
A mathematical introduction to Neural Networks
and Neural Ordinary Differential Equations

Argimiro Arratia
argimiro@cs.upc.edu

http://www.cs.upc.edu/~argimiro

CS, Universitat Politécnica de Catalunya

A. Arratia NNet + NODE (2023)

Recap: Neural Ordinary Differential

Equations (NODE)

A. Arratia NNet + NODE (2023)

From ResNet to NODE

• Residual Network

ht+1 = ht + f(ht, θ)

• Neural ODEa

ht+1 − ht
∆t

=
f(ht, θ, t)

∆t
→ dz

dt
= f(z, θ, t)

aChen et al (2018) Neural ODE. In: Advances in
Neural Information Processing Systems, 31

A. Arratia NNet + NODE (2023)

Basic ideas behind the NODE data learning approach I

1 We have a set of N data points

{(x1, y1), . . . , (xN , yN)}

Given a new data point x∗ want to make a prediction of it’s
value y∗, i.e. we seek a functional approximation to the
relationship

x→ y

2 instead of modelling this relationship directly, we model the
derivative:

dy

dx
= f(x, y)

f is unknown
(What do we gain with this? reduction of parameters at least)

A. Arratia NNet + NODE (2023)

Basic ideas behind the NODE data learning approach II

3 We parametrise this approximation by a neural network with
hidden states h(t), depending continuously on layer depth t,
with h(t0) = x and h(T) = y. The function approximation
problem is now

dh(t)

dt
= f(t, h(t), θ)

(We arrived here by analogy with ResNet)

4 This is an ODE describing continuous hidden state dynamics.
We can solve the data modelling problem by solving this
ODE. Given an input x to the NODE, the value of hidden
state at time (or depth) t is obtained by solving the integral

ϕt(x) := h(t) = x+

∫ t

t0

f(s, h(s), θ)ds with h(t0) = x

ϕt is called the flow of the ODE at time t. If we solve the
integral up to time t = T we get the map ϕT : x→ h(T) = y.

A. Arratia NNet + NODE (2023)

Basic ideas behind the NODE data learning approach III

5 IMPORTANT Fact: According to Picard’s Theorem a unique
solution for the above IVP will exist if f(s, h(s), θ) is
Lipschitz continuous.
(Argue that this is the case for most Nnet. So it is safe to
take f as Nnet.)

6 The analytical solution of this integral is not available to us.
Instead we can use a numerical method (e.g. Euler method)
to solve the integral at the required evaluation points:

ŷ = h(t1) = ODEsolve(h(t0), t0, t1, θ, f)

A. Arratia NNet + NODE (2023)

Basic ideas behind the NODE data learning approach IV

7 The free parameters of this problem are t0, t1, θ. We optimise
our choice of these free parameters w.r.to some loss function
L by backpropagating (reverse-mode differentiation) through
the ODE solver using the method of adjoints:

L(t0, t1, θ) = L(ODEsolve(h(t0), t0, t1, θ, f))

To optimise the loss, we require gradients with respect to the
free parameters.
(follow details of adjoint method in my previous slides or in
M. Surtsukov github)

A. Arratia NNet + NODE (2023)

Further resources for NODE

Mikhail Surtsukov github with brief intro and code in Pytorch.
https://github.com/msurtsukov/neural-ode/blob/

master/Neural%20ODEs.ipynb

Emilien Dupont github on Augmented NODE: https:
//github.com/EmilienDupont/augmented-neural-odes

Adria Lisa Bou, Introduction to neural ordinary differential
equations TFG
https://upcommons.upc.edu/handle/2117/387774

A. Arratia NNet + NODE (2023)

Neural Ordinary Differential Equations and

universal systems

A. Arratia NNet + NODE (2023)

Traditional approach to Neural ODEs

Traditional approach used by most authors employs Neural
Networks to learn the ODE function f(z, θ, t)

dy

dt
= NeuralNetwork(y).

