See Jackson (1999) pages 694-7,
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do _do d df . (5.15)
dr - dQ, d¢ dT.
Differentiating Equation (5.2) leads us to :igb as the following:
[«
-1
dg hvay, sing (5.16)

dr’ [1+a,( ~~Cos¢))]2

. ., dQ . . ‘ : .
{tese, with ? =2msing and the help of Equations (5.8) and (5.15), the differential cross section relative to

d
iveoil electron energy would be the following:
2 2T T i
do _my o 2 e | 5.17)
dr  oyhv aylv =T ) oy(hv =T ¥ vl =T )

In pulse height spectra from Nal detectors, one often sees the Compton edge. 1t is caused by the (v =T )

. da . . . S . N
izrm. At low photon energies, T is proportional to (fiv)™, Other than this, it is almost independent of 7. The
[£ ¢
Ickscatter edge happens at the low end. It is often seen from backscatter out of shielding material stacked next
in the detector. Figures 6.6 and 6.7 from Anderson (1984} show the Compton edge and the backscatter edge,
respectively. Note that the Compton electron and its scattered photon must add to the original energy entering the
interaction. Therefore, the Compton edge plus the backscatter peak equal the full energy peak in a detector spec-
frinm.

Mass Energy Transfer Coefficient for the Compton Effect

{nly the recoit electron kinetic energy will contribute significantly 1o the energy transfer, There will be some de-
zxcitation with fluorescent x-rays and Auger electrons, but they contribute a relatively very small amount com-
pared to the scattered photon and the recoil electron. The energy transfer cross section can be obtained from a dif-
ferential distribution as follows:

FI. Y
p L dl v e

-

(g i

4o the mass energy transfer coefficient is related to the cross section as follows:

&_Ir a NAZ. (5.19)

See Attix (2004) Appendix D.1 for ,& components. Figure 7.7 of Attix (2004), illustrates L and I}‘L
hv v

rutios. At low incident energies, (<1.0 MeV), most of the energy is given to the scattered photon, but at high ener-
sics, the recoil electron receives more kinetic energy. But note that this electron cannot ever receive all of it.

|
|
!
i




42 Lectures on Radiation Dosimetry Physics: A Deeper Look into the Foundations of Clinical Protocols

Therefore, the mass energy transfer coefficient is small at low energies. That is, e T, However, at high ener-
PP
gies, the mass energy transfer coefficient is almost equal to mass attenuation cocfficient (& =~ E), but it can
p P
never be equal.
There is also a mass scattering coefficient with an analogous definition, but using the scattered photon
energy as follows:

p v op

So, we can have the following expression:
g% . 9 (5.21)
p P P

Note that we have excluded the binding energy for this interaction and assumed that the electron was free. In
reality, there is a small correction that you should be aware of.

Binding Energy Correction for the Klein-Nishina Cross Section

Atlow incident photon energies and in high-z materials, one should correct for the fact that electrons are bound.
The correction is mostly not very significant since these regimes are where the photoelectric effect dominates.

We need to multiply the Klein-Nishina differential cross sections by the form factor function. It is a func-
tion of atomic number and energy:

DT gy Lo (5:22)
dCy, ! dQ
[4 ¢
where,
d, Oy .y -z d og.y . (5.23)
dQ¢ (J'Q¢

The scattering coetficient for carbon at 10 keV is plotted in Johns and Cunningham (1983) page 183, Figure 6.6.

The Compton effect has clinical relevance. The scattered photon is the main health physics (shielding) con-
cern. Al intermediate energies, it is independent of z. Therefore, the contrast for imaging can be bad, but the
tomotherapy machine uses megavoltage computed tomography (MVCT) to avoid metal artifacts, Also, scattered
photons degrade images for nuclear medicine imaging.
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Pair (and Triplet) Production Effect

In both pair and triplet production, an electron (or “negatron”™) and a positron (anti-clectron) are produced sponta-
itcously as a photon interacts with a strong electric fietd from either a nucleus (pair production) or an electron
tiriplet production). These interactions are dominant at high incident photon energy (hv >> mc”). The geometry
i pair production and triplet production are itlustrated respectively in Figures 6.1 and 6.4,

After some math, the threshold energy for these effects to take place is the following:

2mc’
- 2 0
(V) iy = 21, {1 o I (6.1)
where, m,, 1s the rest mass of an electron. For pair production, M = M
M =g,

Assuming that the recoil of the nucleus is small, the available kinetic energy for both pair and tiplet produc-
tion 1s simply as follows:

>>m,, and for triplet production,

nucteny

T

avail

=hv — (Y = hv — 21110c32. (6.2)

min

Notice that for both pair and triplet production, the available kinetic energy is the same, even though the
threshold differs. For pair production, the threshold energy is 2m,c” = 1.022 MeV, and this is used for both pair
and triplet available kinetic energy in Equation (6.2).

YOS_\“ o T(‘_,"'mm’ = O
Tinfria.f

&

[ ]
Nucleus el
7:.’_

T Zijim:! — 0

o

. Figure 6.1, The geometry of pair production with annihilation in flight indicated.
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Pair Production

In pair production effect (Figure 6.1), the mean kinetic energy given to each of the two particles is half of the
available kinetic energy”.

— T . :
T, et (6.3)

The mean angle given to each of the two particles with respect to the incident photon direction is as follows:

o ni,C

g =

*

(6.4)

o

The unit of the (i is radians. Note that 1/7 dependence is similar to bremsstrahlung (and that’s not all, as we
will sec). Higher-energy particles get more forward-directed.

Cross Section for Pair Production

Bethe and Heitler (1934) derived the atomic differential cross section for pair production as follows:

d 4 Kp;m— 22 }) (( S)
— =0 . J.0
dT . °T

o avaif

where, the quantity &, is defined as follows:

o z_li%z4,8()><10"28 (cm” / atom). (6.6)

0

] . " . . . .
Remember that ["f:ﬁ =g is the fine structure constant. The quantity r, is the classical electron radius, and
it also represents the range of the strong nuclear force.

s
e

ry = =2.8179x10""m, (6.7)

2

n,e

Notice that in Equation (6.5) all of the complications are in P. It is a function of photon energy and almost
independent of atomic number, z (see Figure 7.18 of Attix).
The cross section is then obtained by integrating the differential cross section as follows:

o Kpm'r avait ?

7
L2
=0y

.

' i
| m&d(tz):cuf [Pac, T, (6.8)
a

L =0 T avail

|
Here, Id(?:ﬂ_ /T,..)=1,and using Equation (6.9) to define an average 7, { Py:
0

] ]
P=[PdT. IT,.,) / [T, (6.9)
0 3]

*Actually, the positron gels a bit more energy because of the push from the positively charged nucleus.
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the cross section for pair production is given by the following:

Ko =TT P (6.10)

This P also has litte z dependence.

If the interaction is too far from the nucleus, then many orbital electrons will screen the nuclear electric field,
When screening can be neglected, (2m,c” << hv << 137m,c’z""), there is no z dependence and just a weak loga-
rithmic dependence on energy:

pz—Q—§in 2/?\: 218 (6]])
9  mem 27

When screening is maximized at high energy, (hv >> 137m 2"

and basically no energy dependence:

), there s a weak logarithmic 7 dependence

28 a2
P In(183777) ~ —. (6.12)
9 27
At energies around n,c?, no analytical form is possible. We can use the approximation that K i 18 PIOPOT-
tional to 22 for all photon energies.
The pair production mass attenuation coefficient is related to the cross section as follows:

N
T (6.13}

and its units are cm’/g.

The Similarity between Pair Production and Bremsstrahlung

There is a concept about anti-particles proposed by Paul Dirac in 1930 that says the negative energy root from
E = (pe) + (mye®) is an anti-particle. This came out of the Schrédinger equation with some relativity.

A photon with enough energy, and an electric field to exchange momentum with, can liberate something out
of the infinite sea of negative energy (the “Dirac sea,” completely filled and occupied states = vacuum), and the
hole left behind is the anti-matter (Figure 6.2).

Pair production Bremsstrahlung
Time Time
lnergy 4 Eleciron »
Negatron Electron
° Positron X
A " ALL’L.L_ g
0 e 2m,c” Y v
1 J
' Nucleus !
Nucleus
“Dirac sea” Position Position
figure 6.2, The Dirac conception of pair Figure 6.3. Feynman diagram similarities between brems-

production. strahlung and pair production.
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Another mathematical oddity is that one can perhaps view the positron as moving backwards in time. This is
used in Feynman diagrams, where the similarity between bremsstrahlung and pair production is profoundly obvi-
ous (sce Figure 0.3).

The cross sections (¢m?/atom) of pair production and bremsstrahlung are very similar. For pair production at
very high energies and bremsstrahlung (radiative osses), the cross sections are respectively as the following:

Wy v 2
Ko = — In(1837" — . 14
okt ]37 {9 i( ) 27) (6 )
"'u2 2 36 i3 4
L= In(183z""" )} ——|. 6.15
P 137 ¢ (9 ( ) 18} (6.15)
Therefore,
7
(leuir ~50;{‘ (6.]6)

Triplet Production

The electric field is now from an electron, a very light particle that becomes indistinguishable {rom the created
particle. Therefore, triplet production (Figure 6.4) happens instead of pair production.
The mean kinetic energy given to each of the three particles is a third of the available kinetic energy”:

'j':“ — [(um . (617)
4 3

Of course, since M = m, in Equation (6.1), the threshold is now 4mc’. It is all due to momentum conservation,

YS

T fmu'

Tﬁnm' - O

o

Figure 6.4. The geometry of triplet production with a positron annihilation in flight.

fActually, the positron stll gets a bit more energy because of the push from the positively charged nucleus that most available electrons are
finding themselves near.
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The Triplet Production Cross Section

The triplet production cross section is combined with the pair production cross section by using a factor C to
relate the triplet cross section to the pair production cross section because of electron exchange effects:
[? K *Iir Zis
a Kn‘ij).’m = el C'-l} P (6 ] 8)
Cz C
where C = 1.6 0.2 for (5 MeV < hv < 20 MeV), and C = 1.1 £0.1 for (20 MeV < v < 100 MeV).
C has a negligible dependence on z, but notice the additional factor of z for tripiet production. There are 2 tar-
pets per atom for triplet production, but only one target per atom for pair production.
The combined triplet and pair cross section and mass attenuation coefficient are as follows:

uK = a Kpru'r + i Kn'fpl'(‘r = O-()st(z +1 /C)’ (6 ] 9)
N —
5:(—A G, 2P(z+11C), (6.20)
P A
K, & Tk hv=2mgc’
- S . (6.21)
g p hv p hv

The fraction of photon energy transferred to charged particles is 7, ./ hv. Therefore, the combined triplet and
pair mass energy transfer coefficient is given by the following:

& — _If" . ’]:u'zu'f — E hv - 2”?(.‘!("" . (622)
pop v p hv

Notice that the 2m,c” is for both pair and triplet production. Triplet has an extra momentum issue, but stili
just creating two particles. This is shared between either two or three particles.

Note that right near the threshold, the amount of energy transferred is small, but this cross section approaches
the attenuation cross section at large energies.

Positron Annihilation in Flight

When the positron meets an electron, two gamma photons are released in opposite directions in the center-of-
mass (or “center-of-momentum”) frame. Therefore, an isotropic angular distribution in this frame will happen.
Both photons have the same polarization, either both are right hand circular (RHC) or both are left hand circular
(ILHC) (Figure 6.5).

Center-of-mass frame Laboratory frame

Y e hv,
et e et ,JJJJ
e

Tﬁnm' *
("
h Y copr H—‘\L)
hv,

Figure 6.5. Two frames of reference for positron annihilation in flight.
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hv, =0511 MeV

.

s q i
ija.’ — 0 . &7

o

v, =0.511 MeV
Figure 6.6. "Positronium,”

The annihilation gammas in the lab frame will have a sum of encrgies as follows:
é\
hv, + hvy =T" 4 2m 0°. (6.23)

We will need to include the Tost charged particle (positron) kinetic energy in the calculation of M, for this
interaction. The mass annihilation coefficient was derived by Heitler as the following:

O onitit NAZ_ an ¥ 4;47’ +1 In (}, + ,‘},3 -1 ) Mj’_i , (6.24)
o A (y+1) yo -1 ¥ =1
where:
P]".ﬁli{.'f I
y=—— sl = . (6.25)

mye® (v /o)

G it zl A .y qer : .
Note that e o (‘_Hl for 79" > me*, so annihilation is much more likely at low energies.
P f :‘fﬁiff i
“Positronium” (Figure 6.6) is the whimsical name given to the temporary positron-electron thing that exists
g I ¥ g
for a short time when both have basically no kinetic energy—then they give off two identical, Opposite gammas
of 0.511 gammas in either frame,
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Other Photon Interactions
and Summary

Rayleigh (Coherent) Scattering

There are two kinds of elastic scatlering for photons: Thomson scattering and Rayleigh scattering. While Thom-
son scattering is the scattering of photons by free electrons, in Rayleigh scattering, photons are scattered by
whole atom. That is why it is called coherent scattering’.

Rayleigh scattering occurs at low energies and can be 20% of the scattering for diagnostic energies. It’s a sig-
nificant issue for x-ray imaging. It is sometimes included with the Compton attenuation or scattering cross sec-
tion. The scattering angle becomes more forwardly peaked as energy gets larger and z gets smaller.

We will not say much about Rayleigh scattering since it transfers absolutely zero energy. Therefore, energy
hansfer and absorption coefficients are both zero for Rayleigh scattering, For 2 < n < 2.5, the attenuation cross
section for Rayleigh scattering at x-ray energies is as follows:

L
L

uoh’mm' (7.]}

Photonuclear Interactions

Photonuclear interactions oceur at high energies (hv >> ny,c”). Typically a single nucleon is ejected, but multiple
nucleons or alphas are also possible: (3, (%p), (1), {¥2n0), (%2p), (¥np), etc. (Figure 7.1)

Nucleon, Alpha, ...

Product nucleus

Target
nucleus

Figure 7.1. The geometry of photonuclear interactions.

© gk ealled “Bragg scattering” if it scatters off of a whole crystal plane.

49
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The nucleus is usually left in an excited state and often de-excites with a j~ray, etc. The threshold energy for
the interaction—the smallest interaction threshold dominates—is the following:

- M-BE(I _BE (7.2)
2Me”

{(hv)

min

where BE is the energy of the binding of nucleon in the nucleus’, and Mc? is the rest mass of the target nucleus.
Energy balance Tor this interaction is given by the following:

BE =E" + ZQ (7.3)

Here, E" is the excitation energy of the product nucteus and ZQ is the net energy derived from rest mass. EQ is
calculated as follows:
ZQ = AEl:ugCI nucleus (AEps'oduct nucteus + AEnucEmn ) : (7.4)

The guantit ZQ is positive if mass is converted to energy, and it is negative if energy is converted to mass.
Note that | ZQ?> E"is required so that BE < 0.

The quantity AE is the “mass excess” of the indicated particle. The nuclear mass excess is the difference
between the rest mass of a nucleus from 1/12th the mass of C:

AM,
AE = Me? -0 2 (7.5)
i2
where A 15 the mass number {the sum of protons and neutrons) and, thus, an integer, Note that AE pe = 0 for “C.
f

For atomic mass numbers, refer to Anderson (1984), appendix 5, atomic mass tables.
Example Problem: In the following, assume that the product nucleus is not excited

that it goes directly to the

ground state so that £, = 0.

PO N0+ < R0.m"0.

Using the atomic mass tables, find AF

target nicleus®

Solution: We can get AEs for Equation (7.4) from tables as follows:

A‘E‘pmn’urr niciens® and AE

nucieon®

AEl:n'gcl nucheus = AEHEO =-4736.6 keV.
AEpmduc!. pueclens AEIR} = 28599 kCV
AEI]HC|C()II - AEH =8071.4 keV.

Notice that sign is important. Therefore, the binding energy is calculated as follows:
BE = (—~4736.6 keV)-[(2859.9 keV)+(8071.4 keV})]=—-15.7 MeV.
Since —BE << 2M,,), the threshold for "SO(y,n)'; O is as follows:

(") = —-BE[I - BE, ] =-BE =157 MeV.
2Mc” ‘

Tt is negative for bound siate.
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Any energy above the threshold is often given to just the kinetic energy of the nucleon released. The nucleon
may not be a charged particle, and there may be other neutral particles, fike gammas, because of the mass differ-
ence from the nucleus.

T

nucleon

= hv k(h V)Illill' (7°6)
The reaction (¥n) contributes only a negligible amount of energy to the recoil energy of the nucleus. How-
ever, (%p), Tor example, can contribute significant amounts of charged particle kinetic energy.
The reaction (1) is a potential hazard for the use of high-energy linacs for radiotherapy, and extra neutron
shielding is required. This would involve low-z materials, as we will see later.

Relative Importance of Each Interaction Type

Figure 7.2 is illustrated cross sections for each of the three main interaction types for x-rays or ¥rays. The main
independent variables are incident photon energy and target atomic number.

In general, we can summarize volcano’s plot as follows: the photoelectric effect dominates at low energy, the
Compton effect dominates at intermediate energies, and pair production is dominant at high energies. Also note
that the “volcano” gets wider for low-z materials. Figure 7.3 demonstrates mass attenuation coefficients for pho-
tons 1 ar'.

Total Cross Sections (or Coefficients)

Altogether, the total mass attenuation coefficient is found as follows:

u&:_+_+_ + .Oi 4 M*‘“m"f'.... (77)
e p P P e P
10
14
HIC
o=T | T=K e ‘
100 ! < 0
[ =2
80 : S 1';0\11\
2 Photoclectric effect i Pair production ~ \ . Twial absarpt PN
8 | i (2% N -
: 60 : @ \e” o NI
“ ; .01 e
40 ; il
Comptonlelfcet 4
204 1
1
0 , ,: : 0.001 ' 3
.1 Lo i0 100 0.01 0.1 1 10 100
v (MeV) MeV
Figure 7.2. “Volcano plot” of cross sections for each Figure 7.3. Attenuation in air showing its vartous
of the three main interaction types for Ehotons show- components. Note the log-log scale. From Evans

ing where they dominate. Note that ®C is exactly at (1955) with permission.

the middle of the plot.

Yior a series of mass attenuation and energy transfer coefficients plots for some common materials, see Evans (1955), pages 713-17,
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The muss energy transfer coefficient is calculated by the following:

Ho P O (K —mg“f"”+...
PP £ P P
T B Y ) (L= Py)-P oY, - (h7), N
p hv
T
A P (7.8)
plhv
w( hv=2m,¢’
—| 2
Jo) hv
T "z“g_

+ other photonuclear terms possible ... .
ooy

And the mass energy absorption coefficient is found as follows:
/‘I,-,n_- — (1 Wg)ﬂi—' (7())
P

Cross Sections for Compounds and Mixtures

Bragg’s rule states that atoms contribute independently to photon attenuation, and molecular or crystalline struc-
tures/states are not important’. For calculating mass attenuation coefficient and mass energy transfer coefficient,
simply add each element or isotope together with respect (o its mass fraction.

)22 ] -

p Y p A 'O ) 'o &

(“—"} SE&J _f;1+[ffﬂj 7 +(fiJ foton, (7.11)
p mix P A p f 'D N

where, f,, f,, and f. are mass fractions for components 4, B, and C, respectively, For mass energy absorption,
however, it is a little different, with Eawnorc o @8 the individual fractions for radiative losses.

['n [“‘ i . )
(fm&mJ :(}—-—] ([*.fng/x _j,'jg” '“‘f(_.g(..m—...). (7]2)
'D X p i

Bydefining ¢ =72, + /.2, + feg +.... we can now write the mass energy absorption as follows:

CEOES
p i p mix

Figures 7.4 and 7.5 below summarize all important interactions for dosimetry: the photoelectric effect, Compton
effect, and pair and triplet production.

"The rule breaks down at very low energies (UV, for example).
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Charged Particle Interactions
with Matter

The photon interactions transfer energy to electrons, and it is these electrons that deliver dose as they slow down
in matter. To understand the basic physics involved, we will start with an important derivation for heavy charged
particles that will then be generalized to eventually work for electrons slowing down in condensed matter. H is in
fact remarkable that this extension to electrons works as well as it does.

Interactions of Heavy Charged Particles

In Figure 8.1, lets consider a heavy charged particle with kinetic energy, 7, and velocity, v, going very quickly by
an atom with an impact parameter, b. Here we use simple description of the nucleus, which is the “liquid drop

model.” From this model, we get the nuclear radius is R =~1 Ax10""Acm  where A is the mass number’,
The radius of the atom is about ¢ =~ 0.18 44 from Bolr’s theory, where A is the wavelength of the electron in an
outer shell and #= v/c is the particle speed compared to the speed of light. The radius of the atom is much larger
than the nuclear radius. It is like a baseball (nucleus) in Camp Randall stadium (atom). Note that there is a veloc-

ity dependence to all of this, and this is just order of magnitude validity anyway.

-

v

.

[¥]

7. M,

|8

Figlure 8.1. Geometry of a heavy charged particle interacting with a single atom. Note: this figure is not to
scale,

*Mass number variabic, A, here is the number of protons plus the number of neutrons, and it is an integer for just this discussion.

55
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The “heavy and fast” particle at the base of the arrow in Figure 8.1 has a charge, Z., and a mass, M., and a si g-

i ‘

nificant energy, y4c’, such that ¥ =1/y1-v*/¢? >> 1. Notice that “fast” here means Bom approximation’. The
atomic bound electron, on the other hand, has only a charge, —¢, a mass, m, and bound energy such that kinetic
energy, 7, roughly equals its potential energy. In other words: mv* /2 ~ ¢ /a, where a, = [ me*, which gives
vilet ~ et T~ (1/137), the fine structure constant, e squared. Therefore, the incident particle needs to have
more kinetic energy than this (7> mc’ ). This implies that only about 53 keV is needed for the incident particle
n this treatment. Other generalizations beyond these assumptions will also be possible®.

In generat we will be categorizing reactions according (o impact parameter® b:

1. Soft collisions (b >> a): Continuous energy loss with many atoms at once—interactions with orbiting
electrons. Soft collisions lead to excitations. Soft collisions are about half of what is happening.

2. Hard collisions (b =~ a): Hard collisions are also near half of the interactions, but large events that can
lead to the liberation of other charges with their own trajectories are more rare. We will need to carcfully
account for this. The liberated secondary charges are outer-shell-orbiting electrons. Hard collisions give
ionizations with resulting excitations.

3. Nuclear electric field inferactions (b ~ R, ): This results in elastic collisions (mostly) and bremsstrah-
lung (only 2-3% for radiation therapy energies). Note that only light particles, like electrons, will show
any significant bremsstrahlung,

4. Nuclear interactions (b <R, ): Nuclear reactions will only occur here.

Stopping Power and Mass Stopping Power

Y

_ . . . . . . . dl o .
One of the most important concepts in the physics of dosimetry is stopping power, - Stopping power is
dx

. . . . dr .
defined as the rate of energy loss for distance traveled into the medium. The mass stopping power, = is then
pax
obtained by dividing stopping power by the density of the material. Mass stopping power is usually divided into
two terms: one for (soft and hard) collisional energy Josses and the other for radiative (bremsstrahlung) energy

losses as foliows:
d1 _ dT N dr ' 8.1
pdx \ pdx ) | pdx )

The units of stopping power and mass stopping power are MeV/em and MeV/( plem’), respectively.

Radiative stopping power is the production of bremsstrahlung. Heavy charged particles do not produce much
bremsstrahlung: i.e., a proton is ~2000 times heavier than an electron and, therefore, 4 x 10° times less brems-
strahlung is produced. Thus, if M is much heavier than an electron, then we will assume radiative Joss is negligi-
ble:

20 [ ) (8.2)
pdx ) (Mc™)

However, for electrons and positrons, this radiative term will not be negligible. Later in this chapter, we will
discuss the mass stopping power for electrons and positrons.

