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Diffusion Processes

“One cannot escape the feeling that these mathematical formulas have
an independent existence and an intelligence of their own.” H.R. Hertz

As we have mentioned several times, if we let the population size N → ∞
then our processes become deterministic. In this section, we will see that if we
let N → ∞ and at the same time speed up time so that it runs at rate O(N),
then allele frequencies converge to limits called diffusion processes. This will
allow us to obtain more detailed results about the models with selection in-
troduced in the previous chapter. A rigorous treatment of diffusion processes
requires a fair amount of mathematical sophistication and the details them-
selves could fill a book, see e.g., Durrett (1996). Here, we will content ourselves
to state and explain the use of the main formulas useful for computation.

As an antidote to the mathematical skullduggery, we will give some anec-
dotes concerning the historical development of the use of diffusion process in
genetics that, taking place in the 30s, 40s, and 50s, occurs in parallel to the de-
velopment of a rigorous mathematical foundation for probability theory. Our
first is a quote from Feller’s (1951) Berkeley Symposium paper, which began
the development of the mathematical machinery for treating the convergence
of Markov chains to diffusion processes:

“There exists a huge literature on the mathematical theory of evo-
lution and statistical genetics, but existing methods and results are
due almost entirely to R.A. Fisher and Sewall Wright. They have
attacked individual problems with great ingenuity and an admirable
resourcefulness, and had in some instances to discover for themselves
isolated facts of the general theory of stochastic processes. However,
as is natural with such pioneer work, it is not easy to penetrate to
the mathematical core of the arguments to discover the explicit and
implicit assumptions underlying the theory.”

A footnote to the first sentence of the quote says: “See Fisher (1930), Wright
(1939) and Wright (1942). It is difficult to give useful references to original

R. Durrett, Probability Models for DNA Sequence Evolution,

DOI: 10.1007/978-0-387-78168-6 7, c© Springer Science+Business Media, LLC 2008



250 7 Diffusion Processes

papers, since these are mostly highly technical and inaccessible to nonspecial-
ists.” I am sure that many biologists have similar feelings about the mathe-
matics literature.

7.1 Infinitesimal mean and variance

To motivate the definition of a diffusion process, we begin by recalling that a
continuous-time Markov chain Xt is defined by giving the rate q(i, j) at which
the chain jumps from i to j. That is, if we use Pi for the distribution of the
process starting from i then

Pi(Xs = j) = q(i, j)s + o(s)

where o(s), pronounced “little oh of s,” is a quantity that when divided by s
tends to 0 as s → 0. If we define q(i, i) = −

∑
j �=i q(i, j) then the rows of the

matrix sum to 0 and

Pi(Xs = i) = 1 + q(i, i)s + o(s)

Combining the last two formulas, it follows that if f is a bounded function
then

Eif(Xs) = (1 + q(i, i)s)f(i) +
∑
j �=i

q(i, j)sf(j) + o(s)

Rearranging we have

Eif(Xs) − f(i)
s

=
∑

j

q(i, j)f(j) + o(1)

where o(1) denotes a quantity that (when divided by 1) tends to 0 as s → 0.
Letting s → 0

d

ds
Eif(Xs)

∣∣∣∣
s=0

= Qf(i) (7.1)

where the right-hand side is the ith component of the product of the matrix
Q = q(i, j) and the vector f(j). Q is called the infinitesimal generator of Xs.

To define diffusion processes, we will take an approach that is not intuitive,
but is efficient.

Definition. A one dimensional diffusion process is a continuous Markov pro-
cess with infinitesimal generator

Lf =
1
2
a(x)

d2

dx2
f + b(x)

d

dx
f

That is, we have (d/dt)Exf(Xt)|t=0 = Lf(x).
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To see what this means, note that if we take f(x) = x then f ′(x) = 1 and
f ′′(x) = 0 so

d

dt
ExXt

∣∣∣∣
t=0

= b(x)

while if we fix x and define f(y) = (y − x)2 then f ′(x) = 0 and f ′′(y) = 2 so

d

dt
Ex(Xt − x)2

∣∣∣∣
t=0

= a(x)

For this reason, b(x) and a(x) are called the infinitesimal mean and infinites-
imal variance.

Taking f(y) = (y − x)4 we have f ′(x) = 0 and f ′′(x) = 0 so

d

dt
Ex(Xt − x)4

∣∣∣∣
t=0

= 0

Since (y − x)4 ≥ 0, we have Ex(Xt − x)4 ≥ ε4Px(|Xt − x| > ε), and it follows
that

1
t
Px(|Xt − x| > ε) → 0 as t → 0

It can be shown that this condition implies that the paths t → Xt are contin-
uous. To see why we need this probability to be o(t), recall that for continuous
time Markov chains with jumps

Pi(Xt = j)/t → q(i, j) as t → 0.

To explain the intuitive meaning of the coefficients b(x) and a(x) we will
consider some examples.

Example 7.1. Deterministic motion. Suppose X0 = x and dXt/dt = b(Xt). A
little calculus shows

f(Xt) − f(X0) =
∫ t

0

d

ds
f(Xs) ds

=
∫ t

0

f ′(Xs)
dXs

ds
ds =

∫ t

0

f ′(Xs)b(Xs) ds

So if f ′ and b are continuous

f(Xt) − f(x)
t

→ f ′(x)b(x)

i.e., Lf(x) = b(x)f ′(x). Thus, when a(x) = 0, a diffusion process reduces to a
differential equation.

Notation. In the next example and in what follows Bt = B(t) and the second
form will often be used when t has subscripts or a complicated formula.
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Example 7.2. Brownian motion. Suppose B(0) = x and for 0 = t0 < t1 <
. . . < tn, B(t1)−B(t0), B(t2)−B(t1), . . . B(tn)−B(tn−1) are independent with
B(ti)−B(ti−1) normally distributed with mean 0 and variance σ2(ti − ti−1).
Using Taylor’s theorem, when t is small

f(Bt) − f(B0) ≈ f ′(B0)(Bt − B0) +
1
2
f ′′(B0)(Bt − B0)2

Taking expected values

Ex(f(Bt) − f(x)) ≈ 1
2
f ′′(x)σ2t

so Lf(x) = (σ2/2)f ′′(x), i.e., a(x) = σ2 and b(x) = 0. Thus, a(x) measures
the size of the stochastic fluctuations, or what biologists call random genetic
drift.

Example 7.3. Stochastic differential equations. Let σ(x) =
√

a(x). Intuitively,
a diffusion process has for small t

(�) Xt − X0 ≈ b(X0)t + σ(X0)(Bt − B0)

If b and σ are Lipschitz continuous, i.e., |b(x) − b(y)| ≤ K|x − y| and |σ(x) −
σ(y)| ≤ K|x − y| then it can be shown that the integral equation

Xt − X0 =
∫ t

0

b(Xs) ds +
∫ t

0

σ(Xs)dBs

has a unique solution, where the second integral is defined to be the limit
of approximating sums

∑
i σ(X(si−1))(B(si) − B(si−1)). The formalities in-

volved in making the last sentence precise are considerable but the intuition
in (�) is important: a diffusion process is a differential equation plus random
fluctuations, which can be thought of as coming from a Brownian motion with
a state dependent variance.

7.2 Examples of diffusions

In this section, we will introduce many of the examples from genetics that
we will study. A formal proof of the convergence of Markov chains to limiting
diffusions is somewhat complicated. Here, we will content ourselves to compute
the limits of the infinitesimal mean and variance. Theoretical results which
show that this is sufficient to conclude convergence can be found in Section
8.7 of Durrett (1996) or Section 7.4 of Ethier and Kurtz (1986).

Example 7.4. Wright-Fisher model with selection. There are two alleles, A and
a. The fitness of A is 1 and fitness of a is 1−s where s ≥ 0. In the Wright-Fisher



7.2 Examples of diffusions 253

model, this can be implemented by declaring that, as we build up the state at
time t + 1 by drawing with replacement from generation t, we always accept
an A that is drawn, but we keep an a with probability 1 − s. Here, selection
acts on the individual chromosomes, so, in effect, we have a population of 2N
haploid individuals. Later we will discuss the more complicated situation of
selection acting on diploids.

If the frequency of allele A in generation 0 is X0 = x then a newly drawn
ball will be kept with probability x+(1−x)(1− s) so the expected frequency
in the next generation will be

x′ =
x

x + (1 − x)(1 − s)
=

x

1 − (1 − x)s
= x + x(1 − x)s + o(s)

since 1/(1 − y) = 1 + y + y2 + · · · . The number of A’s in the next generation
N1 will be binomial(2N, x′) so the frequency X1 = N1/2N has

E(X1 − X0) = x(1 − x)s + o(s)

To take the diffusion limit, we want to write time in units of 2N genera-
tions, i.e., let Yt = X[2Nt] where [s] is the largest integer ≤ s. Since time 1 for
X corresponds to time 1/2N for Y , we want the change in the mean in one
time step to be of order 1/2N , so we let γ = 2Ns and write

E(Y1/N − Y0) = x(1 − x)γ · 1
2N

+ o
(
N−1

)

where o(N−1) is a term that when divided by N−1 tends to 0 as N → ∞.
The variance of N1 is 2Nx′(1 − x′), and var (cZ) = c2 var (Z) so the

variance of X1 is x′(1 − x′)/2N . When s = γ/2N , x′ = x + o(1) and we have

var (Y1/N − Y0) = x(1 − x) · 1
2N

+ o
(
N−1

)

Combining our calculations we see that the infinitesimal generator is

Lf =
1
2
x(1 − x)

d2

dx2
f + γx(1 − x)

d

dx
f (7.2)

In some papers in the biology literature time is not sped up and one sees

Lf =
1

4N
x(1 − x)

d2

dx2
f + sx(1 − x)

d

dx
f

Example 7.5. Wright-Fisher model with selection and mutation. As before, we
have two alleles, A and a, with the fitness of A is 1 and fitness of a is 1−s. This
time a → A with probability μ1 and A → a with probability μ2. In defining
our process we will suppose that selection occurs first followed by mutation.
For a concrete story, suppose that the fitnesses give the relative probabilities
of the two types surviving long enough to reproduce, at which point a genetic
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mutation may occur. If the frequency of allele A in generation 0 is X0 = x
then the frequency in the next generation will be

x′′ = x′ + μ1(1 − x′) − μ2x
′ where x′ = x + x(1 − x)s + o(s)

Letting Yt = X[2Nt], γ = 2Ns, βi = 2Nμi, and noting that x′ = x + o(1) we
see that

E(Y1/N − Y0) = {x(1 − x)γ + β1(1 − x) − β2x} ·
1

2N
+ o

(
N−1

)

Again x′′ = x + o(1) so we have

var (Y1/N − Y0) = x(1 − x) · 1
2N

+ o
(
N−1

)

Combining our calculations we see that the infinitesimal generator is

Lf =
1
2
x(1 − x)

d2

dx2
f + {γx(1 − x) + β1(1 − x) − β2x}

d

dx
f (7.3)

The source of each term is

binomial sampling 1
2x(1 − x) d2

dx2 f

selection, 2Ns = γ γx(1 − x) d
dxf

mutation, 2Nμi = βi {β1(1 − x) − β2x} d
dxf

Example 7.6. Moran model. There are two alleles, A and a. The fitness of A
is 1 and fitness of a is 1 − s. Mutations a → A occur at rate μ1 and A → a
occur at rate μ2. For simplicity, we assume that mutations occur during the
individual’s life, not at birth, so adding the mutation rates to the transition
rates from Section 6.1 we have

k → k + 1 at rate (2N − k)
(

k

2N
+ μ

)

k → k − 1 at rate k

(
2N − k

2N
(1 − s) + ν

)

Let Xt be the fraction of individuals with the A allele. To derive the diffusion
approximation we note that if k/2N = x

d

dt
EXt =

1
2N

[
(2N − k)

(
k

2N
+ μ1

)
− k

(
2N − k

2N
(1 − s) + μ2

)]

= (1 − x)μ1 − xμ2 + x(1 − x)s

Letting βi = Nμi, and γ = Ns we see that the drift coefficient for the process
run at rate N is

b(x) = (1 − x)β1 − xβ2 + x(1 − x)γ
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To compute the second order term, we note that after either an up jump or a
down jump (Xt − x)2 = (1/2N)2, so

d

dt
E(Xt − x)2 =

1
(2N)2

[
(2N − k)

(
k

2N
+ μ1

)
+ k

(
2N − k

2N
(1 − s) + μ2

)]

Since μ1, μ2, s,→ 0 and k/2N = x we have

d

dt
E(Xt − x)2 =

1
2N

[2x(1 − x) + o(1)]

Thus for the process run at rate N the diffusion coefficient is

a(x) = x(1 − x)

Combining our calculations we see that the infinitesimal generator is again

Lf =
1
2
x(1 − x)

d2

dx2
f + [γx(1 − x) + β1(1 − x) − β2x]

d

dx
f (7.4)

In Section 1.5, we saw that the Moran model coalesces twice as fast as the
Wright-Fisher model. To compensate for this, we sped up time by N rather
than 2N , in order to arrive at the same diffusion limit.

Example 7.7. General diploid selection model. We again have two alleles A
and a but the fitnesses of diploid individuals are

AA Aa aa
1 − s0 1 − s1 1 − s2

If the frequency of allele A in generation 0 is X0 = x then assuming random
union of gametes and reasoning as in Section 6.2, the frequency in the next
generation will be

x′ =
x2(1 − s0) + x(1 − x)(1 − s1)

x2(1 − s0) + 2x(1 − x)(1 − s1) + (1 − x)2(1 − s2)

=
x − s0x

2 − s1x(1 − x)
1 − x2s0 − 2x(1 − x)s1 − (1 − x)2s2

Ignoring terms with s2
i and sisj the above

≈ x − s0x
2 − s1x(1 − x) + s0x

3 + 2x2(1 − x)s1 + x(1 − x)2s2

A little algebra now shows

x′ − x ≈ x(1 − x)[−s0x − s1(1 − 2x) + s2(1 − x)]
= x(1 − x)[s2 − s1 + x(2s1 − s0 − s2)]

Letting Yt = X[2Nt], γi = 2Nsi, δ = γ2 − γ1 and η = 2γ1 − γ0 − γ2 then
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E(Y1/N − Y0) = x(1 − x)[δ + ηx] · 1
2N

+ o
(
N−1

)

Again x′ = x + o(1) so we have

var (Y1/N − Y0) = x(1 − x) · 1
2N

+ o
(
N−1

)

Combining our calculations we see that the infinitesimal generator is

Lf =
1
2
x(1 − x)

d2

dx2
f + x(1 − x)[δ + ηx]

d

dx
f (7.5)

If there is mutation a → A at rate μ − 1 and A → a at rate μ2, and we let
βi = 2Nμi then this adds a term of the form

{β1(1 − x) − β2x}
d

dx
f

There are several important special cases

Additive selection. s0 = 0, s1 = s, s2 = 2s, and let γ = 2Ns. δ = γ2 − γ1 = γ
and η = 2γ1 − γ0 − γ2 = 0 so

δ + ηx = γ

b(x) = γx(1 − x) (7.6)

just as in our previous Wright-Fisher model with selection.

