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Brownian Motion

This eagerly awaited textbook offers a broad and deep exposition of Brownian motion. Extensively
class tested, it leads the reader from the basics to the latest research in the area.

Starting with the construction of Brownian motion, the book then proceeds to sample path
properties such as continuity and nowhere differentiability. Notions of fractal dimension are
introduced early and are used throughout the book to describe fine properties of Brownian paths.
The relation of Brownian motion and random walk is explored from several viewpoints, including a
development of the theory of Brownian local times from random walk embeddings. Stochastic
integration is introduced as a tool, and an accessible treatment of the potential theory of Brownian
motion clears the path for an extensive treatment of intersections of Brownian paths. An
investigation of exceptional points on the Brownian path and an appendix on SLE processes, by
Oded Schramm and Wendelin Werner, lead directly to recent research themes.

‘This splendid account of the modern theory of Brownian motion puts special emphasis on sample
path properties and connections with harmonic functions and potential theory, without omitting such
important topics as stochastic integration, local times or relations with random walk. The most
significant properties of Brownian motion are derived via powerful and elegant methods. This book,
which fills a gap in the existing literature, will be of interest both to the beginner, for the clarity of
exposition and the judicious choice of topics, and to the specialist, who will find neat approaches to
many classical results and to some more recent ones. This beautiful book will soon become a must
for anybody who is interested in Brownian motion and its applications.’

Jean-François Le Gall, Université Paris 11 (Paris-Sud, Orsay)

‘Brownian Motion by Mörters and Peres, a modern and attractive account of one of the central topics
of probability theory, will serve both as an accessible introduction at the level of a Master’s course
and as a work of reference for fine properties of Brownian paths. The unique focus of the book on
Brownian motion gives it a satisfying concreteness and allows a rapid approach to some deep results.

The introductory chapters, besides providing a careful account of the theory, offer some helpful
points of orientation towards an intuitive and mature grasp of the subject matter. The authors have
made many contributions to our understanding of path properties, fractal dimensions and potential
theory for Brownian motion, and this expertise is evident in the later chapters of the book. I
particularly liked the marking of the ‘leaves’ of the theory by stars, not only because this offers a
chance to skip on, but also because these are often the high points of our present knowledge.’

James Norris, University of Cambridge

‘This excellent book does a beautiful job of covering a good deal of the theory of Brownian motion
in a very user-friendly fashion. The approach is hands-on which makes it an attractive book for a
first course on the subject. It also contains topics not usually covered, such as the
‘intersection-equivalence’ approach to multiple points as well as the study of slow and fast points.
Other highlights include detailed connections with random fractals and a short overview of the
connections with SLE. I highly recommend it.’

Jeff Steif, Chalmers University of Technology
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Preface

The aim of this book is to introduce Brownian motion as central object of probability theory
and discuss its properties, putting particular emphasis on sample path properties. Our hope
is to capture as much as possible the spirit of Paul Lévy’s investigations on Brownian
motion, by moving quickly to the fascinating features of the Brownian motion process,
and filling in more and more details into the picture as we move along.

Inevitably, while exploring the nature of Brownian paths one encounters a great variety
of other subjects: Hausdorff dimension serves from early on in the book as a tool to quan-
tify subtle features of Brownian paths, stochastic integrals helps us to get to the core of the
invariance properties of Brownian motion, and potential theory is developed to enable us
to control the probability the Brownian motion hits a given set.

An important idea of this book is to make it as interactive as possible and therefore
we have included more than 100 exercises collected at the end of each of the ten chapters.
Exercises marked with the symbol S have either a hint, a reference to a solution, or a full
solution given at the end of the book. We have also marked some theorems with a star to
indicate that the results will not be used in the remainder of the book and may be skipped
on first reading. At the end of the book we have given a short list of selected open research
problems dealing with the material of the book.

This book grew out of lectures given by Yuval Peres at the Statistics Department, Uni-
versity of California, Berkeley in Spring 1998. We are grateful to the students who at-
tended the course and wrote the first draft of the notes: Diego Garcia, Yoram Gat, Diogo
A. Gomes, Charles Holton, Frédéric Latrémolière, Wei Li, Ben Morris, Jason Schweins-
berg, Bálint Virág, Ye Xia and Xiaowen Zhou. The first draft of these notes, about 80 pages
in volume, was edited by Bálint Virág and Elchanan Mossel and at this stage corrections
were made by Serban Nacu and Yimin Xiao. The notes were distributed via the internet
and turned out to be very popular — this demand motivated us to expand these notes to a
full book hopefully retaining the character of the original notes.

Peter Mörters lectured on the topics of this book in the Graduate School in Mathemat-
ical Sciences at the University of Bath in Autumn 2003, thanks are due to the audience,
and in particular to Alex Cox and Pascal Vogt, for their contributions. Yuval Peres thanks

viii



Preface ix

Pertti Mattila for the invitation to lecture on this material at the joint summer school in
Jyväskyla, August 1999, and Peter Mörters thanks Michael Scheutzow for the invitation to
lecture at the Berlin graduate school in probability in Stralsund, April 2003.

When it became clear that the new developments around the stochastic Loewner evolu-
tion would open a new chapter in the story of Brownian motion we discussed the inclusion
of a chapter on this topic. Realising that doing this rigorously in detail would go beyond
the scope of this book, we asked Oded Schramm to provide an appendix describing the new
developments in a less formal manner. Oded agreed and immediately started designing the
appendix, but his work was cut short by his tragic and premature death in 2008. We are
very grateful that Wendelin Werner accepted the task of completing this appendix at very
short notice.

Several people read drafts of the book at various stages, supplied us with helpful lists
of corrections, and suggested or tested exercises and references. We thank Anselm Adel-
mann, Tonci Antunovic, Christian Bartsch, Noam Berger, Jian Ding, Uta Freiberg, Nina
Gantert, Subhroshekhar Gosh, Ben Hough, Davar Khoshnevisan, Richard Kiefer, Achim
Klenke, Michael Kochler, Manjunath Krishnapur, David Levin, Nathan Levy, Arjun Mal-
hotra, Jason Miller, Asaf Nachmias, Weiyang Ning, Marcel Ortgiese, Ron Peled, Jim Pit-
man, Michael Scheutzow, Perla Sousi, Jeff Steif, Kamil Szczegot, Ran Tessler, Hermann
Thorisson, and Brigitta Vermesi.

We also thank several people who have contributed pictures, namely Ben Hough, Mar-
cel Ortgiese, Yelena Shvets and David Wilson. The cover shows a planar Brownian motion
with points coloured according to the occupation measure of a small neighbourhood, we
thank Raissa d’Souza for providing the picture.

Peter Mörters
Yuval Peres



Frequently used notation

Numbers:

�x� the smallest integer bigger or equal to x

�x� the largest integer smaller or equal to x

Re(z),Im(z) the real, resp. imaginary, part of the complex number z

i the imaginary unit

Topology of Euclidean space Rd :

Rd Euclidean space consisting of all column vectors x = (x1 , . . . , xd)T

| · | Euclidean norm |x| =

√√√√ d∑
i=1

x2
i

B(x, r) the open ball of radius r > 0 centred in x ∈ Rd ,
i.e. B(x, r) = {y ∈ Rd : |x − y| < r}

U closure of the set U ⊂ Rd

∂U boundary of the set U ⊂ Rd

B(A) the collection of all Borel subsets of A ⊂ Rd

Binary relations:

a ∧ b the minimum of a and b

a ∨ b the maximum of a and b

X
d= Y the random variables X and Y have the same distribution

Xn
d→ X the random variables Xn converge to X in distribution,

see Section 12.1 in the appendix

a(n) 
 b(n) the ratio of the two sides is bounded from above and below
by positive constants that do not depend on n

a(n) ∼ b(n) the ratio of the two sides converges to one

Vectors, functions, and measures:

Id d × d identity matrix

1A indicator function with 1A (x) = 1 if x ∈ A and 0 otherwise

x



Frequently used notation xi

δx Dirac measure with mass concentrated on x,
i.e. δx(A) = 1 if x ∈ A and 0 otherwise

f+ the positive part of the function f , i.e. f+(x) = f(x) ∨ 0

f− the negative part of the function f , i.e. f−(x) = −(f(x) ∧ 0)

Ld or L Lebesgue measure on Rd

σx,r (d − 1)-dimensional surface measure on ∂B(x, r) ⊂ Rd

if x = 0, r = 1 we also write σ = σ0,1

�x,r uniform distribution on ∂B(x, r), �x,r = σx , r

σx , r (∂B(x,r)) ,

if x = 0, r = 1 we also write � = �0,1

Function spaces:

C(K) the topological space of all continuous functions on the compact K ⊂ Rd ,
equipped with the supremum norm ‖f‖ = supx∈K |f(x)|

Lp(µ) the Banach space of equivalence classes of functions f with finite Lp -norm

‖f‖p =
(∫

fp dµ
)1/p

. If µ = L|K we write Lp(K).

D[0, 1] the Dirichlet space consisting of functions F ∈ C[0, 1] such that
for some f ∈ L2 [0, 1] and all t ∈ [0, 1] we have F (t) =

∫ t

0 f(s) ds.

Probability measures and σ-algebras:

Px a probability measure on a measure space (Ω,A) such that
the process {B(t) : t � 0} is a Brownian motion started in x

Ex the expectation associated with Px

p(t, x, y) the transition density of Brownian motion
Px{B(t) ∈ A} =

∫
A

p(t, x, y) dy

F0(t) the smallest σ-algebra that makes {B(s) : 0 � s � t} measurable

F+(t) the right-continuous augmentation F+(t) =
⋂

s>t F0(s).

Stopping times:

For any Borel sets A1 , A2 , . . . ⊂ Rd and a Brownian motion B : [0,∞) → Rd ,

τ(A1) := inf{t � 0: B(t) ∈ A1}, the entry time into A1 ,

τ(A1 , . . . , An ) :=

{
inf{t � τ(A1 , . . . , An−1) : B(t) ∈ An}, if τ(A1 , . . . , An−1) < ∞,

∞, otherwise.

the time to enter A1 and then A2 and so on until An .



xii Frequently used notation

Systems of subsets in Rd :

For any fixed d-dimensional unit cube Cube = x + [0, 1]d we denote:
Dk family of all half-open dyadic subcubes D = x +

∏d
i=1

[
ki2−k , (ki + 1)2−k

)
⊂ Rd ,

ki ∈ {0, . . . , 2k − 1}, of side length 2−k

D all half-open dyadic cubes D =
⋃∞

k=0 Dk in Cube

Ck family of all compact dyadic subcubes D = x +
∏d

i=1

[
ki2−k , (ki + 1)2−k

]
⊂ Rd ,

ki ∈ {0, . . . , 2k − 1}, of side length 2−k

C all compact dyadic cubes C =
⋃∞

k=0 Ck in Cube.

Potential theory:

For a metric space (E, ρ) and mass distribution µ on E:

φα (x) the α-potential of a point x ∈ E defined as φα (x) =
∫ dµ(y )

ρ(x,y )α ,

Iα (µ) the α-energy of the measure µ defined as Iα (µ) =
∫∫ dµ(x) dµ(y )

ρ(x,y )α ,

Capα (E) the α-capacity of E defined as Capα (E) = sup{Iα (µ)−1 : µ(E) = 1}.

For a general kernel K : E × E → [0,∞]:

Uµ(x) the potential of µ at x defined as Uµ(x) =
∫

K(x, y) dµ(y),

IK (µ) K-energy of µ defined as IK (µ) =
∫∫

K(x, y) dµ(x) dµ(y),

CapK (E) K-capacity of E defined as CapK (E) = sup{IK (µ)−1 : µ(E) = 1}.

If K(x, y) = f(ρ(x, y)) we also write:

If (µ) instead of IK (µ),

Capf (E) instead of CapK (E).

Sets and processes associated with Brownian motion:

For a linear Brownian motion {B(t) : t � 0}:

{M(t) : t � 0} the maximum process defined by M(t) = sups�t B(s),

Rec the set of record points {t � 0: B(t) = M(t)},

Zeros the set of zeros {t � 0: B(t) = 0}.

For a Brownian motion {B(t) : t � 0} in Rd for d � 1:

Graph(A) the graph {(t, B(t)) : t ∈ A} ⊂ Rd+1 ,

Range(A) the range {B(t) : t ∈ A} ⊂ Rd .

Occasionally these notions are used for functions f : [0,∞) → Rd which are not necessar-
ily Brownian sample paths, which we indicate by appending a subindex f to the notion.



Motivation

Much of probability theory is devoted to describing the macroscopic picture emerging
in random systems defined by a host of microscopic random effects. Brownian motion
is the macroscopic picture emerging from a particle moving randomly in d-dimensional
space without making very big jumps. On the microscopic level, at any time step, the
particle receives a random displacement, caused for example by other particles hitting it
or by an external force, so that, if its position at time zero is S0 , its position at time n is
given as Sn = S0 +

∑n
i=1 Xi, where the displacements X1 ,X2 ,X3 , . . . are assumed to

be independent, identically distributed random variables with values in Rd . The process
{Sn : n � 0} is a random walk, the displacements represent the microscopic inputs. When
we think about the macroscopic picture, what we mean is questions such as:

• Does Sn drift to infinity?

• Does Sn return to the neighbourhood of the origin infinitely often?

• What is the speed of growth of max{|S1 |, . . . , |Sn |} as n → ∞?

• What is the asymptotic number of windings of {Sn : n � 0} around the origin?

It turns out that not all the features of the microscopic inputs contribute to the macro-
scopic picture. Indeed, if they exist, only the mean and covariance of the displacements
are shaping the picture. In other words, all random walks whose displacements have the
same mean and covariance matrix give rise to the same macroscopic process, and even the
assumption that the displacements have to be independent and identically distributed can
be substantially relaxed. This effect is called universality, and the macroscopic process is
often called a universal object. It is a common approach in probability to study various
phenomena through the associated universal objects.

If the jumps of a random walk are sufficiently tame to become negligible in the macro-
scopic picture, in particular if it has finite mean and variance, any continuous time stochas-
tic process {B(t) : t � 0} describing the macroscopic features of this random walk should
have the following properties:

(1) for all times 0 � t1 � t2 � . . . � tn the random variables

B(tn ) − B(tn−1), B(tn−1) − B(tn−2), . . . , B(t2) − B(t1)

are independent; we say that the process has independent increments,

1



2 Motivation

(2) the distribution of the increment B(t+h)−B(t) does not depend on t; we say that
the process has stationary increments,

(3) the process {B(t) : t � 0} has almost surely continuous paths.

It follows (with some work) from the central limit theorem that these features imply that
there exists a vector µ ∈ Rd and a matrix Σ ∈ Rd×d such that

(4) for every t � 0 and h � 0 the increment B(t + h)−B(t) is multivariate normally
distributed with mean hµ and covariance matrix hΣΣT .

Hence any process with the features (1)-(3) above is characterised by just three parameters,

• the initial distribution, i.e. the law of B(0),
• the drift vector µ,

• the diffusion matrix Σ.

The process {B(t) : t � 0} is called a Brownian motion with drift µ and diffusion matrix Σ.
If the drift vector is zero, and the diffusion matrix is the identity we simply say the process
is a Brownian motion. If B(0) = 0, i.e. the motion is started at the origin, we use the term
standard Brownian motion.

Suppose we have a standard Brownian motion {B(t) : t � 0}. If X is a random
variable with values in Rd , µ a vector in Rd and Σ a d × d matrix, then it is easy to check
that {B̃(t) : t � 0} given by

B̃(t) = B̃(0) + µt + ΣB(t), for t � 0,

is a process with the properties (1)-(4) with initial distribution X , drift vector µ and diffu-
sion matrix Σ. Hence the macroscopic picture emerging from a random walk with finite
variance can be fully described by a standard Brownian motion.

0 50 100 150 200

−140

−120

−100

−80
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−20

0

Fig. 0.1. The range of a planar Brownian motion {B(t) : 0 � t � 1}.



Motivation 3

In Chapter 1 we start exploring Brownian motion by looking at dimension d = 1. Here
Brownian motion is a random continuous function and we ask about its regularity, for
example: For which parameters α is the random function B : [0, 1] → R α-Hölder con-
tinuous? Is the random function B : [0, 1] → R differentiable? The surprising answer to
the second question was given by Paley, Wiener and Zygmund in 1933: Almost surely, the
random function B : [0, 1] → R is nowhere differentiable! This is particularly interesting,
as it is not easy to construct a continuous, nowhere differentiable function without the help
of randomness. We give a modern proof of the Paley, Wiener and Zygmund theorem, see
Theorem 1.30.

In Chapter 2 we move to general dimension d. We prove and explore the strong Markov
property, which roughly says that at suitable random times Brownian motion starts afresh,
see Theorem 2.16. Among the facts we derive from this property are that the set of all
points visited by a Brownian motion in d � 2 has area zero, but the set of times when
Brownian motion in d = 1 revisits the origin is uncountable. Besides these sample path
properties, the strong Markov property is also the key to some fascinating distributional
identities. It enables us to understand, for example, the process {M(t) : t � 0} of the
running maxima M(t) = max0�s�t B(s) of Brownian motion in d = 1, the process
{Ta : a � 0} of the first hitting times Ta = inf{t � 0: B(t) = a} of level a of a
Brownian motion in d = 1, and the process of the vertical first hitting positions of the lines
{(x, y) ∈ R2 : x = a} by a Brownian motion in d = 2, as a function of a.

In Chapter 3 we explore the rich relations of Brownian motion to harmonic analysis.
In particular we learn how Brownian motion helps solving the classical Dirichlet problem.

Fig. 0.2. Brownian motion and the Dirichlet problem

For its formulation in the planar case, fix a connected open set U ⊂ R2 with nice boundary,
and let ϕ : ∂U → R be continuous. The harmonic functions f : U → R on the domain U

are characterised by the differential equation

∂2f

∂x2
1
(x) +

∂2f

∂x2
2
(x) = 0 for all x ∈ U.



4 Motivation

The Dirichlet problem is to find, for a given domain U and boundary data ϕ, a continu-
ous function f : U ∪ ∂U → R, which is harmonic on U and agrees with ϕ on ∂U . In
Theorem 3.12 we show that the unique solution of this problem is given as

f(x) = E
[
ϕ(B(T ))

∣∣B(0) = x
]
, for x ∈ U,

where {B(t) : t � 0} is a Brownian motion and T = inf{t � 0: B(t) �∈ U} is the first
exit time from U . We exploit this result, for example, to show exactly in which dimensions
a particle following a Brownian motion drifts to infinity, see Theorem 3.20.

In Chapter 4 we provide one of the major tools in our study of Brownian motion, the
concept of Hausdorff dimension, and show how it can be applied in the context of Brownian
motion. Indeed, when describing the sample paths of a Brownian motion one frequently
encounters questions of the size of a given set: How big is the set of all points visited by a
Brownian motion in the plane? How big is the set of double-points of a planar Brownian
motion? How big is the set of times where Brownian motion visits a given set, say a
point? For an example, let {B(t) : t � 0} be Brownian motion on the real line and look
at Zeros = {t � 0: B(t) = 0}, the set of its zeros. Although t �→ B(t) is a continuous
function, Zeros is an infinite set. This set is big, as it is an uncountable set without isolated
points. However, it is also small in the sense that its Lebesgue measure is zero. Indeed,
Zeros is a fractal set and we show in Theorem 4.24 that its Hausdorff dimension is 1/2.

In Chapter 5 we explore the relationship of random walk and Brownian motion. We
prove a theorem which justifies our initial point of view that Brownian motion is the macro-
scopic picture emerging from a large class of random walks: By Donsker’s invariance
principle one can obtain Brownian motion by taking scaled copies of a random walk and
taking a limit in distribution. This result is called an invariance principle because all ran-
dom walks whose increments have mean zero and finite variance essentially produce the
same limit, a Brownian motion. Donsker’s invariance principle is also a major tool in
deriving results for random walks from those of Brownian motion, and vice versa. Both
directions can be useful: In some cases the fact that Brownian motion is a continuous time
process is an advantage over discrete time random walks. For example, as we discuss be-
low, Brownian motion has scaling invariance properties, which can be a powerful tool in
the study of its path properties. In other cases it is a major advantage that (simple) ran-
dom walk is a discrete object and combinatorial arguments can be the right tool to derive
important features. Chapter 5 offers a number of case studies for the mutually beneficial
relationship between Brownian motion and random walks. Beyond Donsker’s invariance
principle, there is a second fascinating aspect of the relationship between random walk and
Brownian motion: Given a Brownian motion in d = 1, we can sample from its path at
certain carefully chosen times, and thus construct every random walk with mean zero and
finite variance. Finding these times is called the Skorokhod embedding problem and we
shall give two different solutions to it. The embedding problem is also the main tool in our
proof of Donsker’s invariance principle.

In Chapter 6 we look again at Brownian motion in dimension d = 1. For a random
walk on the integers running for a finite amount of time, we can define a ‘local time’ at a
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point z ∈ Z by simply counting how many times the walk visits z. Can we define an anal-
ogous quantity for Brownian motion? In Chapter 6 we show that this is possible, and offer
an elegant construction of Brownian local time based on a random walk approximation. A
first highlight of this chapter arises when we aim to describe the local times: If a Brownian
path is started at some positive level a > 0 and stopped upon hitting zero, we can describe
the process of local times in x as a function of x, for 0 � x � a. The resulting process is
distributed like the square of the modulus of a planar Brownian motion. This is the famous
Ray–Knight theorem. The second highlight of this chapter is related to the nature of local
time at a fixed point. The Brownian local time in x is no longer the number of visits to the
point x by a Brownian motion – if x is visited at all, this number would be infinite – but
we shall see that it can be described as the Hausdorff measure of the set of times at which
the motion visits x.

Because Brownian motion arises as the scaling limit of a great variety of different
random walks, it naturally has a number of invariance properties. One of the most im-
portant invariance properties of Brownian motion is conformal invariance, which we dis-
cuss in Chapter 7. To make this plausible think of an angle-preserving linear mapping
L : Rd → Rd , like a rotation followed by multiplication by a. Take a random walk started
in zero with increments of mean zero and covariance matrix the identity, and look at its
image under L. This image is again a random walk and its increments are distributed
like LX . Appropriately rescaled as in Donsker’s invariance principle, both random walks
converge to a Brownian motion, the second one with a slightly different covariance matrix.
This process can be identified as a time-changed Brownian motion {B(a2t) : t � 0}. This
easy observation has a deeper, local counterpart for planar Brownian motion: Suppose that
φ : U → V is a conformal mapping of a simply connected domain U ⊂ R2 onto a domain
V ⊂ R2 . Conformal mappings are locally angle-preserving and the Riemann mapping
theorem of complex analysis tells us that a lot of such domains and mappings exist.

Fig. 0.3. A conformal mapping of Brownian paths

Suppose that {B(t) : t � 0} is a standard Brownian motion started in some point x ∈ U

and τ = inf{t > 0: B(t) /∈ U} is the first exit time of the path from the domain U . Then
it turns out that the image process {φ(B(t)) : 0 � t � τ} is a time-changed Brownian
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motion in the domain V , stopped when it leaves V , see Theorem 7.20. In order to prove
this we have to develop a little bit of the theory of stochastic integration with respect to a
Brownian motion, and we give a lot of further applications of this tool in Chapter 7.

In Chapter 8 we develop the potential theory of Brownian motion. The problem which
is the motivation behind this is, given a compact set A ⊂ Rd , to find the probability that a
Brownian motion {B(t) : t � 0} hits the set A, i.e. that there exists t > 0 with B(t) ∈ A.
This problem is answered in the best possible way by Theorem 8.24, which is a modern
extension of a classical result of Kakutani: The hitting probability can be approximated by
the capacity of A with respect to the Martin kernel up to a factor of two.

With a wide range of tools at our hand, in Chapter 9 we study the self-intersections of
Brownian motion: For example, a point x ∈ Rd is called a double point of {B(t) : t � 0}
if there exist times 0 < t1 < t2 such that B(t1) = B(t2) = x. In which dimensions
does Brownian motion have double points? How big is the set of double points? We show
that in dimensions d � 4 no double points exist, in dimension d = 3 double points exist
and the set of double points has Hausdorff dimension one, and in dimension d = 2 double
points exist and the set of double points has Hausdorff dimension two. In dimension d = 2
we find a surprisingly complex situation: While every point x ∈ R2 is almost surely not
visited by a Brownian motion, there exist (random) points in the plane, which are visited
infinitely often, even uncountably often. This result, Theorem 9.24, is one of the highlights
of this book.

Chapter 10 deals with exceptional points for Brownian motion and Hausdorff dimen-
sion spectra of families of exceptional points. To explain an example, we look at a Brow-
nian motion in the plane run for one time unit, which is a continuous curve {B(t) : t ∈
[0, 1]}. In Chapter 7 we see that, for any point on the curve, almost surely, the Brow-
nian motion performs an infinite number of full windings in both directions around this
point. Still, there exist random points on the curve, which are exceptional in the sense
that Brownian motion performs no windings around them at all. This follows from an
easy geometric argument: Take a point in R2 with coordinates (x1 , x2) such that x1 =
min{x : (x, x2) ∈ B[0, 1]}, i.e. a point which is the leftmost on the intersection of the
Brownian curve and the line {(z, y) : z ∈ R}, for some x2 ∈ R. Then Brownian motion
does not perform any full windings around (x1 , x2), as this would necessarily imply that it
crosses the half-line {(x, x2) : x < x2}, contradicting the minimality of x1 . One can ask
for a more extreme deviation from typical behaviour: A point x = B(t) is an α-cone point
if the Brownian curve is contained in an open cone with tip in x = (x1 , x2), central axis
{(x1 , x) : x > x2} and opening angle α. Note that the points described in the previous
paragraph are 2π-cone points in this sense. In Theorem 10.38 we show that α-cone points
exist exactly if α ∈ [π, 2π], and prove that for every such α, almost surely,

dim
{
x ∈ R2 : x is an α-cone point

}
= 2 − 2π

α
.

This is an example of a Hausdorff dimension spectrum, a topic which has been at the centre
of some research activity at the beginning of the current millennium.
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Brownian motion as a random function

In this chapter we focus on one-dimensional, or linear, Brownian motion. We start with
Paul Lévy’s construction of Brownian motion and discuss two fundamental sample path
properties, continuity and differentiability. We then discuss the Cameron–Martin theorem,
which shows that sample path properties for Brownian motion with drift can be obtained
from the corresponding results for driftless Brownian motion.

1.1 Paul Lévy’s construction of Brownian motion

1.1.1 Definition of Brownian motion

Brownian motion is closely linked to the normal distribution. Recall that a random variable
X is normally distributed with mean µ and variance σ2 if

P{X > x} =
1√

2πσ2

∫ ∞

x

e−
(u −µ ) 2

2 σ 2 du, for all x ∈ R.

Definition 1.1. A real-valued stochastic process {B(t) : t � 0} is called a (linear)
Brownian motion with start in x ∈ R if the following holds:
• B(0) = x,
• the process has independent increments, i.e. for all times 0 � t1 � t2 � . . . � tn the

increments B(tn )−B(tn−1), B(tn−1)−B(tn−2), . . . , B(t2)−B(t1) are independent
random variables,

• for all t � 0 and h > 0, the increments B(t + h) − B(t) are normally distributed with
expectation zero and variance h,

• almost surely, the function t �→ B(t) is continuous.

We say that {B(t) : t � 0} is a standard Brownian motion if x = 0. �

We will address the nontrivial question of the existence of a Brownian motion in Sec-
tion 1.1.2. For the moment let us step back and look at some technical points. We have
defined Brownian motion as a stochastic process {B(t) : t � 0} which is just a family
of (uncountably many) random variables ω �→ B(t, ω) defined on a single probability
space (Ω,A, P). At the same time, a stochastic process can also be interpreted as a random
function with the sample functions defined by t �→ B(t, ω). The sample path properties of
a stochastic process are the properties of these random functions, and it is these properties
we will be most interested in in this book.

7
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Fig. 1.1. Graphs of five sampled Brownian motions

By the finite-dimensional distributions of a stochastic process {B(t) : t � 0} we mean
the laws of all the finite dimensional random vectors(

B(t1), B(t2), . . . , B(tn )
)
, for all 0 � t1 � t2 � . . . � tn .

To describe these joint laws it suffices to describe the joint law of B(0) and the increments(
B(t1) − B(0), B(t2) − B(t1), . . . , B(tn ) − B(tn−1)

)
, for all 0 � t1 � t2 � . . . � tn .

This is what we have done in the first three items of the definition, which specify the
finite-dimensional distributions of Brownian motion. However, the last item, almost sure
continuity, is also crucial, and this is information which goes beyond the finite-dimensional
distributions of the process in the sense above, technically because the set {ω ∈ Ω: t �→
B(t, ω) continuous} is in general not in the σ-algebra generated by the random vectors
(B(t1), B(t2), . . . , B(tn )), n ∈ N.

Example 1.2 Suppose that {B(t) : t � 0} is a Brownian motion and U is an independent
random variable, which is uniformly distributed on [0, 1]. Then the process {B̃(t) : t � 0}
defined by

B̃(t) =
{

B(t) if t �= U,

0 if t = U,

has the same finite-dimensional distributions as a Brownian motion, but is discontinuous if
B(U) �= 0, i.e. with probability one, and hence this process is not a Brownian motion. �

We see that, if we are interested in the sample path properties of a stochastic process, we
may need to specify more than just its finite-dimensional distributions. Suppose X is a
property a function might or might not have, like continuity, differentiability, etc. We say
that a process {X(t) : t � 0} has property X almost surely if there exists A ∈ A such
that P(A) = 1 and A ⊂

{
ω ∈ Ω: t �→ X(t, ω) has property X

}
. Note that the set on the

right need not lie in A.
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1.1.2 Paul Lévy’s construction of Brownian motion

It is a substantial issue whether the conditions imposed on the finite-dimensional distribu-
tions in the definition of Brownian motion allow the process to have continuous sample
paths, or whether there is a contradiction. In this section we show that there is no contra-
diction and, fortunately, Brownian motion exists.

Theorem 1.3 (Wiener 1923) Standard Brownian motion exists.

We construct Brownian motion as a uniform limit of continuous functions, to ensure that it
automatically has continuous paths. Recall that we need only construct a standard Brow-
nian motion {B(t) : t � 0}, as X(t) = x + B(t) is a Brownian motion with starting
point x. The proof exploits properties of Gaussian random vectors, which are the higher-
dimensional analogue of the normal distribution.

Definition 1.4. A random vector X = (X1 , . . . , Xn ) is called a Gaussian random vector
if there exists an n×m matrix A, and an n-dimensional vector b such that XT = AY + b,
where Y is an m-dimensional vector with independent standard normal entries. �

Basic facts about Gaussian random variables are collected in Appendix 12.2.

Proof of Wiener’s theorem. We first construct Brownian motion on the interval [0, 1]
as a random element on the space C[0, 1] of continuous functions on [0, 1]. The idea is to
construct the right joint distribution of Brownian motion step by step on the finite sets

Dn =
{

k
2n : 0 � k � 2n

}
of dyadic points. We then interpolate the values on Dn linearly and check that the uniform
limit of these continuous functions exists and is a Brownian motion.

To do this let D =
⋃∞

n=0 Dn and let (Ω,A, P) be a probability space on which a collec-
tion {Zt : t ∈ D} of independent, standard normally distributed random variables can be
defined. Let B(0) := 0 and B(1) := Z1 . For each n ∈ N we define the random variables
B(d), d ∈ Dn such that

(1) for all r < s < t in Dn the random variable B(t) − B(s) is normally distributed
with mean zero and variance t − s, and is independent of B(s) − B(r),

(2) the vectors (B(d) : d ∈ Dn ) and (Zt : t ∈ D \ Dn ) are independent.

Note that we have already done this for D0 = {0, 1}. Proceeding inductively we may
assume that we have succeeded in doing it for some n − 1. We then define B(d) for
d ∈ Dn \ Dn−1 by

B(d) =
B(d − 2−n ) + B(d + 2−n )

2
+

Zd

2(n+1)/2 .

Note that the first summand is the linear interpolation of the values of B at the neighbouring
points of d in Dn−1 . Therefore B(d) is independent of (Zt : t ∈ D \ Dn ) and the second
property is fulfilled.
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Moreover, as 1
2 [B(d+2−n )−B(d−2−n )] depends only on (Zt : t ∈ Dn−1), it is indepen-

dent of Zd/2(n+1)/2 . By our induction assumptions both terms are normally distributed
with mean zero and variance 2−(n+1) . Hence their sum B(d) − B(d − 2−n ) and their
difference B(d + 2−n ) − B(d) are independent and normally distributed with mean zero
and variance 2−n by Corollary 12.12.

Indeed, all increments B(d) − B(d − 2−n ), for d ∈ Dn \ {0}, are independent. To see
this it suffices to show that they are pairwise independent, as the vector of these increments
is Gaussian. We have seen in the previous paragraph that pairs B(d) − B(d − 2−n ),
B(d + 2−n ) − B(d) with d ∈ Dn \ Dn−1 are independent. The other possibility is
that the increments are over intervals separated by some d ∈ Dn−1 . Choose d ∈ Dj

with this property and minimal j, so that the two intervals are contained in [d − 2−j , d],
respectively [d, d + 2−j ]. By induction the increments over these two intervals of length
2−j are independent, and the increments over the intervals of length 2−n are constructed
from the independent increments B(d) − B(d − 2−j ), respectively B(d + 2−j ) − B(d),
using a disjoint set of variables (Zt : t ∈ Dn ). Hence they are independent and this implies
the first property, and completes the induction step.

t

F0(t)
F0(t) + F1(t) + F2(t)

Z1

F0(t) + F1(t)

1
2Z 1

2

0 1 0 0

1√
8
Z 3

4

1 1
t t

1√
8
Z 1

4

Fig. 1.2. The first three steps in the construction of Brownian motion

Having thus chosen the values of the process on all dyadic points, we interpolate between
them. Formally, define

F0(t) =

⎧⎨⎩
Z1 for t = 1,

0 for t = 0,

linear in between,

and, for each n � 1,

Fn (t) =

⎧⎨⎩
2−(n+1)/2Zt for t ∈ Dn \ Dn−1

0 for t ∈ Dn−1

linear between consecutive points in Dn .

These functions are continuous on [0, 1] and, for all n and d ∈ Dn ,

B(d) =
n∑

i=0

Fi(d) =
∞∑

i=0

Fi(d), (1.1)
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see Figure 1.2 for an illustration. This can be seen by induction. It holds for n = 0.
Suppose that it holds for n− 1. Let d ∈ Dn \ Dn−1 . Since for 0 � i � n− 1 the function
Fi is linear on [d − 2−n , d + 2−n ], we get

n−1∑
i=0

Fi(d) =
n−1∑
i=1

Fi(d − 2−n ) + Fi(d + 2−n )
2

=
B(d − 2−n ) + B(d + 2−n )

2
.

Since Fn (d) = 2−(n+1)/2Zd , this gives (1.1).

On the other hand, we have, by definition of Zd and by Lemma 12.9 of the appendix, for
c > 1 and large n,

P{|Zd | � c
√

n} � exp
(−c2n

2

)
,

so that the series
∞∑

n=0

P{ there exists d ∈ Dn with |Zd | � c
√

n} �
∞∑

n=0

∑
d∈Dn

P{|Zd | � c
√

n}

�
∞∑

n=0

(2n + 1) exp
(−c2n

2

)
,

converges as soon as c >
√

2 log 2. Fix such a c. By the Borel–Cantelli lemma there
exists a random (but almost surely finite) N such that for all n � N and d ∈ Dn we have
|Zd | < c

√
n. Hence, for all n � N ,

‖Fn‖∞ < c
√

n2−n/2 . (1.2)

This upper bound implies that, almost surely, the series

B(t) =
∞∑

n=0

Fn (t)

is uniformly convergent on [0, 1]. We denote the continuous limit by {B(t) : t ∈ [0, 1]}.
It remains to check that the increments of this process have the right finite-dimensional
distributions. This follows directly from the properties of B on the dense set D ⊂ [0, 1]
and the continuity of the paths. Indeed, suppose that t1 < t2 < · · · < tn are in [0, 1]. We
find t1,k � t2,k � · · · � tn,k in D with limk↑∞ ti,k = ti and infer from the continuity of
B that, for 1 � i � n − 1,

B(ti+1) − B(ti) = lim
k↑∞

B(ti+1,k ) − B(ti,k ) .

As limk↑∞ E[B(ti+1,k ) − B(ti,k )] = 0 and

lim
k↑∞

Cov
(
B(ti+1,k ) − B(ti,k ), B(tj+1,k ) − B(tj,k ))

)
= lim

k↑∞
1{i=j}

(
ti+1,k − ti,k

)
= 1{i=j}

(
ti+1 − ti) ,

the increments B(ti+1) − B(ti) are, by Proposition 12.15 of the appendix, independent
Gaussian random variables with mean 0 and variance ti+1 − ti , as required.
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We have thus constructed a continuous process B : [0, 1] → R with the same finite-
dimensional distributions as Brownian motion. Take a sequence B0 , B1 , . . . of indepen-
dent C[0, 1]-valued random variables with the distribution of this process, and define
{B(t) : t � 0} by gluing together the parts, more precisely by

B(t) = B�t�(t − �t�) +
�t�−1∑
i=0

Bi(1) , for all t � 0 .

This defines a continuous random function B : [0,∞) → R and one can see easily from
what we have shown so far that it is a standard Brownian motion.

Remark 1.5 If Brownian motion is constructed as a family {B(t) : t � 0} of random
variables on some probability space Ω, it is sometimes useful to know that the mapping
(t, ω) �→ B(t, ω) is measurable on the product space [0,∞) × Ω. Exercise 1.2 shows that
this can be achieved by Lévy’s construction. �

Remark 1.6 A stochastic process {Y (t) : t � 0} is called a Gaussian process, if for all
t1 < t2 < . . . < tn the vector (Y (t1), . . . , Y (tn )) is a Gaussian random vector. It is
shown in Exercise 1.3 that Brownian motion with start in x ∈ R is a Gaussian process. �

1.1.3 Simple invariance properties of Brownian motion

One of the themes of this book is that many natural sets that can be derived from the sample
paths of Brownian motion are in some sense random fractals. An intuitive approach to
fractals is that they are sets which have an interesting geometric structure at all scales.
A key rôle in this behaviour is played by the very simple scaling invariance property of
Brownian motion, which we now formulate. It identifies a transformation on the space
of functions, which changes the individual Brownian random functions but leaves their
distribution unchanged.

Lemma 1.7 (Scaling invariance) Suppose {B(t) : t � 0} is a standard Brownian motion
and let a > 0. Then the process {X(t) : t � 0} defined by X(t) = 1

a B(a2t) is also a
standard Brownian motion.

Proof. Continuity of the paths, independence and stationarity of the increments remain un-
changed under the scaling. It remains to observe that X(t)−X(s) = 1

a (B(a2t)−B(a2s))
is normally distributed with expectation 0 and variance (1/a2)(a2t − a2s) = t − s.

Remark 1.8 Scaling invariance has many useful consequences. As an example, let a <

0 < b, and look at T (a, b) = inf{t � 0: B(t) = a or B(t) = b}, the first exit time of
a one-dimensional standard Brownian motion from the interval [a, b]. Then, with X(t) =
1
a B(a2t) we have

ET (a, b) = a2 E inf
{
t � 0: X(t) = 1 or X(t) = b/a

}
= a2 ET (1, b/a) ,
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which implies that ET (−b, b) is a constant multiple of b2 . Also

P
{
{B(t) : t � 0} exits [a, b] at a

}
= P
{
{X(t) : t � 0} exits [1, b/a] at 1

}
is only a function of the ratio b/a. The scaling invariance property will be used exten-
sively in all the following chapters, and we shall often use the phrase that a fact holds ‘by
Brownian scaling’ to indicate this. �

We shall discuss a very powerful extension of the scaling invariance property, the confor-
mal invariance property, in Chapter 7 of the book. A further useful invariance property of
Brownian motion, invariance under time inversion, can be identified easily. As above, the
transformation on the space of functions changes the individual Brownian random func-
tions without changing the distribution.

Theorem 1.9 (Time inversion) Suppose {B(t) : t � 0} is a standard Brownian motion.
Then the process {X(t) : t � 0} defined by

X(t) =
{

0 for t = 0,

tB(1/t) for t > 0,

is also a standard Brownian motion.

Proof. Recall that the finite-dimensional distributions (B(t1), . . . , B(tn )) of Brownian
motion are Gaussian random vectors and are therefore characterised by E[B(ti)] = 0 and
Cov(B(ti), B(tj )) = ti for 0 � ti � tj .

Obviously, {X(t) : t � 0} is also a Gaussian process and the Gaussian random vectors
(X(t1), . . . , X(tn )) have expectation zero. The covariances, for t > 0, h � 0, are given
by

Cov(X(t + h),X(t)) = (t + h)t Cov(B(1/(t + h)), B(1/t))

= t(t + h)
1

t + h
= t .

Hence the law of all the finite-dimensional distributions(
X(t1),X(t2), . . . , X(tn )

)
, for 0 � t1 � · · · � tn ,

are the same as for Brownian motion. The paths of t �→ X(t) are clearly continuous for
all t > 0 and in t = 0 we use the following two facts: First, as the set Q of rationals is
countable, the distribution of {X(t) : t � 0, t ∈ Q} is the same as for a Brownian motion,
and hence

lim
t↓0
t∈Q

X(t) = 0 almost surely.

And second, Q∩ (0,∞) is dense in (0,∞) and {X(t) : t � 0} is almost surely continuous
on (0,∞), so that

0 = lim
t↓0
t∈Q

X(t) = lim
t↓0

X(t) almost surely.

Hence {X(t) : t � 0} has almost surely continuous paths, and is a Brownian motion.
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Remark 1.10 The symmetry inherent in the time inversion property becomes more ap-
parent if one considers the Ornstein–Uhlenbeck diffusion {X(t) : t ∈ R}, which is given
by

X(t) = e−tB(e2t) for all t ∈ R.

This is a Markov process (this will be explained properly in Chapter 2.2.3), such that
X(t) is standard normally distributed for all t. It is a diffusion with a drift towards
the origin proportional to the distance from the origin. Unlike Brownian motion, the
Ornstein–Uhlenbeck diffusion is time reversible: The time inversion formula gives that
{X(t) : t � 0} and {X(−t) : t � 0} have the same law. For t near −∞, X(t) relates to
the Brownian motion near time 0, and for t near ∞, X(t) relates to the Brownian motion
near ∞. �

Time inversion is a useful tool to relate the properties of Brownian motion in a neighbour-
hood of time t = 0 to properties at infinity. To illustrate the use of time inversion we
exploit Theorem 1.9 to get an interesting statement about the long-term behaviour from an
easy statement at the origin.

Corollary 1.11 (Law of large numbers) Almost surely, lim
t→∞

B(t)
t

= 0.

Proof. Let {X(t) : t � 0} be as defined in Theorem 1.9. Using this theorem, we see
that limt→∞ B(t)/t = limt→∞ X(1/t) = X(0) = 0 almost surely.

In the next two chapters we discuss the two basic analytic properties of Brownian motion
as a random function, its continuity and differentiability properties.

1.2 Continuity properties of Brownian motion

The definition of Brownian motion already requires that the sample functions are contin-
uous almost surely. This implies that on the interval [0, 1] (or any other compact interval)
the sample functions are uniformly continuous, i.e. there exists some (random) function
ϕ with limh↓0 ϕ(h) = 0 called a modulus of continuity of the function B : [0, 1] → R,
such that

lim sup
h↓0

sup
0�t�1−h

|B(t + h) − B(t)|
ϕ(h)

� 1. (1.3)

Can we achieve such a bound with a deterministic function ϕ, i.e. is there a nonrandom
modulus of continuity for the Brownian motion? The answer is yes, as the following
theorem shows.

Theorem 1.12 There exists a constant C > 0 such that, almost surely, for every sufficiently
small h > 0 and all 0 � t � 1 − h,∣∣B(t + h) − B(t)

∣∣ � C
√

h log(1/h).
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Proof. This follows quite elegantly from Lévy’s construction of Brownian motion.
Recall the notation introduced there and that we have represented Brownian motion as a
series

B(t) =
∞∑

n=0

Fn (t) ,

where each Fn is a piecewise linear function. The derivative of Fn exists almost every-
where, and by definition and (1.2), for any c >

√
2 log 2 there exists a (random) N ∈ N

such that, for all n > N ,

‖F ′
n‖∞ � 2‖Fn‖∞

2−n
� 2c

√
n2n/2 .

Now for each t, t + h ∈ [0, 1], using the mean-value theorem,

|B(t + h) − B(t)| �
∞∑

n=0

|Fn (t + h) − Fn (t)| �
�∑

n=0

h‖F ′
n‖∞ +

∞∑
n=�+1

2‖Fn‖∞ .

Hence, using (1.2) again, we get for all � > N , that this is bounded by

h

N∑
n=0

‖F ′
n‖∞ + 2ch

�∑
n=N

√
n2n/2 + 2c

∞∑
n=�+1

√
n2−n/2 .

We now suppose that h is (again random and) small enough that the first summand is
smaller than

√
h log(1/h) and that � defined by 2−� < h � 2−�+1 exceeds N . For this

choice of � the second and third summands are also bounded by constant multiples of√
h log(1/h) as both sums are dominated by their largest element. Hence we get (1.3)

with a deterministic function ϕ(h) = C
√

h log(1/h).

This upper bound is pretty close to the optimal result. The following lower bound confirms
that the only missing bit is the precise value of the constant.

Theorem 1.13 For every constant c <
√

2, almost surely, for every ε > 0 there exist
0 < h < ε and t ∈ [0, 1 − h] with∣∣B(t + h) − B(t)

∣∣ � c
√

h log(1/h).

Proof. Let c <
√

2 and define, for integers k, n � 0, the events

Ak,n =
{

B((k + 1)e−n ) − B(ke−n ) > c
√

ne−n/2
}

.

Then, using Lemma 12.9, for any k � 0,

P(Ak,n ) = P{B(e−n ) > c
√

ne−n/2} = P{B(1) > c
√

n} � c
√

n

c2n + 1
1√
2π

e−c2 n/2 .

By our assumption on c, we have enP(Ak,n ) → ∞ as n ↑ ∞. Therefore, using 1−x � e−x

for all x,

P
( �en −1�⋂

k=0

Ac
k,n

)
= (1 − P(A0,n ))en � exp(−enP(A0,n )) → 0 .
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By considering h = e−n one can now see that, for any ε > 0,

P
{
|B(t + h) − B(t)| � c

√
h log(1/h) ∀h ∈ (0, ε), t ∈ [0, 1 − h]

}
= 0 .

One can determine the constant c in the best possible modulus of continuity ϕ(h) =
c
√

h log(1/h) precisely. Indeed, our proof of the lower bound yields a value of c =
√

2,
which turns out to be optimal. This striking result is due to Paul Lévy.

Theorem* 1.14 (Lévy’s modulus of continuity (1937)) Almost surely,

lim sup
h↓0

sup
0�t�1−h

|B(t + h) − B(t)|√
2h log(1/h)

= 1 .

Remark 1.15 We come back to the modulus of continuity of Brownian motion in Chap-
ter 10, where we prove a substantial extension, the spectrum of fast times of Brownian
motion. We will not use Theorem 1.14 in the sequel as Theorem 1.12 is sufficient to dis-
cuss all problems where an upper bound on the increase of a Brownian motion is needed.
Hence the proof of Lévy’s modulus of continuity may be skipped on first reading. �

In the light of Theorem 1.13, we only need to prove the upper bound. We first look at
increments over a class of intervals, which is chosen to be sparse, but big enough to ap-
proximate arbitrary intervals. More precisely, given natural numbers n,m, we let Λn (m)
be the collection of all intervals of the form[

(k − 1 + b)2−n+a , (k + b)2−n+a
]
,

for k ∈ {1, . . . , 2n}, a, b ∈ {0, 1
m , . . . , m−1

m }. We further define Λ(m) :=
⋃

n Λn (m).

Lemma 1.16 For any fixed m and c >
√

2, almost surely, there exists n0 ∈ N such that,
for any n � n0 ,∣∣B(t) − B(s)

∣∣ � c
√

(t − s) log 1
(t−s) for all [s, t] ∈ Λm (n).

Proof. From the tail estimate for a standard normal random variable X , see Lemma 12.9,
we obtain

P
{

sup
k∈{1,...,2n }

sup
a,b∈{0, 1

m ,..., m −1
m }∣∣B((k − 1 + b)2−n+a
)
− B
(
(k + b)2−n+a

)∣∣ > c
√

2−n+a log(2n+a)
}

�2nm2 P
{
X > c

√
log(2n )

}
� m2

c
√

log(2n )
1√
2π

2n(1−c2 /2) ,

and as the right hand side is summable, the result follows from the Borel–Cantelli lemma.
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Lemma 1.17 Given ε > 0 there exists m ∈ N such that for every interval [s, t] ⊂ [0, 1]
there exists an interval [s′, t′] ∈ Λ(m) with |t − t′| < ε (t − s) and |s − s′| < ε (t − s).

Proof. Choose m large enough to ensure that 1/m < ε/4 and 21/m < 1 + ε/2.
Given an interval [s, t] ⊂ [0, 1], we first pick n such that 2−n � t − s < 2−n+1 , then
a ∈ {0, 1/m, . . . , (m − 1)/m} such that 2−n+a � t − s < 2−n+a+1/m . Next, pick k ∈
{1, . . . , 2n} such that (k − 1)2−n+a < s � k2−n+a , and b ∈ {0, 1/m, . . . , (m − 1)/m}
such that (k−1+b)2−n+a < s � (k−1+b+1/m)2−n+a . Let s′ = (k−1+b)2−n+a , then

|s − s′| � 1
m 2−n+a � ε

4 2−n+1 � ε
2 (t − s).

Choosing t′ = (k + b)2−n+a ensures that [s′, t′] ∈ Λn (m) and, moreover,

|t − t′| � |s − s′| + |(t − s) − (t′ − s′)| � ε
2 (t − s) +

(
2−n+a+1/m − 2−n+a

)
� ε

2 (t − s) + ε
2 2−n+a � ε (t − s),

as required.

Proof of Theorem 1.14. Given c >
√

2, pick 0 < ε < 1 small enough to ensure that
c̃ := c − ε >

√
2 and m ∈ N as in Lemma 1.17. Using Lemma 1.16 we choose n0 ∈ N

large enough that, for all n � n0 and all intervals [s′, t′] ∈ Λn (m), almost surely,

|B(t′) − B(s′)| � c̃
√

(t′ − s′) log 1
(t′−s′) .

Now let [s, t] ⊂ [0, 1] be arbitrary, with t − s < 2−n0 ∧ ε, and pick [s′, t′] ∈ Λ(m) with
|t − t′| < ε (t − s) and |s − s′| < ε (t − s). Then, recalling Theorem 1.12, we obtain∣∣B(t) − B(s)

∣∣ � ∣∣B(t) − B(t′)
∣∣+ ∣∣B(t′) − B(s′)

∣∣+ ∣∣B(s′) − B(s)
∣∣

� C
√

|t − t′| log 1
|t−t′| + c̃

√
(t′ − s′) log 1

t′−s′ + C
√
|s − s′| log 1

|s−s′|

�
(
4C

√
ε + c̃

√
(1 + 2ε)(1 − log(1 − 2ε))

)√
(t − s) log 1

t−s .

By making ε > 0 small, the first factor on the right can be chosen arbitrarily close to c.
This completes the proof of the upper bound, and hence of the theorem.

Remark 1.18 The limsup in Theorem 1.14 may be replaced by a limit, see Exercise 1.7. �

Definition 1.19. A function f : [0,∞) → R is said to be locally α-Hölder continuous at
x � 0, if there exists ε > 0 and c > 0 such that

|f(x) − f(y)| � c |x − y|α , for all y � 0 with |y − x| < ε.

We refer to α > 0 as the Hölder exponent and to c > 0 as the Hölder constant . �

Clearly, α-Hölder continuity gets stronger, as the exponent α gets larger. The results of
this chapter so far indicate that, for Brownian motion, the transition between paths which
are α-Hölder continuous and paths which are not happens at α = 1/2.



18 Brownian motion as a random function

Corollary 1.20 If α < 1/2, then, almost surely, Brownian motion is everywhere locally
α-Hölder continuous.

Proof. Let C > 0 be as in Theorem 1.12. Applying this theorem to the Brownian
motions {B(t) − B(k) : t ∈ [k, k + 1]}, where k is a nonnegative integer, we see that,
almost surely, for every k there exists h(k) > 0 such that for all t ∈ [k, k + 1) and
0 < h < (k + 1 − t) ∧ h(k),∣∣B(t + h) − B(t)

∣∣ � C
√

h log(1/h) � C hα .

Doing the same to the Brownian motions {B̃(t) : t ∈ [k, k + 1]} with B̃(t) = B(k + 1 −
t) − B(k + 1) gives the full result.

Remark 1.21 This result is optimal in the sense that, for α > 1/2, almost surely, at every
point, Brownian motion fails to be locally α-Hölder continuous, see Exercise 1.9. Points
where Brownian motion is locally 1/2-Hölder continuous exist almost surely, but they are
very rare. We come back to this issue when discussing ‘slow points’ of Brownian motion
in Chapter 10. �

1.3 Nondifferentiability of Brownian motion

Having proved in the previous section that Brownian motion is somewhat regular, let us
see why it is erratic. One manifestation is that the paths of Brownian motion have no
intervals of monotonicity.

Theorem 1.22 Almost surely, for all 0 < a < b < ∞, Brownian motion is not monotone
on the interval [a, b].

Proof. First fix a nondegenerate interval [a, b], i.e. an interval of positive length. If it is an
interval of monotonicity, i.e. if B(s) � B(t) for all a � s � t � b, then we pick numbers
a = a1 � . . . � an+1 = b and divide [a, b] into n sub-intervals [ai, ai+1]. Each increment
B(ai) − B(ai+1) has to have the same sign. As the increments are independent, this has
probability 2 ·2−n , and taking n → ∞ shows that the probability that [a, b] is an interval of
monotonicity must be zero. Taking a countable union gives that, almost surely, there is no
nondegenerate interval of monotonicity with rational endpoints, but each nondegenerate
interval would have a nondegenerate rational sub-interval.

In order to discuss differentiability of Brownian motion we make use of the time inversion
trick, which allows us to relate differentiability at t = 0 to a long-term property. This
property is a complementary result to the law of large numbers: Whereas Corollary 1.11
asserts that Brownian motion grows slower than linearly, the next proposition shows that
the limsup growth of B(t) is faster than

√
t.
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Proposition 1.23 Almost surely,

lim sup
n→∞

B(n)√
n

= +∞, and lim inf
n→∞

B(n)√
n

= −∞. (1.4)

For the proof of Proposition 1.23 we use the Hewitt–Savage 0-1 law for exchangeable
events, which we briefly recall. Readers unfamiliar with the result are invited to give a
proof as Exercise 1.10.

Definition 1.24. Let X1 ,X2 , . . . be a sequence of random variables on a probability space
(Ω,F , P) and consider a set A of sequences such that{

X1 ,X2 , . . . ∈ A
}
∈ F .

The event {X1 ,X2 , · · · ∈ A} is called exchangeable if{
X1 ,X2 , . . . ∈ A

}
⊂
{
Xσ1 ,Xσ2 , . . . ∈ A

}
for all finite permutations σ : N → N. Here finite permutation means that σ is a bijection
with σn = n for all sufficiently large n. �

Lemma 1.25 (Hewitt–Savage 0-1 law) If E is an exchangeable event for an independent,
identically distributed sequence, then P(E) is 0 or 1.

Proof of Proposition 1.23. We clearly have, by Fatou’s lemma,

P
{
B(n) > c

√
n infinitely often

}
� lim sup

n→∞
P
{
B(n) > c

√
n
}
.

By the scaling property, the expression in the lim sup equals P{B(1) > c}, which is
positive. Let Xn = B(n) − B(n − 1), and note that{

B(n) > c
√

n infinitely often
}

=
{ n∑

j=1

Xj > c
√

n infinitely often
}

is an exchangeable event. Hence the Hewitt–Savage 0-1 law gives that, with probability
one, B(n) > c

√
n infinitely often. Taking the intersection over all positive integers c gives

the first part of the statement and the second part is proved analogously.

Remark 1.26 It is natural to ask whether there exists a ‘gauge’ function ϕ : [0,∞) →
[0,∞) such that B(t)/ϕ(t) has a lim sup which is greater than 0 but less than ∞. An
answer will be given by the law of the iterated logarithm in the first section of Chapter 5.�

For a function f , we define the upper and lower right derivatives

D∗f(t) = lim sup
h↓0

f(t + h) − f(t)
h

,

and

D∗f(t) = lim inf
h↓0

f(t + h) − f(t)
h

.
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We now show that for any fixed time t, almost surely, Brownian motion is not differentiable
at t. For this we use Proposition 1.23 and the invariance under time inversion.

Theorem 1.27 Fix t � 0. Then, almost surely, Brownian motion is not differentiable at t.
Moreover, D∗B(t) = +∞ and D∗B(t) = −∞.

Proof. Given a standard Brownian motion B we construct a further Brownian motion X

by time inversion as in Theorem 1.9. Then

D∗X(0) � lim sup
n→∞

X( 1
n ) − X(0)

1
n

� lim sup
n→∞

√
n X( 1

n ) = lim sup
n→∞

B(n)√
n

,

which is infinite by Proposition 1.23. Similarly, D∗X(0) = −∞, showing that X is not
differentiable at 0. Now let t > 0 be arbitrary and {B(t) : t � 0} a Brownian motion.
Then X(s) = B(t + s) − B(t) defines a standard Brownian motion and differentiability
of X at zero is equivalent to differentiability of B at t.

While the previous proof shows that every t is almost surely a point of nondifferentiability
for the Brownian motion, this does not imply that almost surely every t is a point of non-
differentiability for the Brownian motion! The order of the quantifiers for all t and almost
surely in results like Theorem 1.27 is of vital importance. Here the statement holds for all
Brownian paths outside a set of probability zero, which may depend on t, and the union of
all these sets of probability zero may not itself be a set of probability zero.

To illustrate this point, consider the following example: The argument in the proof of
Theorem 1.27 also shows that the Brownian motion X crosses 0 for arbitrarily small values
s > 0. Defining the level sets Z(t) = {s > 0 : X(s) = X(t)}, this shows that every
t is almost surely an accumulation point from the right for Z(t). But not every point
t ∈ [0, 1] is an accumulation point from the right for Z(t). For example the last zero of
{X(t) : t � 0} before time 1 is, by definition, never an accumulation point from the right
for Z(t) = Z(0). This example illustrates that there can be random exceptional times at
which Brownian motion exhibits atypical behaviour. These times are so rare that any fixed
(i.e. nonrandom) time is almost surely not of this kind.

Remark 1.28 The behaviour of Brownian motion at a fixed time t > 0 reflects the be-
haviour at typical times in the following sense: Suppose X is a measurable event (a set of
paths) such that {B(t) : t � 0} ∈ X almost surely. By stationarity of the increments this
implies P{{B(t + s) − B(t) : s � 0} ∈ X} = 1 for all fixed t � 0. Moreover, almost
surely, the set of exceptional times {t : {B(t + s) − B(t) : s � 0} �∈ X} has Lebesgue
measure zero. Indeed, using the joint measurability mentioned in Remark 1.5 and Fubini’s
theorem,

E
∫ ∞

0
1
{
t : {B(t + s) − B(s) : s � 0} �∈ X

}
dt =
∫ ∞

0
P
{
{B(s) : s � 0} /∈ X

}
dt = 0.