"For more discussien about the Born approximation, visit Evans (1955, page 887.
*Note we are using slighty different notations: 7 and m and z versus 2.
*Note that this categorization is general and not just for heavy charged particles.
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Collisional Mass Stopping Power for Heavy Charged Particles

Returning to Figure 8.1, consider the momentum impulse as we integrate in time the rate of momentum change
(Gaussian units here):
AP (s 1.
F =gl F+—~1UxB . (8.3)
dr ¢
However, only the electric field part is important, since v/ ~ @. For the geometry given above, and for a
given b, the kicks in x and y are given by the following:

. ~Zeyvi

E =t (8.4)
(b“ ~f-y“v'{')

[ L — (8.5)

3 3 2332
(b“ +'y2v"1')

One then integrates from — infinity to + infinity in time while noticing that the kick in £ vanishes because it
is an odd function. Therefore, only the y-kick comes into the momentum change:

AP=AP, = [ dr ek, (1)

Zeth ¢ (vt
ey d@vi) 8.6)

vosY (b2 +(}va)2)m

_2Ze
by

it = 0. The energy lost is simply obtained then by {APY [ 2m to arrive at the
following very important result for the interaction with a single electron:

3 204
AT(b) = APy 22 ‘ [_I_] (8.7)
2m my® \Lb°

This is like an impulse with P

Notice that this energy loss is independent of the incident particle mass, M, even though a large mass is
assumed, given that the incident particle does not change directions in this approximation. Also notice that the
cnergy loss is proportional to 1/v%. This is a very important result that remains dominant as we proceed further.
However, that was only for a given b, but in our problem, we have a whole range of b values. Therefore, we need
to integrate over the full range of the impact parameter, b.

According to Figure 8.2, the number of electrons in the differential annulus of volume (dx) - 2rbdb) is
[(27hdb) - (dx)) p - (N,z/A). The differential energy loss experienced by the particle having an impulse with this
annulus is then® the following:

dT::kznbdby(dxﬂ.p.(NAZ/A).Eftg;(1 J_ (8.8)

mvt Lb?

‘Note that the small Z is the material asomic number here, opposite from most books.
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[
dx

Figure 8.2. Geometry of a heavy charged particle interacting with a differential ring of atoms,

Rearranging and noting that we need to integrate over all possible b values:

- 24w
[ "ITJ :4;:(%]2 < [ b 1b). (8.9)

pdx A Jmv 2

The critical issue is how 1o perform the integral. Since with integrating from zero 1o mfinity, the stopping
power would diverge. Instead of the full integral, we will then take the integral froma b, to b, which results in

the following:
n - 2)4
d7 i N,z\Z c0 In Do . _ (8.10)
pdx } A Jjmv' b

According to the Equation (8.8), if b goes to zero, then 47 will rise without any limit. However, there is a cer-
tain maximum for energy loss and that oceurs with a head-on collision. So we need to choose a minimum for b
which gives the maximum magnitude for energy loss.

After derivations of energy transfers with bound electron shell states in quantum mechanics, and some com-
plicated Bessel function math’, the stopping power is given by the following:

dT Zrze! ,
rrr— - —“'_' b - 8.] l
( dx J 4 (n) mvz o (B“) ﬂ /2]’ ( )

where,

D yion?
B o= o] 123) )
‘ bmiu ( )Z;C’k ((U) (8]&)

Here, (w) is the average motion frequency of electrons, and 5 is the number density of atoms’. Note and

remember from earlier chapters that (r=D=TIMc* and y =1/4/1 - B

For more discussion regarding this topic, see 1.0, Jackson’s Classical Liectrodynamics, Chapler 13,
*The factor 1.123 is from 1.123 = 2fexpl0.577..), and 0.577... is Euler’s constant.
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Table 8.1: Maximum Energy Transferred for Various Situations®*

For electrons T ow=12
For positrons =T
For a heavy charged particle with mass M y L+ (2Mct I T)
e 1+ {M =i @2miT)
For a heavy charged particle with mass M, which M>>m , B R
and T<<Mc” T 2me” e 2m’

#Note Lthal for positrons, the maximum energy ransferred Lo an electron is twice what il is {or electron Lo anather clectran. That is because the particles are diflfer
ent, and the secondary is not simply the one with the lower energy.

Let’s separate the collisional mass stopping power into twe terms: one for hard collisions and one for soft
collisions. We will start out with an arbitrary energy cutoff, H, that will separate the two by an impact parameter
or, equivalently in this case, an energy. If ¢, and ¢, are cross sections for soft and hard collisions, respectively:

" - . _ i T
dT _ d[b + djh _ ( NA" J‘ dg,v Yudyu_i_ j ﬁT'd’[" ) (8 ] 3)
pdx )\ pdx)  pdx) A oodr dr’

M h’

The quantity T" here is the energy transferred by the fast charged particle to electrons. The quantity H here is
somewhat arbitrary, but it should be about the value of the minimum energy at which the electron 15 ¢jected for
hard collisions. Table &.1 illustrates the values of 7

wienx”

Soft Collision Mass Stopping Power for Heavy Charged Particles

If the energy transferred, 7", is less than the ionization potential, only excitations can occur. If it is larger, then
ionizations can occur, but they will also have excitations as well, and the energy must be larger than H.

The quantity [ is defined as the mean excitation potential of the absorbing medium; it includes both exci-
tations and jonizations. See Attix (2004), Appendix B.] and B.2. There is a lot of uncertainty to 7, but at least it is
in the logarithm, which reduces the sensitivity to that uncertainty. / is approximately proportional to z, the atomic
number of the medium.

Derived using the Born approximation” (8 >> zZ/137)), then the soft collision mass stopping power is the

following:
T s o[ N,zZYZ? 2me’ 7 )
i =2mr me’ At —|In ,mc—ﬁqh’ - B
pdx ) A Jp° "(1-47)

: Z 2me’ B’ 2
=(0.1535) = - Lo |in| et H |- B2
OB “[F(lwﬁ% ) g

(8.14)

metierial particte

“Ilse particle’s kinetic energy is much greater than an electron’s potential (orbital) energy.
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Here the quantity 27{)'&:717()2;?\/’,1 = (1535 (MeV/(g/cm?)). For ease later, we can define the following:

k :(0.1535){-5-2—']. (8.15)

The units of & are MeV/(g/cm?). In fact, very important dependencies are in k. The j term is a property of

9

only the material, and _Z_ is a property of only the incident particle, and it is this part that produces the Bragg

peak. The above applies to electrons, positrons, and heavy charged particles. Soft collisions are most, or at least
half, of the collisions for radiation therapy energies.

Hard Collision Mass Stopping Power for Heavy Charged Particles

A hard collision is often further defined as when an electron is ¢jected with a considerable fraction of the maxi-
mum energy transferable, 7, . These recoil electrons are called “delta-rays™ or “knock-on™ electrons, and they
can be seen in bubble chambers.

The differential hard collision cross section per electron for heavy charged particles is given by the fol-
lowing:

do , L2 1=BXTIT!
( B >} 516

—L =2m5 me” = —
AT e Ty

There is some dependence on particle spin for this differential hard collision cross section per electron. We
will use the form for zero spin particles (like alpha, pion, ...}, but it will apply to spin %2 particles (like protons,
electrons, muon, ...) provided 7" << Mc”.

Then the hard collision mass stopping power for H << I" is the following:

- N
d]ii - N;.*-) J' dGh TAT"
pdx | A o dT”

T [
f{j dT' 1T =(B* 1T}, | d’]‘} (8.17)
i

max
i

fl

KT, L) = (B T (T = H) ]

max max

k[In(z, 1 H)- B

niax

i

Now with combining Equations (8.13), (8.14), and (8.17), mass stopping power for heavy charged particles
can be written as the following:

dr dT dr, 2mc2ﬁ : 5 , 5
= . - L =k — H |- K In(T, - }
(de),. (de](.q(pdx](. k[h{lz(lmﬁz) ] g } [T 1)) G40
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Table 8.2: Magnitudes for Parameters Related to High-energy Particle Speed
Relative to the Speed of Light

0.80 626 0.64 0.57 -0.07
0.90 1214 0.810 1.45 117
0.95 20067 0.903 2.23 1.33
0.99 5713 0.980 3.89 2.91
With a bit of math, and recalling that for a heavy charged particle 77, =~ 2mc’ 1 b 7 = 2mv’, the Equation
(8.18) simplifies as follows:
dT 2me’ B* 5
— 1 = 2kiIn s —ﬁ" . (8.19)
pdx {1-37)
There is also a more handy form for mass collisional stopping power for spin ¥2 and 7" << Mc? as follows:
al Z’ Zz 2 R
ar | | {0.3071)[m Nl 1384m| L |- g2 s |, (8.20)
pdx ) A\ B° I-p
R R ]

WedHUM  pypicie

Here, mean excitation potential, 7, has units of eV. Note that the energy dependence in the brackets of Equation
(8.20) is weak (see Table 8.2).

Shell Correction

The complex motion of the orbital electrons is accounted for with the shell correction. When the particle velocity
is less than the orbital velocity of the electrons in that shell, then those electrons do not participate significantly in
collisions with the particle.

The shell correction Tactor is written as C/z, and it {mostly) decreases the mass collisional stopping power by

a small amount as follows:
d7 = 2% In 21??.6'"ﬁ; _ﬁ2 —-Clzl (821)
pdx ) H1-p587)

The shell correction is a function of the particle velocity and the atomic number of the medium. See Attix
(2004), page 172, Figure 8.3 for the magnitude and proton kinetic energy dependence of the shell correction, as
an example. Note that it is more important at lower energies.

Dependence of the Stopping Power on the Medium

The factor z/A has a value near 0.5 £0.05 for most elements, dropping to lower values at higher z. Hydrogen-1
has the highest value of 1, which is why it is used to slow or shield fast charged particles. See appendix B.1 in
Attix (2004}, page 527, for z/A values.

The term Inl also makes high-z materials have lower stopping power, Also, the sheil correction generally
decreases the stopping power.




0

62 Lectures on Radiation Dosimetry Physics: A Deeper Look into the Foundations of Clinical Protocols

Auto-normalized Dose

Auto-normalized Depth

Figure 8.3. Dose depth curves for heavy ions along the centered axis of a broad beam. Note that the Bragg
peak is due to the 1/B? in k.

Mass Collisional Stopping Power Dependence on Particle Velocity

The term 1/ is dominant at low energies. It causes the mass collisional stopping power to sharply increase as
the particle slows down. The result is the so-called “Bragg Peak” (see Figure 8.3).

When f = v/c =1, the energy increases quickly as the speed creeps up against ¢. The linac accelerating
microwave cavity uses this fact to keep the particle in phase with the phase velocity of the standing or traveling
microwave. The cavity is loaded with periodic barriers to slow the phase velocity below ¢,

Also, when f= 1, the 1/f3? term has little influence, but the 42/ (1-/4%) term increases. See Table 8.2.

The kinetic energy of a particle is directly proportional to its rest mass.

There is no mass dependence on the heavy charged particle stopping power. Therefore, any heavy particle
with the same velocity and charge will have the same stopping power, but the scatter and range straggling could
be different.

Mass Collisional Stopping Power Dependence on Particle Charge

At low energies (speeds < 0.1), there is an effective charge, Z', to be used instead of the charge, Z, because of
the attachment of the incident particle’s electrons. Higher-energy particles are more likely to be fully ionized. See
Anderson (1984), page 21, Figure 2.4.

The Z? factor means that particles with multiple charges have a much higher mass collisional stopping power
than singly charged particles. For example, if 5(12' = ﬁp,, then:

ary* ar "
e . 1) [ hadalt .
(pd_r J( (pd_rl (8.22)

This fact can be used to obtain stopping powers for any heavy charged particle from a table of mass colli-
sional stopping powers for protons. For this purpose, do the following steps:
1. Look up or calculate S for particle x with kinetic energy, (W)
Look up or calculate the proton kinetic energy, T,, for the same /3

e
Multiply the mass stopping power for a proton by (Z, /ZI',}’. Note that 7 s unity, and Z_ is the
effective charge on particle x at its speed.

2.
3. Look up the mass stopping power for a proton with kinetic energy 7
4.
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] -

‘{primzu'y > 7 /2
Bound electron
> iy

Incident eleciron , .
chtmdury < 7 /2
R ali _
' ]mznx =T/72

Figure 8.4. Kinetic energy after a hard collision by an electron. By convention, the primary charge has more
energy than the secondary charge.

It should be emphasized that through the decades, the stopping power formula has been progressively
refined. One of the most important refinements was to cure the high-speed (v approaching ¢) limit. As explained
in Jackson (1999), page 636, the very fast particle causes so much ionization from relativistic effects that it self-
shields its charge from the plasma effect of the ionizations it creates. The time scale associated with this shielding
is manifest by the plasma frequency quantity that appears in this limit. Yet, the fundamental relations covering
most of the important physics for mast applications and for most particles are described by the simple derivation
at the start of chapter, and this fact is remarkable in the history of modern physics.

Electron and Positron Interactions

In hard collisions by electrons, one cannot tell which was the primary or which was the secondary—by conven-
tion, the one with the highest energy (that is, the faster electron) is the “primary.” Therefore, the maximum
kinetic energy transferable is the amount that the lower-energy electron can have (Figure 8.4).

However, in the posinron case, we do know which particle is which, and we cannot reassign the primary

Jabel, so the maximum kinetic energy transferred is 7 =7 (look at Table 8.1). Therefore, the maximum
kinetic energy transferred is 7/2 for electrons, and it is T for positrons.
The differential cross section for the electron hard collisions—which describes the collision between two

free electrons—was derived by Moller (1932) as follows:

do-": 527”.(:)3”%'2' qz 5 ! J 1-|13- ! 5 d (lmy_ + T 5 ! . (82’%}
dr BTy \T-T T —mc* T T T —mc* -1

Note that z dependence here is implicit in ° via mass stopping power. The differential cross section for pos-
itron-electron collisions is even more complex, and it was derived by Bhabha (1936).
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Mass Collision Stopping Power for Electrons and Positrons

The mass collision stopping power for either electrons or positrons is given by the following:
O | plpn| D ), e & 5C1 (8.24)
pdx ) 201/ me™)” Z

the two quantities F(7) and F*(7) are defined for electrons and positrons, respectively, as

where, with 7 =

]716‘2 ’
follows:
- , (@?/8)-Qr+DIn2
F(t)=1-p*+ e _ —
. B’ 14 10 4
F'(r)=2In2-+—423- '
i 12{ (T+2) ’ (t +2)° +(1—+2)-‘} (8.26)

The term & is a polarization or density effect correction that we will discuss in the next section. Recall that

2

%?} and its units are MeV/(g/cm?®). The shell correction term, C/z, is the same for electrons
and positrons as it is for protons, provided that #is the same. At low positron energy, the positron mass stopping
power is slightly greater than that for electrons, and at higher energies, the opposite is true.

k =(0.1535)(

Polarization or Density Effect Correction

Atoms are much closer together in condensed matter (liquids and solids) than in gases, and this will be an import-
ant factor for the density effect. The electric field will be reduced by some self-shiclding, and it happens for these
light particles more easily because of their higher speed. Recall that the light particles are more relativistic for a
given energy. The relativistic effect here comes from the field line contraction in the direction of the electric field
momentum transfer. The relativistic field line contraction leads to an increased polarization of charges in the
atoms. This effect reduces the mass collisional stopping power.

The density effect is roughly proportional to the following quantity (see Attix, Figure 8.4, page 173):
X =10gm(ﬁv]—[)’2). (8.27)

In the highly relativistic cases (Figure 8.5.b), the field lines get Lorentz-contracted (locally and temporarily
stronger), and they strengthen the field, enhancing the polarization of the nearby medium by some ionizations
(self-shielding the way a plasma does). Atoms away from the trajectory will see a smaller impulse from the pass-
ing charged particle. This effect happens significantly for electrons and positrons because they are faster and,
therefore, more relativistic. In the slower cases (Figure 8.5.a), the atoms (electron shells) are more spherical rela-
tive to the passing charged particle.

The density effect is larger for low-z materials since they polarize more readily. To u very good approxima-
tion, 0= 0 for gases. So water and air can be very different for this. Above 10 McV, this factor becomes more sig-
nificant (see Figure 8.5 in Attix, page 175). The density effect is important in ion chamber dosimetry where the
cavity is a gas and the wall is a solid. The fast charged particles come from the wall, but we measure the ioniza-
tion in the gas. This energy-dependent term can lead to a big difference between an ion chamber and a phantom
dose in some cases. This effect can lead to a violation of Fano’s theorem.
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Figure 8.5. A non-relativistic particle (a) does not experience the Lorentz contraction that a relativistic particle
does (b} which acts to enhance the polarization of the medium by contracting field lines near the fast particle.

Restricted Mass Stopping Power

Consider a thin foil. If we did not remove fast Srays from the collisional mass stopping power, then dose calcu-
lated from stopping power would be overestimated. That is because the thin foil would not have &rays equilib-
rium—there would be no &rays coming into the region, only leaving, These Srays deposit most of their energy
near the end of their track, like all charged particles (see Figure 8.6).

. S -ray
Doseina 8
dr

thin film: D o 22

P

Z
A

Figure 8.6. We need to use restricted stopping power with a proper value called A. The dose is overestimated
with unrestricted stopping power. The foil is so thin that the stopping power is the same.
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Energetic &rays or knock-on electrons leave the region (the particle track) with significant amounts of
kinetic energy. However, the stopping power considers the primary particle loss 1o be deposited locally and con-
tinuously to the particle track. For this reason, sort of as we do with uncharged particles, the &rays should be
treated as carriers of energy more than depositors of energy in this context. They should be treated separately or
Just removed from the stopping power of the main particle altogether.

Later in Spencer-Attix cavity theory discussions, we will remove these energetic &rays from the stopping
power calculation if they are energetic enough to cross the cavity. The drays that do not cross the cavity will be
treated as though they are immediately local to the primary charge path, are not tracked, and will be absorbed into
the continuous slowing down stopping power. The important concept here is that the primary charged particle
should cross the cavity. In fact, it should cross all the way. If a secondary particle (&ray) goes all the way through
the cavity, then it, too, should be treated as a primary charged particle’.

The restricted mass stopping power, £(—] , will include energy losses up to an energy transfer equal (o A,

pdx J,
Those drays with T>A will be treated as if they were primary charged particles. &rays with encray T<A are
treated as having no energy and, therefore, their energy is deposited locally with a continuous slowing down of
the primary electron. See Figure 8.7.

The cutoff energy is somewhat arbitrary, but it is chosen to fit a region of interest, like the main track of
energy deposition or a small cavity: these drays with T<A stay in the region of interest and get included in a con-
tinuous slowing down stopping power.

We can see that this variation in energy—irom a few to several discrete scattering events—ieads to range
straggling. Note on Figure 8.8 how there will be a variation in ranges.

pdx pdx o privary
unrestricted mass (collisional) stopping power.

. dr dT :
lim | ——| = — 1. (8.28)
ot \pdx )\ pdx )

The restricted mass stopping power for heavy charged particles is driven by just replacing 7! with A in the
integration to arrive at the following:

, dr dr oinitia . . .
Also notice that (—J < [%J A T then the restricted mass stopping power will equal the
A ¢

IT 22 ,
AT | 2eBA Y g nCL (8.29)
pdx } (157 z
The restricted mass stopping power for electrons and positrons is given by the following:
T (r+2 ‘
_d_ =kiin LTS (et 7)0 +G1(T,?])—5-—2£ . (8.30)
pdx J, 20 fmey z

'Note that here we use the term primary charged particle, but it is secondary to the primary photon beam,
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where, with 7= T/mc*, n=A/T, and k = (0.1535)( %], the two quantities G (7)) and G*(%7) are defined

£
A
for electrons and positrons respectively as follows:

G (rup) = =1- B +Inf4(t =]+ 1= +( —ﬁz)[rzrf /2 +(271 +Dn{l —??}] (8.31)
G e =Indn— B[ 1+Q2=Em =G+ EWET /D + 1+ E0)(E™ /3’ — (&7 ramt]. (8.32)

Here, &= (74 2)".

H A=T' =1/2, then 17=1/2 and, therefore, G(7,1/2) = F (7). And if A= 7' =T then 77=1 and, there-
fore, G (1) = FY{1).

Note that without scattering and withour &rays, etc. there is a theoretical Bragg peak for electron beams.
However, in all real situations, scattering dominates electron beams impinging on matter in such a way thal the
peak is completely blurred beyond recognition.
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Linear Energy Transfer and Unrestricted Linear Energy Transfer

The stopping power is the amount of energy lost from the particle’s point of view. Linear energy transfer
(LET), however, is the restricted stopping power from the point of view of the medium. 1t does not include
nuclear reactions either. The linear energy transfer symbol is L, as follows:

T
L, x[(—J :p(—dTJ : (8.33)
dx J, pdx j,

Linear energy transfer often has the units of keV/um. The unrestricted lincar energy transfer is when
A-yeo (0r 7, even if 7'is very big). So the unrestricted linear energy transfer is written as foliows:

S=L, = {QJ =p —(—ig—- , (8.34)
dx } pdx .

and has the units of ke V/um,

Mass Radiative Stopping Power

Bremsstrahlung (German for “braking radiation”) is the production of x-rays due to an acceleration or de-accel-
eration of charged particles in a strong clectric field. The differential cross section for bremsstrahlung production
by a charged particle is given by the following:

dO’ml :L 027 -Zz T-%—;‘i‘l'(,‘2 B (8.35)
d(hvy 137 mc” T (hv)

Here, m is the mass of the fast charged particle” and 2° is the material effective atomic number squared. The factor
B is a dimensionless parameter that depends on the ratio of x-ray energy to charged particle kinetic energy, v/ T,

The z* dependence means that bremsstrahlung is much more likely to occur in high-z materials. X-ray anodes
are often made with tantalum or tungsten partly for this reason. The more important reason is that X-ray anodes
need a high melting temperature.

The 1/hv dependence means that low-energy x-rays are created more often, However, an energy of hv = T'is
possible, but unlikely.

The mass radiative stopping power is given by the following:

N, T
Ar. :—-’LI fﬁ(hv)d(hv}
pedx A s d(hv)

=

i

1
42T +me?) J Bd(hv/T) (8.36)
4]

il

:>|2 >

oy~ (T+mc*) B,,

Note that m can be Tor heavy particles, bul the 1/m® factor mesns, for us in medical applications, it is always electrons that we are con-
cerned about for radiative losses.
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where™:
i
B, = [ Bd(hwIT). (8.37)
4]

2

1 o -2
Note that o, = — ‘ — | = Jo.
137\ mc” 137

For T <mc?, B, =16/3. 1f mc® < T << 137 mc’z"", then there would be no screening and no z dependence

5 (r+ nzc:z) B i T

and B, = 411{ —J. There would be complete screening but no T dependence for 7">> 137 me'z

ne”

- 1
B =41 1n(183z "y~ —
and B, (n( ) 18] .

Heitler’s derivation of radiative stopping power is not particularly accurate by today’s standards. The 1CRU
Report 37 is much more accurate. Tables 8.3, 8.4, and 8.5 compare Heitler’s derivations and ICRU-37 with
respect to the radiative stopping power for three elements: carbon, aluminum, and Jead, respectively. Neverthe-
less, Heitler’s work is illustrative and simple (elegant), and a huge accomplishment for its time.

At high energies (7' >> mc’) and, therefore, complete screening, the mass radiative stopping power is given
by the following:

[%} -0, ’ZA ST[In(18327"")~1/18], (8.38)

The comparison between mass collisional and radiative stopping powers for electrons in carbon, copper, and
lead is plotted in Figure 8.6 of Attix (2004).