Balancing selection. s1 = 0, so δ = γ2 and η = −(γ0 + γ2). If we let x0 =
γ2/(γ0 + γ2) then

δ + ηx = (γ0 + γ2)(x0 − x)
b(x) = (γ0 + γ2)x(1 − x)(x0 − x) (7.7)

From this we see that the drift is < 0 for x > x0 and > 0 for x < x0. In the
symmetric case γ0 = γ2 = γ so x0 = 1/2 and

δ + ηx = γ(1 − 2x)
b(x) = γx(1 − x)(1 − 2x) (7.8)

A is dominant. Aa has the same fitness as AA. s0 = s1 = 0, s2 = s. δ =
γ2 − γ1 = γ and η = 2γ1 − γ0 − γ2 = −γ

δ + ηx = γ(1 − x)
b(x) = γx(1 − x)2 (7.9)

A is recessive. Aa has the same fitness as aa. s0 = 0, s1 = s2 = s. δ =
γ2 − γ1 = 0 and η = 2γ1 − γ0 − γ2 = γ.

δ + ηx = γx

b(x) = γx2(1 − x) (7.10)
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To compare the drifts for additive selection versus dominant and recessive
alleles we have graphed the solution of the differential equation dXt/dt =
b(Xt) for the three drifts starting with X0 = 0.01. To make the selective
advantage of AA over aa the same in the three cases, we have taken γ = 1, 2, 2.
Note that because of the extra factor of (1 − x) the dominant case has more
trouble getting to 1, while due to the extra factor of x, the recessive case has
a hard time escaping from 0.
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Fig. 7.1. Solution of dXt/dt = b(Xt) for the three drifts for additive selection,
dominant alleles, and recessive alleles.

We can generate new examples of diffusions from old ones by

Theorem 7.1. Change of variables. If h is increasing and has two con-
tinuous derivatives, then Yt = h(Xt) is a diffusion process with infinitesimal
mean and variance

ā(y) = a(x)h′(x)2 b̄(y) = Lh(x)

where x = f−1(y).

Proof. By calculus

d

dx
f(h) = f ′(h)h′ d2

dx2
f(h) = f ′′(h)(h′)2 + f ′(h)h′′

Using this in the definition of the generator

Lf(h) =
1
2
a(x)[f ′′(h)(h′)2 + f ′(h)h′′] + b(x)f ′(h)h′

=
1
2
a(x)(h′)2f ′′(h) + Lh(x)f ′(h)

which gives the result.
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Example 7.8. Fisher’s transformation. Let Xt be the Wright-Fisher model
with no mutation or selection. Fisher (1922) discovered a remarkable transfor-
mation, although he did not get the answer right the first time. See pages 88-89
in Fisher (1930) and pages 119-120 in Wright (1931). Let h(x) = cos−1(1−2x).
This maps [0, 1] → [0, π]. Recalling from calculus that

(f−1)′(x) = 1/f ′(f−1(x))
dh

dx
=

−2
− sin(cos−1(1 − 2x))

d2h

dx2
=

−2 cos(cos−1(1 − 2x))
sin2(cos−1(1 − 2x))

· −2
− sin(cos−1(1 − 2x))

To simplify the last expression we draw a picture

��������

1 − 2x

1
y =

√
1 − (1 − 2x)2 = 2

√
x(1 − x)

The last caclulation shows sin(cos−1(1 − 2x)) = 2
√

x(1 − x) so θt = h(Xt)
has generator

1
2

d2

dθ2
− 1

2
cot(θ)

d

dθ

The infinitesimal variance is now constant, but a drift (which Fisher missed
in his first attempt) has been introduced. We leave it as an exercise for the
reader to check that sin−1(

√
x) also results in constant variance.

7.3 Transition probabilities

In discrete time, a Markov chain is defined by giving its transition probability
p(i, j). For a continuous-time Markov chain or a diffusion process, the transi-
tion probability pt(x, y) = P (Xt = y|Xt = x) must be computed by solving
one of two differential equations. In the case of a continuous time Markov
chain, it follows from the Markov property and the definition of the generator
in (7.1) that

d

ds
Eif(Xs)

∣∣∣∣
s=t

= EiQf(Xt) (7.11)

From this we get

d

dt

∑
j

pt(i, j)f(j) =
∑

k

pt(i, k)
∑

j

q(k, j)f(j)
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Since this holds for all f we must have

d

dt
pt(i, j) =

∑
k

pt(i, k)q(k, j) (7.12)

or in matrix notation (d/dt)pt = ptQ. This is Kolmogorov’s forward equation.
It can also be derived by letting I be the identity matrix and using the Markov
property to write

1
h

(pt+h(i, j) − pt(i, j)) =
∑

k

pt(i, k)
1
h

(ph(k, j) − I(k, j))

→
∑

k

pt(i, k)q(k, j)

Here, we have broken the time interval [0, t+h] into [0, t] and [t, t+h], with the
small piece on the forward end. If we instead break it into [0, h] and [h, t + h]
we get

1
h

(pt+h(i, j) − pt(i, j)) =
1
h

∑
k

(ph(i, k) − I(i, k))pt(k, j)

→
∑

k

q(i, k)pt(k, j) (7.13)

or in matrix notation (d/dt)pt = Qpt. This is Kolmogorov’s backward equation.
Consider now a diffusion process. Imitating (7.13) we can write

1
h

(pt+h(x, y) − pt(x, y)) =
1
h

(∫
ph(x, z)pt(z, y) dz − pt(x, y)

)

=
1
h

(Expt(Xh, y) − pt(x, y))

If we let f(x) = pt(x, y) for fixed y then the last quantity is (1/h)(Exf(Xh)−
f(x)), so recalling the definition of the generator and letting h → 0 we have

d

dt
pt(x, y) =

1
2
a(x)

d2

dx2
pt(x, y) + b(x)

d

dx
pt(x, y) (7.14)

Because we broke us the interval into [0, h] and [h, t+h], this is Kolmogorov’s
backward equation. Another reason is that the derivatives occur in the back-
ward variable x. To get the forward equation note that as in (7.11)

d

ds
Exf(Xs)

∣∣∣∣
s=t

= ExLf(Xt) (7.15)

So we have
d

dt

∫
pt(x, y)f(y) dy =

∫
pt(x, y)Lf(y) dy

=
∫

pt(x, y)
[
1
2
a(y)

d2

dy2
f(y) + b(y)

d

dy
f(y)

]
dy
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To turn this into an equation for pt(x, y) we suppose that f is 0 outside [δ, 1−δ]
for some δ > 0 and integrate by parts twice to get

∫ [
1
2

d2

dy2
(a(y)pt(x, y)) − d

dy
(b(y)pt(x, y))

]
f(y) dy

Since this holds for all f we have Kolmogorov’s forward equation

d

dt
pt(x, y) =

1
2

d2

dy2
(a(y)pt(x, y)) − d

dy
(b(y)pt(x, y)) (7.16)

where the derivatives occur in the forward variable y. This is not as nice as the
backward equations since it does not make sense unless b(y) is differentiable
and a(y) is twice differentiable.

(7.16) is called the Fokker-Planck equation by physicists, due to work of
Fokker in 1914 and Planck in 1917. The first rigorous mathematical derivation
was given by Kolmogorov in 1931. The formula makes its first appearance in
the biology literature in Wright (1945).

Defining the adjoint operator L∗

L∗f =
1
2

d2

dy2
(a(y)f(y)) − d

dy
(b(y)f(y))

we can write the two equations as

d

dt
pt(x, y) = Lxpt(x, y)

d

dt
pt(x, y) = L∗

ypt(x, y)

where the subscript indicates the variable of pt(x, y) where the operator acts.
In comparison, the two equations for continuous time Markov chains are

d

dt
pt(i, j) =

∑
k

Q(i, k)pt(k, j)
d

dt
pt(i, j) =

∑
k

pt(i, k)Q(k, j)

Again Q acts on different variables in the two cases, but we don’t need the
formalities of defining the adjoint matrix. We just shift the matrix to the other
side.

Only on rare occasions can one solve the differential equations given above
to determine the transition probability.

Example 7.9. Brownian motion. Suppose a(x) = σ2, b(x) = 0. In this case the
backward equation (7.14) is

d

dt
pt(x, y) =

σ2

2
d2

dx2
pt(x, y)

From the definition of the process in the previous section we know that
√

2πpt(x, y) = (tσ2)−1/2e−(y−x)2/2σ2t
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Differentiating we find

d

dt
=

(
−1

2
t−3/2σ−1 + t−1/2σ−1 (y − x)2

2σ2t2

)
e−(y−x)2/2σ2t

d

dx
= t−1/2σ−1 · y − x

σ2t
e−(y−x)2/2σ2t

d2

dx2
=

(
−t−3/2σ−3 + t−1/2σ−1 (y − x)2

σ4t2

)
e−(y−x)2/2σ2t

which shows that pt(x, y) satisfies the stated differential equation.

Example 7.10. Ornstein-Uhlenbeck process. Suppose a(x) = σ2 and b(x) =
−αx. This is a model for the velocity of a particle with a random accelera-
tion and experiences friction forces proportional to its velocity. The transi-
tion probability pt(x, y) is a normal with mean u(x, t) = xe−αt and variance
v(t) = σ2

∫ t

0 e−2αr dr, so

√
2πpt(x, y) = v(t)−1/2e−(y−u(x,t))2/2v(t)

Let ux and ut be the partial derivatives of u, and note that uxx = 0. Differ-
entiating we find

d

dt
= −1

2
v(t)−3/2v′(t)e−(y−u(x,t))2/2v(t)

+v(t)−1/2 · y − u(x, t)
v(t)

ut(x, t)e−(y−u(x,t))2/2v(t)

+v(t)−1/2 · (y − u(x, t))2

2v(t)2
v′(t)e−(y−u(x,t))2/2v(t)

d

dx
= v(t)−1/2 · y − u(x, t)

v(t)
ux(x, t)e−(y−u(x,t))2/2v(t)

d2

dx2
= v(t)−3/2(−ux(x, t)2)e−(y−u(x,t))2/2v(t)

+v(t)−1/2 (y − u(x, t))2

v(t)2
ux(x, t)2e−(y−u(x,t))2/2v(t)

Let f1, f2, . . . f6 denote the right hand sides. Since v′(t) = σ2e−2αt and
ux(x, t) = e−αt, we have f1 = (σ2/2)f5 and f3 = (σ2/2)f6. Since ut(x, t) =
−αxe−αt, we have f2 = −αxf4. Combining these results we see that

d

dt
pt(x, y) = −αx

d

dx
pt(x, y) +

σ2

2
d2

dx2
pt(x, y)

which verifies that pt(x, y) is the desired transition probability.

In most cases, one cannot find an explicit expression for the transition
probability. Kimura (1955) was able to express the transition probability for
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the Wright-Fisher model as an infinite series of Gegenbauer polynomials. How-
ever, for our purposes, the following qualitative result is more useful. A func-
tion f(x) on [0,1] is said to be Hölder continuous if there is a δ > 0 and C < ∞
so that |f(x) − f(y)| ≤ C|x − y|δ.
Theorem 7.2. Suppose that the coefficients a and b are Hölder continuous
on [0, 1], and a(x) > 0 on (0, 1). Then for any δ > 0 there is an ε so that
pt(x, y) ≥ ε when x, y ∈ [δ, 1 − δ].

7.4 Hitting probabilities

For our genetics models, we want to be able to compute the probability an
allele becomes fixed in the population. Here, and throughout this chapter, we
will first consider the analogous problems for discrete and continuous time
Markov chains on {0, 1, . . .2N}. Let Tk = min{n : Xn = k} be the time of the
first visit to k, and let h(i) = Pi(T2N < T0). To compute h(i) we note that
if 0 < i < 2N then breaking things down according to what happens on the
first step

h(i) =
∑

j

p(i, j)h(j) (7.17)

Introducing P for the transition matrix and I for the identity matrix, we can
write (7.17) as h = Ph or (P − I)h = 0. The second formula may look a
little odd now, but soon it will seem natural. To compute h(i), we first need
a technical result.

Theorem 7.3. Let τ = T0 ∧ T2N . In discrete or continuous time, if it is
possible to reach 0 and 2N from each 0 < i < 2N then sup0<i<2N Eiτ < ∞.

Proof. Our assumption implies that there are ε > 0 and M < ∞ so that
Pi(τ ≤ M) ≥ ε for all 0 < i < 2N . The Markov property implies Pi(τ >
kM) ≤ (1 − ε)k, so

Eiτ =
∫ ∞

0

Pi(τ > t) dt ≤ M

∞∑
k=0

(1 − ε)k = M/ε

Theorem 7.4. Suppose that it is possible to reach 0 and 2N from each 0 <
i < 2N . h(i) = Pi(T2N < T0) is the unique solution of (P − I)h = 0 with
h(0) = 0 and h(2N) = 1.

Proof. Theorem 7.3 implies sup0<i<2N Eiτ <∞. (7.17) implies that Eh(Xn∧τ )
is constant, since for any jump that starts at a point 0 < i < 2N , the expected
value after a jump is the same as before. The irreducibility condition implies
that Pi(τ < ∞) = 1. Letting n → ∞, which can be justified since h is a
bounded function,

h(i) = Eih(Xτ ) = Pi(T2N < T0)

since h(0) = 0 and h(2N) = 1.
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The next result is the continuous-time analogue of Theorem 7.4.

Theorem 7.5. Suppose that it is possible to reach 0 and 2N from each 0 <
i < 2N . h(i) = Pi(T2N < T0) is the unique solution of Qh = 0 for 0 < i < 2N
with h(0) = 0 and h(2N) = 1.

Proof. Theorem 7.3 implies sup0<i<2N Eiτ < ∞. To check that the equation
is satisfied, we note that

d

ds
Eih(Xs)

∣∣∣∣
s=t

= EiQh(Xt) = 0

so Eih(Xt∧τ ) is constant in time, and we can repeat the argument from dis-
crete time to conclude h(i) = Eih(Xτ ) = Pi(T2N < T0).

Turning to the case of a diffusion process, let Ta = inf{t : Xt = a}. Again,
we begin with a technical result.

Theorem 7.6. Let y < z and τy,z = Ty ∧ Tz. Suppose that it is possible to
reach y and z from each y < x < z. Then supx∈(y,z) Exτy,z < ∞.

Proof. Pick w ∈ (y, z). Pick M large enough so that Pw(Ty ≤ M) ≥ ε > 0
and Pw(Tz ≤ M) ≥ ε > 0. By the argument in discrete time, it is enough to
show

sup
x∈(y,z)

Px(τy,z > M) ≤ 1 − ε

By considering the first time the process starting from w hits z and using the
Markov property, it follows that if w < x < z then

Pw(Tz ≤ t) = Ew(Px(Tz ≤ t − Tx); Tx ≤ t)
≤ Px(Tz ≤ t)Pw(Tz ≤ t) ≤ Px(Tz ≤ t)

A similar argument shows that for y < x < w, Px(Ty ≤ t) ≥ Pw(Ty ≤ t). and
the desired result follows.

Theorem 7.7. Let y < z. Suppose that it is possible to reach y and z from
each y < x < z. h(x) = Px(Tz < Ty) is the unique solution of Lh = 0 for
y < x < z with h(y) = 0 and h(z) = 1.

