# Curso: "Dosimetría personal externa"

UNIDAD 1. Protección radiológica ocupacional

**Conferencia No.1.2** 

# MAGNITUDES Y UNIDADES DE PROTECCIÓN RADIOLÓGICA

Daniel Molina Pérez MSc. Ing. Físico Nuclear





UNIVERSIDAD DE LA REPÚBLICA URUGUAY

## **OBJETIVOS**

Comprender las magnitudes (y sus unidades) fundamentales para la

Protección Radiológica y Dosimetría de las Radiaciones Ionizantes



# CONTENIDO

- Magnitudes Físicas (fuente, campo, interacción)
- Magnitudes Dosimétricas
- Magnitudes de Protección Radiológica
- Magnitudes Operacionales.



# RESUMEN TEMA ANTERIOR

Efectos Biológicos de las Radiaciones Ionizantes

En el rango de las dosis bajas la protección radiológica está principalmente interesada en la protección contra el cáncer y las enfermedades heredables inducidos por la radiación.

**Efectos estocásticos**: naturaleza probabilista, sin umbral, cuya frecuencia de aparición aumenta en proporción a la dosis de radiación





# RESUMEN TEMA ANTERIOR

Efectos Biológicos de las Radiaciones Ionizantes

A dosis elevadas y sobre todo en situaciones de emergencia, las exposiciones a la radiación pueden causar efectos deterministas (reacciones tisulares). Clínicamente observable, aparece por encima de una dosis umbral, el daño depende tanto de la dosis absorbida y de la tasa de dosis, como de la calidad de la radiación





# RESUMEN TEMA ANTERIOR

Principios de Protección Radiológica

**Justificación** 

**Optimización** 

**Limitación** 





#### **MAGNITUDES**

#### **Consideraciones Generales**

Las magnitudes y sus definiciones corresponden a las publicadas por:

- Comisión Internacional de Unidades y Medidas (ICRU)
- Comisión Internacional de PR (ICRP)





# MAGNITUDES FISICAS (Fuente, Campo e Interacción)

(Orientar como tarea investigativa)





# MAGNITUDES DOSIMETRICAS





#### **EXPOSICION**

➤ Una de las primeras magnitudes introducidas:

Objetivo inicial: cuantificar la cantidad de radiación emitida por tubos RX, midiendo la ionización producida en aire a determinada distancia.

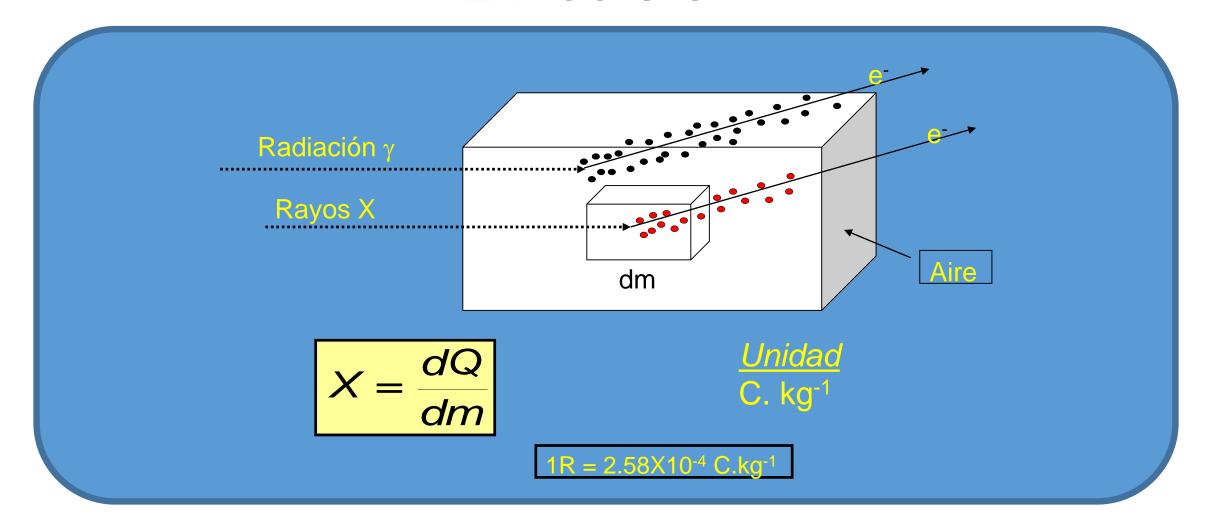
Es una magnitud dosimétrica que evalúa la intensidad de un campo de radiación electromagnética ionizante (rayos X o gamma) en el aire.