The dependencies on the medium and the particle kinetic energy are different for the two types of stopping
powers at high energy. For T >> mc?, the dependencies are as the following:

ﬂ o _],YJL - (8.39)
pdx ) A "
(.ﬁ"l} o Na o (8.40)

pde ) A

Table 8.3: Stopping Power for Carbon (z = 6)

0.01 0.00291 0.00315 -7.6
0.1 0.00341 0.00341 ~(.06
1.0 0.0109 0.0105 33
5.0 0.0705 0.0058 7.3
10.0 0.163 0.151 8.0
200 0.376 0.342 10.2
40.0 0.792 0.751 55

*See Evans {1955), page 603, Figure 1.1.
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Table 8.4: Stopping Power for Aluminum (z=13)

0.0 0.00608 0.00656 -7.3
0.1 0.00713 0.00748 —4.6
[.0 (.0227 0.0212 7.3
5.0 0.147 0.126 16.7
10.0 0.341 0.286 194
40.0 1.56 1.38 134

Table 8.5: Stopping Power for Lead (z=82)

0.n 0.0315 0.0205 54.0
0.1 0.0369 0.0445 -17.1
1.0 0.118 G.129 -87
5.0 0.764 0.577 323
10.0 1.77 1.21 40.6
40.0 6.97 5.40 29.1

Therefore, with the input units for 7, the ratio is given by the following for 7 >> mc™

dr dr _ i (MeV) 8.4l
pdx ) [\ pdx ). 700 840

Radiation Length

The radiative stopping power energy dependence (7)) can be separated out in this approximation by the follow-
mng:

Z2 o Fy {(8.42)
The solution of this differential equation is as follows:

2%
rete (8.43)

Here 7 is the initial kinetic energy at x=0. The quantity — is called the radiation length, and 1t is defined
Xy
through this procedure. It is the distance it takes very high-energy charged particles to reduce their kinetic cnergy
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to 1/e of their original value by radiative interactions alone. The radiation length is a characteristic of the material
and 1s given by the following:
] N, , ] .
— =do,—4 77| In{183z™"") — — 1. (8.44)
Yo A 18
em’
g

Note that z in Equation (8.44) is for material. The units of the radiation length are

Radiation Yield

The radiation yield, Y(7}). is the average fraction of energy emitted by bremsstrahiung as the charged particle
slows down from an energy 7, to rest’ (Figure 8.9). The radiation yield is given mathematically by the following:

| % (T / pdr)

Y(I)=— =T, 8.45
7o) T, l (a7 1 pdx) ‘ (8.42)

where,
(dT/pdx) = (a"]‘/,od.x)v —|~(dT/pd.x)f. (8.46)

The average amount of energy radiated is 7, ¥(T,)). Thus, according to Figure 8.9, the average amount of radi-
ated energy between two kinetic energies is the following:

Z (/?V )‘I' -

It Y(7,) is averaged over all initial energies of electrons and positrons set in motion by photons, then the
result is g, the average fraction of the initial kinetic energy lost due 1o radiative interactions (positron annibila-
tion-in-flight is ignored at this moment, i.e., we do not count the annihilation photons as part of the bremsstrah-
lung). Therefore,

=LY(T)-1T,Y(T,). (8.47}

2

1 T .
g= j Y(T,)0'(T,)dT,. (8.48)

4]
where the quantity ® is the initial fluence of electrons set in motion, which is given by the following:

P

b= [ (T, (8.:49)

Figure 8.9. Geometry of bremsstrahiung radiation in the particle’s track.

In CRU-37, it is assumed that the charged particle doesn’t create any secondaries as it slows down: continuous slowing down,
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The quantity ®'(7,) is the initial energy spectrum of electrons set in motion by all photon interactions, and
T 18 the maximum initial kinetic energy.

Y

Elastic Scattering

When & charged particle interacts with a nucleus and there is no bremsstrahlung, the most likely thing to have
happened is elastic scattering {(Figure 8.10). Ernest Rutherford (1911) explored the elastic scattering cross section
while he was studying the structure of the nucleus. Regarding Figure 8.10, Rutherford’s (elastic) scattering cross
section is given by the following:

dlo-Rmh — i ez - (] B /32) l . {850)
ao, 4\ Mc? B sin'(0/2)

Note that the elastic cross section is proportional to /M2, so heavy charged particles scatter much less than
electrons and positrons. The cross section is also proportional 1o 1/5%, therefore scattering is much more likely
for low-energy (speed) particles and the 1-82 factor further decreases the scattering probability as f--1.

According to Equation (8.50), an individual elastic scattering event is much more likely to happen for small
angles since the Rutherford cross section is proportional to 1/sin'(6/2).

The Rutherford theory really onty applies o feavy charged particles of zero s$pin, so its application to ¢lec-
trons is a stretch. This cross section also doesn’t really apply to B>2z/137 (Born approximation). Mott
(1929,1932) used both the relativistic Dirac theory of the electron and the Born approximation. McKinley and
Feshbach (1948) found an acceptable analytical formulation of Mott’s result for most situations. For electrons,
their formulation is as follows:

d—"’f—’[] = B28in* (01 2)+ 2Bz /137)(1 —sin(0 / 2))sin(O / 2)]. (8.51)
dQy,

do, ,

4o

i

The McKinley-Feshbach result is valid for B= 1 if (z/137) < 0.2, so it is more appropriate for describing
electron and positron scattering in low-atomic-number materials, We can see that for small scaltering angles or
low particle velocity, the McKinley~-Feshbach equation reduces to the Rutherford equation.

Multiple Scattering

After a large number of small scattering events, the particle’s direction can change significantly: this is called

Figure 8.10. The geometry of elastic scattering.
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{0 1/¢ of their origina} value by radiative interactions alone. The radiation length is a characteristic of the material
and is given by the following:

N,
N =d0, 4z [111(183z"”3}—L}. (8.44)
o A 18
Note that z in Equation (8.44) is for material. The units of the radiation length are cm
g

Radiation Yield

The radiation yield, ¥(7,), is the average {raction of energy emitted by bremsstrahlung as the charged particte
slows down from an energy 7, to rest’ (Figure 8.9). The radiation yicld is given mathematically by the following:

i ir (dT/pd,r)

Y(I)=— LT, 8.45
7o) T, 4 (dT [ pdx) ‘ (5:49)

where,
(dT ! pd.x) = (dT / pd.x)(_ + (dT / pdx)r . (8.46)

The average amount of energy radiated is 7,Y(7,). Thus, according to Figure 8.9, the average amount of radi-
ated encrgy between two kinetic energies is the following:

2wy, =TT -TY(T,), (8.47)

If Y(T,) is averaged over all initial energies of electrons and positrons set in motion by photons, then the
result is g, the average fraction of the initial kinetic energy lost due to radiative interactions {positron annihila-
tion-in-flight is ignored at this moment, i.e., we do not count the annihilation photons as part of the bremsstrah-
tung). Therefore,

1 T
g= | Yae'@)ar,. (8.48)

0
where the quantity @ is the initial fluence of electrons set in motion, which is given by the folowing:

o,

O = [ DT, (8.49)

Figure 8.9. Geometry of bremsstrahlung radiation in the particle’s track.

0 ICRU-37, it is assumed that the charged particie doesn’t create any secondaries as it slows down: contimuous slowing down.
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The quantity ®'(7}) is the initial energy spectrum of electrons set in motion by all photon interactions, and
T is the maximum initial kinetic energy.

max

Elastic Scattering

When a charged particle interacts with a nucleus and there is no bremsstrahlung, the most likely thing to have
happened is elastic scattering (Figure 8.10). Ernest Rutherford (1911) explored the clastic scattering cross section
while he was studying the structure of the nucleus. Regarding Figure 8.10, Rutherford’s (clastic) scattering cross

section is given by the following:
(jglﬁdh - i | ez ) (] - ﬁz) 1 (8.50)
aQ, 4\ M B’ sin*(6/2)

Note that the elastic cross section s proportional to 1/M?, so heavy charged purticles scatter much less than
electrons and positrons. The cross section is also proportional to 1/8%, therefore scattering is much more likely
for low-energy (speed) particles and the [/ factor further decreases the scaltering probability as f->1.

According to Equation (8.50), an individual elastic scattering event is much more likely to happen for small
angles since the Rutherford cross section is proportional to 1/sin'(8/2).

The Rutherford theory really only applies to heavy charged particles of zero spin, so its application to elec-
trons is a stretch. This cross section also doesn’t really apply to f> 2/ 137 (Born approximation). Mot
(1929,1932) used both the relativistic Dirac theory of the electron and the Bom approximation. McKinley and
Feshbach (1948) found an acceptable analytical formulation of Mott’s result for most situations. For electrons,
their formulation is as follows:

(]- . I a . i ' .
f(‘;_g;L - iif)_fj[x ~ B sin™(0 1 2)+ 2P(z/ 13T)(1 = sin(0 / 2))sin(0 12) ], (8.51)

[

The McKinley-Feshbach result is valid for f= 1 if (z/137) < 0.2, so it is more appropriate for describing
electron and positron scattering in low-atomic-number materials. We can see that for small scattering angles or
low particle velocity, the McKinley—Feshbach equation reduces to the Rutherford equation.

Multiple Scattering

After a large number of small scattering events, the particle’s direction can change significantly: this is called

Figure 8.10. The geometry of elastic scattering.
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Figure 8.11. Gaussian multiple scattering showing an additional non-Gaussian component.

multiple scattering. The distribution of angle from the original electron direction after a beam of electrons have
traveled a distance, dx, is illustrated in Figure 8.11.

In Figure 8.11, the quantity ®'(8)/®, is the angular distribution of electrons having an angle & normalized to
the direction of the incident fluence @,. The plot in Figure 8.11 suggests that the multiple small-angle scattering
events are basically Gaussian, with a tail described by a deviation from a Gaussian. The equation for multiple
Gaussian small-angle scatlering is given by the following:

dd ¢ 4 5
?5: — zgz—“) exp{—Q /2(0 )}, (8.52)

where (62> is the mean square scattering angle and represents the variance (square of the standard deviation) in
the angle of scattering.
Let’s assume that a particle traverses a medium between x and x+dx with a density p. The value of (92> at
X+ dxis <02> +d <92 ) Thus,
2 ]
{0 >=2nivﬂw{ﬂf\ (0%) 22t 53 040. (8.53)
pdx A, d<i,

nan

The maximum scattering angle occurs when the particle comes very close to the nucleus. For this case, the
{inite size of the nucleus has to be accounted for. Also, there is a minimum scattering angle because of the elec-
tron screening of the nuclear charge. These limits are as follows:

0, = 280477 IZF (8.54)
B

0 = 1 ,;”A‘_ml"“ﬁ;, (8.55)
min 137 ﬁ

Now substituting Rutherford’s scattering formula and using the small-angle approximation that =6, mul-
tiple angle scattering power is given by the following:
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d(6? 2,2 11 @2y P
( _>—2nﬂﬁ~—“ BT 09— oao,
pdx A 4 B (0/72)

9,

min

o 2
=8r ﬁ};—"—zzr; a- f )ln[%}
B

N 1= B" _
=16757’%2;’2%111(196@/14)”"2 ”-‘).

(8.56)

min

0
To a good approximation, Equation (8.56) can be expressed in terms of the radiation length, y,, as follows:

d(6*) a4z a-p>H 1 (8.57)

pdx 1/137 B* .~

The complete treatment of electron scattering should use Mott scattering and include the effects of a few
large plural scatterings, as well as include the elastic and inelastic interaction with electrons and inelastic brems-
strahlung interactions. The complexity of electron scattering, with some non-Gaussian behavior as well, has so
far only yielded to detailed analysis with Monte-Carlo computer simulation methods. One can also always create
empirical tabulated data for standard field shapes and experimental setups, but then the tables are not easy to
translate into non-standard situations.

Particle Range

The range, R, is the expectation value of the path length (not a straight line, in general) through a medium as a
particle comes to rest. The range is a derived quantity, and there are various ways to describe it, as we will dis-
cuss.

If the energy loss were truly continuous, then all of the particles would have the same path length. That range
approximation is called the continuous slowing down approximation (CSDA) and is given by the following:

T, =]
0 dT
RCSDA = :[(EJ dT (858)

The stopping power only defines the average energy loss per unit distance. There can be differences in the
rate of energy losses due to stochastic variation. More importantly, there can be large discrete energy losses due
to knock-on or yray production and bremsstrahlung production. The distribution of relative energy losses in
crossing a path pdx would look like Figure 8.12.

(/T

di’ | pdx . 3 s
—— | = with statistical variations
pdxc) T,

Long tail due to discrete
interactions

Almost zero probability
of losing none its energy Finite probability of

losing all its energy

Figure 8.12. The distribution of rela-
tive energy losses showing the most
! probable value and it's variation in
crossing a path pdx.

relative energy lost 7'/ T} in crossing a path pdx
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Figure 8.13. Heavy particle planar fluence over distance from a single beam from the left showing Gaussian
range straggling.

The variation shown in Figure 8.12 is called range (or equivalently “energy”) straggling: a particle may
vary in range from another. When integrating along the path, considering net flow crossing the plane, one gets a
more common picture (Figure 8.13). One can use the planar fluence @, (pdx) to describe net flow in one direc-
tion: useful for some range calculations, but not useful for dosimetry, which does not care what the direction of
travel is. Note that it will be very close to the fluence with small amounts of multiple scattering that can change
net angle crossing a plane perpendicular to the original direction. See Kempe and Brahme (2010) for an analyti-
cal reatment of planar fluence versus ordinary fluence for Li ions, which have significant secondary fragment
particles along their path. This is different from protons, which would look more like Figure 8.13.

Some heavy particles straggle significantly if not fully ionized: (Z"/Z)< 1. This leads to the range being
slightly larger than the CSDA range for Z>1 particles.

Calculating the CSDA Range

Just as we could find the stopping power of any heavy particie knowing the proton stopping power, we can find
the range of any heavy particie knowing the proton range. A table of proton ranges is given in Bichsel (1968).

All heavy particles (not electrons) with the same charge and speed have the approximately same stopping
power. The kinetic energy of a particle is proportional to its rest mass: T/M¢* = ¥—1. The stopping power of a
multiply charged particle, i, has Z*" times the stopping power of a singly charged heavy particle for the same /3
Therefore, to calculate the CSDA range for any heavy ion, first Jook up the (R ,4),00, fOr (a proton) of energy 7,
= (M, /M)T where T"and M are the energy and mass of a heavy charged particle, and M, is the proton’s mass. Then
calculate the CSDA range by the following:

2

. zZ? (1 .
R(.'.&'.')A ("ﬂ"}") = (Regna ),u -M'_ . (8.59)

”

Projected Range

The projected range, <1) is the expectation value of the farthest depth (not a straight line in general, and may
come back on itself) through a medium as a particle comes to rest. If' N, is the incident number of particles, then
the projected range is given by the following:

N
<I> = _]VL 12 ff({l‘!l’f{‘.\i ! (8.60)
0
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Figure 8.14. The projected ranges "<t>" are compared to the maximum ranges “{t__}" and the CSDA ranges
"(Resna)” for heavy charged particles (such as protons) versus electrons. Note that the F\eavy scattering of elec-
frons means that the CSDA range overestimates range for electrons—a useful way to make conservative
aﬁproximations. Far the heavy particles, all three values are close together; the heavier the particle, the more
this is true.

For low-energy electrons, the projected range is less than R, because of scattering, so the CSDA range for
electrons is a convenient overestimate. The amount of multiple scattering and energy straggling for protons and
other heavy charged particles is smalt so that (1 )P ~{Rgpq), (Figure 8.14). The amount of multiple scattering for

electrons is high (recall that the scattering cross section is proportional to 1/M?). In fact, the amount of electron
scattering is so high that it is unlikely that an electron could have penetrated without scattering. Therefore, R ),

=1 .. forelectrons where 7 is the maximum penetration depth for electrons.

max NN

Practical Range

The practical range or extrapolated range, R, is used for electron beams and is defined at the intersection of
the fall-off in the electron dose extrapolated to zero dose, and the asymptotic extrapolation of the bremsstrahiung
tail as shown in Figure 8.15. From Attix (2004), we have the following:

: o
R ~054—E— .7, 0305, (8.61)
cm” xMeV cm”
Electrens: this is the
Dose(t) bremssirahlung tail.

distance ¢

Figure 8.15. lllustration of the method to obtain the practical range: used for electron beams.
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The mean kinetic energy as a function of thickness, 1, is given by a couple of formuias as follows:

Po {5,450, () e

S,

where, (S,‘ )U E(d?}_‘\:_:m/dx). and (S(_)“ E(d}';l,__‘_m/dx)_ are the radiative and collisional stopping powers

respectively, evaluated at the surface of the material, and 7, is the initial electron energy. This gives a very handy
equation as the following:
T~T,(1-1/R)). (8.63)

The distribution of electrons in a medium is best modeled with Monte-Carlo methods: beyond the scope of
this book.
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Radiation Equilibrium

Following a similar treatment in Attix (2004) assume a spatially infinite source of radiation. It can be both joniz-
ing or nonionizing. A perfect example would be radioactivity in the ocean. As long as the dimensions of the
space are much larger than the mean free path of the radiation, it will approach this ideal situation. The ideal sit-
uation we are describing has the following characteristics:

* homogeneous atomic composition,

* homogeneous density,

 homogeneous distributed source, and

* homogeneous electric and magnetic fields: zero is even better (what we will consider).

The most important assumption to remember for equilibrium is for every interaction sequence, there Is a spa-
tially reciprocal sequence”.

Therefore, radiation equilibrium means that the number and energy (i.e., the energy spectrum) of particles
going into & volume must be the same as leaving the volume dv with a mass dM. See Figure 9.1,

As a result, radiation equilibrium exists under the following conditions:

1. Spectrum of photons entering = spectrum of photons leaving

D)l =D, 9.1}

e

W)l = W)l 9.2)

"

hv,

hy,

Figure 9.1. A differential mass and volume experiencing radiation equilibrium.

*Some condition on the continuity and homogeneity of the radiation field is required.
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2. Spectrum of charged particles entering = spectrum of charged particles leaving

D), =D, (9.3)
YT, =Y'(TH ,, . (9.4)

In a relaxation of the spectrum constraint, if the above is true, then we can say that the radiant energy “in”
must be the same as the radiant energy “out” for all types of particles, charged and uncharged.

Rm i":: ]eum lu’ (95)
R =R 1. (9.6)

Hi [T

The energy imparted to a volume is given by the following:
&= Riu ’N __]enm Iu +Rm |(‘ _Rnnr I(' +ZQ (97}

where EQ is the sum of the rest mass energy converted to kinetic energy (excludes neutrinos). This is best way to
express the energy imparted. It is positive if rest mass is lost. For radiation equilibrium, the energy imparted is
given as follows:

£= ZQ. (9.8)

The absorbed dose for radiation equitibrium in this ideal case is equal to the following:

_de _d(20) 09
CaM T aM 2)

The radiation equilibrium concept is especially important for nuclear medicine and health physics issues. For
external beam radiotherapy, we will have to make conceptual adjustments: the spatial invariance cannot be
strictly satisfied.

If all the secondary particles are in equilibrium (secondary electrons and photons), then the attenuation of the
primary beam will equal the dose. The energy imparted is simply the energy removed from the primary beamn. In
most cases, the secondary photons will not be in equilibrium from a unidirectional beam. This will lead to the
transient charged particle equilibrium concept, discussed in detail later. Therefore, the following upper limit on
dose is an idealized situation (Figure 9.2). In general, terma sets an upper limit to dose as follows:

D e TERMA =¥ £ (9.10)

Figure 9.2. A differential volume experiencing equilibrium of secondary photons which is, in general, not
likely. In this case, the dose would be the terma.
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Figure 9.3. This inner medium is experiencing
radiation equilibrium even though it is part of a
larger but finite medium.

T " . p=1.0g/cn’

-

z \ /
g

Figure 9.4. Fano's theorem would say that the mass
attenuation coefficient and the mass stopping power
would be uniform in this figure.

The concept of radiation equilibrium will stilt apply for media that don’t fit the stringent conditions above.
An infinite medium is not required as long as the mean free path of the uncharged particle is much less than a
typical radius to the edge of the volume. That is, ¥ <<r, where 7 is mean free path of the photons and r is the
radius to the edge of the volume (Figure 9.3).

Note that we have left out the charged particles lately. In general, if 7 << r, then 1. <<<r wheref  isthe

it

maximum range of charged particles: usually 7 << 7 is a safe assumption in medical applications.

Fano's Theorem

Simply stated, Fano’s Theorem is that a homogeneous density is not required for radiation equilibrium as long as
the source strength, the attenuation of uncharged particles, and the stopping power are all proportional to density.

A rigorous treatment of this theorem has been formulated by Spencer (1975). Fano’s theorem is normally
roughly true. The stopping power and the attenuation coefficient are dominantly proportional to density: that’s
why we use mass attenuation and mass stopping powers, However, at therapy energies, say >1 MeV, the density
effect will cause Fano’s theorem violations.

The various materials that make up the region of interest must have the same or very similar atomic composi-
tion. This leads to the “fissue equivalens” concept one often hears: amounts to a z-effective requirement.

For radiation equilibrium to apply in the 0.5 g/em” region illustrated in Figure 9.4, the source density must be
172 of the rest of the media, and the atomic numbers must be equal in all the regions.

Charged Particle Equilibrium

For charged particle equilibrium, we need to address the situation of 7 £ r, and yet 1 << r. It is still based on

mux

Loy << T . Therefore, we do not satisfy radiation equilibrium. However, let’s observe that we do have an equilib-

rium for charged particles:
R | %R | 9.11)

mou F T

Ier'n '('ﬁ Rnut |c' : (9. l 2)
Therefore, the energy imparted is equal to the following:

&= Riu |H M‘Rmrr Iu +ZQ (9.]3)
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hv,

hv,

Figure 9.5. A differential mass and volume experiencing charged particle equilibrium.

If radiation equilibrium exists, then so does charged particle equilibrium, but the reverse 1s not true since
1. << 7. S0, charged particle equilibrium can exist without radiation equilibrium (Figure 9.5), and it usually
does.

If 7>, then almost no uncharged particles wilt interact. Therefore, the absorbed dose in dV will only be

due to radicactive decays that produce charged particles (Fdecay and o~decay):
Ruur |H: Ieiu |u + (ZQ), . (9 ;4)

By substituting Equation (9.14) into (9.13), the energy imparted will then be given by the foliowing:

&= (ZQ)‘_. 9.15)

So then the dose would be the following:

D:M, {9.16)
aM

where, (ZQ) = (ZQ ) - (ZQ)(A, the rest energy given to uncharged particles (like photons or neutroas, but not
neutrinos that have fantastically huge mean free paths).
The dose is difficult to calculate analytically in the following situations:
1. Charged particle equilibrium does not exist because source region is too small {r <7, ).
2. Charged particle equilibrium does exist, but a significant amount of photons interact in the source vol-
ume; however, the source volume is not large enough to establish radiation equilibrium (¢ <<r <7).
3. The source volume is large enough to establish radiation equilibrium, but the atomic composition is not
homogeneous or the source strength is not proportional to density.
For these types of cases, Monte-Carlo calculations should be used. The reader is encouraged (0 see Atlix
(2004) for discussions about the inclusion of electric and magnetic fields for radiation and charged particle equi-
librium.
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Exposure

The old quantity of exposure, X, or long ago called exposire dose, has an equilibrium concept intrinsic to its for-
mal definition, but it is often used informally.

Exposure, X, is defined via the ICRU (1980) definition as: “The quotient of the dQ by dm, where the value of
d(Q is the absolute value of the total charge of the ions of one sign produced in air when all of the electrons (neg-
atrons and positrons) liberated by photons in air of mass dm are completely stopped in air.” In this definition, note
that the charges are liberated, not collected. They are liberated by photons, and only in air. Also note that the sec-
ondary electrons are starting and completely stopping in the air. The completely stopped in air impiies CPE.
Therefore, exposure is given by the following:

ﬂf, 1 (K:) e ol
X=y — = =——" = (K ) [(33.971/C). 9.17
qj ( p ]E,oir ( W / ¢ )rm {W / E) ( ‘ )"“' ( ) ( )

Under CPE conditions, the dose is proportional to exposure (X o (Kr )(m‘), and it was originally called “expo-
sure dose”

The 81 unit of exposure is C/kg for dry air. The historical unit is the roentgen (R}, and it is defined as the
exposure that produces one esu of charge of either sign in I cm’ of dry air at 760 torr and 0 °C. p,, at these con-
ditions is 0.001293 g/em’):

|polesu ] _ 1C 10°g
cm® 0.001293 g/cm’ 2.998x10%esu kg

=2.58%107C/kg. (9.18)

Attix (2004) calls the exposure the third most important quantity, and that is certainly true historically. He
says one would “puzzle” over the definition to get the following interpretation: “The exposure X is the ionization
equivalent of the collision kerma, K, in air for x-rays and prays.”™

However, kerma places no conditions that one is at equilibrium.

The phrase “completely stopped in air” is certainly implying some type of charged particle equilibrium. So, it
is probably fine to rigorously use it for typical diagnostic energies, but it’s a real conceptual stretch for its use in
radiotherapy beams. Just be aware that many people use it like Attix does—as a stand-in for colfision kerma.

If the photon beam is not monoenergetic, then do the following:

l’l\'””\

X = I w’(/'zv)-(&'-"—

(R R 0.1¢
p Jn."r (W 'I e)m'r ‘ ( ‘JV) () 1))

ine=()

where '{(v) is the energy spectrum of the energy fluence for photons, and ¢,/ depends on photon energy.
The exposure rate then is calculated by the following:

LIS,
X=| y}'(iw).[h

e (1), 9.2
P )mr (W / e)ru'r ‘ ( TV) () 0)

Ine=:()

The CPE condition is fulfilled for many diagnostic energy situations. For a therapy beam, though, it is gener-
alty not. However, people use exposure for all types of situations as a stand-in for collision kerma. Since air is
reasonably close to tissue equivalence, it is also a stand-in for dose. However, at low energies, this equivalence is
tess valid, and yet, that is where the implied CPE condition is more likely to be satisfied. This quantity is, there-
fore, problematic if taken too literally.