Proof. Theorem 7.6 implies that supx∈(y,z) Exτy,z < ∞, so h is well defined.
To check that the equation is satisfied, we note that the Markov property
implies that

d

ds
Exh(Xs)

∣∣∣∣
s=t

= ExLh(Xt) (7.18)

Lh = 0 implies Exh(Xt∧τx,y) is constant in time, so we can argue as before
that h(x) = Exh(Xτ ) = Px(T1 < T0).
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Comparing the last three theorems shows that hitting probabilities satisfy

(P − I)h = 0 discrete time Markov chain
Qh = 0 continuous time Markov chain
Lh = 0 diffusion process

so the three operators P − I, Q, and L are analogous.

Diffusion hitting probabilities

Based on Theorem 7.7, we want to solve

Lφ =
1
2
a(x)

d2

dx2
φ + b(x)

d

dx
φ = 0

φ is called the natural scale for the diffusion process because φ(Xt) is a mar-
tingale. To solve this equation, we let ψ = φ′ and note that

1
2
a(x)ψ′ + b(x)ψ = 0 or ψ′ =

−2b(x)
a(x)

ψ

As one can check by differentiating, this equation is solved by

ψ(y) = exp
(∫ y −2b(z)

a(z)
dz

)

where the lack of a lower limit indicates that we can choose any convenient
value, or what is the same, use any antiderivative of −2b(z)/a(z). φ can be
obtained by ψ by integrating:

φ(x) =
∫ x

ψ(y) dy

To have the boundary conditions h(y) = 0, h(z) = 1 satisfied

Px(Tz < Ty) =
φ(x) − φ(y)
φ(z) − φ(y)

Px(Tz > Ty) =
φ(z) − φ(x)
φ(z) − φ(y)

(7.19)

The second equation follows from Px(Tz > Ty) = 1 − Px(Tz < Ty).
Turning to special cases:

Example 7.11. Martingale diffusions. Suppose b(x) = 0, ψ′(x) = 0 and hence
φ(x) = x. Xt is a martingale and we have

Px(Tz < Ty) =
x − y

z − y
Px(Tz > Ty) =

z − x

z − y
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In the next three examples, the mutation rates are zero and we are con-
sidering a special case of the general selection model so a(x) = x(1 − x),
b(x) = x(1 − x)(δ + ηx) and hence

−2b(x)
a(x)

= −2(δ + ηx)

Example 7.12. Additive selection. In this case, by (7.6) −2b(x)/a(x) = −2γ so

ψ(y) = e−2γy and φ(y) = [1 − e−2γy]/2γ (7.20)

and the hitting probabilities are

Px(T1 < T0) =
1 − e−2γx

1 − e−2γ
(7.21)

which agrees with (6.3). When x = 1/2N , using γ/2N = s and 1− e−2s ≈ 2s
we have

P1/2N (T1 < T0) ≈
2s

1 − e−2γ
≈ 2s

when γ is large. The next figure shows the hitting probabilities when γ =
0, 2, 5, 10.
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Fig. 7.2. Hitting probabilities for additive selection.

Example 7.13. Dominant advantageous allele. In this case (7.9) implies that
−2b(x)/a(x) = −2γ(1 − x), so ψ(x) = e−γ(2x−x2), and

φ(x) =
∫ x

0

e−γ(2y−y2) dy
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Example 7.14. Recessive advantageous allele. In this case (7.10) implies that
−2b(x)/a(x) = −2γx, so ψ(x) = e−γx2

, and

φ(x) =
∫ x

0

e−γy2
dy

Figure 7.3 shows Px(T1 < T0) = φ(x)/φ(1) when γ = 0, 2, 5, 10.
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Fig. 7.3. Recessive advantageous allele hitting probabilities

The integrand is a constant multiple of the normal density with mean 0
and variance 1/2γ, so if γ is large

φ(1) ≈ 1
2

√
π

γ

If x is small φ(x) ≈ x so if x = 1/2N

φ(1/2N)
φ(1)

≈ 1
N

√
γ

π
=

√
2s

πN

which is (15) of Kimura (1962). This is larger than the neutral fixation
probaiblity 1/2N , but smaller than the 2s/(1 − e−γ) for additive selection.

Example 7.15. Symmetric balancing selection. By (7.8) −2b(x)/a(x) = −2γ
(1 − 2x) so

ψ(y) = e−2γy(1−y) and φ(x) =
∫ x

0

ψ(y) dy

Figure 7.4 shows Px(T1 < T0) = φ(x)/φ(1) when γ = 0, 2, 5, 10.
If γ is large then most of the contribution to φ(1) comes from values within

O(1/2γ) of the boundary so
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Fig. 7.4. Balancing selection hitting probabilities.

φ(1) ≈ 2
∫ ∞

0

e−2γy dy =
1
γ

If x = c/(2γ) then

φ(x) ≈
∫ x

0

e−2γy dy =
1 − e−2γx

2γ
=

1 − e−c

2γ

and we have
Pc/(2γ)(T1 < T0) ≈

1
2
(1 − e−c)

Using P1−x(T0 < T1) = Px(T1 < T0), we see that if x >> 1/γ and (1 − x) >>
1/γ then Px(T1 < T0) ≈ 1/2.

Up to this point we have ignored the hypothesis “Suppose that it is pos-
sible to reach y and z from each y < x < z.” It follows from Theorem 7.2
that this holds for 0 < y < z < 1 whenever the coefficients a and b are Hölder
continuous on [0, 1], and a(x) > 0 on (0, 1), which is true in all of our exam-
ples. In all of the results above we can make the derivation rigorous by first
computing Px(Ty < Tz) and then letting y → 0 and z → 1. To show that
problems can occur even in natural examples, we consider

Example 7.16. Wright-Fisher model with mutation. For simplicity we assume
that there is no selection, so

Lf =
1
2
x(1 − x)

d2

dx2
f + (β1(1 − x) − β2x)

d

dx
f

In this case, we have
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ψ(x) = exp
(∫ x

−2b(y)/a(y) dy

)

= exp
(∫ x

− 2β2

1 − y
− 2β1

y
dy

)

= x−2β1(1 − x)−2β2

and φ(x) =
∫ x

1/2
y−2β1(1 − y)−2β2 dy. φ(0) = −∞ if β1 ≥ 1/2 so taking

0 < y < x < z < 1,

Px(Ty < Tz) =
φ(z) − φ(x)
φ(z) − φ(y)

→ 0 as y → 0

and the process cannot get to 0. In words the mutation rate is so strong that
the allele frequency cannot reach 0.

Likewise φ(1) = ∞ if β2 ≥ 1/2 and 0 < y < x < z < 1,

Px(Tz < Ty) =
φ(x) − φ(y)
φ(z) − φ(y)

→ 0 as z → 1

so the process cannot get to 1. Of course if β1 and β2 are both ≥ 1/2, Px(T0 <
T1) is meaningless. We will return to this issue in Section 7.9, when we consider
the boundary behavior of diffusion processes.

7.5 Stationary measures

Stationary distributions for Markov processes are important because they
represent equilibrium states and are (under mild regularity conditions) the
limiting distribution as time t → ∞. In discrete time a nonnegative solution
of ∑

i

π(i)p(i, j) = π(j) (7.22)

is called a stationary measure. A solution with
∑

i π(i) = 1 is called a station-
ary distribution. If (7.22) holds then

∑
i

π(i)pn(i, j) =
∑
i,k

π(i)p(i, k)pn−1(k, j) =
∑

k

π(k)pn−1(k, j)

and it follows by induction that Pπ(Xn = i) = π(i). Results from Markov
chain theory imply that if there is a stationary distribution π, and p(i, j) is
irreducible and aperiodic (terms defined in Section 4.5) then pn(i, j) → π(j)
as n → ∞.

To see what the condition for stationarity should be in continuous time,
we note that if Eπ is the expected value starting at π then

d

dt
Eπ(f(Xt))

∣∣∣∣
t=0

=
∑

i

π(i)
∑

j

q(i, j)f(j) =
∑

j

(∑
i

π(i)q(i, j)

)
f(j)
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In order for this to be 0 for all f we must have

(πQ)(j) =
∑

i

π(i)q(i, j) = 0 for all j (7.23)

To see that this is sufficient, note that the forward equation implies

d

dt

∑
i

π(i)pt(i, j) =
∑
i,k

π(i)Q(i, k)pt(k, j) = 0

Results from Markov chain theory imply that if there is a stationary distri-
bution π and pt(i, j) is irreducible then pt(i, j) → π(j) as n → ∞.

For a diffusion process we want

0 =
d

dt
Eπf(Xt)

∣∣∣∣
t=0

=
∫

π(x)Lf(x) dx

If f is 0 outside [δ, 1 − δ] for some δ > 0 then integrating by parts twice
converts this into ∫

L∗π(x)f(x) dx = 0

where L∗ is the adjoint operator

L∗π =
1
2

d2

dx2
(a(x)π(x)) − d

dx
(b(x)π(x))

If this holds for all f then we must have

L∗π = 0 (7.24)

To see that this is sufficient, note that the backward equation and integration
by parts imply

d

dt

∫
π(x)pt(x, y) dx =

∫
π(x)Lxpt(x, y) dx =

∫
L∗π(x)pt(x, y) dx = 0

From Theorem 7.2 and the theory of Harris chains, it follows that if there is
a stationary distribution π, and a(x) > 0 for x ∈ (0, 1) then pt(x, y) → π(y)
as t → ∞.

Comparing the last three equations shows that the stationary measures
satisfy

π(P − I) = 0 discrete time Markov chain
πQ = 0 continuous time Markov chain

L∗π = 0 diffusion process

Again the three operators P − I, Q, and L are analogous, but as in Section
7.3, multiplying the matrices on the left by π corresponds to using the adjoint
of the diffusion’s generator.

Diffusion stationary measures
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Theorem 7.8. If ψ(x) is the derivative of the natural scale then m(x) =
1/a(x)ψ(x) is a stationary measure.

m is sometimes called the speed measure, although as we will see in Section
7.7, this term is misleading. If

∫ 1

0 m(x) dx < ∞ then we can convert m(x) into
a stationary distribution by multiplying by a constant to make the integral
equal to 1.

Proof. To solve L∗π = 0, it is convenient to note that since ψ′(x)/ψ(x) =
−2b(x)/a(x)

1
2
a(x)ψ(x)

d

dx

(
1

ψ(x)
d

dx
f(x)

)

=
1
2
a(x)ψ(x)

1
ψ(x)

d2

dx2
f(x) +

1
2
a(x)ψ(x)

−ψ′(x)
ψ(x)2

d

dx
f(x) = Lf

Thus, if we let m(x) = 1/a(x)ψ(x) then

Lf =
1

2m(x)
d

dx

(
1

ψ(x)
d

dx
f(x)

)
(7.25)

Writing L in this form before we integrate by parts, it follows that

L∗m =
d

dx

(
1

ψ(x)

[
d

dx

1
2m(x)

m(x)
])

= 0

Example 7.17. General diploid selection and mutation. In this case, the gen-
erator is

1
2
x(1 − x)

d2

dx2
f + {x(1 − x)[δ + ηx] + β1(1 − x) − β2x}

d

dx
f

so we have

ψ(x) = exp
(∫ x

−2b(y)/a(y) dy

)

= exp
(∫ x

−2[δ + ηy] +
2β2

1 − y
− 2β1

y
dy

)

= x−2β1(1 − x)−2β2e−2δx−ηx2
(7.26)

Since a(x) = x(1 − x) the stationary measure is

m(x) =
1

a(x)ψ(x)
= x2β1−1(1 − x)2β2−1e2δx+ηx2

(7.27)

In the case of additive selection, δ = γ and η = 0 so

m(x) = x2β1−1(1 − x)2β2−1e2γx (7.28)
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If either βi = 0 this is not integrable. If β1 = 0 then there are no mutations
from a to A, so 0 is an absorbing state. Likewise if β2 = 0 then there are no
mutations from A to a, so 1 is an absorbing state. If both βi > 0 then there is a
stationary distribution. In the case of no selection this is the beta distribution

π(x) =
Γ (2β1 + 2β2)
Γ (2β1)Γ (2β2)

x2β1−1(1 − x)2β2−1

where Γ (z) =
∫∞
0 tz−1e−t dt is the usual gamma function.

This formula can be found on page 123 of Wright’s (1931) seminal paper
on evolutionary theory. According to Will Provine’s annotation of a collection
of Wright’s papers, Wright (1986), “this paper resulted in his admission to the
National Academy of Science at a young age.” It is interesting to note that
the computation of the stationary distribution precedes the equation L∗π = 0,
which first appears in the biology literature in Wright’s (1945) work. In that
paper, Wright says “Dr. A. Kolmogorov has recently been kind enough to
send me a reprint of an important paper on this subject which was published
in 1935, but which had not previously come to my attention.” As one can see
from the dates, the 10 year delay was likely due to World War II.

Suppose X has distribution π. Using this recursion and the fact that the
constant makes

∫
π(x) dx = 1, we can compute

EX =
Γ (2β1 + 2β2)

Γ (2β1)
Γ (2β1 + 1)

Γ (2β1 + 2β2 + 1)
=

2β1

2β1 + 2β2

EX2 =
Γ (2β1 + 2β2)

Γ (2β1)
Γ (2β1 + 2)

Γ (2β1 + 2β2 + 2)
=

2β1(2β1 + 1)
(2β1 + 2β2)(2β1 + 2β2 + 1)

var (X) = EX2 − (EX)2 =
2β1(2β2)

(2β1 + 2β2)2(2β1 + 2β2 + 1)

Using the first two formulas, we can compute the mean of the heterozygosity,
i.e., the probability in equilibrium that two randomly chosen individuals are
different:

E(2X(1 − X)) =
2β1

2β1 + 2β2

(
1 − 2β1 + 1

2β1 + 2β2 + 1

)

= 2 · 2β1(2β2)
(2β1 + 2β2)(2β1 + 2β2 + 1)

Reversibility

As we will now explain, the stationary measures of a one dimensional
diffusion process have a very special property. Again, we begin by considering
Markov chains. In discrete time the detailed balance condition:

π(i)p(i, j) = π(j)p(j, i) (7.29)

implies that
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∑
i

π(i)p(i, j) = π(j)
∑

i

p(j, i) = π(j)

so π is a stationary distribution. In most cases, there is no π satisfying (7.29).
However, if there is and we start the process from π, then the time reversal
Ym = Xn−m, 0 ≤ m ≤ n is a Markov chain with transition probability

p∗(i, j) = Pπ(X0 = j|X1 = i) =
Pπ(X0 = j, X1 = i)

Pπ(X1 = i)
=

π(j)p(j, i)
π(i)

= p(i, j)

Informally, a movie of a reversible process looks the same running forward or
backwards in time.

For a continuous-time Markov chain, the detailed balance condition is

π(i)q(i, j) = π(j)q(j, i)

or, in equilibrium, the rate of jumps from i to j is the same as the rate of
jumps from j to i. To extend the definition to diffusions, we define an inner
product by

< f, g >π=
∑

i

f(i)π(i)g(i)

Given a linear operator R, we define the adjoint operator R∗ with respect to
π by

< f, Rg >π=< R∗f, g >π

Theorem 7.9. If R is a matrix r(i, j) then R∗ is the matrix

r∗(i, j) = π(j)r(j, i)/π(i).