#### **EXPOSICION**

#### Definición:

dQ: es el valor absoluto de la carga eléctrica total de los iones de un mismo signo producida en el aire cuando todos los electrones y positrones liberados o creados por fotones incidentes en una masa de aire dm son completamente frenados en aire.


X = dQ/dm

Unidad: Coulomb /Kg. (C/Kg.)

Unidad antigua de exposición: Roentgen (R) 1R= 2,58 x 10<sup>-4</sup> C/kg



# **EXPOSICION**





#### TASA DE EXPOSICION

X = dX/dt Unidad: R/s, R/hr

dX: es la variación de la tasa de exposición en el intervalo de tiempo dt



#### KERMA

Es una magnitud que cuantifica la transferencia de energía de las radiaciones indirectamente ionizantes a las partículas cargadas que se generan en el medio.

Definición: es la suma de las energías cinéticas iniciales de todas las partículas ionizantes cargadas, liberadas por partículas ionizantes sin carga en una masa dm de un material especifico.

K = dEtr/dm

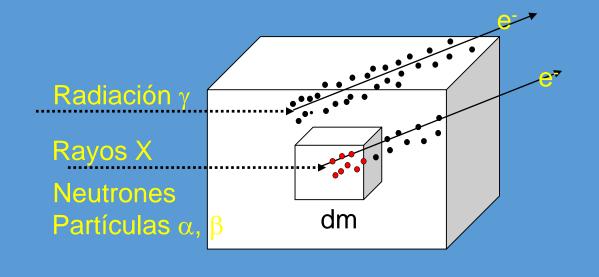
La unidad de esta magnitud es J/kg, recibe el nombre de Gray (Gy)



#### **KERMA**

- Se define para partículas no cargadas de RI (fotones, neutrones).
- Se define para cualquier material.
- Parte de E transferida puede depositarse en el medio mediante procesos de ionización y excitación, otra parte puede escapar en forma de fotones
- Cobra importancia durante la operación de calibración.
- Describe el primer paso en la disipación de energía por radiación indirectamente ionizante como fotones y neutrones como la energía transferida a partículas cargadas.




#### DOSIS ABSORBIDA

• Es la magnitud que permite cuantificar la energía depositada a la materia por las radiaciones ionizantes.

 Definición: es la energía impartida media por la RI a un material de masa dm, dividida por la masa dm.



#### **DOSIS ABSORBIDA**



Energía impartida

$$D = \frac{dE}{dm}$$

Unidad: J/Kg, se denomina Gray (Gy)
1 Gy =1 J/kg = 100rad



#### DOSIS ABSORBIDA

• La dosis absorbida es una magnitud física fundamental, se define para todos los tipos de radiación ionizante y cualquier material.

• Cuanto más tiempo la masa en cuestión se mantenga sumergida en un campo de radiación mayor será la dosis absorbida.



#### RELACION ENTRE DOSIS ABSORBIDA Y KERMA

➢ Bajo determinadas condiciones la Dosis Absorbida (D) puede obtenerse a partir de la Kerma (K) (Equilibrio de particular cargadas)

$$D \approx K (1 - g)$$

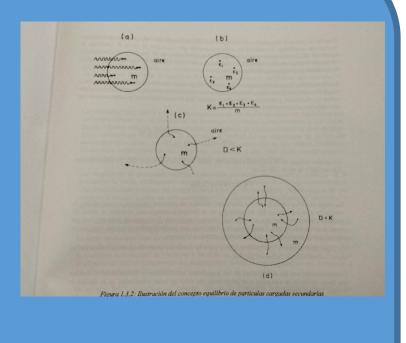
g – fracción de la Ec de los e- liberados por los fotones que se pierde en procesos radiactivos (ejemplo: fotones de frenado)

Si esta fracción es depreciable entonces D ≈ K

Esta suposición se cumple para fotones de hasta algunos MeV



#### RELACION ENTRE DOSIS ABSORBIDA Y KERMA


#### Equilibrio de partículas cargadas

Consisten en lograr que toda la E de las partículas cargadas producidas por la radiación incidente (indirectamente ionizante) se deposite en el volumen de material de interés.