*Find more of Allix’s (2004} feelings about exposure on pages 32-34.
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The only way to directly measure exposure according 1o the 1980 ICRU definition is with a free-air ioniza-
tion chamber, a very specialized open-cavity well described in Attix (2004). In general, one can only do this prac-
tically up to photon energies of 300 keV.

For a typical therapy energy beam, the dimensions of the region-of-interest for CPE must be greater than the
range of charged particles in that medium.

Transient Charged Particle Equilibrium

Up to now, we have anchored the discussion on uniformly distributed radioactivity. However, much of the time
we are using external beams. To handle the nonuniformity of an external photon beam, another type of charged
particle equilibrium is considered. With transient charged particle equilibrium, the secondary charges from the
photon interactions have a relationship that is constant in space. That relationship is not an equality between dose
and collision kerma; it is a proportionality between dose and collision kerma.

In Figure 9.6, the dose builds up to a maximum at &, and then reduces with depth. At depths x>t the
maximum range of the charged pasticles, the dose follows the collision kerma proportionally. This is transient
charged particle equilibrium, TCPE, and it can be thought of as a spatial shift, ¥

¥, as the foilowing:
D(x)=K (x=X). {9.21)
It can also be thought of as a constant buildup with a factor, /3, as the following:
D(xy=K (x)f3. (9.22)

[ is dimensionless and greater than or equal to 1.
The collision kerma is directly proportional to the fluence, which decreases exponentially due to attenuation
as follows:
K (x)=K (x=X)e™". (9.23)

This allows for us 1o relate the collision kerma ratio from Equation (9.23) to f as the following:

B=e" =1+ ux. 9.24)

Note that 4 here is generally ¢ It depends on the geometry.

KA0Y i

(o Depth (x)

“""’Hh’ (A}

Figure 9.6. Transient charged particle equilibrium exists for x >t where the ratio of Dose to collision kerma,
K., does not change.
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The issue for both TCPE and CPE is that the secondary photons (scattered, fluorescent, annihilation) will not
contribute to the dose within a distance, ¥. Therefore, CPE and TCPE are approximations that do not directly
account for secondary, mostly scattered, photons.

Mackie et al. (1988) computed a table with ¥ and #in 1993 with Monte-Carlo for monoenergetic photons
(no scattered photons).

in summary, for the CPE for a photon beam, we have the following:

DxK, (9.25)
D=pK., (9.26)
D=+uHK.. 9.27)

Note that this £ is not the same as the Burlin cavity theory f.
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Absorbed Dose in Media
Containing Radioactive Materials

In this chapter, after briefly explaining radioactive decay, we will discuss five important radiocactive decay pro-
cesses and their dose rate calculations, Finally, we will generalize dose rate calculation for all five processes in
one equation.

Radioactive Decay

. . . . . . . dN . .
For a large number N of identical radioactive atoms, the rate of disintegrations, —, is proportional to N at any
time as follows: dt
dN

N, o)
dt

where the coefficient of proportionality, 4, is called total radioactive decay constant and has the units of s'.

Note that the minus sign shows that as time increases, the number of radioactive atoms will decrease. The quan-
tity of AN is called radiation activity, A, and is defined as the total number of atoms that disintegrate per unit
time. The SI unit of radioactivity is the becquerel (Bg) and simply given by the following:

1 Bq = | disintegration/s. (10.2)

The total decay constant, 4, is related to the half-life of the radioactive nuclide 1,, (the time needed for half
of the radicactive atoms to disintegrate) by the following:

/,{31112' (}(}3)
H

172

Alpha Decay

As a quick conceptual introduction, alpha decay occurs mainly in heavy nuclei with atomic numbers greater than
82. In this process, a heavy nucleus emits an alpha particle to reach a stable nuclear configuration. An “alpha”
particle is a helium nucleus. Equation (10.4) illustrates an example of alpha decay:

2727

*Ra-> “Rn+ He. (10.4)

There is also energy released that goes into the products of the reaction. Until 1929, people thought cach
alpha-emitting species had only an alpha energy. The fine structure (alpha decay to several different excited

87
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225 - s
Th gy, S 0.216McV

N e (0.0844 MeV

\x s (j Me'V ground

324 Ra

Figure 10.1. Example alpha decay showing higher probability of
decay to ground state.

18
e Until 1930, no theory
‘g‘g te explain this. .
k=) V) N E, =T +V(r)
-8 - 0 I I
R, R,
1 F
¢ 4 10
- Vn
L (MeV)
Figure 10.2. Characteristic relationship for alpha Figure 10.3. At large distances, when the nuclear
decay between half-life and alpha energy. Higher electrostatic potential is very weak, the kinetic
energy decays are more likely to occur, and large energy of the alpha particle is equal to its total
alpha energies have short half-lives, energy. The nuclear force is very short range and

plays no role beyond the nuclear radius.

states) was hard to observe at that time. There is a very strong dependence of decay probability on the decay
energy for each resuiting excited state. Decay to the ground state is much more likely.

Consider the example in Figure 10.1. The decay to the 0.216 MeV state happens only 0.39% of the time, and
it’s only 0.216 McV less in energy. Therefore, it is very hard to observe. Figure 10.2 illustrates the relationship
between the half-life and decay energy. This relationship derives directly from the physical nature of alpha decay.

The alpha particle (helium nucleus) is the first completed nuclear shell. It is very stable, but it is emitted out
of a nucleus that is very unstable. It would be impossibie from classical physics because it requires that the alpha
particle “tunnel” through the potential barrier shown in Figure 10.3.

The mathematical description of alpha decay derives from a solution to the Schridinger equation, and this
was first explained by Gamow in 1928 (see Gamow, 1928). The solution provides for the probability of guantum
tunneling through the potential barrier and is a function of the potential barrier height and width, as well as the
total alpha energy. This probability then directly relates to the half-life’. For example, one important fact is that
angular momentum plays a very minor role in this case, but not for other decays, like beta and gamma. The total
alpha energy and the recoil energy of the resulting (daughter) nucleus together share the total rest mass energy
released in the reaction. For dosimetry, the energy of these particles and any gamma rays from an excited state
are the main concern, so our focus will shift to energy balances now,

"For more details and discussion of the nature of alpha decay, see Evans (1953).
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Alpha Decay Specific to Dosimetry
In alpha decay, the energy balance is a main concern for us. Equation (10.5) shows an alpha decay process in
general:

AX = A4Y+ 3 He+ D Q. (10.5)

Alpha decay can result in an excited product (daunghter) nucleus that then produces gamma decay (Figure
10.4).

The net rest mass energy released, ZQ, is shared between the Kinetic energy of the alpha, the recoil of the

nucleus, and the subsequent gammas. Therefore, ZQ is calculated by the following from the mass excess tables”™:

Z Q = AE,’)!U'«'H:‘ - (AEci'(mg.'ucr + AE;{: ) ( I 06)

Note that the kinematics here are non-refativistic, The kinetic energy of the daughter product, 7, is nowhere

20 20

dieteghter W 2

Wmi{(,ﬂthrc + 1 M + 1 ( 107)

o 4

o

near the alpha rest mass:

Note that AE can be found in atomic mass excess tables. An example of an alpha decay energy calculation is
the decay of radium to radon as the following:

Ra~» 2 Rn+ jHe +4.87 MeV. (10.8)

Radon is a major health physics concern. In addition, a gamma from this process is used for brachytherapy.
Another example of the alpha decay process is the decay of radon to polonium. See Equation (10.9).

Rn —» *}Po+ jHe +5.59 MeV. (10.9)

Here, only 5.49 MeV goes (o the alpha particle. The quantity 2Q for the decay of 2Ra is calculated as the
following:

37Q = AEy gy~ (AEy, oy, +AE,) = 23623 keV - (16329 +2425) keV =4.87 MeV (10.10)

A4Y = daughter

Figure 10.4. A general illustrative alpha decay showing possible excited states,

*Note that the mass excess is defined as the atomic mass differences refative 1o Carbon 12.
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220
HSRa

R e T(,)=4.60 MeV
L T(r)=0.18 MeV
N T(q)=4.78 MeV

m

2 Rn+1He

Tlay= 549 MeV
**Po+ iHe

Figure 10.5. Example alpha decay scheme showing information important for dosimetry. Note the alpha ener-
gies are shown, not energy levels.

‘The kinetic energy of the radon is then equal to the following:
4.87 MeV
T = oMY 0,00 Mev. (10.11)
222/ 4)+1

Therefore, energy available for the alpha and gammas is 4.87 MeV — 0.09 MeV = 4.78 MeV.

For the decay of 2 Rn, the quantity 2.0 is calculated as follows:

ZQ = AL, o — (AL, )+ AE ) =16,329 keV — (8318 +2425) keV = 5.59 MeV. (10.12)
The kinetic energy of the polonium is then equal to the following:

Po2lg T M = 0.10 MeV. (10]3)
M 0187 4)+ ]

Energy available for the alpha in this process is then 5.59 MeV - 0.10 MeV = 5.49 MeV. The relative frac-
tion of the decay that results in an alpha of kinetic energy 7., is £, which is called a “br anching ratio.” Figure 10.5

illustrates branching ratios for “;Ra decay.

Dose Rate Calculations for Alpha Decay

For us, what we really need to care about the most is what to do with these energies in terms of equilibriums and
dose rates. The dose rate is given by the following with mass, M, that receives the dose:

A
D, =-3q. (10.14)
o M Q

Therefore, in the case of radiation equilibrium (all photons interacting assumed) the dose rate is equal to the
following:

- A
b, =~ —2.Q= [[Zf (7,, +hv, )+ ”D (10.15)
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However, in case of charged particles equilibrium (no photons interacting asswmed) the dose rate is given by
the following:

A ATy
D, = (20Q) = -“A;[-HZ]/ (7., )+ f;;D (10.16)

Later, we will consider cases in between these limits. Before that point, we will explore these limits for cach
mafor decay.

Beta Decay

Beta decay is another radioactive process to reach a stable nuclear configuration. In this process, a proton is
changed to a neutron or vice versa with emission of a beta particle. In changing a proton to neutron, the beta par-
ticle is an anti-electron, or positron, and is known as a beta plus, 8" However, when a neutron is transformed to a
proton, the beta particle is an electron, and is called a beta minus, £

 Beta minus decay tends to occur in nuclei with an excess of newtrons, and it is accompanied by a release of
an anli-neutrino, ¥, while beta plus decay tends to happen in nuclei with an excess of protons and is accompa-
nied by a release of a neuirino, v. Equations (10.17) and (10.18) are examples of these two types of beta decay:

WK 2Ca+ 7+, (10.17)
SMg— SNa+ B +v, (10.18)

Notice that in beta decay, the mass number stays the same. That is, the daughter product and the parent nuclei
are the same isobar.

Beta Decay Specific to Dosimetry
As we mentioned before, for dosimetry, the energy balances of these radioactive processes are the main focus.
Therefore, in general, we can write the £ decay as follows:
A - A - =
AX+e o MY+ BT Q. {10.19)
The available energy is shared between the beta, the neutrino particles, and any gamma rays. The energ
spectrum of each particle will be continuous, since it will vary randomly for each particular event. Some internal
bremsstrahlung will also be possible.
The net rest mass energy released, EQ, for f~ decay is given by the following:

> Q=AE,,., +0511 MeV —(AE

deglner

+0.511 MeV),

= AE, o = DE e (10.20)
Also the * decay is written as follows:
PX =AY 4B dviae + Y Q. (1021
where, the quantity ZQ for that would be equal to the following:
SQ=AE,  —(AE, . +2x0511 MeV), (1022)

=AE - AE

prtrein dauglner

-1.022 MeV,
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Note that the extra electrons are added to the balance. The atomic mass excess tables include electrons, so we
need to carefully account for them. However, nuclear mass excess tables do not have this issue. The difference
between atomic mass and nuclear mass is as follows:

7
(7X)7 +Zme* =3 B, (10.23)

[

i (fX_,\, )C2 =m

atentic nuclear

sz

The B terms are binding energies. Let’s explore this electron balance issue more. Here is the mass-cnergy
balance for £~ decay in more detail’:

£ Zid
Q, = {[m(fXN)—Zofr'.'.(,]m[fTI(zﬂYN,,] )= (Z+1)- m(,] - m‘,}c2 + {;Br -2 B,}. (10.24)
smadt
Therefore, the quantity 0, for [~ decay is given by the following:
Q, ={m(JX,)-m(, Ay, e, (10.25)

Here is an example of calculating Q, . Consider the - decay of *UBi to i Po as the following:

2i0

HBi = P04 BT+ O, (10.26)
The rest mass energy released for *\JBi beta minus decay is given by the following:

Q, = [m{ B - m( PO):!C?,
=(209.984095u - 209.982848 u)-(931.502 MeV/u), (10.27)
= 1.16]1 MeV.

Note that here the mass difference is in the 6" significant digit, so it’s much easier to use the mass excess
tables that make the mass of each isotope relative to Carbon-12.
The mass-energy balance for £* decay in more detail is the following:

Qﬁ, = {[m(.fXN y-Z- m(,]—[m( Y )2~ 1)-:7?{,]-117(,}(}3 + {i B — /ZEB, } (10.28)

sinald

The quantity Q. for f~ decay is then given by the following:

Qﬂ‘ Y {m(;_lXN) — m( xjy.v-e )= 2}7?(}(‘2. (10.29)

Fermi Theory of Beta Decay

Just as we did with alpha decay, a little essential theory is important to know, especially for understanding decay
charts. In alpha decay, we learned that the higher the alpha energy, the shorter the half-life. For beta decay, we
will see that the momentum becomes important and that forbidden transitions are not strictly forbidden, just very
unlikely.

*Here atomic/electron binding encryy differences are neglected, since they are 100 small.
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Following the treatment in Evens (1955) that reviews the original derivation by Fermi (1934), the rate of beta
decay is proportional to the available phase space. Phase space has six dimensions—all three spatial and ali three

momentum values for each particle. If p is the momentum, the density of states is given by %‘;ﬁ ~ j—f prdp. It
dE I

will be hard 1o explore the theory too deeply here, but to give a flavor of it, there is a concept of “comparative

half-life” which is writtesn by the following:

i _constant
Ty lMarz : (10.30)

where, ‘M“.| is a nuclear interaction term after atomic number and transition energy is removed. Given that w is
the energy of the electron, the quantity fis given by the following:

[ = j Flz,whw'(w' = 1" (= w'Y dw'. (10.31)
{

The term F(z,w) is a complicated term,

There are transition selection rules for angular momentum (/) and parity (7) for beta decay:

« Fermi rules (scalar): Al=0, A ="no'

* Gamow-Teller (vector): Al=0,x]1 , Ar="no'

The forbidden transitions do occur, but are very unlikely. These transitions are characterized by Al > 1,
Ar="yes, 1> 1, and logf'r will be large (about 9-15).

Here is an instructive example. An isotope important for dosimetry is 5% Co beta decay to 5 Ni (Figure
10.6).

The main beta energy is (2.81 ~2.51) MeV = 0.309 MeV. The decay constants are related as follows:

A= fda = 10211, (10.32)

i Sl T
where, A, = A, + 4, + A, + A, The transition to ground state, &, has not been observed. Log(ff) and A/ are very

high. Also note that log(ff) — log(f) = 23 - 3 = 20. Therefore, the half-life is very long. Table 10.1 gives a com-
plete summary of the quantities in 5 Co beta decay.

54
¢ * 2 -
(OCO 4 51 MeV
=526 vyr
iz ¥ 2 216 MeV
2° 133 MeV
0" OMeV

G0 Nl

Figure 10.6. Decay scheme of Co-60 showing the unobserved decay to ground.
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Table 10.1: Co-60 Decay Summary Showing the Parameters Related to the Decay to Ground State
and Why the Allowed Transition is More Easity Observed

I=1 7.6 -1,63 3.26 i (.994 0.309 | No
Allowed

=2 12.7 0.63 4.05 % 10° 7, 1.3 %107 {.657 3 No
Forbidden

I=3 13.1 2.0 438 x 10/ R 0.12 x 107 1.48 3 No
Forbidden

i=4 >23 3.08 ~10" i, ~0 2.82 5 No
Forbidden

Electron Capture (EC)

Electron capture is a closely related effect competing with S* decay. In this process, instead of emitting a posi-
tron, the nucleus may just capture an electron, and it is mostly {about 90%) from the K-shell. Of course, as with
the photoelectric effect, there will also be fluorescent photons or Auger electrons emitted. In general, the electron
capture equation is written as the following:

PX o Y +vey Q. (10.33)
Here,
ZQ = AE;J(H‘(WI - Aljrhutghrw" ( i ()'34}

Note that the additional electron need not be added. 1t is still there; it has just been caten.

Even though electron capture competes with 4" decay, a neutrino is stifl needed to conserve angular momen-
tum. The subsequent gamma decays will be the same for electron capture as for #* decay, and the excited states
are also the same. However, the quantity ZQ Tor electron capture is not the same as with 4" decay. The rest mass
energy released in the electron capture process is shared not just between the gammas and the neutrino, but also
now between the fluorescent photons and Auger electrons. With electron capture, most of the energy is carried
away with the neutrino, resulting in much less dose when compared to £ decay.

Dose Rate Calculations for Beta Decays and Electron Capture

Dose rate caleulations for three radioactive processes—/f ™ decay, f* decay, and EC—are given by the following;

ye Ay A L
D= v >Q= v (ZQ E, ). (10.35)

In Equation (10.35), ZQ is the rest mass encrgy released, ZQ’ is the rest energy released, but not including
the energy given to the neutrino or anti-neutrino. £, is the (anti)-neutrino energy.
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Therefore, in the case of radiation equilibrium (all photons interacting assumed) the dose rates are equal 10
the following for each type of decay:

(10.36)

. Al _
Dﬁ=ﬁ{§ﬁ@+mq}

: Al o7 2
Dﬁ, =M[Zﬁ(15+hv,)+ 2111(:"). (10.37)

i=1

. A Ls
Dm‘:;;[Ejﬁ(hm)+(me). (10.38)
i

where, T is the mean kinetic energy of the beta particle and (E,), is the K-shell binding energy available to flu-
orescent x-rays and auger electrons. Notice that 2me” in Equation (10.37) is for annihilation gammas.

In case of charged particles equilibrium (no photons interacting assumed) the dose rates are equal to the {ol-
lowing for each type of decay:

Al ix
ﬁ:ﬁ";ﬁuﬂ- (10.39)
. Al _
Dy=— E;ﬁ(ﬂ)]- (10.40)
Dw:%'inﬂJ (10.41)
i=l

After nuclear reactions and alpha or beta decay, the daughter nucleus is often left in an excited state (which is
indicated by an asterisk, i.e., 7X"). A nucleus in a long-lived or metastable excited state is called an isomer. A
metastable state then de-excites by internal transition. This can be either gamma decay or internal conversion.

Gamma Decay

In this radioactive process, an excited nucleus reaches a stable nuclear configuration with the emission of a j-ray.
Gamma radiation is electromagnetic radiation emitted from a nucleus or from matter —antimatter annihilation,
but it is nuctear decay that we consider here. Figure 10.7 illustrates a classic nuclear medicine example. In this
process, the molybdenum nucleus decays (o a technetium nucleus by emission of a 7 particle. The excited tech-
netium nucleus, which is now an isomer’, then emits a pray to reach a lower encrgy state. Note that the isomer is
denoted by an m next to the mass number of the technetium nucleus.

In nuclear medicine ~;3Te is used for a various diagnostic purposes. The 140 keV gamma is ideal for a typi-

cally sized human in terms of contrast per dose.

99
Mo

A=0.0104/hr

—
[ =decay

99m
slc

A=0.}¥5/hr

—
y=decay, 140 keV

99
43TC

Figure 10.7. The Tc-99 process, the "workhorse of nuclear medicine.”

“The isomeric or metastable state in this case happens about 86% of the time.
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internal Conversion

This s an alternative mechanism that competes with ganima decay. When the excitation energy of the nucleus is
small, and the excited nucleus has a coherent coupling to an orbital electron (usually instead of emission of a 3
ray), the nucleus will pass the excitation energy to an atomic electron (mostly from K-shell) to eject from the
atom. Note that the ejected electron in internal conversion is different from a S~ particle in energy. The energy of
an electron ejected in the internal conversion process is always the same and is given by the following:
To=hy-E,. (10.42)
The quantity E,, 38 the atomic shell binding energy, usually for the K-shell, and /v is the energy of the com-
peting gamma decay, the energy to be released, ZQ. Just like electron capture, a vacancy in an electron shell
induces fluorescence or Auger electrons.

Some Essential Gamma Decay Theory

Photons have spin of 17. Therefore, they are bosons and follow Bose—Einstein statistics. The theory is complex.
However, first recall that multi-pole fields arise from the spherical harmonics, (¥,,), that describe the quantum
states of the nucleus,

During the decay, anguar mementum must be conserved in the vector sense:

L e = L

pareni dueaghter “plaren

(10.43)

The multi-pole order of radiation is set by the angular momentum of the photon, /. Since a photon is a boson,
[ has 1o be greater than zero. See Table 10.2.
There are also two rules related (o angular momentum as follows:

daghier

S| (10.44)

| parens denighior ’

Al = |i | > 0. (10.45)

parent [r[tmg.‘m-r

Parity of multi-pole radiation for electric multi-poles is given by (~1)’ and for magnetic multi-poles is given
by (__I)u'-l-l.

2

The rate of emission then is proportional to S(J){ —<— | _which is smaller than unity. The quantity A, 1s
Yine T

wavelength, R, is the radius of the nucleus, and the quantity S(/) is a statistical factor and a function of { as fol-
lows':

2(1+1) 3
(35 QiDF 143

(10.46)

S(l) =
(),

Table 10.2: The 2"-pole Designations (Note that there are no / = 0 multi-poles)

f=1] 2= Dipole
=2 Py Quadrupole
=3 2= QOctopole

{ 2 2-pole
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Table 10.3: Classification of Gamma Emissions

Electric dipole ] ] “Yes
Electric quadrupole E? 2 “No”
Magnetic dipoie Ml ] “Ne™
Magnetic guadrupole M2 2 “Yes”
Electric 2-pole El i “No” for l-even;

“Yes” for l-odd

Magnetic 2-pole Ml I “Yes” for l-even,
“No” for l-odd

.
L 095y

S

feae]

1.46 McV

|

(1414)
o HO

—~
o=

e e e e e e

(A

8G.6 keV

|

~z
>

0 keV

I

190

o5

Figure 10.8. Example decay scheme showing a third, but forbidden, gamma that viclates selection rules.

Therefore, as { gets larger, the emission rate drops quickly, and large angular momentum transitions are very
unlikely.

The multiple character of the emitted photons/radiation is based on angular momentum and parity, as Table
10.3 shows.

Figure 10.8 is an example of using angular momentum selection rules in decay of "oHo to 5 Er. Note that
# 1s forbidden, because a gamma must carry away at least the inherent spin of a photon, o a transition from a
zero angular momentum state to another zero momentum state is not possible through a gamma decay. However,
internal conversion would be possible for such a transition.

Absorbed Fraction (AF)

To properly discuss dose from gamma decay, first we need
1o define the concept of absorbed fraction. Recall that radia-
tion equilibrium (RE) approximates the limit that “all gam-
mas interact,” and charged particle equilibrium (CPE)
approximates the limit that “no gammas interact.” Absorbed
fraction handles much more common and realistic situa-
tions in berween RE and CPE. Consider a small volume, 4V,
that has a uniform source which emits photons isotropically
into a larger volume, V (see Figure 10.9):

o— Figure 10.9. The geometry related to
See Lvans (1993), page 214. absorbed fraction and reciprocity discussions.
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Absorbed fraction, AF(r), is then defined as the relative amount of energy absorbed within a radius, r.
Because of reciprocity’, the expression also equals the right-hand side as follows:

Energy absorbed withinr ~ Energy absorbed in dV from activity at/within r

AF(r)= = . -
Radiant energy produced in dV Radiant energy produced in V

(10.47)

If the source region is very large relative to the photon attenuation coefficient, then AF —» 1, that is, all gam-
mas interacting in the source region. If the source region is very small relative to the photon attenuation coeffi-
cient, then AF — 0, and that means no gammas interacting in the source region. The source region can be either
dV or Vin this discussion, as long as the detector region is as specified in Equation (10.47).

