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INTEGRAL OPTION*
D. O. KRAMKOV AND E. MORDECKY$

(Translated by D. O. Kramkov)

Abstract. In the context of diffusion model of the (B, S)-market consisting of two assets: riskless
bank account B (Bt)t>=o and risky stock S (St)t>=o described by (1.1) and (1.2) we consider the
option of American type with payment function of "integral type" f (ft)t>=o:

ft e-t Su du + s0

The paper solves the problem of definition of the fair price of the integral option under consideration.
The structure of the expiration time is also described.

Key words. Black and Sclmles model of (B, S)-mrket American option, integral option, Asian
option, optimal stopping time, Kummer’s functions, rational time

1. Introduction. Main results.
1. We consider the diffusion model of the (B, S)-market, consisting of two assets: bonds

(or bank accounts) and stocks (see [2], [11], [12], [13], [16], [17]). The price process of the
bonds B (Bt)t>o represents the time value of money and appreciates at a constant rate
r => 0, the interest rate:

(1.1) Bt Boert, Bo > O.

The price process of stocks S (St)t>o has random character and is modeled as a
geometric Brownian motion, defined on a filtered probability space (,’, (t)t>o, P) with
constant drift # E l:t, the appreciation rate and constant variance a 0, the volatility
coeJficient:

(1.2) St Soe"t .exp aWt -t
Here W (Wt)t>_o is a standard Brownian motion and we suppose that the filtration (’t)t>_o
is generated by W.
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Let Pc Pl’t be the restriction of the measure P on ’t, and p-r be the probability
on (f, ’) such that

(1.3) P-(d) Z-(.)P(d),

where Pt-r P’-’It and

(1.4) Z-r(w) exp (
(see [13]).

By Girsanov’s theorem the process W-r (W-r)t__>0 with

(.5) w w + -t

is a Wiener process with respect to the measure p-r:

Law (W-rlP-r) Law (WIP).

Note that from (1.2) and ItS’s formula

dSt St(#dt + adWt)

and by (1.5) we can also rewrite that as

(1.8) dSt S(rdt + adW-r).

2. Let f (ft(w))t>o be a non-negative progressively measurable process with the
function f ft(w) interpreted as a payment of an option seller to an option buyer if the
option is exercised at time t (see [11], [12], [13], [16], [17]). We.consider the American type
option which can be exercised at arbitrary stopping time T ’(w). According to the general
pricing theory for the American options the fair price C* or premium, which the option buyer
pays to the seller at time t 0 is given by the formula

(1.9) C* B0 sup E-r fr
B

where sup is taking over the set of all finite (P-r-a.s.) stopping times T(W) and E-r
is the expectation with respect to the probability p-r.

Note that from (1.6), (1.7), (1.9) it follows that the fair option price does not depend on
the appreciation rate . So without the loss of generality we can sume that r.

In this paper we suppose that the reward process f has the form

(1.10) ft e-t Su du + s0

where s S0 and 0 0, A > 0 are some constants.
We named this option "Integral Option" taking imo account the formula (1.10) for

the reward process. As a matter of fact it is a particular ce of Asian options. This option
may be looking attractive for "careful" investor because it keeps track of pt events in a
smooth "integral" way. As a consequence it provides its holder a psychological comfort by
reducing regrets. By appearance it is similar to the "Russian Option" introduced by Shepp
and Shiryaev ([4], see also [18]); that is also inscribed in the American type and h a reward
process
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So the problem of the calculation of C* can be formulated as an optimal stopping
problem for the process S (St)t>0 satisfying to the stochastic differential equation

dSt St(rdt + adWt), So s,

with price

(1.11) C* B0supE fr
B

where f (ft)t>0 is given by (1.10) and E is the expectation with respect to the measure P.
From (1.10) and (1.11) it follows that

(/0 )(1.12) 121" sup Ee-(’x+r)rg S du

where

(1.13) g Sudu Sudu+so.

The two-dimensional process (St, f Su du)t>=o is a Markov process with respect to the
measure P. So the "problem (1.12)" belongs to the set of optimal stopping problems for
two-dimensional Markov processes and in principle can be solved using general methods
from [14].

3. It turns out, however, that the problem (1.12) can be reduced to some optimal
stopping problem for a one-dimensional Markov process. The idea of such reduction is based
on the introduction of a dual .martingale measure (see [13, 7]) and consists in the following.

Let us introduce the probability measures

(1.14) Pt(dw) --exp aWt -t Pt(dw), t O.

