Mecánica Cuántica Curso 2023

Repartido 2. Herramientas matemáticas y notación de Dirac

- 1. Pruebe las siguientes propiedades de los operadores lineales, siendo [A, B] el conmutador de A con B.
 - a) Si A y B son hermíticos, entonces i[A,B] también lo es
 - b) [AB, C] = A[B, C] + [A, C]B
 - c) [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 (Identidad de Jacobi)
- **2.** Sea F(z) una función analítica que en un cierto dominio puede ser desarrollada como $F(z) = \sum_{n=0}^{\infty} c_n z^n$. Si A es una matriz, la función F(A) se define como el desarrollo en potencias de A con los mismos coeficientes de F(z):

$$F(A) = \sum_{n=0}^{\infty} c_n A^n.$$

Si $|\varphi\rangle$ es un vector propio de A con $A|\varphi\rangle = a|\varphi\rangle$, muestre que $F(A)|\varphi\rangle = F(a)|\varphi\rangle$. Si $\{|\varphi_j\rangle\}$ es una base de vectores propios de A con valores propios a_j (que existe si A es hermítica, por ejemplo), obtenga la representación siguiente para F(A):

$$F(A) = \sum_{j=1}^{N} F(a_j) |\varphi_j\rangle \langle \varphi_j|.$$

- 3. Considere dos operadores X y P con la propiedad $[X,P] = \lambda I$ y F una función analítica.
 - a) Pruebe que [X, F(X)] = 0.
 - b) Pruebe por inducción completa que $[X, P^n] = \lambda n P^{n-1}$ para $n \ge 1$.
 - c) Pruebe que $[X, F(P)] = \lambda F'(P)$.
- **4.** Como los operadores hermíticos tienen autovalores reales, si A es hermítico, su valor esperado para cualquier función de onda coincide con su conjugado, $\langle A \rangle = \langle A \rangle^*$. Utilizando esta propiedad, probar que para un operador hérmítico A se verifica que:

$$\int_{-\infty}^{\infty} dx \, \phi^*(x) A \psi(x) = \int_{-\infty}^{\infty} dx \, (A\phi)^*(x) \psi(x)$$

Sugerencia: Aplique la propiedad a $\Psi=\phi+\lambda\psi$ con λ un número complejo arbitrario.

- 5. Operadores hermíticos.
 - a) Demuestre que si A y B son operadores hermíticos, $(A+B)^n$ también será un operador hermítico.
 - b) Si A es un operador hermítico, probar que $\langle A^2 \rangle$ es real.
 - c) Probar que si H es hermítico, entonces $e^{iH} = \sum_{n=0}^{\infty} \frac{iH^n}{n!}$ es el hermítico conjugado de e^{-iH} .
 - d) Si A es una matriz hermítica $A^{\dagger} = A$, muestre que $\det(e^A) = e^{\operatorname{tr}(A)}$.
 - e) Considere un operador hermítico H que verifica $H^4 = I$. ¿Cuáles serán los autovalores de posibles H? ¿Cuáles serán los autovalores posibles si H no fuera hermítico?
- **6.** Se dice que un operador U es unitario si verifica $UU^{\dagger} = U^{\dagger}U = I$.
 - a) Considere dos matrices H y U relacionadas por: $U=e^{iaH},~a\in\mathbb{R}$. Demuestre que H es hermítica si y sólo si U es unitaria.
 - b) Demuestre que si U y V son operadores unitarios, entonces UV también será unitario.
- 7. a) Demostrar que un autovalor λ de un operador unitario U debe ser de la forma e^{ia} . Sugerencia: Escribir $\int_{-\infty}^{\infty} dx \, (U\psi)^*(x) (U\psi)(x)$ de dos maneras distintas.
 - b) Demostrar que si $\psi(x)$ es una función de onda normalizada y U es un operador unitario, entonces $\phi(x) = U\psi(x)$ también estará normalizada.
 - c) Considere un conjunto completo de autofunciones normalizadas y ortogonales de un operador $A, u_a(x)$. Dado un operador unitario U, podemos construir un conjunto $v_a(x) = Uu_a(x)$. Demuestre que el nuevo conjunto de autofunciones también es ortonormal, es decir que $\int_{-\infty}^{\infty} dx \, v_a^*(x) v_b(x) = \delta_{ab}$
- 8. El espacio de estados de un sistema físico es tridimensional y $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ es una base ortonormal de ese espacio. Se definen los ket $|\psi_1\rangle$ y $|\psi_2\rangle$ como

$$|\psi_1\rangle = \frac{1}{\sqrt{2}}|u_1\rangle + \frac{i}{2}|u_2\rangle + \frac{1}{2}|u_3\rangle, \qquad |\psi_2\rangle = \frac{1}{\sqrt{3}}|u_1\rangle + \frac{i}{\sqrt{3}}|u_2\rangle + \frac{1}{2}|u_3\rangle$$

- a) ¿Están normalizados los ket $|\psi_1\rangle$ y $|\psi_2\rangle$?
- b) Calcule las matrices ρ_1 y ρ_2 que representan los proyectores sobre $|\psi_1\rangle$ y sobre $|\psi_2\rangle$ en la base $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$. Verifique que se trata de una matríz hermítica.
- **9.** Considere el operador K definido por $K = |\varphi\rangle\langle\psi|$ siendo $|\varphi\rangle$ y $|\psi\rangle$ dos vectores del espacio de estados.
 - a) ¿Bajo qué condiciones K es hermítico?
 - b) Calcule K^2 . ¿Bajo qué condiciones K es un proyector?
 - c) Muestre que K siempre puede ser escrito en la forma $K = \lambda P_1 P_2$ donde λ es una constante a ser calculada y P_1, P_2 son proyectores.

10. Considere un sistema cuyo espacio de estados tridimensional es generado por la base ortonormal $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$. En esta base se definen los operadores H y B dados por

$$H = \hbar\omega_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad B = b \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

donde ω_0 y b son reales constantes.

- a) ¿Son H y B hermíticos?
- b) Muestre que H y B conmutan. Encuentre una base de autovectores comunes de H y B.
- c) De los conjuntos de operadores $\{H\}$, $\{B\}$, $\{H,B\}$ y $\{H^2,B\}$ ¿cuáles forman un conjunto completos de operadores que conmutan?
- 11. Usando la relación $\langle x|p\rangle=e^{ipx/\hbar}/\sqrt{2\pi\hbar}$ encuentre una expresión para $\langle x|XP|\psi\rangle$ y $\langle x|PX|\psi\rangle$ en términos de $\psi(x)$. ¿Puede encontrar los mismos resultados usando que el operador P actúa como $\frac{\hbar}{i}\frac{d}{dx}$ en la representación $\{|x\rangle\}$?