For a spherical source, if we know or can calculate the effective attenuation coefficient, 4'(;), the AF(r) is as
follows:

AF(F)y= 1= ", (10.48)

In effect, Equation (10.48) is actually a type of definition for the effective attenuation coefficient. Accord-
ingly, the effective attenuation coefficient can be given by the following:

Sy = i (1_51?6} (10.49)
R Iy

Figure 10.10 illustrates the absorbed fraction of photons in a volume. One side reads the source concentrated
at the center with distributed detector, and the other side reads a distributed source and a concentrated central
detector. Just turn this handy figure upside-down to see this reciprocity!

20IN0S PANQLISIP AJUDAY]
wog3 uondiosqy

afipa 0
A ! 1
afpa
dose(r) = exp(~ur) ("Pun=Ydxa~1=(0 =04V
x % leaves volume
| p wngipinbs f:ogm;pe.x 0 X
0 Fedpe

Absorption from
Source concentrated at =10

Figure 10.10. Memory aid for this particular reciprocity: flip upside-down for reciprocity. Note that the atten-
uation coefficients are really effective attenuation coefticients.

* For reciprocity theorem see Attix (1986), page 55-59,
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Uniformly distributed source

Figure 10.11. A generalization of the geometry of Figure 10.9.

We can generalize the above 1o cases where we do not have spherical symmetry (Figure 10.11); in these
cases we will integrate over the source boundary (solid angles) to find the absorbed fraction at point P as follows:
2 ,
(1 _ c'...{‘u (1'({)‘,’5)).,-(0.[})} ) Siﬂ((’))d@({ﬁ
A[: = e}

7 2a ?

j $in(0)dBd B (10.50)
00 fi=0

.Jf (1 vt gy ,])Sin(G)d@dﬁ'

#=0 fi=0

L E—

I
4x
Then, we can define an average distance from the point P to the boundary as follows:

] & ix .
o j j 6, B)sin(0)dod B. (10.51)
4r
80 =0
and that will lead to a more compact approximate form for AF as follows, if one performs the usual approxima-
ton g s,

AF =] —¢ T, (10.52)

Dose Rate Calculations for Gamma Decay and
Internal Conversion

Now we consider gammas that partially interact, with the AF factor. Dose rate for non-RE photons, (in-between
RE and CPL} is given by the following:

D E%ZAP; fhv (10.53)
=1

Of course, if no photons interact, then for the xdecay, we have D = (.
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For internal conversion, there is a dose from the IC electrons, and the frelates to the fraction not from fluo-
rescence:
Te=hv—-F, (10.54)

and the f'becomes,
fio=v—=p Y v, —p Y hv, . (10.59)

The fraction of photons escaping the radioactive body is as follows:

p= 1-AF = ()W“”’T, (]()56)

General Dose Rate Calculations

In general, the dose rate calculations for all these equations from each decay mode, all assembied as one, are
given as follows:

) A 1 .
DZMZAE fE. (10.57)
il

Here £, is energy for each particular interaction as follows:
T, for o particle decay,

&

for recoil daughter in ¢ decay,

deaseghrer

T for fF decay,
2mc? for anmihilation photons in ' decay,
hv for yrays, fluorescent photons, and internal bremsstrahlung photons (even though

they are not discrete, they are often treated as such by binning the spectrum),

for Auger electrons, and

" Angoer

T, for Internal Conversion electrons.

By defining the equilibrium dose constant, we can treat all these parlicles {charged and uncharged} the
same way as follows:
A = fE. (10.58)

ey . kg - G y « rad
Equilibrium dose constant has the units of — A -
Bg - s mCs - hr

Therefore, the general dose rate for radiation equilibrium (all gammas interacting) is given by the following:

, which are the units of energy.

. Al
DH[;:A,.). (10.59)
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The general dose rate for charged particles equilibrium {no gammas interacting) is then given by the follow-
ing:

3 A "
D=—I>A1. (10.60)
Note that the subscript ¢ in Equation (13.59) means that the sum is only over charged particles.
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Dose from Directly lonizing
External Radiation Sources

In this chapter, we consider charged particle beams. An important consideration will be charged particle equilib-
rium (CPE) which requires that the energy deposition is spatially constant, but this condition will be hard to sat-
isfy with an external source from one direction.

CPE can be defined for just the &ray component of the charged particle beam. Note that CPE for &rays
doesn’t exist near the surface or near the end of primary charged particie range. Also note that where CPE does
exist, there is no need to consider the detailed dynamics of drays. In other words, equilibrivm means that for
every &ray leaving a location, there is a similar one entering on average. Therefore, in terms of final dose, CPE
implies less need for understanding the details of the &rays (Figure 11.1). This is an important concept.

Dose in Thin Films

1. Dose in Thin Films When &-ray CPE Exists

Assume we have a thin foil. This assumption means we have constant (kinetic) energy, T = 7, where 7}, is the ini-
tial energy onto the film in question. Also, this assumption implies a constant stopping power through the film for

____%w/wf_

Primary §-rays
fam
= b7
2z
£
)
Depth

Figure 11.1. lllustration of the effects of &-rays on dose.
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Density £
Foil: CNSity £
) ~L Area A
Charged particle flucnce @,

B
15 IS
B ~

Energy T

“ s

Figure 11.2. lllustration of a thin foil with buildup.

the primary particles. This happens when we sandwich the foil in between extra layers (buildup layers) that will
establish the equilibrium. Figure 11.2 illustrates a picture of this thin foil in buildup.
We alse assume that there is a very little scattering, that is (02>z 0. Under these assumptions, the cnergy
deposited in the film is given by the following:
dT

z:=<1)(,A(m— IR (11.1}
pdx |

Therefore, the dose for a particle beam is calculating as follows:

p-—t_—o, ] (11.2)
piA pdx

o

Notice that the dose is independent of the foil thickness and beam area if and only if there is negligible scat-
ter and slowing down.

2. Dose in Thin Films When &ray CPE Does Not Exist

Without the extra layers to establish &ray charged particie equilibrium, &rays with energy larger than A can
escape. Then, we would overestimate that actual dose if we did not take into account this energy escape. In other
words, in terms of the CSDA range, we lose &ray CPE if R..,,,(A) > 1. Therefore, the dose requires the restricted
mass stopping power if dray CPE doesn’t exist, as in Equation (11.3):

D—d)(,(j{w : (11.3)
pdx

RS

Average Dose in Thick Foils

1. Average Dose in Very Thick Foils from Electrons

Electrons will scatter and will radiate very much more than protons, in general, If no electrons ieave the foil, this
case is actually fairly simple: just subtract off any radiated power from bremsstrahlung. So we now consider this
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case, where the foil is much thicker than the maximum range of the electrons: ¢ »» ¢ . If we ignore backscatter,

then the amount of energy deposited in the layer is given by the following:

L2208

e =DAT, [1-Y(T})]. (11.4)
where, Y{T,) is the total radiation yield. As before, the dose is the following for very thick films:

& (})“']:, [1 B Y(,];))]
folZ pt '

D=

(11.5)

2. Average Dose in Thick Foils from Heavy Charged Particles
Heavy charged particles will have negligible scatter, but the stopping power and energy will change. Bremsstrah-
lung is negligible. Figure 11.3 is a picture of heavy charged particle radiation onto a thick foil, with a general
incident angle.

The change in stopping power due to the change in energy across the foil will be handled by looking up the
change in CSDA range. The residual range is what is left after the transit consumed some energy. With [ = pr/
cosé, the residual range is given by the following:

pt
R, .. =R. (T)———. 11.6
rexielect (,5]).1( ()) C()SQ ( )
We can also think of Equation (11.6) as follows:
{amount of range left) = (fotal potential range)—{amount of range used). (11.7
In this case, the energy deposited is equal to the following:
e=D,A(7,-T,). (11.8)

The dose is then the following for thick films (nor very thick) for heavy charges at a general angle of inci-
dence:
e D (7,-T,)cosd

= - (11.9)
Apt/cosé Pl

Foil: Density 0
Area normal to foil: A

Figure 11.3. Heavy charged particles
impinge upon a thick foil with at an
angle. Fluence @,
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3. Average Dose in Thick Foils from Electrons

This is the most difficult situation. Here we consider some complications: efectrons do scatter considerably, and
electrons produce bremsstrahlung. Most importantly, scattering will expand the path length up to 10%. If the
layer were very thick, then it would not matter much, since all of their energy gets deposited. In this case, brems-
strahlung photons leave with a certain amount of energy that we will need to find. In order to do that, we will
need to estimate the corrected path length. Figure 8.11 in Attix (2004) is a difficult figure that is required for this
case. The procedure is as follows.
The path length without scattering is [ = pr/cos8 The corrected path length, I', which is illustrated in Figure
11.4, is the following:
['= 1-[1 -+(%inc:i'ea.5‘e/1(}0)]. (11.10)

Find the “% increase” from Figure 8,11 of Attix (2004) by first getting the following ratio:
E = (11.11)

The quantity ¥, is the radiation length, and a table of ¥, can be found in Attix (2004} on page 190, Figure
8.11 in Attix is like a very long figure that is folded onto itself with arrows showing where to read the abscissa
value for a given beam energy curve.

After that complicated step, the corrected path length, ', is used to determine the residual range as follows:

Rl'(‘.\'i([{l(i[ = [e('Sl'M (IIE)) - !" ( M ' I 2}

The energy deposited is given by the following equation:

&=®d,A {To [] - Y(Z’b)]"" T [1 - Y(’]})]}‘ (113)

b,

e -

Figure 11.4. Two complications with electron beams: scatter increases the path length (white dashed fine)
and hremsstrahiung.
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The quantity 7, is the final energy, which corresponds to R, .. The range tables can be used in either direc-

tion. The dose is then the following for electrons in thick foils:

_ £ _ @, {%[E _Y(j’;))]_;f},[]—Y(T})]}COSQ ' (1114
Apr/cos@ Pl

Dose When the Electron Energy Spectrum is Known

An electron spectrum can be measured with a magnetic spectrometer, expressed with analytical transport theory,

or calculated with Monte-Carlo.
The following can work with &ray equilibrium for both directly or indirectly tonizing primary radiation:

D= J.T;"‘“d)’(T) AT (11.15)
o pdx J,

where ®'(7) is the charged particle energy spectrum.

A Monte-Carlo simulation is useful for exploring various components of the spectrum. For example, notice
in Figure 11.5 that the Bragg peak for electrons is visible only when scattering is unrealistically turned off. Also
notice that when the delta-rays are not changing over space between about 0.1 to 0.5 in normalized depth, then
the dose is not sensitive to their explicit inclusion. Therefore, one really only needs to know the spectrum when it

is changing: a key concept in charged particle equilibrium.
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Figure 11.5. Energetic electrans impinge on condensed matter from the left side of the figure in a Monte-
Carlo calculation. Note that in the region between normatized depth of 0.1 to 0.5 (the white region}, the
delta-ray spectrum is not changing and, therefore, the &rays are in equilibrium and are not explicitly needed
10 be separated out for a correct dose calculations. In regions very shallow and near the end of range, this
delta-ray equilibrium is lost. Reprinted from Jenkins et al. (1988) with permission.
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Table 11.1: Summary Table of Each Case Discussed in This Chapter.

Very thin

dar
o]
PAX J 4

dT
Y of T
pdx

Spectrum known

¥

s

r
_[ ® & irecdincde
A

dx

d—]J dT
oA

y (7‘)(
P

f cl)'(?“)(ﬂ] AT
pdx |

A

Very thick &7 O, 7.0~ Y(T))
nt pi
Thick (1)(){72) - T',.)COS G (])0 L(?;)(l - Y(']’E))) . T,r (] . }/(']‘I )):rc(}S O
pi py

Iem

Ty=10 MeV
——
10" electrons/em?

Py =27 gfem’

Figure 11.6. Figure for the example problem below.

Example Problem: Calculate the dose for the thin aluminum foil in Figure 11.6.

Solution: The path length is [ = (1 em)(2.7 g/em®) = 2.7 g/lom?. The corrected path length is found from
2.7g/cm?
24.46g/cm’

The graph gives I'=1+ 0.06 | = 2.86 g/cm®. The CSDA range for 10 MeV electrons from Appendix E of
Attix (2004) is 5.86 g/cm”. Therefore,

(%= 24.46 glem™) as & = =0.11.

Regps —1'=5.86 g/em’ —2.86 g/em® = 3.0 gfem’.

residual =
Back to appendix E of Attix (2004) and using the interpolation technigue, 3.0 g/cm? corresponds to an encrgy
of T,=4.84 MeV as follows:

(4.84)~4.50 _ 5.00-4.50
3.00-2.79  3.092-2.79°
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Again back to appendix E of Auix (2004), “radiation yield,” the amount of encrgy nor lost to bremsstrahlung
is calculated as the following:

j% = (10 MeV)(1-0.0745) - (4.84 MeV)(1-0.0357) = 4.59 MeV

[§|

Therefore, the dose would be equal to the foilowing:

. 12 -2 0 .
D :L(cosﬂ -1)= {107 em )(4.5)1 MeV)cos(0) =170 %107 MeV/e,
Apt (2.7 glem” }1 cm)

= (1.70 x 10" MeV/g)-(1.602-10"° Gy/(MeV/g)) = 272 Gy.
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Dosimetry Introduction

Dosimetry is the determination of radiation dose or a related radiological quantity that results from the interac-
tion of ionizing radiation with matter. A dosimeter is a device that provides a reading, R, that is a function of the
dose absorbed in its sensitive volume. The dose in the dosimeter is related to the dose deposited in the surround-
ing medium. By analogy, the thermometer measures only the temperature of the thermometer itself—with an
assumption that it is in thermal equilibrium with its surroundings so that we can infer the temperature of the sus-
roundings. A truly absolute dosimeter is an ideal dosimeter that does not require calibration to some known radi-
ation field.

Characteristics of Dosimeters

A colorimeter measures the temperature rise from borh ionization and excitation. 1f there are no other reactions
and in isolation, the relation between the temperature rise and the amount of energy deposited is the heat capac-
ity, b, Recall from Chapter 1 how small the temperature rise would be for even a lethal beam. The calorimeter has
the least amount of theoretical complications, except that they are hard to build and use.

Other dosimeters will generally have a more complicated relationship to the energy deposited: ion chambers
for example, will measure ionization; they are very sensitive to the gas mass, which is complicated by uncertain-
ties in volume and density and to some extent humidity and purity as well. The conversion coefficient in this case
is W /e, the average energy associated with forming an ion pair. Ferrous sulfate dosimetry solutions (“Fricke”
solutions) measure the amount of chemical product produced. The conversion coefficient in this case is G, the
chemical yield.

1. Precision or/vs. Accuracy
Precision is how close one expects to get, with confidence, to the expectation value. This aspect relates more 10
qualiry, However, accuracy (Figure 12.1) is how close the expectation value one obtains on average actually is to

True
value ‘

Precision

>
(¢

__/

Accuracy pe——
H

‘
Expectation
value

Figure 12.1. Simplistic conceptual illustration of the distinction between precision and accuracy.
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the true value. This aspect relates more to calibration. The catibration of a dosimeter that provides aceuracy is
specific to a particular situation {like a particular beam’s energy spectrum). The dosimeter itself, and how one
uses if, is more of a determinant of its precision.

2. Dose Sensitivity

Few dosimeters are sensitive to both very low doses and very high doses of radiation. The dynamic range is this
range of proper use, and it’s limited in various ways for various dosimeters,

The lower limit of sensitivity is limited usually by stochastic variability. There may be statistical fluctuations
in the particles received. That level may be similar o spurious readings that oceur at zero dose, i.e., system noise,
The zero dose readings need to be subtracted off the readings-—for example, shielding cosmic ray background or
cooling to reduce dark current in a photomultiplier.

There is an upper limit of sensitivity, as well, for most systems. If the dose rate is too high, a scinullation
detector or a pulsed detector will have a finite dead time for which it needs to recover from the previous event,
The sensitivity is diminished when the average time between pulses or events is less than the dead time of the
detector. Recombination in ion chambers will reduce sensitivity if the density of the ions in the 2as 1s 100 high—
the ions recombine during the transit 1o the electrodes. Scintiliation detectors can saturate.

Thermoluminescent detectors (TLDs) have a complicated response to high dose. The radiation damage can
create more traps for a while until the damage is so large that the crystal’s structure has been modified too much.

3. Stability

Ideatly, the detector should always respond the same way o the same quality and quantity of radiation. Also, the
detector should be stable after the radiation. Dosimeters that store dose until read-out-—like TLIs, films, and
chemical dosimeters—should not lose or alter the stored dose information between the irradiation time and the
read-out time. For example, TLDs have Jow-energy traps that should not be read out if they can release fluores-
cent photons at room temperature. Another example is the light sensitivity for radiographic films.

4. Energy Dependence

Ideal responses could be responses proportional to energy (i.e., pulse size proportional to the deposited energy
for determining dose) or responses mdependent of energy (i.c., a Geiger counter or other pulse-counting system
that just counts up the number of events for determining radioactivity). In either case, we would want the ratio of
the reading, R, to the radiological quantity of interest, J, to be independent of energy. So, for E, # E,, we would

like 10 have the following:
5) - ﬁ) , (12.1)
‘] £ ‘] £,

where, R is charge collected and J is dose. However, few detectors meet this criterion to a good enough approxi-
mation. Therefore, energy dependence remains an important factor to include in the calibration. This means that
some account should be taken of the energy spectrum differences between calibration and other beams, Attix
(2004) discusses ways to modify the energy dependence in clever ways,

5. Angular Dependence

1deal responses are isotropic. That seems (o imply a spherical shape for all detectors, but that is not practical, and
the small differences in this dependence can be corrected for, usually. However, one should be careful to have this
characterized.
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[Dosimeter sensitive volume, 7

Dosimeter wall

Figure 12.2. Idealized ion chamber geometry.

lon Chamber Dosimetry

The ideal ion chamber is a prototypical dosimeter for ionizing radiation. It will measure ionization. Recall that
ionization is not the only result of transferred energy. Consider a small cavity with volume, V, filled with a gas,
labeled g. The cavity is embedded in a surrounding medium (dosimeter wall), labeled w. The filling medium, g, is
sensitive to radiation, and it will be affected by the radiation’s effect on the w medium (Figure 12.2).

The dosimeter wall can serve many functions other than simply a boundary. For a relatively energetic photon
beam, such as those used for radiation therapy, all or most of the charged particles that are set in motion come
from this wall. Sometimes the wall is made thick enough to shield the sensitive volume, V, from charged particles
set in motion {rom outside this wall. The wall can act then as a radiation filter,

Now consider the small cavity of the ion chamber filled with air and the wall of the cavity being equivalent 1o
some medium, like tissue or air (z,4~ 7.5 for arange of energies). An electric ficld is produced in the cavity vol-
ume to collect charges that are produced by the radiation. The electric field requires that a central electrode be
inserted to form a potential relative to the wall. Another way is to have the wall be made of separate pieces in
arder to form the potential difference.

Fast electrons can enter the cavity, deposit their energy, and, therefore, ionize some molecules, The ioniza-
tion products are usually a positive heavy ion and a negative electron attached to a neutral molecule. These
charges then travel to the elecirodes and create a small current. If the gas molecules cannot become negatively
charged, the gas is called nonelectronegative. Methane is such a gas. If the ions encounter ecach other on their way
to the electrodes, they can recombine. If the electric field is strong enough, then recombination is minimized to
the point where the collection current does not change—-the chamber is then said to be “saturated.”

Energy corresponding to the ionization, charge pairs produced, @, of gas, g, is equal to the foliowing:

..=Q{E , (12.2)

14

The quantity W /e is always written this way and represents a single quantity: the average energy expended
to produce an ion pair for the gas in a stated condition. For example, it is 33.9 eV/ion pair for dry air. Note that
this is not the ionization potential. See Attix (2004) pages 339-41 for more details. This guantity includes energy
that produces excitations as well as ionizations.
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The dose to the chamber gas is then given by the following:

Y,

M

0

e

] . (12.3)

See Attix (2004) Table 12.1 for W /¢ values for various gases. Major sources of error can involve the condi-
tions for which W /e holds and uncertainties in the mass of the chamber gas in the sensitive volume, M. Even
though ionizaton is only part of the energy, if its fraction of the total deposited energy is constant over energy,

then the dosimetry will still be accurate.

Cavity Theory
1. Bragg—-Gray Cavity Theory

Suppose that a monoenergetic beam of charged particles is passing through a medium labeled w that has a very
small medium labeled g sandwiched in between, as shown in Figure 12.3.

We assume that we have d-ray equilibrium, and we also assume that the fluence, ®, and its spectrum are not
perturbed (i.e., scartering is not changing). Then we can have the following for the doses to w and g:

b

D, = d{ﬂj , (12.4)
pdx .
dr
D =0
¥ [ pdx JL (12.5)
Canceling the fluence, the ratio % is calculated as the following, assuming monoenergetic particles:
dT/ pdx
b, _dlipd), (12.6)

D, (d']’/pdx) ,

o

There are two Bragg—Gray conditions: the first Bragg—~Gray condition is that we assume the ¢ medium does
£g ¥ g8 ¥ 8
not perturb the energy spectrum, @’ (7)), of the fluence of charged particles. The second Bragg-Gray condition is

w

Figure 12.3. Idealized Bragg-Gray cavity.

b4

W
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that we also assume the particles are all erossing the g medium, not starting in or stopping in g. This amounts (o a

condition that the cavitly size is small compared to the charged particle range. It is generally a good assumption

for energies >100 keV. The range of charged particles in a gas is ~1000 longer than in a solid because of density.
With @'(T) as the fluence spectrum of charged particles, the dose is equal to the following:

1

;l).\\ !71
D, = J- (})’(’]‘)((_} dT. (2.7
oy pdx »

Let’s define the average mass collisional stopping power for a polyenergetic beam such that the dose is as
follows:
D, =50 (12.8)

The guantity 5\, is a fluence-weighted average mass collisional stopping power’. We also have the same for
the w medium as follows:

— dr
S =— | O(T {7,
( )(pdx]m( (12.9)

Now the Bragg—Gray relation is given by the following:

f cb’(T)(-d—Yl-J JdT

}

T dx
g_zé =5 =t Pl (12.10)
s e j'cb'('r)(‘iJ dr
A pdx ..,

Usually, g is a gas, and we know from before that D, = Q[EJ . The quantity @ here is the charges pro-
&
s

duced (not necessarily coilected), and M is the mass of the gas.
Therefore, the Bragg—-Gray cavity theorem is stated as follows:

“The ratio of the doses is the ratio of the average mass collisional
stopping powers if the charged particle fluence is unperturbed”

Using the above equations, we now form the dose in the wall in these terms as follows:

VY
ﬁg W A (12.11)
Mie) ¢

This expiains why we have a cavity in the first place; the above is a handy relation to get the dose in the w
medium by measuring the ionization in the cavity.

2. Spencer-Attix Cavity Theory

Attix noticed that there were problems with Bragg—Gray cavity theory when he performed ionization measure-
ments on chambers with small air cavities that have high-z (high atomic number) walls. The deviation of mea-
surements from Bragg—Gray was most severe when the thickness of the cavity was small®. Attix had the brilliant

Fluence-weighted average mass collisional stopping power sometimes is written as ,, S, .
*See Auix (2004). page 242.
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suggestion to Spencer that the “local” energy deposition shouid not include the generation of knock-on electrons
{or &-rays). Therefore, Spencer performed a re-derivation of Bragg—Gray. There was still CPE everywhere in the
wall, from where the electrons are emitted. Again, no electrons generated in g, and bremsstrahlung photons are
not produced. In order to do this, the knock-on electrons must not be considered part of the stopping power. Note
that the issue is what happens to the spectrum. That is where the knock-on electrons, the &-rays, are placed in the
equation, First let us consider what to expect from the equilibrium spectrum. The word equilibrivm in this sense
refers to the shape of the distribution.