For example, the previous result shows that, almost surely, the path of a Brownian motion
is not differentiable at Lebesgue-almost every time t. �
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Remark 1.29 Exercise 1.11 shows that, almost surely, there exist times t∗, t
∗ ∈ [0, 1) with

D∗B(t∗) � 0 and D∗B(t∗) � 0. Hence the almost sure behaviour at a fixed point t, which
is described in Theorem 1.27, does not hold at all points simultaneously. �

Theorem 1.30 (Paley, Wiener and Zygmund 1933) Almost surely, Brownian motion is
nowhere differentiable. Furthermore, almost surely, for all t,

either D∗B(t) = +∞ or D∗B(t) = −∞ or both.

Proof. Suppose that there is a t0 ∈ [0, 1] such that −∞ < D∗B(t0) � D∗B(t0) < ∞.
Then

lim sup
h↓0

|B(t0 + h) − B(t0)|
h

< ∞,

and, using the boundedness of Brownian motion on [0, 2], this implies that for some finite
constant M there exists t0 with

sup
h∈[0,1]

|B(t0 + h) − B(t0)|
h

� M.

It suffices to show that this event has probability zero for any M . From now on fix M . If t0
is contained in the binary interval [(k−1)/2n , k/2n ] for n > 2, then for all 1 � j � 2n −k

the triangle inequality gives∣∣B ((k + j)/2n )−B ((k + j − 1)/2n )
∣∣

� |B ((k + j)/2n ) − B(t0)| + |B(t0) − B ((k + j − 1)/2n )|
� M(2j + 1)/2n .

Define events

Ωn,k :=
{∣∣B ((k + j)/2n ) − B ((k + j − 1)/2n )

∣∣ � M(2j + 1)/2n for j = 1, 2, 3
}

.

Then by independence of the increments and the scaling property, for 1 � k � 2n − 3,

P(Ωn,k ) �
3∏

j=1

P
{∣∣B ((k + j)/2n ) − B ((k + j − 1)/2n )

∣∣ � M(2j + 1)/2n
}

� P
{
|B(1)| � 7M/

√
2n
}3

,

which is at most (7M2−n/2)3 , since the normal density is bounded by 1/2. Hence

P

(
2n −3⋃
k=1

Ωn,k

)
� 2n (7M2−n/2)3 = (7M)32−n/2 ,

which is summable over all n. Hence, by the Borel–Cantelli lemma,

P
{

there is t0 ∈ [0, 1] with sup
h∈[0,1]

|B(t0 + h) − B(t0)|
h

� M
}

� P

(
2n −3⋃
k=1

Ωn,k for infinitely many n

)
= 0.
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Remark 1.31 The proof of Theorem 1.30 can be tightened to prove that, for any α > 1
2 , the

sample paths of Brownian motion are, almost surely, nowhere locally α-Hölder continuous,
see Exercise 1.9. �

Remark 1.32 There is an abundance of interesting statements about the right derivatives
of Brownian motion, which we state as exercises at the end of the chapter. As a taster we
mention here that Lévy [Le54] asked whether, almost surely, D∗B(t) ∈ {−∞,∞} for
every t ∈ [0, 1). Exercise 1.13 shows that this is not the case. �

Another important regularity property, which Brownian motion does not possess is to be of
bounded variation. We first define what it means for a function to be of bounded variation.

Definition 1.33. A right-continuous function f : [0, t] → R is a function of bounded
variation if

V ( 1 )

f (t) := sup
k∑

j=1

∣∣f(tj)− f
(
tj−1
)∣∣ < ∞,

where the supremum is over all k ∈ N and partitions 0 = t0 � t1 � · · · � tk−1 � tk = t.
If the supremum is infinite f is said to be of unbounded variation. �

Remark 1.34 It is not hard to show that f is of bounded variation if and only if it can be
written as the difference of two increasing functions. �

Theorem 1.35 Suppose that the sequence of partitions

0 = t(n )
0 � t(n )

1 � · · · � t(n )

k(n)−1 � t(n )

k(n) = t

is nested, i.e. at each step one or more partition points are added, and the mesh

∆(n) := sup
1�j�k(n)

{
t(n )
j − t(n )

j−1

}
converges to zero. Then, almost surely,

lim
n→∞

k(n)∑
j=1

(
B(t(n )

j ) − B(t(n )
j−1)
)2 = t,

and therefore Brownian motion is of unbounded variation.

Remark 1.36 For a sequence of partitions as above, we call

lim
n→∞

k(n)∑
j=1

(
B(t(n )

j ) − B(t(n )
j−1)
)2
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the quadratic variation of Brownian motion. The fact that Brownian motion has finite
quadratic variation will be of crucial importance in Chapter 7, however, the analogy to
the notion of bounded variation of a function is not perfect: In Exercise 1.15 we find a
sequence of partitions

0 = t(n )
0 � t(n )

1 � · · · � t(n )

k(n)−1 � t(n )

k(n) = t

with mesh converging to zero, such that almost surely

lim sup
n→∞

k(n)∑
j=1

(
B(t(n )

j ) − B(t(n )
j−1)
)2 = ∞.

In particular, the condition that the partitions in Theorem 1.35 are nested cannot be dropped
entirely, though it can be replaced by other conditions, see Exercise 1.16. �

The proof of Theorem 1.35 is based on the following simple lemma.

Lemma 1.37 If X,Z are independent, symmetric random variables in L2 , then

E
[
(X + Z)2

∣∣X2 + Z2] = X2 + Z2 .

Proof. By symmetry of Z we have

E
[
(X + Z)2

∣∣X2 + Z2] = E
[
(X − Z)2

∣∣X2 + Z2].
Both sides of the equation are finite, so that we can take the difference and obtain

E
[
XZ
∣∣X2 + Z2] = 0,

and the result follows immediately.

Proof of Theorem 1.35. By the Hölder property, we can find, for any α ∈ (0, 1/2), an
n such that |B(a) − B(b)| � |a − b|α for all a, b ∈ [0, t] with |a − b| � ∆(n). Hence

k(n)∑
j=1

∣∣B(t(n )
j

)
− B
(
t(n )
j−1

)∣∣ � ∆(n)−α

k(n)∑
j=1

(
B
(
t(n )
j

)
− B
(
t(n )
j−1

))2
.

Therefore, once we show that the random variables

Xn :=
k(n)∑
j=1

(
B
(
t(n )
j

)
− B
(
t(n )
j−1

))2
converge almost surely to a positive random variable it follows immediately that Brownian
motion is almost surely of unbounded variation. By inserting elements in the sequence, if
necessary, we may assume that at each step exactly one point is added to the partition.
To see that {Xn : n ∈ N} converges we use the theory of martingales in discrete time, see
Appendix 12.3 for basic facts on martingales. We denote by Gn the σ-algebra generated
by the random variables Xn,Xn+1 , . . .. Then

G∞ :=
∞⋂

k=1

Gk ⊂ · · · ⊂ Gn+1 ⊂ Gn ⊂ · · · ⊂ G1 .
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We show that {Xn : n ∈ N} is a reverse martingale, i.e. that almost surely,

Xn = E
[
Xn−1

∣∣Gn

]
for all n � 2 .

This is easy with the help of Lemma 1.37. Indeed, if s ∈ (t1 , t2) is the inserted point we
apply it to the symmetric, independent random variables B(s)−B(t1), B(t2)−B(s) and
denote by F the σ-algebra generated by (B(s) − B(t1))2 + (B(t2) − B(s))2 . Then

E
[(

B(t2) − B(t1)
)2∣∣F] =

(
B(s) − B(t1)

)2 +
(
B(t2) − B(s)

)2
,

and hence

E
[(

B(t2) − B(t1)
)2 − (B(s) − B(t1)

)2− (B(t2) − B(s)
)2∣∣F] = 0,

which implies that {Xn : n ∈ N} is a reverse martingale.
By the Lévy downward theorem, see Theorem 12.26 in the appendix,

lim
n↑∞

Xn = E[X1 | G∞] almost surely.

The limit has expectation E[X1 ] = t and, by Fatou’s lemma, its variance is bounded by

lim inf
n↑∞

E
[
(Xn − EXn )2] = lim inf

n↑∞
3

k(n)∑
j=1

(
t(n )
j − t(n )

j−1

)2 � 3t lim inf
n↑∞

∆(n) = 0.

Hence, E[X1 | G∞] = t almost surely, as required.

1.4 The Cameron–Martin theorem

In the previous two sections we have obtained results about the almost sure behaviour of a
Brownian motion {B(t) : t � 0} without drift. In this section we ask whether these results
hold as well for a Brownian motion with drift {B(t) + µt : t � 0} or, more generally, for
which time-dependent drift functions F the process {B(t) + F (t) : t � 0} has the same
behaviour as a Brownian motion path. This section can be skipped on first reading.

We denote by L0 the law of standard Brownian motion {B(t) : t ∈ [0, 1]}, and for a
function F : [0, 1] → R write LF for the law of {B(t) + F (t) : t ∈ [0, 1]}. We ask, for
which functions F any set A with L0(A) = 0 also satisfies LF (A) = 0, in other words,
for which F is LF absolutely continuous with respect to L0?

Clearly, necessary conditions are continuity of F and F (0) = 0. However, these conditions
are not sufficient. Denote by D[0, 1] the Dirichlet space

D[0, 1] =
{

F ∈ C[0, 1] : exists f ∈ L2 [0, 1] such that F (t) =
∫ t

0
f(s) ds ∀t ∈ [0, 1]

}
.

Given F ∈ D[0, 1] the associated f is uniquely determined as an element of L2 [0, 1], and
is denoted by F ′, the derivative of F .
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Recall that for two nonzero measures µ and ν on the same space we write µ ⊥ ν, and
say that µ and ν are singular if there exists a Borel set A with µ(A) = 0 and ν(Ac) = 0.
Otherwise, we say that they are equivalent if they are mutually absolutely continuous,
i.e. if µ � ν and ν � µ.

Theorem 1.38 (Cameron–Martin) Let F ∈ C[0, 1] satisfy F (0) = 0.

(1) If F �∈ D[0, 1] then LF ⊥ L0 .
(2) If F ∈ D[0, 1] then LF and L0 are equivalent.

Remark 1.39 As a consequence we see that any almost sure property of the Brownian
motion B also holds almost surely for B + F , when F ∈ D[0, 1]. Conversely, when
F �∈ D[0, 1] some almost sure property of Brownian motion fails for B + F , see also
Exercise 1.18. �

Before proving the theorem we make some preparations. For F ∈ C[0, 1] and n > 0,
denote

Qn (F ) = 2n
2n∑

j=1

[
F
(

j
2n

)
− F
(

j−1
2n

)]2
.

Lemma 1.40 Let F ∈ C[0, 1] satisfy F (0) = 0. Then {Qn (F ) : n � 1} is an increasing
sequence, and

F ∈ D[0, 1] ⇐⇒ sup
n

Qn (F ) < ∞ .

Moreover, if F ∈ D[0, 1], then Qn (F ) → ‖F ′‖2
2 as n → ∞.

Proof. The general inequality (a + b)2 � 2a2 + 2b2 gives[
F
(

j
2n

)
− F
(

j−1
2n

)]2
� 2
[
F
( 2j−1

2n + 1

)
− F
(

j−1
2n

)]2
+ 2
[
F
(

j
2n

)
− F
( 2j−1

2n + 1

)]2
.

Summing this inequality over j ∈ {1, . . . , 2n} yields that Qn (F ) is increasing in n. For
F ∈ D[0, 1] with F ′ = f , we can write, using Cauchy–Schwarz,

Qn (F ) = 2n
2n∑

j=1

(∫ j2−n

(j−1)2−n

f dt
)2

�
2n∑

j=1

∫ j2−n

(j−1)2−n

f 2 dt = ||f ||22 .

Assume now that supn Qn (F ) < ∞. For any t ∈ [0, 1] that is not a dyadic rational and for
each n � 1, there is a unique interval of the form [ k−1

2n , k
2n ] (for some integer k > 0), to

which t belongs. Denote this interval by In (t) = [an , bn ] and observe that for t uniformly
distributed in [0, 1], given I1(t), . . . , In (t), the interval In+1(t) is equally likely to be each
of the two halves of In (t). This implies that

Yn (t) = 2n [F (bn ) − F (an )] ,

defines a martingale with respect to the filtration (σ(In ) : n = 0, 1, . . .). Furthermore,

EY 2
n = 22n

2n∑
k=1

1
2n

[
F
(

k
2n

)
− F
(

k−1
2n

)]2
= Qn (F ) .
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Hence {Yn : n = 0, 1, . . .} is a martingale bounded in L2 . By the convergence theorem for
L2-bounded martingales, see Theorem 12.28 in the appendix, there is a random variable Y

in L2 [0, 1] such that Yn → Y almost surely and in L2 . For fixed j and m we have that

F
(

j
2m

)
=
∫ j

2 m

0
Yn (t) dt →

∫ j
2 m

0
Y (t) dt as n → ∞ .

Let G(x) =
∫ x

0 Y (t) dt. Since F ( j
2m ) = G( j

2m ) for any j and m and F,G are continuous,
we deduce that F (x) = G(x) for all x ∈ [0, 1]. Therefore F ∈ D[0, 1] and F ′ = Y almost
everywhere. As EY 2

n → EY 2 we conclude that Qn (F ) → ‖F ′‖2
2 .

We use the result of Lemma 1.40 to construct a very basic stochastic integral with respect
to Brownian motion.

Lemma 1.41 (Paley–Wiener stochastic integral) Let {B(t) : t � 0} be standard Brow-
nian motion, and suppose F ∈ D[0, 1]. Then the sequence

ξn = 2n
2n∑

j=1

[
F
(

j
2n

)
− F
(

j−1
2n

)][
B
(

j
2n

)
− B
(

j−1
2n

)]
converges almost surely and in L2 . We denote the limit of ξn by

∫ 1
0 F ′ dB.

Proof. Recall from Lévy’s construction of Brownian motion that

B
( 2j−1

2n

)
= 1

2

[
B
( 2j−2

2n

)
+B
( 2j

2n

)]
+ σnZ

( 2j−1
2n

)
(1.5)

where σn = 2−(n+1)/2 and Z(t), for t binary rational, are i.i.d. standard normal random
variables. Therefore

ξn − ξn−1 = 2nσn

2n −1∑
j=1

[
2F
( 2j−1

2n

)
− F
( 2j−2

2n

)
− F
( 2j

2n

)]
Z
( 2j−1

2n

)
.

This implies that {ξn : n � 1} is a martingale. The definition of ξn readily yields that
Eξ2

n = Qn (F ). Since F ∈ D[0, 1], Lemma 1.40 implies that supn Eξ2
n is bounded, and

thus the convergence theorem for L2-bounded martingales concludes the proof.

Remark 1.42 Denote by Dn = {j2−n : j = 0, . . . , 2n} the dyadic partition of the interval
[0, 1]. Let Fn be the σ-algebra in C[0, 1] determined by the restriction map to Dn . Then
the σ-algebras (Fn : n � 1) generate the Borel σ-algebra in C[0, 1]. �

Proof of Theorem 1.38. For any x ∈ C[0, 1] and n > 0, we write

∇(n )
j x = x

(
j

2n

)
− x
(

j−1
2n

)
,

sometimes dropping the superindex when n is fixed. For x ∈ C[0, 1], we write

Hn (x) = 2n−1
[ 2n∑

j=1

(∇(n )
j F )2 − 2

2n∑
j=1

∇(n )
j x∇(n )

j F
]
.
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When we look at the finite-dimensional distributions of L0 and LF on a finite set of times
such as Dn , the Radon–Nikodým derivative dLF

dL0
|Dn is the ratio of the two Lebesgue den-

sities, provided they exist. Hence we obtain

dLF

dL0

∣∣∣
Dn

(x) =
2n∏

j=1

exp
{
− [∇j x−∇j F ]2

21−n

}
exp
{ (∇j x)2

21−n

}
= e−Hn (x) . (1.6)

By Theorem 12.32 (a) the process given by dLF

dL0
|Dn

= e−Hn is a nonnegative martingale
with respect to L0 . (This can also be checked directly, see Exercise 1.17.) It therefore
converges L0-almost surely to a nonnegative finite limit, and hence Hn converges L0-
almost surely, possibly to ∞. We have

EL0 Hn =
∫

Hn (x) dL0(x) =
1
2
Qn (F ) ,

and

VarL0 Hn = Qn (F ) .

Thus, by Chebyshev’s inequality, we get

PL0

{
Hn � 1

4 Qn (F )
}

� 16
Qn (F )

.

If F �∈ D[0, 1], then Lemma 1.40 implies that L0-almost surely Hn → ∞. By Theo-
rem 12.32 of the appendix, we conclude that LF ⊥ L0 .

For the converse, suppose that F ∈ D[0, 1]. By Lemma 1.41, we have

Hn (x) −→ 1
2
‖F ′‖2

2 −
∫ 1

0
F ′ dB L0-almost everywhere.

We conclude by (1.6) and Theorem 12.32 (iii) that LF � L0 . To finish the proof of the
theorem, observe that LF � L0 if and only if L0 � L−F .

Remark 1.43 The proof of Theorem 1.38 and an easy scaling also show that, for any t > 0
and F ∈ D[0, t], the density of LF with respect to L0 is given as

dLF

dL0
(B) = exp

{
− 1

2

∫ t

0
F ′(s)2 ds +

∫ t

0
F ′ dB

}
for L0-almost every B ∈ C[0, t].

Choosing F (s) = µs and applying Brownian scaling we obtain that the density of Brown-
ian motion with drift µ with respect to a driftless Brownian motion on C[0, t] is

dLF

dL0
(B) = exp

{
− 1

2 µ2 t + µB(t)
}

for L0-almost every B ∈ C[0, t]. �

We now have a second look at the construction of Brownian motion and the Cameron–
Martin theorem, now from a Hilbert space perspective.
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Let {ϕn : n = 0, 1, . . .} be an orthonormal basis of L2 [0, 1]. For example we may take the
trigonometric basis

{ϕn : n = 0, 1, . . .} = {1} ∪ {
√

2 cos(πnt) : n = 1, 2, . . .}, (1.7)

or the Haar basis

{ϕn : n = 0, 1, . . .} = {1} ∪ {ϕm,k : m � 1 and 1 � k � 2m−1} , (1.8)

where n = 2m−1 − 1 + k and

ϕm,k =
√

2m−1
(
1[ 2 k −2

2 m , 2 k −1
2 m ] − 1[ 2 k −1

2 m , 2 k
2 m ]

)
, (1.9)

see Exercise 1.20. Consider the Dirichlet space D[0, 1] endowed with the inner product

〈F,G〉D [0,1] = 〈F ′, G′〉L2 [0,1] .

Define {Φn : n = 0, 1, . . .} by

Φn (t) =
∫ t

0
ϕn (s)ds .

As this integration is an isometry from L2 [0, 1] to D[0, 1], we deduce that {Φn : n =
0, 1, . . .} is an orthonormal basis for D[0, 1]. Furthermore, by Cauchy–Schwarz,∣∣∣ ∫ t

0
f(s) ds −

∫ t

0
g(s) ds

∣∣∣ � ‖f − g‖2 ;

therefore, if Fn → F in D[0, 1] then Fn → F uniformly. Thus for any F ∈ D[0, 1], the
series

F =
∞∑

n=0

〈ϕn , F ′〉L2 Φn =
∞∑

n=0

〈Φn , F 〉D Φn ,

converges in D[0, 1] and uniformly.
Let {Φn : n = 0, 1, . . .} be an orthonormal basis in D[0, 1], where Φn (t) =

∫ t

0 ϕn (s) ds,
and let {Zn : n = 0, 1, . . .} be i.i.d. standard normal random variables. For each fixed
t ∈ [0, 1], we have

∞∑
n=0

Φ2
n (t) =

∞∑
n=0

〈1[0,t] , ϕn 〉2L2 [0,1] = ‖1[0,t]‖2
2 = t

by Parseval’s identity. Therefore, for fixed t, the series

W (t) =
∞∑

n=0

ZnΦn (t) (1.10)

converges almost surely and in L2 , since the partial sums form an L2-bounded martingale.
However, the series almost surely does not converge in D[0, 1] since

∑∞
n=0 Z2

n = ∞
almost surely; we show below that it almost surely does converge uniformly in C[0, 1]
for a suitable choice of {Φn : n = 0, 1, . . .}. Almost sure uniform convergence of (1.10)
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implies that the sum is a standard Brownian motion on [0, 1], since it is continuous and has
the correct covariance. Namely,

Cov(W (t),W (s)) = E
∞∑

n=0

Z2
n

∫ t

0
ϕn (u) du

∫ s

0
ϕn (u) du

=
∞∑

n=0

〈1[0,t] , ϕn 〉〈1[0,s], ϕn 〉 = 〈1[0,t]1[0,s]〉 = s ∧ t ,

where the convergence of (1.10) in L2 is used to interchange summation and integration.

Proposition 1.44 For the Haar basis (1.8), the series (1.10) converges uniformly in C[0, 1]
with probability one.

Proof. We can write the series (1.10) more explicitly using (1.9),

W (t) = tZ0 +
∞∑

m=1

2m −1∑
k=1

Zm,kΦm,k (t) , (1.11)

where Z0 and {Zm,k} are i.i.d. standard normal variables and Φm,k =
∫ t

0 ϕm,k (s) ds. The
tail estimate for standard normal distributions, see Lemma 12.9 in the appendix, gives

2m −1∑
k=1

P(|Zm,k | �
√

2m) � 2m e−m

which is summable over m � 1. Thus, almost surely, the bound |Zm,k | �
√

2m holds in
(1.11) with at most finitely many exceptions. Since |Φm,k (x)| � 2−m/2 for all x ∈ [0, 1],
the series (1.11) converges uniformly with probability one.

Remark 1.45 For the Haar basis (1.8), the construction of Brownian motion via the series
(1.11) coincides with Lévy’s construction as given in Theorem 1.3. �

The construction (1.10) yields an alternative proof for the positive direction of the Cameron–
Martin theorem. Given F ∈ D[0, 1], we show that L0 � LF . Write

F =
∞∑

n=0

anΦn , with
∞∑

n=0

a2
n < ∞ ,

where Φn is the integrated Haar basis (or any other orthonormal basis of D[0, 1] for which
the series (1.10) converges uniformly almost surely). Then,

W + F =
∞∑

n=0

(Zn + an )Φn ,

where, as usual, {Zn} are i.i.d. standard normal. Proving L0 � LF is thus equivalent
to proving that the law of the vector (Zn : n = 0, 1, . . .) is absolutely continuous to the
law of (Zn + an : n = 0, 1, . . .). To this end we could use Kakutani’s absolute-continuity
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criterion for product measures, see e.g. 14.17 in [Wi91]; however it is also simple to apply
Theorem 12.32 of the appendix directly.

Indeed, let Rn (z0 , . . . , zn ) denote the Radon–Nikodým derivative of the law of the shifted
Gaussian vector (Zj + aj : j = 0, 1, . . .) with respect to the law of the standard Gaussian
vector (Zj : j = 0, 1, . . .). Then

Rn (z0 , . . . , zn ) =
n∏

j=0

e−(zj −aj )2 /2

e−z 2
j /2

= exp
{ n∑

j=0

aj zj −
n∑

j=0

a2
j /2
}

.

As
∑n

j=0 ajZj is a martingale bounded in L2 and
∑∞

j=0 a2
j < ∞, we conclude that

lim
n→∞

Rn (Z0 , . . . , Zn )

almost surely exists and is positive. Theorem 12.32 (iii) then implies that L0 � LF .

Exercises

Exercise 1.1. Let {B(t) : t � 0} be a Brownian motion with arbitrary starting point. Show
that, for all s, t � 0, we have Cov(B(s), B(t)) = s ∧ t.

Exercise 1.2. S Show that, in Theorem 1.3, Brownian motion is constructed as a jointly
measurable function (ω, t) �→ B(ω, t) on Ω × [0,∞).

Exercise 1.3. S Show that Brownian motion with start in x ∈ R is a Gaussian process.

Exercise 1.4. Show that, for every point x ∈ R, there exists a two-sided Brownian motion
{B(t) : t ∈ R} with B(0) = x, which has continuous paths, independent increments and
the property that, for all t ∈ R and h > 0, the increments B(t + h) − B(t) are normally
distributed with expectation zero and variance h.

Exercise 1.5. S Fix x, y ∈ R. The Brownian bridge with start in x and end in y is the
process {X(t) : 0 � t � 1} defined by

X(t) = B(t) − t
(
B(1) − y

)
, for 0 � t � 1 ,

where {B(t) : t � 0} is a Brownian motion started in x. The Brownian bridge is an almost
surely continuous process such that X(0) = x and X(1) = y.

(a) Show that, for every bounded f : Rn → R,

E
[
f
(
X(t1), . . . , X(tn )

)]
=
∫

f(x1 , . . . , xn )
p(t1 , x, x1)
p(1, x, y)

×
n∏

i=2

p(ti − ti−1 , xi , xi+1)p(1 − tn , xn , y) dx1 . . . dxn ,

for all 0 < t1 < · · · < tn < 1 where

p(t, x, y) =
1√
2πt

e−
( y −x ) 2

2 t .
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(b) Infer that, for any t0 < 1, the laws of the processes {X(t) : 0 � t � t0} and
{B(t) : 0 � t � t0} are mutually absolutely continuous, and the Radon–Nikodým
derivative evaluated at {ψ(t) : 0 � t � t0} is a function of ψ(t0).

Exercise 1.6. S Prove the law of large numbers in Corollary 1.11 directly.
Hint. Use the law of large numbers for sequences of independent identically distributed
random variables to show that limn→∞ B(n)/n = 0. Then show that B(t) does not oscil-
late too much between n and n + 1.

Exercise 1.7. S Show the following improvement to Theorem 1.14: Almost surely,

lim
h↓0

sup
0�t�1−h

|B(t + h) − B(t)|√
2h log(1/h)

= 1 .

Exercise 1.8. S Let f : [0, 1] → R be a continuous function with f(0) = 0. Then, for a
standard Brownian motion {B(t) : t � 0} and ε > 0, we have

P
{

sup
0�t�1

|B(t) − f(t)| < ε
}

> 0.

Exercise 1.9. S Show that, if α > 1/2, then, almost surely, at every point, Brownian mo-
tion fails to be locally α-Hölder continuous.

Exercise 1.10. S Show that, if E is an exchangeable event for an independent, identically
distributed sequence, then P(E) is 0 or 1.

Exercise 1.11. Show that, for a Brownian motion {B(t) : t � 0},

(a) for all t � 0 we have P{t is a local maximum} = 0;
(b) almost surely local maxima exist;
(c) almost surely, there exist t∗, t

∗ ∈ [0, 1) with D∗B(t∗) � 0 and D∗B(t∗) � 0.

Exercise 1.12. S Let f ∈ C[0, 1] be any fixed continuous function. Show that, almost
surely, the function {B(t) + f(t) : t ∈ [0, 1]} is nowhere differentiable.

Exercise 1.13. S Show that, almost surely, there exists a time t at which D∗B(t) = 0.

Exercise 1.14. S Show that, almost surely,

D∗B(t0) = −∞,

where t0 is uniquely determined by

B(t0) = max
0�t�1

B(t).

Hint. Try this exercise after the discussion of the strong Markov property in Chapter 2.
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Exercise 1.15. S

(a) Show that, almost surely, there exists a family

0 = t(n )
0 � t(n )

1 � · · · � t(n )

k(n)−1 � t(n )

k(n) = t

of (random) partitions such that

lim
n↑∞

k(n)∑
j=1

(
B(t(n )

j ) − B(t(n )
j−1)
)2 = ∞ .

Hint. Use the construction of Brownian motion to pick a partition consisting of
dyadic intervals, such that the increment of Brownian motion over any chosen in-
terval is large relative to the square root of its length.

(b) Construct a (nonrandom) sequence of partitions

0 = t(n )
0 � t(n )

1 � · · · � t(n )

k(n)−1 � t(n )

k(n) = t

with mesh converging to zero, such that, almost surely,

lim sup
n→∞

k(n)∑
j=1

(
B(t(n )

j ) − B(t(n )
j−1)
)2 = ∞.

Exercise 1.16. S Consider a (not necessarily nested) sequence of partitions

0 = t(n )
0 � t(n )

1 � · · · � t(n )

k(n)−1 � t(n )

k(n) = t

with mesh converging to zero.

(a) Show that, in the sense of L2-convergence,

lim
n→∞

k(n)∑
j=1

(
B(t(n )

j ) − B(t(n )
j−1)
)2 = t.

(b) Show that, if additionally

∞∑
n=1

k(n)∑
j=1

(
t(n )
j − t(n )

j−1

)2
< ∞,

then the convergence in (a) also holds almost surely.

Exercise 1.17. S Using the notation as in Remark 1.42 and below, for a fixed function
F ∈ C[0, 1] and a Brownian motion B ∈ C[0, 1] we denote

Hn = 2n−1
[ 2n∑

j=1

(∇(n )
j F )2 − 2

2n∑
j=1

(
∇(n )

j B
) (

∇(n )
j F
)]

.

Show directly that {e−Hn : n � 1} is a martingale with respect to the filtration (Fn : n � 1).
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Exercise 1.18. By the Cameron-Martin theorem for a Brownian motion B and F ∈
D[0, 1], the function B + F has almost surely finite quadratic variation. Show that there
exist continuous functions F �∈ D[0, 1] such that B + F has infinite quadratic variation
almost surely.

Exercise 1.19. S Let F ∈ D[0, 1]. The Cameron-Martin theorem together with the Hölder
continuity of Brownian motion implies that F is Hölder continuous with exponent α, for
all α < 1/2. Prove directly that F is Hölder continuous with exponent 1/2.

Exercise 1.20. Show that the Haar system {ϕn : n = 0, 1, . . .} constructed in (1.8) is
complete in L2 [0, 1].
Hint. It suffices to show that this system spans all step functions where the steps are
dyadic intervals of length at least 2−m . This can be verified by induction on m.

Notes and comments

The first study of the mathematical process of Brownian motion is due to Bachelier in
[Ba00] in the context of modelling stock market fluctuations, see [DE06] for a modern
edition. Bachelier’s work was long forgotten and has only recently been rediscovered,
today an international society for mathematical finance is named after him. The physical
phenomenon of Brownian motion is usually attributed to Brown [Br28] and was explained
by Einstein in [Ei05], see also [Ei56]. Einstein’s explanation of the phenomenon was
also a milestone in the establishment of the atomistic world view of physics. The first
rigorous construction of mathematical Brownian motion is due to Wiener [Wi23], and in
his honour Brownian motion is sometimes called the Wiener process. Moreover, the space
of continuous function equipped with the distribution of standard Brownian motion is often
called Wiener space. There is also a generalisation of Wiener’s approach to the construction
of more general Gaussian measures on separable Banach space, which is called the abstract
Wiener space, see Kallianpur [Ka71].

As explained in the introduction, Brownian motion describes the macroscopic picture
emerging from a random walk if its increments are sufficiently tame not to cause jumps
which are visible in the macroscopic description. If this is not the case the class of Lévy
processes and within this class the stable processes offer a macroscopic description. A very
good book dealing with Lévy processes is Bertoin [Be96] and a recommended introductory
course in the subject is Kyprianou [Ky06].

There is a variety of constructions of Brownian motion in the literature. The approach
we have followed goes back to one of the great pioneers of Brownian motion, the French
mathematician Paul Lévy, see [Le48]. Lévy’s construction has the advantage that conti-
nuity properties of Brownian motion can be obtained from the construction. An alternative
is to first show that a Markov process with the correct transition probabilities can be con-
structed, and then to use an abstract criterion, like Kolmogorov’s criterion for the existence
of a continuous version of the process. See, for example, Revuz and Yor [RY94], Karatzas
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and Shreve [KS91] and Kahane [Ka85] for further alternative constructions. For the Haar
basis (1.8), the construction of Brownian motion via the series (1.11) is exactly Lévy’s
interpolation construction, expressed in more fancy language. Nevertheless, the Hilbert
space point of view is essential in studies of more general Gaussian processes, see the ex-
cellent book by Janson [Ja97]. For a proof that the series (1.10) converges uniformly for the
trigonometric basis (1.7) and more on the Hilbert space perspective, see Kahane [Ka85].

Gaussian processes, only briefly mentioned here, are one of the richest and best under-
stood class of processes in probability theory. Some good references for this are
Adler [Ad90] and Lifshits [Li95]. A lot of effort in current research is put into trying
to extend our understanding of Brownian motion to more general Gaussian processes like
the so-called fractional Brownian motion. The main difficulty is that these processes do not
have the extremely useful Markov property — which we shall discuss in the next chapter,
and which we will make heavy use of throughout the book.

The modulus of continuity, Theorem 1.14, goes back to Lévy [Le37]. Observe that this
result describes continuity of Brownian motion near its worst time. By contrast, the law of
the iterated logarithm in the form of Corollary 5.3 shows that at a typical time the continuity
properties of Brownian motion are better: For every fixed time t > 0 and c >

√
2, almost

surely, there exists ε > 0 with |B(t) − B(t + h)| � c
√

h log log(1/h) for all |h| < ε. In
Chapter 10 we explore for how many times t > 0 we are close to the worst case scenario.

The existence of points where Brownian motion is locally 1/2-Hölder continuous is
a very tricky question. Dvoretzky [Dv63] showed that, for a sufficiently small c > 0,
almost surely no point satisfies 1/2-local Hölder continuity with Hölder constant c. Later,
Davis [Da83] and, independently, Greenwood and Perkins [GP83] identified the maximal
possible Hölder constant, we will discuss their work in Chapter 10.

There is a lot of discussion about nowhere differentiable, continuous functions in the
analysis literature of the early twentieth century. Examples are Weierstrass’ function, see
e.g. [MG84], and van der Waerden’s function, see e.g. [Bi82]. Nowhere differentiability
of Brownian motion was first shown by Paley, Wiener and Zygmund in [PWZ33], but the
proof we give is due to Dvoretzky, Erdős and Kakutani [DEK61]. Besides the discussion
of special examples of such functions, the statement that in some sense ‘most’ or ‘almost
all’ continuous functions are nowhere differentiable is particularly fascinating. A topo-
logical form of this statement is that nowhere differentiability is a generic property for
the space C([0, 1]) in the sense of Baire category. A newer, measure theoretic approach
based on an idea of Christensen [Ch72], which was later rediscovered by Hunt, Sauer, and
Yorke [HSY92], is the notion of prevalence. A subset A of a separable Banach space X is
called prevalent if there exists a Borel probability measure µ on X such that µ(x+A) = 1
for any x ∈ X . A strengthening of the proof of Theorem 1.30, see Exercise 1.12, shows
that the set of nowhere differentiable functions is prevalent.
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The time t where D∗B(t) = 0 which we constructed in Exercise 1.13 is an exceptional
time, i.e. a time where Brownian motion behaves differently from almost every other time.
In Chapter 10 we enter a systematic discussion of such times, and in particular address the
question how many exceptional points (in terms of Hausdorff dimension) of a certain type
exist. The set of times where D∗B(t) = 0 has Hausdorff dimension 1/4, see Barlow and
Perkins [BP84].

The interesting fact that the ‘true’ quadratic variation of Brownian motion, taken as a
supremum over arbitrary partitions with mesh going to zero, is infinite is a result of Lévy,
see [Le40]. Finer variation properties of Brownian motion have been studied by Taylor
in [Ta72]. He shows, for example, that the ψ-variation

V ψ = sup
k∑

i=1

ψ
(
|B(ti) − B(ti−1)|

)
,

where the supremum is taken over all partitions 0 = t0 < · · · < tk = 1, k ∈ N,
is finite almost surely for ψ1(s) = s2/(2 log log(1/s)), but is infinite for any ψ with
ψ(s)/ψ1(s) → ∞ as s ↓ 0.



2

Brownian motion as a strong Markov process

In this chapter we discuss the strong Markov property of Brownian motion. We also briefly
discuss Markov processes in general and show that some processes, which can be derived
from Brownian motion, are also Markov processes. We then exploit these facts to get finer
properties of Brownian sample paths.

2.1 The Markov property and Blumenthal’s 0-1 law

For the discussion of the Markov property we include higher dimensional Brownian mo-
tion, which can be defined easily by requiring the characteristics of a linear Brownian
motion in every component, and independence of the components.
Definition 2.1. If B1 , . . . , Bd are independent linear Brownian motions started in x1 , . . . , xd ,
then the stochastic process {B(t) : t � 0} given by

B(t) = (B1(t), . . . , Bd(t))T

is called a d-dimensional Brownian motion started in (x1 , . . . , xd)T . The d-dimensional
Brownian motion started in the origin is also called standard Brownian motion. One-
dimensional Brownian motion is also called linear, two-dimensional Brownian motion
planar Brownian motion. �

Notation 2.2. Throughout this book we write Px for the probability measure which makes
the d-dimensional process {B(t) : t � 0} a Brownian motion started in x ∈ Rd , and Ex

for the corresponding expectation. �

Suppose now that {X(t) : t � 0} is a stochastic process. Intuitively, the Markov property
says that if we know the process {X(t) : t � 0} on the interval [0, s], for the prediction of
the future {X(t) : t � s} this is as useful as just knowing the endpoint X(s). Moreover,
a process is called a (time-homogeneous) Markov process if it starts afresh at any fixed
time s. Slightly more precisely this means that, supposing the process can be started in any
point X(0) = x ∈ Rd , the time-shifted process {X(s+t) : t � 0} has the same distribution
as the process started in X(s) ∈ Rd . We shall formalise the notion of a Markov process
later in this chapter, but start by giving a straight formulation of the facts for a Brownian
motion.

36
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0

0 s

Fig. 2.1. Brownian motion starts afresh at time s.

Note that two stochastic processes {X(t) : t � 0} and {Y (t) : t � 0} are called in-
dependent, if for any sets t1 , . . . , tn � 0 and s1 , . . . , sm � 0 of times the vectors
(X(t1), . . . , X(tn )) and (Y (s1), . . . , Y (sm )) are independent.

Theorem 2.3 (Markov property) Suppose that {B(t) : t � 0} is a Brownian motion
started in x ∈ Rd . Let s > 0, then the process {B(t + s)−B(s) : t � 0} is again a Brow-
nian motion started in the origin and it is independent of the process {B(t) : 0 � t � s}.

Proof. It is easy to check that {B(t + s) − B(s) : t � 0} satisfies the definition of
a d-dimensional Brownian motion. The independence statement follows directly from the
independence of the increments of a Brownian motion.

We now improve this result slightly and introduce some useful terminology.

Definition 2.4.

(a) A filtration on a probability space (Ω,F , P) is a family (F(t) : t � 0) of σ-
algebras such that F(s) ⊂ F(t) ⊂ F for all s < t.

(b) A probability space together with a filtration is called a filtered probability space.

(c) A stochastic process {X(t) : t � 0} defined on a filtered probability space with fil-
tration (F(t) : t � 0) is called adapted if X(t) is F(t)-measurable for
any t � 0. �

Suppose we have a Brownian motion {B(t) : t � 0} defined on some probability space,
then we can define a filtration (F0(t) : t � 0) by letting

F0(t) = σ
(
B(s) : 0 � s � t

)
be the σ-algebra generated by the random variables B(s), for 0 � s � t. With this
definition, the Brownian motion is obviously adapted to the filtration. Intuitively, this
σ-algebra contains all the information available from observing the process up to time t.
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By Theorem 2.3, the process {B(t + s)−B(s) : t � 0} is independent of F0(s). In a first
step, we improve this and allow a slightly larger (augmented) σ-algebra F+(s) defined by

F+(s) =
⋂
t>s

F0(t) .

Clearly, the family (F+(t) : t � 0) is again a filtration and F+(s) ⊃ F0(s), but intuitively
F+(s) is a bit larger than F0(s), allowing an additional infinitesimal glance into the future.

Theorem 2.5 For every s � 0 the process {B(t + s)−B(s) : t � 0} is independent of the
σ-algebra F+(s).

Proof. By continuity B(t + s) − B(s) = limn→∞ B(sn + t) − B(sn ) for a
strictly decreasing sequence {sn : n ∈ N} converging to s. By Theorem 2.3, for any
t1 , . . . , tm � 0, the vector (B(t1 + s)−B(s), . . . , B(tm + s)−B(s)) = limj↑∞(B(t1 +
sj ) − B(sj ), . . . , B(tm + sj ) − B(sj )) is independent of F+(s), and so is the process
{B(t + s) − B(s) : t � 0}.

Remark 2.6 An alternative way of stating this is that conditional on F+(s) the process
{B(t + s) : t � 0} is a Brownian motion started in B(s). �

We now look at the germ σ-algebra F+(0), which heuristically comprises all events de-
fined in terms of Brownian motion on an infinitesimal small interval to the right of the
origin.

Theorem 2.7 (Blumenthal’s 0-1 law) Let x ∈ Rd and A ∈ F+(0). Then Px(A) ∈ {0, 1}.

Proof. Using Theorem 2.5 for s = 0 we see that any A ∈ σ(B(t) : t � 0) is indepen-
dent of F+(0). This applies in particular to A ∈ F+(0), which therefore is independent
of itself, hence has probability zero or one.

As a first application we show that a standard linear Brownian motion has positive and
negative values and zeros in every small interval to the right of 0. We have studied this
remarkable property of Brownian motion already by different means, in the discussion
following Theorem 1.27.

Theorem 2.8 Suppose {B(t) : t � 0} is a linear Brownian motion. Define τ = inf{t >

0: B(t) > 0} and σ = inf{t > 0: B(t) = 0}. Then

P0{τ = 0} = P0{σ = 0} = 1 .

Proof. The event

{τ = 0} =
∞⋂

n=1

{
there is 0 < ε < 1/n such that B(ε) > 0

}
is clearly in F+(0). Hence we just have to show that this event has positive probability.
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This follows, as P0{τ � t} � P0{B(t) > 0} = 1/2 for t > 0. Hence P0{τ = 0} � 1/2
and we have shown the first part. The same argument works replacing B(t) > 0 by
B(t) < 0 and from these two facts P0{σ = 0} = 1 follows, using the intermediate value
property of continuous functions.

A further application is a 0-1 law for the tail σ-algebra of a Brownian motion. Define
G(t) = σ(B(s) : s � t). Let T =

⋂
t � 0 G(t) be the σ-algebra of all tail events.

Theorem 2.9 (Zero-one law for tail events) Let x ∈ Rd and suppose A ∈ T is a tail
event. Then Px(A) ∈ {0, 1}.

Proof. It suffices to look at the case x = 0. Under the time inversion of Brownian
motion, the tail σ-algebra is mapped on the germ σ-algebra, which contains only sets of
probability zero or one, by Blumenthal’s 0-1 law.

Remark 2.10 In Exercise 2.2 we shall see that, for any tail event A ∈ T , the probability
Px(A) is independent of x. For a germ event A ∈ F+(0), however, the probability Px(A)
may depend on x. �

As final example of this section we now exploit the Markov property to study the local and
global extrema of a linear Brownian motion.

Theorem 2.11 For a linear Brownian motion {B(t) : 0 � t � 1}, almost surely,

(a) every local maximum is a strict local maximum;

(b) the set of times where the local maxima are attained is countable and dense;

(c) the global maximum is attained at a unique time.

Proof. We first show that, given two nonoverlapping closed time intervals, i.e. such that
their interiors are disjoint, the maxima of Brownian motion on them are different almost
surely, see Figure 2.2 for an illustration. Let [a1 , b1 ] and [a2 , b2 ] be two fixed intervals with
b1 � a2 . Denote by m1 and m2 , the maxima of Brownian motion on these two intervals.
Note first that, by the Markov property together with Theorem 2.8, almost surely B(a2) <

m2 . Hence this maximum agrees with maximum in the interval [a2 − 1
n , b2 ], for some

n ∈ N, and we may therefore assume in the proof that b1 < a2 .

Applying the Markov property at time b1 we see that the random variable B(a2)−B(b1) is
independent of m1 −B(b1). Using the Markov property at time a2 we see that m2 −B(a2)
is also independent of both these variables. The event m1 = m2 can be written as

B(a2) − B(b1) = m1 − B(b1) − (m2 − B(a2)).

Conditioning on the values of the random variables m1 −B(b1) and m2 −B(a2), the left
hand side is a continuous random variable and the right hand side a constant, hence this
event has probability 0.
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b2a2b1a1

m1

m2

m1 − B(b1)

m2 − B(a2)

Fig. 2.2. The random variables m1 − B(b1 ) and m2 − B(b2 ) are independent of the increment
B(a2 ) − B(b1 ).

(a) By the statement just proved, almost surely, all nonoverlapping pairs of nondegenerate
compact intervals with rational endpoints have different maxima. If Brownian motion
however has a non-strict local maximum, there are two such intervals where Brownian
motion has the same maximum.
(b) In particular, almost surely, the maximum over any nondegenerate compact interval
with rational endpoints is not attained at an endpoint. Hence every such interval contains
a local maximum, and the set of times where local maxima are attained is dense. As
every local maximum is strict, this set has at most the cardinality of the collection of these
intervals.
(c) Almost surely, for any rational number q ∈ [0, 1] the maximum in [0, q] and in [q, 1] are
different. Note that, if the global maximum is attained for two points t1 < t2 there exists a
rational number t1 < q < t2 for which the maximum in [0, q] and in [q, 1] agree.

2.2 The strong Markov property and the reflection principle

Heuristically, the Markov property states that Brownian motion is started anew at each
deterministic time instance. It is a crucial property of Brownian motion that this holds also
for an important class of random times. These random times are called stopping times.
The basic idea is that a random time T is a stopping time if we can decide whether {T�t}
by just knowing the path of the stochastic process up to time t. Think of the situation that
T is the first moment where some random event related to the process happens.

Definition 2.12. A random variable T with values in [0,∞], defined on a probability
space with filtration (F(t) : t � 0) is called a stopping time with respect to (F(t) : t � 0)
if {T � t} ∈ F(t), for every t � 0. �

Remark 2.13 We formulate some basic facts about stopping times in general:

• Every deterministic time t � 0 is a stopping time with respect to every filtra-
tion (F(t) : t � 0).
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• If (Tn : n = 1, 2, . . .) is an increasing sequence of stopping times with respect
to (F(t) : t � 0) and Tn ↑ T , then T is also a stopping time with respect to
(F(t) : t � 0). This is so because

{T � t} =
∞⋂

n=1

{Tn � t} ∈ F(t) .

• Let T be a stopping time with respect to (F(t) : t � 0). Define times Tn by

Tn = (m + 1)2−n if m2−n � T < (m + 1)2−n .

In other words, we stop at the first time of the form k2−n after T . It is easy to see
that Tn is a stopping time with respect to (F(t) : t � 0). We will use it later as a
discrete approximation to T . �

Remark 2.14 Recall from Section 2.1 the definition of the σ-algebras (F0(t) : t � 0) and
(F+(t) : t � 0) associated with Brownian motion.

• Every stopping time T with respect to (F0(t) : t � 0) is also a stopping time with
respect to (F+(t) : t � 0) as F0(t) ⊂ F+(t) for every t � 0.

• Suppose H is a closed set, for example a singleton. Then the first hitting time
T = inf{t � 0: B(t) ∈ H} of the set H is a stopping time with respect to
(F0(t) : t � 0). Indeed, we note that

{T � t} =
∞⋂

n=1

⋃
s∈Q∩(0,t)

⋃
x∈Qd ∩H

{
B(s) ∈ B(x, 1

n )
}
∈ F0(t).

• Suppose G ⊂ Rd is open, then

T = inf{t � 0: B(t) ∈ G}

is a stopping time with respect to the filtration (F+(t) : t � 0), but not necessarily
with respect to (F0(t) : t � 0). To see this note that, by continuity of Brownian
motion,

{T � t} =
⋂
s>t

{T < s} =
⋂
s>t

⋃
r∈Q∩(0,s)

{B(r) ∈ G} ∈ F+(t),

so that T is a stopping time with respect to (F+(t) : t � 0). However, supposing
that G is bounded and the starting point not contained in cl G, we may fix a path
γ : [0, t] → Rd with γ(0, t) ∩ cl G = ∅ and γ(t) ∈ ∂G. Then the σ-algebra F0(t)
contains no nontrivial subset of {B(s) = γ(s)∀0 � s � t}, i.e. no subset other
than the empty set and the set itself. If we had {T � t} ∈ F0(t), the set{

B(s) = γ(s) for all 0 � s � t , T = t
}

would be in F0(t) and (as indicated in Figure 2.3) a nontrivial subset of this set,
which is a contradiction. �
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γ

γ(t)

G

Fig. 2.3. At time t the path γ hits the boundary of G, see the arrow. The two possible dotted
continuations indicate that the path may or may not satisfy T = t.

Because the first hitting times of open or closed sets play an important rôle, the last item
in Remark 2.14 shows that when dealing with Brownian motion it is often preferable to
work with stopping times with respect to the richer filtration (F+(t) : t � 0) instead
of (F0(t) : t � 0). Therefore in the case of Brownian motion we make the convention
that, unless stated otherwise, notions of stopping time, etc. always refer to the filtra-
tion (F+(t) : t � 0). As this filtration is larger, our choice produces more stopping times.

The crucial property which distinguishes (F+(t) : t � 0) from (F0(t) : t � 0) is right-
continuity, which means that ⋂

ε>0

F+(t + ε) = F+(t) .

To see this note that⋂
ε>0

F+(t + ε) =
∞⋂

n=1

∞⋂
k=1

F0(t + 1/n + 1/k) = F+(t) .

The next result indicates the technical advantage of right-continuous filtrations.

Proposition 2.15 Suppose a random variable T with values in [0,∞] satisfies {T < t} ∈
F(t), for every t � 0, and (F(t) : t � 0) is right-continuous, then T is a stopping time
with respect to (F(t) : t � 0).

Proof. Suppose that T satisfies the conditions of the theorem. Then

{T � t} =
∞⋂

k=1

{T < t + 1/k} ∈
∞⋂

n=1

F(t + 1/n) = F(t) ,

using the right-continuity of (F(t) : t � 0) in the last step.

We define, for every stopping time T , the σ-algebra

F+(T ) = {A ∈ A : A ∩ {T � t} ∈ F+(t) for all t � 0} .

This means that the part of A that lies in {T � t} should be measurable with respect
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to the information available at time t. Heuristically, this is the collection of events that
happened before the stopping time T . In particular, it is easy to see that the random path
{B(t) : t � T} is F+(T )-measurable. As in the proof of the last theorem we can infer that
for right-continuous filtrations like our (F+(t) : t � 0) the event {T < t} may replace
{T � t} without changing the definition.

We can now state and prove the strong Markov property for Brownian motion, which was
rigorously established by Hunt [Hu56] and Dynkin [Dy57].

Theorem 2.16 (Strong Markov property) For every almost surely finite stopping time T ,
the process

{B(T + t) − B(T ) : t � 0}

is a standard Brownian motion independent of F+(T ).

Remark 2.17 An alternative form of the strong Markov property is that, for any bounded
measurable f : C([0,∞), Rd) → R and x ∈ Rd , we have almost surely

Ex

[
f
(
{B(T + t) : t � 0}

) ∣∣F+(T )
]

= EB (T )
[
f
(
{B̃(t) : t � 0}

)]
,

where the expectation on the right is with respect to a Brownian motion {B̃(t) : t � 0}
started in the fixed point B(T ). �

Proof. We first show our statement for the stopping times Tn which discretely ap-
proximate T from above, Tn = (m + 1)2−n if m2−n � T < (m + 1)2−n , see Re-
mark 2.13. Write Bk = {Bk (t) : t � 0} for the Brownian motion defined by Bk (t) =
B(t + k/2n ) − B(k/2n ), and B∗ = {B∗(t) : t � 0} for the process defined by B∗(t) =
B(t + Tn ) − B(Tn ). Suppose that E ∈ F+(Tn ). Then, for every event {B∗ ∈ A}, we
have

P
(
{B∗ ∈ A} ∩ E

)
=

∞∑
k=0

P
(
{Bk ∈ A} ∩ E ∩ {Tn = k2−n}

)
=

∞∑
k=0

P{Bk ∈ A}P
(
E ∩ {Tn = k2−n}

)
,

using that {Bk ∈ A} is independent of E ∩ {Tn = k2−n} ∈ F+(k2−n ) by Theorem 2.5.
Now, by Theorem 2.3, P{Bk ∈ A} = P{B ∈ A} does not depend on k, and hence we get

∞∑
k=0

P{Bk ∈ A}P
(
E ∩ {Tn = k2−n}

)
= P{B ∈ A}

∞∑
k=0

P
(
E ∩ {Tn = k2−n}

)
= P{B ∈ A}P(E),

which shows that B∗ is a Brownian motion and independent of E, hence of F+(Tn ).

It remains to generalise this to general stopping times T . As Tn ↓ T we have that

{B(s + Tn ) − B(Tn ) : s � 0}
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is a Brownian motion independent of F+(Tn ) ⊃ F+(T ). Hence the increments

B(s + t + T ) − B(t + T ) = lim
n→∞

B(s + t + Tn ) − B(t + Tn )

of the process {B(r + T ) − B(T ) : r � 0} are independent and normally distributed with
mean zero and variance s. As the process is obviously almost surely continuous, it is a
Brownian motion. Moreover all increments, B(s + t + T ) − B(t + T ) = lim B(s + t +
Tn ) − B(t + Tn ), and hence the process itself, are independent of F+(T ).

Remark 2.18 Let τ = inf{t � 0: B(t) = max0�s�1 B(s)}. It is intuitively clear that
τ is not a stopping time. To prove it, recall that almost surely τ < 1. The increment
B(τ + t) − B(τ) is negative in a small neighbourhood to the right of 0, which contradicts
the strong Markov property and Theorem 2.8. �

2.2.1 The reflection principle

We will see many applications of the strong Markov property later, however, the next
result, the reflection principle, is particularly interesting. The reflection principle states
that Brownian motion reflected at some stopping time T is still a Brownian motion.

Theorem 2.19 (Reflection principle) If T is a stopping time and {B(t) : t � 0} is a
standard Brownian motion, then the process {B∗(t) : t � 0} called Brownian motion
reflected at T and defined by

B∗(t) = B(t)1{t�T } + (2B(T ) − B(t))1{t>T }

is also a standard Brownian motion.

tT=inf{t :B(t)=b}0

b

Fig. 2.4. The reflection principle in the case of the first hitting time of level b.

Proof. If T is finite, by the strong Markov property both paths

{B(t + T ) − B(T ) : t � 0} and {−(B(t + T ) − B(T )) : t � 0} (2.1)
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are Brownian motions and independent of the beginning {B(t) : 0 � t � T}. The concate-
nation mapping, which takes a continuous path {g(t) : t � 0} and glues it to the end point
of a finite continuous path {f(t) : 0 � t � T} to form a new continuous path, is measur-
able. Hence the process arising from glueing the first path in (2.1) to {B(t) : 0 � t � T}
and the process arising from glueing the second path in (2.1) to {B(t) : 0 � t � T} have
the same distribution. The first is just {B(t) : t � 0}, the second is {B∗(t) : t � 0}, as
introduced in the statement.

Remark 2.20 For a linear Brownian motion, consider

τ = inf
{
t � 0: B(t) = max

0�s�1
B(s)
}

and let {B∗(t) : t � 0} be the reflection at τ defined as in Theorem 2.19. Recall from
Remark 2.18 that τ is not a stopping time. Not only is the reflected process not Brownian
motion, but its law is singular with respect to that of Brownian motion. Indeed, τ is a point
of increase of the reflected process by construction, whereas we shall see in Theorem 5.14
that Brownian motion almost surely has no such point. �

Now we apply the reflection principle in the case of linear Brownian motion. Let M(t) =
max0�s�t B(s). A priori it is not at all clear what the distribution of this random variable
is, but we can determine it as a consequence of the reflection principle.

Theorem 2.21 If a > 0 then P0{M(t) > a} = 2P0{B(t) > a} = P0{|B(t)| > a}.

Proof. Let T = inf{t � 0: B(t) = a} and let {B∗(t) : t � 0} be Brownian motion
reflected at the stopping time T . Then

{M(t) > a} = {B(t) > a} ∪ {M(t) > a, B(t) � a}.

This is a disjoint union and the second summand coincides with event {B∗(t) � a}. Hence
the statement follows from the reflection principle.

Remark 2.22 Theorem 2.21 is most useful when combined with a tail estimate for the
Gaussian as in Lemma 12.9 in the appendix. For example, for an upper bound we obtain,
for all a > 0,

P0{M(t) > a} �
√

2t

a
√

π
exp
{
− a2

2t

}
. �

2.2.2 The area of planar Brownian motion

Continuous curves in the plane can still be extremely wild. Space-filling curves, like the
Peano curve, can map the time interval [0, 1] continuously on sets of positive area, see for
example [La98]. We now show that the range of planar Brownian motion has zero area.
The Markov property and the reflection principle play an important rôle in the proof.
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Suppose {B(t) : t � 0} is planar Brownian motion. We denote the Lebesgue measure
on Rd by Ld , and use the symbol f ∗ g to denote the convolution of the functions f and g

given, whenever well-defined, by

f ∗ g (x) :=
∫

f(y)g(x − y) dy.

For a set A ⊂ Rd and x ∈ Rd we write A + x := {a + x : a ∈ A}.

Lemma 2.23 If A1 , A2 ⊂ R2 are Borel sets with positive area, then

L2
({

x ∈ R2 : L2(A1 ∩ (A2 + x)) > 0
})

> 0.

Proof. We may assume A1 and A2 are bounded. By Fubini’s theorem,∫
R2

1A 1 ∗ 1−A 2 (x) dx =
∫

R2

∫
R2

1A 1 (w)1A 2 (w − x) dw dx

=
∫

R2
1A 1 (w)

(∫
R2

1A 2 (w − x) dx

)
dw

= L2(A1)L2(A2) > 0.

Thus 1A 1 ∗ 1−A 2 (x) > 0 on a set of positive area. But

1A 1 ∗ 1−A 2 (x) =
∫

1A 1 (y) 1−A 2 (x − y) dy =
∫

1A 1 (y) 1A 2 +x(y) dy

= L2(A1 ∩ (A2 + x)) ,

proving the lemma.

We are now ready to prove Lévy’s theorem on the area of planar Brownian motion.

Theorem 2.24 (Lévy 1940) Almost surely, L2(B[0, 1]) = 0.

Proof. Let X = L2(B[0, 1]) denote the area of B[0, 1]. First we check that E[X] < ∞.
Note that X > a only if the Brownian motion leaves the square centred in the origin of
side length

√
a. Hence, using Theorem 2.21 and Lemma 12.9 of the appendix,

P{X > a} � 2 P
{

max
t∈[0,1]

|W (t)| >
√

a/2 } = 4 P{W (1) >
√

a/2} � 4e−a/8 ,

for a > 1, where {W (t) : t � 0} is standard one-dimensional Brownian motion. Hence,

E[X] =
∫ ∞

0
P{X > a} da � 4

∫ ∞

1
e−a/8da + 1 < ∞.

Note that B(3t) and
√

3B(t) have the same distribution, and hence

EL2(B[0, 3]) = 3EL2(B[0, 1]) = 3E[X] .