#### COMO

Rodear el volumen del material m con una capa adicional del material (no modifique el campo incidente y la irradiación sea uniforme).

Capa de equilibrio: espesor igual alcance de partículas cargadas e-





#### RELACION ENTRE DOSIS ABSORBIDA Y EXPOSICION

$$X = D_{aire} / 8,69E - 3 (R/Gy)$$

Esta expresión permite conocer la dosis absorbida en aire conociendo el valor de la exposición

$$1R = 0.01 Gy = 1 rad$$

$$1mR = 0.01 mGy = 1 mrad$$



### MAGNITUDES Y UNIDADES EN DOSIMETRIA

| MAGNITUD                | REPRESENTACION | UNIDAD                                                    |
|-------------------------|----------------|-----------------------------------------------------------|
| EXPOSICIÓN              | X=dQ/dm        | C . kg <sup>-1</sup>                                      |
| TASA DE EXPOSICIÓN      | X=dX/dt        | C . kg <sup>-1</sup> . s <sup>-1</sup>                    |
| KERMA                   | K=dE/dm        | J.kg <sup>-1</sup> (Gy)                                   |
| TASA DE KERMA           | K=dK/dt        | J.kg <sup>-1</sup> .s <sup>-1</sup> (Gy.s <sup>-1</sup> ) |
| DOSIS ABSORBIDA         | D=dE/dm        | J.kg <sup>-1</sup> (Gy)                                   |
| TASA DE DOSIS ABSORBIDA | D=dD/dt        | J.kg <sup>-1</sup> .s <sup>-1</sup> (Gy.s <sup>-1</sup> ) |



# Magnitudes y unidades en Protección Radiológica





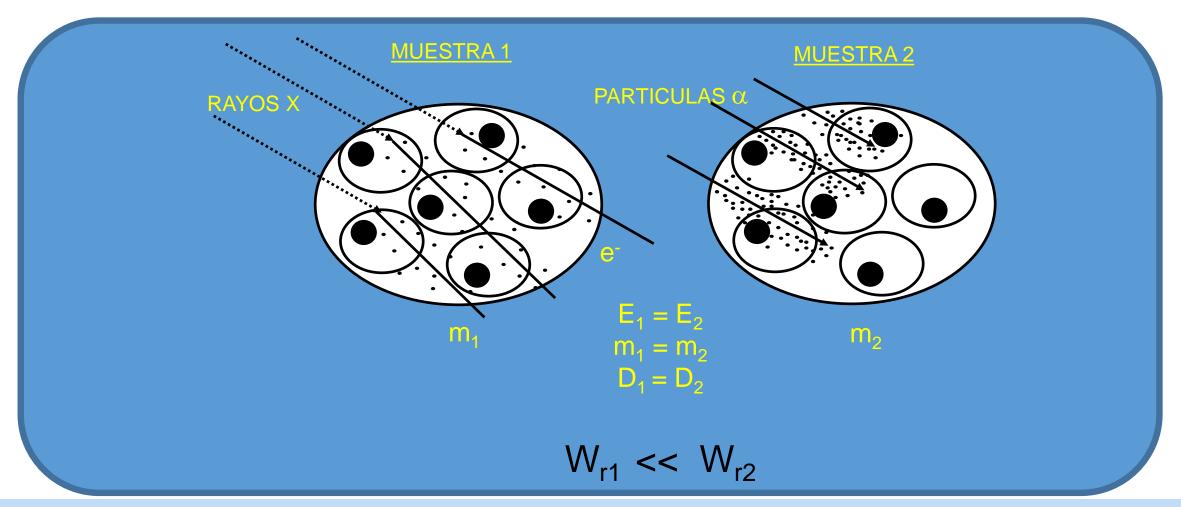
# DOSIS ABSORBIDA MEDIA EN UN ORGANO (D<sub>T</sub>)

$$D_{t} = \frac{E_{t}}{M_{t}}$$

Et es la energía total impartida en un tejido u órgano y Mt es la masa de ese tejido u órgano.