× Circling back to using NNs.
× turns the model inside-out: an ODE with a Neural Network

inside!
X Able to generate universal flows. And (in principle) has lots of

potential in describing complex dynamical systems

A. Arratia NNet + NODE (2023)

Our approach to Neural ODEs
(Joint work with Carlos Ortiz, Marcel Romańı, 2022)

Our proposed System of n ODEs is given by

dy

dt
=



−x

...
−x


 + z(x) with y(0) =



x
...
x




It generates a (trivial) flow

ϕ(x, t) = (1− t)



x
...
x


 + t z(x),

where ϕ(x, 1) = z(x) is the solution at x of the IVP

dz

dt
= L (z, θ) with z(0) = z0

A. Arratia NNet + NODE (2023)

Proposed families of SODEs

There is evidence that these families of SODEs are universal

Lotka-Volterra systems

dzi
dt

= λizi + zi

n∑

j=1

Aijzj , λi, Aij ∈ R, 1 ≤ i, j ≤ n

Riccati systems

dzi
dt

= Ai+
n∑

j=1

Bijzj+
n∑

j,k=1

Cijkzjzk, Ai, Bij , Cijk ∈ R, 1 ≤ i, j, k ≤ n

S-systems

dzi
dt

= αi

n∏

j=1

z
gij
j −βi

n∏

j=1

z
hij

j , gij , hij ∈ R, αi, βi ∈ R+, 1 ≤ i, j ≤ n

A. Arratia NNet + NODE (2023)

Setup of the experiments

Goal: approximating g : R→ R

SODEs: Lotka-Volterra, Riccati, S-systems

n = 2, 5, 10

Domain: [0, 3] ∈ R
Functions: Constant, x, x2, sin(3x), exp(x/2), 3 log(x+ 1),
3/(x+ 1)

A. Arratia NNet + NODE (2023)

Results I

Figure: Comparison of the computation time to approximate different
functions until εr < 0.01 grouped by model, n = 2.

A. Arratia NNet + NODE (2023)

Results II

Figure: Computation time to approximate functions until εr < 0.01 using
a Lotka-Volterra system with n = 2, 5 and 10.

A. Arratia NNet + NODE (2023)

Results III

Figure: Computation time to approximate functions until εr < 0.01 using
a Riccati system with n = 2, 5 and 10.

A. Arratia NNet + NODE (2023)

Results IV

Figure: Computation time to approximate functions until εr < 0.01 using
an S-system with n = 2, 5 and 10.

A. Arratia NNet + NODE (2023)

Function plots II

(a) εr = 0.01 (b) εr = 0.0005

Figure: Approximation of the function f(x) = sin 3x (with Ricatti)

A. Arratia NNet + NODE (2023)

Function plots III

(a) εr = 0.01 (b) εr = 0.00001

Figure: Approximation of the function f(x) = expx/2 (with Ricatti)

A. Arratia NNet + NODE (2023)

Function plots IV

(a) εr = 0.01 (b) εr = 0.0001

Figure: Approximation of the function f(x) = 3/(x+ 1) (with Ricatti)

A. Arratia NNet + NODE (2023)

Conclusions

Approximating capabilities of the families of SODE

Input is very restricted in our framework

Stiffness of equations lead to instabilities

Further research should aim at benchmark problems

A. Arratia NNet + NODE (2023)

Applications: Weather Forecast, ...

A. Arratia NNet + NODE (2023)

Use cases of NODE

(Disclaimer: all these employ the twisted model
dy

dt
= NNet(y).)

A tutorial: Forecasting the weather with neural ODEs, by
Sebastian Callh https://sebastiancallh.github.io/

post/neural-ode-weather-forecast/
Some research papers:

Hwang et al (2021). Climate Modeling with Neural Diffusion
Equations - arXiv
Bonnaffe et al (2020) Neural ordinary differential equations for
ecological and evolutionary time series analysis. Methods in
Ecology and Evolution
Raj Dandekar, Chris Rackauckas and George Barbastathis
(2020). A Machine Learning-Aided Global Diagnostic and
Comparative Tool to Assess Effect of Quarantine Control in
COVID-19 Spread. Patterns, v1 (9)