The family of meures (P)t2o is consistent and there is a meure P such that P]t
Pt, t 0 (compare with [13, 7]). It can be shown that measures P and P are locally
equivalent (i.e., Pt Pt, t 0), moreover, if T is a finite (P and P-a.s.) stopping time then

the restrictions Pr PIer and Pr PIer of meures P and P on a-field r are equivalent
and

(the definition of a-field ’r can be found for example in [7]).
Remark now that since

St Soert .exp aWt- -t
then

(1.16) St So exp aWt- tS-- B- -Therefore, from (1.15) we have for finite T

(1 17) BoE SoE Bo Sr f SoE exp aWr T SoE .By So Sr
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So from (1.9) it follows that the fair price C* can be also calculated as

(1.18) C* S0 fT.
$7.

where E is the expectation with respect to the measure P.
Let Wt Wt -at, t >__ O. It is easy to see that the process W (Wt)t>o is a Wiener

process with respect to P:

2So with respect to P the process S (St)t_>0 with St Soeft. exp{aWt- -t} can be
represented in the form

St =Soexp r+ t + aWt

and by Ith’s formula

(1.20) dSt St [(r + a2)dt + adt].
Note that according to (I.16) the process S/B (St/Bt)t>o is a P-martingale. At the

same time

Bt= B0exp -aWt---tSt So

and so the process (B/S) (Bt/St)t>o is a P-martingale. That explains the name "dual

martingale measure" for P.

4. Let us consider the process f/S- (ft/St)t>o, with respect to P, where ft is given
by (1.10).

If we denote

1
(1.21) Ct --Dt Sudu+so 0>=0,

then

f )t)(1.22) St
e-

therefore, the fair price is equal to

(1.23) C* So supe- 7.7..

Remark, that with respect to the dual measure P the process (t)t.>_0 is a Markov one

and so (compare with (1.12)) the problem of the calculation of C* is the typical optimal
stopping problem for the one-dimensional Markov process (t)t>0 with

(1.24) C* So sup _,e

where g() (compare with the corresponding problems for "Russian" options in [41, [10]
(continuous time) and [6] (discrete time)). In accordance with the explanations given in [12]
and [13] the optimal stopping time T*, i.e., the stopping time for which e-7.*g(7.* C*,
will be referred as rational.

The main result of the paper is the following theorem.



166 D. O. KRAMKOV AND E. MORDECKY

THEOREM. For the Integral option of American type with the reward f (ft)>_o given
in (1.10) the fair price equals

0 :<(1.25) C* So"
0, b0 >

where

u()- exp - y- (1 + Cy)’ dy,

constants /1 and 2 are defined in (2.5), * is the root of the equation

’() ()

and

The rational stopping time in the problem (1.24) is

(1.26) -* inf(t >_ 0: Ct >_ b* }.

The proof of the theorem is given in 3. In the next section we present some facts
about Kummer’s functions. These functions are used for another description of the function
u- u() and the constants *, c* in (1.25).

The idea to look for the closed form solution for the American option with the integral
type reward (1.10) belongs to A. N. Shiryaev whom we would like to express our gratitude
for fruitful discussions. We also thank A. A. Afanas’ev for useful remarks.

2. Auxiliary results.
1. For the proof of the main result we need the confluent hypergeometric Kummer’s

functions M(a, b,z) and U(a, b,z) (see [1, p. 504]):

z ().z ().z"(2.1) M(a,b,z) 1 + - T (b)22! +"" + (b)nn! +""

with (a)n -a(a + 1)-.-(a + n- 1), (a)0 1 and

vr I M(a,b,z) l_bM(l +a-b, 2-b,z) l(2.2) U(a, b, z)
sinrb F(1 + a b)F(b)

z
r()r( b)

where F(a) is the Gamma function, a E R..
From the theory of the Kummer’s functions (see [1, 13.1.29 and 13.2.5, p. 505]) it is

known that if 1 + a- b > 0 and 2- b > 0, then U(a, b, z) admits the following representation:

1 o zt ta- dr.V(a,,z) r(1 + b) - (1 + t)1-

Let us denote by 9’1 and 9’2 (9’1 < "2) the roots of the following quadratic equation

(2.4) ---72- +r /-- A 0,

(2.5) k- 1,2.
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For x >_ 0 define the function

((2.6) (x) l"(-3’)x"U ,, 1 7. + 7,

Notice that since > 0, then 7 < 0 and 7 > 1. That permits to use for the function
g(-7, 1 -7 + 7,2/()) the integral representation (2.a), that after the substitution
zt 2/ gives for (z) the "following expression:

( 2y (+)(2.7) u(x) exp y- (1 + yx) dy.

Since y < 0 and 2 > 1 it follows that u u(x) is an increasing strictly convex function
such that u(x)/x , x .

2. In the sequel we will use the fact that the function u u(x), x O, satisfies some
second order differential equation (see (2.10)).