Note that we have L2(B[0, 3]) �
∑2

j=0 L2(B[j, j + 1]) with equality if and only if for
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0 � i < j � 2 we have L2(B[i, i+1]∩B[j, j+1]) = 0. On the other hand, for j = 0, 1, 2,

we have EL2(B[j, j + 1]) = E[X] and

3E[X] = EL2(B[0, 3]) �
2∑

j=0

EL2(B[j, j + 1]) = 3E[X] ,

whence, almost surely, the intersection of any two of the B[j, j + 1] has measure zero. In
particular, L2(B[0, 1] ∩ B[2, 3]) = 0 almost surely.

Now we can use the Markov property to define two Brownian motions, {B1(t) : t ∈ [0, 1]}
by B1(t) = B(t), and {B2(t) : t ∈ [0, 1]} by B2(t) = B(t + 2) − B(2) + B(1). The
random variable Y := B(2)−B(1) is independent of both Brownian motions. For x ∈ R2 ,
let R(x) denote the area of the set B1 [0, 1]∩ (x+B2 [0, 1]), and note that {R(x) : x ∈ R2}
is independent of Y . Then

0 = E[L2(B[0, 1] ∩ B[2, 3])] = E[R(Y )] = (2π)−1
∫

R2
e−|x|2 /2 E[R(x)] dx,

where we are averaging with respect to the Gaussian distribution of B(2) − B(1). Thus,
for L2-almost all x, we have R(x) = 0 almost surely and hence, by Fubini’s theorem,

L2
({

x ∈ R2 : R(x) > 0
})

= 0, almost surely.

From Lemma 2.23 we get that, almost surely, L2(B[0, 1]) = 0 or L2(B[2, 3]) = 0. The
observation that L2(B[0, 1]) and L2(B[2, 3]) are identically distributed and independent
completes the proof that L2(B[0, 1]) = 0 almost surely.

Remark 2.25 How big is the range, or path, of Brownian motion? We have seen that
the Lebesgue measure of a planar Brownian path is zero almost surely, but a more pre-
cise answer needs the concept of Hausdorff measure and dimension, which we develop in
Chapter 4. �

Corollary 2.26 For any points x, y ∈ Rd , d � 2, we have Px{y ∈ B(0, 1]} = 0.

Proof. Observe that, by projection onto the first two coordinates, it suffices to prove
this result for d = 2. Note that Theorem 2.24 holds for Brownian motion with arbitrary
starting point y ∈ R2 . By Fubini’s theorem, for any fixed y ∈ R2 ,∫

R2
Py{x ∈ B[0, 1]} dx = EyL2(B[0, 1]) = 0.

Hence, for L2-almost every point x, we have Py{x ∈ B[0, 1]} = 0. By symmetry of
Brownian motion,

Py{x ∈ B[0, 1]} = P0{x − y ∈ B[0, 1]} = P0{y − x ∈ B[0, 1]} = Px{y ∈ B[0, 1]} .

We infer that Px{y ∈ B[0, 1]} = 0, for L2-almost every point x. For any ε > 0 we thus
have, almost surely, PB (ε){y ∈ B[0, 1]} = 0. Hence,

Px{y ∈ B(0, 1]} = lim
ε↓0

Px{y ∈ B[ε, 1]} = lim
ε↓0

ExPB (ε){y ∈ B[0, 1 − ε]} = 0,

where we have used the Markov property in the second step.



48 Brownian motion as a strong Markov process

Remark 2.27 Loosely speaking, planar Brownian motion almost surely does not hit sin-
gletons. Which other sets are not hit by Brownian motion? This clearly depends on the
size and shape of the set in some intricate way, and a precise answer will use the notion of
capacity, which we study in Chapter 8. �

2.2.3 The zero set of Brownian motion

As a further application of the strong Markov property we have a first look at the properties
of the zero set {t � 0: B(t) = 0} of one-dimensional Brownian motion. We prove that
this set is a closed set with no isolated points (sometimes called a perfect set). This is
perhaps surprising since, almost surely, a Brownian motion has isolated zeros from the
left, for instance the first zero after 1/2, or from the right, like the last zero before 1/2.

Theorem 2.28 Let {B(t) : t � 0} be a one dimensional Brownian motion and

Zeros = {t � 0: B(t) = 0}

its zero set. Then, almost surely, Zeros is a closed set with no isolated points.

Proof. Clearly, with probability one, Zeros is closed because Brownian motion is
continuous almost surely. To prove that no point of Zeros is isolated we consider the
following construction: For each rational q ∈ [0,∞) consider the first zero after q, i.e.,

τq = inf{t � q : B(t) = 0}.

Note that τq is an almost surely finite stopping time. Since Zeros is closed, the inf is almost
surely a minimum. By the strong Markov property, applied to τq , we have that for each q,
almost surely τq is not an isolated zero from the right. But, since there are only countably
many rationals, we conclude that almost surely, for all rational q, the zero τq is not isolated
from the right.

Our next task is to prove that the remaining points of Zeros are not isolated from the left.
So we claim that any 0 < t ∈ Zeros which is different from τq for all rational q is not an
isolated point from the left. To see this take a sequence qn ↑ t, qn ∈ Q. Define tn = τqn .
Clearly qn � tn < t and so tn ↑ t. Thus t is not isolated from the left.

Remark 2.29 Theorem 2.28 implies that Zeros is uncountable, see Exercise 2.9. �

2.3 Markov processes derived from Brownian motion

In this section, we define the concept of a Markov process. Our motivation is that various
processes derived from Brownian motion are Markov processes. Among the examples are
the reflection of Brownian motion in zero, and the process {Ta : a � 0} of times Ta when
a Brownian motion reaches level a for the first time. We assume that the reader is familiar
with the notion of conditional expectation given a σ-algebra, see [Wi91] for a reference.
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Definition 2.30. A function p : [0,∞)×Rd ×B → R, where B is the Borel σ-algebra in
Rd , is a Markov transition kernel provided

(1) p( · , · , A) is measurable as a function of (t, x), for each A ∈ B;

(2) p(t, x, · ) is a Borel probability measure on Rd for all t � 0 and x ∈ Rd , when
integrating a function f with respect to this measure we write∫

f(y) p(t, x, dy) ;

(3) for all A ∈ B, x ∈ Rd and t, s > 0,

p(t + s, x,A) =
∫

Rd

p(t, y, A) p(s, x, dy).

An adapted process {X(t) : t � 0} is a (time-homogeneous) Markov process with
transition kernel p with respect to a filtration (F(t) : t � 0), if for all t � s and Borel sets
A ∈ B we have, almost surely,

P{X(t) ∈ A | F(s)} = p(t − s,X(s), A) . �

Observe that p(t, x,A) is the probability that the process takes a value in A at time t, if
it is started at the point x. Readers familiar with Markov chains can recognise the pattern
behind this definition: The Markov transition kernel p plays the rôle of the transition ma-
trix P in this setup. The next two examples are easy consequences of the Markov property
for Brownian motion.

Example 2.31 Brownian motion is a Markov process and for its transition kernel p the
distribution p(t, x, · ) is a normal distribution with mean x and variance t. Similarly, d-
dimensional Brownian motion is a Markov process and p(t, x, · ) is a Gaussian with mean
x and covariance matrix t times identity. Note that property (3) in the definition of the
Markov transition kernel is just the fact that the sum of two independent Gaussian random
vectors is a Gaussian random vector with the sum of the covariance matrices. �

Notation 2.32. The transition kernel of d-dimensional Brownian motion is described by
probability measures p(t, x, · ) with densities denoted throughout this book by

p(t, x, y) = (2πt)−d/2 exp
(
− |x − y|2

2t

)
. �

Example 2.33 The reflected one-dimensional Brownian motion {X(t) : t � 0} defined by
X(t) = |B(t)| is a Markov process. Moreover, its transition kernel p(t, x, ·) is the law
of |Y | for Y normally distributed with mean x and variance t, which we call the modulus
normal distribution with parameters x and t. �
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We now prove a famous theorem of Paul Lévy, which shows that the difference of the
maximum process of a Brownian motion and the Brownian motion itself is a reflected
Brownian motion. To be precise, this means that the difference of the processes has the
same finite-dimensional distributions as a reflected Brownian motion, and is also almost
surely continuous.

Theorem 2.34 (Lévy 1948) Let {M(t) : t � 0} be the maximum process of a linear stan-
dard Brownian motion {B(t) : t � 0}, i.e. the process defined by

M(t) = max
0�s�t

B(s).

Then, the process {Y (t) : t � 0} defined by Y (t) = M(t) − B(t) is a reflected Brownian
motion.

0 100 200 300 400

0

0 100 200 300 400

0

B(t)

M (t)

M (t)−B(t)

t t

Fig. 2.5. On the left, the processes {B(t) : t � 0} with associated maximum process
{M (t) : t � 0} indicated by the dashed curve. On the right the process {M (t) − B(t) : t � 0}.

Proof. The main step is to show that the process {Y (t) : t � 0} is a Markov process and
its Markov transition kernel p(t, x, · ) has modulus normal distribution with parameters x

and t. Once this is established, it is immediate that the finite-dimensional distributions of
this process agree with those of a reflected Brownian motion. Obviously, {Y (t) : t � 0}
has almost surely continuous paths. For the main step, fix s > 0, consider the two processes
{B̂(t) : t � 0} defined by

B̂(t) = B(s + t) − B(s) for t � 0,

and {M̂(t) : t � 0} defined by

M̂(t) = max
0�u�t

B̂(u) for t � 0.

Because Y (s) is F+(s)-measurable, it suffices to check that conditional on F+(s), for
every t � 0, the random variable Y (s + t) has the same distribution as |Y (s) + B̂(t)|. In-
deed, this directly implies that {Y (t) : t � 0} is a Markov process with the same transition
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kernel as the reflected Brownian motion. To prove the claim fix s, t � 0 and observe that
M(s + t) = M(s) ∨ (B(s) + M̂(t)), and hence

Y (s + t) = (M(s) ∨ (B(s) + M̂(t))) − (B(s) + B̂(t)).

Using the fact that (a ∨ b) − c = (a − c) ∨ (b − c), we have

Y (s + t) =
(
Y (s) ∨ M̂(t)

)
− B̂(t).

To finish, it suffices to check, for every y � 0, that y∨M̂(t)−B̂(t) has the same distribution
as |y + B̂(t)|. For any a � 0 write

P1 = P{y − B̂(t) > a}, P2 = P
{
y − B̂(t) � a and M̂(t) − B̂(t) > a

}
.

Then P{y∨M̂(t)− B̂(t) > a} = P1 +P2 . Since {B̂(t) : t � 0} has the same distribution
as {−B̂(t) : t � 0} we have P1 = P{y + B̂(t) > a}. To study the second term it is
useful to define the time reversed Brownian motion {W (u) : 0 � u � t} by W (u) :=
B̂(t−u)− B̂(t). Note that this process is also a Brownian motion for 0 � u � t since it is
continuous and its finite dimensional distributions are Gaussian with the right covariances.
Let MW (t) = max0�u�t W (u). Then MW (t) = M̂(t) − B̂(t). Since W (t) = −B̂(t),
we have

P2 = P{y + W (t) � a and MW (t) > a}.

Using the reflection principle by reflecting {W (u) : 0�u�t} at the first time it hits a, we
get another Brownian motion {W ∗(u) : 0 � u � t}. In terms of this Brownian motion we
have P2 = P{W ∗(t) � a + y}. Since it has the same distribution as {−B̂(t) : t � 0},
it follows that P2 = P{y + B̂(t) � − a}. The Brownian motion {B̂(t) : t � 0} has
continuous distribution, and so, by adding P1 and P2 , we get P{y ∨ M̂(t)− B̂(t) > a} =
P{|y + B̂(t)| > a}. This proves the main step and, consequently, the theorem.

While, as seen above, {M(t) − B(t) : t � 0} is a Markov process, it is important to note
that the maximum process {M(t) : t � 0} itself is not a Markov process. However the
times when new maxima are achieved form a Markov process, as the following theorem
shows.

Theorem 2.35 For any a � 0 define the stopping times

Ta = inf{t � 0: B(t) = a}.

Then {Ta : a � 0} is an increasing Markov process with transition kernel given by the
densities

p(a, t, s) = a√
2π (s−t)3

exp
(
− a2

2(s−t)

)
1{s > t}, for a > 0.

This process is called the stable subordinator of index 1
2 .

Remark 2.36 As the transition densities satisfy the shift-invariance property

p(a, t, s) = p(a, 0, s − t) for all a � 0 and s, t � 0,

the stable subordinators {Ta : a � 0} have stationary and independent increments. �
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Proof. Fix a � b � 0 and note that for all t � 0 we have{
Ta − Tb = t

}
=
{
B(Tb + s) − B(Tb) < a − b, for s < t, and B(Tb + t) − B(Tb) = a − b

}
.

By the strong Markov property of Brownian motion this event is independent of F+(Tb)
and therefore in particular of {Td : d � b}. This proves the Markov property of {Ta : a � 0}.
The form of the transition kernel follows from the reflection principle,

P{Ta − Tb � t} = P{Ta−b � t} = P
{

max
0 �s�t

B(s) � a − b
}

= 2P
{
B(t) � a − b

}
= 2
∫ ∞

a−b

1√
2πt

exp
(
− x2

2t

)
dx

=
∫ t

0

1√
2πs3

(a − b) exp
(
− (a−b)2

2s

)
ds,

where we used the substitution x =
√

t/s (a − b) in the last step.

In a similar way there is another important Markov process, the Cauchy process, hidden in
the planar Brownian motion, see Figure 2.6.

V(s) V(t)

t
0

X(s)

X(t)

s

Fig. 2.6. The Cauchy process embedded in planar Brownian motion

Theorem 2.37 Let {B(t) : t � 0} be a planar Brownian motion and denote B(t) =
(B1(t), B2(t)). Define a family (V (a) : a � 0) of vertical lines by

V (a) = {(x, y) ∈ R2 : x = a},

and let T (a) = τ(V (a)) be the first hitting time of V (a). Then the process {X(a) : a � 0}
defined by X(a) := B2(T (a)) is a Markov process with transition kernel given by

p(a, x,A) =
1
π

∫
A

a

a2 + (x − y)2 dy .

This process is called the Cauchy process.
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Proof. The Markov property of {X(a) : a � 0} is a consequence of the strong Markov
property of Brownian motion for the stopping times T (a), and the fact that T (a) < T (b)
for all a < b. In order to calculate the transition density recall from Theorem 2.35 that
T (a), which is the first time when the one-dimensional Brownian motion {B1(s) : s � 0}
hits level a, has density

a√
2πs3

exp
(
− a2

2s

)
.

T (a) is independent of {B2(s) : s � 0} and therefore the density of B2(T (a)) is (in the
variable x)∫ ∞

0

1√
2πs

exp
(
− x2

2s

)
a√

2πs3 exp
(
− a2

2s

)
ds =

∫ ∞

0

a e−σ

π(a2 + x2)
dσ =

a

π(a2 + x2)
,

where the integral is evaluated using the substitution σ = 1
2s (a2 + x2).

Remark 2.38 As in the case of stable subordinators, see Remark 2.36, one can see from
the form of the transition kernel that the Cauchy process has independent, stationary in-
crements. Alternative proofs of Theorem 2.37, avoiding the explicit evaluation of integrals
will be given in Exercise 2.19 and Exercise 7.5. �

2.4 The martingale property of Brownian motion

In the previous section we have taken a particular feature of Brownian motion, the Markov
property, and introduced an abstract class of processes, the Markov processes, which share
this feature. We have seen that a number of process derived from Brownian motion are
again Markov processes and this insight helped us getting new information about Brown-
ian motion. In this section we follow a similar plan, taking a different feature of Brownian
motion, the martingale property, as a starting point.

Definition 2.39. A real-valued stochastic process {X(t) : t � 0} is a martingale with
respect to a filtration (F(t) : t � 0) if it is adapted to the filtration, E|X(t)| < ∞ for all
t � 0 and, for any pair of times 0 � s � t,

E
[
X(t)
∣∣F(s)

]
= X(s) almost surely.

The process is called a submartingale if � holds, and a supermartingale if � holds in
the display above. �

Remark 2.40 Intuitively, a martingale is a process where the current state X(t) is always
the best prediction for its further states. In this sense, martingales describe fair games. If
{X(t) : t � 0} is a martingale, the process {|X(t)| : t � 0} need not be a martingale, but
it still is a submartingale, as a simple application of the triangle inequality shows. �
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Example 2.41 For a one-dimensional Brownian motion {B(t) : t � 0} we have

E
[
B(t)
∣∣F+(s)

]
= E
[
B(t) − B(s)

∣∣F+(s)
]
+ B(s)

= E
[
B(t) − B(s)

]
+ B(s) = B(s), for 0 � s � t,

using Theorem 2.5 in the second step. Hence Brownian motion is a martingale. �

We now state two useful facts about martingales, which we will exploit extensively: The
optional stopping theorem and Doob’s maximal inequality. Both of these results are well-
known in the discrete time setting and there is a reminder in Appendix 12.3. The natural
extension of these results to the continuous time setting is the content of our propositions.

The optional stopping theorem provides a condition under which the defining equation for
martingales can be extended from fixed times 0 � s � t to stopping times 0 � S � T .
We are focussing on continuous martingales, which means that, almost surely, their sample
paths are continuous.

Proposition 2.42 (Optional stopping theorem) Suppose {X(t) : t � 0} is a continuous
martingale, and 0 � S � T are stopping times. If the process {X(t ∧ T ) : t � 0} is
dominated by an integrable random variable X , i.e. |X(t∧T )| � X almost surely, for all
t � 0, then

E
[
X(T )

∣∣F(S)
]

= X(S), almost surely.

Proof. The best way to prove this is to prove the result first for martingales in discrete
time, and then extend the result by approximation. The result for discrete time is provided
in Theorem 12.27 of the appendix. Let us explain the approximation step here.
Fix N ∈ N and define a discrete time martingale by Xn = X(T ∧ n2−N ) and stopping
times S′ = �2N S� + 1 and T ′ = �2N T � + 1, with respect to the filtration (G(n) : n ∈
N) given by G(n) = F(n2−N ). Obviously Xn is dominated by an integrable random
variable and hence the discrete time result gives E

[
XT ′
∣∣G(S′)

]
= XS ′ , which translates

as E
[
X(T )

∣∣F(SN )
]

= X(T ∧SN ) , for SN = 2−N (�2N S�+ 1). Hence, for A ∈ F(S),
using dominated convergence,∫

A

X(T ) dP = lim
N ↑∞

∫
A

E
[
X(T ) | F(SN )

]
dP =

∫
A

lim
N ↑∞

X(T ∧ SN ) dP

=
∫

A

X(S) dP,

and hence the claim follows from the definition of conditional expectation.

The following inequality will also be of great use to us.

Proposition 2.43 (Doob’s maximal inequality) Suppose {X(t) : t � 0} is a continuous
martingale and p > 1. Then, for any t � 0,

E
[(

sup
0�s�t

|X(s)|
)p] �

(
p

p−1

)p
E
[
|X(t)|p

]
.
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Proof. Again this is proved for martingales in discrete time in our appendix, see
Theorem 12.30, and can be extended by approximation. Fix N ∈ N and define a discrete
time martingale by Xn = X(tn2−N ) with respect to the filtration (G(n) : n ∈ N) given
by G(n) = F(tn2−N ). By the discrete version of Doob’s maximal inequality,

E
[(

sup
1�k�2N

|Xk |
)p] �

(
p

p−1

)p
E
[
|X2N |p

]
=
(

p
p−1

)p
E
[
|X(t)|p

]
.

Letting N ↑ ∞ and using monotone convergence gives the claim.

We now use the martingale property and the optional stopping theorem to prove Wald’s
lemmas for Brownian motion. These results identify the first and second moments of the
value of Brownian motion at well-behaved stopping times.

Theorem 2.44 (Wald’s lemma for Brownian motion) Let {B(t) : t � 0} be a standard
linear Brownian motion, and T be a stopping time such that either

(i) E[T ] < ∞, or
(ii)
{
B(t ∧ T ) : t � 0

}
is dominated by an integrable random variable.

Then we have E[B(T )] = 0.

Remark 2.45 The proof of Wald’s lemma is based on an optional stopping argument. An
alternative proof of (i), which uses only the strong Markov property and the law of large
numbers, is suggested in Exercise 2.7. Also, the moment condition (i) in Theorem 2.44
can be relaxed, see Theorem 2.50 for an optimal criterion. �

Proof. We first show that a stopping time satisfying condition (i), also satisfies condi-
tion (ii). So suppose E[T ] < ∞, and define

Mk = max
0�t�1

|B(t + k) − B(k)| and M =

T �∑
k=1

Mk.

Then

E[M ] = E
[ 
T �∑

k=1

Mk

]
=

∞∑
k=1

E
[
1{T > k − 1}Mk

]
=

∞∑
k=1

P{T > k − 1}E[Mk ]

= E[M0 ] E[T + 1] < ∞ ,

where, using Fubini’s theorem and Remark 2.22,

E[M0 ] =
∫ ∞

0
P
{

max
0�t�1

|B(t)| > x
}

dx � 1 +
∫ ∞

1

2
√

2
x
√

π
exp
{
− x2

2

}
dx < ∞ .

Now note that |B(t ∧ T )| � M , so that (ii) holds. It remains to observe that under
condition (ii) we can apply the optional stopping theorem with S = 0, which yields
that E[B(T )] = 0.
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Corollary 2.46 Let S � T be stopping times and E[T ] < ∞. Then

E
[
(B(T ))2] = E

[
(B(S))2]+ E

[(
B(T ) − B(S)

)2]
.

Proof. The tower property of conditional expectation gives

E
[(

B(T )
)2] = E

[(
B(S)

)2]+ 2E
[
B(S)E

[
B(T ) − B(S) | F(S)

]]
+ E
[(

B(T ) − B(S)
)2]

.

Note that E[T ] < ∞ implies E[T − S | F(S)] < ∞ almost surely. Hence the strong
Markov property at time S together with Wald’s lemma imply E[B(T )−B(S) | F(S)] = 0
almost surely, so that the middle term vanishes.

To find the second moment of B(T ) and thus prove Wald’s second lemma, we identify a
further martingale derived from Brownian motion.

Lemma 2.47 Suppose {B(t) : t � 0} is a linear Brownian motion. Then the process{
B(t)2 − t : t � 0

}
is a martingale.

Proof. The process is adapted to the natural filtration of Brownian motion and

E
[
B(t)2 − t

∣∣F+(s)
]

= E
[(

B(t) − B(s)
)2 ∣∣F+(s)

]
+ 2 E

[
B(t)B(s)

∣∣F+(s)
]
− B(s)2 − t

= (t − s) + 2B(s)2 − B(s)2 − t = B(s)2 − s ,

which completes the proof.

Theorem 2.48 (Wald’s second lemma) Let T be a stopping time for standard Brownian
motion such that E[T ] < ∞. Then

E
[
B(T )2] = E[T ].

Proof. Look at the martingale {B(t)2 − t : t � 0} and define stopping times

Tn = inf{t � 0: |B(t)| = n}

so that {B(t ∧ T ∧ Tn )2 − t ∧ T ∧ Tn : t � 0} is dominated by the integrable random
variable n2 + T . By the optional stopping theorem we get E[B(T ∧ Tn )2 ] = E[T ∧ Tn ].
By Corollary 2.46 we have E[B(T )2 ] � E[B(T∧Tn )2 ]. Hence, by monotone convergence,

E
[
B(T )2] � lim

n→∞
E
[
B(T ∧ Tn )2] = lim

n→∞
E
[
T ∧ Tn

]
= E[T ] .

Conversely, now using Fatou’s lemma in the first step,

E
[
B(T )2] � lim inf

n→∞
E
[
B(T ∧ Tn )2] = lim inf

n→∞
E
[
T ∧ Tn

]
� E[T ] .
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Wald’s lemmas suffice to obtain exit probabilities and expected exit times for a linear
Brownian motion. In Chapter 3 we shall explore the corresponding problem for higher-
dimensional Brownian motion using harmonic functions.

Theorem 2.49 Let a < 0 < b and, for a standard linear Brownian motion {B(t) : t � 0},
define T = min{t � 0: B(t) ∈ {a, b}}. Then

• P{B(T ) = a} =
b

|a| + b
and P{B(T ) = b} =

|a|
|a| + b

.

• E[T ] = |a|b.

Proof. Let T = τ({a, b}) be the first exit time from the interval [a, b]. This stopping time
satisfies the condition of the optional stopping theorem, as |B(t ∧ T )| � |a| ∨ b. Hence,
by Wald’s first lemma,

0 = E[B(T )] = aP{B(T ) = a} + bP{B(T ) = b}.

Together with the easy equation P{B(T ) = a} + P{B(T ) = b} = 1 one can solve this,
and obtain P{B(T ) = a} = b/(|a|+ b), and P{B(T ) = b} = |a|/(|a|+ b). To use Wald’s
second lemma, we check that E[T ] < ∞. For this purpose note that

E[T ] =
∫ ∞

0
P{T > t} dt =

∫ ∞

0
P{B(s) ∈ (a, b) for all s ∈ [0, t]} dt,

and that, for t � k ∈ N the integrand is bounded by the kth power of maxx∈(a,b) Px{B(1) ∈
(a, b)}, i.e. decreases exponentially. Hence the integral is finite.
Now, by Wald’s second lemma and the exit probabilities, we obtain

E[T ] = E[B(T )2 ] =
a2b

|a| + b
+

b2 |a|
|a| + b

= |a|b.

We now discuss a strengthening of Theorem 2.44, which works with a weaker moment
condition. This theorem will not be used in the remainder of the book and can be skipped
on first reading. We shall see in Exercise 2.13 that the condition we give is in some sense
optimal.

Theorem* 2.50 Let {B(t) : t � 0} be a standard linear Brownian motion and T a stopping
time with E[T 1/2 ] < ∞. Then E[B(T )] = 0.

Proof. Let {M(t) : t � 0} be the maximum process of {B(t) : t � 0} and T a stopping
time with E[T 1/2 ] < ∞. Let τ = �log4 T �, so that B(t ∧ T ) � M(4τ ). In order to get
E[B(T )] = 0 from the optional stopping theorem it suffices to show that the majorant is
integrable, i.e. that

EM(4τ ) < ∞.

Define a discrete time stochastic process {Xk : k ∈ N} by Xk = M(4k ) − 2k+1 , and
observe that τ is a stopping time with respect to the filtration (F+(4k ) : k ∈ N). Moreover,
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the process {Xk : k ∈ N} is a supermartingale. Indeed,

E
[
Xk

∣∣Fk−1
]

� M(4k−1) + E
[

max
0�t�4k −4k −1

B(t)
]
− 2k+1 ,

and the supermartingale property follows as

E
[

max
0�t�4k −4k −1

B(t)
]

=
√

4k − 4k−1 E
[

max
0�t�1

B(t)
]

� 2k ,

using that, by the reflection principle, Theorem 2.21, and the Cauchy–Schwarz inequality,

E
[

max
0�t�1

B(t)
]

= E|B(1)| �
(
E[B(1)2 ]

) 1
2 = 1.

Now let t = 4� and use the supermartingale property for τ ∧ � to get

E
[
M(4τ ∧ t)

]
= E
[
Xτ∧�

]
+ E
[
2τ∧�+1] � E[X0 ] + 2 E

[
2τ
]
.

Note that X0 = M(1) − 2, which has finite expectation and, by our assumption on the
moments of T , we have E[2τ ] < ∞. Thus, by monotone convergence,

E
[
M(4τ )

]
= lim

t↑∞

[
M(4τ ∧ t)

]
< ∞ ,

which completes the proof of the theorem.

Given the function f : R → R, f(x) = x2 , we were able, in Lemma 2.47, to subtract a
suitable term from f(B(t)) to obtain a martingale. To get a feeling for what we wish to
subtract in the case of a general f , we look at the analogous problem for the simple random
walk {Sn : n ∈ N}. A straightforward calculation gives, for f : Z → R,

E
[
f(Sn+1)

∣∣σ(S1 , . . . , Sn )
]
− f(Sn ) = 1

2

(
f(Sn + 1) − 2f(Sn ) + f(Sn − 1)

)
= 1

2 ∆̃f(Sn ) ,

where ∆̃ is the second difference operator ∆̃f(x) := f(x+1)−2f(x)+f(x−1). Hence

f(Sn ) − 1
2

n−1∑
k=0

∆̃f(Sk )

defines a (discrete time) martingale. In the Brownian motion case, one would expect a
similar result with ∆̃f replaced by its continuous analogue, the Laplacian

∆f(x) =
d∑

i=1

∂2f

∂x2
i

.

Theorem 2.51 Let f : Rd → R be twice continuously differentiable, and {B(t) : t � 0}
be a d-dimensional Brownian motion. Further suppose that, for all t > 0 and x ∈ Rd , we
have Ex |f(B(t))| < ∞ and Ex

∫ t

0 |∆f(B(s))| ds < ∞. Then the process {X(t) : t � 0}
defined by

X(t) = f(B(t)) − 1
2

∫ t

0
∆f(B(s)) ds

is a martingale.
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Proof. For any 0 � s < t,

E
[
X(t)
∣∣F(s)

]
= EB (s)

[
f(B(t − s))

]
− 1

2

∫ s

0
∆f(B(u)) du −

∫ t−s

0
EB (s)

[ 1
2 ∆f(B(u))

]
du .

Now, using integration by parts and 1
2 ∆p(t, x, y) = ∂

∂ t p(t, x, y), we find

EB (s)
[ 1

2 ∆f(B(u))
]

= 1
2

∫
p(u,B(s), x)∆f(x) dx

= 1
2

∫
∆p(u,B(s), x) f(x) dx =

∫
∂

∂u p(u,B(s), x) f(x) dx ,

and hence∫ t−s

0
EB (s)

[ 1
2 ∆f(B(u))

]
du = lim

ε↓0

∫ [ ∫ t−s

ε

∂
∂u p(u,B(s), x) du

]
f(x) dx

=
∫

p(t − s,B(s), x) f(x) dx − lim
ε↓0

∫
p(ε,B(s), x) f(x) dx

= EB (s)
[
f(B(t − s))

]
− f(B(s)) ,

and this confirms the martingale property.

Example 2.52 Using f(x) = x2 in Theorem 2.51 yields the familiar martingale {B(t)2 −
t : t � 0}. Using f(x) = x3 we obtain the martingale {B(t)3 − 3

∫ t

0 B(s) ds : t � 0}
and not the familiar martingale {B(t)3 − 3tB(t) : t � 0}. Of course, the difference
{
∫ t

0 (B(t) − B(s)) ds : t � 0} is a martingale. �

The next lemma states a fundamental principle, which we will discuss further in Chapter 7,
see in particular Theorem 7.18.

Corollary 2.53 Suppose f : Rd → R satisfies ∆f(x) = 0 and Ex |f(B(t))| < ∞, for
every x ∈ Rd and t > 0. Then the process {f(B(t)) : t � 0} is a martingale.

Example 2.54 The function f : R2 → R given by f(x1 , x2) = ex1 cos x2 satisfies ∆f(x) =
0. Hence X(t) = eB1 (t) cos B2(t) defines a martingale, where {B1(t) : t � 0} and
{B2(t) : t � 0} are independent linear Brownian motions. �

Exercises

Exercise 2.1. Show that the definition of d-dimensional Brownian motion is invariant un-
der an orthonormal change of coordinates. More precisely, if A is a d × d-matrix with
AAT = Id and {B(t) : t � 0} is Brownian motion, then so is {AB(t) : t � 0}.
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Exercise 2.2. Show that for any tail event A ∈ T the probability Px(A) is independent
of x, whereas for a germ event A ∈ F+(0) the probability Px(A) may depend on x.

Exercise 2.3. S Show that

(i) If S � T are stopping times, then F+(S) ⊂ F+(T ).
(ii) If Tn ↓ T are stopping times, then F+(T ) =

⋂∞
n=1 F+(Tn ).

(iii) If T is a stopping time, then the random variable B(T ) is F+(T )-measurable.

Exercise 2.4. Let {B(t) : −∞ < t < ∞} be a two-sided Brownian motion as defined in
Exercise 1.4, but including the d-dimensional case. A real valued random variable τ is

• a stopping time if {τ � t} ∈ F+(t) :=
⋂∞

n=1 σ(B(s) : −∞ < s � t + 1
n ),

• a reverse stopping time if {τ � t} ∈ G−(t) :=
⋂∞

n=1 σ(B(s) : t − 1
n � s < ∞).

For a stopping time τ let F+(τ) be the collection of events A with A ∩ {τ � t} ∈ F+(t),
for a reverse stopping time τ let G−(τ) be the collection of events A with A ∩ {τ � t} ∈
G−(t). Show that

(a) {B(τ + t) − B(τ) : t � 0} is a standard Brownian motion independent of F+(τ),

(b) {B(τ − t) − B(τ) : t � 0} is a standard Brownian motion independent of G−(τ).

Exercise 2.5. Let {B(t) : 0 � t � 1} be a linear Brownian motion and F ∈ D[0, 1]. Show
that, almost surely, the set {t ∈ [0, 1] : B(t) = F (t)} is a perfect set.
Hint. Use the Cameron–Martin theorem, see Theorem 1.38.

Exercise 2.6. Let {B(t) : 0 � t � 1} be a linear Brownian motion and

τ = sup
{
t ∈ [0, 1] : B(t) = 0

}
.

Show that, almost surely, there exist times tn < sn < τ with tn ↑ τ such that

B(tn ) < 0 and B(sn ) > 0.

Exercise 2.7. S Let {B(t) : t � 0} be a standard Brownian motion on the line, and T be a
stopping time with E[T ] < ∞. Define an increasing sequence of stopping times by T1 = T

and Tn = T (Bn ) + Tn−1 where the stopping time T (Bn ) is the same function as T , but
associated with the Brownian motion {Bn (t) : t � 0} given by

Bn (t) = B(t + Tn−1) − B(Tn−1).

(a) Show that, almost surely,

lim
n↑∞

B(Tn )
n

= 0.

(b) Show that B(T ) is integrable.
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(c) Show that, almost surely,

lim
n↑∞

B(Tn )
n

= E
[
B(T )

]
.

Combining (a) and (c) implies that E
[
B(T )

]
= 0, which is Wald’s lemma.

Exercise 2.8. Show that, for any x > 0 and measurable set A ⊂ [0,∞),

Px

{
B(s) � 0 for all 0 � s � t and B(t) ∈ A

}
= Px{B(t) ∈ A} − P−x{B(t) ∈ A} .

Exercise 2.9. S Show that any nonempty, closed set with no isolated points is uncountable.
Note that this applies, in particular, to the zero set of linear Brownian motion.

Exercise 2.10. The Ornstein–Uhlenbeck diffusion is the process {X(t) : t ∈ R}, given by

X(t) = e−tB(e2t) for all t ∈ R,

see also Remark 1.10. Show that {X(t) : t � 0} and {X(−t) : t � 0} are Markov pro-
cesses and find their Markov transition kernels.

Exercise 2.11. Let x, y ∈ Rd and {B(t) : t � 0} a d-dimensional Brownian motion
started in x. Define the d-dimensional Brownian bridge {X(t) : 0 � t � 1} with start in x

and end in y by

X(t) = B(t) − t
(
B(1) − y

)
, for 0 � t � 1 .

Show that the Brownian bridge is not a time-homogeneous Markov process.

Exercise 2.12. Find two stopping times S � T with E[S] < ∞ such that

E[(B(S))2 ] > E[(B(T ))2 ].

Exercise 2.13. S The purpose of this exercise is to show that the moment condition in
Theorem 2.50 is optimal. Let {B(t) : t � 0} be a standard linear Brownian motion and
define T = inf{t � 0: B(t) = 1}, so that B(T ) = 1 almost surely. Show that

E[Tα ] < ∞ for all α < 1/2.

Exercise 2.14. Let {B(t) : t � 0} be a standard linear Brownian motion

(a) Show that there exists a stopping time T with ET = ∞ but E[(B(T ))2 ] < ∞.
(b) Show that, for every stopping time T with ET = ∞ and E

√
T < ∞, we have

E
[
B(T )2] = ∞.

Exercise 2.15. Let {B(t) : t � 0} be a linear Brownian motion.

(a) Show that, for σ > 0, the process {exp(σB(t) − σ 2 t
2 ) : t � 0} is a martingale.
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(b) Show, by taking derivatives ∂n

∂σn at 0, that the following processes are martingales.

• {B(t)2 − t : t � 0},
• {B(t)3 − 3tB(t) : t � 0}, and
• {B(t)4 − 6tB(t)2 + 3t2 : t � 0}.

(c) Find E[T 2 ] for T = min{t � 0: B(t) ∈ {a, b}} and a < 0 < b.

Exercise 2.16. S Let {B(t) : t � 0} be a linear Brownian motion and a, b > 0. Show that

P0
{
B(t) = a + bt for some t > 0

}
= e−2ab .

Exercise 2.17. S Let R > 0 and A = {−R,R}. Denote by τ(A) the first hitting time of
A, and by Tx the first hitting times of the point x ∈ R. Consider a linear Brownian motion
started at x ∈ [0, R], and prove that

(a) Ex [τ(A)] = R2 − x2 .

(b) Ex

[
TR

∣∣TR < T0
]

= R2 −x2

3 .

Hint. In (b) use one of the martingales of Exercise 2.15(b).

Exercise 2.18. Let {B(t) : t � 0} be a linear Brownian motion.

(a) Use the optional stopping theorem for the martingale in Exercise 2.15(a) to show
that, with τa = inf{t � 0: B(t) = a},

E0
[
e−λτa

]
= e−a

√
2λ , for all λ, a > 0 .

(b) Show that, with τ−a = inf{t � 0: B(t) = −a}, we have

E0
[
e−λτa

]
= E0
[
e−λτa 1{τa < τ−a}

]
+ E0
[
e−λτ−a 1{τ−a < τa}

]
e−2a

√
2λ .

(c) Deduce that τ = τa ∧ τ−a satisfies

E0
[
e−λτ
]

= sech(a
√

2λ) ,

where sech(x) = 2
ex +e−x .

Exercise 2.19. In this exercise we interpret R2 as the complex plane. Hence a planar Brow-
nian motion becomes a complex Brownian motion. A complex-valued stochastic process
is called a martingale, if its real and imaginary parts are martingales. Let {B(t) : t � 0}
be a complex Brownian motion started in i, the imaginary unit.

(a) Show that {eiλB (t) : t � 0} is a martingale, for any λ ∈ R.

(b) Let T be the first time when {B(t) : t � 0} hits the real axis. Using the optional
stopping theorem at T , show that

E
[
eiλB (T )] = e−λ .

Inverting the Fourier transform, the statement of (b) means that B(T ) is Cauchy dis-
tributed, a fact we already know from an explicit calculation, see Theorem 2.37.
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Exercise 2.20. S Let f : Rd → R be twice continuously differentiable, {B(t) : t � 0} a
d-dimensional Brownian motion such that Ex

∫ t

0 e−λs |f(B(s))| ds < ∞ and

Ex

∫ t

0 e−λs |∆f(B(s))| ds < ∞, for any x ∈ Rd and t > 0.

(a) Show that the process {X(t) : t � 0} defined by

X(t) = e−λt f(B(t)) −
∫ t

0
e−λs
( 1

2 ∆f(B(s)) − λf(B(s))
)
ds

is a martingale.

(b) Suppose U is a bounded open set, λ � 0, and u : U → R is a bounded solution of

1
2 ∆u(x) = λu(x), for x ∈ U ,

and lim
x→x0

u(x) = f(x0) for all x0 ∈ ∂U . Show that,

u(x) = Ex

[
f(B(τ)) e−λτ

]
,

where τ = inf{t � 0: B(t) �∈ U}.

Notes and comments

The Markov property is central to any discussion of Brownian motion. The discussion of
this chapter is only a small fraction of what has to be said, and the Markov property will
be omnipresent in the rest of the book. The name goes back to Markov’s paper [Ma06]
where the Markovian dependence structure was introduced and a law of large numbers
for dependent random variables was proved. The strong Markov property had been used
for special stopping times, like hitting times of a point, since the 1930s. Hunt [Hu56]
formalised the idea and gave rigorous proofs, and so did, independently, Dynkin [Dy57].

Zero-one laws are classics in probability theory. We have already encountered the
powerful Hewitt–Savage law and there are more to come. Blumenthal’s zero-one law was
first proved in [Bl57]. It holds well beyond the setting of Brownian motion, for a class
of Markov processes called Feller processes, which includes all processes with stationary,
independent increments.

The reflection principle is usually attributed to D. André [An87], who stated a variant
for random walks. His concern was the ballot problem: if two candidates in a ballot receive
a, respectively b votes, with a > b, what is the probability that the first candidate was
always in the lead during the counting of the votes? See the classical text of Feller [Fe68]
for more on this problem. A formulation of the reflection principle for Brownian motion
was given by Lévy [Le39], though apparently not based on the rigorous foundation of the
strong Markov property. We shall later use a higher-dimensional version of the reflection
principle, where a Brownian motion in Rd is reflected in a hyperplane.
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The class of Markov processes, defined in this chapter, has a rich and fascinating the-
ory of its own, and some aspects are discussed in the books Rogers and Williams [RW00a,
RW00b] and Chung [Ch82]. A typical feature of this theory is its strong connection to anal-
ysis and potential theory, which stems from the key rôle played by the transition semigroup
in their definition. This aspect is emphasised in different ways in the books by Blumen-
thal and Getoor [BG68] and Bass [Ba98]. Many of the important examples of Markov
processes can be derived from Brownian motion in one way or the other, and this is an ex-
cellent motivation for further study of the theory. Amongst them are stable Lévy processes,
like the Cauchy process or stable subordinators, the Bessel processes, and diffusions.

The intriguing relationship uncovered in Theorem 2.34 has found numerous extensions
and complementary results, among them Pitman’s 2M−B theorem, which we will discuss
in Section 5.5, which describes the process {2M(t) − B(t) : t � 0} as a 3-dimensional
Bessel process or, equivalently, a Brownian motion conditioned to stay positive.

The concept of martingales is due to Doob, see [Do53]. They are an important class
of stochastic processes in their own right and one of the gems of modern probability the-
ory. A gentle introduction, mostly in discrete time, is Williams [Wi91], while Revuz and
Yor [RY94] discuss continuous martingales and the rich relations to Brownian motion. A
fascinating fact, due to Dambis [Da65], Dubins, and Schwarz [DS65], is that for every
continuous martingale {M(t) : t � 0} with unbounded quadratic variation there exists a
time-change, i.e. a reparametrisation t �→ Tt such that Tt, t � 0 are stopping times, such
that t �→ M(Tt) is a Brownian motion.

The martingale featuring in Exercise 2.15 (a) plays an important rôle in the context
of the Cameron–Martin theorem. It represents the density of the law of a Brownian mo-
tion with constant drift, with respect to the law of a driftless Brownian motion on the
space C[0, t], see Remark 1.43. See also Freedman [Fr83] for a nice treatment of this
connection. Girsanov’s theorem offers a more systematic approach to mutual densities,
which is best understood in the language of semimartingales, see for example Revuz and
Yor [RY94]. Theorem 2.50 establishes a special case of an important result in martingale
theory, the Burkholder–Davis–Gundy inequalities, see [BDG72] for the original paper and
Theorem 3.28 of Karatzas and Shreve [KS91] or Rogers and Williams [RW00b] for a text-
book treatment. A presentation closer to ours is in Proposition VII-2-3(b) of Neveu [Ne75].
Exercise 2.17 appears in similar form in Stern [St75].
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Harmonic functions, transience and recurrence

In this chapter we explore the relation of harmonic functions and Brownian motion. This
approach will be particularly useful for d-dimensional Brownian motion for d > 1. It
allows us to study the fundamental questions of transience and recurrence of Brownian
motion, investigate the classical Dirichlet problem of electrostatics, and provide the back-
ground for the deeper investigations of probabilistic potential theory, which will follow in
Chapter 8.

3.1 Harmonic functions and the Dirichlet problem

Let U be a domain, i.e. a connected open set U ⊂ Rd , and ∂U be its boundary. Suppose
that its closure U is a homogeneous body and its boundary is electrically charged, the
charge given by some continuous function ϕ : ∂U → R. The Dirichlet problem asks for
the voltage u(x) at some point x ∈ U . Kirchhoff’s laws state that u must be a harmonic
function in U . We therefore start by discussing the basic features of harmonic functions.

Definition 3.1. Let U ⊂ Rd be a domain. A function u : U → R is harmonic (on U ) if it
is twice continuously differentiable and, for any x ∈ U ,

∆u(x) :=
d∑

j=1

∂2u

∂x2
j

(x) = 0.

If instead of the last condition only ∆u(x) � 0, then the function u is subharmonic. �

To begin with we give two useful reformulations of the harmonicity condition, called the
mean value properties, which do not make explicit reference to differentiability.

Theorem 3.2 Let U ⊂ Rd be a domain and u : U → R measurable and locally bounded.
The following conditions are equivalent:

(i) u is harmonic;
(ii) for any ball B(x, r) ⊂ U , we have

u(x) =
1

L(B(x, r))

∫
B(x,r)

u(y) dy;

65
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(iii) for any ball B(x, r) ⊂ U ,

u(x) =
1

σx,r (∂B(x, r))

∫
∂B(x,r)

u(y) dσx,r (y),

where σx,r is the surface measure on ∂B(x, r).

Remark 3.3 We use the following version of Green’s identity,∫
∂B(x,r)

∂u

∂n
(y) dσx,r (y) =

∫
B(x,r)

∆u(y) dy, (3.1)

where n(y) is the outward normal vector of the ball at y, see [Ba95]. One can avoid the
use of this identity and prove the result by purely probabilistic means, see Exercise 8.1. �

Proof. (ii) ⇒ (iii) Assume u has the mean value property (ii). Define ψ : (0,∞) → R by

ψ(r) = r1−d

∫
∂B(x,r)

u(y) dσx,r (y).

Then, for any r > 0, we have

rd L(B(x, 1))u(x) = L(B(x, r))u(x) =
∫
B(x,r)

u(y) dy =
∫ r

0
ψ(s) sd−1 ds.

Differentiating with respect to r gives ψ(r) = dL(B(x, 1))u(x) for almost all r ∈ (0,∞).
As drd−1L(B(x, 1)) = σx,r (∂B(x, r)) we infer that

u(x) =
1

σx,r (∂B(x, r))

∫
∂B(x,r)

u(y) dσx,r (y), for almost all r ∈ (0,∞). (3.2)

Suppose g : [0,∞) → [0,∞) is a smooth function with compact support in [0, ε) and∫
g(|x|) dx = 1. Integrating (3.2) one obtains

u(x) =
∫

u(y)g(|x − y|) dy

for all x ∈ U and sufficiently small ε > 0. As convolution of a smooth function with a
bounded function produces a smooth function, we observe that u is infinitely often differ-
entiable in U . In particular, this implies that (3.2) holds indeed for all r > 0, proving (iii).

(iii) ⇒ (ii) Fix s > 0, multiply (iii) by σx,r (∂B(x, r)) and integrate over all radii 0 < r < s.

(iii) ⇒ (i) We have seen above that (iii) implies that u is infinitely often differentiable
in U . Now suppose that ∆u �= 0, so that there exists a small ball B(x, ε) ⊂ U such that
either ∆u(x) > 0 on B(x, ε), or ∆u(x) < 0 on B(x, ε). With the notation from above,

0 = ψ′(r) = r1−d

∫
∂B(x,r)

∂u

∂n
(y) dσx,r (y) = r1−d

∫
B(x,r)

∆u(y) dy,

using (3.1). This is a contradiction.

(i) ⇒ (iii) Suppose that u is harmonic and B(x, r) ⊂ U . Using (3.1), we obtain that

ψ′(r) = r1−d

∫
∂B(x,r)

∂u

∂n
(y) dσx,r (y) = r1−d

∫
B(x,r)

∆u(y) dy = 0.

Hence ψ is constant, and as limr↓0 ψ(r) = σ0,1(B(0, 1))u(x), we obtain (iii).
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Remark 3.4 A twice differentiable function u : U → R is subharmonic if and only if

u(x) � 1
L(B(x, r))

∫
B(x,r)

u(y) dy for any ball B(x, r) ⊂ U . (3.3)

This can be obtained in a way very similar to Theorem 3.2, see also Exercise 3.1. �

An important property satisfied by harmonic, and in fact subharmonic, functions is the
maximum principle. This is one of the key principles of analysis.

Theorem 3.5 (Maximum principle) Suppose u : Rd → R is a function, which is subhar-
monic on an open connected set U ⊂ Rd .

(i) If u attains its maximum in U , then u is a constant.

(ii) If u is continuous on Ū and U is bounded, then

max
x∈Ū

u(x) = max
x∈∂U

u(x).

Remark 3.6 If u is harmonic, the theorem may be applied to both u and −u. Hence the
conclusions of the theorem also hold with ‘maximum’ replaced by ‘minimum’. �

Proof. (i) Let M be the maximum. Note that V = {x ∈ U : u(x) = M} is
relatively closed in U . Since U is open, for any x ∈ V , there is a ball B(x, r) ⊂ U . By the
mean-value property of u, see Remark 3.4,

M = u(x) � 1
L(B(x, r))

∫
B(x,r)

u(y) dy � M.

Equality holds everywhere, and as u(y) � M for all y ∈ B(x, r), we infer that u(y) = M

almost everywhere on B(x, r). By continuity this implies B(x, r) ⊂ V . Hence V is also
open, and by assumption nonempty. Since U is connected we get that V = U . Therefore,
u is constant on U .
(ii) Since u is continuous and Ū is closed and bounded, u attains a maximum on Ū .
By (i) the maximum has to be attained on ∂U .

Corollary 3.7 Suppose u1 , u2 : Rd → R are functions, which are harmonic on a bounded
domain U ⊂ Rd and continuous on Ū . If u1 and u2 agree on ∂U , then they are identical.

Proof. By Theorem 3.5(ii) applied to u1 − u2 we obtain that

sup
x∈Ū

{
u1(x) − u2(x)

}
= sup

x∈∂U

{
u1(x) − u2(x)

}
= 0.

Hence u1(x) � u2(x) for all x ∈ Ū . Applying the same argument to u2 − u1 , one sees
that supx∈Ū {u2(x) − u1(x)} = 0. Hence u1(x) = u2(x) for all x ∈ Ū .

We can now formulate the basic fact on which the relationship of Brownian motion and
harmonic functions rests.
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Theorem 3.8 Suppose U is a domain, {B(t) : t � 0} a Brownian motion started inside
U and τ = τ(∂U) = min{t � 0: B(t) ∈ ∂U} the first hitting time of its boundary.
Let ϕ : ∂U → R be measurable, and such that the function u : U → R with

u(x) = Ex

[
ϕ(B(τ)) 1{τ < ∞}

]
, for every x ∈ U , (3.4)

is locally bounded. Then u is a harmonic function.

Proof. The proof uses only the strong Markov property of Brownian motion and the
mean value characterisation of harmonic functions. For a ball B(x, δ) ⊂ U let τ̃ = inf{t >

0: B(t) �∈ B(x, δ)}, then the strong Markov property implies that

u(x) = Ex

[
Ex

[
ϕ(B(τ)) 1{τ < ∞}

∣∣F+(τ̃)
]]

= Ex

[
u
(
B(τ̃)
)]

=
∫

∂B(x,δ)
u(y)�x,δ (dy),

where �x,δ is the uniform distribution on the sphere ∂B(x, δ). Therefore, u has the mean
value property and, as it is also locally bounded, it is harmonic on U by Theorem 3.2.

Definition 3.9. Let U be a domain in Rd and let ∂U be its boundary. Suppose ϕ : ∂U → R
is a continuous function on its boundary. A continuous function v : U → R is a solution
to the Dirichlet problem with boundary value ϕ, if it is harmonic on U and v(x) = ϕ(x)
for x ∈ ∂U . �

The Dirichlet problem was posed by Gauss in 1840. In fact Gauss thought he showed
that there is always a solution, but his reasoning was wrong and Zaremba in 1911 and
Lebesgue in 1924 gave counterexamples. However, if the domain is sufficiently nice there
is a solution, as we will see below.

Definition 3.10. Let U ⊂ Rd be a domain. We say that U satisfies the Poincaré cone
condition at x ∈ ∂U if there exists a cone V based at x with opening angle α > 0, and
h > 0 such that V ∩ B(x, h) ⊂ U c . �

The following lemma, which is illustrated by Figure 3.1, will prepare us to solve the Dirich-
let problem for ‘nice’ domains. Recall that we denote, for any open or closed set A ⊂ Rd ,
by τ(A) the first hitting time of the set A by Brownian motion,

τ(A) = inf{t � 0: B(t) ∈ A}.

Lemma 3.11 Let 0 < α < 2π and C0(α) ⊂ Rd be a cone based at the origin with opening
angle α, and

a = sup
x∈clB(0,

1
2 )

Px

{
τ(∂B(0, 1)) < τ(C0(α))

}
.

Then a < 1 and, for any positive integer k and h′ > 0, we have

Px

{
τ(∂B(z, h′)) < τ(Cz (α))

}
� ak , for all x, z ∈ Rd with |x − z| < 2−kh′,

where Cz (α) is a cone based at z with opening angle α.
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C0(α)
B(t)

2−k+2

2−k+1

2−k

x

Fig. 3.1. Brownian motion avoiding a cone.

Proof. It is easy to verify a < 1 using, for example, Exercise 1.8. If x ∈ B(0, 2−k ) then
by the strong Markov property

Px

{
τ(∂B(0, 1)) < τ(C0(α))

}
�

k−1∏
i=0

sup
x∈B(0,2−k + i )

Px

{
τ(∂B(0, 2−k+i+1)) < τ(C0(α))

}
= ak .

Therefore, for any positive integer k and h′ > 0, we have by scaling Px

{
τ(∂B(z, h′)) <

τ(Cz (α))
}

� ak , for all x with |x − z| < 2−kh′.

Theorem 3.12 (Dirichlet Problem) Suppose U ⊂ Rd is a bounded domain such that
every boundary point satisfies the Poincaré cone condition, and suppose ϕ is a continuous
function on ∂U . Let τ(∂U) = inf{t > 0: B(t) ∈ ∂U}, which is an almost surely finite
stopping time. Then the function u : U → R given by

u(x) = Ex

[
ϕ(B(τ(∂U)))

]
, for x ∈ U,

is the unique continuous function harmonic on U with u(x) = ϕ(x) for all x ∈ ∂U .

Proof. The uniqueness claim follows from Corollary 3.7. The function u is bounded and
hence harmonic on U by Theorem 3.8. It remains to show that the Poincaré cone condition
implies that u is continuous on the boundary. Fix z ∈ ∂U , then there is a cone Cz (α)
based at z with angle α > 0 with Cz (α)∩B(z, h) ⊂ Uc . By Lemma 3.11, for any positive
integer k and h′ > 0, we have

Px

{
τ(∂B(z, h′)) < τ(Cz (α))

}
� ak

for all x with |x−z| < 2−kh′. Given ε > 0, there is a 0 < δ � h such that |ϕ(y)−ϕ(z)| <

ε for all y ∈ ∂U with |y − z| < δ. For all x ∈ U with |z − x| < 2−k δ,

|u(x) − u(z)| =
∣∣Exϕ(B(τ(∂U))) − ϕ(z)

∣∣ � Ex

∣∣ϕ(B(τ(∂U))) − ϕ(z)
∣∣ . (3.5)
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If the Brownian motion hits the cone Cz (α), which is outside the domain U , before the
sphere ∂B(z, δ), then |z − B(τ(∂U))| < δ, and ϕ(B(τ(∂U))) is close to ϕ(z). The
complement has small probability. More precisely, (3.5) is bounded above by

2‖ϕ‖∞Px

{
τ(∂B(z, δ)) < τ(Cz (α))} + εPx{τ(∂U) < τ(∂B(z, δ))} � 2‖ϕ‖∞ak + ε.

This implies that u is continuous on U .

Remark 3.13 If the Poincaré cone condition holds at every boundary point, one can simu-
late the solution of the Dirichlet problem by running many independent Brownian motions,
starting in x ∈ U until they hit the boundary of U and letting u(x) be the average of the
values of ϕ on the hitting points. �

Remark 3.14 In Chapter 8 we will improve the results on the Dirichlet problem signifi-
cantly and give sharp criteria for the existence of solutions. �

To justify the introduction of conditions on the domain we now give an example where the
function u of Theorem 3.12 fails to solve the Dirichlet problem.

Example 3.15 Take a solution v : B(0, 1) → R of the Dirichlet problem on the planar disc
B(0, 1) with boundary condition ϕ : ∂B(0, 1) → R. Let U = {x ∈ R2 : 0 < |x| < 1} be
the punctured disc. We claim that u(x) = Ex

[
ϕ(B(τ(∂U)))

]
fails to solve the Dirichlet

problem on U with boundary condition ϕ : ∂B(0, 1) ∪ {0} → R if ϕ(0) �= v(0). Indeed,
as planar Brownian motion does not hit points, by Corollary 2.26, the first hitting time τ

of ∂U = ∂B(0, 1)∪ {0} agrees almost surely with the first hitting time of ∂B(0, 1). Then,
by Theorem 3.12, u(0) = E0 [ϕ(B(τ))] = v(0) �= ϕ(0). �

We now show how the techniques we have developed so far can be used to prove a classical
result from harmonic analysis, Liouville’s theorem, by probabilistic means. The proof uses
the reflection principle for higher-dimensional Brownian motion.

Theorem 3.16 (Liouville’s theorem) Any bounded harmonic function on Rd is constant.

Proof. Let u : Rd → [−M,M ] be a harmonic function, x, y two distinct points in
Rd , and H the hyperplane so that the reflection in H takes x to y. Let {B(t) : t � 0}
be Brownian motion started at x, and {B(t) : t � 0} its reflection in H . Let τ(H) =
min{t : B(t) ∈ H} and note that

{B(t) : t � τ(H)} d= {B(t) : t � τ(H)}. (3.6)

Harmonicity implies that E[u(B(t))] = u(x) and decomposing the above into t < τ(H)
and t � τ(H) we get

u(x) = E
[
u(B(t))1{t<τ (H )}

]
+ E
[
u(B(t))1{t � τ (H )}

]
.
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A similar equation holds for u(y) when B(t) is replaced by B(t). Now, using (3.6),

|u(x) − u(y)| =
∣∣E[u(B(t))1{t<τ (H )}

]
− E
[
u(B(t))1{t<τ (H )}

]∣∣
� 2MP{t < τ(H)} → 0 as t → ∞.

Thus u(x) = u(y), and since x and y were chosen arbitrarily, u must be constant.

Remark 3.17 Clearly, any linear function is harmonic. In Exercise 3.10, the reader will be
asked to prove that any harmonic function in Rd with sublinear growth is constant. �

3.2 Recurrence and transience of Brownian motion

A Brownian motion {B(t) : t � 0} in dimension d is called transient if

lim
t↑∞

|B(t)| = ∞ almost surely.

Note that the event {limt↑∞ |B(t)| = ∞} is a tail event and hence, by the zero-one law
for tail events, it must have probability zero or one. In this section we decide in which
dimensions d the Brownian motion is transient, and in which it is not. This question
is intimately related to the exit probabilities of the Brownian motion from an annulus:
Suppose the motion starts at a point x inside an annulus

A = {x ∈ Rd : r < |x| < R}, for 0 < r < R < ∞.

What is the probability that the Brownian motion hits ∂B(0, r) before ∂B(0, R)? The
answer is given in terms of harmonic functions on the annulus and is therefore closely
related to the Dirichlet problem.