In words, when R is a transition probability with stationary distribution π,
R∗ is the transition probability for the chain running backwards in time.

Proof. To check our proposed formula, we note that

< f, Rg >π =
∑

j

f(j)π(j)
∑

i

r(j, i)g(i)

=
∑

i

⎛
⎝∑

j

π(j)r(j, i)
π(i)

f(j)

⎞
⎠π(i)g(i)

=
∑

i

⎛
⎝∑

j

r∗(i, j)f(j)

⎞
⎠π(i)g(i) =< R∗f, g >π

For a diffusion process, if we write

Lf =
1
2
a(x)ψ(x)

d

dx

(
1

ψ(x)
d

dx
f(x)

)
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then using the speed measure m(x) = 1/a(x)ψ(x) to define the inner product
we have

< g, Lf >m=
1
2

∫
g(x)

d

dx

(
1

ψ(x)
d

dx
f(x)

)
dx

If we assume that f and g vanish outside [δ, 1 − δ], then integrating by parts
twice shows that the above is

=
1
2

∫
d

dx
g(x) · 1

ψ(x)
d

dx
f(x) dx

=
1
2

∫
d

dx

(
1

ψ(x)
d

dx
g(x)

)
f(x) dx =< Lg, f >m

so L is self-adjoint with respect to m. As in the case of discrete state space,
this implies that the transition probability has a symmetry property that
resembles the detailed balance condition

pt(x, y) =
m(y)pt(y, x)

m(x)
or m(x)pt(x, y) = m(y)pt(y, x) (7.30)

7.6 Occupation times

Let τ be the amount of time it takes for fixation or loss of an allele to occur.
In addition to computing the probabilities of the two outcomes, we would
like to determine the average time that this will take. For discrete models
τ = T0 ∧ T2N ; for diffusions τ = T0 ∧ T1. To compute g(i) = Eiτ , it is
convenient to consider a more general problem:

g(i) = Ei

∑
0≤m<τ

f(Xm)

which reduces to the original question when f ≡ 1. If 0 < i < 2N then
breaking things down according to what happens on the first step

g(i) = f(i) +
∑

j

p(i, j)g(j) or Eig(X1) = g(i) − f(i) (7.31)

The next result shows that this equation together with the boundary condi-
tions g(0) = 0 and g(2N) = 0 are enough to identify Ei

∑
0≤m<τ f(Xm).

Theorem 7.10. Suppose that it is possible to reach 0 and 2N from each 0 <
i < 2N . g(i) = Ei

∑
0≤m<τ f(Xm) is the unique solution of (P − I)g = −f

with g(0) = 0 and g(2N) = 0.

Proof. By Theorem 7.3, our assumption implies sup0<i<2N Eiτ < ∞, so g is
well defined. To prove that the equation holds, we note that (7.31) implies
that on {τ > n}
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Ei

⎛
⎝g(X(n+1)∧τ ) +

∑
0≤m<(n+1)∧τ

f(Xm)

∣∣∣∣∣∣Fn

⎞
⎠

= Ei(g(X(n+1)∧τ )|Fn

)
+

∑
0≤m<(n+1)∧τ

f(Xm)

= g(Xn∧τ ) +
∑

0≤m<n∧τ

f(Xm)

by (7.31). The last equality is trivial on {τ ≤ n}. Thus the expected value

Ei

⎛
⎝g(X(n+1)∧τ ) +

∑
0≤m<(n+1)∧τ

f(Xm)

⎞
⎠

is constant in time, so letting n → ∞ and using g(Xτ ) = 0.

g(i) = Ei

⎛
⎝g(Xτ ) +

∑
0≤m<τ

f(Xm)

⎞
⎠ = Ei

∑
0≤m<τ

f(Xm)

For a continuous-time Markov chain:

Theorem 7.11. Suppose that it is possible to reach 0 and 2N from each 0 <
i < 2N . g(i) = Ei

∫ τ

0 f(Xs) ds is the unique solution of Qg = −f for 0 < i <
2N with g(0) = 0 and g(2N) = 0.

Proof. By Theorem 7.3, our assumption implies sup0<i<2N Eiτ < ∞, so g
is well defined. To prove that the equation holds, note that Qg = −f for
0 < i < 2N implies

d

dt
Ei

(
g(Xt) +

∫ t

0

f(Xs) ds

)
= Ei[Qg(Xt) + f(Xt)] = 0 when t < τ

so Ei[g(Xt∧τ ) +
∫ t∧τ

0
f(Xs) ds] is constant in time. If g(0) = g(2N) = 0 then

letting t → ∞ we have g(i) = Ei

∫ τ

0
f(Xs) ds.

For a diffusion process:

Theorem 7.12. Suppose that it is possible to reach y and z from each y <
x < z. g(x) = Ex

∫ τ

0
f(Xs) ds is the unique solution of Lg = −f for 0 < x < 1

with g(0) = 0 and g(1) = 0.

Proof. By Theorem 7.6, our assumption implies supx∈(y,z) Exτ < ∞, so g
is well defined. To prove that the equation holds, note that Lg = −f for
y < x < z implies

d

dt
Ex

(
g(Xt) +

∫ t

0

f(Xs) ds

)
= Ex[Lg(Xt) + f(Xt)] = 0 when t < τ

so Ex[g(Xt∧τ ) +
∫ t∧τ

0 f(Xs) ds] is constant in time. If g(y) = g(z) = 0 then
letting t → ∞ we have g(x) = Ex

∫ τ

0
f(Xs) ds.
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By now, the reader has probably learned that the three operators P − I,
Q, and L are analogous, but, again, comparing the last three theorems shows
that the occupation times satisfy

(P − I)g = −f discrete time Markov chain
Qg = −f continuous time Markov chain
Lg = −f diffusion process

with g = 0 at the endpoints.

Exit times

We begin with two examples where f ≡ 1.

Example 7.18. Symmetric simple random walk. In this case we guess

g(i) = i(2N − i).

This obviously satisfies the boundary conditions g(0) = 0, g(2N) = 1. To
check (7.31), we note that

∑
j

p(i, j)g(j) = (i + 1)
2N − i − 1

2
+ (i − 1)

2N − i + 1
2

= i(2N − i) +
2N − i

2
− i + 1

2
− 2N − i

2
+

i − 1
2

= g(x) − 1

Example 7.19. Wright-Fisher model. In the case of no selection or mutation,
inspired by a result of Kimura we guess

g(x) = −2[x logx + (1 − x) log(1 − x)]

g′(x) = −2
[
log x + 1 − log(1 − x) + (1 − x)

1
1 − x

· (−1)
]

g′′(x) = −2
[
1
x
− 1

1 − x
· (−1)

]
=

−2
x(1 − x)

so (1/2)x(1 − x)g′′(x) = −1.

Example 7.20. Higher moments. As the proof will show, the next result is valid
for continuous time Markov chains if we replace L by Q. This is Theorem 13.17
in Dynkin (1965).

Theorem 7.13. If f(x) = Exτk/k! then the solution of Lg = −f is g(x) =
Eτk+1/(k + 1)!

Proof. To begin, we recall that Exτk/k! =
∫∞
0

uk−1

(k−1)!Px(τ > u) du and write

g(x) = Ex

∫ τ

0

EXs(τ
k/k!) ds = Ex

∫ ∞

0

∫ ∞

0

1(τ>s)
uk−1

(k − 1)!
PXs(τ > u) du ds



276 7 Diffusion Processes

The Markov property implies that if Fs is the σ-field generated by the process
up to time s then

Px(τ > t > s|Fs) = 1(τ>s)PXs(τ > t − s)

Taking expected values and changing variables u = t − s, we can write

g(x) =
∫ ∞

0

∫ ∞

s

(t − s)k−1

(k − 1)!
Px(τ > t > s) dt ds

Interchanging the order of integration:

=
∫ ∞

0

∫ t

0

(t − s)k−1

(k − 1)!
Px(τ > t) ds dt

=
∫ ∞

0

tk

k!
Px(τ > t) dt = Exτk+1/(k + 1)!

which completes the proof.

7.7 Green’s functions

For a discrete-time Markov chain on {0, 1, . . .2N}, we define the Green’s func-
tion G(i, j) to be the solution of (P−I)g = −1j with g(0) = g(2N) = 0, where
1j is the function that is 1 at j and 0 otherwise. It follows from Theorem
7.10 that G(i, j) is the expected number of visits to j starting from i before
τ = T0 ∧ T2N and

Ei

∑
0≤m<τ

f(Xm) =
∑

j

G(i, j)f(j).

Theorem 7.14. Suppose that it is possible to reach 0 and 2N from each 0 <
i < 2N . If we let T +

j = min{n ≥ 1 : Xn = j} then

G(i, j) =
Pi(Tj < τ)
Pj(T +

j > τ)
(7.32)

Proof. The first factor is the probability we visit j at least once. If this oc-
curs, then the number of visits to j has a geometric distribution with mean
1/Pj(T +

j > τ).

In continuous time, we define the Green’s function, G(i, j), to be the so-
lution of Qg = −1j. It follows from Theorem 7.11 that G(i, j) is the expected
occupation time of j starting from i and

Ei

∫ τ

0

f(Xs) ds =
∑

j

G(i, j)f(j).
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Theorem 7.15. Suppose that it is possible to reach 0 and 2N from each 0 <
i < 2N . Let Rj = min{t : Xt = j and Xs �= j for some s < t} be the first
time the process returns to j.

G(i, j) =
Pi(Tj < τ)

qjPj(Rj > τ)
(7.33)

where qj = −Q(j, j) is the rate at which the process jumps out of j.

Proof. Again the first factor is the probability we visit j at least once. If
this occurs, the number of visits to j has a geometric distribution with mean
1/Pj(Rj > τ), and each visit lasts for an average amount of time 1/qj.

When space is continuous, we could, by analogy with the two previous
cases, define the Green’s function G(x, y) to be the solution of Lg = −δy, where
δy is a point mass at y. However, as we explain in (7.44), solving this equation
requires the use of calculus for “generalized functions.” To keep things simple,
we will instead define the Green’s function G(x, y) for the interval [u, v] by
the property that

g(x) =
∫

G(x, y)f(y) dy satisfies Lg = −f

for u < x < v with g(u) = g(v) = 0.

Theorem 7.16. Suppose that it is possible to reach u and v from each u <
x < v. The Green’s function G(x, y) for the interval [u, v] is

2
(φ(v) − φ(x))(φ(y) − φ(u))

φ(v) − φ(u)
· m(y) y ≤ x

2
(φ(x) − φ(u))(φ(v) − φ(y))

φ(v) − φ(u)
· m(y) x ≤ y (7.34)

where φ(x) is the natural scale and m(x) = 1/φ′(x)a(x) is the speed measure.

Proof. To solve equation Lg = −f now, we use (7.25) to write

d

dx

(
1

ψ(x)
dg

dx

)
= −2m(x)f(x)

and integrate to conclude that for some constant C

1
ψ(y)

dg

dy
= C − 2

∫ y

u

dz m(z)f(z)

Multiplying by ψ(y) on each side, integrating y from u to x, and recalling that
g(u) = 0 and ψ = φ′ we have

g(x) = C(φ(x) − φ(u)) − 2
∫ x

u

dy ψ(y)
∫ y

u

dz m(z)f(z) (7.35)
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In order to have g(v) = 0, we must have

C =
2

φ(v) − φ(u)

∫ v

u

dy ψ(y)
∫ y

u

dz m(z)f(z)

Plugging the formula for C into (7.35) and writing

h1(x) =
φ(x) − φ(u)
φ(v) − φ(u)

= Px(Tv < Tu)

we have

f(x) = 2h1(x)
∫ v

u

dy ψ(y)
∫ y

u

dz m(z)f(z)

−2
∫ x

u

dy ψ(y)
∫ y

u

dz m(z)f(z)

Interchanging the order of integration gives

f(x) = 2h1(x)
∫ v

u

dz m(z)f(z)(φ(v) − φ(z))

−2
∫ x

u

dz m(z)f(z)(φ(x) − φ(z))

The integral over [x, v] in the first term is

2h1(x)
∫ v

x

dz m(z)f(z)(φ(v) − φ(z)) (7.36)

Adding the integral over [u, x] from the first term to the second gives

2
∫ x

u

dz m(z)f(z)
[
φ(x) − φ(u)
φ(v) − φ(u)

(φ(v) − φ(z)) − (φ(x) − φ(z))
]

A little algebra shows

(φ(x) − φ(u)) · (φ(v) − φ(z)) − (φ(x) − φ(z)) · (φ(v) − φ(u))
= −φ(u)φ(v) − φ(x)φ(z) + φ(z)φ(v) + φ(x)φ(u)
= (φ(v) − φ(x)) · (φ(z) − φ(u))

so the second part of our formula becomes

2
φ(v) − φ(x)
φ(v) − φ(u)

∫ x

u

dz m(z)f(z)[φ(z) − φ(u)]

Adding this to (7.36) gives the desired result.
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An important consequence of (7.34) is:

Corollary. If τu,v = Tu ∧ Tv is the exit time from (u, v) then

Exτu,v =
∫ v

u

G(x, y) dy (7.37)

Speed (?) measure

Suppose first that the diffusion is on its natural scale, i.e., φ(x) = x. In
this case, if we take α = x − h and β = x + h then the Green’s function
becomes

(x + h − y)m(y) x ≤ y ≤ x + h

(y − x + h)m(y) x − h ≤ y ≤ x

so (7.37) implies

Exτx−h,x+h =
∫ x+h

x

(x + h − y)m(y) dy +
∫ x

x−h

(y − x + h)m(y) dy (7.38)

When h is small, m(y) ≈ m(x) for y ∈ [x − h, x + h] so the above is

≈ m(x)

(∫ x+h

x

(x + h − y) dy +
∫ x

x−h

(y − x + h) dy

)
= m(x)h2

Thus, m(x) gives the time that Xt takes to exit a small interval centered at
x, or to be precise, the ratio of the time for Xt to the time for a standard
Brownian motion, which is h2. Since speed is inversely proportional to the
exit time, the term speed measure is a misnomer, but it is too late to change
its name.

To treat a general diffusion, we have to transform it to its natural scale.
Writing ψ = φ′ and noting Lφ = 0, Theorem 7.1 implies that Yt = φ(Xt) is a
diffusion with coefficients

ā(y) = (aψ2)(φ−1(y)) b̄(y) = 0 (7.39)

Using the previous calculation for Y , if m̄(y) = 1/(aψ2)(φ−1(y)) is the speed
measure for Y then Eφ(x)τφ(x−h),φ(x+h) is

≈ m̄(φ(x))

(∫ φ(x+h)

φ(x)

(φ(x + h) − z) dz +
∫ φ(x)

φ(x−h)

(z − φ(x − h)) dz

)

Changing variables z = φ(w), dz = ψ(w)dw, we see that this is

= m̄(φ(x))ψ(x)

(∫ x+h

x

(x + h − w) dw +
∫ x

x−h

(w − x + h) dw

)

=
1

a(x)ψ(x)
h2 = m(x)h2
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so the interpretation of m(x) given above holds in general. As a final check
that the speed measure is indeed the opposite of what the name suggests,
recall that the stationary measure is m(x), and the long run occupation time
of a region is inversely proportional to the speed at which the process leaves
it.