First we note that the functions M(a, b, z) and U(a, b, z) defined in (2.1) and (2.2) with
a -2 and b 1 T -2 (with and 2 from (2.5)) are the independent solutions of
Kummer’s equation

(2.s) "() + ( + )’() + (z) 0,

that is equivalent (since 1 + 2 1 + 2r/a2) to the equation

(2r )w’(2.9) zw"(z) + 2 272 z (z) + 72w(z) 0.

It follows that the function u(x)= xw(2/(xa2)) with

(z) r(-l)Z v(-, +, z)

satisfies the following equation

(2.0) zu"() + ( )’() () 0, x

_
0.

3. Let us define the family of functions {uc(x), c >= 0}, where uc(x) cu(x).
From the properties of the function u u(x) it follows that there are unique constants

c* > 0 and * > 0 such that

(2.11) uc* (*) *, uc* (*) 1,

i.e., c* > 0 and * > 0 are the solutions of the system

(2.12) c*u(*) *, c*u’(*) 1,

or the equivalent system

(2.13) c*u(*) *, c*u(x) >= x,

From (2.11) it follows that * is the root of the equation

(2.14) u’() u()

and the constant c* is equal to

x>_O.
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Finally let us denote

(2.16)

3. The proof of the theorem.
1. From (1.21), (1.20) and by It6’s formula we find that the process (t)>__0 is the

solution of the stochastic differential equation

dCt (1 rCt dt aCtdWt.

This equation arises in the change point problem (see [15, (2.1)]) and is sometimes referred
as "Shiryaev-Robbins equation" (see [3, p. 168]).

Let us define

(3.2) (b) supe-’xrbr, b _> 0,

where E denotes the expectation with respect to the measure P under the assumption that
the process (t)>o, defined as the strong solution of the stochastic differential equation (3.1)
starts from 0 >= 0.

By (1.24)

(3.3) C* S0V(0)

with the constant 0 from (1.10).
Along with V() we define a function

where the function v v(), __> 0, is given in (2.16) and * is the solution of the equation
(2.4).

We assert that

(3.5) V(/.) V(),

i.e., that the function V() defined in (3.4) is the "price" for the problem (3.2), and that the
stopping time

(3.6) T =inf{t>=0" t>__*}

is optimal (rational)"

and

2. To prove these assertions it is sufficient to check the following "verification" properties:
(A1) e-’XrV(r) -<_ V(), >= 0, for all finite (-a.s.) stopping times T

(A2) Stopping time T* defined in (3.6) is (P-a.s.) finite and

e-*v(.)= v(), >__ o.

Indeed if these conditions are fulfilled then from (3.4) we have V() >__ and so (A1)
applied gives

(3.8) supe-)’r =< supe-XrV(r) <__ V().
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This fact together with the definition of T* and the property (A2) gives the optimality of T*
as well as the equality (3.5).

3. We begin with the proof of the property (A1).
Since the function V V() is two times continuously differentiable we can apply the

Ith’s formula to (e-’XtV(t))t>_o, that gives

(3.9)

where

(3.10) LV() (1 -r)V’() + --2V"()
is the infinitesimal operator of the Markov process (,)_>0. In the integral form the equation
(3.9) becomes

(3.11)

Note that if > * then V() (see (3.4)); therefore,

(3.12) nY() AV() 1 (r + A) =< 1 (r + A)* =< 0.

The last inequality 1 (r + A)* _<_ 0 follows from the fact that according to (2.10) and (2.11)
at point x

(2
(3.13) -*2rv"(*) -t- (1 re*) A* 0,

whereas from (2.7) we have
)* <= o.

In the domain <= * we have V()- v(); therefore, by (2.10)

(3.14) nv() v() 0.

So nY(s)- AV(s) <_- 0 and thus from (3.r)

X y e-At(3.15) U(0) he- (s)s ds >_- V(t).

The stochastic integral here (as the process) is a local martingale ([8, Chap. 2, 2]).
Moreover, by (3.15) it is bounded from bellow and, therefore, is a supermartingale.

Returning to (3.11) we find that for any finite Markov time T

(3.16)

By the Doob theorem for martingales bounded from below ([5, Chap. VIII), [7, Chap. 2, 4])

(3.17) E he- (s)Ps ds 0

and, therefore, from (3.15)

e-v() =< v(0), >= 0,

proving the property (A1). Similarly it may be shown that the process (e-’XtV(t))t>o is a

Pp-supermartingale.
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Now let us check the property (A2). To start with we assume that Pc(r* < cx)) 1,
__> 0. This fact will be proved below in item 4.
From (3.11)

e-)(tA’*)V(.)tA’* V(o) 2ff f
tA’"

e-xs LV(s)- AV(s) ds
Jo

(3.18) _/t^r -XU’()d
Jo

The property (A2) is obvious if *. Therefore, we suppose in (3.18) that 0 =< *.
Then for s <= t A T* we have V(bs) v(s) and hence from (3.4) (p-a.s., _< *)

(3.19) e-s LV(s) AV(s) ds O.