To find explicit solutions u : cl A → R of the Dirichlet problem on an annulus it is first
reasonable to assume that u is spherically symmetric, i.e. there is a function ψ : [r,R] → R
such that u(x) = ψ(|x|2). We can express derivatives of u in terms of ψ as

∂iψ(|x|2) = ψ′(|x|2)2xi and ∂iiψ(|x|2) = ψ′′(|x|2)4x2
i + 2ψ′(|x|2).

Therefore, ∆u = 0 means

0 =
d∑

i=1

(
ψ′′(|x|2)4x2

i + 2ψ′(|x|2)
)

= 4|x|2ψ′′(|x|2) + 2dψ′(|x|2).

Letting y = |x|2 > 0 we can write this as

ψ′′(y) =
−d

2y
ψ′(y).

This is solved by every ψ satisfying ψ′(y) = const · y−d/2 and thus ∆u = 0 holds
on {|x| �= 0} for

u(x) =

⎧⎨⎩
|x| if d = 1,

2 log |x| if d = 2,

|x|2−d if d � 3.

(3.7)
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We write u(r) for the value of u(x) for all x ∈ ∂B(0, r). Now define stopping times

Tr = τ(∂B(0, r)) = inf{t > 0: |B(t)| = r} for r > 0,

and denote by T = Tr ∧ TR the first exit time from A. By Theorem 3.12 we have

u(x) = Ex

[
u(B(T ))

]
= u(r)Px{Tr < TR} + u(R)(1 − Px{Tr < TR}).

This formula can be solved

Px{Tr < TR} =
u(R) − u(x)
u(R) − u(r)

and we get an explicit solution for the exit problem.

Theorem 3.18 Suppose {B(t) : t � 0} is a Brownian motion in dimension d � 1 started
in x ∈ A, which is an open annulus A with radii 0 < r < R < ∞. Then,

Px{Tr < TR} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R−|x|
R−r if d = 1,

log R−log |x|
log R−log r if d = 2,

R2−d −|x|2−d

R2−d −r 2−d if d � 3.

Letting R ↑ ∞ in Theorem 3.18 leads to the following corollary.

Corollary 3.19 For any x �∈ B(0, r), we have

Px{Tr < ∞} =

⎧⎨⎩ 1 if d � 2,

rd −2

|x|d −2 if d � 3.

We now apply this to the problem of recurrence and transience of Brownian motion in
various dimensions. Generally speaking, we call a Markov process {X(t) : t � 0} with
values in Rd

• point recurrent, if, almost surely, for every x ∈ Rd there is a (random) sequence tn ↑ ∞
such that X(tn ) = x for all n ∈ N,

• neighbourhood recurrent, if, almost surely, for every x ∈ Rd and ε > 0, there exists a
(random) sequence tn ↑ ∞ such that X(tn ) ∈ B(x, ε) for all n ∈ N.

• transient, if it converges to infinity almost surely.

Theorem 3.20 Brownian motion is

• point recurrent in dimension d = 1,

• neighbourhood recurrent, but not point recurrent, in d = 2,

• transient in dimension d � 3.
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Proof. We leave the case d = 1 as Exercise 3.4, and look at dimension d = 2. Fix
ε > 0 and x ∈ Rd . By Corollary 3.19 and shift-invariance the stopping time t1 = inf{t >

0: B(t) ∈ B(x, ε)} is almost surely finite. Using the strong Markov property at time t1 +1
we see that this also applies to t2 = inf{t > t1 + 1: B(t) ∈ B(x, ε)}, and continuing like
this, we obtain a sequence of times tn ↑ ∞ such that, almost surely, B(tn ) ∈ B(x, ε) for all
n ∈ N. Taking an intersection over a countable family of balls (B(xi, εi) : i = 1, 2, . . .),
forming a basis of the Euclidean topology, implies that in d = 2 Brownian motion is
neighbourhood recurrent. Recall from Corollary 2.26 that planar Brownian motion does
not hit points, hence it cannot be point recurrent.

It remains to show that Brownian motion is transient in dimensions d � 3. Look at the
events An := {|B(t)| > n for all t � Tn3 }. Recall from Proposition 1.23 that Tn3 < ∞
almost surely. By the strong Markov property, for every n � |x|1/3 ,

Px(Ac
n ) = Ex

[
PB (Tn 3 ){Tn < ∞}

]
=
( 1

n2

)d−2
.

Note that the right hand side is summable, and hence the Borel–Cantelli lemma shows that
only finitely many of the events Ac

n occur, which implies that |B(t)| diverges to infinity,
almost surely, and hence that Brownian motion in d � 3 is transient.

Remark 3.21 Neighbourhood recurrence, in particular, implies that the path of a planar
Brownian motion (running for an infinite amount of time) is dense in the plane. �

We now have a qualitative look at the transience of Brownian motion in Rd , d � 3, and
ask for the speed of escape to infinity. This material is slightly more advanced and can be
skipped on first reading.

Consider a standard Brownian motion {B(t) : t � 0} in Rd , for d � 3, and fix a sequence
tn ↑ ∞. For any ε > 0, by Fatou’s lemma,

P
{∣∣B(tn )

∣∣ < ε
√

tn infinitely often
}

� lim sup
n→∞

P
{∣∣B(tn )

∣∣ < ε
√

tn
}

> 0.

By the zero-one law for tail events, see Theorem 2.9, the probability on the left hand side
must therefore be one, whence

lim inf
n→∞

|B(tn )|√
tn

= 0, almost surely. (3.8)

This statement is refined by the Dvoretzky–Erdős test.

Theorem* 3.22 (Dvoretzky–Erdős test) Let {B(t) : t � 0} be Brownian motion in Rd

for d � 3 and f : (0,∞) → (0,∞) increasing. Then∫ ∞

1
f(r)d−2r−d/2 dr < ∞ if and only if lim inf

t↑∞

|B(t)|
f(t)

= ∞ almost surely.

Conversely, if the integral diverges, then lim inf
t↑∞

|B(t)|/f(t) = 0 almost surely.
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For the proof we first recall two generally useful tools. The first is an easy case of the
Paley–Zygmund inequality, see Exercise 3.5 for the full statement.

Lemma 3.23 (Paley–Zygmund inequality) For any nonnegative random variable X with
E[X2 ] < ∞,

P
{
X > 0

}
� E[X]2

E[X2 ]
.

Proof. The Cauchy–Schwarz inequality gives

E[X] = E[X 1{X > 0}] � E[X2 ]1/2 (P{X > 0}
)1/2

,

and the required inequality follows immediately.

The second tool is a version of the Borel–Cantelli lemma, which allows some dependence
of the events. This is known as the Kochen–Stone lemma, and is a consequence of the
Paley–Zygmund inequality, see Exercise 3.6 or [KS64].

Lemma 3.24 Suppose E1 , E2 , . . . are events with

∞∑
n=1

P(En ) = ∞ and lim inf
k→∞

∑k
m=1
∑k

n=1 P(En ∩ Em )(∑k
n=1 P(En )

)2 < ∞ .

Then, with positive probability, infinitely many of the events take place.

A core estimate in the proof of the Dvoretzky–Erdős test is the following lemma, which is
based on the hitting probabilities of the previous paragraphs.

Lemma 3.25 There exists a constant C1 > 0 depending only on the dimension d such that,
for any ρ > 0, we have

sup
x∈Rd

Px

{
there exists t > 1 with |B(t)| � ρ

}
� C1 ρd−2 .

Proof. We use Corollary 3.19 for the probability that the motion started at time one hits
B(0, ρ), to see that

Px

{
there exists t > 1 with |B(t)| � ρ

}
� E0

[( ρ

|B(1) + x|
)d−2]

� ρd−2 1
(2π)d/2

∫
Rd

|y + x|2−d exp
{
− |y |2

2

}
dy.

By considering the integration domains |y + x| � |y| and |y + x| � |y| separately, it is
easy to see that the integral on the right is uniformly bounded in x.

Proof of Theorem 3.22. Define events

An =
{

there exists t ∈ (2n , 2n+1] with |B(t)| � f(t)
}

.
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By Brownian scaling, monotonicity of f , and Lemma 3.25,

P(An ) � P
{

there exists t > 1 with |B(t)| � f(2n+1)2−n/2}
�C1

(
f(2n+1) 2−n/2

)d−2
.

Now assume that the integral converges, or equivalently, that
∞∑

n=1

(
f(2n ) 2−n/2

)d−2
< ∞ . (3.9)

Then the Borel Cantelli lemma and (3.9) imply that, almost surely, the set {t > 0:
|B(t)| � f(t)} is bounded. Since (3.9) also applies to any constant multiple of f in
place of f , it follows that lim inf t↑∞ |B(t)|/f(t) = ∞ almost surely.

For the converse, suppose that the integral diverges, whence
∞∑

n=1

(
f(2n ) 2−n/2

)d−2
= ∞ . (3.10)

In view of (3.8), we may assume that f(t) <
√

t for all large enough t. Changing f on a
finite interval, we may assume that this inequality holds for all t > 0.
For ρ ∈ (0, 1), consider the random variable Iρ =

∫ 2
1 1{|B(t)| � ρ} dt. Since the density

of |B(t)| on the unit ball is bounded from above and also away from zero for t ∈ [1, 2], we
infer that

C2ρ
d � E[Iρ ] � C3ρ

d

for suitable constants depending only on the dimension. To complement this by an estimate
of the second moment, we use the Markov property to see that

E[I2
ρ ] = 2E

[∫ 2

1
1{|B(t)| � ρ}

∫ 2

t

1{|B(s)| � ρ} ds dt
]

� 2E
[∫ 2

1
1{|B(t)| � ρ}EB (t)

∫ ∞

0
1{|B̃(s)| � ρ} ds dt

]
,

where the inner expectation is with respect to a Brownian motion {B̃(t) : t � 0} started
in the fixed point B(t), whereas the outer expectation is with respect to B(t). We analyse
the dependence of the inner expectation on the starting point. Given x �= 0, we let T =
inf{t > 0: |B(t)| = x} and use the strong Markov property to see that

E0

∫ ∞

0
1{|B(s)| � ρ} ds � E

∫ ∞

T

1{|B(s)| � ρ} ds = Ex

∫ ∞

0
1{|B(s)| � ρ} ds,

so that the expectation is maximal if the process is started at the origin. Hence we obtain

E[I2
ρ ] � 2C3 ρd E0

∫ ∞

0
1{|B(s)| � ρ} ds .

Moreover, by Brownian scaling,

E0

∫ ∞

0
1{|B(s)| � ρ} ds = ρ2

∫ ∞

0
P{|B(s)| � 1} ds

� ρ2
(
1 +
∫ ∞

1

L(B(0, 1))
(2πs)d/2 ds

)
= C4 ρ2 ,
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where C4 is a finite constant. In summary, we have E[I2
ρ ] � 2C3C4 ρd+2 . By the Paley–

Zygmund inequality, for a suitable constant C5 > 0,

P{Iρ > 0} � E[Iρ ]2

E[I2
ρ ]

� C5ρ
d−2 .

Now choose ρ = f(2n )2−n/2 , which is smaller than one, as f(t) <
√

t. By Brownian
scaling and monotonicity of f , we have

P(An ) � P{Iρ > 0} � C5

(
f(2n ) 2−n/2

)d−2
,

so
∑

n P(An ) = ∞ by (3.10). For m < n − 1, the Markov property at time 2n−1 ,
Brownian scaling and Lemma 3.25 yield that

P[An | Am ] � sup
x∈Rd

Px

{
there exists t > 1 with |B(t)| � f(2n+1)2(1−n)/2}

� C1

(
f(2n+1) 2(1−n)/2

)d−2
.

From this, and the assumption that f(t) <
√

t, we get that

lim inf
k→∞

∑k
m=1
∑k

n=1 P(An ∩ Am )(∑k
n=1 P(An )

)2 = 2 lim inf
k→∞

∑k
m=1 P(Am )

∑k
n=m+2 P[An | Am ](∑k

n=1 P(An )
)2

� 2
C1

C5
lim inf
k→∞

∑k
n=1(f(2n+1) 2(1−n)/2)d−2∑k

n=1(f(2n ) 2−n/2)d−2
< ∞ .

The Kochen–Stone lemma now yields that P{An infinitely often} > 0, whence by The-
orem 2.9 this probability is 1. Thus the set {t > 0: |B(t)| � f(t)} is almost surely
unbounded. Since (3.10) also applies to εf in place of f for any ε > 0, it follows that
lim inf t↑∞ |B(t)|/f(t) = 0 almost surely.

3.3 Occupation measures and Green’s functions

We now address the following question: Given a bounded domain U ⊂ Rd , how much time
does Brownian motion spend in U? Our first result states that for a linear Brownian motion
running for a finite amount of time, this time is comparable to the Lebesgue measure of U .

Theorem 3.26 Let {B(s) : s � 0} be a linear Brownian motion and t > 0. Define the
occupation measure µt by

µt(A) =
∫ t

0
1A (B(s)) ds for A ⊂ R Borel.

Then, almost surely, µt is absolutely continuous with respect to the Lebesgue measure.
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Proof. Absolute continuity of µt with respect to the Lebesgue measure follows if

lim inf
r↓0

µt(B(x, r))
L(B(x, r))

< ∞ for µt-almost every x ∈ R,

see for example Theorem 2.12 in [Ma95]. To see this we use first Fatou’s lemma and then
Fubini’s theorem,

E
∫

lim inf
r↓0

µt(B(x, r))
L(B(x, r))

dµt(x) � lim inf
r↓0

1
2r

E
∫

µt(B(x, r)) dµt(x)

= lim inf
r↓0

1
2r

∫ t

0

∫ t

0
P
{
|B(s1) − B(s2)| � r

}
ds1 ds2 .

Using that the density of a standard normal random variable X is bounded by one, we get

P
{
|B(s1) − B(s2)| � r

}
= P
{
|X| � r√

|s1 −s2 |

}
� 2r√

|s1 −s2 |
,

and this implies that

lim inf
r↓0

1
2r

∫ t

0

∫ t

0
P
{
|B(s1) − B(s2)| � r

}
ds1 ds2 �

∫ t

0

∫ t

0

ds1 ds2√
|s1 − s2 |

< ∞.

This implies that, almost surely, µt is absolutely continuous with respect to L.

We now turn to higher dimensions d � 2. A first simple result shows that whether the
overall time spent in a bounded set is finite or not depends just on transience or recurrence
of the process.

Theorem 3.27 Let U ⊂ Rd be a nonempty bounded open set and x ∈ Rd arbitrary.

• If d = 2, then Px -almost surely,
∫ ∞

0
1U (B(t)) dt = ∞ .

• If d � 3, then Ex

∫ ∞

0
1U (B(t)) dt < ∞ .

Proof. As U is contained in a ball and contains a ball, it suffices to show this for balls.
By shifting, we can even restrict to balls U = B(0, r) centred in the origin. Let us start
with the first claim. We let d = 2 and let G = B(0, 2r). Let S0 = 0 and, for all k � 0, let

Tk = inf{t > Sk : B(t) �∈ G} and Sk+1 = inf{t > Tk : B(t) ∈ U}.

Recall that, almost surely, these stopping times are finite. From the strong Markov property
we infer, for k � 1,

Px

{ ∫ Tk

Sk

1U (B(t)) dt � s
∣∣∣F+(Sk )

}
= PB (Sk )

{∫ T1

0
1U (B(t)) dt � s

}
= Ex

[
PB (Sk )

{∫ T1

0
1U (B(t)) dt � s

}]
= Px

{∫ Tk

Sk

1U (B(t)) dt � s
}

,

by rotation invariance. Hence the random variables {
∫ Tk

Sk
1U (B(t)) dt, : k = 1, 2, . . .} are

independent and, as the second term does not depend on k, identically distributed. As they
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are not identically zero, but nonnegative, they have positive expectation and, by the strong
law of large numbers we infer∫ ∞

0
1U (B(t)) dt � lim

n→∞

n∑
k=1

∫ Tk

Sk

1U (B(t)) dt = ∞,

which proves the first claim. For the second claim, we first look at Brownian motion
started in the origin and obtain, making good use of Fubini’s theorem and denoting by
p : [0,∞) × Rd × Rd → [0, 1] the transition density of Brownian motion,

E0

∫ ∞

0
1B(0,r)(B(s)) ds =

∫ ∞

0
P0{B(s) ∈ B(0, r)} ds =

∫ ∞

0

∫
B(0,r)

p(s, 0, y) dy ds

=
∫
B(0,r)

∫ ∞

0
p(s, 0, y) ds dy

= σ(∂B(0, 1))
∫ r

0
ρd−1
∫ ∞

0

(
1√
2πs

)d

e
−ρ 2

2 s ds dρ.

Now we can use the substitution t = ρ2/s and obtain, using that d � 3 to ensure finiteness
of the integral, for a suitable constant C(d) < ∞,

= C(d)
∫ r

0
ρd−1ρ2−d dρ = C (d)

2 r2 < ∞.

For start in an arbitrary x �= 0, we look at a Brownian motion started in 0 and a stopping
time T , which is the first hitting time of the sphere ∂B(0, |x|). Using spherical symmetry
and the strong Markov property we obtain

Ex

∫ ∞

0
1B(0,r)(B(s)) ds = E0

∫ ∞

T

1B(0,r)(B(s)) ds

� E0

∫ ∞

0
1B(0,r)(B(s)) ds < ∞.

In the case when Brownian motion is transient it is interesting to ask further for the ex-
pected time the process spends in a bounded open set. In order not to confine this discus-
sion to the case d � 3 we introduce suitable stopping rules for Brownian motion in d = 2.

Definition 3.28. Suppose that {B(t) : 0 � t � T} is a d-dimensional Brownian motion
and one of the following three cases holds:

(1) d � 3 and T = ∞,
(2) d � 2 and T is an independent exponential time with parameter λ > 0,
(3) d � 2 and T is the first exit time from a bounded domain D.

We use the convention that D = Rd in cases (1), (2). We refer to these three cases by
saying that {B(t) : 0 � t � T} is a transient Brownian motion. �

Remark 3.29 For a transient Brownian motion {B(t) : 0 � t � T}, given F+(t), on
the event {B(t) = y, t < T}, the process {B(s + t) : 0 � s � T} is again a transient
Brownian motion of the same type, started in y. We do not consider Brownian motion
stopped at a fixed time, because this model lacks this form of the Markov property. �



3.3 Occupation measures and Green’s functions 79

Theorem 3.30 For transient Brownian motion {B(t) : 0 � t � T} there exists a transition
(sub-)density p∗ : [0,∞) × Rd × Rd → [0, 1] such that, for any t > 0,

Px

{
B(t) ∈ A and t � T

}
=
∫

A

p∗(t, x, y) dy for every A ⊂ Rd Borel.

Moreover, for all t � 0 and L-almost every x, y ∈ D we have p∗(t, x, y) = p∗(t, y, x).

Proof. Fix t throughout the proof. For the existence of the density, by the Radon–
Nikodým theorem, it suffices to check that Px{B(t) ∈ A and t � T} = 0, if A is a Borel
set of Lebesgue measure zero. This is obvious, by just dropping the requirement t � T ,
and recalling that B(t) is normally distributed. If d � 3 and T = ∞, or if d � 2 and T is
independent, exponentially distributed symmetry is obvious.
Hence we can now concentrate on the case d � 2 and a bounded domain D. We fix a
compact set K ⊂ D and define, for every x ∈ K and n ∈ N, a measure µ(n )

x on the Borel
sets A ⊂ D,

µ(n )
x (A) = Px

{
B( kt

2n ) ∈ K for all k = 0, . . . , 2n and B(t) ∈ A
}

.

Then µ(n )
x has a density

p∗n (t, x, y) =
∫

K

· · ·
∫

K

2n∏
i=1

p
(

t
2n , zi−1 , zi

)
dz1 . . . dz2n −1 ,

where z0 = x, z2n = y and p is the transition density of d-dimensional Brownian motion.
As p is symmetric in the space variables, so is p∗n for every n. Note that p∗n is decreasing in
n. From the monotone convergence theorem one can see that p∗K (t, x, y) := lim p∗n (t, x, y)
is a transition subdensity of Brownian motion stopped upon leaving K. The symmetry of
p∗n gives p∗K (t, x, y) = p∗K (t, y, x). Choosing an increasing sequence of compact sets
exhausting D and taking a monotone limit yields a symmetric version p∗(t, x, y) of the
transition density.

In all of our three cases of transient Brownian motions we will from now on choose partic-
ular versions of the transition densities. Recall that p denotes the transition kernel for the
(unstopped) Brownian motion. Then,

(1) if d � 3 and T = ∞, we take p∗(t, x, y) = p(t, x, y);
(2) if d � 2 and T is exponential with parameter λ > 0, we choose

p∗(t, x, y) = e−λt p(t, x, y);

(3) if d � 2 and T is the first exit time from D, we let

p∗(t, x, y) = p(t, x, y) − Ex

[
p(t − T,B(T ), y) 1{T < t}

]
.

It is easy to verify that these p∗ are indeed transition densities as claimed.
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Definition 3.31. For transient Brownian motion {B(t) : 0 � t � T} we define the
Green’s function G : Rd × Rd → [0,∞] by

G(x, y) =
∫ ∞

0
p∗(t, x, y) dt .

The Green’s function is also called the Green kernel. Sometimes it is also called the
potential kernel, but we shall reserve this terminology for a closely related concept, see
Remark 8.21. �

In probabilistic terms G is the density of the expected occupation measure for the transient
Brownian motion started in x.

Theorem 3.32 If f : Rd → [0,∞] is measurable, then

Ex

∫ T

0
f(B(t)) dt =

∫
f(y)G(x, y) dy.

Proof. Fubini’s theorem implies

Ex

∫ T

0
f(B(t)) dt =

∫ ∞

0
Ex

[
f(B(t)) 1{t � T }

]
dt =
∫ ∞

0

∫
p∗(t, x, y) f(y) dy dt

=
∫ ∫ ∞

0
p∗(t, x, y) dt f(y) dy =

∫
G(x, y)f(y) dy,

by definition of the Green’s function.

In case (1), i.e. if T = ∞, Green’s function can be calculated explicitly.

Theorem 3.33 If d � 3 and T = ∞, then

G(x, y) = c(d) |x − y|2−d , where c(d) = Γ(d/2−1)
2πd / 2 .

Proof. Assume d � 3 and use the substitution s = |x − y|2/2t to obtain,

G(x, y) =
∫ ∞

0

1
(2πt)d/2 e−|x−y |2 /2t dt =

∫ 0

∞

( s

π|x − y|2
)d/2

e−s
(
− |x − y|2

2s2

)
ds

=
|x − y|2−d

2πd/2

∫ ∞

0
s(d/2)−2 e−s ds =

Γ(d/2 − 1)
2πd/2 |x − y|2−d ,

where Γ(x) =
∫∞

0 sx−1e−s ds is the Gamma function. This proves that G has the given
form and the calculation above also shows that the integral is infinite if d � 2.

In case (2), if Brownian motion is stopped at an independent exponential time, one can find
the asymptotics of G(x, y) for x → y.

Theorem 3.34 If d = 2 and T is an independent exponential time with parameter λ > 0,
then

G(x, y) ∼ − 1
π

log |x − y| for |x − y| ↓ 0 .
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Proof. From the explicit form of p∗ we get

G(x, y) = Gλ (x − y) :=
∫ ∞

0

1
2πt

exp
{
− |x−y |2

2t − λt
}

dt .

We thus get Gλ (x − y) = G1(
√

λ(x − y)) and may assume without loss of generality
that λ = 1. Then

G(x, y) =
1
2π

∫ ∞

0

e−t

t

∫ ∞

|x−y |2 /(2t)
e−s ds dt =

1
2π

∫ ∞

0
e−s

∫ ∞

|x−y |2 /(2s)

e−t

t
dt ds .

For an upper bound we use that,∫ ∞

|x−y |2 /(2s)

e−t

t
dt �

{
log 2s

|x−y |2 + 1, if |x − y|2 � 2s,

1, if |x − y|2 > 2s.

For |x − y| � 1 this gives, with γ̃ :=
∫∞

1 e−s log s ds < ∞, a bound of

G(x, y) � 1
2π

(
1 + log 2 + γ̃ − 2 log |x − y|

)
,

which is asymptotically equal to − 1
π log |x − y|. For a lower bound we use∫ ∞

|x−y |2 /(2s)

e−t

t
dt � log

2s

|x − y|2 − 1,

and thus with 0 < γ := −
∫∞

0 e−s log s ds denoting Euler’s constant,

G(x, y) � 1
2π

(
− 1 + log 2 − γ − 2 log |x − y|

)
,

and again this is asymptotically equal to − 1
π log |x − y|.

We now explore some of the major analytic properties of Green’s function.

Theorem 3.35 In all three cases of transient Brownian motion in d � 2, the Green’s
function G : D × D → [0,∞] has the following properties:

(i) G is finite off and infinite on the diagonal ∆ = {(x, y) : x = y}.

(ii) G is symmetric, i.e. G(x, y) = G(y, x) for all x, y ∈ D.

(iii) For any y ∈ D the Green’s function G( · , y) is subharmonic on D \ {y}.
Moreover, in case (1) and (3) it is harmonic.

This result is easy in the case d � 3, T = ∞, where the Green’s function is explicitly
known by Theorem 3.33. We prepare the proof in d = 2 by two lemmas of independent
interest.



82 Harmonic functions, transience and recurrence

Lemma 3.36 If d = 2, for x, y, z ∈ R2 with |x − z| = 1,

− 1
π

log |x − y| =
∫ ∞

0
p(s, x, y) − p(s, x, z) ds ,

where p is the transition kernel for the (unstopped) Brownian motion.

Proof. For |x − z| = 1, we obtain∫ ∞

0
p(t, x, y) − p(t, x, z) dt =

1
2π

∫ ∞

0

(
e−

|x −y |2
2 t − e−

1
2 t

) dt

t

=
1
2π

∫ ∞

0

(∫ 1/(2t)

|x−y |2 /(2t)
e−s ds

) dt

t
,

and by changing the order of integration this equals

1
2π

∫ ∞

0
e−s
(∫ 1/(2s)

|x−y |2 /(2s)

dt

t

)
ds = − 1

π
log |x − y|,

which completes the proof.

Lemma 3.37 Let D ⊂ R2 be a bounded domain and x, y ∈ D and T the first exit time
from D. Then, with u(x) = 2 log |x|,

G(x, y) =
−1
2π

u(x − y) − Ex

[−1
2π

u
(
B(T ) − y

)]
.

Proof. Recall that

p∗(t, x, y) = p(t, x, y) − Ex

[
p(t − T,B(T ), y)1{T < t}

]
.

As p(t, x, x + v) does not depend on x, we can add

0 = −p(t, x, x + v) + Ex

[
p(t, B(T ), B(T ) + v)

]
on the right hand side. Integrating over t and using Lemma 3.36 yields the statement.

Proof of Theorem 3.35. We first look at properties (i) and (ii). These are obvious
in the case d � 3, T = ∞, by the explicit form of the Green’s function uncovered in
Theorem 3.33. In the case that T is an independent exponential time we can see from the
explicit form of p∗ that the Green’s function is symmetric and finite everywhere except on
the diagonal. Moreover note for later reference that in this case twice differentiability is
easy to check using dominated convergence.
We now focus on the case where the Brownian motion is stopped upon leaving a bounded
domain D and look at the case d = 2 and d � 3 separately. First let d = 2. Lemma 3.37
gives, for x �= y, that G(x, y) < ∞. However, we have

Ex [−1/(2π)u(B(T ) − x)] < ∞,

hence G(x, x) = ∞ by Lemma 3.37. If x ∈ D, then G(x, · ) is continuous on D \ {x},
because the right hand side of the equation in Lemma 3.37 is continuous. Similarly, if
y ∈ D the right hand side is continuous in x on D \ {y}, as Ex [u(B(T )− y)] is harmonic



3.3 Occupation measures and Green’s functions 83

in x. Hence G( · , x) is also continuous on D \ {x}. The symmetry follows from the
almost-everywhere symmetry of p∗(t, · , · ) together with the continuity. If d � 3 the same
proof works, replacing −1/(2π)u(x−y) by �(x, y) = c(d)|x−y|2−d . In fact the argument
becomes easier because

�(x, y) =
∫ ∞

0
p(t, x, y) dt , for all x, y ∈ Rd ,

and there is no need to subtract a ‘renormalisation’ term.
Next we investigate (sub-)harmonicity of the Green’s function in all cases. Define

Gε(x, y) :=
∫
B(y ,ε)

G(x, z) dz, for B(y, ε) ⊂ D and x ∈ D.

We first prove that Gε(· , y) satisfies the mean value property of subharmonic functions on
D \ B(y, ε), i.e.

Gε(x, y) � 1
L(B(x, r))

∫
B(x,r)

Gε(z, y) dz, for 0 < r < |x − y| − ε. (3.11)

Indeed, fix x �= y in D, let 0 < r < |x − y| and ε < |x − y| − r. Denote τ =
inf{t : |B(t) − x| = r}. As a Brownian motion started in x spends no time in B(y, ε)
before time τ , we can write

Gε(x, y) = Ex

[
1{τ < T}

∫ T

τ

1{B(t) ∈ B(y, ε)} dt
]
.

From the strong Markov property applied at time τ , we obtain

Gε(x, y) = Ex

[
1{τ < T}EB (τ )

∫ T̃

0
1{B̃(t) ∈ B(y, ε)} dt

]
,

where the inner expectation is with respect to a transient Brownian motion {B̃(t) : 0 � t

� T̃} with the same stopping rule, but started in the fixed point B(τ). By the strong
Markov property and since, on the event τ < T , the random variable B(τ) is uniformly
distributed on ∂B(x, r), by rotational symmetry, we conclude,

Gε(x, y) = Px

{
τ < T

} ∫
∂B(x,r)

Gε(z, y) d�x,r (z) �
∫

∂B(x,r)
Gε(z, y) d�x,r (z).

This implies (3.11) and it is also easy to see that in cases (1) and (3) we have equality
in (3.11), as in these cases τ < T with probability one. Focusing on these two cases for
the moment, we obtain using continuity of G, for x, y ∈ D with |x − y| > r,

G(x, y) = lim
ε↓0

Gε(x, y)
L(B(y, ε))

= lim
ε↓0

1
L(B(x, r))

∫
B(x,r)

Gε(z, y)
L(B(y, ε))

dz

=
1

L(B(x, r))

∫
B(x,r)

G(z, y) dz,

where the last equality follows from the bounded convergence theorem. This proves har-
monicity in cases (1) and (3). In case (2) the same argument still gives (3.11), and we can
infer that G( · , y) is subharmonic on Rd \ {y} as the function is twice differentiable.
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Remark 3.38 Let K ⊂ Rd , for d � 3, be a compact set and µ be any measure on K. Then

u(x) =
∫

K

G(x, y) dµ(y), for x ∈ Kc

is a harmonic function on Kc . This follows as, by Fubini’s theorem, the mean value prop-
erty of G( · , y) can be carried over to u. Physically, u(x) is the electrostatic (or Newtonian)
potential at x resulting from a charge represented by µ. The Green function G( · , y) can
be interpreted as the electrostatic potential induced by a unit charge in the point y. �

3.4 The harmonic measure

We have seen in the previous section that, for any compact set K ⊂ Rd , d � 3, and any
µ on K functions of the form u(x) =

∫
G(x, y) dµ(y) are positive harmonic functions on

Kc . An interesting question is whether every positive harmonic function on Kc can be
represented in such a way by a suitable measure µ on ∂K. The answer can be given in
terms of the harmonic measure.

Definition 3.39. Let {B(t) : t � 0} be a d-dimensional Brownian motion, d � 2, started
in some point x and fix a closed set A ⊂ Rd . Define a measure µA (x, · ) by

µA (x,B) = P
{
B(τ) ∈ B, τ < ∞} where τ = inf{t � 0: B(t) ∈ A},

for B ⊂ A Borel. In other words, µA (x, · ) is the distribution of the first hitting point of
A, and the total mass of the measure is the probability that a Brownian motion started in x

ever hits the set A. If x �∈ A the harmonic measure is supported by ∂A. �

The following corollary is an equivalent reformulation of Theorem 3.12.

Corollary 3.40 If the Poincaré cone condition is satisfied at every point x ∈ ∂U on the
boundary of a bounded domain U , then the solution of the Dirichlet problem with boundary
condition ϕ : ∂U → R, can be written as

u(x) =
∫

ϕ(y)µ∂U (x, dy) for all x ∈ U.

Remark 3.41 Of course, the harmonicity of u does not rely on the Poincaré cone condition.
In fact, by Theorem 3.8, for any compact A ⊂ Rd and Borel set B ⊂ ∂A, the function
x �→ µA (x,B) is harmonic on Ac . �

Besides its value in the discussion of the Dirichlet problem, the harmonic measure is also
interesting in its own right, as it intuitively weighs the points of A according to their acces-
sibility from x. We now show that the measures µA (x, · ) for different values of x ∈ Ac

are mutually absolutely continuous. This is a form of the famous Harnack principle.

Theorem 3.42 (Harnack principle) Suppose A ⊂ Rd is compact and x, y are in the
unbounded component of Ac . Then µA (x, · ) � µA (y, · ).
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Proof. Given B ⊂ ∂A Borel, by Remark 3.41, the mapping x �→ µA (x,B) is a
harmonic function on Ac . If it takes the value zero for some y ∈ Ac , then y is a minimum
and the maximum principle, Theorem 3.5, together with the subsequent remark, imply that
µA (x,B) = 0 for all x ∈ Ac , as required.

The Harnack principle allows to formulate the following definition.

Definition 3.43. A compact set A is called nonpolar for Brownian motion, or simply
nonpolar, if µA (x,A) > 0 for one (and hence for all) x ∈ Ac . Otherwise, the set A is
called polar for Brownian motion. �

We now give an explicit formula for the harmonic measures on the unit sphere ∂B(0, 1).
Note that if x = 0 then the distribution of B(τ) is (by symmetry) the uniform distribution,
but if x is another point it is an interesting problem to determine this distribution in terms
of a probability density.

Theorem 3.44 (Poisson’s formula) Suppose that B ⊂ ∂B(0, 1) is a Borel subset of the
unit sphere for d � 2. Let � denote the uniform distribution on the unit sphere. Then, for
all x �∈ ∂B(0, 1),

µ∂B(0,1)(x,B) =
∫

B

∣∣1 − |x|2
∣∣

|x − y|d d�(y).

Remark 3.45 The density appearing in the theorem is usually called the Poisson kernel
and appears frequently in potential theory. �

Proof. We start by looking at the case |x| < 1. Recall that τ denotes the first hitting
time of the set ∂B(0, 1). To prove the theorem we indeed show that for every bounded
measurable f : Rd → R we have

Ex [f(B(τ))] =
∫

∂B(0,1)

1 − |x|2
|x − y|d f(y) d�(y), (3.12)

which on the one hand implies the formula by choosing indicator functions, on the other
hand, by the monotone class theorem, see e.g. Chapter 5, (1.5), in [Du95], it suffices to
show this for smooth functions f . To prove (3.12) we recall Theorem 3.12, which tells us
that we just have to show that the right hand side as a function in x ∈ B(0, 1) defines a
solution of the Dirichlet problem on B(0, 1) with boundary value f .
Straightforward (double) differentiation shows that, for every y ∈ ∂B(0, 1), the mapping

x �→ 1 − |x|2
|x − y|d

is harmonic on B(0, 1). Using the characterisation of harmonic functions via the mean
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value property, Theorem 3.2, we get for any ball B(z, r) ⊂ B(0, 1),

1
σz,r (∂B(z, r))

∫
∂B(z ,r)

(∫
∂B(0,1)

1 − |x|2
|x − y|d f(y) d�(y)

)
dσz,r (x)

=
∫

∂B(0,1)

(
1

σz,r (∂B(z, r))

∫
∂B(z ,r)

1 − |x|2
|x − y|d dσz,r (x)

)
f(y) d�(y)

=
∫

∂B(0,1)

1 − |z|2
|z − y|d f(y) d�(y),

by Fubini’s theorem, which implies the required harmonicity. To check the boundary con-
dition first look at the case f ≡ 1, in which case we have to show that, for all x ∈ B(0, 1),

I(x) :=
∫

∂B(0,1)

1 − |x|2
|x − y|d �(dy) ≡ 1.

Indeed, observe that I(0) = 1, I is invariant under rotation and ∆I = 0 on B(0, 1), by the
first part. Now let x ∈ B(0, 1) with |x| = r < 1 and let τ := inf{t : |B(t)| > r}. By
Theorem 3.12,

I(0) = E0
[
I(B(τ))

]
= I(x) ,

using rotation invariance in the second step. Hence I ≡ 1, as required.
Now we show that the right hand side in the theorem can be extended continuously to all
points y ∈ ∂B(0, 1) by f(y). We write D0 for ∂B(0, 1) with a δ-neighbourhood B(y, δ)
removed and D1 = ∂B(0, 1) \ D0 = ∂B(0, 1) ∩ B(y, δ). We have, using that I ≡ 1, for
all x ∈ B(y, δ/2) ∩ B(0, 1),∣∣∣f(y) −

∫
∂B(0,1)

1 − |x|2
|x − z|d f(z) d�(z)

∣∣∣
=
∣∣∣ ∫

∂B(0,1)

1 − |x|2
|x − z|d (f(y) − f(z)) d�(z)

∣∣∣
� 2‖f‖∞

∫
D0

1 − |x|2
|x − z|d d�(z) + sup

z∈D1

|f(y) − f(z)|.

For fixed δ > 0 the first term goes to 0 as x → y by dominated convergence, whereas
the second can be made arbitrarily small by choice of δ. This completes the proof if
x ∈ B(0, 1).
If |x| > 1 we use inversion at the unit circle to transfer the problem to the case studied
before. Indeed, it is not hard to check that a function

u : B(0, 1)
c → R

is harmonic if and only if its inversion

u∗ : B(0, 1) \ {0} → R, u∗(x) = u
(

x
|x|2
)
|x|2−d ,

is harmonic, see Exercise 3.2. Now suppose that f : ∂B(0, 1) → R is a smooth function
on the boundary. Then define a harmonic function

u : B(0, 1)
c → R, u(x) = Ex

[
f
(
B(τ(∂B(0, 1)))

)
1
{
τ(∂B(0, 1)) < ∞

}]
.
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Then u∗ : B(0, 1) \ {0} → R is bounded and harmonic. By Exercise 3.11 we can extend
it to the origin, so that the extension is harmonic on B(0, 1). In fact, this extension is
obviously given by u∗(0) =

∫
f d�. The harmonic extension is continuous on the closure,

with boundary values given by f . Hence it agrees with the function of the first part, and
u = u∗∗ must be its inversion, which gives the claimed formula.

We now fix a compact nonpolar set A ⊂ Rd , and look at the harmonic measure µA (x, · )
when x → ∞. The first task is to make sure that the limit object is well-defined.

Theorem 3.46 Let A ⊂ Rd be a compact, nonpolar set, then there exists a probability
measure µA on A, given by

µA (B) = lim
x→∞

Px

{
B(τ(A)) ∈ B | τ(A) < ∞

}
for B ⊂ A Borel.

This measure is called the harmonic measure (from infinity).

Remark 3.47 The harmonic measure weighs the points of A according to their accessibility
from infinity. It is naturally supported by the outer boundary of A, which is the boundary
of the infinite connected component of Rd \ A. �

The proof is prepared by a lemma, which is yet another example how the strong Markov
property can be exploited to great effect.

Lemma 3.48 For A ⊂ Rd compact and nonpolar and every ε > 0, there exists a large
R > 0 such that, for all x ∈ ∂B(0, R) and any hyperplane H ⊂ Rd containing the origin,

Px

{
τ(A) < τ(H)

}
< ε Px

{
τ(A) < ∞

}
.

Proof. Fix a radius r > 0 such that A ⊂ B(0, r). Suppose there exists a large radius
R > r such that, for all x ∈ ∂B(0, R),

Px

{
τ(B(0, r)) < τ(H)

}
< ε Px

{
τ(B(0, r)) < ∞

}
. (3.13)

Then, using the strong Markov property,

Px

{
τ(A) < τ(H)

}
� Ex

[
1{τ(B(0, r)) < τ(H)}PB (τ (B(0,r))){τ(A) < ∞}

]
.

Now recall from Remark 3.41 that x �→ Px{τ(A) < ∞} is harmonic on Ac . Hence the
ratio of any two values of this function on the compact set ∂B(0, r) is bounded by a fixed
constant C > 0, independent of ε > 0. Therefore, using (3.13) in the second step,

Px

{
τ(A) < τ(H)

}
� C Ex

[
1{τ(B(0, r)) < τ(H)} min

z∈∂B(0,r)
Pz{τ(A) < ∞}

]
< εC Px{τ(A) < ∞},

from which the result follows.
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It remains to show (3.13). Observe that there exists an absolute constant q < 1 such that,
for any x ∈ ∂B(0, 2) and hyperplane H ,

Px

{
τ(B(0, 1)) < τ(H)

}
< q Px

{
τ(B(0, 1)) < ∞

}
.

Let k be large enough to ensure that qk < ε. Then, by the strong Markov property and
Brownian scaling,

sup
x∈∂B(0,r2k )

Px

{
τ(B(0, r)) < τ(H)

}
� sup

x∈∂B(0,r2k )
Ex

[
1{τ(B(0, r2k−1)) < τ(H)}

× PB (τ (B(0,r2k −1 )))
{
τ(B(0, r)) < τ(H)

}]
� q sup

x∈∂B(0,r2k )
Px

{
τ(B(0, r2k−1)) < ∞

}
× sup

x∈∂B(0,r2k −1 )
Px

{
τ(B(0, r)) < τ(H)}.

Iterating this and letting R = r2k gives

sup
x∈∂B(0,R)

Px

{
τ(B(0, r)) < τ(H)

}
� qk

k∏
j=1

sup
x∈∂B(0,r2j )

Px

{
τ(B(0, r2j−1)) < ∞

}
= qk sup

x∈∂B(0,R)
Px

{
τ(B(0, r)) < ∞

}
,

as required to complete the proof.

Proof of Theorem 3.46. Let x, y ∈ ∂B(0, r) and H be the hyperplane through the
origin, which is orthogonal to x − y. If {B(t) : t � 0} is a Brownian motion started in x,
define {B(t) : t � 0} the Brownian motion started in y, obtained by defining B(t) as the
reflection of B(t) at H , for all times t � τ(H), and B(t) = B(t) for all t � τ(H). This
coupling gives, for every ε > 0 and sufficiently large r,∣∣µA (x,B) − µA (y,B)

∣∣ � Px

{
τ(A) < τ(H)

}
� εµA (x,A),

using Lemma 3.48 for the last inequality. In particular, we get |µA (x,A) − µA (y,A)|
� εµA (x,A). Next, let |z| > r and apply the strong Markov property to obtain

µA (x,B)
µA (x,A)

− µA (z,B)
µA (z,A)

=
∫ ( µA (x,B)

µB(0,r)(z,B(0, r))µA (x,A)
− µA (y,B)

µA (z,A)

)
µB(0,r)(z, dy)

=
1

µA (z,A)

∫ (
µA (x,B)

µA (z,A)
µB(0,r)(z,B(0, r))µA (x,A)

− µA (y,B)
)
µB(0,r)(z, dy)

� 1
µA (z,A)

∫ (
µA (x,B) (1 + ε) − µA (y,B)

)
µB(0,r)(z, dy),

where we used that

µA (z,A) =
∫

µB(0,r)(z, dy)µA (y,A) � (1 + ε)µB(0,r)(z,B(0, r))µA (x,A).
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This leads to the estimate

µA (x,B)
µA (x,A)

− µA (z,B)
µA (z,A)

� ε
µA (z,B)
µA (z,A)

+ ε(1 + ε)
µA (x,A)
µA (z,A)

� ε + ε(1 + ε)2 .

Similarly, we obtain

µA (x,B)
µA (x,A)

− µA (z,B)
µA (z,A)

� 1
µA (z,A)

∫ (
µA (x,B) (1 − ε) − µA (y,B)

)
µB(0,r)(z, dy),

and from this

µA (x,B)
µA (x,A)

− µA (z,B)
µA (z,A)

� − ε
µA (z,B)
µA (z,A)

− ε(1 + ε)
µA (x,A)
µA (z,A)

� − ε − ε(1 + ε)2 .

As ε > 0 was arbitrary, this implies that µA (x,B)/µA (x,A) converges as x → ∞.

Example 3.49 For any ball B(x, r) the harmonic measure µB(x,r) is equal to the uniform
distribution �x,r on ∂B(x, r). Indeed, note that, for all R > r, we have

�x,r ( · ) = C(R)
∫

∂B(x,R)
µB(x,r)(y, · )d�x,R (y),

where C(R) is a normalizing constant, because the two balls are concentric, and both
sides of the equation are rotationally invariant finite measures on the sphere ∂B(x, r)
and hence multiples of each other. Letting R ↑ ∞, we obtain from Theorem 3.46, that
�x,r = µB(x,r) . �

The following surprising theorem shows that the harmonic measure from infinity can also
be obtained without this limiting procedure.

Theorem 3.50 Let A ⊂ Rd be a nonpolar compact set, and suppose B(x, r) ⊃ A, let �x,r

be the uniform distribution on ∂B(x, r). Then we have, for any Borel set B ⊂ A,

µA (B) =
∫

µA (a,B) d�x,r (a)∫
µA (a,A) d�x,r (a)

.

Remark 3.51 The surprising fact here is that the right hand side does not depend on the
choice of the ball B(x, r). �

The crucial observation behind this result is that, starting a Brownian motion in a uniformly
chosen point on the boundary of a sphere, the first hitting point of any ball inside that
sphere, if it exists, is again uniformly distributed, see Figure 3.2.

Lemma 3.52 Let B(x, r) ⊂ B(y, s) and B ⊂ ∂B(x, r) Borel. Then∫
µ∂B(x,r)(a,B) d�y,s(a)∫

µ∂B(x,r)(a, ∂B(x, r)) d�y,s(a)
= �x,r (B).
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Fig. 3.2. Starting Brownian motion uniformly on the big circle, the distribution of the first hitting
point on the small circle is also uniform.

Proof. By Example 3.49 we have �y,s = µ∂B(y ,s) and hence, for the normalisation
constant c(R) := 1/

∫
µ∂B(y ,s)(a, ∂B(y, s)) d�x,R (a), we have

�y,s( · ) = lim
R↑∞

c(R)
∫

µ∂B(y ,s)(a, · ) d�x,R (a) .

Hence, for any B ⊂ ∂B(x, r) Borel, using the Markov property in the second step,∫
µ∂B(x,r)(a,B) d�y,s(a) = lim

R↑∞
c(R)

∫∫
µ∂B(x,r)(a,B)µ∂B(y ,s)(b, da) d�x,R (b)

= lim
R↑∞

c(R)
∫

µ∂B(x,r)(b,B) d�x,R (b)

= C �x,r (B) ,

for a suitable constant C, because B(x,R) and B(x, r) are concentric. By substituting
B = ∂B(x, r) into the equation, we see that the constant must be as claimed in the state-
ment.

Proof of Theorem 3.50. Assume that B(x, r) and B(y, s) are two balls containing A.
We may then find a ball B(z, t) containing both these balls. Using Lemma 3.52 and the
strong Markov property applied to the first hitting of B(x, r) we obtain, for any B ⊂ A,∫

µA (a,B) d�x,r (a) = c1

∫ ∫
µA (a,B)µB(x,r)(b, da) d�z,t(b)

= c1

∫
µA (b,B) d�z,t(b) = c1

∫ ∫
µA (a,B)µB(y ,s)(b, da) d�z,t(b)

= c2

∫
µA (a,B) d�y,s(a),

for suitable constants c1 , c2 depending only on the choice of the balls. Choosing B = A
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gives the normalisation constant

c2 =
∫

µA (a,A) d�x,r (a)∫
µA (a,A) d�y,s(a)

,

and this shows that the right hand side in Theorem 3.50 is independent of the choice of the
enclosing ball. Hence it must stay constant as r → ∞, which completes the proof.

Exercises

Exercise 3.1. Show that, if u : U → R is subharmonic, then

u(x) � 1
L(B(x, r))

∫
B(x,r)

u(y) dy for any ball B(x, r) ⊂ U .

Conversely, show that any twice differentiable function u : U → R satisfying (3.3) is sub-
harmonic. Also give an example of a discontinuous function u satisfying (3.3).

Exercise 3.2. Let d � 2. Show that a function u : B(0, 1)
c → R is harmonic if and only if

its inversion

u∗ : B(0, 1) \ {0} → R, u∗(x) = u
(

x
|x|2
)
|x|2−d

is harmonic.

Exercise 3.3. S Suppose u : B(x, r) → R is harmonic and bounded by M . Show that the
kth order partial derivatives are bounded by a constant multiple of Mr−k .

Exercise 3.4. Prove the case d = 1 in Theorem 3.20.

Exercise 3.5. S Prove the strong form of the Paley–Zygmund inequality:
For any nonnegative random variable X with E[X2 ] < ∞ and λ ∈ [0, 1),

P
{
X > λ E[X]

}
� (1 − λ)2 E[X]2

E[X2 ]
.

Exercise 3.6. Prove the Kochen–Stone lemma: Suppose E1 , E2 , . . . are events with

∞∑
n=1

P(En ) = ∞ and lim inf
k→∞

∑k
m=1
∑k

n=1 P(En ∩ Em )(∑k
n=1 P(En )

)2 < ∞ .

Then, with positive probability, infinitely many of the events take place.
Hint. Apply the Paley–Zygmund inequality to X = lim infn→∞ 1En

.
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Exercise 3.7. S Suppose that u is a radial harmonic function on the annulus

D = {x ∈ Rd : r < |x| < R},

where radial means u(x) = ũ(|x|) for some function ũ : (r,R) → R and all x. Suppose
further that u is continuous on D̄. Show that,

• if d � 3, there exist constants a and b such that u(x) = a + b|x|2−d ;
• if d = 2, there exist constants a and b such that u(x) = a + b log |x|.

Exercise 3.8. S Show that any positive harmonic function on Rd is constant.

Exercise 3.9. Let H be a hyperplane in Rd and let {B(t) : t � 0} be a d-dimensional
Brownian motion. For z ∈ Rd , show that

sup
t>0

Ez

[
|B(t)| 1{t < τ(H)}

]
< ∞.

Hint. We may assume that H is the hyperplane {x1 = 0} and z1 > 0. Bound the �2-norm
by the �1-norm. If B(t) = (B1(t), ..., Bd(t)), the estimate for Ez [|Bj (t)|1{t < τ(H)}]
when j > 1 follows from the tails of τ(H). The estimate for B1 reduces to the one-
dimensional setting, where the reflection principle yields the density of B(t)1{t < τ(0)}.

Exercise 3.10. Let u be a harmonic function on Rd such that |u(x)|
|x| → 0 as x → ∞.

Show that u is constant.
Hint. Follow the proof of Theorem 3.16, and use Exercise 3.9.

Exercise 3.11. S Let D ⊂ Rd be a domain and x ∈ D. Suppose u : D \ {x} → R is
bounded and harmonic. Show that there exists a unique harmonic continuation u : D → R.

Exercise 3.12. Let f : (0, 1) → (0,∞) with t �→ f(t)/t decreasing. Then∫ 1

0
f(r)d−2r−d/2 dr < ∞ if and only if lim inf

t↓0

|B(t)|
f(t)

= ∞ almost surely.

Conversely, if the integral diverges, then lim inf t↓0 |B(t)|/f(t) = 0 almost surely.

Exercise 3.13. Show that, if d � 3 and T is an independent exponential time with
parameter λ > 0, then

G(x, y) ∼ c(d) |x − y|2−d for |x − y| ↓ 0 ,

where c(d) is as in Theorem 3.33.

Exercise 3.14. S Show that if D is a bounded domain, then the Green’s function

G :
(
D × D

)
\ ∆

is continuous, where ∆ = {(x, x) : x ∈ D} is the diagonal.
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Exercise 3.15. S Find the Green’s function for the planar Brownian motion stopped when
leaving the domain B(0, R).

Exercise 3.16. S Suppose x, y �∈ B(0, r) and A ⊂ B(0, r) is a compact, nonpolar set. Show
that µA (x, · ) and µA (y, · ) are mutually absolutely continuous with a density bounded
away from zero and infinity.

Exercise 3.17. S Suppose K ⊂ R2 is a compact set. The Kallianpur–Robbins law states
that, for a standard planar Brownian motion {Bt : t � 0},∫ t

0 1K (Bt) dt

log t

d−→ X, as t ↑ ∞,

where X has an exponential distribution with mean L(K )
2π .

(a) Fix radii 0 < r1 < r2 and define stopping times τ0 = 0 and

τ2k+i = inf
{
t � τ2k+i−1 : |B(t)| = ri} for integers k � 0 and i ∈ {1, 2}.

For any R > r2 denote

N(R) = sup{k ∈ N : sup
0�t�τ2 k

|B(t)| < R
}
.

Show that

N(R)
log R

d−→ Y as R ↑ ∞,

where Y has an exponential distribution with parameter log(r2/r1).
(b) Show that, for a Brownian motion {B(t) : t � 0} started uniformly on ∂B(0, r1)

and stopped at the first time τ when they reach ∂B(0, r2) we have

E
∫ τ

0
1K

(
B(s)
)
ds = log

(
r2
r1

) L(K )
π .

(c) Use (a), (b) and the law of large numbers to show that, for K = B(0, 1),∫ T (R)
0 1K (Bt) dt

log R

d−→ X, as R ↑ ∞,

where X has an exponential distribution with mean L(K )
π .

(d) Use (c) to prove the Kallianpur–Robbins law in the case K = B(0, 1).
A modification of this technique can also be used to prove the Kallianpur–Robbins
law for arbitrary compact sets K. If you want to try, see for example Section 3
in [Mö00] for a good hint.
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Notes and comments

Gauss discusses the Dirichlet problem in [Ga40] in a paper on electrostatics. Examples
which show that a solution may not exist for certain domains were given by Zaremba [Za11]
and Lebesgue [Le24]. Zaremba’s example is the punctured disc we discuss in Exam-
ple 3.15, and Lebesgue’s example is the thorn, which we will discuss in Example 8.40.
For domains with smooth boundary the problem was solved by Poincaré [Po90]. The
Dirichlet problem will be revisited in Chapter 8.

Bachelier [Ba00, Ba01] was the first to note a connection of Brownian motion and the
Laplace operator. The first probabilistic approaches to the Dirichlet problem were made
by Phillips and Wiener [PW23] and Courant, Friedrichs and Lewy [CFL28]. These proofs
used probability in a discrete setting and approximation. The treatment of the Dirichlet
problem using Brownian motion and the probabilistic definition of the harmonic mea-
sure are due to the pioneering work of Kakutani [Ka44a, Ka44b, Ka45]. Further rela-
tionships between Brownian motion and partial differential equations are the subject of
the Feynman–Kac formulas explored later in this book, see Section 7.7.4, and can also be
found in Durrett [Du84]. A current survey of probabilistic methods in analysis can be found
in the book of Bass [Ba95], see also Rao [Ra77], Port and Stone [PS78] or Doob [Do84]
for classical references.

Pólya [Po21] discovered that a simple symmetric random walk on Zd is recurrent for
d � 2 and transient otherwise. His result was later extended to Brownian motion by
Lévy [Le40] and Kakutani [Ka44a]. Neighbourhood recurrence implies, in particular, that
the path of a planar Brownian motion (running for an infinite amount of time) is dense in
the plane. A more subtle question is whether in d � 3 all orthogonal projections of a d-
dimensional Brownian motion are neighbourhood recurrent, or equivalently whether there
is an infinite cylinder avoided by its range. In fact, an avoided cylinder does exist almost
surely. This result is due to Adelman, Burdzy and Pemantle [ABP98]. The Dvoretzky–
Erdős test is originally from [DE51] and more information and additional references can
be found in Pruitt [Pr90]. There is also an analogous result for planar Brownian motion
(with shrinking balls) which is due to Spitzer [Sp58].

Green introduced the function named after him in [Gr28]. Its probabilistic interpreta-
tion appears in Kac’s paper [Ka51] and is investigated thoroughly by Hunt [Hu56]. Quite
a lot can be said about the transition densities: p∗(t, · , · ) is jointly continuous on D × D

and symmetric in the space variables. Moreover, p∗(t, x, y) vanishes if either x or y is on
the boundary of D, if this boundary is sufficiently regular. This is, of course, only difficult
in case (3) and full proofs for this case can be found in Bass [Ba95] or in the classical book
of Port and Stone [PS78].

Poisson’s formula for the harmonic measure on a sphere is named after the French
mathematician Siméon-Denis Poisson. The function u∗ defined by inversion on a sphere,
which we used in the proof, is also known as Kelvin transform of u, see also II.1 in
Bass [Ba95].
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The Kallianpur-Robbins law, first proved by Kallianpur and Robbins in [KR53], gives
the limiting distribution of the scaled occupation times of recurrent Brownian motions.
Exercise 3.17 gives the two-dimensional case, in which the limiting distribution is expo-
nential, in the one-dimensional case the limiting distribution is a one-sided normal distri-
bution. A substantial extension of this law was given by Darling and Kac in [DK57]. This
leads to the study of additive functionals of Brownian motion, see Chapter X in [RY94]. A
study of almost-sure Kallianpur-Robbins laws can be found in [Mö00].
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Hausdorff dimension: Techniques and applications

Dimensions are a tool to measure the size of mathematical objects on a crude scale. For
example, in classical geometry one can use dimension to see that a line segment (a one-
dimensional object) is smaller than the surface of a ball (a two-dimensional object), but
there is no difference between line-segments of different lengths. It may therefore come
as a surprise that dimension is able to distinguish the size of so many objects in probabil-
ity theory. In this chapter we first introduce a suitably general notion of dimension, the
Hausdorff dimension. We then describe general techniques to calculate the Hausdorff di-
mension of arbitrary subsets of Rd , and apply these techniques to the graph and zero set
of Brownian motion in dimension one, and to the range of higher dimensional Brownian
motion. Lots of further examples will follow in subsequent chapters.

4.1 Minkowski and Hausdorff dimension

4.1.1 The Minkowski dimension

How can we capture the dimension of a geometric object? One requirement for a useful
definition of dimension is that it should be intrinsic. This means that it should be inde-
pendent of an embedding of the object in an ambient space like Rd . Intrinsic notions of
dimension can be defined in arbitrary metric spaces.
Suppose E is a bounded metric space with metric ρ. Here bounded means that the diameter
|E| = sup{ρ(x, y) : x, y ∈ E} of E is finite. The example we have in mind is a bounded
subset of Rd . The definition of Minkowski dimension is based on the notion of a covering
of the metric space E. A covering of E is a finite or countable collection of sets

E1 , E2 , E3 , . . . with E ⊂
∞⋃

i=1

Ei .

Define, for ε > 0,

M(E, ε) = min
{

k � 1: there exists a finite covering

E1 , . . . , Ek of E with |Ei | � ε for i = 1, . . . , k
}

,
(4.1)

where |A| is the diameter of a set A ⊂ E. Intuitively, when E has dimension s the number
M(E, ε) should be of order ε−s . This can be verified in simple cases like line segments,
planar squares, etc. This intuition motivates the definition of Minkowski dimension.

96
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Definition 4.1. For a bounded metric space E we define the lower Minkowski dimension
as

dimM E := lim inf
ε↓0

log M(E, ε)
log(1/ε)

,

and the upper Minkowski dimension as

dimM E := lim sup
ε↓0

log M(E, ε)
log(1/ε)

.