La masa: expresada en kilogramos (Kg), puede variar, por ejemplo:

10 g para los ovarios


70 kg para todo el cuerpo.



La Dosis Absorbida (D) o la Dosis Absorbida media en órgano (Dt) no son magnitudes suficientes en si mismas para caracterizar la probabilidad de daño (detrimento a la salud)



# DOSIS EQUIVALENTE





# DOSIS EQUIVALENTE EN UN ORGANO (Ht, r)

En protección radiológica es la cantidad utilizada para expresar el riesgo asociado a un determinado tipo de radiación.

$$H_{t,r} = W_r \bullet D_{t,r}$$

Dt,r: es el promedio de la dosis absorbida en el órgano t y producida por la radiación r

Wr: factor de ponderación de la radiación y se selecciona según el tipo y energía de la radiación.

Es adimensional y normalizado con fines de protección radiológica.

Refleja la Efectividad Biológica en la producción de efectos estocásticos a bajas dosis.



# DOSIS EQUIVALENTE EN UN ORGANO (Ht, r)

# Unidad

La unidad de dosis equivalente es J/Kg., se denomina Sievert (Sv)

$$1 \text{ Sv} = 1 \text{ J/ Kg}.$$

Se define como la dosis absorbida de cualquier radiación que produce los mismos efectos biológicos que 1 Gy de radiación gamma

El sievert reemplaza a la unidad tradicional de dosis equivalente (rem)

$$1 \text{ Sv} = 100 \text{ rem}$$



#### **DOSIS EQUIVALENTE (Ht)**

$$H_T = \sum_{R} W_R D_{T,R}$$
Unidad: J.kg<sup>-1</sup> (Sv)

W<sub>R</sub>...Factor de ponderación para la radiación R.

D<sub>T.R</sub>...Dosis absorbida promedio órgano T, radiación R



#### FACTORES DE PONDERACION

| Fotones de todas las energías                          | 1  |  |
|--------------------------------------------------------|----|--|
| Electrones y muones de todas las energías              | 1  |  |
| Neutrones de energías:                                 |    |  |
| < 10 keV                                               | 5  |  |
| de 10 a 100 keV                                        | 10 |  |
| de 100 keV a 20 MeV                                    | 20 |  |
| de 2 MeV a 20 MeV                                      | 10 |  |
| > 20 MeV                                               | 5  |  |
| Protones (no de retroceso) de energía > 2 MeV          | 5  |  |
| Partículas alfa, fragmentos de fisión, núcleos pesados | 20 |  |





# DOSIS EQUIVALENTE (Ht)

#### Factores de Ponderación (ICRP 103)

| Tabla 2. Factores de | ponderación de | la radiación | recomendados. |
|----------------------|----------------|--------------|---------------|
|----------------------|----------------|--------------|---------------|

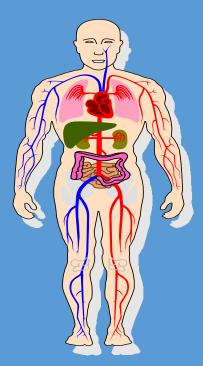
| Tipo de radiación                                    | Factor de ponderación de la radiación w <sub>R</sub>                             |
|------------------------------------------------------|----------------------------------------------------------------------------------|
| Fotones                                              | 1                                                                                |
| Electrones <sup>a</sup> y muones                     | 1                                                                                |
| Protones y piones cargados                           | 2                                                                                |
| Partículas alfa ,Fragmentos de fisión, lones pesados | 20                                                                               |
| Neutrones                                            | Una función continua de la energía del<br>neutrón (ver Figura 1 y Ecuación. 4,3) |



#### **RESUMEN**

La dosis absorbida solo toma en cuenta la energía de la radiación.

La dosis equivalente toma en cuenta el daño biológico producido por el tipo de radiación






#### DOSIS EFECTIVA (E)

 $E = \sum_{T} W_{T} H_{T}$ 

Unidad: J.kg-1 (Sv)



La dosis efectiva, E, es la suma de las dosis equivalentes ponderadas en todos los órganos y tejidos del cuerpo.