Consider a simple case: N electrons of energy 7, produced per unit mass of medium w. The dose in w wher-
ever CPE exists is given by the following:

D =(K) =NT,. (12.12)
However, what really is the meaning of N 7 Consider an analogy to radioactive decay and recall the dose
AN . . . . . . Lo o
rate, D = v ZA,. . L.e.. Equation (10.59). So, for monoenergetic particles from radioactive decay, D is given
il
by the following:

D, :%(J‘Ad;‘)’l},. (12.13)

Therefore, according to Equations (12.12) and {12.13), the quantity N, is equal to the following:

N,,_xif—(jfidt). (12.14)

In the case of CPE for an external photon beam, we have the following eguality:

D, =]ty = ﬁzﬂw(l*g) v, = 1l ¥, (12.15)
P p hv p hv

or equivalently,

D = [(TERMA)“ i) (12.16)
v

Therefore, our meaning for N could then be simply the following:
N, =(TERMA) /(hv}. (12.17)

Recall the dose expression for a spectrum of energies as follows:

Ty .
D, = j(D’(T)( ar \ r. (12.18)
0 pdx "
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Now consider an equilibrinm spectrum of electrons (equilibrivm in the sense of energy bins and, therefore,
the shape of the spectrum), & ‘;m'r’(T) = .. Thus, we can have the following:

',(i ][
T, j(]) AL d]" (12.19)
0 p‘h
AD=N T, =S [ﬁL] AT, (12.20)
pdx ),
AD AT = Q. (dT} . (12.21)
pdx

According to Equation (12.12), the “energy bin equilibrium” solution to the above is as the following:

O = ————]}]-L-——- (12.22)

' (dT/pa'.x)w ‘

Therefore, we can see that (d([)"(]")/ dT) o (dT/ pd.x);.'. It says that the equilibrium spectrum is propor-
tional to the inverse of the mass collisional stopping power: “If passing rapidly from energy bin to energy bin,
and no charges lost, then there are few charges in that bin” (Figure 12.4), Note the linear scale.

Holding to the Bragg—-Gray condition that the same fluence and fiux density traverses the cavity, we have the
following expression for D,

Ty (dT/ pa’x)
D, WJCD (dr 1 pdx) dT =N, j—dT (12.23)
£ dr/ pa’x)
jEﬂergy:f N, charges
;obin e
< 06N, : ! ng.lf)!cllCd
) ; at Ty
:‘ i ] A
3 o <
g 0.4 N,
3 L <
= ¢ o p
s, b : : || Py
0.2 N, : :
.94 " N, N,
out! in y
0 PR
0 Ty
T (MeV)

Figure 12.4. Electrons generated at T, slow down with a conservation of particles but travel through the hins
faster as they lose energy faster at lower energies.
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Accarding to the Bragg-Gray relation, i.e., Equation (12.10), the ratio Eﬁ%ﬁ is given by the following:
D,
[
b, J (I (dT / pex) dT
=85 = ] (12.24)
D .f
j (T (dT ] pdx)_ dT

Now substitute for the energy bin equilibrium:

t o (dT [ pdx

[ @i (T 1 pax) dr Ai,.[g—":w o), ar AT ods
D, _3 f_TaldTipdx) g R (AT pdy), ar (12.25)
D, ] N T, - (dT / pdx)_

[ @5 (ari pax) a1 '

¥

This is just a special case of Bragg-Gray—no dependence on the spectrum with an energy bin equilibrium
spectrum. For an equilibrium spectrum of electrons, the Bragg-Gray equation is merely the averaging of the
stopping power ratio over the energy range from 0 to 7,

Spencer—Attix cavity theory starts from assuming an equilibrium spectrum and Bragg-Gray cavity theory,
but explicitly includes knock-on electrons into the equilibrium spectrum. The effect of this inclusion is to
enhance the lower-energy part of the electron spectrum relative to the higher-energy parts (Figure 12.5).

The equilibrium spectrum for Spencer—Attix is the following:

(@5), = RO, TH®;), . (12.26)

where the factor R(7,,7) is a multiplicative correction to the primary equilibrium spectrum, (@5),, ., and was
obtained from the Méiler cross section for knock-on electron production. We can also calculate the spectrum
with Monte-Carlo methods.

Therefore, for Spencer—Attix, we will use the following:

Ty

D I ff‘(}“i) LAty
—5 o2 (47 / pdx), S (12.27)
w j._ﬁgngl L (T, AdT T
L (dT 1 pdx)
Energy = 7} Ik 7 0
T\.T.
- d-ray

Figure 12.5. lllustration of how &rays shift the charged particle energy sbectrum to lower energies.
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Dosimeter
cavity filled
with gas g’

Figure 12.6. The d-rays that are generated within
each medium are indicated with light small tracks. Primary
The heavy black tracks inside g are equivalent in A
range to the light small tracks in w. Spencer—Attix

theory adds these heavy black lines to the primary flu-

ence. After that, CPE is again assumed everywhere for

the remaining d-rays. (Not to scale.)

Primary

O-rays
The restricted mass collisional stopping power values are the following:
LAT,A)=(dT{ ,odx)g R (12.28)
L (T,A)=(dT/ pdx)_,. (12.29)

In order to understand this better, let’s consider disequilibrium of the hard d-rays between the wall and the
gas. In Figure 12.6, d-rays are in CPE everywhere. Thus, Brag—Gray cavity theory applies. The d-rays just within
the gas must have very low energy.

If we call the original electrons the “primary” and the knock-on or d-rays the “secondary,” a spectrum would
look like Figure 12.7.

The spectrum experienced by the gas is similar to Figure 12.8.

tofal, iy wall: e

Tovedt

T
Total, from wall {0 gas: f(...)d.f
A

fogl®: = d* /a7 = -\\/
' ; .
i ~.
i e
Total total, ;n gas and 7 5 o
‘ rom gas: # -
o ! i \\f’/f g rd
& - Primary Leads tor L, (1,4) | # P \
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% - ! ’,./ Same everywhere
I - Secondary | | -
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in gas: soft

: from the wall, leave the wall: if 2., misimatel,
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Figure 12.7. Secondaries (d-rays) shown in Figure 12.8. Perspective of the gas in the small cavity with
the charged particle spectrum and charac- Z,; match, Spencer-Attix theory divides the secondaries
terized by the R factor shown. into two populations as shown in the figure at A,
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Consider the equation for the dose to the gas with Spencer-Attix theory as follows:
'I(H
J- _R@,T)
l,u\

L (T,A)T. 12.30
(dr /pd\ 08 ( )

A

In Equation (12.30) above, the restricted stopping power of the medium g, L (7'A), excludes hard d-rays that
leave the medium g: they would have kinetic energies 7> A. We only want to keep J-rays that locally deposit
within g and so are truly part of the continuous siowing down in the stopping power. Spencer—Attix theory
divides the d-rays into these two distinct groups: those that stay local and are part of the stopping (restricted)
power, and those that become part of the total fluence spectrum: T > A. To that end, in Equation (12.30), the pri-
mary fluence is now enhanced by the R factor. Note that the limits of the integral start at the energy A. To do oth-
erwise would be to effectively count the soft d-rays twice. As the energy of the d-rays increases, their ability to
cross the cavity increases, and so the cutoff energy increases with chamber size. In the limit of a large cavity, no
o-rays make it out of the gas, and then A — 7, In this limit, Spencer—Attix theory approaches Bragg-Gray the-
ory. The R factor will approach unity, and the integral will reduce to the evaluation at T, Therefore, in the large
cavity limit, Equation (12.30) reduces to the {following:

.
. . ORI . I
Im{P,. s 4 zhmj‘m[,g(!,A)d] = (N, 1)-SE=(D, )y (12.31)

AT Aoy

This limit is very interesting. If there is an atomic number mismatch between the mediums g, the gas say, and
w, the wall, then there will be a mismatch in the d-rays that get generated. 1f the cavity is large enough, then this
mismatch will represent a small part of the charged particle fluence spectrum (see Figure 12.9). In this case,
Bragg~Gray theory will work well even if there is a mismatch of materials, and that is very robust.

In the limit of very small cavity, A — O and the secondary electrons take up much of the spectrum, shown in
Figure 12.10. This is also for the case of mismatched secondaries between the wall and the gas from these mate-
rials having different effective atomic numbers. Now, there is a need for Spencer—Attix theory. Using Bragg-
Gray theory would lead to incorrect answers, because d-ray equilibrium would not be achieved between the gas
and the wall.

log(<]>;.) S-rays stay in wall
i (I):.t;'fi.\ Sremn weadl high »
{ iog(tb;) S-rays stay in wall e o vl i
(I)gm Srom wall low j ’
b \ (1>‘.f.‘" from wall ke ¢
primary } 7
(D,- L A (Y Se,
\
H
f
j ! _
{ N ;‘ log(T') i N
L,(T,A) Ay T |17 - 5 log(r)
J‘(...)a’r L (7,4) j ()
iy ’ A
Figure 12.9, Perspective of the gas, large cavity Figure 12.10. Perspective of the gas: very small
limit. Note that the effects of a z mismatch are mini- cavity limit. Note that the effects of a z mis-
mized because the primaries play a large role. match are significant in this case because the

secondaries play such a large role.
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The sitation of a small cavity and very different z,, between the gas and the wall provides the maximum
deviation from Bragg-Gray. One can see this difference in data shown in Attix (2004) in his Figure 10.3 and in
his Table 10.2. It is ironic, at first thought, that small cavities are more fikely to deviate from Bragg—Gray. There
are also other factors in real ion chambers that can affect equilibrium, such as lateral disequilibriwum around the
electrode guard rings, etc. In fact, lateral disequilibsium contaminates the data shown in Figure 10.3 in Attix
(2004), and he admits this in the text on the facing page. The modern dosimetry protocols use Spencer-Attix the-
ory, as we will see in later chapters.

More on Stopping Power Averaging
We can vary the initial starting energy. Recall that for Compton, the maximum starting electron energy is

v 2a

max

hv ) . . , . . .
Wy where, o, = —. This allows for some additional averaging over the initial energy of the “pri-
+ 20 me”
4]

mary” electrons released from photons undergoing Compton interactions from a monoenergetic photon beam.
Note that T is a function of photon energy as follows:

miax

Tan
_ | NS ()
S, (T ) = 2 . (12.32)
j N'(T,)dT,

0

With a distribution of photon energics, use the photon fluence spectrum as follows:

h":\n\

| @7, ()], [T, ()] i)

e max [A1EY

S (v, )= , (12.33)

I' \"“ 1N

j O'(n)d (v
4]

In summary of averages: S represents an average over secondary s up to a launching energy, § represents
an average over spectrum of faunching (maximum) energies, § represents an average over photon energies, and

3 .
finally, Ll represents an average over photon energies.
0 ‘
There are some useful rules of thumb for photon beams. First, calculate the mean energy of the photon beam,

j1v . For diagnostic energies, this is 40% to 50% of the maximum. For example, for 60 kVp, use 25-30kV (kVp =
peak kilovoltage of a bremsstrahlung spectrum, MV and kV are used for photon beam characterizations, the
energy from this accelerating voltage). For therapy type, megavoltage beams, use 1/3 of the maximum, the accel-
erating MV voltage.

For Compton, one electron is set in motion, and the mean kinetic energy it will have is obtained from the fol-
lowing:

s O,
Ty =~ hv. (12.34)
o

.
Note that energies around 1 MeV are dominated by Compton. In general, one often uses the following:

T = oy, (12.35)
i
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From this point, there are two ways 1o go for caleulating the mass collisional stopping power ratios from this

average initial electron energy:

[.  Atix suggests to just usc [_U /2 and look it up. This assumes that the average particle encrgy, T.is1/2
the average initial particle energy. This works OK for ratios of stopping powers. Note that these ratios are
robust to 7 estimates.

2. A better way is from Johns and Cunningham (1983), which is accurate to about 1/2%. Calculate it from
Equation (12.36) by looking up these components in Appendix E of Attix (2004),

S = ]"D Y, ]. (12.36)

( SDA ( )

3. Other Cavity Theories for Photon Beams

For low energies, even Bragg-Gray will break down. There are two other theories that will handle some situa-
tions that deviate from the “only crossers™ assumption for the cavity: “very large cavity theory™ and “Burlin cav-
ity theory.”

Very Large Cavity Theory: Assuming CPE exists in the cavity and most of the charges there are from the cav-
ity, the dose D, is given by the following:

CPE e ) (ELL} .
p ), (12.37)

If the cavity were replaced by the wall material, and if there was CPE in the wall, the dose is then given by

the following:
CrE _(
D, = (K(‘)“.mll’.‘{%] : (12.38)

If the energy fluence of photons is unperturbed by the cavity (i.e., no attenuation or scattering difference,
Y. =), then for very large cavities we have the following:

D%’ ﬂ(w )
D—‘z ? : (12.39)

[ W

Note that this is a mass energy absorption ratio, and contrast this with Bragg-Gray, which had a stopping
power ratie,
Burlin Cavity Theory: Burlin cavity theory is an attempt to bridge a gap between the very small cavity (Bragg—
Gray or Spencer-Attix) and the very large cavity case. This attempt is the simplest possible way, but Monte-
Carlo simulation is the only good way to handle this situation.
Consider four types of particles:
L. Crossers: electrons cross the cavity. This is the ideal for small cavities, and Bragg—Gray assumes all
primary charges are these and no d-rays. Spencer-Attix assumes high-energy S-rays are all crossers.
2. Insiders: electrons start and stop completely within the cavity. This is the ideal for very large cavity
theory.
3. Stoppers: generated outside cavity, but stop within.
4. Starters: generated inside cavity, but stop outside it.
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In Burlin theory, the lasi fws are assumed to “cancei each other.”” Burlin theory can be considered to be a lin-
ear superposition of Bragg—Gray and very large theories as follows:

Doy 2 +(I=d) De =d-(S5)+(1-d)- B
D“' D"‘ B-G D very large " Y . (1240)

n T

The quantity ¢ is the fraction of electrons generated in the wall, and 1 — 4 &s the fraction that are not. For
small cavities d = 1, and for very large cavities = 0.

A very big assumption now is that the charged particles’ fluence decays in distance exponentially (but we
know this is not true). For a convex cavity, the mean cord length is given by the following:

L=— (1240

.

where, A is the surface area and V is the velume. Then, we can write ¢ an average of ¢ as the following:

f.
J.(])ie"‘md!
d = A (12.42)
[orar

If we assume that the equilibrium spectrum is unaltered, then d 1s simply equal to the following:

= P
4
d=—37 (12.43)

Burlin uses the following equation to define f for electron beams:

0.01= ¢ P, (12.44)

where 7. 15 the maximum depth of electron penetration and has been arbitrarily assigned a value where the flu-
ence is attenuated to 1% of its original value. Janssens (1974) found that a value of 4% is better. Note that Equa-
tion (10.47) from Auix (2004) has this form—watch units of £. Attix (2004) may not be consistent between
em™ and g/lem’. Beta is not sensitive to the exact value of z, The rules of thumb for photon beams that we

defined earlier this chapter are not useful for getting beta. Get z,, and go to Table 8.5 of Attix (2004) for ¢,/

FITHAN
Respa
Burlin theory can be useful for intermediate cavity sizes and for liquid- or solid-filled cavities. The theory 1s
;'i(’”
P

empirically based, so if used in a new situation, be very careful. Burlin theory also works best when § ~
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Table 12.1: Summary of All Cavity Theories

* clectron fluence not
perturbed

= all electrons from walls,
and considered 1o be

« primary electron fluence
not perturbed
+ CPE througlhout wail

+ all electrons come
from the cavity

= photon energy
fluence is not

* electron fluence, photo
energy Muence not per-
turbed

n

Assumptions el * sensitive to della ray
primaries spectrum that is not in perturbed
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Cavity Theory Examples and Discussion

Example Problem I: Suppose we have a small cavity surrounded by a wall and placed in a water phantom. Sup-
pose that the wall has almost the same atomic number as water. What is the dose ratio between the cavity air and
the water medium from a monoenergetic electron beam of 10 MeV? (Ignore clectron scattering.)

Solution: Bragg-Gray works wel] with electron beams. Also, we ignore electron scattering. Therefore, assume
the spectrum is the same across boundaries. The dose ratio is then calculated as follows:

[N LN
QT dT ! pdx) . dT Q(TYdT
b, b j (T | pdy), ,, ¢ i, j ()
D, D,, T dT 1 pdy), e
i 0 J’ C])'(T)(dT."pd.x)(,_HEOdT ( £ }(‘H:u 10 MY J’ O(TVdT
0 a
_dT/pdx),, 1979 MeVem®/g 1006
(dT/ pdx), , . ey 1.968 MeVem®/g

xample Problem 2: Suppose we have a 7~ source with an average energy of 100 keV in CPE in bone. Assume
that there is an equilibrium spectrum of charged particles present in the bone and in a small air cavity in the bone.
What is the dose ratio between the cavity air and the bone?
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Solution: The dose ratio is calculated as follows:

D D

it

1 T;’ (dT [ pdx)
- T, (dT ] pdx)

ol

D D

w frone o Bone

111 pdx)_ .
where from Attix, Appendix E, for energies near 100 keV, w— = (.99 If this ratio was constant, the
((17‘ / pa,'x)z"hwn'
approximate answer would be the following:
—ur - 0.99%de = 0.99.
Dimm' 00

Example Problem 3: Suppose we have a 10 cm radius cavity of a polystyrene-based scintillation dosimeter
embedded in water. What is the ratio of dose between the dosimeter and the water for a 1.25 MeV photon beam?
{Ignore attenuation.)

Solution: For a 1.25 MeV photon, the maximum kinetic energy of an electron set in motion is 1.03 MeV. For this
energy, the range, R4, 18 about 0.5 cm << 10 cm. See Attix (2004) page 580. So most of the electrons are going
to be set in motion within the polystyrene—it’s a very large cavity.

D;Ju!\'sﬁ 1 §
5, 2 — - = (0.965.
D (#"" /p}\\r.‘ﬁ:.‘ 1.036

polvst

wetdes

Example Problem 4: Suppose the cavity in example 3 above is replaced by air. What is the ratio of the dose in
the air to the water medium dose for the 1.25 MeV photon beam?

Solution: This time, the range is on the same order as the cavity size, so we must use Burlin cavity theory. For the
small cavity part, since air and water have similar atomic numbers, Bragg-Gray will be fine.

D . ' o air
[ITA— d[ Dﬂ!r‘ J + (1 - d) (&]
Duwm‘ an!('r stalh cavity P warer

=d(S& J+(1-d F’—J ,
d(Sur, )+ ()[ 5

wefer

where #=1n(1/0.01)/1,, and 1, =0.5 glem’, so f=9.2 cm’/g. Assume the cavity is spherical, the mean cord

max nax

tength is L = 4(4/3) rR*AR? = 4R/3 = 13.3 cm. Therefore, d is as follows (p,, = 1.29 x 107 glem’):

C1—exp{(9.2 em? /g)(1.29 x 10 g/em* }(13.3 cm) )

d ~
(9.2 em*/g)(1.29 x 10 glem™¥13.3 cm)

=0.93

With $“" =0.885 and (u, /p)& . =0.900, the dose ratio would be as follows:

W__; = (0.93)(0.885) -+ (1 - 0.93)(0.900) = 0.886.

Since d is 0.93, one should ask if Burlin was worth the effort. If all we needed was a rough number, Bragg—
Gray would have been f{ine.
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X

Figure 12.11. lllustration of a cavity embedded in a medium, x.

Dosimetry Fundamentals

Ideal Bragg-Gray Ion Chamber: Figure 12.11 illustrates a dosimeter with a cavity, g, and a wall, w, embedded
in a medium labeled x.

Consider the following assumptions: the wall is thick enough to establish CPE, and none of the clectrons in g
come from x. The cavity g is very small so that none of the electrons are set in motion from there. The fluence
entering the cavity is unperturbed. The energy fluence of photons in the medium, x, is not perturbed by the
dosimeter. The dose 1o the medium is then calculated by the foliowing:

_p Yalp) (12.45)
(H, ! p),.

We can use Bragg—Gray cavily theory to write Equation (12.45) as follows:

l') : _'!'.'! '/ - o — X
D =D -k AP, DS (u, lp). (12.46)

Dy (l"'_"m / Io)w

cavitytheory

If the cavity is a gas, and D = (QF MW/ e),» we can further write the following:

D, :2(1"’“) 5, 1 p) (12.47)
o MUe),
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Advantages of Media Matching
If the wall and the cavity material are the same in atomic number, and if Fano’s theorem applies’, then D = D).

.33 a 'S - 1o s _“'_,,,,""' L
In Burlin cavity theory, this would amount to S =(fi,, / p), =1

D _ —_ x ]
—“':d(Sj)Jr(iwa')(ﬂﬂ’i} =1, (12.48)
D P

w W

For an ion chamber cavity, the quantity D is then:

D, =_,,[Ei} (R, P (12.49)

¢
i
1f the surrounding medium, the phantom that the chamber is embedded within, is also closely matched to the
wall, then the Burlin theory exampie is the following:

D

&

D, D . Y| (a\ e T\
Seo e Do Ng(56)eqeay) B | L Ba | g (5) 4 -an| E ] (12.50)
I)\' Du' D.\‘ p "W p X ' p &

In Equation (12.50), d'= c!(g‘)(ﬁuimj = d and matched media (E‘): [&) =1, In effect, the medium
P, P
has become the new wall when the wall and the medium are well matched. In reality, it's hard to match all three.

Consider the two situations of the energy fluence in Figure 12.12, one with and the other without the dosim-
eter in the medium, x, with broad beams.

kY

Figure 12.12. A goal of calibration is to correct for the perturbation caused by the dosimeter itself.

Recall high energies and therefore high density effects can lead o violations of Fano’s theorem,
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The energy fluence for the cases with dosimeter, W

and without dosimeter, ‘}’", will be as follows:

deim?

(NUJ'P),‘.I’.J"(f'(,,-".")x_ﬂ-".t
daving LIJ(}(? { o ;‘ (]25 ])

-1 i dlp in) o par
le‘\, :\IJ()C) ;(l. I),n'"' (¢ .’]\f } (1252)

l}}

The correction factor is then the ratio in the limit of a small’ dosimeter:

(VW ) =1=[ (1, 1 ), o= (1, p), P 1= [(uv,, 1p),p,~ (! p), P, }-- (12.53)

Figure 12.13 illustrates & diagram for choosing cavity theories,
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13

Cavity lonization Chambers,
Circuits, and Corrections

lon chambers (or equivalently, ionization chambers) are radiation dosimeters which, in general, vary a great deal
in both volume and current. The volume is filled with a gas that typically gets ionized by energetic charged parti-
cles. The electrons often attach to a neutral molecule, and these negative ions, in addition to the positive ions,
move to their respective electrodes and are collected by a circuil that includes an electrometer. Volumes vary
from ~0.005 cc to ~800 cc. Currents vary from ~1 pA to ~1 A, Note that these currents are very small. The total
charge collected is likewise very small.

lon chambers operate in the saturation region shown in Figure 13.1. The energy deposited in the sensitive
volume that produces ionization is more directly connected to dose in this saturation region. However, since there
is no multiplication of charge in this region, one needs a large enough fluence to operate an ion chamber. Hospital
linear accelerators typically satisfy this requirement. The ion chamber is, therefore, the dosimeter of choice for
the most careful calibrations that need to be done. We will focus on ion chambers for the remainder of this book.

Thimble-type Chambers

Thimble-type chamber is a fundamental tool for medical dosimetry physics and the main type used in the calibra-
tion protocols. It is a cylindrical or spherical cavity in which an electric field is applied between a condueting
wall and a collector electrode along the center of the cavity (Figure 13.2).

Global discharge:
Geiger counter
region

P - .
I‘ml c!xilrxal)ei region: >
Saturalion

Relative pulse height

Recombination
. =" dominated

e

Applied potential

Figure 13.1. lon chambers operate in a saturation region where ideally all the charges are collected, and with-
out multiplication, such as in the proportional counter region,

129
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High voltage {(~300v} Colleetion
power supply volume
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_ et
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Guard
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Electromeler

Collector
clectrode

Figure 13.2. A thimble-type ion chamber shown in the context of a simplified circuit for collecting the ions.

The chamber wall, and also any other material surrounding 1t (phantom), is usually the main source of
charged particles. The wall is often made from C-552 or graphite. It is often (but not always) made thick enough
to establish CPE or TCPE that is fully characteristic of the photon interactions taking place in the wall material or
thin enough to not perturb the fluence of charged particles, if charged particles are the primary radiation.

The current collected is very small. The voltage on the inner electrodes is high, and it usually uses a triaxial
cable to include a guard. The guard electrode grounds the current that leaks between the wall and collector elec-
trodes. The leaks mainly occur along the surface of the insulator separatin g the clectrodes, but the cable joining
the jon chamber to the electrometer can leak as well—especially if the triaxial cable is kinked and bent a lot,
which always seems to happen in a busy hospital. The guard defines the collection volume of the ion chamber.
The collection volume is impossible to manufacture to the precision needed in hospital applications, so each ion
chamber and its clectrometer must be calibrated in a known field regularly to make sure the ion chamber
response remains a known guantity with the needed precision and accuracy.