We always have dimM E � dimM E, but equality need not hold. If it holds we write

dimM E := dimM E = dimM E. �

Remark 4.2 If E is a subset of the unit cube [0, 1]d ⊂ Rd then let

M̃n (E) = #
{
Q ∈ Dn : Q ∩ E �= ∅

}
be the number of dyadic cubes of side length 2−n which hit E. Then there exists a constant
C(d) > 0, not depending on E, such that

M̃n (E) � M(E,
√

d 2−n ) � C(d) M̃n (E).

Hence

dimM E := lim sup
n↑∞

log M̃n (E)
n log 2

and dimM E := lim inf
n↑∞

log M̃n (E)
n log 2

. �

Example 4.3 In Exercise 4.1, we calculate the Minkowski dimension of a deterministic
‘fractal’, the (ternary) Cantor set,

C =
{ ∞∑

i=1

xi

3i
: xi ∈ {0, 2}

}
⊂ [0, 1] .

This set is obtained from the unit interval [0, 1] by first removing the middle third, and then
successively the middle third out of each remaining interval ad infinitum, see Figure 4.1
for the first three stages of the construction. �

Remark 4.4 There is an unpleasant limitation of Minkowski dimension: Observe that
singletons S = {x} have Minkowski dimension 0, but we shall see in Exercise 4.2 that the
set

E :=
{ 1

n : n ∈ N
}
∪
{
0
}

has positive dimension. Hence the Minkowski dimension does not have the countable
stability property

dim
∞⋃

k=1

Ek = sup
{

dim Ek : k � 1
}
.

This is one of the properties we expect from a reasonable concept of dimension. There are
two ways out of this problem.
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1

1/9 1/3 1/9

Fig. 4.1. The ternary Cantor set is obtained by removing the middle third from each interval. The
figure shows the first three steps of the infinite procedure.

(i) One can use a notion of dimension taking variations of the size in the different sets
in a covering into account. This captures finer details of the set and leads to the
notion of Hausdorff dimension.

(ii) One can enforce the countable stability property by subdividing every set in count-
ably many bounded pieces and taking the maximal dimension of them. The infi-
mum over the numbers such obtained leads to the notion of packing dimension.

We follow the first route now, but come back to the second route later in the book. �

4.1.2 The Hausdorff dimension

The Hausdorff dimension and Hausdorff measure were introduced by Felix Hausdorff in
1919. Like the Minkowski dimension, Hausdorff dimension can be based on the notion of
a covering of the metric space E. For the definition of the Minkowski dimension we have
evaluated coverings crudely by counting the number of sets in the covering. Now we also
allow infinite coverings and take the size of the covering sets, measured by their diameter,
into account.
Looking back at the example of Exercise 4.2 one can see that the set E = {1/n : n � 1}∪
{0} can be covered much more effectively, if we decrease the size of the balls as we move
from right to left. In this example there is a big difference between evaluations of the
covering which take into account that we use small sets in the covering, and the evaluation
based on just counting the number of sets used to cover.
A very useful evaluation is the α-value of a covering. For every α � 0 and covering
E1 , E2 , . . . we say that the α-value of the covering is

∞∑
i=1

|Ei |α .
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The terminology of the α-values of a covering allows to formulate a concept of dimension,
which is sensitive to the effect that the fine features of this set occur in different scales at
different places.

Definition 4.5. For every α � 0 the α-Hausdorff content of a metric space E is defined
as

Hα
∞(E) = inf

{ ∞∑
i=1

|Ei |α : E1 , E2 , . . . is a covering of E
}

,

informally speaking the α-value of the most efficient covering. If 0 � α � β, and
Hα

∞(E) = 0, then also Hβ
∞(E) = 0. Thus we can define

dim E = inf
{

α � 0: Hα
∞(E) = 0

}
= sup

{
α � 0: Hα

∞(E) > 0
}

,

the Hausdorff dimension of the set E. �

Remark 4.6 The Hausdorff dimension may, of course, be infinite. But it is easy to see
that subsets of Rd have Hausdorff dimension no larger than d. Moreover, in Exercise 4.3
we show that for every bounded metric space, the Hausdorff dimension is bounded from
above by the lower Minkowski dimension. Finally, in Exercise 4.4 we check that Hausdorff
dimension has the countable stability property. �

1 1

1

Fig. 4.2. The ball, sphere and line segment pictured here all have 1-Hausdorff content equal to one.

The concept of the α-Hausdorff content plays an important part in the definition of the
Hausdorff dimension. However, it does not help distinguish the size of sets of the same di-
mension. For example, the three sets sketched in Figure 4.2 all have the same 1-Hausdorff
content: the ball and the sphere on the left can be covered by a ball of diameter one, so
that their 1-Hausdorff content is at most one, but the line segment on the right also does
not permit a more effective covering and its 1-Hausdorff content is also 1. Therefore,
one considers a refined concept, the Hausdorff measure. Here the idea is to consider only
coverings by small sets.
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Definition 4.7. Let X be a metric space and E ⊂ X . For every α � 0 and δ > 0 define

Hα
δ (E) = inf

{ ∞∑
i=1

|Ei |α : E1 , E2 , E3 , . . . cover E, and |Ei | � δ
}

,

i.e. we are considering coverings of E by sets of diameter no more than δ. Then

Hα (E) = sup
δ>0

Hα
δ (E) = lim

δ↓0
Hα

δ (E)

is the α-Hausdorff measure of the set E. �

Remark 4.8 The α-Hausdorff measure has two obvious properties which, together with
Hα (∅) = 0, make it an outer measure. These are countable subadditivity,

Hα
( ∞⋃

i=1

Ei

)
�

∞∑
i=1

Hα (Ei) , for any sequence E1 , E2 , E3 , . . . ⊂ X ,

and monotonicity,

Hα (E) � Hα (D), if E ⊂ D ⊂ X . �

One can express the Hausdorff dimension in terms of the Hausdorff measure.

Proposition 4.9 For every metric space E we have

Hα (E) = 0 ⇔ Hα
∞(E) = 0

and therefore

dim E = inf{α : Hα (E) = 0} = inf{α : Hα (E) < ∞}
= sup{α : Hα (E) > 0} = sup{α : Hα (E) = ∞} .

Proof. Suppose first that Hα
∞(E) = c > 0, which clearly implies Hα

δ (E) � c for
all δ > 0. Hence, Hα (E) � c > 0. Conversely, if Hα

∞(E) = 0, for every δ > 0 there
exists a covering by sets E1 , E2 , . . . with

∑∞
k=1 |Ek |α < δ. These sets have diameter

less than δ1/α , hence Hα
δ 1 / α (E) < δ and letting δ ↓ 0 yields Hα (E) = 0, proving the

claimed equivalence. The equivalence readily implies that dim E = inf{α : Hα (E) =
0} = sup{α : Hα (E) > 0}.

To verify the alternative representations it suffices to show that Hα (E) < ∞ implies
Hβ (E) = 0 for all β > α. So suppose Hα (E) = C < ∞. Given δ > 0 there exists a
covering by sets E1 , E2 , . . . with diameter less than δ and α-value not more than C + 1,
whence Hα

δ (E) � C + 1. Note that Hβ
δ (E) � δβ−αHα

δ (E) � δβ−α (C + 1). Letting
δ ↓ 0 implies Hβ (E) = 0.
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Remark 4.10 As Lipschitz maps increase the diameter of sets by at most a constant, the
image of any set A ⊂ E under a Lipschitz map has at most the Hausdorff dimension of A.
This observation is particularly useful for projections. �

A natural generalisation of the last remark arises when we look at the effect of Hölder
continuous maps on the Hausdorff dimension.

Definition 4.11. Let 0 < α � 1. A function f : (E1 , ρ1) → (E2 , ρ2) between metric
spaces is called α-Hölder continuous if there exists a (global) constant C > 0 such that

ρ2
(
f(x), f(y)

)
� C ρ1

(
x, y
)α

for all x, y ∈ E1 .

A constant C as above is sometimes called Hölder constant. �

Remark 4.12 Hölder continuous maps allow some control on the Hausdorff measure of
images: We show in Exercise 4.6 that, if f : (E1 , ρ1) → (E2 , ρ2) is surjective and α-
Hölder continuous with constant C, then for any β � 0,

Hβ (E2) � Cβ Hαβ (E1),

and therefore dim(E2) � 1
α dim(E1). �

4.1.3 Upper bounds on the Hausdorff dimension

We now give general upper bounds for the dimension of graph and range of functions,
which are based on Hölder continuity.

Definition 4.13. For a function f : A → Rd , for A ⊂ [0,∞), we define the graph to be

Graphf (A) =
{
(t, f(t)) : t ∈ A

}
⊂ Rd+1 ,

and the range or path to be

Rangef (A) = f(A) =
{
f(t) : t ∈ A

}
⊂ Rd . �

Proposition 4.14 Suppose f : [0, 1] → Rd is an α-Hölder continuous function. Then

(a) dim
(
Graphf [0, 1]

)
� 1 + (1 − α)

(
d ∧ 1

α

)
,

(b) and, for any A ⊂ [0, 1], we have dim Rangef (A) � dim A
α .

Proof. Since f is α-Hölder continuous, there exists a constant C such that, if s, t ∈ [0, 1]
with |t − s| � ε, then |f(t) − f(s)| � Cεα . Cover [0, 1] by no more than �1/ε� intervals
of length ε. The image of each such interval is then contained in a ball of diameter 2Cεα .
One can now

• either cover each such ball by no more than a constant multiple of εdα−d balls of dia-
meter ε,
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• or use the fact that subintervals of length (ε/C)1/α in the domain are mapped into balls
of diameter ε to cover the image inside the ball by a constant multiple of ε1−1/α balls of
radius ε.

In both cases, look at the cover of the graph consisting of the product of intervals and
corresponding balls of diameter ε. The first construction needs a constant multiple of
εdα−d−1 product sets, the second uses ε−1/α product sets, all of which have diameter of
order ε. This gives the upper bounds for (a), while (b) follows from Remark 4.12.

Remark 4.15 By countable stability of Hausdorff dimension, the statements of Proposi-
tion 4.14 remain true if f : [0,∞) → Rd is only locally α-Hölder continuous. �

We now take a first look at dimensional properties of Brownian motion and harvest the
results from our general discussion so far. We have shown in Corollary 1.20 that linear
Brownian motion is everywhere locally α-Hölder continuous for any α < 1/2, almost
surely. This extends obviously to d-dimensional Brownian motion, and this allows us to
get an upper bound on the Hausdorff dimension of its range and graph. For convenience,
when referring to Brownian motion, we drop the reference to the function in the subindex
of Graphf (A) and Rangef (A).

Corollary 4.16 For any fixed set A ⊂ [0,∞) the graph of a d-dimensional Brownian
motion satisfies, almost surely,

dim
(
Graph(A)

)
�
{

3/2 if d = 1,

2 if d � 2 .

and its range satisfies, almost surely,

dim Range(A) � (2 dim A) ∧ d.

Remark 4.17 The corresponding lower bounds for the Hausdorff dimension of Graph(A)
and Range(A) are more subtle and will be discussed in Section 4.4.3, when we have more
sophisticated tools at our disposal. Our upper bounds also hold for the Minkowski dimen-
sion, see Exercise 4.7, and corresponding lower bounds are easier than in the Hausdorff
case and obtainable at this stage, see Exercise 4.10. �

Corollary 4.16 does not make any statement about the 2-Hausdorff measure of the range,
and any such statement requires more information than the Hölder exponent alone can
provide, see for example Exercise 4.9. It is however not difficult to show that, for d � 2,

H2(B([0, 1])
)

< ∞ almost surely. (4.2)

Indeed, for any n ∈ N, we look at the covering of B([0, 1]) by the closure of the balls

B
(
B( k

n ), max
k
n �t� k + 1

n

∣∣B(t) − B( k
n )
∣∣), k ∈ {0, . . . , n − 1}.
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By the uniform continuity of Brownian motion on the unit interval, the maximal diameter
in these coverings goes to zero, as n → ∞. Moreover, we have

E
[(

max
k
n �t� k + 1

n

∣∣B(t) − B( k
n )
∣∣)2]

= E
[(

max
0�t� 1

n

|B(t)|
)2]

=
1
n

E
[(

max
0�t�1

|B(t)|
)2]

,

using Brownian scaling. The expectation on the right is finite by Proposition 2.43. Hence
the expected 2-value of the nth covering is bounded from above by

4E
[ n−1∑

k=0

(
max

k
n �t� k + 1

n

∣∣B(t) − B( k
n )
∣∣)2]

= 4 E
[(

max
0�t�1

|B(t)|
)2]

,

which implies, by Fatou’s lemma, that

E
[
lim inf
n→∞

4
n−1∑
k=0

(
max

k
n �t� k + 1

n

∣∣B(t) − B( k
n )
∣∣)2]

< ∞.

Hence the liminf is almost surely finite, which proves (4.2).

The next theorem improves upon (4.2) by showing that the 2-dimensional Hausdorff mea-
sure of the range of d-dimensional Brownian motion is zero for any d � 2. The proof is
considerably more involved and may be skipped on first reading. It makes use of the fact
that we have a ‘natural’ measure on the range at our disposal, which we can use as a tool to
pick a good cover by cubes. The idea of using a natural measure supported by the ‘fractal’
for comparison purposes will also turn out to be crucial for the lower bounds for Hausdorff
dimension, which we discuss in the next section.

Theorem* 4.18 Let {B(t) : t � 0} be a Brownian motion in dimension d � 2. Then,
almost surely, for any set A ⊂ [0,∞) we have

H2(Range(A)) = 0.

Proof. It is sufficient to show that H2(Range[0,∞)) = 0 for d � 3, as 2-dimensional
Brownian motion is the projection of 3-dimensional Brownian motion, and projections
cannot increase the Hausdorff measure. Moreover it suffices to prove H2(Range[0,∞) ∩
Cube) = 0 almost surely, for any half-open cube Cube ⊂ Rd of side length one at positive
distance from the starting point of the Brownian motion. Without loss of generality we
may assume that this cube is the unit cube Cube = [0, 1)d , and our Brownian motion is
started at some x �∈ Cube.

Let d � 3, and recall the definition of the (locally finite) occupation measure µ, defined by

µ(A) =
∫ ∞

0
1A (B(s)) ds , for A ⊂ Rd Borel.

Let Dk be the collection of all cubes
∏d

i=1[ni2−k , (ni + 1)2−k ) where n1 , . . . , nd ∈
{0, . . . , 2k − 1}. We fix a threshold m ∈ N and let M > m. We call D ∈ Dk with k � m

a big cube if

µ(D) � 1
ε 2−2k .
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The collection E(M) consists of all maximal big cubes D ∈ Dk , m � k < M , i.e. all
those which are not contained in another big cube, together with all cubes D ∈ DM which
are not contained in a big cube, but intersect Range[0,∞). Obviously E(M) is a cover of
Range[0,∞) ∩ Cube by sets of diameter smaller than

√
d2−m .

To find the expected 2-dimensional Hausdorff content of this cover, first look at a cube
D ∈ DM . We denote by D = DM ⊂ DM −1 ⊂ · · · ⊂ Dm with Dk ∈ Dk the ascending
sequence of cubes containing D. Let D∗

k be the cube with the same centre as Dk and 3/2
its side length, see Figure 4.3.

DM

Dm

mD*D*
M

Fig. 4.3. Nested systems of cubes, cubes D∗
k indicated by dashed, Dk by solid boundaries.

Let τ(D) be the first hitting time of the cube D and τk = inf{t > τ(D) : B(t) �∈ D∗
k}

be the first exit time from D∗
k for M > k � m. For the cubes Cube = [0, 1)d and

Child = [0, 1
2 )d we also define the expanded cubes Cube∗ and Child∗ and the stopping

time τ = inf{t > 0: B(t) �∈ Cube∗}. Let

q := sup
y∈Child∗

Py

{∫ τ

0
1Cube(B(s)) ds � 1

ε

}
< 1 .

By the strong Markov property applied to the stopping times τM < . . . < τm+1 and
Brownian scaling,

Px

{
µ(Dk ) � 1

ε 2−2k for all M > k � m
∣∣ τ(D) < ∞

}
� Px

{∫ τk

τk + 1

1Dk
(B(s)) ds � 1

ε 2−2k for all M > k � m
∣∣∣ τ(D) < ∞

}
�

M −1∏
k=m

sup
y∈D∗

k + 1

Py

{
22k

∫ τ̃ k

0
1Dk

(B(s)) ds � 1
ε

}
� qM −m ,

where τ̃k is the first exit time of the Brownian motion from D∗
k and the last inequality fol-

lows from Brownian scaling. Recall from Theorem 3.18 that Px{τ(D) < ∞} � c2−M (d−2) ,
for a constant c > 0 depending only on the dimension d and the fixed distance of x from
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the unit cube. Hence the probability that any given cube D ∈ DM is in our cover is

Px

{
µ(Dk ) � 1

ε 2−2k for all M > k � m, τ(D) < ∞
}

� c2−M (d−2)qM −m .

Hence the expected 2-value from the cubes in E(M) ∩ DM is

d2dM 2−2M Px

{
µ(Dk ) � 1

ε 2−2k for all M > k � m, τ(D) < ∞
}

� cd qM −m . (4.3)

The 2-value from the cubes in E(M) ∩
⋃m

k=M +1 Dk is bounded by

M −1∑
k=m

d2−2k
∑

D∈C(M )∩Dk

1{µ(D) � 2−2k 1
ε } � dε

M −1∑
k=m

∑
D∈C(M )∩Dk

µ(D)

� dε µ(Cube) .

(4.4)

As Eµ(Cube) < ∞ by Theorem 3.27, we infer from (4.3) and (4.4) that the expected 2-
value of our cover converges to zero for ε ↓ 0 and a suitable choice M = M(ε). Hence
a subsequence converges to zero almost surely, and, as m was arbitrary, this ensures that
H2(Range[0,∞)) = 0 almost surely.

4.2 The mass distribution principle

From the definition of the Hausdorff dimension it is plausible that in many cases it is
relatively easy to give an upper bound on the dimension: just find an efficient cover of the
set and find an upper bound to its α-value. However it looks more difficult to give lower
bounds, as we must obtain a lower bound on α-values of all covers of the set.
The mass distribution principle is a way around this problem, which is based on the exis-
tence of a nonzero measure on the set. The basic idea is that, if this measure distributes a
positive amount of mass on a set E in such a manner that its local concentration is bounded
from above, then the set must be large in a suitable sense. For the purpose of this method
we call a measure µ on the Borel sets of a metric space E a mass distribution on E, if

0 < µ(E) < ∞ .

The intuition here is that a positive and finite mass is spread over the space E.

Theorem 4.19 (Mass distribution principle) Suppose E is a metric space and α � 0. If
there is a mass distribution µ on E and constants C > 0 and δ > 0 such that

µ(V ) � C|V |α ,

for all closed sets V with diameter |V | � δ, then

Hα (E) � µ(E)
C

> 0,

and hence dim E � α.
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Proof. Suppose that U1 , U2 , . . . is a cover of E by arbitrary sets with |Ui | � δ. Let Vi

be the closure of Ui and note that |Ui | = |Vi |. We have

0 < µ(E) � µ
( ∞⋃

i=1

Ui

)
� µ
( ∞⋃

i=1

Vi

)
�

∞∑
i=1

µ(Vi) � C
∞∑

i=1

|Ui |α .

Passing to the infimum over all such covers, and letting δ ↓ 0 gives the statement.

We now apply this technique to find the Hausdorff dimension of the zero set of a linear
Brownian motion. Recall that this is an uncountable set with no isolated points.
At first it is not clear what measure on Zeros would be suitable to apply the mass distri-
bution principle. Here Lévy’s theorem, see Theorem 2.34, comes to our rescue: Recall
the definition of the maximum process {M(t) : t � 0} associated with a Brownian motion
from Chapter 2.2.3.

Definition 4.20. Let {B(t) : t � 0} be a linear Brownian motion and {M(t) : t � 0} the
associated maximum process. A time t � 0 is a record time for the Brownian motion if
M(t) = B(t) and the set of all record times for the Brownian motion is denoted by Rec. �

Note that the record times are the zeros of the process {Y (t) : t � 0} given by

Y (t) = M(t) − B(t).

By Theorem 2.34 this process is a reflected Brownian motion, and hence its zero set and
the zero set of {B(t) : t � 0} have the same distribution. A natural measure on Rec is
given by the distribution function {M(t) : t � 0}, which allows us to get a lower bound
for the Hausdorff dimension of Rec via the mass distribution principle.

Lemma 4.21 Almost surely, dim(Rec∩ [0, 1]) � 1/2 and hence dim(Zeros∩ [0, 1])�1/2.

Proof. The first equality follows from Theorem 2.34, so that we can focus in this proof
on the record set. Since t �→ M(t) is a non-decreasing and continuous function, we can
regard it as a distribution function of a positive measure µ, with µ(a, b] = M(b) − M(a).
This measure is supported on the (closed) set Rec of record times, see Exercise 4.12. We
know that, with probability one, the Brownian motion is locally Hölder continuous with
any exponent α < 1/2. Thus there exists a (random) constant Cα , such that, almost surely,

M(b) − M(a) � max
0�h�b−a

B(a + h) − B(a) � Cα (b − a)α ,

for all a, b ∈ [0, 1]. By the mass distribution principle, we get that, almost surely,

dim(Rec ∩ [0, 1]) � α.

Letting α ↑ 1
2 finishes the proof.
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To get an upper bound on the Hausdorff dimension of Zeros we use a covering consisting
of intervals. Define the collection Dk of intervals [j2−k , (j+1)2−k ) for j = 0, . . . , 2k −1,
and let Z(I) = 1 if there exists t ∈ I with B(t) = 0, and Z(I) = 0 otherwise. To estimate
the dimension of the zero set we need an estimate for the probability that Z(I) = 1, i.e.
for the probability that a given interval contains a zero of Brownian motion.

Lemma 4.22 There is an absolute constant C such that, for any a, ε > 0,

P
{

there exists t ∈ (a, a + ε) with B(t) = 0
}

� C
√

ε
a+ε .

Proof. Consider the event A = {|B(a+ε)| � √
ε}. By the scaling property of Brownian

motion, we can give the upper bound

P(A) = P
{
|B(1)| �

√
ε

a+ε

}
� 2
√

ε
a+ε .

Knowing that Brownian motion has a zero in (a, a + ε) makes the event A very likely.
Indeed, applying the strong Markov property at the stopping time T = inf{t � a : B(t) =
0}, we have

P(A) � P
(
A ∩ {0 ∈ B[a, a + ε]}

)
� P{T � a + ε} min

a�t�a+ε
P{|B(a + ε)| �

√
ε |B(t) = 0}.

Clearly the minimum is achieved at t = a and, using the scaling property of Brownian
motion, we have P{|B(a + ε)| � √

ε |B(a) = 0} = P{|B(1)| � 1} =: c > 0. Hence,

P{T � a + ε} � 2
c

√
ε

a+ε ,

and this completes the proof.

Remark 4.23 This is only very crude information about the position of the zeros of a linear
Brownian motion. Much more precise information is available, for example in the form
of the arcsine law for the last sign-change, which we prove in the next chapter, and which
(after a simple scaling) yields the precise value of the probability in Lemma 4.22. �

We have thus shown that, for any ε > 0 and sufficiently large integer k, we have

E[Z(I)] � c1 2−k/2 , for all I ∈ Dk with I ⊂ (ε, 1 − ε) ,

for some constant c1 > 0. Hence the covering of the set {t ∈ (ε, 1 − ε) : B(t) = 0} by all
I ∈ Dk with I ∩ (ε, 1 − ε) �= ∅ and Z(I) = 1 has an expected 1

2 -value of

E
[ ∑

I ∈Dk
I ∩( ε , 1−ε ) �= ∅

Z(I) 2−k/2
]

=
∑

I ∈Dk
I ∩( ε , 1−ε ) �= ∅

E[Z(I)] 2−k/2 � c1 2k 2−k/2 2−k/2 = c1 .

We thus get, from Fatou’s lemma,

E
[
lim inf
k→∞

∑
I ∈Dk

I ∩( ε , 1−ε ) �= ∅

Z(I) 2−k/2
]

� lim inf
k→∞

E
[ ∑

I ∈Dk
I ∩( ε , 1−ε ) �= ∅

Z(I) 2−k/2
]

� c1 .
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Hence the liminf is almost surely finite, which means that there exists a family of coverings
with maximal diameter going to zero and bounded 1

2 -value. This implies that, almost
surely,

H 1
2
{
t ∈ (ε, 1 − ε) : B(t) = 0

}
< ∞,

and, in particular, that dim(Zeros ∩ (ε, 1 − ε)) � 1
2 . As ε > 0 was arbitrary, we obtain

the same bound for the full zero set. Combining this estimate with Lemma 4.21 we have
verified the following result.

Theorem 4.24 Let {B(t) : 0 � t � 1} be a linear Brownian motion. Then, with probability
one, we have

dim
(
Zeros ∩ [0, 1]

)
= dim

(
Rec ∩ [0, 1]

)
= 1

2 .

Remark 4.25 The Hausdorff measure H 1
2 vanishes on the zero set of Brownian motion,

see Exercise 4.14, just like that Hausdorff measure H2 vanishes on the range of Brownian
motion, as seen in Theorem 4.18. Therefore another method is needed to construct a natural
positive finite measure on the zero set. We encountered an indirect construction, via Lévy’s
identity, in the proof of Lemma 4.21. A powerful direct construction of the same measure,
known as the local time at zero, will be the subject of Chapter 6. �

4.3 The energy method

The energy method is a technique to find a lower bound for the Hausdorff dimension, which
is particularly interesting in applications to random fractals. It replaces the condition on
the mass of all closed sets in the mass distribution principle by finiteness of an energy.

Definition 4.26. Suppose µ is a mass distribution on a metric space (E, ρ) and α � 0.
The α-potential of a point x ∈ E with respect to µ is defined as

φα (x) =
∫

dµ(y)
ρ(x, y)α

.

In the case E = R3 and α = 1, this is the Newton gravitational potential of the mass µ.
The α-energy of µ is

Iα (µ) =
∫

φα (x) dµ(x) =
∫∫

dµ(x) dµ(y)
ρ(x, y)α

. �

The simple idea of the energy method is the following: Mass distributions with Iα (µ) < ∞
spread the mass so that at each place the concentration is sufficiently small to overcome
the singularity of the integrand. This is only possible on sets which are large in a suitable
sense.
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Theorem 4.27 (Energy method) Let α � 0 and µ be a mass distribution on a metric
space E. Then, for every ε > 0, we have

Hα
ε (E) � µ(E)2∫∫

ρ(x,y )<ε
dµ(x) dµ(y )

ρ(x,y )α

.

Hence, if Iα (µ) < ∞ then Hα (E) = ∞ and, in particular, dim E � α.

Remark 4.28 To get a lower bound on the dimension from this method it suffices to show
finiteness of a single integral. In particular, in order to show for a random set E that
dim E � α almost surely, it suffices to show that EIα (µ) < ∞ for a (random) measure
on E. �

Proof. If {An : n = 1, 2, . . .} is any pairwise disjoint covering of E consisting of sets
of diameter < ε, then∫∫

ρ(x,y )<ε

dµ(x) dµ(y)
ρ(x, y)α

�
∞∑

n=1

∫∫
An ×An

dµ(x) dµ(y)
ρ(x, y)α

�
∞∑

n=1

µ(An )2

|An |α
,

and moreover,

µ(E) �
∞∑

n=1

µ(An ) =
∞∑

n=1

|An |
α
2

µ(An )
|An |

α
2

Given δ > 0 choose a covering as above such that additionally
∞∑

n=1

|An |α � Hα
ε (E) + δ.

Using now the Cauchy–Schwarz inequality, we get

µ(E)2 �
∞∑

n=1

|An |α
∞∑

n=1

µ(An )2

|An |α
�
(
Hα

ε (E) + δ
) ∫∫

ρ(x,y )<ε

dµ(x) dµ(y)
ρ(x, y)α

.

Letting δ ↓ 0 and dividing both sides by the integral gives the stated inequality. Further,
letting ε ↓ 0, if EIα (µ) < ∞ the integral converges to zero, so that Hα

ε (E) diverges to
infinity.

We now apply the energy method to resolve questions left open in the first section of this
chapter, namely the lower bounds for the Hausdorff dimension of the graph and range of
Brownian motion.

The nowhere differentiability of linear Brownian motion established in the first chapter
suggests that its graph may have dimension greater than one. For dimensions d � 2, it
is interesting to look at the range of Brownian motion. We have seen that planar Brown-
ian motion is neighbourhood recurrent, that is, it visits every neighbourhood in the plane
infinitely often. In this sense, the range of planar Brownian motion is comparable to the
plane itself and one can ask whether this is also true in the sense of dimension.
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Theorem 4.29 (Taylor 1953) Let {B(t) : 0 � t � 1} be d-dimensional Brownian motion.

(a) If d = 1, then dim Graph[0, 1] = 3/2 almost surely.

(b) If d � 2, then dim Range[0, 1] = dim Graph[0, 1] = 2 almost surely.

Recall that we already know the upper bounds from Corollary 4.16. We now look at lower
bounds for the range of Brownian motion in d � 2.

Proof of Theorem 4.29(b). A natural measure on Range[0, 1] is the occupation measure
µ defined by µ(A) = L(B−1(A) ∩ [0, 1]), for all Borel sets A ⊂ Rd , or, equivalently,∫

Rd

f(x) dµ(x) =
∫ 1

0
f
(
B(t)
)
dt,

for all bounded measurable functions f . We want to show that for any 0 < α < 2,

E
∫∫

dµ(x) dµ(y)
|x − y|α = E

∫ 1

0

∫ 1

0

ds dt

|B(t) − B(s)|α < ∞. (4.5)

Let us evaluate the expectation

E|B(t) − B(s)|−α = E
[
(|t − s|1/2 |B(1)|)−α

]
= |t − s|−α/2

∫
Rd

cd

|z|α e−|z |2 /2dz.

The integral can be evaluated using polar coordinates, but all we need is that it is a finite
constant c depending on d and α only. Substituting this expression into (4.5) and using
Fubini’s theorem we get

EIα (µ) = c

∫ 1

0

∫ 1

0

ds dt

|t − s|α/2 � 2c

∫ 1

0

du

uα/2 < ∞. (4.6)

Therefore Iα (µ) < ∞ and hence dim Range[0, 1] > α, almost surely. The lower bound
on the range follows by letting α ↑ 2. We also obtain a lower bound for the dimension of
the graph: As the graph of a function can be projected onto the path, the dimension of the
graph is at least the dimension of the path by Remark 4.10. Hence, if d � 2, almost surely
dim Graph[0, 1]�2.

Now let us turn to linear Brownian motion and prove the first half of Taylor’s theorem.

Proof of Theorem 4.29(a). Again we use the energy method for a sharp lower bound.
Recall that we have shown in Corollary 4.16 that dim Graph[0, 1] � 3/2. Let α < 3/2 and
define a measure µ on the graph by

µ(A) = L1({0 � t � 1: (t, B(t)) ∈ A}) for A ⊂ [0, 1] × R Borel.

Changing variables, the α-energy of µ can be written as∫∫
dµ(x) dµ(y)
|x − y|α =

∫ 1

0

∫ 1

0

ds dt

(|t − s|2 + |B(t) − B(s)|2)α/2 .

Bounding the integrand, taking expectations, and applying Fubini we get that

EIα (µ) � 2
∫ 1

0
E
(
(t2 + B(t)2)−α/2

)
dt. (4.7)
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Let p(z) =
√

2π
−1

exp(−z2/2) denote the standard normal density. By scaling, the ex-
pectation above can be written as

2
∫ +∞

0
(t2 + tz2)−α/2p(z) dz. (4.8)

Comparing the size of the summands in the integration suggests separating z �
√

t from
z >

√
t. Then we can bound (4.8) above by twice∫ √

t

0
(t2)−α/2dz +

∫ ∞

√
t

(tz2)−α/2p(z) dz = t
1
2 −α + t−α/2

∫ ∞

√
t

z−αp(z) dz.

Furthermore, we separate the last integral at 1. We get∫ ∞

√
t

z−αp(z) dz � 1 +
∫ 1

√
t

z−α dz.

The latter integral is of order t(1−α)/2 . Substituting these results into (4.7), we see that the
expected energy is finite when α < 3/2. The claim now follows from the energy method.

4.4 Frostman’s lemma and capacity

In this section we provide a converse to the mass distribution principle, i.e. starting from
a lower bound on the Hausdorff measure we construct a mass distribution on a set. This
is often useful, for example if one wants to relate the Hausdorff dimension of a set and its
image under some transformation.

Theorem 4.30 (Frostman’s lemma) If A ⊂ Rd is a closed set such that Hα (A) > 0, then
there exists a Borel probability measure µ supported on A and a constant C > 0 such that
µ(D) � C|D|α for all Borel sets D.

We now give a proof of Frostman’s lemma, which is based on the representation of compact
subsets of Rd by trees, an idea that we will encounter again in Chapter 9. The main
ingredient in the proof is the max-flow min-cut theorem. See Section 12.4 in the appendix
for definitions and notation associated with trees, flows on trees and statement and proof
of the max-flow min-cut theorem.

Proof of Frostman’s lemma. We may assume A ⊂ [0, 1]d . Any compact cube in Rd

of side length s can be split into 2d nonoverlapping compact cubes of side length s/2. We
first create a tree with a root that we associate with the cube [0, 1]d . Every vertex in the tree
has 2d edges emanating from it, each leading to a vertex that is associated with one of the
2d subcubes with half the side length of the original cube. We then erase the edges ending
in vertices associated with subcubes that do not intersect A. In this way we construct a tree
T = (V,E) such that the rays in ∂T correspond to sequences of nested compact cubes, see
Figure 4.4.
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A

Fig. 4.4. The first two stages in the construction of the tree associated with the shaded set A ⊂
[0, 1]2 . Dotted edges in the tree are erased.

There is a canonical mapping Φ: ∂T → A, which maps sequences of nested cubes to their
intersection. Note that if x ∈ A, then there is an infinite path emanating from the root, all
of whose vertices are associated with cubes that contain x and thus intersect A. Hence Φ
is surjective.

For any edge e at level n define the capacity C(e) = (d
1
2 2−n )α . We now associate to every

cutset Π a covering of A, consisting of those cubes associated with the initial vertices of
the edges in the cutset. To see that the resulting collection of cubes is indeed a covering, let
ξ be a ray. As Π is a cutset, it contains one of the edges in this ray, and the cube associated
with the initial vertex of this edge contains the point Φ(ξ). Hence we indeed cover the
entire set Φ(∂T ) = A. This implies that

inf
{∑

e∈Π

C(e) : Π a cutset
}

� inf
{∑

j

|Aj |α : A ⊂
⋃
j

Aj

}
,

and as Hα
∞(A) > 0, by the equivalence in Proposition 4.9, this is bounded from zero.

Thus, by the max-flow min-cut theorem, there exists a flow θ : E → [0,∞) of positive
strength such that θ(e) � C(e) for all edges e ∈ E.
We now show how to define a suitable measure on the space of infinite paths. Given an
edge e ∈ E we associate a set T (e) ⊂ ∂T consisting of all rays containing the edge e.
Define

ν̃
(
T (e)
)

= θ(e).

It is easily checked that the collection C(∂T ) of subsets T (v) ⊂ ∂T for all v ∈ T is a
semi-algebra on ∂T . Recall that this means that if A,B ∈ C(∂T ), then A ∩ B ∈ C(∂T )
and Ac is a finite disjoint union of sets in C(∂T ). Because the flow through any vertex is
preserved, ν̃ is countably additive. Thus, using a measure extension theorem such as, for
example A.1(1.3) in [Du95], we can extend ν̃ to a measure ν on the σ-algebra generated
by C(∂T ).



4.4 Frostman’s lemma and capacity 113

We can now define a Borel measure µ = ν ◦ Φ−1 on A, which satisfies µ(C) = θ(e),
where C is the cube associated with the initial vertex of the edge e. Suppose now that D

is a Borel subset of Rd and n is the integer such that 2−n < |D ∩ [0, 1]d | � 2−(n−1) .
Then D∩ [0, 1]d can be covered with 3d of the cubes in the above construction having side
length 2−n , or diameter d

1
2 2−n . Using this bound, we have

µ(D) � d
α
2 3d2−nα � d

α
2 3d |D|α ,

so we have a finite measure µ satisfying the requirement of the lemma. Normalising µ to
get a probability measure completes the proof.

Definition 4.31. We define the Riesz α-capacity, or simply the α-capacity, of a metric
space (E, ρ) as

Capα (E) := sup
{

Iα (µ)−1 : µ a mass distribution on E with µ(E) = 1
}

.

In the case of the Euclidean space E = Rd with d � 3 and α = d−2 the Riesz α-capacity
is also known as the Newtonian capacity. �

Theorem 4.27 states that a set of positive α-capacity has dimension at least α. We now
show that, in this formulation the method is sharp. Our proof of this fact relies on Frost-
man’s lemma and hence refers to closed subsets of Euclidean space.

Theorem 4.32 For any closed set A ⊂ Rd ,

dim A = sup
{
α : Capα (A) > 0

}
.

Proof. It only remains to show �, and for this purpose it suffices to show that if
dim A > α, then there exists a Borel probability measure µ on A such that

Iα (µ) =
∫

Rd

∫
Rd

dµ(x) dµ(y)
|x − y|α < ∞.

By our assumption for some sufficiently small β > α we have Hβ (A) > 0. By Frostman’s
lemma, there exists a nonzero Borel probability measure µ on A and a constant C such
that µ(D) � C|D|β for all Borel sets D. By restricting µ to a smaller set if necessary,
we can make the support of µ have diameter less than one. Fix x ∈ A, and for k � 1 let
Sk (x) = {y : 2−k < |x − y| � 21−k}. Since µ has no atoms, we have∫

Rd

dµ(y)
|x − y|α =

∞∑
k=1

∫
Sk (x)

dµ(y)
|x − y|α �

∞∑
k=1

µ(Sk (x))2kα ,

where the equality follows from the monotone convergence theorem and the inequality
holds by the definition of the Sk . Also,

∞∑
k=1

µ(Sk (x))2kα � C

∞∑
k=1

|22−k |β 2kα = C ′
∞∑

k=1

2k(α−β ) ,

where C ′ = 22β C.
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Since β > α, we have

Iα (µ) � C ′
∞∑

k=1

2k(α−β ) < ∞,

which proves the theorem.

In Corollary 4.16 we have seen that the image of a set A ⊂ [0,∞) under Brownian motion
has at most twice the Hausdorff dimension of A. Naturally, the question arises whether
this is a sharp estimate. The following result of McKean shows that, if d � 2, this is sharp
for any set A, while in d = 1 it is sharp as long as dim A � 1

2 .

Theorem 4.33 (McKean 1955) Let A ⊂ [0,∞) be a closed subset and {B(t) : t � 0} a
d-dimensional Brownian motion. Then, almost surely,

dim B(A) = 2 dim A ∧ d.

Proof. The upper bound was verified in Corollary 4.16. For the lower bound let
α < dim(A) ∧ (d/2). By Theorem 4.32, there exists a Borel probability measure µ on A

such that Iα (µ) < ∞. Denote by µ̃ the measure on Rd defined by

µ̃(D) = µ({t � 0: B(t) ∈ D})

for all Borel sets D ⊂ Rd . Then

E[I2α (µ̃)] = E
[∫∫

dµ̃(x) dµ̃(y)
|x − y|2α

]
= E
[∫ ∞

0

∫ ∞

0

dµ(t) dµ(s)
|B(t) − B(s)|2α

]
,

where the second equality can be verified by a change of variables. Note that the denom-
inator on the right hand side has the same distribution as |t − s|α |Z|2α , where Z is a
d-dimensional standard normal random variable. Since 2α < d, we have that

E[|Z|−2α ] =
1

(2π)d/2

∫
Rd

|y|−2αe−|y |2 /2 dy < ∞.

Hence, using Fubini’s theorem,

E[I2α (µ̃)] =
∫ ∞

0

∫ ∞

0
E[|Z|−2α ]

dµ(t) dµ(s)
|t − s|α � E[|Z|−2α ] Iα (µ) < ∞.

Thus, E[I2α (µ̃)] < ∞, and hence I2α (µ̃) < ∞ almost surely. Moreover, µ̃ is supported on
B(A) because µ is supported on A. It follows from Theorem 4.27 that dim B(A) � 2α

almost surely. By letting α ↑ dim(A) ∧ d/2, we see that dim(B(A)) � 2 dim(A) ∧ d

almost surely. This completes the proof of Theorem 4.33.

Remark 4.34 We have indeed shown that, if Capα (A) > 0, then Cap2α (B(A)) > 0
almost surely. The converse of this statement is also true and will be discussed later, see
Theorem 9.36. �



Exercises 115

Remark 4.35 Later in the book, we shall be able to significantly improve McKean’s the-
orem and show that for Brownian motion in dimension d � 2, almost surely, for any
A ⊂ [0,∞), we have dim B(A) = 2 dim(A). This result is Kaufman’s theorem, see
Theorem 9.28. Note the difference between the results of McKean and Kaufman: In The-
orem 4.33, the null probability set depends on A, while Kaufman’s theorem has a much
stronger claim: it states dimension doubling simultaneously for all sets. This allows us to
plug in random sets A, which may depend completely arbitrarily on the Brownian motion.
For Kaufman’s theorem, d � 2 is a necessary condition: we have seen that the zero set of
one dimensional Brownian motion has dimension 1/2, while its image is a single point. �

Exercises

Exercise 4.1. S Show that for the ternary Cantor set C, we have dimM C = log 2
log 3 .

Exercise 4.2. S Let E := {1/n : n ∈ N} ∪ {0}. Show that dimM E = 1
2 .

Exercise 4.3. S Show that, for every bounded metric space, the Hausdorff dimension is
bounded from above by the lower Minkowski dimension.

Exercise 4.4. S Show that Hausdorff dimension has the countable stability property.

Exercise 4.5. Show that, for the ternary Cantor set C we have dim C = log 2
log 3 .

Exercise 4.6. S Suppose f : (E1 , ρ1) → (E2 , ρ2) is surjective and α-Hölder continuous
with constant C. Show that, for any β � 0,

Hβ (E2) � Cβ Hαβ (E1),

and therefore dim(E2) � 1
α dim(E1).

Exercise 4.7. Suppose f : [0, 1] → Rd is an α-Hölder continuous function. Show that

(a) dimM(Graphf [0, 1]) � 1 + (1 − α)
(
d ∧ 1

α

)
,

(b) and, for any A ⊂ [0, 1], we have dimM Rangef (A) � dimM A
α .

Exercise 4.8. S For any integer d � 1 and 0 < α < d construct a compact set A ⊂ Rd

such that dim A = α.

Exercise 4.9. Construct a function f : [0, 1] → Rd which is α-Hölder continuous for any
α < β, but has Hβ (Rangef [0, 1]) = ∞.

Exercise 4.10. A function f : [0, 1] → R is called reverse β-Hölder for some 0 < β < 1
if there exists a constant C > 0 such that for any interval [t, s], there is a subinterval
[t1 , s1 ] ⊂ [t, s], such that |f(t1) − f(s1)| � C|t − s|β . Let f : [0, 1] → R be reverse
β-Hölder. Show that dimM(Graphf [0, 1]) � 2 − β.
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Exercise 4.11. Show that for {B(t) : t � 0} we have dimM Graph[0, 1] = 3
2 if d = 1, and

dimM Graph[0, 1] = dimM B[0, 1] = 2 if d � 2, almost surely.

Exercise 4.12. Show that the set of record points of a linear Brownian motion satisfies,
almost surely,

Rec = {s � 0: M(s + h) > M(s − h) for all 0 < h < s}.

Exercise 4.13. Show that dimM {0 � t � 1 : B(t) = 0} = 1
2 , almost surely.

Exercise 4.14. S Show that H1/2(Zeros) = 0, almost surely.

Exercise 4.15. For a Brownian path {B(t) : t � 0} in Rd , d � 2, we denote by

Wε(t) =
{
x ∈ Rd : |x − B(s)| < ε for some 0 � s � t

}
the Wiener sausage of width ε > 0 up to time t.

(a) Show that, for a suitable constant C > 0, we have EL(W1(t)) � Ct.

(b) Infer from the result of (a) that H2(Range[0, 1]) < ∞, almost surely.

Notes and comments

Felix Hausdorff introduced the Hausdorff measure in his seminal paper [Ha19]. Credit
should also be given to Carathéodory [Ca14] who introduced a general construction in
which Hausdorff measure can be naturally embedded. The Hausdorff measure indeed de-
fines a measure on the Borel sets, proofs can be found in [Ma95] and [Ro99]. If X = Rd

and α = d the Hausdorff measure Hα is a constant multiple of Lebesgue measure Ld ,
moreover if α is an integer and X an embedded α-submanifold, then Hα is (a constant
multiple of) the surface measure. This idea can also be used to develop vector analysis on
sets with much less smoothness than a differentiable manifold. For more about Hausdorff
dimension and geometric questions related to it we strongly recommend Mattila [Ma95].
The classic text of Rogers [Ro99], which first appeared in 1970, is a thorough discussion
of Hausdorff measures. Falconer [Fa97a, Fa97b] covers a range of applications and current
developments, but with more focus on deterministic fractals.

The results on the Hausdorff dimension of graph and range of a Brownian motion are
due to S.J. Taylor [Ta53, Ta55] and independently to Lévy [Le51] though the latter paper
does not contain full proofs. Taylor also proved in [Ta55] that the dimension of the zero
set of a Brownian motion in dimension one is 1/2. Stronger results show that, almost
surely, the Hausdorff dimension of all nondegenerate level sets is 1/2. For this and much
finer results see [Pe81]. A classical survey, which inspired a lot of activity in the area
of Hausdorff dimension and stochastic processes is Taylor [Ta86] and a modern survey is
Xiao [Xi04].



Notes and comments 117

The energy method and Frostman’s lemma all stem from Otto Frostman’s famous
1935 thesis [Fr35], which lays the foundations of modern potential theory. The elegant
quantitative proof of the energy method given here is due to Oded Schramm. Frost-
man’s lemma was generalised to complete, separable metric spaces by Howroyd [Ho95]
using a functional-analytic approach. The main difficulty arising in the proof is that, if
Hα (E) = ∞, one has to find a subset A ⊂ E with 0 < Hα (A) < ∞, which is tricky
to do in abstract metric spaces. Frostman’s original proof uses, in a way, the same idea
as the proof presented here, though the transfer to the tree setup is not done explicitly.
Probability using trees became fashionable in the 1990s and indeed, this is the right way
to look at many problems of Hausdorff dimension and fractal geometry. Recommended
survey articles are by Pemantle [Pe95], Lyons [Ly96] or the chapter on random fractals
in [KM09], more information can be found in [Pe99] and [LP05].

McKean’s theorem is due to Henry McKean [McK55]. Its surprising extension by
Kaufman is not as hard as one might think considering the wide applicability of the result.
The original source is [Ka69], we discuss the result in depth in Chapter 9.

The concept of ‘reverse Hölder’ mappings only partially extends from Minkowski to
Hausdorff dimension. If f : [0, 1] → R is both β-Hölder and reverse β-Hölder for some
0 < β < 1, it satisfies dim(Graphf [0, 1]) > 1, see Przytycki and Urbański [PU89]. For
example, the Weierstrass nowhere differentiable function W (t) =

∑∞
n=0 an cos(bn t), for

ab > 1, 0 < a < 1, is β-Hölder and reverse β-Hölder for some 0 < β < 1. The Hausdorff
dimension of its graph is, however, not rigorously known in general.

There is a natural refinement of the notions of Hausdorff dimension and Hausdorff
measure, which is based on evaluating sets by applying an arbitrary ‘gauge’ function ϕ

to the diameter, rather than taking a power. Measuring sets using a gauge function not
only allows much finer results, it also turns out that the natural measures on graph and
range of Brownian paths, which we have encountered in this chapter, turn out to be Haus-
dorff measures for suitable gauge functions. Results in this direction are Ciesielski and
Taylor [CT62], Ray [Ra63a], Taylor [Ta64] and we include elements of this discussion in
Chapter 6, where the zero set of Brownian motion is considered.

The Wiener sausages, defined in Exercise 4.15, have been widely studied. In the early
sixties, Kesten, Spitzer and Whitman, see e.g. p.252 in [IM74], showed that L(W1(t))/t,
for d � 3, converges almost surely to the Newtonian capacity of the unit ball. This result
indicates that covering of the Brownian path with balls of fixed size is not sufficient to show
that its 1

2 -dimensional Hausdorff measure is zero. Spitzer [Sp64] showed that, for d = 3,
the expected volume of the Wiener sausage satisfies

E[L(W1(t))] = c t +
4

(2π)3/2 c2
√

t + o(
√

t),

where c = Cap1(B(0, 1)). A central limit theorem, which highlights the deep connec-
tion of the Wiener sausage to the self-intersections of the Brownian path is due to Le
Gall [LG88b]. An integrated view of these results is given by Csáki and Hu [CHu07].
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Brownian motion and random walk

In this chapter we discuss some aspects of the relation between random walk and Brownian
motion. The first two sections aim to demonstrate the nature of this relation by examples,
which are of interest in their own right. These are first the law of the iterated logarithm,
which is easier to prove for Brownian motion and can be extended to random walks by
an embedding argument, and second a proof that Brownian motion does not have points
of increase, which is based on a combinatorial argument for a suitable class of random
walks and then extended to Brownian motion. We then discuss the Skorokhod embedding
problem systematically, and give a proof of the Donsker invariance principle based on the
Skorokhod embedding. We give a variety of applications of Donsker’s invariance principle,
including the arcsine laws and Pitman’s 2M − B theorem.

5.1 The law of the iterated logarithm

Suppose {B(t) : t � 0} is a standard linear Brownian motion. Although at any given time t

and for any open set U ⊂ R the probability of the event {B(t) ∈ U} is positive, over a long
time Brownian motion cannot grow arbitrarily fast. We have seen in Corollary 1.11 that,
for any small ε > 0, almost surely, there exists t0 > 0 such that |B(t)| � εt for all t � t0 ,
whereas Proposition 1.23 ensures that for every large k, almost surely, there exist arbitrarily
large times t such that |B(t)| � k

√
t. It is therefore natural to ask for the asymptotic

smallest upper envelope of the Brownian motion, i.e. for a function ψ : (1,∞) → R such
that

lim sup
t→∞

B(t)
ψ(t)

= 1.

The law of the iterated logarithm (whose name comes from the answer to this question but
is by now firmly established for this type of upper-envelope results) provides such a ‘gauge’
function, which determines the almost-sure asymptotic growth of a Brownian motion.
A similar problem arises for arbitrary random walks {Sn : n � 0}, where we ask for a
sequence (an : n � 0) such that

lim sup
n→∞

Sn

an
= 1.

These two questions are closely related, and we start with an answer to the first one.

118
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Theorem 5.1 (Law of the Iterated Logarithm for Brownian motion) Suppose {B(t) : t � 0}
is a standard linear Brownian motion. Then, almost surely,

lim sup
t→∞

B(t)√
2t log log(t)

= 1.

Remark 5.2 By symmetry it follows that, almost surely,

lim inf
t→∞

B(t)√
2t log log(t)

= −1.

Hence, for any ε > 0, there exists t0 such that |B(t)| � (1 + ε)
√

2t log log(t) for any
t � t0 , while there exist arbitrarily large times t with |B(t)| � (1 − ε)

√
2t log log(t). �
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Fig. 5.1. Brownian motion and its asymptotic upper envelope ψ(t) =
√

2t log log(t) at large times.
In the picture on the left we see a typical Brownian path indicating that times where the path comes
near to the envelope are very sparse. The picture on the right was chosen from a large number of
samples so that the Brownian motion ends near the envelope. Due to the implicit conditioning on
this event, the sample path of the motion has features untypical of Brownian paths. See the ‘Notes
and comments’ section for more details.

Proof. The main idea is to scale by a geometric sequence. Let ψ(t) =
√

2t log log(t).
We first prove the upper bound. Fix ε > 0 and q > 1. Let

An =
{

max
0�t�qn

B(t) � (1 + ε)ψ(qn )
}

.

By Theorem 2.21 the maximum of Brownian motion up to a fixed time t has the same
distribution as |B(t)|. Therefore

P(An ) = P
{
|B(qn )|√

qn
� (1 + ε)

ψ(qn )√
qn

}
.

We can use the tail estimate P{Z > x} � e−x2 /2 for a standard normally distributed Z

and x > 1, see Lemma 12.9 in the appendix, to conclude that, for large n,

P(An ) � 2 exp
(
−(1 + ε)2 log log qn

)
=

2
(n log q)(1+ε)2 .
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This is summable in n and hence, by the Borel–Cantelli lemma, we get that only finitely
many of these events occur. For large t write qn−1 � t < qn . We have

B(t)
ψ(t)

=
B(t)
ψ(qn )

ψ(qn )
qn

t

ψ(t)
qn

t
� (1 + ε)q,

since ψ(t)/t is decreasing in t, and thus

lim sup
t→∞

B(t)
ψ(t)

� (1 + ε)q, almost surely.

Since this holds for any ε > 0 and q > 1 we have proved that lim sup B(t)/ψ(t) � 1
almost surely.

For the lower bound, fix q > 1. In order to use the Borel–Cantelli lemma in the other
direction, we need to create a sequence of independent events. Let

Dn =
{
B(qn ) − B(qn−1) � ψ(qn − qn−1)

}
.

We now use Lemma 12.9 of the appendix to see that there is a constant c > 0 such that, for
large x,

P{Z > x} � ce−x2 /2

x
.

Using this estimate we get, for some further constant c̃ > 0 and n large enough,

P(Dn ) = P
{

Z � ψ (qn −qn −1 )√
qn −qn −1

}
� c

e− log log(qn −qn −1 )√
2log log(qn − qn−1)

� ce− log(n log q)√
2 log(n log q)

>
c̃

n log n
,

and therefore
∑

n P(Dn ) = ∞. Thus for infinitely many n

B(qn ) � B(qn−1) + ψ(qn − qn−1) � − 2ψ(qn−1) + ψ(qn − qn−1),

where the second inequality follows from applying the previously proved upper bound to
−B(qn−1). From the above we get that almost surely, for infinitely many n,

B(qn )
ψ(qn )

� −2ψ(qn−1) + ψ(qn − qn−1)
ψ(qn )

� −2
√

q
+

qn − qn−1

qn
= 1 − 2

√
q
− 1

q
. (5.1)

Indeed, to obtain the second inequality first note that

ψ(qn−1)
ψ(qn )

=
ψ(qn−1)√

qn−1

√
qn

ψ(qn )
1
√

q
� 1

√
q
,

since ψ(t)/
√

t is increasing in t for large t. For the second term we just use the fact that
ψ(t)/t is decreasing in t. Now (5.1) implies that

lim sup
t→∞

B(t)
ψ(t)

� − 2
√

q
+ 1 − 1

q
almost surely,

and letting q ↑ ∞ concludes the proof of the lower bound.
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Corollary 5.3 Suppose {B(t) : t � 0} is a standard Brownian motion. Then, almost surely,

lim sup
h↓0

|B(h)|√
2h log log(1/h)

= 1.

Proof. By Theorem 1.9 the process {X(t) : t � 0} defined by X(t) = tB(1/t) for
t > 0 is a standard Brownian motion. Hence, using Theorem 5.1, we get

lim sup
h↓0

|B(h)|√
2h log log(1/h)

= lim sup
t↑∞

|X(t)|√
2t log log t

= 1 .

The law of the iterated logarithm is a result which is easier to prove for Brownian motion
than for random walks, as scaling arguments can be used to good effect in the proof. We
now use an ad hoc argument to obtain a law of the iterated logarithm for simple random
walks, i.e. the random walk with increments taking the values ±1 with equal probability,
from Theorem 5.1. A version for more general walks will follow with analogous arguments
from the embedding techniques of Section 5.3, see Theorem 5.17.

Theorem 5.4 (Law of the Iterated Logarithm for simple random walk) Let {Sn : n � 0}
be a simple random walk. Then, almost surely,

lim sup
n→∞

Sn√
2n log log n

= 1.

We now start the technical work to transfer the result from Brownian motion to simple
random walk. The next result shows that the limsup does not change if we only look along
a sufficiently dense sequence of random times. We abbreviate ψ(t) =

√
2t log log(t).

Lemma 5.5 If {Tn : n � 1} is a sequence of random times (not necessarily stopping times)
satisfying Tn → ∞ and Tn+1/Tn → 1 almost surely, then

lim sup
n→∞

B(Tn )
ψ(Tn )

= 1 almost surely.

Furthermore, if Tn/n → a > 0 almost surely, then

lim sup
n→∞

B(Tn )
ψ(an)

= 1 almost surely.

Proof. The upper bound follows from the upper bound for continuous time without
any conditions on {Tn : n � 1}. For the lower bound some restrictions are needed, which
prevent us from choosing, for example, T0 = 0 and Tn = inf{t > Tn−1 + 1: B(t) < 1

n }.
Our conditions Tn+1/Tn → 1 and Tn → ∞ make sure that the times are sufficiently dense
to rule out this effect. Define, for fixed q > 4,

Dk =
{
B(qk ) − B(qk−1) � ψ(qk − qk−1)

}
,

Ωk =
{

min
qk � t � qk + 1

B(t) − B(qk ) � −
√

qk

}
and D∗

k = Dk ∩ Ωk .
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Note that Dk and Ωk are independent events. From Brownian scaling and Lemma 12.9 it
is easy to see, as in the proof of Theorem 5.1, that, for a suitable constant c > 0,

P(Dk ) = P
{

B(1) � ψ (qk −qk −1 )√
qk −qk −1

}
� c

k log k
.

Moreover, by scaling, P(Ωk ) =: cq > 0, and cq that does not depend on k. As P(D∗
k ) =

cqP(Dk ) the sum
∑

k P(D∗
2k ) is infinite. As the events {D∗

2k : k � 1} are independent, by
the Borel–Cantelli lemma, for infinitely many (even) k,

min
qk �t�qk + 1

B(t) � B(qk−1) + ψ(qk − qk−1) −
√

qk .

By Remark 5.2, for all sufficiently large k, we have B(qk−1) � − 2ψ(qk−1) and, by easy
asymptotics, ψ(qk − qk−1) � ψ(qk )(1 − 1

q ). Hence, for infinitely many k,

min
qk �t�qk + 1

B(t)�ψ(qk − qk−1) − 2ψ(qk−1) −
√

qk � ψ(qk )
(
1 − 1

q − 2√
q

)
−
√

qk ,

with the right hand side being positive by our choice of q. Now define n(k) = min{n :
Tn > qk}. Since the ratios Tn+1/Tn tend to 1, it follows that for any fixed ε > 0, we have
qk � Tn(k) < qk (1 + ε) for all large k. Thus, for infinitely many k,

B(Tn(k))
ψ(Tn(k))

� ψ(qk )
ψ(qk (1 + ε))

(
1 − 1

q − 2√
q

)
−
√

qk

ψ(qk )
.

But since
√

qk/ψ(qk ) → 0 and ψ(qk )/ψ(qk (1 + ε)) → 1/
√

1 + ε, we conclude that

lim sup
n→∞

B(Tn )
ψ(Tn )

� 1√
1 + ε

(
1 − 1

q − 2√
q

)
,

and since the left hand side does not depend on q and ε > 0 we can let q ↑ ∞ and
ε ↓ 0 to arrive at the desired conclusion. For the last part, note that if Tn/n → a then
ψ(Tn )/ψ(an) → 1.