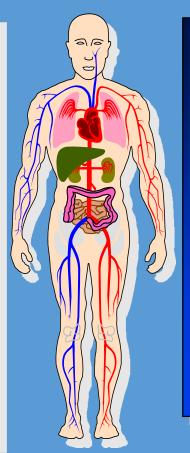
H<sub>T</sub>...Dosis equivalente en el tejido T

W<sub>T</sub>...Detrimento relativo relacionado con los efectos biológicos estocásticos en el tejido T



#### DOSIS EFECTIVA (E)

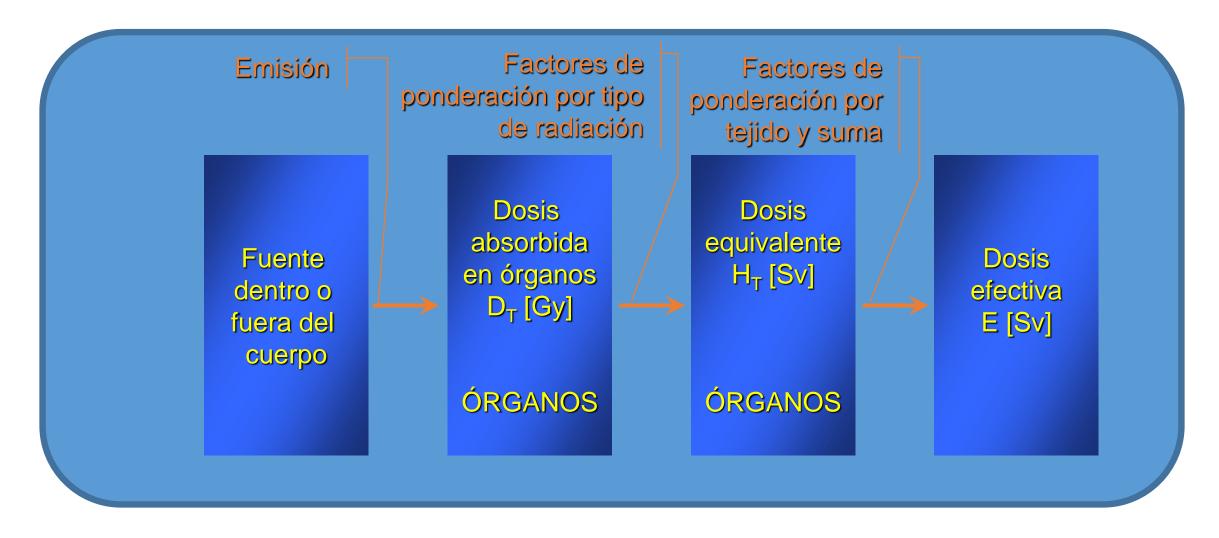
# Factor de ponderación de tejido (Wt)


Es un valor que representa la proporción entre el detrimento debido a los efectos estocásticos resultantes de la irradiación del tejido t y el detrimento total debido a los efectos estocásticos cuando se irradia el cuerpo entero uniformemente.

Wt se seleccionaron considerando las diferentes radiosensibilidades de los órganos y tejidos para determinados efectos.



#### FACTORES DE PONDERACION EN TEJIDOS


| <u>TEJIDO</u>    | <u>W</u> T |
|------------------|------------|
| Gónadas          | 0.20       |
| Médula ósea roja | 0.12       |
| Colon            | 0.12       |
| Pulmones         | 0.12       |
| Estómago         | 0.12       |
| Vejiga           | 0.05       |
| Mamas            | 0.05       |
|                  |            |



| <u>TEJIDO</u>   | <u>W</u> <sub>T</sub> |
|-----------------|-----------------------|
| Hígado          | 0.05                  |
| Esófago         | 0.05                  |
| Tiroides        | 0.05                  |
| Piel            | 0.01                  |
| Superficie ósea | 0.01                  |
| Resto           | 0.05                  |
|                 |                       |