7.8 Examples

In all of the genetics examples in this section, there is no mutation. The
calculations of the Green’s functions require a fair amount of algebra, but
they inform us about where we can expect the process to spend its time
before reaching a boundary point at time τ and they allow us to compute Eτ .
We begin by considering what happens when there is

No selection

Example 7.21. Symmetric simple random walk. Suppose that up jumps and
down jumps each occur with probability 1/2. Xn is a martingale, and it follows
that if a < x < b

Px(Tb < Ta) =
x − a

b − a
Px(Ta < Tb) =

b − x

b − a

Using the second formula and then the first, the numerator in (7.32) is

Pi(Tj < T2N ) =
2N − i

2N − j
j ≤ i

Pi(Tj < T0) =
i

j
i ≤ j

To compute the denominator of (7.32), we note that if τ = T0 ∧ T2N then

Pj(T +
j > τ) =

1
2
Pj+1(T2N < Tj) +

1
2
Pj−1(T0 < Tj)

=
1
2
· 1
2N − j

+
1
2
· 1
j

=
1
2
· 2N

j(2N − j)

Combining the results, we can write G(i, j) as

2
(2N − i)j

2N
j ≤ i

2
i(2N − j)

2N
i ≤ j (7.40)

Summing over j and letting k = 2N − j, we have
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Eiτ = 2
(2N − i)

2N

i∑
j=1

j + 2 · i

2N

2N−i−1∑
k=1

k

= 2
[
(2N − i)

2N
· i(i + 1)

2
+

i

2N
· (2N − i)(2N − i − 1)

2

]

=
i(2N − i)

2N
[(i + 1) + (2N − i − 1)] = i(2N − i)

in agreement with the result in Example 7.18.

Example 7.22. Moran model with no selection. In this case Pi(Tj < τ) and
Pj(Rj > τ) = Pj(T +

j > τ) are the same as for the symmetric simple random
walk considered above, while qj = 2j(2N −j)/2N . It follows from the calcula-
tion in the previous example that qjPj(Rj > τ) in the denominator of (7.33)
is 1 and we can write G(i, j) as

2N − i

2N − j
j ≤ i

i/j i ≤ j (7.41)

Summing over j we have

Eiτ = (2N − i)
i∑

j=1

1
2N − j

+ i

2N∑
j=i+1

1
j

If i = 2Nx with 0 < x < 1 then

2N∑
j=i+1

1
j

=
2N∑

j=i+1

1
j/2N

· 1
2N

=
∫ 1

x

dx

x
= − log x

so we have
1
N

E2Nx − 2x log x − 2(1 − x) log(1 − x) (7.42)

Example 7.23. Wright-Fisher diffusion with no selection. φ(x) = x, ψ(x) =
φ′(x) = 1, and a(x) = x(1 − x) so using (7.34), G(x, y) =

2(1 − x)y
y(1 − y)

=
2(1 − x)
1 − y

y ≤ x

2x(1 − y)
y(1 − y)

=
2x

y
x ≤ y (7.43)

If we set i = 2Nx and j = 2Nx in the Moran model formula, we get (1−x)/(1−
y) and x/y. The missing factor of 2 comes from the fact that i corresponds to
[x, x + 1/2N ], so the occupation time density is multiplied by 2N , but time
is run at rate N , so it is divided by N .
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Fig. 7.5. Green’s function for Wright-Fisher diffusion with no selection.

Integrating G(x, y) we have

Exτ =
∫ 1

x

2x

y
dy +

∫ x

0

2(1 − x)
1 − y

dy

= −2x logx − 2(1 − x) log(1 − x)

which agrees with (7.42) and our computation in Example 7.19.
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Fig. 7.6. Slices x → G(x, 0.3) and y → G(0.3, y) of the previous graph.

For fixed y, x → G(x, y) is linear on [0, y] and [y, 1] and vanishes at 0 and
1. To explain the form of the answer we return to our remark that for fixed
y, g(x) = G(x, y) is a solution of

1
2
x(1 − x)

d2

dx2
g = −δy (7.44)

When x �= y, g′′(x) = 0 so g(x) is linear on [0, y] and [y, 1]. The integral of
−δy is 0 for x < y and −1 for x > y, so with a little thought we realize that
(7.44) can be written as g′(y+) − g′(y−) = 2/y(1 − y), which is correct since
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g′(y+) − g′(y−) =
2

1 − y
− 2

y
=

2
y(1 − y)

Selection

Example 7.24. Asymmetric simple random walk. Suppose that up jumps occur
with probability p = 1/(2 − s) and down jumps with probability 1 − p =
(1− s)/(2− s). We have chosen these values of p so that this is the embedded
discrete-time jump chain for the Moran model with selection. The ratio (1 −
p)/p = 1 − s, so if we let h(x) = 1 − (1 − s)x then by calculations in Section
6.1, h(Xn) is a martingale and it follows that if a < x < b

Px(Tb < Ta) =
h(a) − h(x)
h(a) − h(b)

Px(Ta < Tb) =
h(x) − h(b)
h(a) − h(b)

We have reversed the usual order of the numerator and denominator to make
the next few calculations easier to see. Using the second formula and then the
first, the numerator in (7.32) is

Pi(Tj < T2N) =
(1 − s)i − (1 − s)2N

(1 − s)j − (1 − s)2N
j ≤ i

Pi(Tj < T0) =
1 − (1 − s)i

1 − (1 − s)j
i ≤ j

To compute the denominator of (7.32), we note that

Pj(T +
j > τ) =

1
2 − s

Pj+1(T2N < Tj) +
1 − s

2 − s
Pj−1(T0 < Tj)

=
1

2 − s

(1 − s)j − (1 − s)j+1

(1 − s)j − (1 − s)2N
+

1 − s

2 − s

(1 − s)j−1 − (1 − s)j

1 − (1 − s)j

The two numerators are (1 − s)j − (1 − s)j+1 = s(1 − s)j , so the above is

=
s(1 − s)j

2 − s
· [1 − (1 − s)2N ]
[1 − (1 − s)j ][(1 − s)j − (1 − s)2N ]

(7.45)

Reintroducing h(x) = 1 − (1 − s)x, we can write G(i, j) as

(h(2N) − h(i)) · (h(j) − h(0))
h(2N) − h(0)

· 2 − s

s(1 − s)j
j ≤ i

(h(i) − h(0)) · (h(2N) − h(j))
h(2N) − h(0)

· 2 − s

s(1 − s)j
i ≤ j (7.46)

Example 7.25. Moran model with selection. In this case, Pi(Tj < τ) and
Pj(Rj > τ) = Pj(T +

j > τ) are the same as for the asymmetric simple random



284 7 Diffusion Processes

walk considered above, while qj = (2−s)j(2N − j)/2N . It follows from (7.45)
that the denominator of (7.33) is

qjPj(Rj > τ) =
j(2N − j)

2N

s(1 − s)j · [1 − (1 − s)2N ]
[1 − (1 − s)j ][(1 − s)j − (1 − s)2N ]

and the Green’s function becomes

(h(2N) − h(i)) · (h(j) − h(0))
h(2N) − h(0)

· 2N

s(1 − s)jj(2N − j)
0 < j < i

(h(i) − h(0)) · (h(2N) − h(j))
h(2N) − h(0)

· 2N

s(1 − s)jj(2N − j)
i < j < 2N (7.47)

Example 7.26. Wright-Fisher diffusion with additive selection. To make it eas-
ier to relate the results for this case to the Moran model, we will define the
natural scale to be φ(y) = 1 − exp(−2γy) which makes

ψ(y) = 2γ exp(−2γy)

m(y) =
1

a(y)ψ(y)
=

1
2γ exp(−2γ)y(1 − y)

Recalling the formula for G(x, y)

2
(φ(1) − φ(x))(φ(y) − φ(0))

φ(1) − φ(0)
· m(y) y ≤ x

2
(φ(x) − φ(0))(φ(1) − φ(y))

φ(1) − φ(0)
· m(y) x ≤ y

we see that G(x, y) is given by

2(e−2γx − e−2γ)
1 − e−2γy

1 − e−2γ
· 1
2γe−2γyy(1 − y)

y ≤ x

2(1 − e−2γx)
e−2γy − e−2γ

1 − e−2γ
· 1
2γe−2γyy(1 − y)

x ≤ y (7.48)

To connect with the Moran model, note that if x = i/2N , y = j/2N , and
s = 2γ/2N then

h(i) = 1 − (1 − γ/2N)2Nx → 1 − e−2γx = φ(x)

2N · 2N

2Ns(1 − s)jj(2N − j)
→ 1

2γe−2γyy(1 − y)
= m(y)

As in the case of no selection, the missing factor of 2 comes from the fact that
i corresponds to [x, x + 1/2N ], so the density is multiplied by 2N , but time
is run at rate N to get the diffusion limit, so it is divided by N .

To help understand the Green’s function, it is useful to look at slices
through the graph. If y is fixed then for x < y we have G(x, y) = A(y)(1 −
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Fig. 7.7. Green’s function for Wright-Fisher diffusion with additive selection γ = 10
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Fig. 7.8. Slices x → G(x, 1/2) and y → G(1/2, y) of the previous graph.

e−2γx) so if x >> 1/2γ, then G(x, y) is roughly constant because x will hit y
with probability close to 1. For x > y, G(x, y) = B(y)(e−2γx − e−2γ) since
the probability of hitting y decays exponentially fast. Let g(x) = G(x, y). For
x �= y we have Lg = 0 where

Lg =
1
2
x(1 − x)

[
d2g

dx2
+ 2γ

dg

dx

]

A little calculus shows that again we have

g′(y+) − g′(y−) = −2γe−2γy 2
m(y)

=
2

y(1 − y)

To understand the behavior for x fixed, it is useful to multiply top and
bottom of (7.48) by e2γy to rewrite G(x, y) as

e−2γx − e−2γ

1 − e−2γ
· e2γy − 1
γy(1 − y)

y ≤ x

1 − e−2γx

1 − e−2γ
· 1 − e−2γ(1−y)

2γy(1 − y)
x ≤ y (7.49)
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If x is fixed and γ is large, then G(x, y) is approximately

e−2γ(x−y)

γy(1 − y)
0 ≤ y ≤ x

1
γy(1 − y)

x ≤ y and γ(1 − y) >> 1

1 − e−2c

c
x ≤ y = 1 − c/γ

This shows that the process spends a negligible amount of time < x and moves
through values y < 1 at the rate predicted by the logistic differential equation
until 1 − y = O(γ−1). Note that as y → 1, c → 0 and (1 − e−2c)/c → 2.

Example 7.27. Symmetric balancing selection. In this case ψ(x) = e−2γx(1−x),
m(x) = e2γx(1−x)/x(1 − x), and φ(x) =

∫ x

0
ψ(y) dy, so G(x, y) is

2
(φ(1) − φ(x))φ(y)

φ(1)
· e2γy(1−y)

y(1 − y)
y ≤ x

2
(φ(1) − φ(y))φ(x)

φ(1)
· e2γy(1−y)

y(1 − y)
x ≤ y (7.50)
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Fig. 7.9. Green’s function for Wright-Fisher diffusion with symmetric balancing
selection γ = 10

To help understand the Green’s function, it is useful to look at slices
through the graph. As we computed in Example 7.15 at the end of Section
7.4, when γ is large and x is away from the boundaries at 0 and 1,

φ(1) ≈ 2
∫ ∞

0

e−2γy dy =
1
γ

φ(x), 1 − φ(x) ≈
∫ ∞

0

e−2γy dy =
1
2γ
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Fig. 7.10. Slices x → G(x, 1/2) and y → G(1/2, y) of the previous graph.

so the first factor in (7.50) is ≈ 1/4γ and the two cases collapse to

e2γy(1−y)

2γy(1 − y)

The approximation does not depend on the starting point because no matter
where the diffusion starts, the frequency quickly moves to 1/2.

Changing variables y = 1/2 + z, which makes y(1 − y) = 1/4 − z2, the
above becomes

2eγ/2

γ

e−2γz2

1 − 4z2

Realizing that most of the contribution will come from values of z of order
O(1/

√
γ),

Exτ =
∫ 1

0

G(x, y) dy ≈ 2eγ/2

γ

∫
e−2γz2

dz

The integrand resembles the normal density with mean 0 and variance 1/4γ,
so its value is

√
π/2γ and we have

Exτ ≈ eγ/2γ−3/2
√

2π

7.9 Conditioned processes

In many situations we are interested in conditioning that the current mutation
fixes or dies out. If h(x) = Px(T1 < T0) and we condition on fixation then the
new transition probability

p̄t(x, y) = pt(x, y)h(y)/h(x).

The same result holds for conditioning on loss, with h(x) = Px(T0 < T1).
Integrating, we have that the conditioned Green’s function
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Ḡ(x, y) = G(x, y)h(y)/h(x). (7.51)

To compute the generator of the conditioned process, we note that

L̄f(x) = lim
t→0

1
t

(∫
pt(x, y)h(y)

h(x)
f(y) dy − f(x)

)

=
1

h(x)
lim
t→0

1
t

(∫
pt(x, y)h(y)f(y) dy − h(x)f(x)

)
=

1
h(x)

L(hf)

Working out the derivatives

1
h(x)

L(hf) =
1

h(x)

(
b(x)(h′f + hf ′) +

1
2
a(x)(h′′f + 2h′f ′ + hf ′′)

)

Using Lh = 0 and simplifying

L̄f =
1
2
a(x)f ′′ +

(
b(x) + a(x)

h′(x)
h(x)

)
f ′(x) (7.52)

in agreement with (32) in Ewens (1973).

Example 7.28. Wright-Fisher diffusion with no selection. h(x) = x is the prob-
ability of fixation, so using (7.43) and (7.51), Ḡ(x, y) =

2(1 − x)
1 − y

· y

x
y ≤ x

2x

y
· y

x
= 2 x ≤ y (7.53)

and using (7.52) we have

L̄v1 =
1
2
x(1 − x)f ′′(x) + (1 − x)f ′(x) (7.54)

Theorem 7.17. For the Wright-Fisher model conditioned on fixation, τ =
T0 ∧ T1 has

Ex(τ |T1 < T0) = −2
(1 − x)

x
log(1 − x) (7.55)

Ex(τ2|T1 < T0) = 8
(

(1 − x) log(1 − x)
x

−
∫ 1

x

log(1 − y)
y

dy

)
(7.56)

The first formula is (14) in Kimura and Ohta (1969a). This second can be
obtained from (A7) of Kimura and Ohta (1969b), which is for conditioning on
extinction. Both are on page 29 of Ewens (1973), but in the second case he
has an erroneous minus sign. In the two references cited, formulas are given
on the original time scale, so the first formula is multiplied by 2N and the
second by (2N)2.
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Fig. 7.11. First and second moments of τ conditioned on T1 < T0, as a function of
the starting point.