1

2

T T3 T4T1 2

t

−1

−2

0

Fig. 5.2. Embedding simple random walk into Brownian motion
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Proof of Theorem 5.4. To prove the law of the iterated logarithm for simple random
walk, we let T0 = 0 and, for n � 1,

Tn = min{t > Tn−1 : |B(t) − B(Tn−1)| = 1}.

The times Tn are stopping times for Brownian motion and, hence, by the strong Markov
property, the waiting times Tn − Tn−1 are independent and identically distributed random
variables. Obviously, P{B(Tn ) − B(Tn−1) = 1} = P{B(Tn ) − B(Tn−1) = −1} = 1

2 ,

and therefore {B(Tn ) : n � 0} is a simple random walk. By Theorem 2.49, we have
E[Tn − Tn−1 ] = 1, and hence the law of large numbers ensures that Tn/n converges al-
most surely to 1, and the theorem follows from Lemma 5.5.

Remark 5.6 The technique used to get Theorem 5.4 from Theorem 5.1 is based on finding
an increasing sequence of stopping times {Tn : n � 0} for the Brownian motion, such that
Sn = B(Tn ) defines a simple random walk, while we keep some control over the size of
Tn . This ‘embedding technique’ will be extended substantially in Section 5.3. �

5.2 Points of increase for random walk and Brownian motion

A point t ∈ (0,∞) is a local point of increase for the function f : (0,∞) → R if for some
open interval (a, b) containing t we have f(s) � f(t) for all s ∈ (a, t) and f(t) � f(s)
for all s ∈ (t, b). In this section we show that Brownian motion almost surely has no local
points of increase. Our proof uses a combinatorial argument to derive a quantitative result
for simple random walks, and then uses this result to study the case of Brownian motion.
A crucial tool in the proof is an inequality of Harris [Ha60], which is of some independent
interest.

Theorem 5.7 (Harris’ inequality) Suppose that X = (X1 , . . . , Xd) is a random vari-
able with values in Rd and independent coordinates. Let f, g : Rd → R be measurable
functions, which are non-decreasing in each coordinate. Then,

E
[
f(X)g(X)

]
� E[f(X)] E[g(X)] , (5.2)

provided the above expectations are well-defined.

Proof. One can argue, using the monotone convergence theorem, that it suffices to prove
the result when f and g are bounded. We assume f and g are bounded and proceed by
induction on the dimension d. Suppose first that d = 1. Note that

(f(x) − f(y))(g(x) − g(y)) � 0 , for all x, y ∈ R.

Therefore, for Y an independent random variable with the same distribution as X ,

0 � E
[
(f(X) − f(Y ))(g(X) − g(Y ))

]
= 2E

[
f(X)g(X)

]
− 2E
[
f(X)

]
E
[
g(Y )
]
,

and (5.2) follows easily. Now, suppose (5.2) holds for d − 1. Define

f1(x1) = E
[
f(x1 ,X2 , . . . , Xd)

]
,
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and define g1 similarly. Note that f1(x1) and g1(x1) are non-decreasing functions of x1 .
Since f and g are bounded, we may apply Fubini’s theorem to write the left hand side of
(5.2) as ∫

R

E
[
f(x1 ,X2 , . . . , Xd) g(x1 ,X2 , . . . , Xd)

]
dµ1(x1) , (5.3)

where µ1 denotes the law of X1 . The expectation in the integral is at least f1(x1)g1(x1)
by the induction hypothesis. Thus, using the result for the d = 1 case, we can bound (5.3)
from below by E[f1(X1)] E[g1(X1)], which equals the right hand side of (5.2), completing
the proof.

For the rest of this section, let X1 ,X2 , . . . be independent random variables with

P{Xi = 1} = P{Xi = −1} = 1
2 ,

and let Sk =
∑k

i=1 Xi be their partial sums. Denote

pn = P{Si � 0 for all 1 � i � n} . (5.4)

Then {Sn is a maximum among S0 , S1 , . . . Sn} is precisely the event that the reversed
random walk given by S′

k = Xn +. . .+Xn−k+1 is nonnegative for all k = 1, . . . , n. Hence
this event also has probability pn . The following lemma gives the order of magnitude of
pn , the proof will be given as Exercise 5.4.

Lemma 5.8 There are positive constants C1 and C2 such that

C1√
n

� P{Si � 0 for all 1 � i � n} � C2√
n

for all n � 1.

The next lemma expresses, in terms of the pn defined in (5.4), the probability that Sj stays
between 0 and Sn for j between 0 and n.

Lemma 5.9 We have p2
n � P

{
0 � Sj � Sn for all 1 � j � n

}
� p2

�n/2�.

Proof. The two events

A = {0 � Sj for all j � �n/2�} and

B = {Sj � Sn for j � �n/2�}

are independent, since A depends only on X1 , . . . , X�n/2� and B depends only on the
remaining X�n/2�+1 , . . . , Xn . Therefore,

P
{
0 � Sj � Sn for all j ∈ {0, . . . , n}

}
� P(A ∩ B) = P(A)P(B) � p2

�n/2�,

which proves the upper bound.
For the lower bound, we let f(x1 , . . . , xn ) = 1 if all the partial sums x1 + . . .+xk for k =
1, . . . , n are nonnegative, and f(x1 , . . . , xn ) = 0 otherwise. Also, define g(x1 , . . . , xn ) =
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f(xn , . . . , x1). Then f and g are non-decreasing in each component. By Harris’ inequality,
for X = (X1 , . . . , Xn ), we have E[f(X)g(X)] � E[f(X)] E[g(X)] = p2

n . Also,

E
[
f(X)g(X)

]
= P{X1 + . . . + Xj � 0 and Xj+1 + . . . + Xn � 0 for all j }
= P

{
0 � Sj � Sn for all 1 � j � n

}
,

which proves the lower bound.

Definition 5.10.

(a) A sequence s0 , s1 , . . . , sn of reals has a (global) point of increase at k ∈ {0, . . . , n},
if si � sk for i = 0, 1, . . . , k − 1 and sk � sj for j = k + 1, . . . , n.

(b) A real-valued function f has a global point of increase in the interval (a, b) if
there is a point t ∈ (a, b) such that f(s) � f(t) for all s ∈ (a, t) and f(t) � f(s)
for all s ∈ (t, b). t is a local point of increase if it is a global point of increase in
some interval. �

Theorem 5.11 Let S0 , S1 , . . . , Sn be a simple random walk. Then

P
{
S0 , . . . , Sn has a point of increase

}
� C

log n
,

for all n > 1, where C does not depend on n.

The key to Theorem 5.11 is the following upper bound, which holds for more general
random walks. It will be proved as Exercise 5.5.

Lemma 5.12 For any random walk {Sj : j � 0} on the line,

P
{
S0 , . . . , Sn has a point of increase

}
� 2
∑n

k=0 pkpn−k∑�n/2�
k=0 p2

k

. (5.5)

Remark 5.13 Equation (5.5) is easy to interpret: The expected number of points of increase
by time n is the numerator in (5.5), and given that there is at least one point of increase
in [0, n/2], the expected number of these points in [0, n] is bounded from below by the
denominator. �

Proof of Theorem 5.11. To bound the numerator in (5.5), we can use symmetry to
deduce from Lemma 5.8 that

n∑
k=0

pkpn−k � 2 + 2
�n/2�∑
k=1

pkpn−k � 2 + 2C2
2

�n/2�∑
k=1

k−1/2(n − k)−1/2

� 2 + 4C2
2 n−1/2

�n/2�∑
k=1

k−1/2 ,
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which is bounded above because the last sum is bounded by a constant multiple of n1/2 .
Since Lemma 5.8 implies that the denominator in (5.5) is at least C2

1 log�n/2� , this com-
pletes the proof.

We now see how we can use embedding ideas to pass from the result about simple random
walks to the result about Brownian motion.

Theorem 5.14 Brownian motion almost surely has no local points of increase.

Proof. To deduce this, it suffices to apply Theorem 5.11 to a simple random walk on
the integers. Indeed, it clearly suffices to show that the Brownian motion {B(t) : t � 0}
almost surely has no global points of increase in a fixed time interval (a, b) with rational
endpoints. Sampling the Brownian motion when it visits a lattice yields a simple random
walk; by refining the lattice, we may make this walk as long as we wish and capture all
required detail.

More precisely, for any vertical spacing h > 0 define τ0 to be the first t > a such that
B(t) is an integral multiple of h, and for i � 0 let τi+1 be the minimal t � τi such that
|B(t) − B(τi)| = h. Define Nb = max{k ∈ Z : τk < b}. For integers i satisfying
0 � i � Nb , define

Si =
B(τi) − B(τ0)

h
.

Then {Si : i = 1, . . . , Nb} is a finite portion of a simple random walk. If the Brown-
ian motion has a global point of increase t0 ∈ (a, b), and if k is an integer such that
τk−1 � t0 � τk , then this random walk has points of increase at k − 1 and k. Similarly, if
t0 < τ0 or t0 > τNb

, then k = 0, resp. k = Nb , is a point of increase for the random walk.
Therefore, for all n,

P
{
{B(t) : t � 0} has a global point of increase in (a, b)

}
� P{Nb � n} +

∞∑
m=n+1

P
{
S0 , . . . , Sm has a point of increase and Nb = m

}
.

(5.6)

Note that Nb � n implies |B(b) − B(a)| � (n + 1)h, so

P{Nb � n} � P
{
|B(b) − B(a)| � (n + 1)h

}
= P
{
|Z| � (n+1)h√

b−a

}
,

where Z has a standard normal distribution. Since S0 , . . . , Sm , conditioned on Nb = m

is a finite portion of a simple random walk, it follows from Theorem 5.11 that for some
constant C, we have

∞∑
m=n+1

P
{
S0 , . . . , Sm has a point of increase, and Nb = m

}
�

∞∑
m=n+1

P{Nb = m} C

log m
� C

log(n + 1)
.

Thus, the probability in (5.6) can be made arbitrarily small by first taking n large and then
picking h > 0 sufficiently small.
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5.3 Skorokhod embedding and Donsker’s invariance principle

In the proof of Theorem 5.4 we have made use of the fact that there exists a stopping time
T for linear Brownian motion with the property that E[T ] < ∞ and the law of B(T ) is the
uniform distribution on {−1, 1}. To use the same method for random walks {Sn : n ∈ N}
with general increments, it would be necessary to find, for a given random variable X

representing an increment, a stopping time T with E[T ] < ∞, such that B(T ) has the
law of X . This problem is called the Skorokhod embedding problem. By Wald’s lemmas,
Theorem 2.44 and Theorem 2.48, for any integrable stopping time T , we have

E
[
B(T )

]
= 0 and E

[
B(T )2] = E[T ] < ∞ ,

so that the Skorokhod embedding problem can only be solved for random variables X

with mean zero and finite second moment. However, these are the only restrictions, as the
following result shows.

Theorem 5.15 (Skorokhod embedding theorem) Suppose that {B(t) : t � 0} is a stan-
dard Brownian motion and that X is a real valued random variable with E[X] = 0
and E[X2 ] < ∞. Then there exists a stopping time T , with respect to the natural fil-
tration (F(t) : t � 0) of the Brownian motion, such that B(T ) has the law of X and
E[T ] = E[X2 ].

Example 5.16 Assume that X may take two values a < b. In order that E[X] = 0 we
must have a < 0 < b and P{X = a} = b/(b−a) and P{X = b} = −a/(b−a). We have
seen in Theorem 2.49 that, for the stopping time T = inf{t : B(t) �∈ (a, b)} the random
variable B(T ) has the same distribution as X , and that E[T ] = −ab is finite. �

Note that the Skorokhod embedding theorem allows us to use the arguments developed for
the proof of the law of the iterated logarithm for simple random walks, Theorem 5.4, and
obtain a much more general result.

Theorem 5.17 (Hartman–Wintner law of the iterated logarithm) Let {Sn : n ∈ N} be
a random walk with increments Sn − Sn−1 of zero mean and finite variance σ2 . Then

lim sup
n→∞

Sn√
2σ2 n log log n

= 1.

We now present two proofs of the Skorokhod embedding theorem, which actually rep-
resent different constructions of the required stopping times. Both approaches, Dubins’
embedding, and the Azéma–Yor embedding are very elegant and have their own merits.

5.3.1 The Dubins’ embedding theorem

The first one, due to Dubins [Du68], is particularly simple and based on the notion of
binary splitting martingales. We say that a martingale {Xn : n ∈ N} is binary splitting if,



128 Brownian motion and random walk

whenever for some x0 , . . . , xn ∈ R the event

A(x0 , . . . , xn ) := {X0 = x0 ,X1 = x1 , . . . , Xn = xn}

has positive probability, the random variable Xn+1 conditioned on A(x0 , . . . , xn ) is sup-
ported on at most two values.

0 20 40 60 80 100

−4

−3

−2

2

3

4

Fig. 5.3. Dubins’ embedding for the uniform distribution on {−4,−2, 0, 2, 4}: First go until you hit
{−3, 3}, in this picture you hit −3. Given that, continue until you hit either −2 or −4, in this picture
you hit −2. Hence B(T ) = −2 for this sample.

Lemma 5.18 Let X be a random variable with E[X2 ] < ∞. Then there is a binary
splitting martingale {Xn : n ∈ N} such that Xn → X almost surely and in L2 .

Proof. We define the martingale {Xn : n ∈ N} and the associated filtration (Gn : n ∈
N) recursively. Let G0 be the trivial σ-algebra (consisting only of the empty set and the
underlying probability space itself) and X0 = EX . Define the random variable ξ0 by

ξ0 =
{

1 , if X � X0 ,

−1 , if X < X0 .

For any n > 0, let Gn = σ(ξ0 , . . . , ξn−1) and Xn = E[X | Gn ]. Also define the random
variable ξn by

ξn =
{

1 , if X � Xn ,

−1 , if X < Xn .

Note that Gn is generated by a partition Pn of the underlying probability space into 2n

sets, each of which has the form A(x0 , . . . , xn ). As each element of Pn is a union of two
elements of Pn+1 , the martingale {Xn : n ∈ N} is binary splitting. Also we have, for
example as in (12.1) in the appendix, that

E
[
X2] = E

[
(X − Xn )2]+ E

[
X2

n

]
� E
[
X2

n

]
.
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Hence {Xn : n ∈ N} is bounded in L2 and, from the convergence theorem for L2-
bounded martingales and Lévy’s upward theorem, see Theorems 12.28 and 12.25 in the
appendix, we get

Xn → X∞ := E
[
X
∣∣G∞
]

almost surely and in L2 ,

where G∞ = σ
(⋃∞

i=0 Gi

)
. To conclude the proof we have to show that X = X∞ almost

surely. We claim that, almost surely,

lim
n↑∞

ξn (X − Xn+1) = |X − X∞| . (5.7)

Indeed, if X(ω) = X∞(ω) this is easy. If X(ω) < X∞(ω) then for some large enough
N we have X(ω) < Xn (ω) for any n > N , hence ξn = −1 and (5.7) holds. Similarly, if
X(ω) > X∞(ω) then ξn = 1 for n > N and so (5.7) holds.
Using that ξn is Gn+1-measurable, we find that

E
[
ξn (X − Xn+1)

]
= E
[
ξn E[X − Xn+1 | Gn+1]

]
= 0 .

Recall that if Yn → Y almost surely, and {Yn : n = 0, 1, · · · } is L2-bounded, then EYn →
EY (see, for example, the discussion of uniform integrability in 12.3 of the appendix).
Hence, as the left hand side of (5.7) is L2-bounded, we conclude that E|X − X∞| = 0.

Proof of Theorem 5.15. From Lemma 5.18 we take a binary splitting martingale
{Xn : n ∈ N} such that Xn → X almost surely and in L2 . Recall from the example
preceding this proof that if X is supported on a set of two elements {−a, b} for some
a, b > 0 then T = inf{t : B(t) ∈ {−a, b}} is the required stopping time. Hence, as Xn

conditioned on A(x0 , . . . , xn−1) is supported on at most two values it is clear we can find
a sequence of stopping times T0 � T1 � . . . such that B(Tn ) is distributed as Xn and
ETn = E[X2

n ]. As Tn is an increasing sequence, we have Tn ↑ T almost surely for some
stopping time T . Also, by the monotone convergence theorem

ET = lim
n↑∞

ETn = lim
n↑∞

E
[
X2

n

]
= E
[
X2] .

As B(Tn ) converges in distribution to X by construction, and converges almost surely to
B(T ) by continuity of the Brownian sample paths, we get that B(T ) is distributed as X .

5.3.2 The Azéma–Yor embedding theorem

In this section we discuss a second solution to the Skorokhod embedding problem with a
more explicit construction of the stopping times.

Theorem* 5.19 (Azéma–Yor embedding theorem) Suppose that X is a real valued ran-
dom variable with E[X] = 0 and E[X2 ] < ∞. Let

Ψ(x) = E
[
X
∣∣X � x

]
if P{X � x} > 0 ,

and Ψ(x) = 0 otherwise. For a Brownian motion {B(t) : t � 0} let {M(t) : t � 0} be the
maximum process and define a stopping time τ by

τ = inf{t � 0: M(t) � Ψ(B(t))}.

Then E[τ ] = E[X2 ] and B(τ) has the same law as X .
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Ψ−1(M(t))

B(t) T

M (t)

Fig. 5.4. The Azéma–Yor embedding: the path is stopped when the Brownian motion hits the
level Ψ−1 (M (t)), where Ψ−1 (x) = sup{b : Ψ(b) � x}.

We proceed in three steps. In the first step we formulate an embedding for random variables
taking only finitely many values.

Lemma 5.20 Suppose the random variable X with EX = 0 takes only finitely many values

x1 < x2 < · · · < xn .

Define y1 < y2 < · · · < yn−1 by yi = Ψ(xi+1), and define stopping times T0 = 0 and

Ti = inf
{
t � Ti−1 : B(t) �∈ (xi, yi)

}
for i � n − 1.

Then T = Tn−1 satisfies E[T ] = E[X2 ] and B(T ) has the same law as X .
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Fig. 5.5. The Azéma–Yor embedding for the uniform distribution on the set {−2,−1, 0, 1, 2}. The
drawn path samples the value B(T ) = 0 with T = T4 .
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Proof. First observe that yi � xi+1 and equality holds if and only if i = n− 1. We have
E[Tn−1 ] < ∞, by Theorem 2.49, and E[Tn−1 ] = E[B(Tn−1)2 ], from Theorem 2.48. For
i = 1, . . . , n − 1 define random variables

Yi =
{

E[X |X � xi+1] if X � xi+1 ,

X if X � xi.

Note that Y1 has expectation zero and takes on the two values x1 , y1 . For i � 2, given
Yi−1 = yi−1 , the random variable Yi takes the values xi, yi and has expectation yi−1 .
Given Yi−1 = xj , j � i − 1 we have Yi = xj . Note that Yn−1 = X . We now argue that

(B(T1), . . . , B(Tn−1))
d= (Y1 , . . . , Yn−1).

Clearly, B(T1) can take only the values x1 , y1 and has expectation zero, hence the law of
B(T1) agrees with the law of Y1 . For i � 2, given B(Ti−1) = yi−1 , the random vari-
able B(Ti) takes the values xi, yi and has expectation yi−1 . Given B(Ti−1) = xj where
j � i−1, we have B(Ti) = xj . Hence the two tuples have the same law and, in particular,
B(Tn−1) has the same law as X .

In the second step, we show that the stopping time we have constructed in Lemma 5.20
agrees with the stopping time τ in the Azéma–Yor embedding.

Lemma 5.21 The stopping time T constructed in Lemma 5.20 and the stopping time τ in
Theorem 5.19 are equal.

Proof. Suppose that B(Tn−1) = xi , and hence Ψ(B(Tn−1)) = yi−1 . If i � n− 1, then
i is minimal with the property that B(Ti) = · · · = B(Tn−1), and thus B(Ti−1) �= B(Ti).
Hence M(Tn−1) � yi−1 . If i = n we also have M(Tn−1) = xn � yi−1 , which implies
in any case that τ � T . Conversely, if Ti−1 � t < Ti then B(t) ∈ (xi, yi) and this implies
M(t) < yi � Ψ(B(t)). Hence τ � T , and altogether we have seen that T = τ .

This completes the proof of Theorem 5.19 for random variables taking finitely many val-
ues. The general case follows from a limiting procedure, which is left as Exercise 5.10.

5.3.3 The Donsker invariance principle

Let {Xn : n � 0} be a sequence of independent and identically distributed random vari-
ables and assume that they are normalised, so that E[Xn ] = 0 and Var(Xn ) = 1. This
assumption is no loss of generality for Xn with finite variance, since we can always con-
sider the normalisation

Xn − E[Xn ]√
Var(Xn )

.

We look at the random walk generated by the sequence

Sn =
n∑

k=1

Xk ,



132 Brownian motion and random walk

and interpolate linearly between the integer points, i.e.

S(t) = S[t] + (t − [t])(S[t]+1 − S[t]) .

This defines a random function S ∈ C[0,∞). We now define a sequence {S∗
n : n � 1} of

random functions in C[0, 1] by

S∗
n (t) =

S(nt)√
n

for all t ∈ [0, 1].

Theorem 5.22 (Donsker’s invariance principle) On the space C[0, 1] of continuous func-
tions on the unit interval with the metric induced by the sup-norm, the sequence {S∗

n : n � 1}
converges in distribution to a standard Brownian motion {B(t) : t ∈ [0, 1]}.

Remark 5.23 Donsker’s invariance principle is also called the functional central limit the-
orem. The name invariance principle comes from the fact that the limit in Theorem 5.22
does not depend on the choice of the exact distribution of the normalised random vari-
ables Xn . �

The idea of the proof is to construct the random variables X1 ,X2 ,X3 , . . . on the same
probability space as the Brownian motion in such a way that {S∗

n : n � 1} is with high
probability close to a scaling of this Brownian motion.

Lemma 5.24 Suppose {B(t) : t � 0} is a linear Brownian motion. Then, for any random
variable X with mean zero and variance one, there exists a sequence of stopping times

0 = T0 � T1 � T2 � T3 � . . .

with respect to the Brownian motion, such that

(a) the sequence {B(Tn ) : n � 0} has the distribution of the random walk with incre-
ments given by the law of X ,

(b) the sequence of functions {S∗
n : n � 0} constructed from this random walk satisfies

lim
n→∞

P
{

sup
0�t�1

∣∣∣B(nt)√
n

− S∗
n (t)
∣∣∣ > ε
}

= 0 .

Proof. Using Skorokhod embedding, we define T1 to be a stopping time with E[T1 ] = 1
such that B(T1) = X in distribution. By the strong Markov property,

{B2(t) : t � 0} = {B(T1 + t) − B(T1) : t � 0}

is a Brownian motion and independent of F+(T1) and, in particular, of (T1 , B(T1)). Hence
we can define a stopping time T ′

2 for the Brownian motion {B2(t) : t � 0} such that
E[T ′

2 ] = 1 and B2(T ′
2) = X in distribution. Then T2 = T1 + T ′

2 is a stopping time for
the original Brownian motion with E[T2 ] = 2, such that B(T2) is the second value in a
random walk with increments given by the law of X . We can proceed inductively to get a
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sequence 0 = T0 � T1 � T2 � T3 < . . . such that Sn = B(Tn ) is the embedded random
walk, and E[Tn ] = n.

Abbreviate Wn (t) = B (nt)√
n

and let An be the event that there exists t ∈ [0, 1) such that
|S∗

n (t) − Wn (t)| > ε. We have to show that P(An ) → 0. Let k = k(t) be the unique
integer with (k − 1)/n � t < k/n. Since S∗

n is linear on such an interval we have

An ⊂
{

there exists t ∈ [0, 1) such that
∣∣Sk/

√
n − Wn (t)

∣∣ > ε
}

∪
{

there exists t ∈ [0, 1) such that
∣∣Sk−1/

√
n − Wn (t)

∣∣ > ε
}
.

As Sk = B(Tk ) =
√

nWn (Tk/n), we obtain

An ⊂ A∗
n :=
{

there exists t ∈ [0, 1) such that
∣∣Wn

(
Tk/n)

)
− Wn (t)

∣∣ > ε
}

∪
{

there exists t ∈ [0, 1) such that
∣∣Wn

(
Tk−1/n

)
− Wn (t)

∣∣ > ε
}
.

For given 0 < δ < 1 the event A∗
n is contained in{

there exist s, t ∈ [0, 2] such that |s − t| < δ , |Wn (s) − Wn (t)| > ε
}

(5.8)

∪
{

there exists t ∈ [0, 1) such that |Tk/n − t| ∨ |Tk−1/n − t| � δ
}

. (5.9)

Note that the probability of (5.8) does not depend on n. Choosing δ > 0 small, we can
make this probability as small as we wish, since Brownian motion is uniformly continu-
ous on [0, 2]. It remains to show that for arbitrary, fixed δ > 0, the probability of (5.9)
converges to zero as n → ∞. To prove this we use that

lim
n→∞

Tn

n
= lim

n→∞

1
n

n∑
k=1

(Tk − Tk−1) = 1 almost surely.

This is Kolmogorov’s law of large numbers for the sequence {Tk − Tk−1} of independent
identically distributed random variables with mean 1. Observe that for every sequence
{an} of reals one has

lim
n→∞

an

n
= 1 ⇒ lim

n→∞
sup

0�k�n
|ak − k|/n = 0 .

This is a matter of plain (deterministic) arithmetic and easily checked. Hence we have,

lim
n→∞

P
{

sup
0�k�n

|Tk − k|
n

� δ
}

= 0 . (5.10)

Now recall that t ∈ [(k − 1)/n, k/n) and let n > 2/δ. Then

P
{

there exists t ∈ [0, 1] such that |Tk/n − t| ∨ |Tk−1/n − t| � δ
}

� P
{

sup
1�k�n

(Tk − (k − 1)) ∨ (k − Tk−1)
n

� δ
}

� P
{

sup
1�k�n

Tk − k

n
� δ/2

}
+ P
{

sup
1�k�n

(k − 1) − Tk−1

n
� δ/2

}
,

and by (5.10) both summands converge to 0.
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Proof of the Donsker invariance principle. Choose the sequence of stopping times as
in Lemma 5.24 and recall from the scaling property of Brownian motion that the random
functions {Wn (t) : 0 � t � 1} given by Wn (t) = B(nt)/

√
n are standard Brownian

motions. Suppose that K ⊂ C[0, 1] is closed and define

K[ε] = {f ∈ C[0, 1] : ‖f − g‖sup � ε for some g ∈ K}.

Then P{S∗
n ∈ K} � P{Wn ∈ K[ε]} + P{‖S∗

n − Wn‖sup > ε} . As n → ∞, the second
term goes to 0, whereas the first term does not depend on n and is equal to P{B ∈ K[ε]}
for a Brownian motion B. As K is closed we have

lim
ε↓0

P{B ∈ K[ε]} = P
{

B ∈
⋂
ε>0

K[ε]
}

= P{B ∈ K}.

Putting these facts together, we obtain lim supn→∞ P{S∗
n ∈ K} � P{B ∈ K}, which is

condition (ii) in the Portmanteau theorem, Theorem 12.6 in the appendix. Hence Donsker’s
invariance principle is proved.

Below and in the following section we harvest a range of results for random walks, which
we can transfer from Brownian motion by means of Donsker’s invariance principle. Read-
ers unfamiliar with the nature of convergence in distribution are recommended to look at
the appendix, Chapter 12.1.

Theorem 5.25 Suppose that {Xk : k � 1} is a sequence of independent, identically dis-
tributed random variables with E[X1 ] = 0 and 0 < E[X2

1 ] = σ2 < ∞. Let {Sn : n � 0}
be the associated random walk and

Mn = max{Sk : 0 � k � n}

its maximal value up to time n. Then, for all x � 0,

lim
n→∞

P{Mn � x
√

n} =
2√

2πσ2

∫ ∞

x

e−y 2 /2σ 2
dy .

Proof. By scaling we can assume that σ2 = 1. Suppose now that g : R → R is a
continuous bounded function. Define a function G : C[0, 1] → R by

G(f) = g
(

max
x∈[0,1]

f(x)
)

,

and note that G is continuous and bounded. Then, by definition,

E
[
G(S∗

n )
]

= E
[
g
(

max
0�t�1

S(tn)√
n

)]
= E
[
g
(max0�k�n Sk√

n

)]
,

and

E
[
G(B)

]
= E
[
g
(

max
0�t�1

B(t)
)]

.

Hence, by Donsker’s invariance principle,

lim
n→∞

E
[
g
(Mn√

n

)]
= E
[
g
(

max
0�t�1

B(t)
)]

.
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From the Portmanteau theorem, Theorem 12.6, and the reflection principle, Theorem 2.21,
we infer

lim
n→∞

P{Mn � x
√

n} = P{ max
0�t�1

B(t) � x} = 2P{B(1) � x} ,

and the latter probability is the given integral.

5.4 The arcsine laws for random walk and Brownian motion

We now discuss the two famous arcsine laws for Brownian motion and also for random
walks. Their name comes from the arcsine distribution, which is the distribution on
(0, 1) which has the density

1
π
√

x(1 − x)
for x ∈ (0, 1).

The cumulative distribution function of an arcsine distributed random variable X is there-
fore given by

P{X � x} =
2
π

arcsin(
√

x) for x ∈ (0, 1) .
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Fig. 5.6. The density of the arcsine distribution is concentrated near the boundary values 0 and 1.

The first arcsine law describes the law of the last passage over level zero by a Brownian
motion or random walk running for finite time. In the case of a Brownian motion we shall
find this law by a smart calculation, and then Donsker’s invariance principle will allow us
to transfer the result to random walks. Observe that the following result is surprising: the
rightmost zero of Brownian motion in the interval (0, 1) is most likely to be near zero or
one, see Figure 5.6.
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Theorem 5.26 (First arcsine law for Brownian motion) Let {B(t) : t � 0} be a standard
linear Brownian motion. Then,

(a) the random variable L = sup
{
t ∈ [0, 1] : B(t) = 0

}
, the last zero of Brownian

motion in [0, 1], is arcsine distributed, and
(b) the random variable M∗ ∈ [0, 1], which is almost surely uniquely determined by

B(M∗) = max
s∈[0,1]

B(s),

is arcsine distributed.

Proof. By Theorem 2.11 Brownian motion has a unique maximum on the interval [0, 1],
and hence the maximiser M∗ is well-defined. Moreover, Theorem 2.34 shows that M∗,
which is the last zero of the process {M(t) − B(t) : t � 0} has the same law as L. Hence
it suffices to prove part (b).

Recall that {M(t) : 0 � t � 1} is defined by M(t) = max0�s�t B(s). For s ∈ [0, 1],

P{M∗ < s} = P
{

max
0�u�s

B(u) > max
s�v�1

B(v)
}

= P
{

max
0�u�s

B(u) − B(s) > max
s�v�1

B(v) − B(s)
}

= P
{
M1(s) > M2(1 − s)

}
,

where {M1(t) : 0 � t � s} is the maximum process of the Brownian motion {B1(t) :
0 � t � s}, which is given by B1(t) = B(s − t) − B(s), and {M2(t) : 0 � t � 1} is the
maximum process of the independent Brownian motion {B2(t) : 0 � t � 1− s}, which is
given by B2(t) = B(s + t) − B(s). Since, by Theorem 2.21, for any fixed t, the random
variable M(t) has the same law as |B(t)|, we have

P
{
M1(s) > M2(1 − s)

}
= P
{
|B1(s)| > |B2(1 − s)|

}
.

Using the scaling invariance of Brownian motion we can express this in terms of a pair of
two independent standard normal random variables Z1 and Z2 , by

P
{
|B1(s)| > |B2(1 − s)|

}
= P
{√

s |Z1 | >
√

1 − s |Z2 |
}

= P
{ |Z2 |√

Z2
1 + Z2

2

<
√

s
}

.

In polar coordinates, (Z1 , Z2) = (R cos θ,R sin θ) pointwise. The fact that the random
variable θ is uniformly distributed on [0, 2π] follows from Lemma 12.11 in the appendix.
So the last quantity becomes

P
{ |Z2 |√

Z2
1 + Z2

2

<
√

s
}

= P
{
| sin(θ)| <

√
s
}

= 4P
{
θ < arcsin(

√
s)
}

= 4
(

arcsin(
√

s)
2π

)
=

2
π

arcsin(
√

s).

It follows by differentiating that M∗ has density (π
√

s(1 − s))−1 for s ∈ (0, 1).

For random walks the first arcsine law takes the form of a limit theorem, as the length of
the walk tends to infinity.
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Proposition 5.27 (Arcsine law for the last sign-change) Suppose that {Xk : k � 1} is
a sequence of independent, identically distributed random variables with E[X1 ] = 0 and
0 < E[X2

1 ] = σ2 < ∞. Let {Sn : n � 0} be the associated random walk and

Nn = max{1 � k � n : SkSk−1 � 0}

the last time the random walk changes its sign before time n. Then, for all x ∈ (0, 1),

lim
n→∞

P{Nn � xn} =
2
π

arcsin(
√

x) .

Proof. The strategy of proof is to use Theorem 5.26, and apply Donsker’s invariance
principle to extend the result to random walks. As Nn is unchanged under scaling of the
random walk we may assume that σ2 = 1. Define a bounded function g on C[0, 1] by

g(f) = max{t � 1: f(t) = 0}.

It is clear that g(S∗
n ) differs from Nn/n by a term, which is bounded by 1/n and therefore

vanishes asymptotically. Hence Donsker’s invariance principle would imply convergence
of Nn/n in distribution to g(B) = sup{t � 1: B(t) = 0} — if g was continuous. g is
not continuous, but we show that g is continuous on the set C of all f ∈ C[0, 1] such that
f takes positive and negative values in every neighbourhood of every zero and f(1) �= 0.
As, by Theorem 2.28, Brownian motion is almost surely in C, we get from property (v) in
the Portmanteau theorem, Theorem 12.6, and by Donsker’s invariance principle, that, for
every continuous bounded h : R → R,

lim
n→∞

E
[
h
(Nn

n

)]
= lim

n→∞
E
[
h◦g(S∗

n )
]

= E
[
h◦g(B)

]
= E
[
h(sup{t � 1: B(t) = 0})

]
,

which completes the proof subject to the claim. To see that g is continuous on C, let ε > 0
be given and f ∈ C. Let

δ0 = min
t∈[g (f )+ε,1]

|f(t)| ,

and choose δ1 such that (−δ1 , δ1) ⊂ f(g(f) − ε, g(f) + ε) . Let 0 < δ < δ0 ∧ δ1 . If now
‖h− f‖∞ < δ, then h has no zero in (g(f) + ε, 1], but has a zero in (g(f)− ε, g(f) + ε),
because there are s, t ∈ (g(f) − ε, g(f) + ε) with h(t) < 0 and h(s) > 0. Thus |g(h) −
g(f)| < ε. This shows that g is continuous on C.

There is a second arcsine law for Brownian motion, which describes the law of the random
variable L

{
t ∈ [0, 1] : B(t) > 0

}
, the time spent by Brownian motion above the x-axis.

This statement is much harder to derive directly for Brownian motion, though we will do
this using more sophisticated tools in Chapter 8. At this stage we can use random walks to
derive the result for Brownian motion.

Theorem 5.28 (Second arcsine law for Brownian motion) Let {B(t) : t � 0} be a stan-
dard linear Brownian motion. Then, L

{
t ∈ [0, 1] : B(t) > 0

}
, is arcsine distributed.

The idea is to prove a direct relationship between the first maximum and the number of
positive terms for a simple random walk by a combinatorial argument, and then transfer
this to Brownian motion using Donsker’s invariance principle.
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Lemma 5.29 Let {Sk : k = 1, . . . , n} be a simple, symmetric random walk on the integers.
Then

#
{
k ∈ {1, . . . , n} : Sk > 0

} d= min
{
k ∈ {0, . . . , n} : Sk = max

0�j�n
Sj

}
. (5.11)

Proof. Let Xk = Sk − Sk−1 for each k ∈ {1, . . . , n}, with S0 := 0. We rearrange the
tuple (X1 , . . . , Xn ) by

• placing first in decreasing order of k the terms Xk for which Sk > 0,
• and then in increasing order of k the Xk for which Sk � 0.

Denote the new tuple by (Y1 , . . . , Yn ) := Tn (X1 , . . . , Xn ). We first show that

(X1 , . . . , Xn ) d= (Y1 , . . . , Yn ) .

Note that, because the increments (X1 , . . . , Xn ) are uniformly distributed on {−1, 1}n ,
this is equivalent to showing that Tn is a bijection for every n ∈ N. For n = 1 this
is obviously true, and we continue by induction, assuming that Tk is a bijection for any
k � n − 1. Tn is obviously a bijection on those tuples for which all partial sums are
nonpositive. For all other tuples (x1 , . . . , xn ) let

�(x1 , . . . , xn ) = max
{

1 � k � n :
k∑

j=1

xj > 0
}

.

Then, abbreviating x = (x1 , . . . , xn ),

Tn (x1 , . . . , xn ) =
(
x�(x) , T�(x)−1

(
x1 , . . . , x�(x)−1

)
, x�(x)+1 , . . . , xn

)
.

Note that, if y = Tn (x) then �(x) = �(y), and therefore the inverse of Tn is given as

T−1
n (y1 , . . . , yn ) =

(
T−1

�(y )−1

(
y2 , . . . , y�(y )

)
, y1 , y�(y )+1 , . . . , yn

)
,

proving that Tn is a bijection, as required.
Now {Sk (Y ) : k = 1, . . . , n} given by Sk (Y ) =

∑k
j=1 Yj is a random walk and we check

by induction on n that

#
{
k ∈ {1, . . . , n} : Sk (X) > 0}

= min{k ∈ {0, . . . , n} : Sk (Y ) = max
0�j�n

Sj (Y )
}
.

(5.12)

Indeed, this obviously holds for n = 1. Suppose it holds for fixed n. When Xn+1 is
appended there are two possibilities:

• Suppose Sn+1(X) > 0, so that

#
{
k ∈ {1, . . . , n + 1} : Sk (X) > 0} = #

{
k ∈ {1, . . . , n} : Sk (X) > 0} + 1.

Denoting (Y ∗
1 , . . . , Y ∗

n+1) = Tn+1(X1 , . . . , Xn+1) we have Y ∗
1 = Xn+1 , and therefore

min{k ∈ {0, . . . , n + 1} : Sk (Y ∗) = max
0�j�n+1

Sj (Y ∗)
}

= min{k ∈ {0, . . . , n} : Sk (Y ) = max
0�j�n

Sj (Y )
}

+ 1.
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In summary, appending the value Xn+1 to (X1 , . . . , Xn ) in this case, has led to the in-
crease of both sides in Equation (5.12) by one.

• Suppose Sn+1(X) � 0, so that

#
{
k ∈ {1, . . . , n + 1} : Sk (X) > 0} = #

{
k ∈ {1, . . . , n} : Sk (X) > 0}.

Then Y ∗
n+1 = Xn+1 and therefore

min{k ∈ {0, . . . , n + 1} : Sk (Y ∗) = max
0�j�n+1

Sj (Y ∗)
}

= min{k ∈ {0, . . . , n} : Sk (Y ) = max
0�j�n

Sj (Y )
}
.

In summary, appending the value Xn+1 to (X1 , . . . , Xn ) in this case, has left both sides
in Equation (5.12) unchanged.

This completes the induction step and proves the lemma.

Proof of Theorem 5.28. Look at the right hand side of the equation (5.11), which
divided by n can be written as g(S∗

n ) for the function g : C[0, 1] → [0, 1] defined by

g(f) = inf
{
t ∈ [0, 1] : f(t) = sup

s∈[0,1]
f(s)
}

.

The function g is continuous in every f ∈ C[0, 1] which has a unique maximum, hence al-
most everywhere with respect to the distribution of Brownian motion. Hence, by Donsker’s
invariance principle and the Portmanteau theorem, Theorem 12.6, the right hand side
in (5.11) divided by n converges to the distribution of g(B), which by Theorem 5.26 is
the arcsine distribution.

Similarly, by Exercise 5.11, the left hand side of (5.11) divided by n can be approximated
in probability by h(S∗

n ) for the function h : C[0, 1] → [0, 1] defined by

h(f) = L{t ∈ [0, 1] : f(t) > 0
}

.

It is not hard to see that the function h is continuous in every f ∈ C[0, 1] with the property
that

lim
ε↓0

L{t ∈ [0, 1] : − ε � f(t) � ε
}

= 0,

which again is equivalent to L{t ∈ [0, 1] : f(t) = 0
}

= 0, a property which Brownian
motion has almost surely. Hence, again by Donsker’s invariance principle and the Port-
manteau theorem, the left hand side in (5.11) divided by n converges to the distribution of
h(B) = L{t ∈ [0, 1] : B(t) > 0}, and this completes the argument.

Remark 5.30 The proof of Theorem 5.28 can now be used literally to show that the second
arcsine law holds for random walks {Sn : n � 0} with mean zero and finite variance.
Indeed, if Pn = #{1 � k � n : Sk > 0} is the number of positive values of the random
walk before time n, then, for all x ∈ (0, 1),

lim
n→∞

P{Pn � xn} =
2
π

arcsin(
√

x) . �
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5.5 Pitman’s 2M − B theorem

Pitman’s 2M − B theorem describes an interesting relationship between the 3-dimensional
Bessel process, which, loosely speaking, can be considered as a linear Brownian motion
conditioned to avoid zero and a simple transformation of the Brownian path, namely the
process {

(2M(t) − B(t),M(t)) : t � 0
}

for M(t) = max
0�s�t

B(s).

Geometrically, the first component of this process is obtained by reflecting the Brownian
path at each time in the level of the current maximum. We will obtain this result from
a random walk analogue, using Donsker’s invariance principle to pass to the Brownian
motion case.

We start by discussing simple random walks conditioned to avoid zero, and its continuous-
time analogue, the three-dimensional Bessel process. Consider a simple random walk on
{0, 1, 2, . . . , n} conditioned to reach n before 0. By Bayes’ rule, this conditioned process is
a Markov chain with the following transition probabilities: p̂(0, 1) = 1 and for 1 � k < n,

p̂(k, k + 1) = (k + 1)/2k ; p̂(k, k − 1) = (k − 1)/2k . (5.13)

This is an instance of Doob’s H-transform, see Exercise 5.13. Taking n → ∞, this leads us
to define the simple random walk on N = {1, 2, . . .} conditioned to avoid zero (forever)
as a Markov chain on N with transition probabilities as in (5.13) for all k � 1.

Lemma 5.31 Let {S(j) : j = 0, 1, . . .} be a simple random walk on Z and let {ρ̃(j) : j =
0, 1, . . .} be a simple random walk on N conditioned to avoid zero. Then for � � 1 and any
sequence (x0 , . . . , x�) of positive integers, we have

P
{
ρ̃(1) = x1 , . . . , ρ̃(�) = x�

∣∣ ρ̃(0) = x0
}

=
x�

x0
P
{
S(1) = x1 , . . . , S(�) = x�

∣∣S(0) = x0
}

.

Proof. We prove the result by induction on �. The case � = 1 is just (5.13). Assume
the lemma holds for �− 1 and let (x0 , . . . , x�) be a sequence of positive integers such that
|xj − xj−1 | = 1 for j = 1, . . . , �. Clearly, the probability on the right hand side of the
equation is just 2−� . Moreover, using the induction hypothesis and the Markov property,

P
{
ρ̃(1) = x1 , . . . , ρ̃(�) = x�

∣∣ ρ̃(0) = x0
}

=
x�−1

x0
21−� P

{
ρ̃(�) = x�

∣∣ ρ̃(� − 1) = x�−1
}

=
x�−1

x0
21−� x�

2x�−1
=

x�

x0
2−� ,

as required to complete the proof.

Define the three-dimensional Bessel process {ρ(t) : t � 0} by taking a 3-dimensional
Brownian motion {W (t) : t � 0} and putting

ρ(t) = |W (t)| .
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Fix h > 0 and assume |W (0)| = h. Define the stopping times {τ (h )
j : j = 0, 1, . . .} by

τ (h )
0 = 0 and, for j � 0,

τ (h )
j+1 = min

{
t > τ (h )

j : |ρ(t) − ρ(τ (h )
j )| = h

}
.

Given that ρ(τ (h )
j ) = kh for some k > 0, by Theorem 3.18, we have that

ρ(τ (h )
j+1) =

{
(k + 1)h, with probability k+1

2k ,

(k − 1)h, with probability k−1
2k .

(5.14)

We abbreviate τj = τ ( 1 )
j . By (5.13) and (5.14), the sequence {ρ(τj ) : j = 0, 1, . . .} has

the same distribution as the simple random walk on N conditioned to avoid zero, with the
initial condition ρ̃(0) = 1.

Lemma 5.32 The sequence {τn − n : n � 0} is a martingale and there exists C > 0 with

Var(τn − n) � C n .

Proof. If {B(t) : t � 0} is standard linear Brownian motion, then we know from
Lemma 2.47 that {B(t)2 − t : t � 0} is a martingale. As {ρ(t)2 − 3t : t � 0} is the sum of
three independent copies of this martingale, it is also a martingale. Given that ρ(τn−1) = k,
optional sampling (recall Theorem 12.27 of the appendix) for this martingale at times τn−1

and τn yields

k2 − 3τn−1 =
(k + 1)3

2k
+

(k − 1)3

2k
− 3E[τn | τn−1 ] ,

hence E[τn − τn−1 | τn−1 ] = 1, so that {τn − n : n � 0} is a martingale. To bound its
variance, consider the scalar product

Z :=
〈
W (t + 1) − W (t) , W (t)

|W (t)|
〉
.

Given F(t), the σ-algebra generated by W (s), for s ∈ [0, t], the distribution of Z is
standard normal. This is clear if W (t) is on a coordinate axis; and the general case follows
by rotational symmetry of 3-dimensional Brownian motion. Moreover,

Z =
〈
W (t + 1) , W (t)

|W (t)|
〉
− |W (t)| � |W (t + 1)| − |W (t)| .

Therefore P{|W (t + 1)| − |W (t)| > 2 | F(t)} � P{Z > 2}. For any n,

k⋃
j=1

{
|W (τn−1 + j)| − |W (τn−1 + j − 1)| > 2

}
⊂ {τn − τn−1 � k},

so that, given τn−1 , the difference τn − τn−1 is stochastically bounded from above by a
geometric random variable with parameter p := P{Z > 2}. Hence,

Var(τn − τn−1 − 1) � E
[
(τn − τn−1)2] � 2

p
.

By orthogonality of martingale differences, see e.g. (12.1) in the appendix, we conclude
that Var(τn − n) � 2n/p, which completes the proof.
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We use the following notation,

• {S(j) : j = 0, 1, . . .} is a simple random walk in Z,

• {M̃(j) : j = 0, 1, . . .} defined by M̃(j) = max0�a�j S(a) is its maximum process;

• {ρ̃(j) : j = 0, 1, . . .} is a simple random walk on N conditioned to avoid zero,

• {Ĩ(j) : j = 0, 1, . . .} defined by Ĩ(j) = mink�j ρ̃(k) is its future minimum process.

Let {I(t) : t � 0} defined by I(t) = mins�t ρ(s) be the future minimum process of the
process {ρ(t) : t � 0}.

Proposition 5.33 Let Ĩ(0) = ρ̃(0) = 0, and extend the processes {ρ̃(j) : j = 0, 1, . . .} and
{Ĩ(j) : j = 0, 1, . . .} to [0,∞) by linear interpolation. Then{

hρ̃(t/h2) : 0 � t � 1
} d→

{
ρ(t) : 0 � t � 1

}
as h ↓ 0 , (5.15)

and {
hĨ(t/h2) : 0 � t � 1

} d→
{
I(t) : 0 � t � 1

}
as h ↓ 0 , (5.16)

where
d→ indicates convergence in law as random elements of C[0, 1].

Proof. For any h > 0, Brownian scaling implies that the process {τ (h )
n : n = 0, 1, . . .}

has the same law as the process {h2τn : n = 0, 1, . . .}. Doob’s L2 maximal inequality, see
Theorem 12.30, and Lemma 5.32 yield that

E
[

max
0�j�n

(τj − j)2] � C n,

for a suitable constant C > 0. Therefore, taking n = �h−2t�,

E
[

max
0�t�1

(τ (h )

�h−2 t� − h2�h−2t�)2
]

= h4 E
[

max
0�t�1

(τ�h−2 t� − �h−2t�)2
]

� C h2 ,

whence also (for a slightly larger constant)

E
[

max
0�t�1

(τ (h )

�h−2 t� − t)2
]

� C h2 . (5.17)

Since {ρ(t) : 0 � t � 1} is uniformly continuous almost surely, we infer that

max
0�t�1

|ρ(τ (h )

�h−2 t�) − ρ(t)| → 0 in probability as h ↓ 0,

and similar reasoning gives the analogous result when �·� is replaced by �·�. Since ρ̃(t/h2)
is, by definition, a weighted average of ρ̃(�h−2t�) and ρ̃(�h−2t�), the proof of (5.15)
is now concluded by recalling that {ρ(τ (h )

j ) : j = 0, 1, . . .} has the same distribution as
{hρ̃(j) : j = 0, 1, . . .}. Similarly, {I(τ (h )

j ) : j = 0, 1, . . .} has the same distribution as

{hĨ(j) : j = 0, 1, . . .}, so (5.16) follows from (5.17) and the continuity of I .
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Theorem 5.34 (Pitman’s 2M − B theorem) Let {B(t) : t � 0} be a linear Brown-
ian motion and let M(t) = max0�s�t B(s) denote its maximum up to time t. Also let
{ρ(t) : t � 0} be a three-dimensional Bessel process and let {I(t) : t � 0} be the corre-
sponding future infimum process given by I(t) = infs�t ρ(s). Then{

(2M(t) − B(t),M(t)) : t � 0
} d=
{
(ρ(t), I(t)) : t � 0

}
.

In particular, {2M(t) − B(t) : t � 0} is a three-dimensional Bessel process.

Proof. Following the original paper [Pi75], we prove the theorem in the discrete setting,
i.e. we show that, for S(0) = ρ̃(0) = 0,{

(2M̃(j) − S(j), M̃(j)) : j = 0, 1, . . .
} d=
{
(ρ̃(j), Ĩ(j)) : j = 0, 1, . . .

}
. (5.18)

The theorem then follows directly by invoking Donsker’s invariance principle and Propo-
sition 5.33. First note that (5.18) is equivalent to{

(S(j), M̃(j)) : j = 0, 1, . . .
} d=
{
(2Ĩ(j) − ρ̃(j), Ĩ(j)) : j = 0, 1, . . .

}
,

which we establish by computing the transition probabilities. If S(j) < M̃(j), then clearly

(S(j + 1), M̃(j + 1)) =

{
(S(j) + 1, M̃(j)), with probability 1

2 ,

(S(j) − 1, M̃(j)), with probability 1
2 .

(5.19)

If S(j) = M̃(j), then

(S(j + 1), M̃(j + 1)) =

{
(S(j) + 1, M̃(j) + 1), with probability 1

2 ,

(S(j) − 1, M̃(j)), with probability 1
2 .

(5.20)

We now compute the transition probabilities of {(2Ĩ(j) − ρ̃(j), Ĩ(j)) : j = 0, 1, . . .}. To
this end, we first show that {Ĩ(j) : j = 0, 1, . . .} is the maximum process of {2Ĩ(j) −
ρ̃(j) : j = 0, 1, . . .}. Indeed, for all j � k, since (Ĩ − ρ̃)(j) � 0, we have

2Ĩ(j) − ρ̃(j) = Ĩ(j) + (Ĩ − ρ̃)(j) � Ĩ(k) .

On the other hand, let j∗ be the minimal j∗ � k such that Ĩ(j∗) = Ĩ(k). Then ρ̃(j∗) =
Ĩ(j∗) and we infer that (2Ĩ − ρ̃)(j∗) = Ĩ(j∗) = I(k).

Assume now that 2Ĩ(j) − ρ̃(j) < Ĩ(j), i.e., ρ̃(j) > Ĩ(j). Lemma 5.31 and the fact that
{S(j) : j = 0, 1, . . .} is recurrent imply that, for integers k � i > 0,

P
{
∃j with ρ̃(j) = i

∣∣ ρ̃(0) = k
}

=
i

k
P
{
∃j with S(j) = i

∣∣S(0) = k
}

=
i

k
.

Thus, for k � i > 0,

P
{
Ĩ(j) = i

∣∣ ρ̃(j) = k
}

= P
{
∃j with ρ̃(j) = i

∣∣ ρ̃(0) = k
}
− P
{
∃j with ρ̃(j) = i − 1

∣∣ ρ̃(0) = k
}

=
1
k

.
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Therefore,

P
{
ρ̃(j + 1) = k − 1 | ρ̃(j) = k, Ĩ(j) = i

}
=

P{ρ̃(j + 1) = k − 1, Ĩ(j) = i | ρ̃(j) = k}
P{Ĩ(j) = i | ρ̃(j) = k}

=
k−1
2k

1
k−1

1
k

=
1
2

.

(5.21)

We conclude that if 2Ĩ(j) − ρ̃(j) < Ĩ(j), then

(2Ĩ(j + 1) − ρ̃(j + 1), Ĩ(j + 1))

=

{
(2Ĩ(j) − ρ̃(j) + 1, Ĩ(j)), with probability 1

2 ,

(2Ĩ(j) − ρ̃(j) − 1, Ĩ(j)), with probability 1
2 .

(5.22)

Assume now that ρ̃(j) = Ĩ(j) = k. Then ρ̃(j + 1) = k + 1, and a computation analogous
to (5.21) shows that

Ĩ(j + 1) =

{
Ĩ(j) + 1, with probability 1

2 ,

Ĩ(j), with probability 1
2 .

(5.23)

Indeed,

P{Ĩ(j + 1) = k + 1 | Ĩ(j) = ρ̃(j) = k}

=
P{ρ̃(j + 1) = k + 1 | ρ̃(j) = k}P{Ĩ(j + 1) = k + 1 | ρ̃(j + 1) = k + 1}

P{Ĩ(j) = k | ρ̃(j) = k}

=
k+1
2k

1
k+1

1
k

=
1
2

.

By (5.23), if ρ̃(j) = Ĩ(j) = k, then we have

(2Ĩ(j + 1) − ρ̃(j + 1), Ĩ(j + 1))

=

{
(2Ĩ(j) − ρ̃(j) + 1, Ĩ(j) + 1), with probability 1

2 ,

(2Ĩ(j) − ρ̃(j) − 1, Ĩ(j)), with probability 1
2 .

(5.24)

Finally, comparing (5.19) and (5.20) to (5.22) and (5.24) completes the proof.

We now use the combinatorial technique developed for Pitman’s 2M − B theorem to
prove a result of Ciesielski and Taylor [CT62], which relates the occupation times of a
3-dimensional Brownian motion to exit times of one-dimensional Brownian motion. An
alternative proof based on a Feynman–Kac formula will be given in Section 7.4.

Theorem 5.35 (Ciesielski–Taylor identity) Let {W (t) : t � 0} be a 3-dimensional Brow-
nian motion and let T =

∫∞
0 1{|W (s)| � 1} ds be the total amount of time it spends in

the unit ball. Let {B(t) : t � 0} be a 1-dimensional Brownian motion and let τ = min{t :
|B(t)| = 1}. Then we have

T
d= τ . (5.25)
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Remark 5.36 The statement of Theorem 5.35 remains true if, for any d � 3, we let
{W (t) : t � 0} be a d-dimensional Brownian motion and {B(t) : t � 0} be a (d − 2)-
dimensional Brownian motion, but the proof we present here works only for d = 3. �

Lemma 5.37 Let {S(j) : j = 0, . . . , γ} be simple random walk started at S(0) = 0 and
stopped at the random time γ = min{j : S(j) = n}. Then {n − S(γ − j) : j = 0, . . . , γ}
has the same distribution as {ρ̃(j) : j = 0, . . . , L}, where ρ̃(0) = 0 and L = max{j :
ρ̃(j) = n}. In particular, γ and L have the same law.

Proof. Fix x0 = 0 and consider a possible path (x0 , x1 , . . . , x�) for the simple random
walk stopped at γ, where |xi − xi−1 | = 1 for all i � 1 and xi < n for all i < �

with x� = n. The probability that {S(j) : j = 0, . . . , γ} takes this path is 2−� . The
probability that {ρ̃(j) : j = 1, . . . , �} takes the path {n − x�−j : j = 1, . . . , �} is 21−�n

by Lemma 5.31. Furthermore, conditioned on {ρ̃(j) : j = 1, . . . , �} taking this path, the
probability that Ĩ(� + 1) = n + 1 is

P
{
ρ̃(� + 1) = n + 1 | ρ̃(�) = n

}
P
{
Ĩ(� + 1) = n + 1 | ρ̃(� + 1) = n + 1

}
=

n + 1
2n

1
n + 1

=
1
2n

.

Combining these facts yields the result.

Proof of Theorem 5.35. We prove the theorem in the discrete setting, namely we denote
τ̃ = min{j � 0: |S(j)| = n}, and show that for n � 1,

#
{
i � 1 : ρ̃(i − 1), ρ̃(i) ∈ {0, . . . , n}

} d= τ̃ . (5.26)

Dividing both sides of (5.26) by n2 and letting n ↑ ∞ yields (5.25), see Exercise 5.15.

As a warm up, observe that for n = 1 both sides of (5.26) are identically 1, and for n = 2
each side of (5.26) is a geometric random variable with parameter 1

2 , multiplied by 2. For
the full argument let γ = min{j : S(j) = n} as in Lemma 5.37, which implies that

#
{
i ∈ {1, . . . , γ} : S(i − 1), S(i) ∈ {0, . . . , n}

}
d= #
{
i � 1: ρ̃(i − 1), ρ̃(i) ∈ {0, . . . , n}

}
.

But deleting the negative excursions between two points in which {S(i) : i = 0, 1, . . .}
is zero gives a reflected simple random walk with the law of {|S(i)| : i = 0, 1, . . .} and
therefore

#
{
i ∈ {1, . . . , γ} : S(i − 1), S(i) ∈ {0, . . . , n}

}
d= #
{
i ∈ {1, . . . , τ̃} : |S(i − 1)|, |S(i)| ∈ {0, . . . , n}

}
= τ̃ ,

as required to prove (5.26).

In a similar spirit the following theorem relates occupation times and exit times for a stan-
dard linear Brownian motion.
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Theorem 5.38 Let {B(t) : t � 0} be a standard linear Brownian motion and, for a � 0,
let τa = inf{t � 0: B(t) = a} and σa = inf{t � 0: |B(t)| = a}. Then∫ τa

0
1{0 � B(t) � a} dt

d= σa .

The key to the proof is the fact, due to David Williams, that removing the negative excur-
sions from a standard linear Brownian motion {B(s) : s � 0} leads to a reflected Brownian
motion {|B(s)| : s � 0}.

Lemma 5.39 Let s(t) =
∫ t

0 1{B(s) � 0} ds and let t(s) = inf{t � 0: s(t) � s} its
right-continuous inverse. Then{

B(t(s)) : s � 0
} d=

{
|B(s)| : s � 0

}
.