The work by Dandekar et al, is in line of augmented dynamical systems with

Neural Networks: they define a epidemic model SIR with extra compartment to

account for Quarantine individuals. This Q compartment is a NNet

A. Arratia NNet + NODE (2023)

Tools

Julia: DiffEqFlux.jl, DifferentialEquations.jl , . . . ,
all available in repository SciML (SciML Open Source Scientific
Machine Learning) https://github.com/SciML

Pytorch
Other: SciMLConference 2022: https://scimlcon.org/2022/talks/

A. Arratia NNet + NODE (2023)

A brief Intro to Pytorch

A. Arratia NNet + NODE (2023)

Pytorch

PyTorch was developed by Meta AI (Facebook) 2016.
My recommendation of programming environment: Google Colab,
and as Jupyter notebooks, for experimentation and research.
Official Guide: https:

//pytorch.org/tutorials/beginner/basics/intro.html

A. Arratia NNet + NODE (2023)

Pytorch basic constructs

The basic data units are tensors. (has not much to do with tensors
in mathematics just that it is a kind of object from linear algebra)
A torch.Tensor is a multi-dimensional matrix containing elements
of a single data type (similar to Numpy’s ndarray) that can run on
GPUs or other hardware accelerators. In fact, tensors and NumPy
arrays can often share the same underlying memory, eliminating
the need to copy data. Tensors are also optimized for automatic
differentiation.
Torch defines 10 tensor types with CPU and GPU variants. see
https://pytorch.org/docs/stable/tensors.html

The other high level construct of Pytorch are Deep neural networks
built on a tape-based automatic differentiation system

A. Arratia NNet + NODE (2023)

PyTorch vs. Tensorflow (keras)

PyTorch has a low-level API that requires you to write more code
and handle more details than Keras. PyTorch also has a weaker
support for distributed and parallel computing, which can affect
your scalability and efficiency

A. Arratia NNet + NODE (2023)

Building a deep learning model in PyTorch I
Basic steps

Import the necessary libraries: torch for creating and working with
neural networks; torch.nn for defining network components.

Design the Model Class: Define a Python class that inherits from
torch.nn.Module. This class will represent the neural network
architecture. The class contains layers (like building blocks) that
process input data to produce output predictions.

Initialize the Model: In the class’s constructor (init method),
define the layers and other components of the neural network.
These components can include linear layers (fully connected layers),
convolutional layers, activation functions, and more.

Define the Forward Pass: Inside the model class, create a forward

method. This method describes how data flows through the layers
of the network. Define the sequence of operations (like linear
transformations, activation functions) that turn input data into
output predictions.

A. Arratia NNet + NODE (2023)

Building a deep learning model in PyTorch II
Basic steps

Instantiate the Model: Create an instance of the model class. This
instance will be the neural network.

Choose a Loss Function: Select a loss function that measures the
difference between the model’s predictions and the actual target
values.

Choose an Optimizer: Choose an optimization algorithm that
adjusts the model’s parameters (weights and biases) to minimize the
loss function. Popular optimizers include Adam, SGD, and
RMSProp.

Training Loop: Iterate over your dataset in batches. For each batch:
Pass the batch through the model to get predictions. Calculate the
loss by comparing predictions with actual targets using the chosen
loss function. Backpropagate the loss to compute gradients (slopes)
of model parameters with respect to the loss. Use the optimizer to
update model parameters, nudging them in a direction that reduces
the loss.

A. Arratia NNet + NODE (2023)

Building a deep learning model in PyTorch III
Basic steps

Repeat Training: Repeat the training loop for a specified number of
epochs (complete passes through the dataset) or until the model’s
performance improves to an acceptable level.

Validation and Testing: After training, evaluate the model’s
performance on a separate validation dataset to ensure it’s not
overfitting. You can also test the model on completely new data to
assess its real-world performance.

Inference: Once trained, you can use the trained model to make
predictions on new, unseen data.

A. Arratia NNet + NODE (2023)

Neural Network class in Pytorch

A 1-hidden layer NNet with ReLU (or sigmoid) activation

A. Arratia NNet + NODE (2023)