Proof. We can derive the first formula from (7.53). Integrating using y/(1 −
y) = 1/(1 − y) − 1, we have

Ex(τ |T1 < T0) =
∫ 1

x

2 dy +
2(1 − x)

x

∫ x

0

y

1 − y
dy

= 2
(

(1 − x) +
(1 − x)

x
(− log(1 − x) − x)

)

and after a little arithmetic, we have (7.55).
A second approach is to use Theorem 7.12. Let v1(x) be our formula for

Ex(τ |T1 < T0). The first step is to check that Lv1 = −1. To do this, we note
that writing −(1 − x)/x = −1/x + 1

v′1(x) =
2
x2

log(1 − x) − 2
1 − x

x
· −1
1 − x

=
2
x2

log(1 − x) +
2
x

v′′1 (x) = − 4
x3

log(1 − x) +
2
x2

· −1
1 − x

− 2
x2

so we have

L̄v1 =
1
2
x(1 − x)v′′1 (x) + (1 − x)v′1(x)

= −2(1 − x)
x2

log(1 − x) − 1
x
− (1 − x)

x

+
2(1 − x)

x2
log(1 − x) +

2(1 − x)
x

= − 1
x

+
1 − x

x
= −1

To examine the boundary conditions, we note that y log(y) → 0 as y → 0
so v1(1) = 0. We do not have v1(0) = 0. The easiest way to see this is to note
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that log(1 − x) ≤ −x, so v′1(x) ≤ 0, i.e., v1(x) is decreasing, which is what
one should expect for v1(x) = Ex(τ |T1 < T0). As x → 0, log(1 − x) ∼ −x
so v1(0) = 2. As we will see in Section 7.10, the apparent inconsistency with
Theorem 7.12 comes because it is impossible for the conditioned process to
get to 0, so one of the assumptions of that theorem does not hold.

Let v2(x) be our formula for Ex(τ2|T1 < T0). To verify the second formula
using Theorem 7.13, we want to show Lv2 = −2v1. To check this guess, we
note that

d

dx

v2

8
= − 1

x2
log(1 − x) +

(1 − x)
x

· −1
1 − x

+
log(1 − x)

x

=
(
− 1

x2
+

1
x

)
log(1 − x) − 1

x

d2

dx2

v2

8
=

(
2
x3

− 1
x2

)
log(1 − x) − 1 − x

x2
· −1
1 − x

+
1
x2

=
2 − x

x3
log(1 − x) +

2
x2

Combining the last two results, we see that

L̄v2

8
=

1
2
· 2 − x

x2
(1 − x) log(1 − x) +

1 − x

x

+
(x − 1)(1 − x)

x2
log(1 − x) − (1 − x)

x

=
(1 − x)

x
log(1 − x)

[
1
x
− 1

2
+ 1 − 1

x

]

and it follows that

L̄v2 = 4
(1 − x)

x
log(1 − x) = −2v1

Clearly v2(1) = 0, so the only relevant boundary condition is satisfied.

Example 7.29. Age of alleles. By symmetry

Ex(τ |T0 < T1) = E1−x(τ |T1 < T0) = −2
x

1 − x
log(x)

As we will now show, this gives the average age of an allele A observed to be
at frequency x, a classic result of Kimura and Ohta (1973). To argue this, we
note that the density of the age of A given that it has frequency x is

fx(t) = lim
ε→0

pt(ε, x)∫∞
0

ps(ε, x) ds

Multiplying top and bottom by the speed measure m(ε), then using reversibil-
ity, (7.30), and noting the factors of m cancel, the above



7.9 Conditioned processes 291

= lim
ε→0

m(ε)pt(ε, x)∫∞
0 m(ε)ps(ε, x) ds

= lim
ε→0

pt(x, ε)∫∞
0

ps(x, ε) ds
= gx(t)

the density for the hitting time of 0 starting from x. Therefore,
∫

tfx(t) dt =
∫

tgx(t) dt = Ex(τ |T0 < T1)

I learned this argument from Griffiths (2003). See his paper for an account of
the history and results for the expected values of the ages of alleles observed
to occur k times in a sample of size n.

Example 7.30. Wright-Fisher diffusion with additive selection. In this case the
probability of fixation is h(x) = (1 − e−2γx)/(1 − e−2γ) when the initial fre-
quency is x, so

Ḡ(x, y) = G(x, y)
1 − e−2γy

1 − e−2γx

Using (7.49) now, we have that Ḡ(x, y) is

1 − e−2γy

1 − e−2γx
· e−2γx − e−2γ

1 − e−2γ
· e2γy − 1
γy(1 − y)

y ≤ x

1 − e−2γy

1 − e−2γ
· 1 − e−2γ(1−y)

γy(1 − y)
x ≤ y

Note that the second formula does not depend on x (except through the
condition x ≤ y). As Figure 7.12 shows, the conditioning does not change the
picture very much except near x = 0, where we no longer have G(x, y) → 0
as x → 0.

If we integrate this with respect to y, then we get a result first derived by
Kimura and Ohta (1969a), see their (17).

Ēxτ ≈
∫ 1

x

[1 − e−2γy] · [1 − e−2γ(1−y)]
[1 − e−2γ ] · γy(1 − y)

dy

+
e−2γx − e−2γ

1 − e−2γx

∫ x

0

[1 − e−2γy] · [eγy − 1]
[1 − e−2γ ] · 2γy(1 − y)

dy

Since 1 − e−2γa ≤ 2γa, the two integrals are finite. However, they must be
evaluated numerically. As a check on the last formula, we note (eaγ−1)/γ → a
as γ → 0 so

1 − e−2γy

γy
· 1 − e−2γ(1−y)

γ(1 − y)
· γ

1 − e−2γ
→ 2

Using similar reasoning on the other terms,
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Fig. 7.12. Green’s function for conditioned Wright-Fisher with selection γ = 10

Ēxτ →
∫ 1

x

2 dy + 2N

(
1 − x

x

)∫ x

0

2y

1 − y
dy

= −2 · (1 − x)
x

log(1 − x)

by the calculation in Example 7.28.

Example 7.31. General diffusion. Maruyama and Kimura (1974) observed that
for Wright-Fisher diffusions with general diploid selection

lim
x→0

Ex(τ |T1 < T0) = lim
x→1

Ex(τ |T0 < T1) (7.57)

As we will now show, and presumably the authors also realized, this is a
general property of one dimensional diffusions.

Proof. We begin by recalling the formula for the Green’s function given in
(7.34), which we simplify by supposing φ(0) = 0 and φ(1) = 1.

2(1 − φ(x))φ(y)m(y) y ≤ x

2φ(x)(1 − φ(y))m(y) x ≤ y

The Green’s function G1(x, y) for the process starting from x and conditioned
on T1 < T0 is

2(1 − φ(x))φ(y)m(y) · φ(y)
φ(x)

y ≤ x

2φ(x)(1 − φ(y))m(y) · φ(y)
φ(x)

x ≤ y

in agreement with (12) of Maruyama and Kimura (1971). The Green’s function
G0(x, y) for the process starting from x and conditioned on T0 < T1 is
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2(1 − φ(x))φ(y)m(y) · 1 − φ(y)
1 − φ(x)

y ≤ x

2φ(x)(1 − φ(y))m(y) · 1 − φ(y)
1 − φ(x)

x ≤ y

In each case, after cancellation we have for x ≤ y

G0(x, y) = G1(x, y) = 2(φ(1) − φ(y))φ(y) · m(y)

and integrating gives the desired result.

Taylor, Iwasa, and Nowak (2006) have shown that this result holds for
reversible Markov chains on {0, 1, . . .N} in which 0 and N are absorbing and
these two states can only be reached directly from 1 and N − 1 respectively.

7.10 Boundary behavior

The consideration of diffusion processes leads to two questions that have no
analogues for discrete models: “Can the process get to the boundary?” and
“Once it gets to the boundary can it return to the interior of the state space?”
To build some suspense, we invite the reader to guess what happens for the
Wright-Fisher diffusion with mutation

Lf =
1
2

d2

dx2
f + (β1(1 − x) − β2x)

d

dx
f

It should not be surprising that if β1 = β2 = 0 then the diffusion stops the
first time it his 0 or 1, but what if one or both of the βi > 0?

It is enough to consider the boundary at 0. Consider a diffusion on (0, r)
where r ≤ ∞, let q ∈ (0, r), and let

I =
∫ q

0

(φ(z) − φ(0))m(z) dz

J =
∫ q

0

(M(z) − M(0))ψ(z) dz

where M is an antiderivative of m. Writing iff as short for “if and only if,” we
have the following results for a diffusion process Xt.

Theorem 7.18. Xt can get IN to the boundary point 0 iff I < ∞.
Xt can get OUT from the boundary point 0 iff J < ∞.

Note that φ(0) = −∞ implies I = ∞ and M(0) = −∞ implies J = ∞.

Proof. To start to prove the first result, we will show



294 7 Diffusion Processes

Theorem 7.19. Let 1/2 < b < 1. The following are equivalent:
(i) φ(0) > −∞ and

∫ 1/2

0 (φ(z) − φ(0))m(z) dz < ∞
(ii) inf0<a<1/2 P1/2(Ta < Tb) > 0 and sup0<a<1/2 E1/2(Ta ∧ Tb) < ∞
(iii) P1/2(T0 < Tb) > 0

Proof. We first show that (i) and (ii) are equivalent.

P1/2(Ta < Tb) =
φ(b) − φ(1/2)
φ(b) − φ(a)

so infα<a<0 P0(Ta < Tb) > 0 if and only if φ(0) > −∞. Using (7.37) and
(7.34)

Exτa,b = 2
φ(x) − φ(a)
φ(b) − φ(a)

∫ b

x

(φ(b) − φ(z))m(z) dz

+ 2
φ(b) − φ(x)
φ(b) − φ(a)

∫ x

a

(φ(z) − φ(a))m(z) dz

The first integral always stays bounded as a ↓ 0. So E0τ(a,b) stays bounded as
a → 0 if and only if φ(0) > −∞ and

∫ 1/2

0

(φ(z) − φ(0))m(z) dz < ∞

which completes the proof of the equivalence of (i) and (ii).
It is easy to see that (ii) implies (iii). For the other direction, note that

Theorem 7.6 implies that if P1/2(T0 < Tb) > 0 then E1/2τ0,b < ∞.

To try to start the process Xt from 0, let φ be its natural scale. As (7.39)
shows, Yt = φ(Xt) has coefficients b̄(y) = 0 and

ā(y) = (aψ2)(φ−1(y))

To see if we can start the process Yt at 0, we extend ā to the negative half-
line by setting ā(−y) = ā(y) and let Zt be the associated diffusion. If we let
m̄(y) = 1/ā(|y|) be the speed measure for Zt, which is on its natural scale, we
can use (7.39) and the symmetry m̄(−y) = m̄(y) to conclude

1
2
E0τ−ε,ε =

∫ ε

0

(ε − y)m̄(y) dy

Changing variables y = φ(x), dy = ψ(x) dx, ε = φ(δ), the above

=
∫ δ

0

(φ(δ) − φ(x))
1

ψ(x)a(x)
dx

=
∫ δ

0

(∫ δ

x

ψ(z) dz

)
m(x) dx
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Interchanging the order of integration, the above

=
∫ δ

0

∫ z

0

m(x) dxψ(z) dz

At this point we have shown

E0τ−ε,ε = 2
∫ δ

0

(M(z) − M(0))ψ(z) dz (7.58)

To see that E0τ−ε,ε = ∞ means that the process cannot escape from 0, we
note that Theorem 7.6 implies that if P0(τ−ε,ε < ∞) > 0 then E0τ−ε,ε < ∞.
This completes the proof of the second result and of the theorem.

There are four possible combinations of I and J being finite or infinite, which
were named by Feller as follows

I < ∞ J < ∞ regular
I < ∞ J = ∞ absorbing
I = ∞ J < ∞ entrance
I = ∞ J = ∞ natural

The second case is called absorbing because we can get in to 0 but cannot
get out. The third is called an entrance boundary because we cannot get to 0
but we can start the process there. Finally, in the fourth case, the process can
neither get to nor start at 0, so it is reasonable to exclude 0 from the state
space. We will now give examples of the various possibilities.

Example 7.32. Reflecting Brownian motion. Suppose Xt = |Bt|. In this case
φ(x) = x and m(x) = 1 so

I =
∫ 1/2

0

(φ(z) − φ(0))m(z) dz =
∫ 1/2

0

z dz < ∞

J =
∫ 1/2

0

(M(z) − M(0))ψ(z) dz =
∫ 1/2

0

z dz < ∞

and 0 is a regular boundary point. φ(∞) = ∞ and M(∞) = ∞, so ∞ is a
natural boundary.

Example 7.33. Wright-Fisher diffusion. We begin with the case of no selection.
From (7.26), we have

ψ(x) = x−2β1(1 − x)−2β2

m(x) = x2β1−1(1 − x)2β2−1

As x → 0, ψ(x) ∼ x−2β1 , so if β1 ≥ 1/2, φ(0) = −∞ and the boundary cannot
be reached. If β1 < 1/2 then φ(z)−φ(0) ∼ Cx−2β1+1 so I < ∞. If β1 = 0 then
M(0) = −∞. If β1 > 0 then M(z) − M(0) ∼ Cz2β1 , so J < ∞. Combining
our calculations we see that
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if I J 0 is
β1 = 0 < ∞ = ∞ absorbing
β1 ∈ (0, 1/2) < ∞ < ∞ regular

β1 ≥ 1/2 = ∞ < ∞ entrance

Personally, I find it a little surprising that the accessibility of the boundary
depends on size of the mutation rate.

If we consider a general selection scheme, then the function ψ is multiplied
by e−(2δx+ηx2), and m by e2δx+ηx2

, which are bounded on [0, 1], so the results
of the tests do not change.

Example 7.34. Conditioned processes. If pt(x, y) is the transition probability
of one of our diffusions Xt and h(x) = Px(T1 < T0), then, as we observed
in Section 7.9, the process conditioned to hit 1 before 0, X̄t has transition
probability p̄t(x, y) = pt(x, y)h(y)/h(x), and generator

L̄f = Lf + a(x)
h′(x)
h(x)

f ′(x)

In the absence of mutation and selection, h(x) = x and h′(x) = 1, so

L̄f =
1
2
x(1 − x)

d2f

dx2
+ (1 − x)

df

dx

Dropping the bars for the rest of the computation, −2b(x)/a(x) = −2/x, so

ψ(x) = e−2 log x = x−2 and φ(x) = −x−1

φ(0) = −∞ so I = ∞. The speed measure

m(x) =
1

x(1 − x)x−2
=

x

1 − x

so M(z) − M(0) ∼ z2 as z → 0. Since ψ(z) = z−2, J < ∞. Thus, as we
should have expected from the beginning, the conditioning makes 0 an en-
trance boundary. The process started at 0 will immediately become positive
and never to return to 0.

In the next two examples, we will examine the influence of the drift and
diffusion coefficients on the boundary behavior.