Condenser-type Chambers

A condenser chamber is not connected to an electrometer during irradiation. Instead, a hi gh voltage is placed
between two electrodes (Figure 13.3). The condenser chamber can be thought of as an ion chamber in parallel
with a capacitor (Figure 13.4), where the combined capacitance of the chamber and the capacitor is
C=C,,+ Cye The initial charging voltage is P,. After irradiation, one gets the remaining voltage, P,. The

charge collected from the chamber, AQ, is given by the following:

AQ=0,~Q,=C(P-P). (13.1)

Sensitive Volume
Capacitor (Charged initially) (Thimble Cavity)

_______________________ R S

r Al A

Switeh Collection
. volume
N i
t '
- LJ '
— : -l . L | L
E : . : —_ i M .
Insulator Shicld CGas Conductivity |
Wl ]
Figure 13.3. Condenser-type ion chamber. Radia- Figure 13.4. Condenser-type ion chamber circuit.

tion gradually discharges the capacitor.
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Figure 13.5. Parallel plate ion chamber circuit. Figure 13.6. False currents or charges can

occur from radiation interacting with the
collecting electrodes.

Since the voltage across the chamber decreases during the irradiation, there must eveniually be recombina-
tion of some ions before they can reach the electrodes. This means that some ions produced will not be col-
lected—a correction for this is discussed later. The recombination depends on voltage, so other ion chambers
make efforts to keep the voltage constant.

Parallel Plate Chambers

In parallel plate chambers (Figure 13.5), the voltage across the plates is kept constant. One or both of the plates is
thin enough, and conducting, to allow minimal attenuation or scattering of incident electrons or low-energy pho-
tons. The plate separation can be very small, and it can also be variable (an extrapolation chamber). In this way,
one can get close to a surface dose, and if it is an extrapolation chamber, then the surface dose is inferred from the
extrapolation of a series of measurements.

If the collector electrode is too thick, then extra electrons can be knocked out by photons, primary charged
particles, or d-rays, ali of which will lead to an increase in positive charge. Hf charged positive originatly, then it
will appear as though fewer ions were created. 1f originally charged negative, then it will appear as though more
ions are created in the cavity (see Figure 13.6.).

This “polarity™ effect can be corrected for by taking measurements with both polarities and averaging the
results. All chambers should have triaxial cables to guard against current leakage so leakage is not accidentally
included in the measurement.

Charge and Current Measurements

The amount of charge of one sign is found, in general, by the following for an air-filled cavity:

D, = g[ﬂ) : (13.2)
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The charge collected and current measured are very small. For example, if the dose to air in the cavity is | Gy
and the volume of that air at 22 °C and 1 atm is the pressure of gas in a volume of 1 cc, then the charge collected
is given by the following;

D M D.p V
Q — M(m' — il.l‘prm' ,
(W/e) (Wile), (13.3)
2 Bl el 1073 ‘ o
_ (1 Wkg)(1.29% 107 g/ee)(1 co)(10™ kg/e) _280%10° C.
{33.97 JJ)O)

dir

The calculated charge is small. In radiotherapy, a dose like this can take only about 30 s of continuous beam-
on time, so the current would be the following:

;B0 _3.80x107 C
Al 305

=1.27 nA. (13.4)

A typical ammeter cannot measure this small a current, and this is also the reason why you should treat your
triax cable with care. A typical digital muitimeter can sense ~2 mA. A high-end one can sense ~20 #A with
107 Q input impedance. An electrometer is, therefore, used with ion chambers. An electrometer is a very high-
impendence voltmeter that can be used to measure current or voltage on a calibrated capacitor on which this col-
lected charge is accumulated. An electrometer typically has 10" €2 input impedance and can cost between $2,000
to $10,000 dollars.

Charge Measurement Specifics

Modern electrometers use operational-amplifiers (op-amps) to amplily the voltage. Following Attix (2004), a
simpie configuration for an electrometer would be like in Figure 13.7, where G is the gain of the op-amp, and C,
is the ion chamber’s and its cable’s intrinsic capacitance. A charge, Q, flows from the ion chamber and responds
to a potential, P.

The total potential across the capacitor, C, is P, — {—P,), and it holds a charge, C(P, + P,). This capacitor is in
parallel with the inherent capacitance, C, (the chamber and the cable). Therefore, the ion chamber charge is as
follows:

Q=C(F,+P)+CP=CP+(C+C )P, =C(GP)+CP +CP. (13.5)

For charge measurements®.

¥
fon chamber R C

v Q or dQ/dt
RS
¥ A -
- ¢ > N p
= o= o
I | v

, X Rernion
*Replace with men  Tor current measurements

Figure 13.7. This simple op-amp circuit for an ion chamber is so simplistic the guard circuit is not even shown.
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We can assume a large gain approximation, CG >> C,and G + | = G. Therefore,
Q=CGE=CT,. (13.6)

Smaller capacitors, C, allow for smaller charges to be measured: the output voltage, P, i1s inversely propor-

. ) )
tional to C, thatis, F, = %

Current Measurement Specifics

If one replaces the capacitor, C, in Figure 13.7 with a very large megaohm resistor, R, the current, /, that passes
through both R and the inherent, R, is as follows by using P, = GP;:

{R+R)=P,+P=(G+P. (13.7)

With two assumptions, small inherent resistance, £ >> R, and large gain approximations, G + I = G, the cur-
rent woukd be as follows:

Al
GE & (13.8)

Therefore, large resistors, R, allow for smaller currents to be measured.

Figure 13.8 illustrates a typical triax mode circuit, while Figure 13.9 shows a coax mode circuit with an
external high voltage supply’. Note that the resistor for feedback to the inverting input makes the op-amp circuit
look like a high-pass filter. Op-amps act to force the inverting input (~} to have equal voltage to the non-inverting
inpat (+).

Density and Humidity Corrections to an Ideal lon Chamber

An ion chamber (and its electrometer) gets calibrated at a National Institute of Standards and Technology (NIST)
calibration lab at 22 °C and 760 torr®. Therefore, T, = (273 + 22) K =295 K and P_, = 760 torr.

ool cal

R e 1 3 R s |
MA (ncgaohn} i ; N‘V\ {meganhng) :
lon chamber i 3 Ton chamber i ; ;
O/ 1y ; aQrdr w128 =
——— 1 A :

‘ 0 ™ l E . ™ i H

g -1 211/ 5 lel 4+ e . 121’/- i VOLEE

: I io + i 'O +
! : commeon I i = ;; common f
e T T rr e - ; B

Figure 13.8. Triax mode circuit. Figure 13.9. Coax mode circuit {external HV supply).

“The circuits shown in Figures 13.8 and 13.9 are realistic circuits.
1 torr = 1 mm Hg = /760 atm = 0.1333 kPa.
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Coliection
Volume,

Vent 1o air

Figure 13.10. Geometry of an idealized ion chamber.

Consider an idealized ion chamber that vents to air in the atmosphere that is dry for the moment (Figure
13.10).
Using ideal gas law’, we can relate the present gas density to that which occurred at calibration by the follow-
ing equation:
PN T

— el

i 205K P (torr)

= , (13.9)
Pos Ny T P, 273K +T(°C) 760 torr

The density of dry air at 0 °C and 760 torr is p = 0.0012929 glec.
Now this time let’s consider the ion chamber venting to air, which is humid. Humid air is Jess dense. The
water vapor contains a lot of hydrogen. The density of humid air is calculated by the following:

Py 205K ‘p(torr)wO.3783,r)“_ (13.10)
Pea  2TIK+T(C) 760 torr ’

where, g, 1s the density of humid air and p, is the partial pressure of water (torr) in the air. The partial pressure of

water, p , is calculated as follows:

wr

P {39.827 un-m.zl(T("C)—zz“c)‘f—g}

RH,

—, 13.11
100 ( )

In the above, RH,, is the relative humidity of the air.

The other humidity effect is that (W /), for humid air is less than (W/f»’)d for dry air (= 33.97 J/C); it 1
¢asier 1o ionize the hydrogen in water than the oxygen and nitrogen in the air. Recall that we find the dose, D, as
Q(w . o : . , , .
D =—=| — |. This allows us to express the ratio of charge produced in humid air, Q,, to that in dry air, Q9 , as fol-
M\ e g ’
lows:
0, (DM, 1(Wie),)

= = . 13.12
Qd' (IJ(JM(.’ / (W / e)d) ( )
Assuming Bragg-Gray theory applies (D o= ®(dT/pex)) and we also know M = pV, therefore,
0, (DT 1pdey,pV/IWie),) (13.13)

0, (Tl pde),p,V I(Wie),)

'PV = uRT, where, PV, and T are pressure, volume, and temperature of the gas, respectively. The quantity # is number of moles of the gas,
and R is the gas constant.
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Note that the /A dependence in the stopping power is quite different when something has a Jot of H in it.
The quantity z/A for hydrogen-1 is 1.0. The density of humid air is Jower (as we all know from the weather).
Therefore, we can write and summarize the effects of humidity as follows:

<l less cnergy 10 jonize water <l 1,0 s ligiter than OG5 and N,
— - - ——
%: (Vl//e)h . dT/ pdx), . &. (13.14)
Q, (W/e), (dT/ pdx), P,

=1 hvdrogen has ahigh #/A

lon Chamber Saturation and Recombination

The dose in the ion chamber gas is proportional to the charge of one sign produced, Q. Both signs exist and travel
in opposite directions, past each other, on their way to different electrodes. They can combine and neutralize each
other. Recombination reduces with increasing potential between electrodes. Recombination also generally
increases with density. When the recombination does not change upon further increases in electrode potential, the
ion chamber is said to be saturated. When the electrode potential is increased further, then the migrating charges
can cause subsequent ionizations (avalanches), and this process is used in proportional counters and in Geiger-
Miiller counters'.

There is a recombination dependence on initial ion concentration. High-LET (linear energy transfer) parti-
cles, like alphas, produce so many ions that recombination will be larger than for low-LET particles, like clec-
trons. Our focus is on volumetric or general recombination—initially uniformly distributed ion concentrations in
the cavity.

Here we define the charge collection efficiency, £ It is defined as the ratio of the charge collected, 0", to the
charge produced, Q.

The drift velocity of the jons across the chamber (mobility) is proportional to the electric field strength, £, as
follows (units are volts/m):

v, = kE, (13.15)
v, = k. (13.16)

Here &, and k, are the mobilities of the positive and negative ions, respectively, and their units are m?"/
(volts - s). Note that “mobility” is a terminal velocity and not an acceleration, because it assumes a constant
drag—continuous bumping of each other as the ions try to accelerate toward the electrodes. With an electronega-
tive gas, an electron attaches to a gas molecule, and this makes the positive and negative ion mobilities about
equal. With nonelectronegative gases—like N,, CQ,, H., methane, and the noble gases—the clectron does not
attach, so the very light electrons have a much higher mobility, or about 107 em*/(volts - s).

"For preportional counters and Geiger—Miiller counters, see Attix {2004), Chapter 15,
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Figure 13.11. Simplified diagram of the creation and migration of charges in an ion chamber to show how the
profile forms,

Consider the following situation: a parallel plate chamber with an electronegative gas in a continuous radia-
tion field. Just after the irradiation starts, the positive ion charge density, p,(x), (units are C/m™), Iooks like Figure
13.11. The tons move the distance Ax (= v, Ar = k,EAr) between frame 1 and 2 in time Ar. The jonization density
rate is ¢ (units are esu/m’s), and the time it takes a positive ion to cross the cavity from its creation at the opposite
electrode is 7,

7
riza’/v}:kcr. (13.17)

e

‘There is an analogous relation for the negative ions, 7,. At times greater than 7, and 7,, the steady state charge
density is achieved. The charge density of positive ions just next to the negative electrode is as Tollows:

4 gd
x=d)=gAt—=gr, = ——, (13.18)
plx=dy=ght =gz, kE
and,
9= % (13.19)
d
le |
! |
+ k, <k, - qd
qd Paix) ](]E
Kk, E (- ions) (5
esty P|v(~") n
m’' (+ tons)
o
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Recombination highest
where both species are
preseit.

Figure 13.12. Simplified charge profiles in an ion chamber assuming no recombination,
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Likewise for the negative ions. If the mobility is different, then the steady state charge density will be differ-
ent as well. In general, one might get a steady state charge distribution like in Figure 13.12. Note that the high-
est recombination would be in the middle. Also, the level depends on the mobility.

The above was derived withour recombination, but it’s a fine approximation if recombination is small. As
mentioned, the recombination rate per volume, r(x), with units of C/m’s, is proportional to the charge densities
of both species as follows:

P(x) = -‘:i p,(x)p, (), (13.20)

where ¢ is a the recombination constant with units m*/s. The total (integrated) recombination rate, R, is as fol-
lows:

)
R - -‘:ij p,(xX)p, (x)dx. (13.21)
0

Inserting what we already have, the total (integrated) recombination rate would be as foliows:

94 g4 X ag’ ¢ ag’d’
) I jpdx= x)-(d=x)}dv = ——. 13.2
J{(i‘ L]( J [}‘EE}( ‘J}( k ek k,E* J-{(l) (c l)}i ! ek k,E (13.22)

0

Now we can use these equations for the coliection efficiency, f. Note that the charge produced per unit area
and per unit time is gd. Therefore,
R agd’

=l—= . 13.23
/ gd Gek,k,E~ ( )

For a parallel plate geometry, the electric field, £, is related to the potential, P, by E = P/d. Therefore, the col-
lection efficiency is as follows:

I,.
L (13.24)
f °
We define £ as follows:
s 4y Y (13.25)
P ek,k2 P

where, m = 36.7 volts-s"? em ™ esu™” for air at (one type of) STP (= (4 °C, 760 torr).
We actually overestimated the recombination, since we should have considered recombination when giving

fqd and ~— fqd . We

i 2 2

the charge densities. It can be fixed by integrating with the charge densities at the electrodes as ~=—

would then get (R/gd)=(f"E"/6) and f =1 —é frE :% . However, this now underestimates the recombina-

tion because we have not considered the more complex shape of the charge densities—space charge alteration of
the electric field (solid lines in Figure 13.13).
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Figure 13.13. More realistic charge profiles in an ion chamber.

According to Mie’s theory, S = l_f§3 and f =1 ~%_/‘3§2 (not quadratic this time), and this gives the fol-
J

lowing: gd 6
. ]
/ e (13.26)
In summary then,
felma e, (13.27)

where an exponent of 0 is for an £ constant and no recombination, an exponent of 1 is for £ adjusted with recom-
bination, and, finally, an exponent of 2 is for E constant with recombination’.
Let’s find the charge produced as follows (if fis not too far from 1)

2 4
1.8 i lp g Inde (13.28)
o 6 6 P

If the irradiation time, 1, is much longer than =

Q:qv;_%:uﬁ. (13.29)

2 g4
m s . . L .
Here, ¢ = R and dividing by Q gives the following lincar equation:
!

] B C

1
Q'-§+P2' (13.30)

"For another approach (o this subject, see Johns and Cunningham (1983), Chapter 9,
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Figure 13.14. Jaffé plot for recombination.

Let’s use this to produce the so-called Jaffé plot (Figure 13.14). See Attix (2004), page 335.

We can use this, extrapolating from two measurements, to get Q, the charge produced. This is also called the
“saturation charge.” If the radiation is pulsed, then this steady state will likely not be reached: a typical linac has
1 ps pulses that are 1 ms apart. Recombination requires significant overlapping charge densities. It is worth
exploring confounding issues more closely. In both TG-21 (IV.c and Figure 4) and TG-51 (Equations [ 1 and 12),
there is a “two-voltage” technique to correct for recombination that relies on the above figure being linear. For
typical chambers, errors of <0.5% occur because of that assumplion.

For typical ion chambers, there are other factors—such as prompt (“initial”) recombination and ionic diffu-
sion—that can also lead to charge reduction, The ion chamber plateau region of the response to applied potential
is also not truly flat because of some charge multiplication.

In smaller chambers, like the A1SL, these effects can be more pronounced, since the region near walls,
which has more varying electric fields, is a larger portion of the total volume. Therefore, deviations from linear-
ity, or a pure ion chamber-type response, can be more pronounced in small chambers or micro-chambers.

In Zankowski and Podgorsak (1998), the following form is used to include these corrections:

peneral
recombingtion
——
1 ]
—= = ¢ . ﬁ,— exp{~y P}. (13.31)
Q10 P P
initial !‘lii‘ll](lfi!;)'lic;tiiolt

recombination,
tenic
difTusion
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Calibration of lon Chambers
and Photon Beams

The TG-21 protocol (AAPM 1983} is “a protocol for the determination of absorbed dose from high-energy pho-
ton and electron beam™ and the result of a task group from the American Association of Physicists in Medicine
(AAPM). In this chapter, first we explore this older and outdated protecol, and then discuss the newer clinical
protocol, Task Group 51 (AAPM 1999) in a comparative way, showing how quantities in one are related to those
in the other. The reasons for explaining TG-21 are both that, unfortunately, it may still be used somewhere, and
more importantly, the cavity theory physics is more transparent. By learning TG-21 first, it will be easy to under-
stand TG-51 later. The analogy is that it is easy to learn to drive with an automatic transmission after one learns
to drive with a manual transmission first. TG-21 is analogous to the manual transmission car.

Note that what is left out of this discussion is the excess scatter correction for phantoms other than water, like
acrylic. The reason is that this discussion of an old protocol is connected to the more modern protocol via dose to
water at the end. The focus on an cld protocol is for educational purposes of understanding theory, and not to be
complete in how to use the outdated protocol. It also makes sense to neglect discussions of even older proiccols
that use concepts like C,, since they are very outdated now.

The basic issue is that each clinical linac beam is different in “quality.” In other words, each beam will have
some uniqueness 1o its energy spectrum. One “dials in” a “monitor unit.” The monitor unit, MU, is calibrated 1o
give 1 ¢Gy at reference conditions. It would be obviously deceptive to have “cGy” on the linac dial, since it
would give the faise impression that it was always calibrated and always with a setup of reference conditions.

Inherent to this “reference condition”™ is an ion chamber, That ion chamber and its electrometer need to be
calibrated. The only way 1o do this—considering that each linac has a unique energy spectrum and that each
chamber has a upigue charge collection volume at a microscopic level—is to send the chamber and electrometer
to a place with a Co-60 source that is itself well calibrated. In the United States, the various Accredited Dosime-
try Calibration Laboratories (ADCL) do this very task. They work in concert with the National Institute of Stan-
dards and Technology (NIST) to maintain the source: Co-60 always has the same beam quality. It only gets less
radicactive as time progresses.

These calibration laboratories can provide the “exposure” from the Co-60 source in a volume of air. They can
characterize your ion chamber’s response to their source. They provide that “response” to you in the form of a
factor called N,. and you then use all the physics we have just learned, wrapped in factors that we will now learn
ahout, to be able to determine what the dose in the reference condition is for your Hinac. Then you will be able to
adjust the linac, if needed, to provide for I MU = 1 ¢Gy at the reference conditions, and the patients will get their
planned dose to well within 1% from physics considerations alone (neglecting all biology). A 1% uncertainty is
possible with TG-51, but not really with TG-21.

Note that TG-21 has its own notations that might be different from notations that have been used in this book
until now. In this chapter, notations are as what they are in TG-21.

141
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Corl), . .- X, ahead of time.
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Figure 14.1. The TG-21 protocol converts a chamber response from the ADCL to the clinic situation.

Understanding TG-21 at the NIST Calibration Lab (ADCL)

At the NIST lab (or ADCL), they put the chamber and electrometer in their Co-60 beam and get the relation
between the exposure and the dose to the chamber gas (Figure 14.1). The NIST lab knows the exposure, X. A cli-
nician’s chamber is placed where they know the exposure, X, and an electrometer readin g, M, is obtained (uniis
of charge, C). That reading is corrected to 22 °C and 1 atm. The value of N, is oblained as follows (Equation 2 of
TG-21):

Ny==. (14.1)

How does the NIST fab get X? They know and calculated X from a variety of measurements. See Equation |

in TG-21 and the preceding text:
-1: wall I" iy
X = kl']'uv(WJ {iﬁ,—} ﬁnrf [ K:J 14 2
“ p p wall ! H ( . )

Loax

In Equation (14.2), k = 2.58 x 10~ C/kg/R. The next quantity, J

Reas?

is defined as the charge per unit mass of
the cavity gas”.

-

- weidt
We assume a Spencer—Attix cavity theory for the chamber, (_;_ . Also we assume the photon energy flu-
J2,

By

air
ence through the room air is unperturbed by the chamber wall, {ﬁ} , at zero thickness. The quantity g, , is
T -
the ratio of dose to collision kerma in the chamber wall, and it is equal to 1.005 (i.e., the ADCL must use a car-
bon wall to get “X™). The “K™ factors represent water vapor content of the room air, ionization recombination
losses, scatter from the stem of chamber, correction to zero wall thickness, and some other factors as follows:

1k =——. (14.3)

fon Mt

“In the chamber is a “gas.” 1t is almost always air, but in the protocol they write “gas” for the air inside the chamber, The word “air” will
refer to the airin the ADCL room,
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where, A,, accounts for ion recombination losses for the Co-60 beam. It is Q'/Q in our previous notation, the
ratio of charge collected to charge produced in the cavity gas, the charge collection efficiency, 7, and A,
accounts Tor the wall thickness effects different from zero on the collision kerma.

We will use A, and N, 1o calculate N, which is a property of the chamber and buildup cap, but not the

phantom, in the clinic.
The following equation relates the dose in chamber gas to dose in the wall:

D by
D‘s.'m' = m [I)nmh‘]' (]44)

Wall dose in TCPE is a buildup (£, ,) from its collision kerma (graphite walls with Co-60). (See the text near
Equation 1 in TG-21.) Therefore, Equation (14.4) can be turned into the following:

D cats
D‘qa,\' = D; {ﬁum’i (K(')IS'(H'.' ] ‘ ( 1 45)

wall

for now. Also,

W

Note that wall includes a cap (@@= 1), 1.e., the same z,; . 18 actually a correction for charged
particle fluence changes. The buildup is needed to relate collision kerma to dose (see Figure 14.2).
Equation (14.5) relates to kerma in the room air (at the ADCL) as follows:

D
Lay ﬁ“w” j(K‘.)uuﬂ (K -)m‘r . (l 4—6}

1(K,)

D_:;u,\ = D
wal! alr

, -
N
/ hY
l\ I >e’ specirun consl.\\
S-A cavity
NS N
l ‘Dgu\' A}
s \
i !
N ]
!
!
I
-

Figure 14.2. The factors A, and /., account for fluence perturbations and buildup in the wall. In effect, fac-
tors like these make up for the assumptions needed to apply cavity theory.
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Figure 14.3. The ADCL knows X in the room, and so also (K,),. is known.

air

A
i) as Tollows (see

o

n _
O ﬁ...f,,,J Bodug oy [ W} (14.7)
A‘ D l {Kf) ¢ uir

waill air

In order to relate the room air kerma to the ADCL room air, (X)), is replaced by kX [

Figure 14.3).

Note that [ W

Z

} is not a function of beam energy. Now assume that photon energy spectrum is anperturbed
iy

until corrected for attenvation in the wall’ (4, )

D _ werll W
DL’:M‘ = (ﬁ) An'uh‘ﬁ\mﬁ {ﬁ} nl\’X (-—MJ : ( E 48)
’ Du-m'.' p air e air

Applying Spencer-Attix cavity theory results in the following™:

R well —
Ly I, %

I').l,'u.\‘ = [_} Au'm‘lﬁ\mﬂ JQ} kX (_] : (] 49)
p wall 1 p air ¢ ir

With Equation (14.1), we can relate exposure, X, to the charge collected, M, as follows:

— RGN wafl e

LY ) W

DL’(H' - (_] Anm[:'ﬁn'uh' {ﬁ} MkN,\‘ [_] - ( 1 4‘ | 0)
)O wall p d alr

afr

We rearrange to get the following equation in which recombination has not yet been accounted for:

Z: gay . weell ﬂm}
D,g'm' = M An'u!lﬁ;m[.’ (M] {{(;_”} ka [_ - (]4 ] E )

3
wal! .

‘Note the photon fluence correction: A, =¢ ™ =1~{'/ p)pt. Also note that the photon fluence correction is decoupted from the
charged particle fluence correction: 4, for Co-60 beam at ADCL.