Let

Then from (3.18) and (3.19)

(3.20)

It follows that for all t >_ 0

I ae-’XsV’(s)s ds.
JO

/ -(^’)v(^.) v(0).

(3.21) -V(0) =< I <= V(@*)- V(b0)

and, therefore, the local martingale (IT)t>0 is uniformly integrable. Thus by the Doob

theorem EI$ 0 for each (P-a.s.) finite stopping time T and in particularly for the
stopping time T*. Hence the property (A2) (under the assumption that -* is finite) is
proved.

4. Let us prove that the stopping time T* is finite, i.e., that Pp(T* < (x)) 1 for all
=>0.

With this purpose we consider the harmonic function K K(b) satisfying to the equa-
tion

(3.22) LK() 0, > 0, K(1) 0,

where the differential operator L was defined in (3.10). The solution of (3.22) is a strictly
increasing function

(3.23) K(x) y -z exp" dy,

where as usually f f for 0 < x =< 1.
From (3.22) and (3.11) (with A 0) we have

(3.24)

Since

K(bt) K(2o) a bsK’ (bs) ds.

*--inf{t> O" Ct >__ *} { }T =inf t>0" K(t)>K(*)
then it is sufficient to show that the process (K(t))t>o reaches any level A almost surely:

-( )(3.25) PC supK(t)<A --0, __>0.
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The process (K(bt))t>o is the diffusion Markov process such that

(3.26) dK(t) -a(,)dWt,

where

Since

a() aCK’().

c= inf a()= inf II.\\ia()/+exp|__||
>0 >0

a
2r -t- r2 exp > 0,

then the quadratic variation ((K())t)t>0 (see [8, Chap. 1, 8])of the continuous martingale
(K())>0 is equal to

Hence PC ((K())t --. cx)) 1 and the stopping time ("random time change")

g(t)=inf{s>O’= (K())s >t}=
is finite with Pc-probability one.

Remark now that the process W (Wt)t>=o with Wt K(((t) is a continuous local

martingale with quadratic veiriation (W)t t, t >= O. Therefore, by Levy’s theorem [7,
Theorem 4.1] this process is a Wiener process. Hence with probability one it reaches any
level. It follows that the process (K(t))t>o also possesses such property, proving (3.25).

The theorem is proved.
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MEAN-VARIANCE HEDGING OF OPTIONS ON STOCKS WITH
MARKOV VOLATILITIES *

G. B. DI MASIt, Yu. M. KABANOV$, AND W. J. RUNGGALDIER
(Translated by the authors)

Abstract. We consider the problem of hedging an European call option for a diffusion model
where drift and volatility are functions of a Markov jump process. The market is thus incomplete
implying that perfect hedging is not possible. To derive a hedging strategy, we follow the approach
based on the idea of hedging under a mean-variance criterion as suggested by Fbllmer, Sondermann,
and Schweizer. This also leads to a generalization of the Black-Scholes formula for the corresponding
option price which, for the simplest case when the jump process has only two states, is given by an
explicit expression involving the distribution of the integrated telegraph signal (known also as the Kac
process). In the Appendix we derive this distribution by simple considerations based on properties
of the order statistics.

Key words. Black-Scholes formula, call option, stochastic volatility, incomplete market, mean-
variance hedging, Kac process

1. Introduction. In the famous Black-Scholes model of option pricing it is assumed
that the dynamics of stocks is given by a linear stochastic differential equation

dSt aStdt + aStdWt,

where a and a are deterministic functions (in the simplest case they are constants). Never-
theless, it has been observed that many financial assets do not have a deterministic volatility
a and the basic assumption of the Black-Scholes model fails. There are attempts to extend
the model by describing the evolution of a and a by stochastic differential equations ([4], [5],
[8], [15], [17]) and find more or less explicit formulae for the hedging strategies.

We present here a model where the coefficients a and a are "modulated" by a Markov
jump process Y which is independent of W. The setting is similar to that considered in [1] by
Di Masi, Platen, and Runggaldier for the discrete time. We consider the problem of hedging
an European call option with contingent claim H f(ST). Since there is an additional
source of randomness, the market is incomplete and perfect hedging is not possible. Following
ideas proposed by Fbllmer, Sondermann, and Schweizer we derive a hedging strategy that is
locally risk-minimizing. In the particular case when f(ST) (ST K)+ we also obtain for
the corresponding option price a generalization of the Black-Scholes formula which, for the
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