Example 7.35. Bessel processes. Suppose that a(x) = 1 and b(x) = γ/2x for a
diffusion on [0,∞). The natural scale is

φ(x) =
∫ x

1

exp
(
−
∫ y

1

γ/z dz

)
dy

=
∫ x

1

y−γ dy =

{
ln x if γ = 1
(x1−γ − 1)/(1 − γ) if γ �= 1
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From the last computation, we see that if γ ≥ 1 then φ(0) = −∞ and I = ∞.
To handle γ < 1, we observe that the speed measure

m(z) =
1

φ′(z)a(z)
= zγ

So taking q = 1 in the definition of I,

I =
∫ q

0

(φ(z) − φ(0))m(z) dz =
∫ 1

0

z1−γ

1 − γ
zγ dz < ∞

To compute J , we observe that for γ ≤ −1, M(0) = −∞ while for γ > −1,
M(z) = zγ+1/(γ + 1) and

J =
∫ q

0

(M(z) − M(0))ψ(z) dz =
∫ 1

0

zγ+1

γ + 1
z−γ dz < ∞

Combining the two conclusions about I and J , we see that

if I J 0 is
γ ≥ 1 = ∞ < ∞ entrance
γ ∈ (−1, 1) < ∞ < ∞ regular

γ ≤ −1 < ∞ = ∞ absorbing

which makes sense because as γ gets larger, the push away from 0 increases.

Example 7.36. Power law fluctuations. Suppose a(x) = xδ and b(x) = 0. The
natural scale is φ(x) = x and the speed measure is m(x) = 1/(φ′(x)a(x)) =
x−δ, so

I =
∫ 1

0

x1−δ dx =

{
< ∞ if δ < 2
= ∞ if δ ≥ 2

When δ ≥ 1, M(0) = −∞ and hence J = ∞. When δ < 1

J =
∫ 1

0

z1−δ

1 − δ
dz < ∞

Combining the last two conclusions, we see that

if I J 0 is
δ ∈ [2,∞) = ∞ = ∞ natural
δ ∈ [1, 2) < ∞ = ∞ absorbing

δ < 1 < ∞ < ∞ regular

which makes sense, because as δ gets larger the fluctuations near the boundary
are smaller.
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7.11 Site frequency spectrum

In this section, we will calculate the site frequency spectrum for our diffusion
processes, extending the result for the Moran model in Section 1.5. Special
cases of the formula, as well as pictures similar to ones given in this section can
be found in Wright’s (1942) paper based on his Gibbs lecture to the American
Mathematical Society. The general result can be found in formula (9.27) of
Kimura’s (1964) paper, which appeared in the first volume of the Journal of
Applied Probability.

Theorem 7.20. Under the infinite sites model if mutations occur at rate μ
and θ = 4Nμ then the site frequency spectrum in the diffusion process is

θf(y) where f(y) =
ψ(0)
m(y)

· φ(1) − φ(y)
φ(1) − φ(0)

(7.59)

Proof. We begin by recalling the result for the Moran model. Suppose a mu-
tation occurs at time −t introducing a new allele and no further mutation
occurs at that locus, which is the case in the infinite sites model. The proba-
bility that there are k copies at time 0 is given by the transition probability
pt(1, k). If mutations occur at times of a Poisson process with rate λ and each
mutation occurs at a different site then the number of mutants with k copies
at time 0 is Poisson with mean

λ

∫ ∞

0

pt(1, k) dt = λG(1, k)

Turning to the diffusion process, suppose without loss of generality that
φ(0) = 0. We cannot introduce mutants at frequency 0, so we introduce them
at frequency δ at rate (θ/2)(ψ(0)/φ(δ). Here θ/2 = 2Nμ is the rate at which
mutations occur in the population, and the factor ψ(0)/φ(δ) is chosen so that
if δ < ε then the mutations that reach frequency ε is a Poisson process with
rate

θψ(0)
2φ(δ)

· φ(δ)
φ(ε)

=
θψ(0)
2φ(ε)

The factor ψ(0) is included because the natural scale with φ(0) = 0 is only
specified up to a constant multiple.

Using the Green’s function formula (7.34) now the number of mutants with
frequency in (y, y + dy) with y > δ is Poisson with mean

θψ(0)
2φ(δ)

· 2φ(δ)
φ(1)

· (φ(1) − φ(y))m(y) dy (7.60)

Letting δ → 0 gives the desired formula.

Remark. Most derivations of this result introduce mutations at frequency
1/2N . In this approach, which as Sawyer and Hartl (1992) observe at the
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top of page 1165, the rigorous justification that they give on pages 1172–1174
is somewhat painful. In the example of additive selection which they were
considering, this can be done using our remark in Section 7.8 that the Green’s
function for the Moran model converges to that of the Wright-Fisher diffusion
as the population size N → ∞. It would not be much fun to do this for every
model, so we have taken the approach of introducing mutations at frequency
δ and then letting δ → 0, which easily gives the result for any diffusion.

Examples

In all of the diffusions we will consider, a(y) = y(1 − y).

Example 7.37. No selection. In the neutral case, φ(x) = x and (7.59) becomes

f(y) =
(1 − y)
y(1 − y)

=
1
y

which agrees with the result derived in Section 1.5.

Example 7.38. Additive selection. In this case ψ(x) = e−2γx, φ(x) = [1 −
exp(−2γx)]/2γ, and m(x) = e2γx/x(1 − x) so (7.59) becomes

f(y) =
e2γy

y(1 − y)
e−2γy − e−2γ

1 − e−2γ
=

1
y(1 − y)

1 − e−2γ(1−y)

1 − e−2γ
(7.61)

This formula can be found in slightly different notation on page 92 of Fisher
(1930) and as formula (39) in Wright (1938). The next figure shows the site
frequency spectrum for four values of γ. When y → 0, f(y) ∼ 1/y, while for
y → 1, we have (1−e−2γ(1−y))/(1−y) → 2γ and hence f(y) → 2γ/(1−e−2γ) >
1, so there is an excess of high frequency mutations.
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Fig. 7.13. Site frequency spectrum under directional selection.
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Example 7.39. Symmetric balancing selection. In this case ψ(x) = e−2γx(1−x)

and m(x) = e2γx(1−x)/x(1 − x) so (7.59) becomes

f(y) =
e2γx(1−x)

x(1 − x)

∫ 1

x
e−2γy(1−y) dy∫ 1

0 e−2γy(1−y) dy
(7.62)

As x → 1,
∫ 1

x
e−2γy(1−y) dy ∼ 1−x so the density does not blow up there. If γ

is large and x is away from the boundary then the ratio of the two integrals is
close to 1/2, and the curve is ≈ e2γx(1−x)/x(1−x), which reaches a maximum
at x = 1/2.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

 

 

0
2
5
10

Fig. 7.14. Site frequency spectrum under balancing selection.

Fixation rate

By reasoning similar to that for (7.60), we see that if φ is chosen with
φ(0) = 0 the rate at which new mutations become fixed (when time is scaled
by 2N generations) is

θψ(0)
2φ(δ)

φ(δ)
φ(1)

=
θψ(0)
2φ(1)

In the case of additive selection ψ(x) = e−2γx and φ(x) = [1− exp(−2γx)]/2γ
so this is

θ

2
· 2γ

1 − e−2γ
(7.63)

7.11.1 Poisson random field model

To set up the problem, we quote from page 1166 of Sawyer and Hartl (1992):
“Suppose that two species diverged tdivNe generations ago, and that both have
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the same haploid effective population size Ne. Assume that the mutation rate
for silent sites in the coding region of a particular gene is μs per gene per
generation, and that the mutation rate for nonlethal replacement mutations
is μr per gene per generation. Assume further that (i) all new replacement
mutations bestow equal fitness w = 1+γ/Ne, (ii) each new mutation since the
divergence of species occurred at a different site (in particular, the gene has
not been saturated by mutations), and (iii) different sites remain in linkage
equilibrium.”

In this case (7.63) and (7.61) give us Table 1 of Sawyer and Hartl (1992)

Fixation rate Mutant frequency spectrum
Neutral μs 2μs

dx
x

γ �= 0 μr
2γ

1−e−2γ
2μr

y(1−y)
1−e−2γ(1−y)

1−e−2γ

To make the connection note that their μr and μs are our 2Nμ. To make it
easier to compare with their paper we will keep their notation. The expected
number of fixed differences between the two species are

2μstdiv and 2μr
2γ

1 − e−2γ

for silent and replacement sites, respectively.

McDonald-Kreitman tables

Now suppose we have aligned DNA sequences from m chromosomes from
the first species and n chromosomes from the second species. An allele with
frequency x will be polymorphic in a sample of size m with probability 1 −
xm− (1−x)m, so the expected number of silent polymorphic sites in a sample
of size m is

2μs

∫ 1

0

1 − xm − (1 − x)m

x
dx = 2μs

m−1∑
k=1

1
k

Writing L(m) =
∑m−1

k=1 1/k ≈ log m, the number of silent polymorphic sites
in both samples together is then

2μs(L(m) + L(n)) (7.64)

A silent site will look like a fixed difference in species 1 in the comparison
of the two samples if it is fixed in the population or if it by chance occurs in
all m sampled individuals, so the expected value is

μstdiv +
∫ 1

0

2μsx
m dx

x
= μs

(
tdiv +

2
m

)

Thus the expected number of silent fixed differences is

2μs

(
tdiv +

1
m

+
1
n

)
(7.65)
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By the same reasoning the number of polymorphic replacement sites in a
sample is

2μr(H(m) + H(n)) (7.66)

where

H(m) =
∫ 1

0

1 − xm − (1 − x)m

x(1 − x)
1 − e−2γ(1−x)

1 − e−2γ
dx

and the number of replacement fixed differences has mean

2μr
2γ

1 − e−2γ
(tdiv + G(m) + G(n)) (7.67)

where

G(m) =
∫ 1

0

xm−1 1 − e−2γ(1−x)

2γ(1 − x)
dx

Since e−y ≥ 1 − y and hence (1 − e−y)/y ≤ 1 for y > 0, G(m) ≤ 1/m for
γ > 0.

Our formulas give the expected value of the four entries in the McDonald-
Krietman table.

Divergence Polymorphism
Silent (7.65) (7.64)
Replacement (7.67) (7.66)

Bayesian estimation

The number of mutations in one locus typically does not give us enough
information to get good estimates of the parameters, so it is natural to combine
the information from many loci. To do this we will follow the approach of
Bustamante et al. (2002) and Sawyer et al. (2003). Changing to their notation
we let θs = 4Nμs and θa = 4Nμr and denote the entries in the DPRS table
by

Divergence Polymorphism
Silent Ks Ss

Replacement Ka Sa

The theoretical expectations for any single DPRS table include four pa-
rameters, θs, θa, γ, and the divergence time t, and contain four observations:
Ks, Ss, Ka, and Sa hence there is no meaningful opportunity for model fit-
ting. However, the divergence time is a shared parameter among all sequences.
The basic idea of Bayesian analysis is to treat the parameters in a model as
random variables with some underlying prior distribution. In Bustamante et
al. (2002), it was assumed that for each coding sequence γ was a fixed constant
but that across loci the distribution of γ was given by a normal with mean μ
and standard deviation σ. The other prior distributions are q(t) is uniform,
p(θ) is gamma, h(σ) is such that 1/σ2 is gamma, and g(μ|σ) is normal.
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The posterior distribution π(γ, t, θ, μ, σ) is analytically intractable but
can be computed by Markov chain Monte Carlo. That is, by simulation of
a Markov chain defined in such a way that the stationary distribution is pre-
cisely π. One simple method for doing this is the Metropolis algorithm in
which a trial value for the new parameter is used to replace the old if the ra-
tio of the posterior probabilities for the trial and the present values is greater
than a uniform random number in [0, 1]. For more details about the MCMC
method see page 533 of Bustamante et al. (2002).

Sawyer et al. (2003) modified the “fixed-effects” model described above to
be a random-effects model so that for the ith coding sequence, the selection
coefficient for a new mutation is normal with mean γi and standard deviation
σw. Here σw is a global parameter that applies to all loci and has a uniform
prior distribution.

Sawyer et al. (2003) studied a set of 72 D. simulans coding sequences
from GenBank, which had sample sizes ranging from 4 to 70 with an average
of 10.5. Nucleotide divergence between D. simulans and D. melanogaster was
inferred from the reference sequence for D. melanogaster, see Adams (2000). In
applying the random-effects model to the DPRS data, they initially found that
the Markov chain did not converge, or did so excessively slowly. The output
for various runs suggested that the main reason for poor convergence was
that values of θr could be balanced off by γ. That is, an excess of replacement
mutations can be caused either by a stronger intensity of positive selection or
a higher mutation rate.

From runs of the fixed-effects model, they noticed that about 80% of the
coding sequences had values of θr/2θs near 1/4, or more precisely about 0.28,
so they modified the model to include a new parameter Q = θr/2θs with
a gamma prior distribution. Among the 72 genes, 14 were excluded because
θr/2θs > 0.28 and two additional genes were excluded because they appeared
to be spurious for other reasons. The list of genes omitted include eight male
accessory gland proteins.

For the random effects model they found that the distribution of the γi had
mean −7.3 and standard deviation σb = 5.69, while the within locus standard
deviation was σw = 6.79. Most of the mean selection intensities for the 56
genes were negative but many had 95% credible intervals that overlapped 0.
The fraction of beneficial new mutations ranged from 1% for Pgm to 62% for
Rel with an outlier at 90% for mei-218. The average for all loci was 19.4%.
Among the replacement polymorphisms in the data, an average of 46.9% were
estimated to be beneficial. For the Y-linked gene kl-5 the estimated average
selection intensity was −0.38. All others were positive and ranged from 2.1
for vermillion to 9.4 for Rel, with an overall mean, excluding kl-5 of 5.1.

For an application of these methods to a large number of genes in the
human genome, see Bustamante et al. (2005).
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7.12 Fluctuating selection

Two mechanisms by which evolution can occur are the adaptive processes of
natural selection and the neutral processes of genetic drift. Which of these is
the principal force in the evolution of a population has been one of the central
issues in evolutionary biology. An early exchange in this debate was over the
changes in the frequencies of a color polymorphism in a population of the
scarlet tiger moth Callimorpha (Panaxia) dominula near Oxford, England.
Fisher and Ford (1947) argued that the population size was too large for
the changes in frequencies to be due to random drift, and were caused by
fluctuating selection. Wright (1948) replied by arguing that multiple factors
could affect a population, and that the effective population might be much
smaller than the census population size. A publicized debate ensued, see Fisher
and Ford (1950), and Wright (1951).

Kimura (1954, 1962) and Ohta (1972) studied the question mathematically,
but did not find the correct diffusion approximation. A little later Gillespie
(1973) and Jensen (1973) did. For more on the early history see Felsenstein
(1976). We will follow Karlin and Levikson (1974) and consider a model in
which the fitness of A in generation n is 1+σn and the fitness of a is 1+τn where
σn, τn are independent and identically distributed. Dropping the subscripts
to simplify the formulas, we let

α = 2N [E(σ − τ) − E(σ2 − τ2)/2 + E(σ − τ)2/2]
β = 2NE(σ − τ)2

Theorem 7.21. The diffusion approximation for the Karlin-Levikson model
has coefficients:

b(x) = x(1 − x)(α − βx) a(x) = x(1 − x)[1 + βx(1 − x)] (7.68)

The drift looks like balancing selection, but the variance has an additional
term.