Bragg-Gray would have been fine, with errors of only a few tenths of a percent if the wall is almost water equivalent, The A = 10 keV
and the Ry, inairis 0.25 em. Table 13.2 Attix (2004) shows he error if one were 10 use Bragg—-Gray.
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We know that the dose to the chamber gas is found by the following (Equation 3 of TG-21):

D :./,_[MW} . (14.12)
‘S‘(M ‘QU.\ e
ey

The energy deposited for an ion pair for room air {not dry air) in our energy range is provided to be 33.7 J/C.
The J, is assumed to be corrected for recombination here, so if not, write as follows:

Les gas” Tion

D, = A ){E] . (14.13)
e el

Equation 4 of TG-21 is:
D, =N, (MIA,). (14.14)

By RS

Recognize now N

gux

by comparing Equation (14.14) to Equation (14.11) as follows:

E gay ! W
Ngu.\' = An'ui.’ﬁuwh‘ (_....} {-&1 } AirmN}\’k . * { ] 4 1 5)
'O wall 'o air ¢ wir

With some rearrangements we gel to Equation 5 of TG-21:

Au‘aliﬁu'uf.’Afm:k ["@”) ‘
N e = Ny 3 wall i P
= Fen
(P J g { P }u'uﬂ
An advantage of N, is that it is a property only of the chamber, Note that all of these correction factors are
for Co-60 heam quality—this is essentially a correction that takes this beam quality out so that another beam
quality can be used for this chamber. However, this is an intermediate stage that cannot be directly measured; one

must apply N

guy

{14.16)

to measure it. So N, is somewhal abstract.
has the meaning:
D,.=M-N,,. Here we assume “M" is corrected for recombination. Be careful to note that TG-21 gets confusing

where A, gets included or not. Also, M here must be corrected for temperature and pressure.

The NIST lab gives us N, and A4 ourselves. Then, we will have
our own correction factors: P-factors for the clinic versus A-factors for the NIST lab.

Now, if we get Ny from the NIST lab, we can use this to calculate N, such that N,

gty

e Next at the clinic, we need to calculate N,

Understanding TG-21 at the Clinic

In the clinic, we will have a medium (a phantom). At the ADSL, it had one too, even if it is just a buildup cap. The
beam energy is also different, and it is pulsed in the clinic. TG-21 says all we need is TCPE in the phantom
(mediumy), and suggests the depths shown in Table 14.1. As a rough rule of thumb, consider: 4, (cm) ~ E(MV} /4.
For TCPE, the depth needs to exceed d

maxt
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Table 14.1: Suggested Depths for TCPE from TG-21

Co-60-15 5

16-25 7
26-50 1o

The dose to the medium is built up the same way as before, Equation (14.4):

Dmm’
et =y D, (14.17)

Loy
Then the dose to the cavily gas is given by the following:

D, =M-F,N

Lax

(14.18)

st

Pay attention that (M - P} is charges liberated and M is charges collected. Expect very small or very large
chambers to have complicated recombination dynamics. Note, we also needed to use a different factor for the ion
recombination losses: P, , but strangely enough, it is the inverse (Q/Q ") of 4, . Most common ion chambers have

ion? fon

P, = l/A,,. The older approach to recombination is as follows:
R, R
P=a,+a|—Li+a,|—+]. (14.19)
‘ R, LR,

where, R, is read at ~300 v, and R, is read at =100 v, for example.

More general than just TG-21, charges collected, M, must be corrected for temperature, pressure, and some
other things at this stage. Later, other factors are explicitly corrected for outside of “M . For now, we correct M as
follows:

M=M P PP (14.20)

raw Lp ped?

where, M, is the uncorrected ion chamber reading. The part P, , is temperature and pressure correction that, as

you would expect, is given by the following:

p :273.151(-1-7"( C) 7601001 (14.21)

e 295.15K pltorr)

The humidity correction, P, Tor a wide range of average humidity, is just unity.
The polarity correction, P, is more explicit in TG-51, but here one should do the following, calculated with

prid?
the raw reading (M or M7y ata “+" or polarity, respectively:

T

P =L M) (14.22)
! [2(M 0r M ™))

Polarization effects are caused by two currents:
1. Compton current; electrons liberated from other stuff like electrodes and guard.
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Air Gasg

Figure 14.4. The quantities P,_, and A__, both account for electron contributions that differ between the wall
and the medium. For A,,,, the medium is air.

2. Extracameral current: cable irradiation or charges collected cutside of gas sensitive volume.

Define e as the fraction of ionizations in the cavity gas by electrons from the wall, proper (see Figure 14.4).
Therefore, 1-ais that fraction from the medium or the phantom instead. Now, use these fractions to get N as
follows (Equation 6 in TG-21):

W
A“"”"ﬁ“‘HHAiunk [__(’]
= N . air _{“-"Hu'(f " (1423}

Ngre.s X z wall ¢ _ 7 —
AR
p s p wall p gus p med

All of the quantities in Equation {14.23) are for Co-60. Find @ in Figure 1 of TG-21 for Co-60".

— ~ e
Going back to Equation (14.17), let’s assume Spencer—Attix also applies here. So (—«) can be substituted
P

£y

for | 24 |, provided we use factors described next, because we skipped the wall in this ratio, If the wall is very
Loy

different from the phantom, it can be accounted for with P,_,. The replacement correction factor, P, ,, allows us

ropl
to use Spencer—Attix by correcting for the photon fluence perturbations caused by the whole chamber’s displace-
ment of the medium. It does not include electron fluence corrections if the chamber is placed at TCPE* (d>d,, ).
What if the medium and the wall material both provide electrons to the cavity gas? Then the wall correction
factor, P, ,, accounts for the medium being different from the wall. If different materials and both provide
charges to the gas in the cavity, then P, # 1, otherwise it is unity.
At the ADSL, attenuation in the wall is given by the following:

— l/fn'u!x'
An'u!{ W yfm-,, * (14—.24)

Figure 7 of TG-21 is for another quality.
*See Figure 5 in TG-21.
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M : 113 M ” j i,
where, air is the “medium.”’ Therefore, A :Eml‘:i!i.

ned
At the clinic,
_— f”('(,‘
b DD L
l)mm’ — Tmed | el RW}[(RW") — . (1425)
D walf Leis 'O gy

D .
The part —2d is covered by P
wel!
(and for electron beams). Otherwise we use the following:

z weall _ e f med
Poi = Plow 2 P ——— P len, (14.26)
)O Ly
Therefore, from Figure 7 in TG-21, for beam quality @, the dose to medium is given by the following, which
is Equation 9 of TG-21 i P, = 1.

With the same material of wall and medivm, then P, =1 by definition

repl*

— ~ med
Drm'(i = M ’ Ngu.\' I)t'rm ’ ])\\‘m’[ ’ "pn'p! (——] ' (14.27)

Las

Here is how these complimentary terms are handled in the protocol. At the ADCL, the calibration s “in-air.”
and all the factors at ADCL are for Co-60: i.e., use Figure [ in TG-21 for o Therefore,

s el _ iy —wall ¢ iy — N rip _ air
L .
[_J fﬂm} :m[i] {E-} -4-(1»~a}(£—] {i} . (14.28)
p Ly 1 'O swedf P By p waill 'O wos p o
At the clinic with, in general, P, # I, and the calibrations happen “in-phantom” (relate to Equation 10 in
TG-21), use Figure 7 in TG-21 for e

— niied — ~ wall _ nied e med ¢ med
(EJ Poy=a [EJ {L} +(1 ~a)(1—"'} {i‘—} . (14.29)
‘O s p e p wedl 'O nay p el
=}

The ¢ factor in Equation (14.28) is different from that in Equation (14.29) since they are for different beam
qualities. However, they represent the same correction fundamentally. Note that A,y 18 unaffected by o, and A,
corrects only for photons. Also note that “gas” and “aiy” must be distinguished to derive all this: the worksheet at
the end of TG-21 does not distinguish.

Now noting that with D, =M - N, . Equation 9 in TG-21 becomes: (o= 1)

Hax?

med fone ™ wall

o, B
D,.,=|P,P R{,,,,(—]iJ D, (14.30)

was S
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Substitute now with Equation 14.16 to finally get: (= 1)
[— migd l—J gas . wall W
[ i
Dliim.’ =M 13;'0:: [::\‘ﬂ'” ]::':'pf [m] Au‘uh’ﬁnwh‘ (_) {iﬂ,—} Aiur:N,\’k (—] - ( 14.31 )
’o ety . p werll p s e air |
£ I¢] o)
Rearrange to see more clearly: (o =1)

wall Lars nieed

W = Conbh E Co--Gl Z ¢
I)mc'd = (M‘P[rm Airm) ' (P:wu'.’ R‘«',m'Am.'[.’ﬁnw[{) ’ N)(k (WJ ' { Jum - "—] . ( §432)
e air P air ,O u"ul"’ P Ly
Co-060 Co-60 e

The right-hand-side of Equation (14.32) has four components. Now we discuss each part’s corrections, The
first part, MP_ A, . is recombination. Chamber/electrometer reading M, corrected for recombination difference
between continuous Co-60 (4,,) and the pulsed linac (P, ). The second part, PP, A, .l 18 fluence. For

ADCL, Co-60, B, corrects for @ (charges), and y (photons} are corrected for by A_,. Then, for the clinic linac,
both are corrected for by the product: PP

.- Lhe higher-energy linac has a coupled correction! Again, P, ;= 1
if &= 1. The third component, | N k| — , s energy corresponding o a charge pair in the ADCL, so that we
ir

?

Las nied

wall 3
| Contl (7 NCo-60 {7
can use N,. And finally, the Jast part, {ﬂ} (_IiJ (51
£ Jair P Jwait &

0
) , accounts for attenuation and stopping
Lo-60 Cor--60)

guy
G

power corrections.
At the clinic for photon beams, substitute the N definition in Equation (14.30) 1o get Equation 9 of TG-21:

= e
Dnm[ = M IJJ;HH}D!\‘HH ‘F:'up.’ (WJ [Ngu.\‘ :| ( 1 433)

gas

— ~ med
The part £ P b, (—J in the above is all for clinic-specific beam Q and the phantom corrected into it.
IR

The next part, N, is a property of a chamber with Co-60 dependencies corrected out.

Calibration of Electron Beams

Our discussion of electron beams will be brief, Consider that we have N

gos?

wall or one that matches the phantom (medium or cap) material, The dose in the phantom from an electron beam

and let us suppose that we have a thin

with mean energy, 7', crossing the cavity is the following:

=\ tmed
L
(Dmcn’ )}" = Mif ])fun I)ﬂ [;) [Ngm ] . (1434)

gas g
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Table 14.2: Average Point of Electron Entry into Cavity

o =
Paralle] = thickness di2

Cylindricai r=radius 0.85r
Spherical ‘= radius 0751

Figure 14.5. Depth of the effective
center of the ion chamber.

R e O

The quantity (D,,,}. is the dose at the average point at which electrons enter the cavity, which is displaced

a distance, S, upsiream of the geometric center of the cavity (see Table 14.2 and Figure 14.5).

The quantity M, is the pressure- and temperature-cosrected electrometer reading in the electron beam, and P,
is the electron fluence correction. Only very small cavities will not perturb an electron beam. This perturbation is
mainly due (o a spatial variation of scatter. Thin parallel plate chambers have P, = 1, and extrapolation chambers
can extrapolate to P, = 1. See Attix (2004) Table 13.9 for P, for cylindrical chambers. Tt is fess than unity, and
gets smaller for lower electron energies in cylindrical chambers,

Figure 14.6 shows the effects of differently shaped cavities on the electron scattering—the effects can be
complex.

— e
The part || — is the ratio of restricted stopping powers evaluated at the average energy T. Table
P s
13.11 of Attix (2004) has the ratio of restricted stopping powers for water, polystyrene, and Lucite. Notice that it
increases with decreasing cnergy for water or plastic phantoms. The TG-21 protocol recommends A = 10 keV.
Recall that the average electron energy decreases linearly with depth. R, is the practical range, d is the depth

beneath the surface, and T, is the energy of the beam at the surface”:

T=T,0-d/R). (14.35)

Electron beam coming lrom above,

Homogeneous phantom Phantom with cavity: Phantom with cavity:
Wide: less scatlering Long: more in-scattering
and decreased dose in and {ncreased dose in
the cavity. the cavity.

Figure 14.6. The effect of a cavity on electron beam scattering in matter.

TAUIX £2004) uses the CSDA range, but TG-21 uses the practical range.
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Updated Calibration Protocol for Medical Photon Beams (TG-51)

This improved protocol replaces the AAPM TG-21 protocel, and it can be applied to both photon and electron
beams, but we will only focus oa photon beams here.

One must use water phantoms for this protocol, and it is not based on exposure or even air kerma. This move
simplifies the calculations. It also uses a better set of restricted mass stopping powers for the Monte-Carlo calcu-
lations of some parameters. Note that tap water is fine (o use,

The dose to water, DY, for a beam “quality” (“quality” refers to beam type and energy spectrum), O, in a ref-
erence condition is given by the following:

Dy = MN} (14.36)
is the absorbed dose to water calibration

where M is the ion chamber reading (absolute charge value) and Ng .

factor for an ion chamber located in the reference condition in a beam of quality 0. The key N&  quantity is
determined from the calibration factor obtained in a calibration laboratory using a Co-60 beam again. It is found
from the following:

NE

Dow

=k N (14.37)
Here, k, converts the absorbed dose to water calibration factor for a Co-60 beam into the calibration factor for an
arbitrary beam of quality Q, photon or electron. A lot of the physics discussed previously is now wrapped into
this one factor: k.
The reading, M, now must be fully converted from the raw reading, M, ..
temperature and pressure corrections end up in this correction step as follows:

Now, more factors than just the

M=M, P, PP, P

rowe feit 2 AP clee” pol”

(14.38)

We must consider for these factors. P, corrects for temperature and pressure as before, and now is stated as
follows:
P o= 2732+7(°C) 101.33 kPa
" 295.2 P (kPa)

(14.39)

The term P, corrects for the electrometer being calibrated at a separate time or procedure, and P, corrects
for polarization effects. One takes a reading at each polarity, “+” and “~. Then, these readings respectively, M
and M, are used in the equation below. Important: retain the signs of these readings. The reading M is the

Feiw

one used in the reference condition dosimetry, and it should be the same as used in the Co-00 calibration as well,
either + or —;

Fediy! Fediy

2M

ran

w T

(14.40)

M), M, l

The next term is P,,,, which corrects for ion recombination. Recall the linearity discussion. An ion chamber
should be used in the saturation region: voltage should be large enough to prevent recombination, but small
enough so that electrons do not further ionize on their way 1o the central electrode. Note that small chambers will
have trouble finding this regime. Recombination is more likely for high LET, high dose rate, higher temperatures,
less voltage, and more space between electrodes. The procedure for calenlating this is very elegant here. For the
continuous beam, Co-60, P_ is given by the following:

freity

1=V, IV, )
T (f,” ) > (14.41)
M" IM" )=V, 1V,)

o £
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For a pulsed beam (linac), it is like the following (note the exponent changes):

Py = e L) 14.42
“ (Mr.:n' / Mft'u-) - (VH / VI. ) ' ( . )

Here, V,, and V, are the high and fow voltage settings (by at least a factor of two), and M/ and M! are the cor-
responding readings, respectively, Note that the two-voltage technique ignores initial recombination, ionic diffu-
sion, and any charge multiplication. Therefore, it ts an incomplete account of recombination.

Now, the improved ICRU-37 restricted collisional mass stopping power tables are used in Monte-Carlo cal-
culations for k,. One must have an ion chamber that is listed or shown in Table I and the graph of Table 4 in TG-
51 or provided in an update. The beam quality is specified by the percent depth dose found at 10 em depth:
Podd(10),.

For beams with a nominal energy greater than or equal to 10 MV, TG-51 recommends that one use a [ mm
thick lead foil about 50 ¢cm from the source to standardize (not eliminate) the electron contamination. There is a
legitimate debate on this issue—it may add a complication that introduces errors for no good reason. The TAEA
protocol does not recommend this foil. The %dd(10), is the result of first doing %dd(10),, or just %dd{10) if no
lead is used. One goes into the tables with %dd(10),. Figure 1 in Rogers (1999} article shows the error one gets
from the lead foil correction not being used. It is suggested by some that one need only use the lead if the
%edd(10),, is bigger than 75.

Tailor et al. (2002) produced a table showing only a 0.2% error if lead foil is not used. Page 1855 of TG-51
claims 2% error in %dd(10),, therefore, only a 0.4% dose error in extreme cases.

One must also shift the chamber reading upstream for the effective point of measurement—it is an implicit
correction for the chamber’s inherent charged particle fluence perturbation. For photon beams, we shift the read-
ing upstream by 0.6 - r, . (see Figure 14.7), where r, . is the radius of the ion chamber cavity.

Since this protocol does not use an ionization ratio for beam guality, it is important to perform this shift, A
ratio like TPR would be more robust to this issue. Therefore, TG-51 instructs us (o perform this shift of the curve.
Note that TG-51 defines the shifted curve as the depth-ionization curve.

Note that the caption in Figure 1 of TG-51 explains that for photons, the shifted curve is the depth-ionization
curve, and that it is the same as the depth-dose curve. For electrons near ¢, ,, that is not true, and a second shift at
one point is needed. '

Original

/ curve

-\"{0'6)"{'«“

Figure 14.7. x — (0.6)r,,, shifts the curve (reading) to the place where the same reading would occur if the
chamber were not there.
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In TG-21 terms, k,,is written as the following:

T BLBEEL, NS
o {(-I—/p)"("“ P P ] } - Nu}('“ ¢ (]443)
- or i(.’ Bt

air weadl© fl FANTY

A new factor is considered here, P, 1t is the correction to account for the central electrode. Also, another
new factor is here, P, which is the correction to account for the effective center of the ion chamber. Note that
PiPy =P

If we were to discuss electrons, we would have N9« instead of N . Also there would be a more compli-
cated gradient correction, Pf“’ and k', with k;, . However, the spirit is the same.

A good way 1o compare TG-21 and TG- ‘51 mdy be to access the discussion in TG-21 that describes the
absorbed dose to water as a calibration basis, instead of exposure—the predecessor of TG-51 (see Equation 8 in

TG-21):

fon’ “repl
N&’”’" = N") e il _" water *
'O Las )O weidl
where N, is given by the following:
D Ui
N, = e (14.45)

Compare this to Equation (14.16) (Equation 5 in TG- 21)" and, therefore, the following equivalence must be
true:

N(l”ﬁl:(l”k
e ir A: i
NX—_TM@ND—”WWW (14.46)
{,ETL_'L} {Eﬂ.{.}
p werll p wall

So N, would be written as follows:

A, _ air -
Ny =N, | et Ba W (14.47)
Alrm'iﬁn'm’.’ p waler € air

Substitute this into D, with = 1, replacing medium with water, cancel terms, and consider a beam quality,
(, the dose to water can be written as follows for each protocol:

water weill warer
7N = Co-60 E Co--60
TG_Z] : DI(\)(HU = MN{) (Rngiuu )(IDrE':)ﬂAn'p.' ) £ ‘ut’-‘l — s (14'48)
,O well weter £ Jwatt
Co-- 00 Co--60 @
TG-51: D¢, =Mk, Ny =MN} . (14.49)

We now define our own variables 1o better compare A factors versus P factors as foliows:

P = AL (14.50)
P = AL, (14.51)

Tt is easier (o derive when “air” is distinguished from “gas.”
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o
Recall k,=—2>2 from Equation (14.37), and we would have the following:
[RTS
D
ko = ptnar (14.52)

T wdler

Using the above, to convert between TG-21 and TG-51:

= Water i
. x(P . )Q L {14.53)
¢ fon” rept Jen o )O ’
LS Cor-G60
E wirer 'L_I walf
Ngr‘f;ﬁ() — ND (_J {m&} . (14 34)
p wett p weder Cer)
where, N, is given by the following:
_ A _ ey
ar repl air

A key point is that TG-51 has no in-between step like N . Tailor and Hansen (2002) provide a numerical
comparison between TG-21 and TG-51.

A Few Key Concepts for TG-51 Calibration

In TG-51 for electron beams, a big change is that we now have a specific reference position, d, . See Figure 2 in
TG-51 and just below to the end of the section and Equations 16 and [7. Note that d, s on a gradicnt. The text
says 10 shift the measured curve to get the depth-ionization curve and get /., One then shifts again, but only one
point, to get R, via Equations 16 and 17, and then we calculate d,

S0
S0

Remember, we want to get the effective position for the chamber reading, given its current position. That will
mean we need to not only correct for the effective center relative to where the electrons are launched, as with
photon beams. But there is a second shift, and it is a conceptually very important CPE concept.

The second shift accounts for disequilibrium gradient effects, because we are not in transient charged particle
equilibrium at d,. A single shift does not work for all depths, as it did for photons.

Now see Figure 1 of TG-51, and read the caption carefully as one also reads the text following Figure 2. The
solid lines are the depth ionization curves, after a first shift from the raw data for both photons and electrons:

i.  For photons, the depth-ionization is the same as the depth-dose because of transient charged particle
equilibrium, TCPE past . is rigorous for all energies.

1i. For electrons, the depth-ionization is differenr from the depth-dose, and this difference is almost
maximui right where the 4, , is located.

iii. For lower-energy electron beams, e ~ d,4» Ut for higher-energy electron beams, the situation gets
more complicated. The caption says the whole depth-dose curve is not needed for this protocol, but a
second shift is needed (so the last sentence of that caption could have been more clear).

For electron beams, follow the instructions in the text below to get R, and then one can get a'w. Note that
gradient corrections are already in the depth-ionization curve. For parallel-plate chambers, the chamber averag-
ing implicitly averages to the correct effective measurement position. In a sense, then, this shift is really a shift to
account for a finite lateral ion chamber dimension, like cylindrical chambers.




TG-21 TG-51
Air kerma-based (or really exposure-based) Water dose based
Beam quality = TPRI (ionization ratio) Beam quality = %dd(10),
Water or solid water type phantoms can be used ONLY water can be used
No inclusion of the central electrode Central electrode included
Intermediate factors: various P variables and N, cannot One can directly measure the intermediate factors like &,
be directly measured
Complicated—more errors possible Simpler—more robust for a busy clinic
Uses ICRU 35 stopping powers (1% off) Uses better ICRU 37 tables
(Worse at lower e-beam energies)
Overall precision 3-4%, but errors mostly can cancel Overall precision <1%
by luck.
(TG-40 requires 2%, so potentially an issue)

Now, we have curve 11 in TG-51, Figure 1, the depth-ionization curve, but for high-energy electron beams
measured with an ion chamber, this is not the depth-dose curve. See Figure 1 of Hug et al. (1997), which is much
more clear than the short dashes and solid lines in TG-51’s Figure 1b. The second shift is then the conversion
between I, and R,,. It depends on energy, and it is handled empirically. See Equations 16 and 17 in TG-51. Two
other ways to calibrate are mentioned: use a solid state detector or correct the whole curve with knowledge of the
spectrum. These are all clues to the origin behind this second shift.

The real answer is found in Figure 11.5, which is also a high-energy electron beam'. Recall in Spencer—Attix
theory, we worried about some of the delta-rays being like primary particles depending on the size of the ion
chamber. In a solid state detector, this would not be an issue because the radiological distance is so different (see
Rikner (1985)). In an ion chamber, the stopping powers need to have Spencer—Attix corrections, but in this case,
the corrections will vary with depth, and this is handled by adding a second shift. Therefore, I, and Ry, will not
be the same because of the distances the charged particles move. Because of delta-ray disequilibrium that
changes with depth, electrons need a further correction.

Note that there is now an Addendum to TG-51 where the &, values have been refined, as well as good uncer-
tainty analysis being added. See Figure 2 in Appendix B of McEwen (2014).

Also, TG-51 is further corrected for electrons by more accurate shifts to get R,,. See Table 111 of Muir (2014).
In this table, note that the numbers in the last column are all very different from 0.5.

Table 14.3 summarizes key differences between the two protocols: TG-21 and TG-51.
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Looking for a book at

will deepen your knowledge about the particle
interaction physics hidden inside radiation
dosimetry protocols like TG-51 or its predecessor,
TG-21? Unlike a cumbersome textbook with more
overhead than insight, this nimble text distills
actual lectures from a leading medical physics
graduate program. In fact, the University of
Wisconsin course this book is based on was
previously taught by Frank Herbert Attix and
Thomas Rockwell Mackie, legends whose insights
are still found in these pages, refined and added
to by the authors. After reading and studying
this book, you will feel that even routine clinical
tasks will remind you of the deep historical
physics breakthroughs of generations of physicists
who got us where we are today.