#### RELACION ENTRE MAGNITUDES

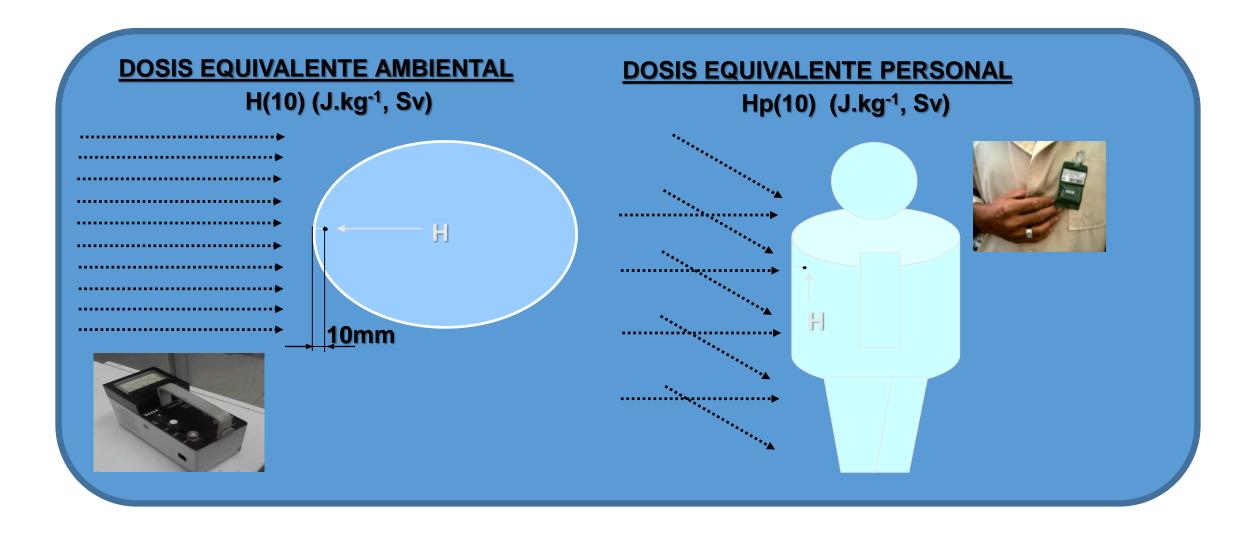








- La dosis equivalente (H) y toda otra magnitud que se derive de ella, no pueden cuantificarse por medición directa, se han desarrollado magnitudes medibles, llamadas operacionales, para su aplicación practica en PR por irradiación externa
- Permiten una aproximación razonable en la estimación de E y la dosis equivalente en órganos.
- ➤ Definición incorpora el concepto del efecto del cuerpo del receptor (persona), modifica el campo incidente.
- > Para considerar el grado de penetración de la radiación, se especifican diferentes profundidades




#### **Consideraciones prácticas:**

Relacionadas con la respuesta isotrópica y uniformidad de irradiación para los campos de radiación en el punto de medición:

- > Campo expandido: conserva la fluencia y distribución espectral y angular.
- > Campo alineado: coincide en un dirección.







# DOSIS EQUIVALENTE PERSONAL Hp(10)

Dosis equivalente personal *Hp*(d): dosis equivalente en tejido blando debajo de un punto especificado en el cuerpo, a una profundidad determinada (d)

10 mm dosis equivalente en cuerpo entero, Hp(10)

0.07 mm dosis equivalente en piel y extremidades, Hp(0.07)

3 mm dosis equivalente en cristalino, Hp(3)



# **BIBLIOGRAFÍA**





- Publicación ICRP 60. 1990 Recomendaciones de la Comisión Internacional de Protección Radiológica.. Ann. CIPR 21 (1-3).
- > Publicación ICRP 103. Las recomendaciones de 2007 de la CIPR. Ann. CIPR 37 (2-4).
- > Reporte 85. ICRU. 2011.
- OIEA. Protección radiológica y seguridad de las fuentes de radiación: Normas básicas internacionales de seguridad. GSR Parte 3. (2016).
- ➤ OIEA. Occupational Radiation Protection. GSG-7. (2018).

# Tarea Investigativa

Magnitudes físicas (fuente, campo, interacción)

> Factores de ponderación: ICRP 60 (1990) y 103 (2007)