Proof. To derive the diffusion approximation, note that reasoning as in Section
6.2, the change in frequency in one generation is

x(1 + σ)
x(1 + σ) + (1 − x)(1 + τ)

− x =
x(1 + σ) − x − σx2 − τx(1 − x)

1 + σx + τ(1 − x)

=
(σ − τ)x(1 − x)

1 + σx + τ(1 − x)
≈ (σ − τ)x(1 − x)[1 − σx − τ(1 − x)]

Writing x = 1/2 − (1/2 − x) and 1 − x = 1/2 + 1/2 − x, the above is

= (σ − τ)x(1 − x)[1 − (σ + τ)/2 + (σ − τ)(1/2 − x)]

= x(1 − x)[(σ − τ) − (σ2 − τ2)/2 + (σ − τ)2(1/2 − x)]
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Taking expected value and speeding up time by a factor of 2N the drift
coefficient is

b(x) = x(1 − x)(2N)[E(σ − τ) − E(σ2 − τ2)/2 + E(σ − τ)2(1/2 − x)]

To compute the variance, let ΔX be the change in frequency and Y be
the environment.

var (ΔX) = E var (ΔX |Y ) + var (E(ΔX |Y ))

To evaluate the first term, recall that the variance of Binomial(2N, p) is
2Np(1 − p) and the allele frequencies by O(1/N) in one generation so

var (ΔX |Y ) ≈ x(1 − x)
2N

As we computed above

E(ΔX |Y ) =
(σ − τ)x(1 − x)

1 + σx + τ(1 − x)

Since σx, τ(1 − x) << 1, we can drop these terms from the denominator:

var (E(ΔX |Y )) = x2(1 − x)2E(σ − τ)2

Adding the two results and speeding up time by a factor of 2N gives

a(x) = x(1 − x) + x2(1 − x)22NE(σ − τ)2

and completes the proof.

Remark. Takahata, Ishii, Matsuda (1975) considered a Wright-Fisher diffu-
sion with varying selection

1
4N

x(1 − x)
d2

dx2
+ s(t)x(1 − x)

d

dx

They let s̄ = Es(t) and V =
∫∞
0 E([s(t) − s̄][s(0) − s̄]) dt, and found that in

the diffusion approximation

a(x) =
1

2N
x(1 − x) + 2V x2(1 − x)2

b(x) = s̄x(1 − x) + V x(1 − x)(1 − 2x)

To connect with the Karlin-Levikson result, suppose E(σ2 − τ2) = 0, let
s̄ = E(σ − τ), and note that in discrete time V = E(σ − τ)2/2. This suggests
that if s̄ = E(σ − τ) = 0 and we have (σn, τn) that are correlated in time all
we do is replace E(σ − τ)2/2 by

∞∑
n=0

E[(σ0 − τ0)(σn − τn)].

For the rest of the section we will only consider the special case that is
closely related to the model of Takahata, Ishii, and Matsuda (1975).
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Theorem 7.22. Consider the Karlin-Levikson model with E(σ − τ) = 0 and
E(σ2 − τ2) = 0. The derivative of the natural scale

ψ(y) =
1

y(1 − y) + 1/β

The speed measure is exactly the same as for the neutral case

m(y) =
1

y(1 − y)

Proof. Since a(y) = y(1 − y)(1 + βy(1 − y)), the second formula follows from
the first. To compute ψ, we begin by noting

−2b(x)
a(x)

=
−2[α − βx]

1 + x(1 − x)β

To find the roots of the quadratic in the denominator, we write it as x2 − x−
1/β = 0 and solve to find roots r1 < 0 < 1 < r2 given by

ri =
1 ±

√
1 + 4/β

2

Note that the two roots are symmetric about 1/2. To evaluate the integral we
write

−2b(x)
a(x)

=
−2[α − βx]

1 + x(1 − x)β
=

−2[α/β − x]
1/β + x(1 − x)

=
C

x − r1
+

D

r2 − x

To find the constants we solve −C + D = 2 and Cr2 − Dr1 = −2α/β to
find

C =
2r1 − 2α/β

r2 − r1
D =

2r2 − 2α/β

r2 − r1

which, as the reader can easily check, satisfies the two equations. Integrating
∫ y C

x − r1
+

D

r2 − x
dx = C log(y − r1) − D log(r2 − y)

so we have

ψ(y) = exp
(∫ y −2b(x)

a(x)

)
= (y − r1)C(r2 − y)−D

Consider now the special case in which σ and τ have the same distribution
so E(σ − τ) = 0, E(σ2 − τ2) = 0, and hence α = β/2.

C =
2r1 − 2α/β

r2 − r1
=

2(r1 − 1/2)
r2 − r1

= −1

D =
2r2 − 2α/β

r2 − r1
=

2(r2 − 1/2)
r2 − r1

= 1
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and we have the very nice formula

ψ(y) = (y − r1)−1(r2 − y)−1 =
1

y(1 − y) + 1/β

Karlin and Levikson (1974) find ψ(y) = [1 + βy(1 − y)]−1 on their page
402, but this agrees with our computation since the solution of ψ′(y) =
−2b(y)ψ(y)/a(y) is only determined up to a constant multiple. To make it
easier to compare with their formulas, for the rest of the section we will use

ψ(y) =
1

βy(1 − y) + 1
= β−1(y − r1)−1(r2 − y)−1 (7.69)

Theorem 7.23. Let r1 < r2 be the roots (1 ±
√

1 + 4/β)/2. Under the as-
sumptions of Theorem 7.22, the probability of fixation starting from frequency
x is

1
2

+
log

[
x−r1
r2−x

]
2 log[r2/(−r1)]

This is (8) in Jensen (1973). As β → ∞, r1 → 0 and r2 → 1 so φ(x) → 1/2.
The next graph shows the hitting probabilities for β = 0, 10, 40.
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Fig. 7.15. Hitting probabilities for fluctuating selection

Proof. To compute the natural scale φ, we integrate to find

φ(x) = β−1

∫ x

0

(y − r1)−1(r2 − y)−1 dy

=
1

β(r2 − r1)

∫ x

0

1
y − r1

+
1

r2 − y
dy (7.70)

=
1√

β2 + 4β
[log(x − r1) − log(−r1) − log(r2 − x) + log(r2)]



308 7 Diffusion Processes

This is close to but not exactly the same as Karlin and Levikson (1974). Their
roots are λ2 = r1 and λ1 = r2, and they write w = β/2, so their constant has
2β instead of 4β under the square root.

Since φ(0) = 0, the probability of fixation starting from frequency x is

φ(x)/φ(1) = log
[
x − r1

−r1
· r2

r2 − x

]/
log

[
1 − r1

−r1
· r2

r2 − 1

]
(7.71)

r2 − 1/2 = 1/2− r1 and r2 − 1 = −r1 so φ(1/2)/φ(1) = 1/2 and we can write
above as

1
2

+
φ(x) − φ(1/2)

φ(1)
=

1
2

+
log

[
x−r1
r2−x

]
2 log[r2/(−r1)]

Theorem 7.24. Let τ = T0 ∧ T1 be the time until one allele is lost. Under
the assumptions of Theorem 7.22

Exτ =

⎧⎨
⎩
∫ x

0
2

1+βy(1−y) log
(

1−y
y

)
dy when x ≤ 1/2

∫ 1

x
2

1+βy(1−y) log
(

y
1−y

)
dy when x ≥ 1/2

Note that in each case the log is nonnegative throughout the range of inte-
gration, so Exτ is a decreasing function of β. This result, which is on page
402 of Karlin and Levikson (1974) is somewhat surprising since (7.68) shows
that the diffusion has a drift toward 1/2, which will encourage it to spend
more time at intermediate values. However, this effect is counteracted by the
increase in a(x).

Proof. Since m(y) = 1/y(1 − y) and φ(0) = 0, the Green’s function G(x, y)
from (7.34) is

2
φ(x)
φ(1)

· φ(1) − φ(y)
y(1 − y)

x ≤ y

2
φ(1) − φ(x)

φ(1)
· φ(y)
y(1 − y)

y ≤ x

The expected time to fixation is

Exτ = 2
φ(x)
φ(1)

∫ 1

x

φ(1) − φ(y)
y(1 − y)

dy + 2
φ(1) − φ(x)

φ(1)

∫ x

0

φ(y)
y(1 − y)

dy

Since 1/(1 − y)y = 1/(1 − y) + 1/y has antiderivative − log(1 − y) + log(y),
integrating by parts gives
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= 2
φ(x)
φ(1)

(φ(1) − φ(y)) · (− log(1 − y) + log(y))|1x

+ 2
φ(x)
φ(1)

∫ 1

x

ψ(y) log
(

y

1 − y

)
dy

+ 2
φ(1) − φ(x)

φ(1)
φ(y) · (− log(1 − y) + log(y))|x0

− 2
φ(1) − φ(x)

φ(1)

∫ x

0

ψ(y) log
(

y

1 − y

)
dy

Since φ(1)−φ(y) ∼ φ′(1)(1− y) as y → 1 and (1− y) log(1− y) → 0 as y → 1,
evaluating the first term at 1 gives 0. Similarly φ(y) ∼ φ′(0)y as y → 0 and
y log(y) → 0 as y → 0, so evaluating the third term at 0 gives 0. Evaluating
the first term at x cancels with evaluating the third at x, so the above

= 2
φ(x)
φ(1)

∫ 1

x

ψ(y) log
(

y

1 − y

)
dy − 2

φ(1) − φ(x)
φ(1)

∫ x

0

ψ(y) log
(

y

1 − y

)
dy

Adding and subtracting 2(φ(x)/φ(1))
∫ x

0
, then flipping the fraction inside the

log to get rid of the minus sign, the above

= 2
φ(x)
φ(1)

∫ 1

0

ψ(y) log
(

y

1 − y

)
dy +

∫ x

0

2ψ(y) log
(

1 − y

y

)
dy

ψ(y) is symmetric about 1/2 and log(y/(1 − y)) = log(y) − log(1 − y) is
antisymmetric about 1/2, so the first integral vanishes, and

Exτ =
∫ x

0

2
1 + βy(1 − y)

log
(

1 − y

y

)
dy

When x ≥ 1/2 we can use the fact that the total integral is 0 to write

Exτ =
∫ 1

x

2
1 + βy(1 − y)

log
(

y

1 − y

)
dy

Using Kimura’s formula (7.59), we have

Theorem 7.25. Under the assumptions of Theorem 7.22, the site frequency
spectrum is

θ

y(1 − y)
· log

(
1 − r1

y − r1
· r2 − y

r2 − 1

)/
log

(
1 − r1

−r1
· r2

r2 − 1

)

Proof. Using either formula for ψ(y)

ψ(0)
ψ(y)a(y)

=
1

y(1 − y)

Using (7.71), shows that (φ(1) − φ(y))/(φ(1) − φ(0)) = the second factor.
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Fig. 7.16. Log-log plot of the site frequency spectrum for fluctuating selection

Figure 7.16 shows the site frequency spectrum for β = 0, 10, 40. To make
the differences more visible we have done a log-log plot. In the presence of
fluctuating selection high frequency derived alleles (y near 1) are overrepre-
sented, and intermediate frequency alleles are underrepresented with respect
to the neutral case. Somewhat remarkably,

Theorem 7.26. The integral of the site frequency spectrum does not depend
on β.

Proof. It follows from Theorem 7.23 that

g(β, y) =
∂

∂β

φ(1) − φ(y)
φ(1) − φ(0)

has g(β, y) = −g(β, 1 − y). From this it follows that

∂

∂β

∫ 1

0

θ

y(1 − y)
φ(1) − φ(y)
φ(1) − φ(0)

dy =
∫ 1

0

θ

y(1 − y)
g(β, y) dy = 0

Parameter estimation

Most studies of fluctuating selection have based their inferences on time
series data for allele frequencies. See Mueller et al (1985), Lynch (1987), Cook
and Jones (1996), and O’Hara (2005). Recently, Huerta-Sanchez, Durrett, and
Bustamante (2007) have used the Poisson random field framework to develop
an alternative approach that uses DNA polymorphism data from a sample of
individuals collected at a single point in time. To do this they used methods
described in Bustamante et al. (2001), which we will begin by describing in
general. Let f(y, β) be the site frequency spectrum. Since this represents the
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distribution of mutation frequencies at any time, the probability of finding i
mutant alleles in a sample of size n

Fn(k, β) =
∫ 1

0

(
n

k

)
yk(1 − y)n−kf(y, β) dy

Our definition of f(y, β) is 1/2 the usual one so there is no factor of 2, as in
(2) of Bustamante et al. (2001).

Let yi be the number of sites at which there are i mutant alleles. In the
Poisson random field framework, different sites are independent so the likeli-
hood is given by

L(θ, β) =
n−1∏
i=1

exp(−θFn(i, β))
(θFn(i, β))yi

yi!

Therefore, the log likelihood function (dropping the term log(yi!) which is
independent of the parameters) is

�(θ, β) =
n−1∑
i=1

−θFn(i, β) + yi log(θFn(i, β))

Differentiating with respect to θ we see that

∂

∂β
log L(y, β) = −

n∑
i=1

Fn(i, β) +
yi

θ

so for fixed β the maximum likelihood estimate of θ is

θ̂(β) = Sn/

n∑
i=1

Fn(i, β)

which is a generalization of Watterson’s estimate.
Given the last result we can work with the profile likelihood

�∗(β) = L(θ̂(β), β)

which can be maximized numerically using standard optimization techniques
such as Newton-Raphson iteration. In the current example, that task simplifies
because Theorem 7.26 implies

Theorem 7.27. ESn =
∑n

i=1 Fn(i, β) does not depend on β.

Proof. Let h(k, y) =
(
n
k

)
yk(1 − y)n−k +

(
n

n−k

)
yn−k(1 − y)k. Since hn(k, y) is

symmetric about 1/2,

∂

∂β
[Fn(k, β) + Fn(n − k, β)] = 0

Summing from k = 1 to n − 1 now gives the desired result.
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To perform the optimization, we have to compute the first and second
derivatives of the log likelihood with respect to its parameters. We have noth-
ing insightful to say about these details so we refer the reader to Bustamante
et al. (2001) or Huerta-Sanchez, Durrett, and Bustamante (2007) for details,
and simulation results which show the performance of the estimators. For an-
other approach to fitting fluctuating selection models to data see Mutsonen
and Lässig (2007). Using data for 271 loci in 12 Droxsophila melanogaster
and a D. simulans sequence, they find strong support (p < 10−17) for time
dependent selection.

Before leaving the topic of fluctuating selection, we must mention the work
of Gillespie. To quote the preface of his 1991 book The Causes of Molecular
Evolution: “If we are to propose that molecular evolution is due to the ac-
tion of natural selection, we need a mathematical theory to demonstrate that
the dynamics of selection are compatible with the observations of molecular
variation. It is my conviction that the only viable model of selection is one
based on temporal and spatial fluctuations in the environment. The mathe-
matics of selection in a random environment have never been systematically
developed or brought to a point where they serve as a model of molecular
evolution. Both situations will be remedied in Chapter 4. Unfortunately, the
mathematics are very difficult. Yet, if molecular evolution is in response to
a changing environment, then this is the sort of mathematical challenge we
must be willing to face. Chapter 4 is littered with unresolved problems that
should prove of interest to those with a mathematical bent.” In addition to
the source just cited the reader should consult his more recent papers on the
SAS-CFF model (stochastic additive scale-concave fitness function).
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