Proof. Let {S(n) : n = 0, 1, . . .} be a simple random walk and consider {S∗
n (s) : s � 0}

defined as in Donsker’s invariance principle. Removing the negative excursions from the
simple random walk leads to a reflected simple random walk, therefore{

S∗
n

(
t(s, S∗

n )
)
: s � 0

} d=
{
|S∗

n (s)| : s � 0
}
, (5.27)

where s(t, f) =
∫ t

0 1{f(s) � 0} ds and t(s, f) = inf{t � 0: s(t, f) � s}. For every t >

0 the mapping f �→ f(t( · , f)) is continuous in f ∈ C[0, t] with respect to the supremum
norm provided that

lim
ε↓0

L{s ∈ [0, t] : − ε � f(s) � ε
}

= 0,

a property which Brownian motion has almost surely. Hence Donsker’s invariance princi-
ple gives the claim by letting n → ∞ in (5.27).

Proof of Theorem 5.38. We obviously have that∫ τa

0
1{0 � B(s) � a} ds = inf{s � 0: B(t(s)) = a}.

By Lemma 5.39 we further have

inf{s � 0: B(t(s)) = a} d= inf{s � 0: |B(s)| = a} = σa ,

which implies the result.

Exercises

Exercise 5.1. S Suppose {B(t) : t � 0} is a standard linear Brownian motion. Show that

lim sup
n↑0

sup
n�t<n+1

B(t) − B(n)√
2 log n

= 1 almost surely.

Exercise 5.2. S Derive from Theorem 5.1 that, for a d-dimensional Brownian motion,

lim sup
t↑∞

|B(t)|√
2t log log t

= 1 almost surely.
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Exercise 5.3. S Suppose {B(t) : t � 0} is a linear Brownian motion and τ the first hitting
time of level 1. Show that, almost surely,

lim sup
h↓0

B(τ) − B(τ − h)√
2h log log(1/h)

� 1.

Exercise 5.4. S Let {Sk : k � 0} be a simple, symmetric random walk on the integers.
Show that there are positive constants C1 and C2 such that

C1√
n

� P{Si � 0 for all 1 � i � n} � C2√
n

for all n � 1.

Hint. For simple random walk a reflection principle holds in quite the same way as for
Brownian motion. The key to the proof is to verify that

P{Si � 0 for all 1 � i � n} = P{Sn � 0} − P{S∗
n � − 2}

where S∗
n is the random walk reflected at the stopping time τ−1 = min{k : Sk = −1}.

Exercise 5.5. S Prove that, for any random walk {Sj : j � 0} on the line,

P
{
S0 , . . . , Sn has a point of increase

}
� 2
∑n

k=0 pkpn−k∑�n/2�
k=0 p2

k

,

where p0 , . . . , pn are as in (5.4).

Exercise 5.6. An event A ⊂ Rd is an increasing event if,

(x1 , . . . , xi−1 , xi ,xi+1 , . . . xd) ∈ A and x̃i � xi

=⇒ (x1 , . . . , xi−1 , x̃i , xi+1 , . . . xd) ∈ A.

If A and B are increasing events, show that

P(A ∩ B) � P(A)P(B),

i.e. A and B are positively correlated.

Exercise 5.7. S Show that we can obtain a lower bound on the probability that a random
walk has a point of increase that differs from the upper bound only by a constant factor.
More precisely, for any random walk on the line,

P
{
S0 , . . . , Sn has a point of increase

}
�
∑n

k=0 pkpn−k

2
∑�n/2�

k=0 p2
k

,

where p0 , . . . , pn are as in (5.4).

Exercise 5.8. Let {B(t) : 0 � t � 1} be a linear Brownian motion.

(a) Use the Cameron–Martin theorem to show that, for any F ∈ D[0, 1], the process{
B(t) + F (t) : 0 � t � 1

}
almost surely has no point of increase.
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(b) Find a F ∈ C[0, 1] such that {B(t) + F (t) : 0 � t � 1} has a point of increase.

Exercise 5.9. Suppose X1 , . . . , Xn are independent and identically distributed and con-
sider their ordered relabelling given by X(1) � X(2) � . . . � X(n) . Show that

E[X(i)X(j ) ] � E[X(i) ]E[X(j ) ],

provided these expectations are well-defined.

Exercise 5.10. S Given a centred random variable X , show that there exist centred random
variables Xn taking only finitely many values, such that Xn converges to X in law and,
for Ψn (x) = E

[
Xn

∣∣Xn � x
]
, the embedding stopping times

τn = inf{t � 0: M(t) � Ψn (B(t))}

converge almost surely to τ . Infer that B(τ) has the same law as X , and E[τ ] = E[X2 ].

Exercise 5.11. S Suppose that {Sn : n � 0} is a random walk with mean zero and positive,
finite variance. Define {S∗

n (t) : 0 � t � 1} as in Donsker’s invariance principle. Show
that

L{t ∈ [0, 1] : S∗
n (t) > 0

}
− 1

n #
{
k ∈ {1, . . . , n} : Sk > 0

}
converges to zero in probability.

Exercise 5.12. S Let {B(t) : t � 0} be a standard linear Brownian motion and a > 0.
Define stopping times τa = inf{t � 0: B(t) = a}, τa,0 = inf{t � τa : B(t) = 0} and a
random time

σ0 = sup{0 � t � τa : B(t) = 0}.

The process {e(t) : 0 � t � τe} given by

e(t) = B(σ0 + t), τ e = τa,0 − σ0

is a Brownian excursion conditioned to hit level a, and τe is called its lifetime.

(a) For any 0 < b � a denote by τe
b the first hitting time of level b by the excur-

sion {e(t) : 0 � t � τe}. Show that, for 0 < b < a, the process {e(τe
b +

t) : 0 � t � τe
a − τe

b } is a Brownian motion conditioned to hit level a before
level zero.

(b) Show that the time-reversed excursion {e(τe − t) : 0 � t � τe} is also a Brownian
excursion conditioned to hit level a.

Hint. For (b) show an analogous statement for simple random walk and use Donsker’s
invariance principle to transfer the result to the Brownian motion case.
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Exercise 5.13. Let p(x, y) be the transition matrix of an irreducible Markov chain {Xj : j =
0, 1, . . .} on a finite state space V . For a, b ∈ V , consider the hitting time

T = Tab = min
{
j � 0: Xj ∈ {a, b}

}
and write H(x) = Px{XT = b}. Show that the chain {Xj : j = 0, 1, . . .} conditioned to
reach b before a and absorbed at b has the same law as the Markov chain {Yj : j = 0, 1, . . .}
on V \ {a} with transition probabilities

p̂(x, y) = p(x, y)
H(y)
H(x)

for x �= b.

The chain {Yj : j = 0, 1, . . .} is called the Doob H-transform of the original chain
{Xj : j = 0, 1, . . .}.

Exercise 5.14. Let {ρ(t) : t � 0} be a three-dimensional Bessel process.

(a) Verify that the process {X(t) : t � 0} given by X(t) = ρ(t)4 − 6t2ρ(t)2 + 3ρ(t)2

is a martingale.
(b) Use (a) to derive a tighter bound for Var(τn − τn−1) in Lemma 5.32.

Exercise 5.15. Let {S(j) : j = 0, 1, . . .} be a simple random walk on the integers started
at S(0) = 0, and {ρ̃(j) : j = 0, 1, . . .} be a simple random walk on N conditioned to avoid
zero, with ρ̃(0) = 0.

(a) Show that, as n ↑ ∞,

1
n2 min

{
j : |S(j)| = n

} d−→ min{t � 0: |B(t)| = 1},

where {B(t) : t � 0} is a 1-dimensional Brownian motion.

(b) Show that, as n ↑ ∞,

1
n2 #
{
i � 1 : ρ̃(i − 1), ρ̃(i) ∈ {0, . . . , n}

} d−→
∫ ∞

0
1{|W (s)| � 1} ds,

where {W (t) : t � 0} is a 3-dimensional Brownian motion.

Notes and comments

Historically, the law of the iterated logarithm was first proved for simple random walk by
Khinchin [Kh23, Kh24] and later generalised to other random walks by Kolmogorov [Ko29]
and Hartman and Wintner [HW41]. The original arguments of Kolmogorov, Hartman and
Wintner were extremely difficult, and a lot of authors have since provided more accessible
proofs, see, for example, de Acosta [dA83]. For Brownian motion the law of the iterated
logarithm is also due to Khinchin [Kh33]. The idea of using embedding arguments to trans-
fer the result from the Brownian motion to the random walk case is due to Strassen [St64].
For a survey of laws of the iterated logarithm, see Bingham [Bi86].



150 Brownian motion and random walk

An extension of the law of the iterated logarithm is Strassen’s law, which is first proved
in [St64]. If a standard Brownian motion on the interval [0, t] is rescaled by a factor 1/t

in time and a factor
√

2t log log(1/t) in space, the set of limit points in C[0, 1] are exactly

the functions f with f(0) = 0 and
∫ 1

0 (f ′(t))2 dt � 1. Strassen’s law also explains the
approximate form of the curve in the right half of Figure 5.1. Any function in this class
with f(1) = 1 satisfies

1 �
∫ 1

0
(f ′(t))2 dt �

(∫ 1

0
f ′(t) dt

)2
= 1,

which implies that f ′(t) is constant and thus f(t) = t for all t ∈ (0, 1). Therefore, for
large t, the Brownian path conditioned on ending near to its upper envelope resembles a
straight line in the sup-norm, as can be seen in Figure 5.1.

The nonincrease phenomenon, which is described in Theorem 5.11, holds for arbitrary
symmetric random walks, and can thus be viewed as a combinatorial consequence of fluc-
tuations in random sums. Indeed, our argument shows this — subject to a generalisation of
Lemma 5.8. The latter result holds if the increments Xi have a symmetric distribution, or if
the increments have mean zero and finite variance, see e.g. Section XII.8 in Feller [Fe66].

Dvoretzky, Erdős and Kakutani [DEK61] were the first to prove that Brownian motion
almost surely has no local points of increase. Knight [Kn81] and Berman [Be83] noted
that this follows from properties of the local time of Brownian motion; direct proofs were
given by Adelman [Ad85] and Burdzy [Bu90]. The proof we give is taken from [Pe96c].

A higher-dimensional analogue of this question is whether, for Brownian motion in the
plane, there exists a line such that the Brownian motion path, projected onto that line, has
a global point of increase, or equivalently whether the Brownian motion path admits cut
lines. We say a line � is a cut line for the Brownian motion if, for some t0 ∈ (0, 1) with
B(t0) ∈ �, the points B(t) lie on one side of � for all t ∈ [0, t0) and on the other side
of � for all t ∈ (t0 , 1]. It was proved by Bass and Burdzy [BB97] that planar Brownian
motion almost surely does not have cut lines. Burdzy [Bu89], with a correction to the
proof in [Bu95], however showed that Brownian motion in the plane almost surely does
have cut points, which are points B(t) such that the Brownian motion path with the point
B(t) removed is disconnected. It was conjectured that the Hausdorff dimension of the set
of cut points is 3/4. This conjecture has recently been proved by Lawler, Schramm and
Werner [LSW01c], see also the discussion in our appendix, Chapter 11.

For Brownian motion in three dimensions, there almost surely exist cut planes, where
we say P is a cut plane if for some t, the set {B(s) : 0 < s < t} lies on one side of
the plane and the set {B(s) : 1 > s > t} on the other side. This result, originally due to
Pemantle, is also described in Bass and Burdzy [BB97]. An argument of Evans, which is
closely related to material we discuss in the final section of Chapter 10, shows that the set
of times corresponding to cut planes has Hausdorff dimension zero.



Notes and comments 151

Pemantle [Pe97] has shown that the range of planar Brownian motion almost surely
does not cover any straight line segment. Which curves can and which cannot be covered
by a Brownian motion path is, in general, an open question. Also unknown is the minimal
Hausdorff dimension of curves contained in the range of planar Brownian motion, though
it is known that it contains a curve of Hausdorff dimension 4/3, namely its outer boundary,
see Lawler, Schramm and Werner [LSW01c] and Chapter 11.

Harris’ inequality was discovered by Harris [Ha60] and is also known as FKG inequal-
ity in recognition of the work of Fortuin, Kasteleyn and Ginibre [FKG71] who extended
the original inequality beyond the case of product measures. ‘Correlation inequalities’ like
these play an extremely important rôle in percolation theory and spatial statistical physics.
Exercise 5.9 indicates the important rôle of this idea in the investigation of order statistics,
see Lehmann [Le66] and Bickel [Bi67] for further discussion and applications.

The Skorokhod embedding problem is a classic, which still leads to some attractive
research. The first embedding theorem is due to Skorokhod [Sk65]. The Russian original
of this work appeared in 1961 and the Dubins embedding, which we have presented is not
much younger, see [Du68]. Our presentation, based on the idea of binary splitting martin-
gales, follows Ex. II.7, p 34 in Neveu [Ne75] and we thank Jim Pitman for directing us to
this reference. Another classic embedding technique is Root’s embedding, see [Ro69]. The
Azéma–Yor embedding was first described in [AY79], but we follow Meilijson [Me83] in
the proof. One of the attractive features of the Azéma–Yor embedding is that, among all
stopping times T with ET < ∞ which represent a given random variable X , it maximises
the max0�t�T B(t). Generalisation of the embedding problem to more general classes of
probability laws requires different forms of minimality for the embedding stopping time, or
more general processes in which one embeds. A survey of current developments is [Ob04].

The idea of an invariance principle that allows to transfer limit theorems from special
cases to general random walks can be traced to Erdős and Kac [EK46, EK47]. The first
general result of this nature is due to Donsker [Do51] following an idea of Doob [Do49].
Our treatment of Donsker’s invariance principle is close to that of Freedman [Fr83]. Be-
sides the embedding technique there is also a popular alternative proof, which goes back
to Prohorov [Pr56]. Suppose that a subsequence of {S∗

n : n � 1} converges in distribution
to a limit X . This limit is a continuous random function, which is easily seen to have sta-
tionary, independent increments, which have expectation zero and variance equal to their
length. By a general result this implies that X is a Brownian motion. So Brownian motion
is the only possible limit point of the sequence {S∗

n : n � 1}. The difficult part of this proof
is now to show that every subsequence of {S∗

n : n � 1} has a convergent subsubsequence,
the tightness property.

Many interesting applications and extensions of Donsker’s invariance principle can be
found in [Bi99]. Central limit theorems also hold in the context of martingales, see Hall
and Heyde [HH80] for an extensive treatment of this subject. An important class of ex-
tensions of Donsker’s invariance principle are the strong approximation theorems which
were provided by Skorokhod [Sk65] and Strassen [St64]. In these results the Brownian
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motion and the random walk are constructed on the same probability space in such a way
that they are close almost surely. An optimal result in this direction is the famous paper of
Komlós, Major and Tusnády [KMT75]. For an exposition of their work and applications,
see [CR81], and an alternative, more transparent, treatment of the simple random walk case
is given in [Ch07].

The arcsine laws for Brownian motion were first proved by Lévy in [Le39, Le48].
The proof of the first law, which we give here, follows Kallenberg [Ka02]. This law can
also be proved by a direct calculation, which however is slightly longer, see for example
Durrett [Du95]. Our proof of the second arcsine law goes back to an idea of Baxter [Ba62].
Arcsine laws also hold for symmetric random variables without any moment assumptions,
see Feller [Fe66]. Some more recent developments related to arcsine laws can be found in
Pitman and Yor [PY92] and [PY03].

Pitman’s 2M − B theorem, often also called 2M − X theorem, is from [Pi75]. We
follow Pitman’s original approach with some small modifications. A closely related area
is the subject of path decompositions due to Williams, see [Wi70, Wi74]. Lemma 5.39
offers a first glimpse: Removing the negative excursions from the path of a Brownian
motion leads to a reflected Brownian motion. A nice treatment of Pitman’s theorem and
related path decomposition results is Le Gall [LG86c]. Hambly et al. [HMO01] discuss
a generalisation of the discrete variant, whose proof is based in part on a reversibility
argument that has a queueing interpretation. Further significant generalisations lead to
interesting connections to families of non-colliding Brownian motions and eventually to
random matrix theory, see e.g. Grabiner [Gr99]. The proof of the Ciesielski–Taylor identity
is adapted from Pitman’s paper [Pi75], but the idea goes back to Williams [Wi70].
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Brownian local time

In this chapter we focus on linear Brownian motion and address the question how to mea-
sure the amount of time spent by a Brownian path at a given level. As we already know
from Theorem 3.26 that the occupation times up to time t are absolutely continuous mea-
sures, their densities are a viable measure for the time spent at level a during the time
interval [0, t]. We shall show that these densities make up a continuous random field
{La(t) : a ∈ R, t � 0}, which is called the Brownian local time. Interesting informa-
tion about the distribution of this process is contained in a theorem of Lévy (studying it as
function of time) and the Ray–Knight theorem (studying it as function of the level). We
finally show how to interpret local time as a family of Hausdorff measures.

6.1 The local time at zero

How can we measure the amount of time spent by a standard linear Brownian motion
{B(t) : t � 0} at zero? We have already seen that, almost surely, the zero set has Hausdorff
dimension 1/2. Moreover, by Exercise 4.14, the 1/2-dimensional Hausdorff measure of
the zero set is zero, so Hausdorff measure as defined so far does not give an interesting
answer.

We approach this problem by counting the number of downcrossings of a nested sequence
of intervals decreasing to zero. More precisely, for a linear Brownian motion {B(t) : t � 0}
with arbitrary starting point, given a < b, we define stopping times τ0 = 0 and, for j � 1,

σj = inf
{
t > τj−1 : B(t) = b

}
, τj = inf

{
t > σj : B(t) = a

}
. (6.1)

We call the random functions

B( j ) : [0, τj − σj ] → R, B( j ) (s) = B(σj + s)

the jth downcrossing of [a, b]. For every t > 0 we denote by

D(a, b, t) = max
{
j ∈ N : τj � t

}
the number of downcrossings of the interval [a, b] before time t. Note that D(a, b, t) is
almost surely finite by the uniform continuity of Brownian motion on the compact inter-
val [0, t].

153
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Theorem 6.1 (Downcrossing representation of the local time at zero) There exists a
stochastic process {L(t) : t � 0} called the local time at zero such that for all sequences
an ↑ 0 and bn ↓ 0 with an < bn , almost surely,

lim
n→∞

2(bn − an )D(an , bn , t) = L(t) for every t > 0.

Moreover, this process is almost surely locally γ-Hölder continuous for any γ < 1/2.

Remark 6.2 To see why the normalisation in this formula is plausible recall from Theo-
rem 5.38 that the time spent in the interval [an , bn ] during a full downcrossing has the same
law as the first exit time from [an , 2bn − an ] by a Brownian motion started in bn , which
by Theorem 2.49 has a mean of (bn − an )2 . By the law of large numbers the total time
spent in [an , bn ] is therefore approximately 2(bn − an )2 D(an , bn , t) taking into account
that about the same time is spent in up- and downcrossings. Therefore L(t) plays the rôle
of the density at zero of the occupation measure of Brownian motion. �

In the following we will use two types of both geometric distributions: X is geometrically
distributed on {1, 2, . . .} with success parameter p (or, equivalently, mean 1

p ) if

P{X = k} = p (1 − p)k−1 for k ∈ {1, 2, . . .}.

Similarly, X is geometrically distributed on {0, 1, 2, . . .} with success parameter p if

P{X = k} = p (1 − p)k for k ∈ {0, 1, 2, . . .}.

If the type is not clear from the context we will always state the domain for clarification.
The key ingredient of the proof of Theorem 6.1 is the following fact.

Lemma 6.3 Suppose that a < m < b < c and let {B(t) : t � 0} be a linear Brownian
motion, and T the first time when it hits level c. Let

• D be the number of downcrossings of the interval [a, b] completed at time T ,

• Dl be the number of downcrossings of the interval
[
a,m
]

completed at time T ,

• Du be the number of downcrossings of the interval
[
m, b
]

completed at time T .

There exist two independent sequences X0 ,X1 , . . . and Y0 , Y1 , . . . of independent nonneg-
ative random variables, which are also independent of D, such that for j � 1 the random
variables Xj are geometric on {1, 2 . . .} with mean (b − a)/(m − a) and the random
variables Yj are geometric on {1, 2 . . .} with mean (b − a)/(b − m), and

Dl = X0 +
D∑

j=1

Xj and Du = Y0 +
D∑

j=1

Yj .

Proof. Recall the definition of the stopping times σj , τj from (6.1). For j � 0, define
the jth downcrossings, resp. upcrossings, of [a, b] by

B( j )

↓ : [0, τj − σj ] → R, B( j )

↓ (s) = B(σj + s), if j � 1,

B( j )

↑ : [0, σj+1 − τj ] → R, B( j )

↑ (s) = B(τj + s).
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Fig. 6.1. The downcrossing of [a, b] contains one downcrossing of [a, m] and the following upcross-
ing of [a, b] contains one further downcrossing of [a, m].

By the strong Markov property all these pieces of the Brownian path are independent. Note
that D depends only on the family (B( j )

↓ : j � 1) of downcrossings.

First look at Dl and denote by X0 the number of downcrossings of [a,m] before the first
downcrossing of [a, b]. The jth downcrossing of [a, b] contains exactly one downcrossing
of [a,m] and the jth upcrossing of [a, b] contains a random number Xj − 1 of downcross-
ings of [a,m], which, by Theorem 2.49, satisfies

P
{
Xj = k

}
=
(m − a

b − a

)(b − m

b − a

)k−1
for every k ∈ {1, . . .}.

In other words Xj is geometrically distributed on {1, 2, . . .} with success parameter given
by (m − a)/(b − a).

Second look at Du and denote by Y0 the number of downcrossings of [m, b] after the last
downcrossing of [a, b]. No downcrossings of [m, b] can occur during an upcrossing of
[a, b]. Fix a j and look at the downcrossing B( j )

↓ : [0,∞) → R formally extended to have
infinite lifetime by attaching an independent Brownian motion at the endpoint. Define
stopping times σ̃0 = 0 and, for i � 1,

τ̃i = inf
{
t > σ̃i−1 : B( j )

↓ (t) = m
}
, σ̃i = inf

{
t > τ̃i : B( j )

↓ (t) = b
}
.

This subdivides the path of B( j )

↓ into downcrossing periods [σ̃i−1 , τ̃i ], and upcrossing peri-
ods [τ̃i , σ̃i ] of [m, b], such that the pieces

B( j )

↓,i : [0, τ̃i − σ̃i−1 ] → R, B( j )

↓,i(s) = B(σ̃i−1 + s), for i � 0,

B( j )

↑,i : [0, σ̃i − τ̃i ] → R, B( j )

↑,i(s) = B(τ̃i + s), for i � 1,

are all independent. As c > b the first hitting time of level c must lie in a downcrossing
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Fig. 6.2. The downcrossing of [a, b] contains three downcrossings of [m, b] and the following up-
crossing of [a, b] contains no further downcrossings of [m, b].

period, while the lifetime τj − σj of B( j )

↓ expires when the lower boundary a is hit for
the first time, which can only occur during an upcrossing period. By Theorem 2.49 the
probability that a is hit during any upcrossing period equals (b − m)/(b − a).

Hence the number of downcrossings of [m, b] during the jth downcrossing of [a, b] is a
geometric random variable Yj on {1, 2, . . .} with (success) parameter (b − m)/(b − a),
which completes the proof.

For the proof of Theorem 6.1 we first prove the convergence for the case when the Brown-
ian motion is stopped at the time T = Tb when it first reaches some level b > b1 . This has
the advantage that there cannot be any uncompleted upcrossings.

Lemma 6.4 For any two sequences an ↑ 0 and bn ↓ 0 with an < bn , the discrete time
stochastic process {2(bn − an )D(an , bn , T ) : n ∈ N} is a submartingale with respect to
the natural filtration (Fn : n ∈ N).

Proof. We may assume that, for each n, we have

either (1) an = an+1 or (2) bn = bn+1 ,

which is no loss of generality, as we may replace a step where both an and bn are changed
by two steps, where only one is changed at a time. The original sequence is then a subse-
quence of the modified one and inherits the submartingale property.
Now fix n and first assume that we are in case (1) an = an+1 . By Lemma 6.3 for Dl ,
the total number D(an , bn+1 , T ) of downcrossings of [an , bn+1] given Fn is the sum of
D(an , bn , T ) independent geometric random variables with parameter (bn+1 − an )/(bn −
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an ) plus a nonnegative contribution. Hence,

E
[
(bn+1 − an )D(an , bn+1 , T )

∣∣Fn

]
� (bn − an )D(an , bn , T ),

which is the submartingale property (for the nth step).
Second assume that we are in case (2) bn = bn+1 . Then Lemma 6.3 for Du shows that the
number of downcrossings of [an+1 , bn ] given Fn is the sum of D(an , bn , T ) independent
geometric random variables with parameter (bn − an+1)/(bn − an ) plus a nonnegative
contribution. Hence

E
[
(bn − an+1)D(an+1 , bn , T )

∣∣Fn

]
� (bn − an )D(an , bn , T ),

and together with the first case this establishes that {2(bn − an )D(an , bn , T ) : n ∈ N} is
a submartingale with respect to its natural filtration.

Lemma 6.5 For any two sequences an ↑ 0 and bn ↓ 0 with an < bn the limit

L(Tb) := lim
n→∞

2(bn − an )D(an , bn , Tb) (6.2)

exists almost surely. It is not zero and does not depend on the choice of sequences.

Proof. Observe that D(an , bn , Tb) is a geometric random variable on {0, 1, . . .} with
parameter (bn − an )/(b− an ). Recall that the variance of a geometric random variable on
{0, 1, . . .} with parameter p is (1 − p)/p2 , and so its second moment is bounded by 2/p2 .
Hence

E
[
4(bn − an )2 D(an , bn , Tb)2 ] � 8 (b − an )2 ,

and thus the submartingale in Lemma 6.4 is L2-bounded. By the submartingale conver-
gence theorem, see Theorem 12.21 in the appendix, the limit

lim
n↑∞

2(bn − an )D(an , bn , Tb)

exists almost surely, and by Theorem 12.28 also in L2 ensuring that the limit is nonzero.
Finally, note that the limit does not depend on the choice of the sequence an ↑ 0 and
bn ↓ 0 because if it did, then given two sequences with different limits in (6.2) we could
construct a sequence of intervals alternating between the sequences, for which the limit
in (6.2) would not exist.

Lemma 6.6 For any fixed time t > 0, almost surely, the limit

L(t) := lim
n→∞

2(bn − an )D(an , bn , t) exists.

Proof. We define an auxiliary Brownian motion {Bt(s) : s � 0} by Bt(s) = B(t + s).
For any integer b > b1 we denote by Dt(an , bn , Tb) the number of downcrossings of the
interval [an , bn ] by the auxiliary Brownian motion before it hits b. Then, almost surely,

Lt(Tb) := lim
n↑∞

2(bn − an )Dt(an , bn , Tb),
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exists by the previous lemma. Given t > 0 we fix a Brownian path such that this limit
exists for all integers b > b1 . Pick b so large that Tb > t. Define

L(t) := L(Tb) − Lt(Tb) .

To show that this is the required limit, observe that

D(an , bn , Tb) − Dt(an , bn , Tb) − 1 � D(an , bn , t) � D(an , bn , Tb) − Dt(an , bn , Tb),

where the correction −1 on the left hand side arises from the possibility that t interrupts
a downcrossing. Multiplying by 2(bn − an ) and taking a limit gives L(Tb) − Lt(Tb) for
both bounds, proving convergence.

We now have to study the dependence of L(t) on the time t in more detail. To simplify the
notation we write

In (s, t) = 2(bn − an )
(
D(an , bn , t) − D(an , bn , s)

)
for all 0 � s < t .

The following lemma contains a probability estimate, which is sufficient to get the conver-
gence of the downcrossing numbers jointly for all times and to establish Hölder continuity.

Lemma 6.7 Let γ < 1/2 and 0 < ε < (1 − 2γ)/3. Then, for all t � 0 and 0 < h < 1, we
have

P
{
L(t + h) − L(t) > hγ

}
� 2 exp{− 1

2 h−ε} .

Proof. As, by Fatou’s lemma,

P
{
L(t+h)−L(t) > hγ

}
= P
{

lim inf
n→∞

In (t, t+h) > hγ
}

� lim inf
n→∞

P
{
In (t, t+h) > hγ

}
we can focus on estimating P{In (t, t + h) > hγ} for fixed large n. It suffices to estimate
Px{In (0, h) > hγ

}
uniformly for all x ∈ R. This probability is clearly maximal when

x = bn , so we may assume this. Let Th = inf{s > 0: B(s) = bn +h(1−ε)/2} and observe
that {

In (0, h) > hγ
}
⊂
{
In (0, Th ) > hγ

}
∪
{
Th < h

}
.

The number of downcrossings of [an , bn ] during the period before Th is geometrically
distributed on {0, 1, . . .} with mean (bn − an )−1h(1−ε)/2 and thus

Pbn

{
In (0, Th) > hγ

}
�
( h(1−ε)/2

bn − an + h(1−ε)/2

)� 1
2 ( b n −a n ) hγ �

n→∞−→ exp
{
− 1

2 hγ− 1
2 + ε

2
}

� exp
{
− 1

2 h−ε
}
.

With {W (s) : s � 0} denoting a standard linear Brownian motion,

Pbn

{
Th < h

}
= P
{

max
0�s�h

W (s) � h(1−ε)/2
}

�
√

2
πh−ε exp

{
− 1

2 h−ε
}

where we have used Remark 2.22 in the last step. The result follows by adding the last two
displayed formulas.
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Lemma 6.8 Almost surely,

L(t) := lim
n→∞

2(bn − an )D(an , bn , t)

exists for every t � 0.

Proof. It suffices to prove the simultaneous convergence for all 0 � t � 1. We define a
countable set of gridpoints

G =
⋃

m∈N

Gm ∪ {1}, for Gm =
{

k
m : k ∈ {0, . . . ,m − 1}

}
and show that the stated convergence holds on the event

EM =
⋂
t∈G

{
L(t) = lim

n→∞
2(bn − an )D(an , bn , t) exists

}
∩
⋂

m>M

⋂
t∈Gm

{
L(t + 1

m ) − L(t) � (1/m)γ
}
.

which, by choosing M suitably, has probability arbitrarily close to one by the previous two
lemmas. Given any t ∈ [0, 1) and a large m we find t1 , t2 ∈ Gm with t2 − t1 = 1

m and
t ∈ [t1 , t2 ]. We obviously have

2(bn − an )D(an , bn , t1) � 2(bn − an )D(an , bn , t) � 2(bn − an )D(an , bn , t2).

Both bounds converge on EM , and the difference of the limits is L(t2) − L(t1), which is
bounded by m−γ and thus can be made arbitrarily small by choosing a large m.

Lemma 6.9 For γ < 1
2 , almost surely, the process {L(t) : t � 0} is locally γ-Hölder

continuous.

Proof. It suffices to look at 0 � t < 1. We use the notation of the proof of the
previous lemma and show that γ-Hölder continuity holds on the set constructed there.
Indeed, whenever 0 � s < t < 1 and t − s < 1/M we pick m � M such that

1
m+1 � t − s < 1

m .

We take t1 � s with t1 ∈ Gm and s − t1 < 1/m, and t2 � t with t2 ∈ Gm and
t2 − t < 1/m. Note that t2 − t1 � 2/m by construction and hence,

L(t) − L(s) � L(t2) − L(t1) � 2(1/m)γ � 2
(

m+1
m )γ (t − s)γ .

The result follows as the fraction on the right is bounded by 2.

This completes the proof of the downcrossing representation, Theorem 6.1. It is easy to
see from this representation that, almost surely, the local time at zero increases only on the
zero set of the Brownian motion, see Exercise 6.1.
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Observe that the increasing process {L(t) : t � 0} is not a Markov process. Heuristically,
the size of the increment L(t + h) − L(t) depends on the position of the first zero of the
Brownian motion after time t, which is strongly dependent on the position of the last zero
before time t. The last zero however is the position of the last point of increase of the local
time process before time t, and therefore the path {L(s) : 0 � s � t} contains relevant
information beyond its endpoint.

Nevertheless, we can describe the law of the local time process, thanks to the following
famous theorem of Paul Lévy, which describes the law of the local time at zero in terms of
the maximum process of Brownian motion. It opens the door to finer results on the local
time at zero, like those presented in Section 6.4 of this chapter.

Theorem 6.10 (Lévy) The local time at zero {L(t) : t � 0} and the maximum process
{M(t) : t � 0} of a standard linear Brownian motion have the same distribution.

Remark 6.11 In fact, a similar proof shows that the processes {(L(t), |B(t)|) : t � 0} and
{(M(t),M(t) − B(t)) : t � 0} have the same distribution. Details are deferred to Exer-
cise 6.2 as we present a different argument for this in Theorem 7.38. See also Exercise 6.5
for an alternative approach, which goes back to Lévy himself. �

The proof of Theorem 6.10 uses the simple random walk embedded in the Brownian mo-
tion, a technique which we will exploit extensively. Define stopping times τ0 := τ (n )

0 := 0
and

τk := τ (n )

k := inf
{
t > τk−1 : |B(t) − B(τk−1)| = 2−n

}
, for k � 1 .

The nth embedded random walk {X (n )

k : k = 1, 2, . . .} is defined by

Xk := X (n )

k := 2n B
(
τ (n )

k

)
.

The length of the embedded random walk is

N := N (n ) (t) := max{k ∈ N : τk � t} ,

which is easily seen to be independent of the actual walk.

Lemma 6.12 For every t > 0, almost surely, lim
n→∞

2−2nN (n ) (t) = t.

Proof. First note that {ξ(n )

k : k = 1, 2, . . .} defined by

ξk := ξ(n )

k := τ (n )

k − τ (n )

k−1

is a sequence of independent random variables, for each n. By Theorem 2.49 the mean
of ξk is 2−2n and its variance is, by Brownian scaling, equal to c2−4n for some constant
c > 0. (See, for example, Exercise 2.15 for instructions how to find the constant.) Define

S(n ) (t) =

22 n t�∑
k=1

ξ(n )

k .
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Then ES(n ) (t) = �22n t�2−2n → t and Var
(
S (n ) (t)

)
= c2−4n�22n t�, hence

E
∞∑

n=1

(
S(n ) (t) − ES(n ) (t)

)2
< ∞ .

We infer that, almost surely, limn→∞ S (n ) (t) = t. For fixed ε > 0, we pick n0 large so
that

S (n ) (t − ε) � t � S(n ) (t + ε) for all n � n0 .

The sum over ξk up to N (n ) (t) + 1 is at least t, by definition, and hence we get N (n ) (t) +
1 � �22n (t − ε)�. Conversely, the sum over ξk up to N (n ) (t) is at most t and hence
N (n ) (t) � �22n (t + ε)�. The result follows as ε > 0 was arbitrary.

Lemma 6.13 Almost surely, for every t > 0,

lim
n↑∞

2−n#
{
k ∈ {1, . . . , N (n ) (t)} : |Xk−1 | = 0, |Xk | = 1

}
= L(t).

Proof. By Theorem 6.1 applied to the sequences an = −2−n and bn = 0 we have

lim
n↑∞

2−n#
{
k ∈ {1, . . . , N (n ) (t)} : Xk−1 = 0,Xk = −1

}
= 1

2 L(t) .

Applying Theorem 6.1 to the sequences an = 0 and bn = 2−n we get

lim
n↑∞

2−n#
{
k ∈ {1, . . . , N (n ) (t)} : Xk−1 = 1,Xk = 0

}
= 1

2 L(t) .

As #{k � N : Xk−1 = 1,Xk = 0} and #{k � N : Xk−1 = 0,Xk = 1} differ by no
more than one, the result follows by adding up the two displayed formulas.

0 2 4 6 8 10

−2

−1

0

1

2

3

Xk

Mk

N(n)(t)

k

0 2 4 6 8 10

0

1

2

3

Yk = Mk −Xk

k

N(n)(t)

Fig. 6.3. On the left an embedded random walk {Xk : k � 0} together with its maximum process
{Mk : k � 0}. On the right the associated difference process {Yk : k � 0} defined by Yk =
Mk − Xk .
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We define the maximum process {M (n )

k : k = 1, 2, . . .} associated with the embedded
random walk by

Mk = M (n )

k = max
{
X (n )

j : j ∈ {0, . . . , k}
}

.

Then the process {Y (n )

k : k = 1, 2, . . .} defined by Yk := Y (n )

k := Mk − Xk is a Markov
chain with statespace {0, 1, 2, . . .} and the following transition mechanism

• if j �= 0 then P{Yk+1 = j + 1 |Yk = j} = 1
2 = P{Yk+1 = j − 1 |Yk = j},

• P{Yk+1 = 0 |Yk = 0} = 1
2 = P{Yk+1 = 1 |Yk = 0} .

One can recover the maximum process {Mk : k = 1, 2, . . .} from {Yk : k = 1, 2, . . .} by
counting the number of flat steps

Mk = #
{
j ∈ {1, . . . , k} : Yj = Yj−1

}
.

Hence we obtain, asymptotically, the maximum process of the Brownian motion as a limit
of the number of flat steps in {Y (n )

k : k = 1, 2, . . .}.

Lemma 6.14 For any time t > 0, almost surely,

M(t) = lim
n↑∞

2−n #
{
j ∈ {1, . . . , N (n ) (t)} : Y (n )

j = Y (n )
j−1

}
.

Proof. Note that #
{
j ∈ {1, . . . , N (n ) (t)} : Yj = Yj−1

}
is the maximum of the random

walk {Xk : k = 1, 2, . . . , N (n ) (t)} over its entire length. This maximum, multiplied by
2−n , differs from M(t) by no more than 2−n , and this completes the argument.

Removing the flat steps in the process {Y (n )
j : j = 1, 2, . . .} we obtain a process {Ỹ (n )

k : k =
1, 2, . . .}, which has the same law as {|Xk | : k = 1, 2, . . .}. By Lemma 6.13 we therefore
have the convergence in distribution, as n ↑ ∞,

2−n#
{
k ∈ {1, . . . , N (n ) (t)} : Ỹ (n )

k−1 = 0, Ỹ (n )

k = 1
} d−→ L(t), (6.3)

jointly for any finite set of times.

Lemma 6.15 Almost surely,

lim
n↑∞

2−n
(
#
{
j ∈ {1, . . . , N (n ) (t)} : Y (n )

j−1 = Y (n )
j

}
− #
{
k ∈ {1, . . . , N (n ) (t)} : Ỹ (n )

k−1 = 0, Ỹ (n )

k = 1
})

= 0 .

Proof. First note that when {Yj : j = 1, 2, . . .} returns to zero for the ith time, the
number of steps before it moves to one is given by a random variable Zi with distribution

P{Zi = k
}

= 2−k−1 for k = 0, 1, . . ..

Denoting by Z0 the number of steps before it moves initially, the random variables Z0 , Z1 , . . .

are independent and independent of the process {Ỹ (n )

k : k = 1, 2, . . .}. Let

A(n ) = #
{
j ∈ {1, . . . , N (n ) (t)} : Y (n )

j−1 = 1, Y (n )
j = 0

}
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Fig. 6.4. On the left a sample of the processes {Yj : 0 � j � N (n ) (t)}. On the right the associated
{Ỹk : 0 � k � N (n ) (t)}, which is obtained by removing the two flat steps and extending the path to
its original length.

be the total number of returns to zero before time N (n ) (t). With a possible small modifi-
cation of the final value ZA (n ) we get, almost surely, as n ↑ ∞,

2−n
(
#
{
j ∈ {1, . . . , N (n ) (t)} : Y (n )

j = Y (n )
j−1

}
− #
{
j ∈ {1, . . . , N (n ) (t)} : Y (n )

j−1 = 0, Y (n )
j = 1

})
= 2−n

A (n )∑
i=0

(Zi − 1) =
(
2−nA(n )

) 1
A(n )

A (n )∑
i=0

(
Zi − EZi

)
−→ 0,

because the first factor converges by Lemma 6.13 and the second by the law of large
numbers, irrespective of the actual value of ZA (n ) . To study the effect of the removal
of the flat pieces, recall that almost surely the length N (n ) (t) of the walk is of order
22n t, by Lemma 6.12, and the number of flat pieces is MN (n ) (t) , which is of order 2n ,
by Lemma 6.14. Hence, for all ε > 0, if n is large enough,

N (n ) (t − ε) + MN (n ) (t) � N (n ) (t).

We infer from this that

2−n
(
#
{
j ∈ {1, . . . , N (n ) (t)} : Ỹ (n )

j−1 = 0, Ỹ (n )
j = 1

}
− #
{
j ∈ {1, . . . , N (n ) (t)} : Y (n )

j−1 = 0, Y (n )
j = 1

})
� 2−n#

{
j ∈ {N (n ) (t − ε) + 1, . . . , N (n ) (t)} : Ỹ (n )

j−1 = 0, Ỹ (n )
j = 1

}
,

and the right hand side converges almost surely to a random variable, which has the law of
L(t) − L(t − ε) and hence can be made arbitrarily small by choice of ε > 0.

Proof of Theorem 6.10. Note that both processes in Theorem 6.10 are continuous, so
that it suffices to compare their finite dimensional distributions. Equality of these follows
directly by combining Lemma 6.14, Equation (6.3) and Lemma 6.15.
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Theorem 6.16 (Occupation time representation of the local time at zero) For all se-
quences an ↑ 0 and bn ↓ 0 with an < bn , almost surely,

lim
n→∞

1
bn − an

∫ t

0
1{an � B(s) � bn} ds = L(t) for every t > 0.

The proof is prepared by the following lemma, which is a direct consequence of Theo-
rem 5.38. See also Exercise 6.6 for an alternative proof.

Lemma 6.17 Let {W (s) : s � 0} be a standard linear Brownian motion and τ1 its first
hitting time of level 1. Then E

∫ τ1

0 1{0 � W (s) � 1} ds = 1.

Proof. By Theorem 5.38 we have E
∫ τ1

0 1{0 � W (s) � 1} ds = Eσ1 , where σ1 is the
first exit time from [−1, 1]. By Theorem 2.49 we have Eσ1 = 1.

Proof of Theorem 6.16. Recall the stopping times τj defined for an < bn as in (6.1).
For the proof of the lower bound note that∫ t

0
1{an � B(s) � bn} ds �

D (an ,bn ,t)∑
j=1

∫ τj

τj −1

1{an � B(s) � bn} ds .

By Brownian scaling∫ τj

τj −1

1{an � B(s) � bn} ds = (bn − an )2
∫ τ (j )

0
1{0 � Wj (s) � 1} ds ,

where {Wj (s) : s � 0} are independent standard linear Brownian motions and τ(j) =
inf{s > 0: Wj (s) = 0 and there exists t < s with Wj (t) = 1}. Hence

1
bn − an

D (an ,bn ,t)∑
j=1

∫ τj

τj −1

1{an � B(s) � bn} ds

= (bn − an )D(an , bn , t)
[ 1
D(an , bn , t)

D (an ,bn ,t)∑
j=1

∫ τ (j )

0
1{0 � Wj (s) � 1} ds

]
.

The first factor converges almost surely to 1
2 L(t), by Theorem 6.1. From the law of large

numbers we get for the second factor, almost surely,

lim
n↑∞

1
D(an , bn , t)

D (an ,bn ,t)∑
j=1

∫ τ (j )

0
1{0 � W (s) � 1} ds = E

∫ τ

0
1{0 � W (s) � 1} ds .

Applying Lemma 6.17 first to {W (s) : s � 0}, and then to {1−W (s+ τ1) : s � 0} yields

E
∫ τ

0
1{0 � W (s) � 1} ds = 2 .

This verifies the lower bound. The upper bound can be obtained by including the period
[τj , τj+1] for j = D(an , bn , t) in the summation and using the same arguments as for the
lower bound. This completes the proof of Theorem 6.16.
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6.2 A random walk approach to the local time process

Given a level a ∈ R the construction of the previous chapter allows us to define the
local time at level a for a linear Brownian motion {B(t) : t � 0}. Indeed, simply let
{La(t) : t � 0} be the local time at zero of the auxiliary Brownian motion {Ba(t) : t � 0}
defined by Ba(t) = B(t)−a. Using Theorem 6.16 it is not hard to show that {La(t) : a ∈
R} is the density of the occupation measure µt introduced in Theorem 3.26.

Theorem 6.18 For linear Brownian motion {B(t) : t � 0}, almost surely, for any bounded
measurable g : R → R and t > 0,∫

g(a) dµt(a) =
∫ t

0
g(B(s)) ds =

∫ ∞

−∞
g(a)La(t) da.

Proof. First, observe that for the statement it suffices to have {La(t) : t � 0} defined for
L-almost every a. Second, we may assume that t is fixed. Indeed, it suffices to verify the
second equality for a countable family of bounded measurable g : R → R, for example the
indicator functions of rational intervals. Having fixed such a g both sides are continuous
in t. For fixed t, we know from Theorem 3.26 that µt � L almost surely, hence a density
f exists by the Radon–Nikodým theorem and may be obtained as

f(a) = lim
ε↓0

1
2ε

∫ t

0
1{a − ε � B(s) � a + ε} ds,

which equals La(t) by Theorem 6.16, almost surely for L-almost every a.

A major result about linear Brownian motion is that the density {La(t) : a ∈ R} of the
occupation measures can be chosen to be continuous, a fact which we now prove. To
explore La(t) as a function of the levels a we extend the downcrossing representation to
hold simultaneously at all levels a.
Given a ∈ R and a large integer n we let I(a, n) be the unique dyadic interval such that
a ∈ I(a, n) = [j(a)2−n , (j(a) + 1)2−n ). For a standard Brownian motion {B(t) : t � 0}
we denote by D(n ) (a, t) the number of downcrossings of the interval I(a, n) before time t.
In the notation of the previous section we can write

D(n ) (a, t) := #
{
k ∈ {0, . . . , N (n ) (t) − 1} : X (n )

k = j(a) + 1, X (n )

k+1 = j(a)
}

.

Theorem 6.19 (Trotter’s theorem) Let {B(t) : t � 0} be a standard linear Brownian
motion and let D(n ) (a, t) be the number of downcrossings before time t of the nth stage
dyadic interval containing a. Then, almost surely,

La(t) = lim
n→∞

2−n+1 D(n ) (a, t) exists for all a ∈ R and t � 0.

Moreover, for every γ < 1
2 , the random field

{La(t) : a ∈ R, t � 0}

is almost surely locally γ-Hölder continuous.
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Remark 6.20 Note that {La(t) : a ∈ R, t � 0} is a stochastic process depending on more
than one parameter, and to emphasise this fact we use the notion random field. �

The proof uses the following estimate for the sum of independent geometric random vari-
ables with mean two, which we prove as Exercise 6.7.

Lemma 6.21 Let X1 ,X2 , . . . be independent geometrically distributed random variables
on {1, 2, . . .} with mean 2. Then, for sufficiently small ε > 0, for all nonnegative inte-
gers k � m,

P
{∣∣∣ k∑

j=1

(Xj − 2)
∣∣∣ � εm

}
� 4 exp

{
− 1

5 ε2 m
}

.

The following lemma is the heart of the proof of Theorem 6.19.

Lemma 6.22 Suppose that a < b and let {B(t) : 0 � t � T} be a linear Brownian motion
stopped at the time T when it first hits a given level above b. Let

• D be the number of downcrossings of the interval [a, b],

• Dl be the number of downcrossings of the interval
[
a, a+b

2

]
,

• Du be the number of downcrossings of the interval
[

a+b
2 , b
]
.

Then, for sufficiently small ε > 0, for all nonnegative integers k � m,

P
{∣∣D − 1

2 Dl
∣∣ > εm or

∣∣D − 1
2 Du
∣∣ > εm

∣∣D = k
}

� 12 exp
{
− 1

5 ε2 m
}

.

Proof. By Lemma 6.3 we have that, given {D = k}, there exist independent random
variables X0 ,X1 ,X2 . . ., such that

Dl = X0 +
k∑

j=1

Xj ,

and X1 ,X2 , . . . are geometrically distributed on {1, 2, . . .} with mean 2. An inspection of
the proof of Theorem 6.3 reveals that X0 is either zero or also geometrically distributed
with mean 2, depending on the starting point of the Brownian motion.
Using Lemma 6.21 and Chebyshev’s inequality, we get, if ε > 0 is small enough,

P
{∣∣ 1

2 Dl − D
∣∣ > εm

∣∣D = k
}

� P
{∣∣ k∑

j=1

(Xj − 2)
∣∣ > εm

∣∣∣D = k
}

+ P
{
X0 > εm

}
� 4 exp

{
− ε2

5 m
}

+ 2 exp{−εm log 2} � 6 exp
{
− ε2

5 m
}

.

The argument is analogous for Du , and this completes the proof.

We now fix γ < 1
2 and a large integer N . We stop the Brownian motion at time TN when it

first hits level N , and abbreviate D(n ) (a) := D(n ) (a, TN ). We denote the nth dyadic grid
by Dn := Dn (N) := {k2−n : k ∈ {−N2n ,−N2n + 1, . . . , N2n − 1}}.
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Lemma 6.23 Denote by Ω(m) the event that, for all n � m,

(a)
∣∣D(n ) (a) − 1

2 D(n + 1 ) (a)
∣∣ � 2n(1−γ ) for all a ∈ [−N,N),

(b)
∣∣D(n ) (a) − D(n ) (b)

∣∣ � 2 2n(1−γ ) for all a, b ∈ [−N,N) with |a − b|�2−n .

Then

lim
m↑∞

P
(
Ω(m)

)
= 1 .

Proof. The event in item (a) follows by combining the following three events,

(i)
∣∣D(n ) (a) − 1

2 D(n + 1 ) (a)
∣∣ � 1

n2 2−nγ D(n ) (a) for a ∈ [−N,N) with D(n ) (a)�2n ,

(ii)
∣∣D(n ) (a) − 1

2 D(n + 1 ) (a)
∣∣ � 2n(1−γ ) for all a ∈ [−N,N) with D(n ) (a) < 2n ,

(iii) D(n ) (a) � n22n for all a ∈ [−N,N).

We observe that it is equivalent to show (i),(ii) for all a ∈ Dn+1 and (iii) for all a ∈ Dn .
To estimate the probability of (i) we use Lemma 6.22 with ε = 1

n2 2−nγ and m = k. We
get that

∞∑
n=m

∑
a∈Dn + 1

P
{∣∣D(n ) (a) − 1

2 D(n + 1 ) (a)
∣∣ > 1

n2 2−nγ D(n ) (a) and D(n ) (a) � 2n
}

�
∞∑

n=m

∑
a∈Dn + 1

12 exp
{
− 1

5n4 2n(1−2γ )}
� (48N)

∞∑
n=m

2n exp
{
− 1

5n4 2n(1−2γ )} m→∞−→ 0 .

For event (ii) we get from Lemma 6.22 with ε = 2−γn and m = 2n > k. This gives that
∞∑

n=m

∑
a∈Dn + 1

P
{∣∣D(n ) (a) − 1

2 D(n + 1 ) (a)
∣∣ > 2n(1−γ ) and D(n ) (a) < 2n

}
�

∞∑
n=m

∑
a∈Dn + 1

12 exp
{
− 1

5 2n(1−2γ )}
� (48N)

∞∑
n=m

2n exp
{
− 1

5 2n(1−2γ )} m→∞−→ 0 .

For event (iii) we use that, given that the walk hits j(a), the random variable D(n ) (a)
is geometrically distributed with parameter 2−n

N −a � 2−n

2N . We therefore obtain, for some
sequence δn → 0,

P
{
D(n ) (a) > n22n

}
�
(
1 − 2−n

2N

)n2 2n −1 � exp{−n2 1−δn

2N },
hence, for sufficiently large m,

∞∑
n=m

∑
a∈Dn

P
{
D(n ) (a) > n22n

}
�

∞∑
n=m

(2N)2n exp
{
− n2 1−δn

2N

} m→∞−→ 0.

This completes the estimates needed for item (a).
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The event in item (b) need only be checked for all a, b ∈ Dn with |a− b| = 2−n . Note that
D(n ) (a), resp. D(n ) (b), are the number of downcrossings of the lower, resp. upper, half of
an interval of length 2−n+1 , which may or may not be dyadic. Denote by D̃(n −1 ) (a) =
D̃(n −1 ) (b) the number of downcrossings of this interval. Then

P{|D(n ) (a) − D(n ) (b)
∣∣ > 2 2n(1−γ )}

� P{|D(n ) (a) − 1
2 D̃(n −1 ) (a)

∣∣ > 2n(1−γ )} + P{|D(n ) (b) − 1
2 D̃(n −1 ) (b)

∣∣ > 2n(1−γ )},

and summability of these probabilities over all a, b ∈ Dn with |a − b| = 2−n and n � m

has been established in the proof of item (a). This completes the proof.

Lemma 6.24 On the set Ω(m) we have that

La(TN ) := lim
n→∞

2−n+1 D(n ) (a)

exists for every a ∈ [−N,N).

Proof. We show that the sequence defined by 2−n+1 D(n ) (a), for n ∈ N, is a Cauchy
sequence. Indeed, by item (a) in the definition of the set Ω(m), for any a ∈ [−N,N ] and
n � m, we get that ∣∣2−n+1D(n ) (a) − 2−n D(n + 1 ) (a)

∣∣ � 2−nγ+1 .

Thus, for any n � m,

sup
k � n

∣∣2−n+1D(n ) (a) − 2−k+1 D(k ) (a)
∣∣

�
∞∑

k=n

∣∣2−k+1D(k ) (a) − 2−k D(k + 1 ) (a)
∣∣ � ∞∑

k=n

2−kγ+1 n→∞−→ 0,

and thus the sequence is a Cauchy sequence and therefore convergent.

Lemma 6.25 On Ω(m) the process {La(TN ) : a ∈ [−N,N)} is γ-Hölder continuous.

Proof. Fix a, b ∈ [−N,N) with 2−n−1 � a − b � 2−n for some n � m. Then, using
item (a) and item (b) in the definition of Ω(m), for all k � n,∣∣2−k+1D(k ) (a) − 2−k+1D(k ) (b)

∣∣ � ∣∣2−n+1D(n ) (a) − 2−n+1D(n ) (b)
∣∣

+
k−1∑
j=n

∣∣2−jD( j + 1 ) (a) − 2−j+1D( j ) (a)
∣∣+ k−1∑

j=n

∣∣2−jD( j + 1 ) (b) − 2−j+1D( j ) (b)
∣∣

� 4 2−nγ + 4
∞∑

j=n

2−jγ ,

Letting k ↑ ∞, we get

|La(TN ) − Lb(TN )| �
(
4 + 4

1−2−γ

)
2−nγ �

(
22+γ + 22 + γ

1−2−γ

)
|a − b|γ ,

which completes the proof.
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Lemma 6.26 For any fixed time t > 0, almost surely, the limit

La(t) := lim
n→∞

2−n+1 D(n ) (a) exists for all a ∈ R

and moreover {La(t) : a ∈ R} is γ-Hölder continuous.

Proof. Given t > 0 define the auxiliary Brownian motion {Bt(s) : s � 0} by
Bt(s) = B(t + s) and denote by D(n )

t (a) the number of downcrossings associated to
the auxiliary Brownian motion. Then, almost surely, La

t (TN ) := limn↑∞ 2−n+1 D(n )
t (a)

exists for all a ∈ R and integers N . On this event we pick N so large that TN > t. De-
fine La(t) := La(TN ) − La

t (TN ), and observe that {La(t) : a ∈ R} defined like this is
γ-Hölder continuous by Lemma 6.25. It remains to show that this definition agrees with
the one stated in the lemma. To this end, observe that

D(n ) (a, TN ) − D(n )
t (a, TN ) − 1 � D(n ) (a, t) � D(n ) (a, TN ) − D(n )

t (a, TN ).

Multiplying by 2−n+1 and taking a limit proves the claimed convergence.

Lemma 6.27 Almost surely,

La(t) := lim
n→∞

2−n+1 D(n ) (a, t)

exists for every t � 0 and a ∈ R and {La(t) : a ∈ R, t � 0} is γ-Hölder continuous.

Proof. It suffices to look at t ∈ [0, N) and a ∈ [−N,N). Recall the definition of the
dyadic points Dn in [−N,N) and additionally define dyadic points in [0, N) by

Hm =
{
k2−m : k ∈ {0, . . . , N2m − 1}

}
, H =

∞⋃
m=1

Hm .

We show that the claimed statements hold on the set⋂
t∈H

{
La(t) exists for all a ∈ [−N,N) and a �→ La(t) is γ-Hölder continuous

}
∩
⋂

m>M

⋂
t∈Hm

⋂
a∈Dm

{
La(t + 2−m ) − La(t) � 2−mγ

}
,

which, by choosing M suitably, has probability arbitrarily close to one by Lemma 6.26 and
Lemma 6.7.
Given any t ∈ [0, N) and a ∈ [−N,N ], for any large m, we find t1 , t2 ∈ Hm with
t2 − t1 = 2−m and t ∈ [t1 , t2 ]. We have

2−n+1 D(n ) (a, t1) � 2−n+1 D(a, t) � 2−n+1 D(a, t2).

Both bounds converge on our set, and the difference of the limits is La(t2) − La(t1). We
can then find b ∈ Hk for k � M with |La(t1)−Lb(t1)| < 2−mγ and |La(t2)−Lb(t2)| <

2−mγ and get

0 � La(t2) − La(t1) � |La(t2) − Lb(t2)| + |Lb(t2) − Lb(t1)| + |La(t1) − Lb(t1)|
� 3 × 2−mγ ,

which can be made arbitrarily small by choice of m, proving simultaneous convergence.
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For the proof of continuity, suppose a, b ∈ [−N,N) and s, t ∈ [0, N) with 2−m � |a −
b| � 2−m and 2−m � t − s � 2−m for some m � M . We pick s1 , s2 ∈ Hm and t1 , t2 ∈
Hm such that s−2−m < s1 � s � s2 < s+2−m and t−2−m < t1 � t � t2 < t+2−m ,

and a1 , b1 ∈ Dm with |a − a1 | � 2−m and |b − b1 | � 2−m . Then

La(t) − Lb(s) � La(t2) − Lb(s1)

� |La(t2) − La1 (t2)| + |La1 (t2) − La1 (s1)| + |La1 (s1) − Lb(s1)|,

La(s) − Lb(t) � La(s2) − Lb(t1)

� |La(s2) − La1 (s2)| + |La1 (s2) − La1 (t1)| + |La1 (t1) − Lb(t1)|,

and all contributions on the right are bounded by constant multiples of 2−mγ , by the con-
struction of our set. This completes the proof of γ-Hölder continuity.

This completes the proof of Trotter’s theorem, Theorem 6.19.

6.3 The Ray–Knight theorem

We now have a closer look at the distributions of local times Lx(T ) as a function of the
level x in the case that Brownian motion is started at an arbitrary point and stopped at the
time T when it first hits level zero. The following remarkable distributional identity goes
back to the work of Ray and Knight.

Theorem 6.28 (Ray–Knight theorem) Suppose a > 0 and {B(t) : 0 � t � T} is a linear
Brownian motion started at a and stopped at time T = inf{t � 0: B(t) = 0}, when it
reaches level zero for the first time. Then

{Lx(T ) : 0 � x � a} d= {|W (x)|2 : 0 � x � a} ,

where {W (x) : x � 0} is a standard planar Brownian motion.

0
0 

0
0 

B(t)

a a

t

T

x

|W (x)|2 = Lx(T )

Fig. 6.5. The Brownian path on the left, and its local time as a function of the level, on the right.
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Remark 6.29 The process {|W (x)|2 : x � 0} of squared norms of a planar Brownian mo-
tion is called the squared two-dimensional Bessel process. For any fixed x, the random
variable |W (x)|2 is exponentially distributed with mean 2x, see Lemma 12.16 in the ap-
pendix. �

We carry out the proof of the Ray–Knight theorem in three steps. As a warm-up, we look
at one point 0 < x � a. Recall from the downcrossing representation, Theorem 6.1, that

lim
n→∞

2
n Dn (x) = Lx(T ) almost surely,

where Dn (x) denotes the number of downcrossings of the interval [x − 1/n, x] before

time T . Recall that basic facts about convergence in distribution, indicated with
d→, are

collected in Section 12.1 of the appendix.

Lemma 6.30 For any 0 < x � a, we have 2
n Dn (x) d−→ |W (x)|2 as n ↑ ∞.

Proof. By the strong Markov property and the exit probabilities from an interval
described in Theorem 2.49, it is clear that, provided n > 1/x, the random variable Dn (x) is
geometrically distributed with (success) parameter 1/(nx), i.e. P{Dn (x) = k} = 1

nx (1−
1

nx )k−1 for all k ∈ {1, 2, . . .}. Hence, as n → ∞, we obtain that

P{Dn (x) > ny/2} =
(
1 − 1

nx

)�ny/2� −→ e−y/(2x) ,

and the result follows, as |W (x)|2 is exponentially distributed with mean 2x.

Lemma 6.30 is the ‘one-point version’ of Theorem 6.28. The essence of the Ray–Knight
theorem is captured in the ‘two-point version’, which we prove next. We fix two points x

and x + h with 0 < x < x + h < a. The next three lemmas are the crucial ingredients for
the proof of Theorem 6.28.

Lemma 6.31 Let 0 < x < x + h < a. Then, for all n > h, we have

Dn (x + h) = D +
Dn (x)∑
j=1

Ij Nj ,

where

• D = D(n ) is the number of downcrossings of the interval [x+h− 1
n , x+h] before

the Brownian motion hits level x,
• for any j ∈ N the random variable Ij = I (n )

j is Bernoulli distributed with mean
1

nh+1 ,
• for any j ∈ N the random variable Nj = N (n )

j is geometrically distributed with
mean nh + 1,

and all these random variables are independent of each other and of Dn (x).

Proof. The decomposition of Dn (x+h) is based on counting the number of downcross-
ings of the interval [x + h − 1/n, x + h] that have taken place between the stopping times
in the sequence
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−5 0 5 10 15 20 25 30 35 40 45

xk+1

xk+1 − 1
n

xk

xk − 1
n

τ2j−2 τ2j−1

B(2j−1)

Fig. 6.6. The random variables Ij and Nj depend only on the pieces B ( 2 j −1 ) for j � 1. For this
sample Ij = 1 as the path hits x + h before x − 1

n
and Nj = 2, because the path downcrosses

[x + h − 1
n
, x + h] twice before hitting x − 1

n
.

τ0 = inf
{
t > 0: B(t) = x

}
, τ1 = inf

{
t > τ0 : B(t) = x − 1

n

}
,

τ2j = inf
{
t > τ2j−1 : B(t) = x

}
, τ2j+1 = inf

{
t > τ2j : B(t) = x − 1

n

}
,

for j � 1. By the strong Markov property the pieces

B( 0 ) : [0, τ0 ] → R, B( 0 ) (s) = B(s)

B( j ) : [0, τj − τj−1 ] → R, B( j ) (s) = B(τj−1 + s), j � 1,

are all independent. The crucial observation of the proof is that the vector Dn (x) is a
function of the pieces B( 2 j ) for j � 1, whereas we shall define the random variables D,
I1 , I2 , . . . and N1 , N2 . . . depending only on the other pieces B( 0 ) and B( 2 j −1 ) for j � 1.
First, let D be the number of downcrossings of [x + h − 1/n, x + h] during the time
interval [0, τ0 ]. Then fix j � 1 and hence a piece B( 2 j −1 ) . Define Ij to be the indicator
of the event that B( 2 j −1 ) reaches level x + h during its lifetime. By Theorem 2.49 this
event has probability 1/(nh+1). Observe that the number of downcrossings by B( 2 j −1 ) is
zero if the event fails. If the event holds, we define Nj as the number of downcrossings of
[x + h− 1/n, x + h] by B( 2 j −1 ) , which is a geometric random variable with mean nh + 1
by the strong Markov property and Theorem 2.49.

The claimed decomposition follows now from the fact that the pieces B( 2 j ) for j � 1 do not
upcross the interval [x+h−1/n, x+h] by definition and that B( 2 j −1 ) for j = 1, . . . , Dn (x)
are exactly the pieces that take place before the Brownian motion reaches level zero.
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Lemma 6.32 Suppose nun are nonnegative, even integers and un → u. Then

2
n

D(n ) +
2
n

n u n
2∑

j=1

I (n )
j N (n )

j
d−→ X̃2 + Ỹ 2 + 2

M∑
j=1

Z̃j as n ↑ ∞,

where X̃ , Ỹ are normally distributed with mean zero and variance h, the random vari-
able M is Poisson distributed with parameter u/(2h) and Z̃1 , Z̃2 , . . . are exponentially
distributed with mean h, and all these random variables are independent.

Proof. By Lemma 6.30, we have, for X̃ , Ỹ as defined in the lemma,

2
n

D(n ) d−→ |W (h)|2 d= X̃2 + Ỹ 2 as n ↑ ∞.

Moreover, we observe that

2
n

n u n
2∑

j=1

I (n )
j N (n )

j
d=

2
n

Bn∑
j=1

N (n )
j ,

where Bn is binomial with parameters nun/2 ∈ {0, 1, . . .} and 1/(nh + 1) ∈ (0, 1) and
independent of N (n )

1 , N (n )
2 , . . .. We now show that, when n ↑ ∞, the random variables Bn

converge in distribution to M and the random variables 1
n N (n )

j converge to Z̃j , as defined
in the lemma. For this purpose it suffices to show convergence of the Laplace transforms,
see Proposition 12.8 in the appendix.
First note that, for λ, θ > 0, we have

E exp
{
− λZ̃j

}
= 1

λh+1 , E
[
θM
]

= exp
{
− u(1−θ)

2h

}
,

and hence

E exp
{
− λ

M∑
j=1

Z̃j

}
= E
( 1

λh+1

)M = exp
{
− u

2h
λh

λh+1

}
= exp

{
− uλ

2λh+2

}
.

Convergence of 1
n N (n )

j is best seen using tail probabilities

P
{ 1

n N (n )
j > a

}
=
(
1 − 1

nh+1

)�na� −→ exp
{
− a

h

}
= P{Z̃j > a} .

Hence, for a suitable sequence δn → 0,

E exp
{
− λ 1

n N (n )
j

}
=

1 + δn

λh + 1
.

For the binomial distributions we have

E
[
θBn
]

=
(

θ
nh+1 +

(
1 − 1

nh+1

))nun /2
−→ exp

{
− u(1−θ)

2h

}
,

and thus

lim
n↑∞

E exp
{
− λ

1
n

Bn∑
j=1

N (n )
j

}
= lim

n↑∞
E
[( 1+δn

λh+1

)Bn
]

= lim
n↑∞

exp
{
− u

2h
λh−δn

λh+1

}
= exp

{
− uλ

2λh+2

}
= E exp

{
− λ

M∑
j=1

Z̃j

}
.
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Lemma 6.33 Suppose X is standard normally distributed, Z1 , Z2 , . . . standard exponen-
tially distributed and N Poisson distributed with parameter �2/2 for some � > 0. If all
these random variables are independent, then

(X + �)2 d= X2 + 2
N∑

j=1

Zj .

Proof. It suffices to show that the Laplace transforms of the random variables on the two
sides of the equation agree. Let λ > 0. Completing the square, we find

E exp{−λ (X + �)2} =
1√
2π

∫
exp{−λ (x + �)2 − x2/2} dx

=
1√
2π

∫
exp
{
− 1

2

(√
2λ + 1 x + 2λ�√

2λ+1

)2 − λ�2 + 2λ2 �2

2λ+1

}
dx

=
1√

2λ + 1
exp
{
− λ�2

2λ+1

}
.

From the special case � = 0 we get E exp{−λ X2} = 1√
2λ+1

. For any θ > 0,

E[θN ] = exp{−�2/2}
∞∑

k=0

(�2 θ/2)k

k ! = exp{(θ − 1)�2/2} .

Using this and that E exp{−2λZj} = 1
2λ+1 we get

E exp
{
− λ
(
X2 + 2

N∑
j=1

Zj

)}
=

1√
2λ + 1

E
( 1

2λ + 1

)N

=
1√

2λ + 1
exp
{
− λ�2

2λ+1

}
,

which completes the proof.

Remark 6.34 An alternative proof of Lemma 6.33 will be given in Exercise 6.8. �

By combining the previous three lemmas we obtain the following convergence result for
the conditional distribution of Dn (x + h) given Dn (x), which is the ‘two-point version’
of the Ray–Knight theorem.

Lemma 6.35 Suppose nun are nonnegative, even integers and un → u. For any λ � 0,

lim
n→∞

E
[
exp
{
− λ 2

n Dn (x + h)
} ∣∣ 2

n Dn (x) = un

]
= E(0,

√
u)
[
exp
{
− λ|W (h)|2

}]
,

where {W (x) : x � 0} denotes a planar Brownian motion started in (0,
√

u) ∈ R2 .
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Proof. Combining Lemmas 6.31 and 6.32 we get

lim
n→∞

E
[
exp
{
− λ 2

n Dn (x + h)
} ∣∣ 2

n Dn (x) = un

]
= E
[
exp
{
− λ
(
X̃2 + Ỹ 2 + 2

M∑
j=1

Z̃j

)}]

= E
[
exp
{
− λh

(
X2 + Y 2 + 2

M∑
j=1

Zj

)}]
,

where X , Y are standard normally distributed, Z1 , Z2 , . . . are standard exponentially dis-
tributed and M is Poisson distributed with parameter �2/2, for � =

√
u/h. By Lemma 6.33

the right hand side can thus be rewritten as

E
[
exp
{
− λh

(
(X +

√
u/h)2 + Y 2)}] = E(0,

√
u)
[
exp
{
− λ|W (h)|2

}]
,

which proves the lemma.

Now we complete the proof of Theorem 6.28. Note that, as both {Lx(T ) : x � 0} and
{|W (x)|2 : x � 0} are continuous processes, it suffices to show that, for any

0 < x1 < · · · < xm < a

the vectors (
Lx1 (T ), . . . , Lxm (T )

)
and

(
|W (x1)|2 , . . . , |W (xm )|2

)
have the same distribution. The Markov property of the downcrossing numbers, which
approximate the local times, allows us to reduce this problem to the study of the ‘two-
point version’.

Lemma 6.36 For all sufficiently large integers n, the process{
Dn (xk ) : k = 1, . . . , m

}
is a (possibly inhomogeneous) Markov chain.

Proof. Fix k ∈ {2, . . . , m}. By Lemma 6.31 applied to x = xk−1 and h = xk − xk−1

we can write Dn (xk ) as a function of Dn (xk−1) and various random variables, which
by construction, are independent of Dn (x1), . . . , Dn (xk−1). This establishes the Markov
property.

Note that, by rotational invariance of planar Brownian motion, {|W (xk )|2 : k = 1, . . . ,m}
is a Markov chain with transition probabilities given by

E
[
exp{−λ |W (xk+1)|2}

∣∣ |W (xk )|2 = u
]

= E(0,
√

u)
[
exp{−λ |W (xk+1 − xk )|2}

]
,

for all λ > 0. The following general fact about the convergence of families of Markov
chains ensures that we have done enough to complete the proof of Theorem 6.28.
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Lemma 6.37 Suppose, for n = 1, 2, . . ., that {X (n )

k : k = 1, . . . ,m} is a Markov chain
with discrete state space Ωn ⊂ [0,∞) and that {Xk : k = 1, . . . ,m} is a Markov chain
with state space [0,∞). Suppose further that

(1) (X (n )
1 , . . . , X (n )

m ) converges almost surely to some random vector (Y1 , . . . , Ym ),

(2) X (n )
1

d→ X1 as n ↑ ∞,

(3) for all k = 1, . . . ,m − 1, λ > 0 and yn ∈ Ωn with yn → y, we have

lim
n→∞

E
[
exp{−λX (n )

k+1}
∣∣X (n )

k = yn

]
= E
[
exp{−λXk+1}

∣∣Xk = y
]∣∣∣.

Then

(X (n )
1 , . . . , X (n )

m ) d−→ (X1 , . . . , Xm )

and, in particular, the vectors (X1 , . . . , Xm ) and (Y1 , . . . , Ym ) have the same distribution.

Proof. Recall from Proposition 12.8 in the appendix that it suffices to show that the

Laplace transforms converge. Let λ1 , . . . , λm � 0. By assumption (2) we have X (n )
1

d→
X1 and hence we may assume, by way of induction, that for some fixed k = 1, . . . ,m− 1,
we have

(X (n )
1 , . . . , X (n )

k ) d−→ (X1 , . . . , Xk ) .

This implies, in particular, that (X1 , . . . , Xk ) and (Y1 , . . . , Yk ) have the same distribution.
Define

Φn : Ωn → [0, 1], Φn (y) = E
[
exp{−λk+1X

(n )

k+1}
∣∣X (n )

k = y
]

and

Φ: [0,∞) → [0, 1], Φ(y) = E
[
exp{−λk+1Xk+1}

∣∣Xk = y
]
.

Then, combining assumption (1) and (3), Φn (X (n )

k ) → Φ(Yk ) almost surely. Hence, using
this and once more assumption (1),

E
[
exp
{
−

k+1∑
j=1

λjX
(n )
j

}]
= E
[
exp
{
−

k∑
j=1

λjX
(n )
j

}
Φn (X (n )

k )
]

→ E
[
exp
{
−

k∑
j=1

λjYj

}
Φ(Yk )

]
.

As the vectors (X1 , . . . , Xk ) and (Y1 , . . . , Yk ) have the same distribution the limit can be
rewritten as

E
[
exp
{
−

k∑
j=1

λjXj

}
Φ(Xk )

]
= E
[
exp
{
−

k+1∑
j=1

λjXj

}]
,

and this completes the induction step.
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Finally, as (X (n )
1 , . . . , X (n )

m ) converges almost surely, and hence also in distribution to
(Y1 , . . . , Ym ), this vector must have the same distribution as (X1 , . . . , Xm ). This com-
pletes the proof.

Proof of Theorem 6.28. We use Lemma 6.37 with X (n )

k = 2
n Dn (xk ), Xk = |W (xk )|2

and Yk = Lxk (T ). Then assumption (1) is satisfied by the downcrossing representa-
tion, assumption (2) follows from Lemma 6.30 and assumption (3) from Lemma 6.35.
Lemma 6.37 thus gives that the random vector (Lx1 (T ), . . . , Lxm (T )) and the random
vector (|W (x1)|2 , . . . , |W (xm )|2) have the same distribution, concluding the proof.

As an easy application of the Ray–Knight theorem, we answer the question whether, almost
surely, simultaneously for all levels x ∈ [0, a) the local times at level x are positive.

Theorem 6.38 (Ray’s theorem) Suppose a > 0 and {B(t) : 0 � t � Ta} is a linear
Brownian motion started at zero and stopped at time Ta = inf{t � 0: B(t) = a}, when it
reaches level a for the first time. Then, almost surely, Lx(Ta) > 0 for all 0 � x < a.

Proof. The statement can be reworded as saying that the process {La−x(Ta) : 0 <

x � a} almost surely does not hit zero. By the Ray–Knight theorem (applied to the
Brownian motion {a − B(t) : t � 0}) this process agrees with {|W (x)|2 : 0 < x � a}
for a standard planar Brownian motion {W (x) : x � 0} which, by Theorem 3.20, never
returns to the origin.

Ray’s theorem can be exploited to give a result on the Hausdorff dimension of the level
sets of the Brownian motion, which holds simultaneously for all levels a ∈ R. We prepare
the proof by a lemma.

Lemma 6.39 Almost surely, for all a ∈ R, we have{
t > 0: B(t) = a and t is not locally extremal

}
=
{
t > 0: La(t + h) − La(t − h) > 0 for all h > 0

}
.

Proof. The inclusion ‘⊃’ follows directly from Trotter’s theorem and the uniqueness of
local extrema, see Theorem 2.11. For the inclusion ‘⊂’ we note that, by the strong Markov
property and Ray’s theorem, almost surely for any rational q � 0 and ε > 0 and stopping
time τq (ε) := inf{t > q : B(t) = B(q) + ε} we have

Lx(τq (ε)) − Lx(q) > 0 for all B(q) � x < B(q) + ε.

Suppose B(t) = x and h > 0. If t is neither a local minimiser from the left nor a local
maximiser, there exist a rational q ∈ (t−h, t) with B(q) � x < B(q)+ε and τq (ε) < t+h.
From the monotonicity of local time we infer that Lx(t + h) − Lx(t − h) > 0. A similar
argument for the time-reversed Brownian motion can be given to deal with those t which
are neither a local minimiser from the right nor a local maximiser.
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Theorem 6.40 Almost surely, dim{t � 0: B(t) = a
}

� 1
2 , for all a ∈ R.

Proof. Obviously, it suffices to show that, for every fixed a > 0, almost surely,

dim
{
0 � t < Ta : B(t) = x

}
� 1

2 for all 0 � x < a .

This can be achieved using the mass distribution principle. Considering the increasing
function Lx : [0, T a) → [0,∞) as distribution function of a measure �x , we infer from
Lemma 6.39 that, almost surely, for every x ∈ [0, a), the measure �x is a mass distribution
on the set {0 � t < Ta : B(t) = x}. By Theorem 6.19, for any γ < 1/2, almost surely,
there exists a (random) C > 0 such that, for all x ∈ [0, a), t ∈ [0, Ta) and ε ∈ (0, 1),

�x(t − ε, t + ε) � |Lx(t + ε) − Lx(t − ε)| � C (2ε)γ .

The claim therefore follows from the mass distribution principle, Theorem 4.19.

Remark 6.41 Equality holds in Theorem 6.40. We will obtain the full result later as an
easy corollary of Kaufman’s dimension doubling theorem, see Theorem 9.28. �

6.4 Brownian local time as a Hausdorff measure

In this section we show that the local time L0(t) can be obtained as an intrinsically defined
measure of the random set Zeros∩ [0, t]. The only family of intrinsically defined measures
on metric spaces we have encountered so far in this book is the family of α-dimensional
Hausdorff measures. As the α-dimensional Hausdorff measure of the zero set is always
either zero (if α � 1

2 ) or infinity (if α < 1
2 ) we need to look out for an alternative construc-

tion.

We need not look very far. The definition of Hausdorff dimension still makes sense if
we evaluate coverings by applying, instead of a simple power, an arbitrary non-decreasing
function to the diameters of the sets in a covering.

Definition 6.42. A non-decreasing function φ : [0, ε) → [0,∞) with φ(0) = 0 defined on
a nonempty interval [0, ε) is called a (Hausdorff) gauge function.
Let X be a metric space and E ⊂ X . For every gauge function φ and δ > 0 define

Hφ
δ (E) = inf

{ ∞∑
i=1

φ(|Ei |) : E1 , E2 , E3 , . . . cover E, and |Ei | � δ
}

.

Then

Hφ(E) = sup
δ>0

Hφ
δ (E) = lim

δ↓0
Hφ

δ (E)

is the generalised φ-Hausdorff measure of the set E. �
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Theorem* 6.43 There exists a constant c > 0 such that, almost surely, for all t > 0,

L0(t) = Hϕ
(
Zeros ∩ [0, t]

)
,

for the gauge function ϕ(r) = c
√

r log log(1/r).

The remainder of this section is devoted to the proof of this theorem. The material devel-
oped here will not be used in the remainder of the book. An important tool in the proof is
the following classical theorem of Rogers and Taylor.

Proposition 6.44 (Rogers–Taylor Theorem) Let µ be a Borel measure on Rd and let φ be
a Hausdorff gauge function.

(i) If Λ ⊂ Rd is a Borel set and

lim sup
r↓0

µB(x, r)
φ(r)

< α

for all x ∈ Λ, then Hφ(Λ) � α−1 µ(Λ).

(ii) If Λ ⊂ Rd is a Borel set and

lim sup
r↓0

µB(x, r)
φ(r)

> θ

for all x ∈ Λ, then Hφ(Λ) � κdθ
−1µ(V ) for any open set V ⊂ Rd that contains

Λ, where κd depends only on d.

Moreover, in d = 1 one can also obtain an analogue of (i) for one-sided intervals.

(iii) If Λ ⊂ R is a closed set and

A :=
{

t ∈ Λ: lim sup
r↓0

µ[t, t + r]
φ(r)

< α
}

,

then Hφ(A) � α−1 µ(A).

Remark 6.45 If µ is finite on compact sets, then µ(Λ) is the infimum of µ(V ) over all
open sets V ⊃ Λ, see for example Section 2.18 in [Ru87]. Hence µ(V ) can be replaced by
µ(Λ) on the right hand side of the inequality in (ii). �

Proof. (i) We write

Λε =
{
x ∈ Λ: sup

r∈(0,ε)

µB(x,r)
φ(r) < α

}
and note that µ(Λε) → µ(Λ) as ε ↓ 0.
Fix ε > 0 and consider a cover {Aj} of Λε . Suppose that Aj intersects Λε and rj =
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|Aj | < ε for all j. Choose xj ∈ Aj ∩ Λε for each j. Then µB(xj , rj ) < αφ(rj ) for every
j, whence ∑

j � 1

φ(rj ) � α−1
∑
j � 1

µB(xj , rj ) � α−1µ(Λε) .

Thus Hφ
ε (Λ) � Hφ

ε (Λε) � α−1µ(Λε). Letting ε ↓ 0 proves (i).

(ii) Let ε > 0. For each x ∈ Λ, choose a positive rx < ε such that B(x, 2rx) ⊂ V and
µB(x, rx) > θφ(rx); then among the dyadic cubes of diameter at most rx that intersect
B(x, rx), let Qx be a cube with µ(Qx) maximal. (We consider here dyadic cubes of the
form
∏d

i=1[ai/2m , (ai +1)/2m ) where ai are integers). In particular, Qx ⊂ V and |Qx | >

rx/2 so the side-length of Qx is at least rx/(2
√

d). Let Nd = 1 + 8�
√

d� and let Q∗
x be

the cube with the same center zx as Qx , scaled by Nd (i.e., Q∗
x = zx + Nd(Qx − zx)).

Observe that Q∗
x contains B(x, rx), so B(x, rx) is covered by at most Nd

d dyadic cubes that
are translates of Qx . Therefore, for every x ∈ Λ, we have

µ(Qx) � N−d
d µB(x, rx) > N−d

d θφ(rx) .

Let {Qx(j ) : j � 1} be any enumeration of the maximal dyadic cubes among {Qx : x ∈
Λ}. Then

µ(V ) �
∑
j � 1

µ(Qx(j )) � N−d
d θ
∑
j � 1

φ(rx(j )) .

The collection of cubes {Q∗
x(j ) : j � 1} forms a cover of Λ. Since each of these cubes is

covered by Nd
d cubes of diameter at most rx(j ) , we infer that

Hφ
ε (Λ) � Nd

d

∑
j � 1

φ(rx(j )) � N 2d
d θ−1µ(V ).

Letting ε ↓ 0 proves (ii).

(iii) Without loss of generality we may assume that µ has no atoms. Given ε > 0 we find
δ > 0 such that

Aδ (α) =
{
t ∈ Λ: sup

h<δ

µ [t,t+h ]
ϕ(h) � α − δ

}
satisfies µ(Aδ (α)) > (1 − ε)µ(A). Observe that Aδ (α) is closed. Given a cover {Ĩj} of
A with |Ĩj | < δ we look at Ij = [aj , bj ] where aj is the maximum and bj the minimum of
the compact set cl Ĩj ∩ Aδ (α). Then {Ij} covers Aδ (α) and hence∑

j � 1

ϕ(|Ĩj |) �
∑
j � 1

ϕ(|Ij |) � (α − δ)−1
∑
j � 1

µ(Ij )

� (α − δ)−1 µ
(
Aδ (α)

)
� (α − δ)−1 (1 − ε)µ(A) ,

and (iii) follows for δ ↓ 0, as ε > 0 was arbitrary.

For the proof of Theorem 6.43 we first note that, by Theorem 6.10, it is equivalent to show
that, for the maximum process {M(t) : t � 0} of a Brownian motion {B(t) : t � 0}, we
have, almost surely,

M(t) = Hϕ
(
Rec ∩ [0, t]

)
for all t � 0 , (6.4)
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where Rec denotes the set of record points of the Brownian motion. To show this, recall
from Exercise 4.12 that Rec = {s � 0: M(s + h) > M(s − h) for all 0 < h < s}. We
define the measure µ on Rec as given by the distribution function M , i.e.

µ(a, b] = M(b) − M(a) for all intervals (a, b] ⊂ R.

Then µ is also the image measure of the Lebesgue measure on [0,∞) under the mapping

a �→ Ta := inf{s � 0: B(s) = a}.

The main part is to show that, for closed sets Λ ⊂ [0,∞),

c µ(Λ) � Hφ
(
Λ ∩ Rec

)
� C µ(Λ), (6.5)

where φ(r) =
√

r log log(1/r) and c, C are positive constants.

The easier direction, the lower bound for the Hausdorff measure, follows from part (iii)
of the Rogers–Taylor theorem and the upper bound in the law of the iterated logarithm.
Indeed, for any level a > 0 let Ta = inf{s � 0: B(t) = a}. Observe that

lim sup
r↓0

M(Ta + r) − M(Ta)√
2r log log(1/r)

= lim sup
r↓0

B(Ta + r) − B(Ta)√
2r log log(1/r)

,

where we use that M(Ta) = B(Ta) and that for any r > 0 there exists 0 < r̃ < r with
M(Ta + r) = B(Ta + r̃). Combining this with Corollary 5.3 applied to the standard
Brownian motion {B(Ta + t) − B(Ta) : t � 0} we get, almost surely,

lim sup
r↓0

M(Ta + r) − M(Ta)√
2r log log(1/r)

= 1 .

Defining the set

A =
{
s ∈ Rec : lim sup

r↓0
µ[s, s + r]/φ(r) �

√
2
}
,

this means that, for every a > 0, we have Ta ∈ A almost surely. By Fubini’s theorem,

Eµ(Ac) = E
∫ ∞

0
1{Ta �∈ A} da =

∫ ∞

0
P{Ta �∈ A} da = 0,

and hence, almost surely, µ(Ac) = 0. By part (iii) of the Rogers–Taylor theorem, for every
closed set Λ ⊂ [0,∞),

Hφ(Λ ∩ Rec) � Hφ(Λ ∩ A) � 1√
2

µ(Λ ∩ A) = 1√
2

µ(Λ) ,

showing the left inequality in (6.5).

For the harder direction, the upper bound for the Hausdorff measure, it is important to
note that the lower bound in Corollary 5.3 does not suffice. Instead, we need a law of the
iterated logarithm which holds simultaneously for Hφ -almost all record times. Recall that
φ(r) =

√
r log log(1/r).

Lemma 6.46 For every ϑ > 0 small enough, almost surely,

Hφ
{

s ∈ Rec : lim sup
h↓0

M(s + h) − M(s − h)
φ(h)

< ϑ
}

= 0 .
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Proof. We only need to prove that, for some θ̃ > 0, the set

Λ(θ̃) =
{
s ∈ Rec ∩ (0, 1) : lim sup

h↓0

M (s+h)−M (s−h)
φ(h) < θ̃

}
satisfies Hφ(Λ(θ̃)) = 0. Moreover, denoting

Λδ (θ̃) =
{
s ∈ Rec ∩

[
δ, 1 − δ

]
: sup

h<δ

M (s+h)−M (s−h)
φ(h) < θ̃

}
,

we have

Λ(θ̃) =
⋃
δ>0

Λδ (θ̃) .

It thus suffices to show, for fixed δ > 0, that, almost surely,

lim inf
n↑∞

Hφ
1/n (Λδ (θ̃)) = 0 .

Fix δ > 0 and a positive integer n such that 1/
√

n < δ. For parameters

A > 1, θ > θ̃ and q > 2,

which we choose later, we say that an interval of the form I = [(k − 1)/n, k/n] with
k ∈ {1, . . . , n} is good if

(i) I contains a record point, in other words,

τ := inf
{
t � k−1

n : B(t) = M(t)} � k
n ,

and either of the following two conditions hold,

(ii) there exists j � 0 with 1 � qj+1 � √
n such that

B
(
τ + q j

n

)
− B(τ) < −Aφ

(
q j

n

)
;

(iii) for all j � 0 with 1 � qj+1 � √
n we have that

B
(
τ + q j + 1

n

)
− B
(
τ + q j

n

)
< θ φ

(
q j + 1 −q j

n

)
.

We now argue pathwise, and show that, given A > 1, θ > θ̃ we can find q > 2 such that
the good intervals cover the set Λδ (θ̃). Indeed, suppose that I is not good but contains a
minimal record point τ ∈ [(k − 1)/n, k/n]. Then there exists j � 0 with 1 � qj+1 � √

n

such that

B
(
τ + q j

n

)
− B(τ) � − Aφ

(
q j

n

)
and B

(
τ + q j + 1

n

)
− B
(
τ + q j

n

)
� θ φ

(
q j + 1 −q j

n

)
.

This implies that, for any t ∈ [(k − 1)/n, k/n] ∩ Rec,

M
(
t + q j + 1

n

)
− M
(
t − q j + 1

n

)
� M
(
τ + q j + 1

n

)
− M
(
τ
)

� B
(
τ + q j + 1

n

)
− B
(
τ
)

� θ φ
(

q j + 1 −q j

n

)
− Aφ

(
q j

n

)
� θ̃ φ

(
q j + 1

n

)
,

if q is chosen large enough. Hence the interval I does not intersect Λδ (θ̃) and therefore the
good intervals cover this set.
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Next we show that, for any A >
√

2 > θ and suitably chosen C > 0, for every I =
[(k − 1)/n, k/n] with I ∩ [δ, 1 − δ] �= ∅,

P
{[

k−1
n , k

n

]
is good

}
� C

1√
n

( 1
log n

)A 2

2 −1
. (6.6)

By Lemma 4.22 in conjunction with Theorem 2.34 we get, for some constant C0 > 0
depending only on δ > 0,

P
{
τ < k

n

}
� C0

1√
n

.

We further get, for some constant C1 > 0, for all j with qj+1 � √
n,

P
{

B
(
τ + q j

n

)
− B(τ) < −A φ

(
q j

n

)}
� P
{
B(1) < −A

√
log log(n/qj )

}
� exp

{
− A 2

2 log log(
√

n)
}

� C1

( 1
log n

) A 2
2

.

Using the independence of these events and summing over all j � 0 with 1 � qj+1 � √
n,

of which there are no more than C2 log n, we get that

P
{[

k−1
n , k

n

]
satisfies (i) and (ii)

}
� C0C1C2

1√
n

( 1
log n

) A 2
2 −1

. (6.7)

To estimate the probability that [(k − 1)/n, k/n] satisfies (i) and (iii) we first note, for
sufficiently large n, that

P
{

B
(

q j + 1 −q j

n

)
< θ φ

(
q j + 1 −q j

n

)}
� P
{

B(1) < θ
√

log log
(

n
q−1

)}
� 1 −

exp
{
− θ2

2 log log
(

n
q−1

)
}

θ
√

log log
(

n
q−1

) ,

using Lemma 12.9 of the appendix. From this we infer that, for suitable c3 > 0,

P
{

B
(
τ+ q j + 1

n

)
− B
(
τ + q j

n

)
< θ φ

(
q j + 1 −q j

n

)
for all 1 � qj+1 �

√
n
}

�
∏

j� l o g n
2 lo g q

(
1 − exp{− θ 2

2 log log n}
θ
√

log log n

)
�
(
1 − 1

θ (log n)
θ 2
2 (log log n)

1
2

) l o g n
2 lo g q

� exp
{
− c3

(log n)1− θ 2
2

(log log n)
1
2

}
.

Combining this with the estimate for τ < k/n we get that

P
{[

k−1
n , k

n

]
satisfies (i) and (iii)

}
� C0

1√
n

exp
{
− c3

(log n)1− θ 2
2

(log log n)
1
2

}
. (6.8)

As θ <
√

2, the right hand side in (6.8) is of smaller order than the right hand side in (6.7)
and hence we have shown (6.6).
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Finally, we look at the expected φ-values of our covering. We obtain that

EHφ
1/n (Λδ (θ̃)) �


n(1−δ)�∑
k=
δn�

φ(1/n)P
{[

k−1
n , k

n

]
is good

}
� C

√
log log n

(log n)A 2 / 2−1 −→ 0,

and, by Fatou’s lemma we get, almost surely,

lim inf
n↑∞

Hφ
1/n (Λδ (θ̃)) = 0 ,

as required to complete the proof.

The right inequality in (6.5) now follows easily from Lemma 6.46 and part (ii) of the
Rogers–Taylor theorem. We define the set

A =
{
s ∈ Rec : lim sup

r↓0
µB(s, r)/φ(r) � ϑ

}
,

and note that Hφ(Rec∩Ac) = 0, for ϑ sufficiently small. By part (ii) of the Rogers–Taylor
theorem we get, for every Borel set Λ ⊂ [0,∞),

Hφ(Λ ∩ Rec) = Hφ(Λ ∩ A) � κ1ϑ
−1 µ(Λ ∩ A) � κ1ϑ

−1 µ(Λ).

This implies the right inequality and hence completes the proof of (6.5).

To complete the proof of Theorem 6.43 we look at the process {X(a) : a � 0} defined by

X(a) = Hφ
(
Rec ∩ [0, Ta ]

)
.

The next lemma will help us to show that this process is, in a suitable sense, degenerate.

Lemma 6.47 Suppose {Y (t) : t � 0} is a stochastic process starting in zero with the
following properties,

• the paths are almost surely continuous,
• the increments are independent, nonnegative and stationary,
• there exists a C > 0 such that, almost surely, Y (t) � C t for all t > 0.

Then there exists c̃ � 0 such that, almost surely, Y (t) = c̃ t for every t � 0.

Proof. We first look at the function m : [0,∞) → [0,∞) defined by m(t) = EY (t).
This function is continuous, as the paths of {Y (t) : t � 0} are continuous and bounded on
compact sets. Further, because the process {Y (t) : t � 0} has independent and stationary
increments, the function m is linear and hence there exists c̃ � 0 with m(t) = c̃ t.
It thus suffices to show that the variance of Y (t) is zero. Indeed, for every n > 0, we have

Var Y (t) =
n∑

k=1

Var
(
Y
(

kt
n

)
− Y
( (k−1)t

n

))
= nVar Y

(
t
n

)
� n E

[
Y
(

t
n

)2]
� nC2 ( t

n

)2 n→∞−→ 0,

and hence Y (t) = EY (t) = c̃ t as claimed.
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Let us check that {X(a) : a � 0} satisfies the conditions of Lemma 6.47. We first note
that

X(a + h) − X(a) = Hφ
(
Rec ∩ [0, Ta+h ]

)
−Hφ

(
Rec ∩ [0, Ta ]

)
= Hφ

(
Rec ∩ [Ta, Ta+h ]

)
,

as can be seen easily from the definition of the Hausdorff measure Hφ .
Using this, continuity of the paths follows from the fact that, by (6.5),

Hφ
(
Rec ∩ [Ta , Ta+h ]

)
� C
(
M(Ta+h) − M(Ta)

)
= C h .

The strong Markov property implies that the increments are independent and stationary,
and they are obviously nonnegative. And finally, by (6.5), almost surely, for any a � 0,

X(a) = Hφ
(
Rec ∩ [0, Ta ]

)
� C M(Ta) = C a .

Lemma 6.47 thus implies that there exists c̃ � 0 with

Hφ
(
Rec ∩ [0, Ta ]

)
= c̃ a = c̃ M(Ta)

for all a � 0. It remains to show that this holds not only for the stopping times Ta , but in
fact for all elements of Rec.

Lemma 6.48 Almost surely, the set {Ta : a ∈ R} is dense in Rec.

Proof. Obviously, {Ta : a ∈ R} ⊂ Rec. Conversely, if t ∈ Rec, then either B(s) < B(t)
for all 0 � s < t, in which case t = Ta for a = B(t), or there exists a minimal s < t with
B(s) = B(t). In the latter case s = Ta for a = B(t) by definition.
Because, by Theorem 2.11, every local maximum is a strict local maximum and no two
local maxima are the same, we have

t = lim
b→a
b > a

Tb ,

in particular t is in the closure of the set {Ta : a ∈ R}.

Using this lemma and continuity of both sides, we infer that, almost surely, Hφ
(
Rec ∩

[0, t]
)

= c̃ M(t) for all t ∈ Rec. For general t � 0 we let τ = max(Rec ∩ [0, t]) and note
that

Hφ
(
Rec ∩ [0, t]

)
= Hφ

(
Rec ∩ [0, τ ]

)
= c̃ M(τ) = c̃ M(t) .

By the lower bound in (6.5) we must have c̃ > 0 and hence we can put c = 1/c̃ and get

M(t) = cHφ
(
Rec ∩ [0, t]

)
= Hcφ

(
Rec ∩ [0, t]

)
,

as required to complete the proof of Theorem 6.43.
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Exercises

Exercise 6.1. Using the downcrossing representation of the local time process {L(t) : t � 0}
given in Theorem 6.1, show that, almost surely, L(s) = L(t) for every interval (s, t) not
containing a zero of the Brownian motion. In other words, the local time at zero increases
only on the zero set of the Brownian motion.

Exercise 6.2. Show, by reviewing the argument in the proof of Theorem 6.10, that for
a standard linear Brownian motion the processes {(|B(t)|, L(t)) : t � 0} and {(M(t) −
B(t),M(t)) : t � 0} have the same distribution.
Hint. In Theorem 7.38 we give a proof of this result using stochastic integration.

Exercise 6.3. Show that, for a standard Brownian motion, EL(t) =

√
2t

π
.

Exercise 6.4. Show that P0{L(t) > 0 for every t > 0} = 1.
Hint. This follows easily from Theorem 6.10.

Exercise 6.5. Derive Theorem 6.10 from Theorem 2.34.
Hint. Show that the maximum process {M(t) : t � 0} can be computed from {M(t) −
B(t) : t � 0} by counting downcrossings, so that {L(t) : t � 0} is the same measurable
function of {|B(t)| : t � 0} as {M(t) : t � 0} is of {M(t) − B(t) : t � 0}.

Exercise 6.6. S Let {W (s) : s � 0} be a standard linear Brownian motion and τ1 its first
hitting time of level 1. Use Exercise 2.17 to show that

E
∫ τ1

0
1{0 � W (s) � 1} ds = 1.

Exercise 6.7. S Suppose X1 ,X2 , . . . are independent geometrically distributed random
variables on {1, 2, . . .} with mean 2. Then, for sufficiently small ε > 0, for all nonnegative
integers k � m,

P
{∣∣∣ k∑

j=1

(Xj − 2)
∣∣∣ � εm

}
� 4 exp

{
− 1

5 ε2 m
}

.

Exercise 6.8. S Give an alternative proof of Lemma 6.33 by computing the densities of the
random variables (X + �)2 and X2 + 2

∑N
j=1 Zj .

Exercise 6.9. Use the Ray–Knight theorem and Lévy’s theorem, Theorem 6.10, to show
that, for a suitable constant c > 0, the function

ϕ(h) = c
√

h log(1/h) for 0 < h < 1,

is a modulus of continuity for the random field {La(t) : a ∈ R, t � 0}.
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Exercise 6.10. Let X be a metric space and ϕ1 , ϕ2 two gauge functions such that

0 < Hϕ1 (X),Hϕ2 (X) < ∞.

Show that

lim sup
ε↓0

ϕ1(ε)
ϕ2(ε)

> 0 and lim inf
ε↓0

ϕ1(ε)
ϕ2(ε)

< ∞.

Exercise 6.11. Show that, for φ(r) =
√

r log log(1/r), almost surely,∫
A

dL(t) = 0

simultaneously for all sets A ⊂ [0,∞) with Hφ(A) = 0.

Notes and comments

The study of local times is crucial for the Brownian motion in dimension one and good
references are Revuz and Yor [RY94] and the survey article Borodin [Bo89]. Brownian
local times were first introduced by Paul Lévy in [Le48] and a thorough investigation is
initiated in a paper by Trotter [Tr58] who showed that there is a version of local time
continuous in time and space. An alternative construction of local times can be given in
terms of stochastic integrals, using Tanaka’s formula as a definition. We shall explore this
direction in Section 7.3.

A crucial aspect which is not covered by our treatment is the relation of local times to
excursion theory and point processes, which allows a discussion of more general Markov
processes. An excellent reference for this is Williams [Wi77], his treatment appears also
in Rogers and Williams [RW00a]. Greenwood and Pitman [GP80] show how to use the
same kind of argument to construct local time for a recurrent point of a strong Markov
process. The basic insight comes from Lévy and Itô’s theory of Poisson point processes of
excursions, see Pitman and Yor [PY07] for a recent review. Walsh [Wa78] also discusses
downcrossings and local time, leading to the Ray Knight theorem.

The equality for the upcrossing numbers in Lemma 6.3 agrees with the functional equa-
tion for a branching process with immigration. The relationship between local times and
branching processes, which is underlying our entire treatment, can be exploited and ex-
tended in various ways. One example of this can be found in Neveu and Pitman [NP89],
for more recent progress in this direction, see Le Gall and Le Jan, [LL98]. A good source
for further reading is the discussion of Lévy processes and trees by Duquesne and Le Gall
in [DL02]. For an introduction into branching processes with and without immigration,
see the classical book of Athreya and Ney [AN04].
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In a similar spirit, a result which is often called the second Ray–Knight theorem de-
scribes the process {La

T : a > 0} when T = inf{t > 0: L0
t = x}, see [RY94] or the

original papers by Ray and Knight cited above. The resulting process is a Feller diffusion,
which is the canonical process describing critical branching with initial mass x. The local
times of Brownian motion can therefore be used to encode the branching information for
a variety of processes describing the evolution of particles which undergo critical branch-
ing and spatial migration. For more information on this powerful link between Brownian
motion and the world of spatial branching processes, see for example Le Gall [LG99].

The concept of local times can be extended to a variety of processes like continuous
semimartingales, see e.g. [RY94], or Markov processes [BG68]. The idea of introducing
local times as densities of occupation measure has been fruitful in a variety of contexts, in
particular in the introduction of local times on the intersection of Brownian paths. Impor-
tant papers in this direction are Geman and Horowitz [GH80] and Geman, Horowitz and
Rosen [GHR84].

The Ray–Knight theorem was discovered by D. Ray and F. Knight independently by
different methods in 1963. The proof of Knight uses discretisation, see [Kn63] for the
original paper and [Kn81] for more information. Ray’s approach to Theorem 6.28 is less
intuitive but more versatile, and is based on the Feynman–Kac formula, see [Ra63b] for
the original paper. Our presentation is simpler than Knight’s method. The distributional
identity at its core, see Lemma 6.33, is yet to be explained probabilistically. The analytic
proof given in Exercise 6.8 is due to H. Robbins and E.J.G. Pitman [RP49].

Extensions of the Ray–Knight theorem includes a characterisation of {Lx(T ) : x � 0}
for parameters exceeding a. This is best discussed in the framework of Brownian excursion
theory, see for example [RY94]. The Ray–Knight theorem can be extended into a deep
relationship between the local times of symmetric Markov processes and an associated
Gaussian process, which is the subject of the famous Dynkin isomorphism theorem. See
Eisenbaum [Ei94] or the comprehensive monograph by Marcus and Rosen [MR06] for
more on this subject.

According to Taylor [Ta86], Hausdorff measures with arbitrary gauge functions were
introduced by A.S. Besicovitch. General theory of outer measures, as presented in Rogers
[Ro99] shows that Hφ indeed defines a measures on the Borel sets of a metric space.
The fact that, for φ(r) =

√
2r log log(1/r), the local time at zero agrees with a constant

multiple of the φ-Hausdorff measure of the zero set is due to Taylor and Wendel [TW66].
Perkins [Pe81] showed that the constant is one and further that the local times La(t) agree
with the φ-Hausdorff measure of the set {s ∈ [0, t] : B(s) = a} simultaneously for all
levels a and times t. His proof uses nonstandard analysis.

The Rogers–Taylor theorem is due to C.A. Rogers and S.J. Taylor in [RT61]. The
original statement is slightly more general as it allows to replace µ(V ) by µ(Λ) on the
right hand side without any regularity condition on µ. Most proofs in the literature of the
harder half, statement (ii) in our formulation, use the Besicovitch covering theorem. We
give a self-contained proof using dyadic cubes instead.
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Other natural measures related to Brownian motion can also be shown to agree with
Hausdorff measures with suitable gauge functions. The most notable example is the occu-
pation measure, whose gauge function is

ϕ(r) =

{
cd r2 log log(1/r) if d � 3,
c2 r2 log(1/r) log log log(1/r) if d = 2.

This result is due to Ciesielski and Taylor [CT62] in the first case, and to Ray [Ra63a] and
Taylor [Ta64] in the second case. A stimulating survey of this subject is Le Gall [LG85].
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Stochastic integrals and applications

In this chapter we first construct an integral with respect to Brownian motion. Amongst
the applications are the conformal invariance of Brownian motion, a short look at windings
of Brownian motion, the Tanaka formula for Brownian local times, and the Feynman–Kac
formula.

7.1 Stochastic integrals with respect to Brownian motion

7.1.1 Construction of the stochastic integral

We look at a Brownian motion in dimension one {B(t) : t � 0} considered as a random
continuous function. As we have found in Theorem 1.35, this function is almost surely of
unbounded variation, which is why we cannot use Lebesgue–Stieltjes integration to define
integrals of the form

∫ t

0 f(s) dB(s). There is however an escape from this dilemma, if
one is willing to take advantage of the fact that Brownian motions are random functions
and therefore one can make use of weaker forms of limits. This is the idea of stochastic
integration.

Before explaining the procedure, we have a look at a reasonable class of integrands, as
we would like to go beyond the Paley–Wiener integral constructed in Lemma 1.41 and
admit random functions as integrands. A suitable class of random integrands is the class
of progressively measurable processes. We denote by (Ω,A, P) the probability space on
which our Brownian motion {B(t) : t � 0} is defined and suppose that (F(t) : t � 0) is
a filtration to which the Brownian motion is adapted such that the strong Markov property
holds.

Because we also want the integral up to time t to be adapted to our filtration, we assume
that the filtration (F(t) : t � 0) is complete, i.e. contains all sets of probability zero
in A. Note that every filtration can be completed simply by adding all these sets and their
complements, and that the completion preserves the strong Markov property.

Definition 7.1. A process {X(t, ω) : t � 0, ω ∈ Ω} is called progressively measurable
if for each t � 0 the mapping X : [0, t] × Ω → R is measurable with respect to the σ-
algebra B([0, t]) ⊗F(t). �

190
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Lemma 7.2 Any processes {X(t) : t � 0}, which is adapted and either right- or left-
continuous is also progressively measurable.

Proof. Assume that {X(t) : t � 0} is right-continuous. Fix t > 0. For a positive
integer n and 0 � s � t define Xn (0, ω) = X(0, ω) and

Xn (s, ω) = X
( (k+1)t

2n , ω
)
, for kt2−n < s � (k + 1)t2−n .

The mapping (s, ω) �→ Xn (s, ω) is B([0, t]) ⊗ F(t) measurable. By right-continuity we
have limn↑∞ Xn (s, ω) = X(s, ω) for all s ∈ [0, t] and ω ∈ Ω, hence the limit map
(s, ω) �→ X(s, ω) is also B([0, t]) ⊗F(t) measurable, proving progressive measurability.
The left-continuous case is analogous.

The construction of the integrals is quite straightforward. We start by integrating progres-
sively measurable step processes {H(t, ω) : t � 0, ω ∈ Ω} of the form

H(t, ω) =
k∑

i=1

Ai(ω)1(ti ,ti + 1 ](t), for 0 � t1 � . . . � tk+1 , and F(ti)-measurable Ai.

In complete analogy to the classical case we define the integral as∫ ∞

0
H(s) dB(s) :=

k∑
i=1

Ai

(
B(ti+1) − B(ti)

)
.

Now let H be a progressively measurable process satisfying E
∫∞

0 H(s)2 ds < ∞. Sup-
pose H can be approximated by a family of progressively measurable step processes Hn ,
n � 1, then we define∫ ∞

0
H(s) dB(s) := lim

n→∞

∫ ∞

0
Hn (s) dB(s). (7.1)

At this stage we focus on L2-convergence, though we shall see later that the stochastic inte-
gral can also be constructed as an almost sure limit, see Remark 7.7. For the approximation
of H by progressively measurable step processes we look at the norm

‖H‖2
2 := E

∫ ∞

0
H(s)2 ds.

What we have to show now to complete the definition is that,

(1) every progressively measurable process satisfying E
∫∞

0 H(s)2 ds < ∞ can be
approximated in the ‖ · ‖2 norm by progressively measurable step processes,

(2) for each approximating sequence the limit in (7.1) exists in the L2-sense,
(3) and this limit does not depend on the choice of the approximating step processes.

This is what we check now, beginning with item (1).

Lemma 7.3 For every progressively measurable process {H(s, ω) : s � 0, ω ∈ Ω} satis-
fying E

∫∞
0 H(s)2 ds < ∞ there exists a sequence {Hn : n ∈ N} of progressively measur-

able step processes such that limn→∞ ‖Hn − H‖2 = 0.
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Proof. We approximate the progressively measurable process successively by

• a bounded progressively measurable process,

• a bounded, almost surely continuous progressively measurable process,

• and finally, by a progressively measurable step process.

Let {H(s, ω) : s � 0, ω ∈ Ω} be a progressively measurable process with ‖H‖2 < ∞.
We first define the cut-off at a fixed time n > 0 by letting Hn (s, ω) = H(s, ω) for s � n

and Hn (s, ω) = 0 otherwise. Clearly limn↑∞ ‖Hn − H‖2 = 0.

Second, we approximate any progressively measurable H on a finite interval by truncating
its values, i.e. for large n we define Hn by letting Hn (s, ω) = H(s, ω)∧ n. Clearly Hn is
progressively measurable and limn↑∞ ‖Hn − H‖2 = 0.

Third, we approximate any uniformly bounded progressively measurable H by a bounded,
almost-surely continuous, progressively measurable process. Let h = 1/n and, using the
convention H(s, ω) = H(0, ω) for s < 0 we define

Hn (s, ω) =
1
h

∫ s

s−h

H(t, ω) dt.

Because we only take an average over the past, Hn is again progressively measurable. It
is almost surely continuous and it is a well-known fact that, for every ω ∈ Ω and almost
every s ∈ [0, t],

lim
h↓0

1
h

∫ s

s−h

H(t, ω) dt = H(s, ω) .

Since H is uniformly bounded (and using progressive measurability) we can take expecta-
tions and an average over time, and obtain from the bounded convergence theorem that

lim
n↑∞

‖Hn − H‖2 = 0 .

Finally, a bounded, almost-surely continuous, progressively measurable process can be ap-
proximated by a step process Hn by taking Hn (s, ω) = H(j/n, ω) for j/n � s < (j +
1)/n. These functions are again progressively measurable and one easily sees limn↑∞ ‖Hn−
H‖2 = 0. This completes the approximation.

The following lemma describes the crucial property of the integral of step processes.

Lemma 7.4 Let H be a progressively measurable step process and E
∫∞

0 H(s)2 ds < ∞,
then

E
[( ∫ ∞

0
H(s) dB(s)

)2]
= E
∫ ∞

0
H(s)2 ds.

Proof. We use the Markov property to see that, for every progressively measurable step
process H =

∑k
i=1 Ai1(ai ,ai + 1 ],

E
[( ∫ ∞

0
H(s) dB(s)

)2]
= E
[ k∑

i,j=1

AiAj

(
B(ai+1) − B(ai)

)(
B(aj+1) − B(aj )

)]
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= 2
k∑

i=1

k∑
j=i+1

E
[
AiAj

(
B(ai+1) − B(ai)

)
E
[
B(aj+1) − B(aj )

∣∣F(aj )
]]

+
k∑

i=1

E
[
A2

i

(
B(ai+1) − B(ai)

)2]
=

k∑
i=1

E
[
A2

i ]
(
ai+1 − ai

)
= E
∫ ∞

0
H(s)2 ds.

Corollary 7.5 Suppose {Hn : n ∈ N} is a sequence of progressively measurable step
processes such that

E
∫ ∞

0

(
Hn (s) − Hm (s)

)2
ds −→ 0, as n,m → ∞,

then

E
[( ∫ ∞

0
Hn (s) − Hm (s) dB(s)

)2]
−→ 0, as n,m → ∞.

Proof. Because the difference of two step processes is again a step process, Lemma 7.4
can be applied to Hn − Hm and this gives the statement.

The following theorem addresses issues (2) and (3), thus completing our construction of
the stochastic integral.

Theorem 7.6 Suppose {Hn : n ∈ N} is a sequence of progressively measurable step pro-
cesses and H a progressively measurable process such that

lim
n→∞

E
∫ ∞

0

(
Hn (s) − H(s)

)2
ds = 0,

then

lim
n→∞

∫ ∞

0
Hn (s) dB(s) =:

∫ ∞

0
H(s) dB(s)

exists as a limit in the L2-sense and is independent of the choice of {Hn : n ∈ N}. More-
over, we have

E
[( ∫ ∞

0
H(s) dB(s)

)2]
= E
∫ ∞

0
H(s)2 ds. (7.2)

Remark 7.7 If the sequence of step processes is chosen such that
∞∑

n=1

E
∫ ∞

0

(
Hn (s) − H(s)

)2
ds < ∞,

then, by (7.2), we get
∑∞

n=1 E[(
∫∞

0 Hn (s) − H(s) dB(s))2 ] < ∞, and therefore, almost
surely,

∞∑
n=1

[ ∫ ∞

0
Hn (s) dB(s) −

∫ ∞

0
H(s) dB(s)

]2
< ∞.
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This implies that, almost surely,

lim
n→∞

∫ ∞

0
Hn (s) dB(s) =

∫ ∞

0
H(s) dB(s) . �

Proof of Theorem 7.6. By the triangle inequality {Hn : n ∈ N} satisfies the assumption
of Corollary 7.5, and hence {

∫∞
0 Hn (s) dB(s) : n ∈ N} is a Cauchy sequence in L2 . By

completeness of this space, the limit exists, and Corollary 7.5 also shows that the limit is
independent of the choice of the approximating sequence. The last statement follows from
Lemma 7.4, applied to Hn , by taking the limit n → ∞.

Finally, we describe the stochastic integral as a stochastic process in time. The crucial
properties of this process are continuity and the martingale property.

Definition 7.8. Suppose {H(s, ω) : s � 0 , ω ∈ Ω} is progressively measurable with
E
∫ t

0 H(s, ω)2 ds < ∞. Define the progressively measurable process {Ht(s, ω) : s � 0,
ω ∈ Ω} by

Ht(s, ω) = H(s, ω) 1{s � t} .

Then the stochastic integral up to t is defined as,∫ t

0
H(s) dB(s) :=

∫ ∞

0
Ht(s) dB(s) . �

Remark 7.9 Provided they both exist, the Paley–Wiener integral agrees with the stochastic
integral just defined, see Exercise 7.1 for more details. �

Definition 7.10. We say that a stochastic process {X(t) : t � 0} is a modification of a
process {Y (t) : t � 0} if, for every t � 0, we have P{X(t) = Y (t)} = 1. �

The next result shows that we can modify stochastic integrals in such a way that they
become almost surely continuous in time. From this point on when referring to the process
{
∫ t

0 H(s) dB(s) : t � 0} we will always refer to this modification.

Theorem 7.11 Suppose the process {H(s, ω) : s � 0 , ω ∈ Ω} is progressively measur-
able with

E
∫ t

0
H(s, ω)2 ds < ∞ for any t � 0.

Then there exists an almost surely continuous modification of {
∫ t

0 H(s) dB(s) : t � 0}.
Moreover, this process is a martingale and hence

E
∫ t

0
H(s) dB(s) = 0 for every t � 0.
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Proof. Fix a large integer t0 and let Hn be a sequence of step processes such that
‖Hn − Ht0 ‖2 → 0, and therefore

E
[( ∫ ∞

0

(
Hn (s) − Ht0 (s)

)
dB(s)

)2]
→ 0 .

Obviously, for any s � t the random variable
∫ s

0 Hn (u) dB(u) is F(s)-measurable and∫ t

s
Hn (u) dB(u) is independent of F(s), meaning that the process{∫ t

0
Hn (u) dB(u) : 0 � t � t0

}
is a martingale, for every n. For any 0 � t � t0 define

X(t) = E
[ ∫ t0

0
H(s) dB(s)

∣∣∣F(t)
]
,

so that {X(t) : 0 � t � t0} is also a martingale and

X(t0) =
∫ t0

0
H(s) dB(s).

By Doob’s maximal inequality, Proposition 2.43, for p = 2,

E
[

sup
0 � t � t0

(∫ t

0
Hn (s) dB(s) − X(t)

)2
]

� 4 E
[(∫ t0

0

(
Hn (s) − H(s)

)
dB(s)

)2
]

,

which converges to zero, as n → ∞. This implies, in particular, that almost surely, the
process {X(t) : 0 � t � t0} is a uniform limit of continuous processes, and hence contin-
uous. For fixed 0 � t � t0 , by taking L2-limits from the step process approximation, the
random variable

∫ t

0 H(s) dB(s) is F(t)-measurable and
∫ t0

t
H(s) dB(s) is independent

of F(t) with zero expectation. Therefore
∫ t

0 H(s) dB(s) is a conditional expectation of
X(t0) given F(t), hence coinciding with X(t) almost surely.

We now have a basic stochastic integral at our disposal. Obviously, a lot of bells and
whistles can be added to this construction, but we refrain from doing so and keep focused
on the essential properties and eventually on the applications to Brownian motion.

7.1.2 Itô’s formula

For stochastic integration Itô’s formula plays the same rôle as the fundamental theorem of
calculus for classical integration. Let f be continuously differentiable and x : [0,∞) → R,
then the fundamental theorem can be written as

f(x(t)) − f(x(0)) =
∫ t

0
f ′(x(s)) dx(s) ,

and this formula holds when x is continuous and of bounded variation. Itô’s formula offers
an analogue of this for the case that x is a Brownian motion. The crucial difference is that
a third term enters, which makes the existence of a second derivative of f necessary. The
next result, a key step in the derivation of this formula, is an extension of Exercise 1.16.
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Theorem 7.12 Suppose f : R → R is continuous, t > 0, and 0 = t(n )
1 < . . . < t(n )

n = t are
partitions of the interval [0, t], such that the mesh converges to zero. Then, in probability,

n−1∑
j=1

f
(
B(t(n )

j )
) (

B(t(n )
j+1) − B(t(n )

j )
)2 −→

∫ t

0
f(B(s)) ds .

Proof. Let T be the first exit time from a compact interval. It suffices to prove
the statement for Brownian motion stopped at T , as the interval may be chosen to make
P{T < t} arbitrarily small. By continuity of f and the definition of the Riemann integral,
almost surely,

lim
n→∞

n−1∑
j=1

f
(
B(t(n )

j ∧ T )
) (

t(n )
j+1 ∧ T − t(n )

j ∧ T
)

=
∫ t∧T

0
f(B(s)) ds .

It thus suffices to show that

lim
n→∞

E
( n−1∑

j=1

f
(
B(t(n )

j ∧T )
) ((

B(t(n )
j+1∧T )−B(t(n )

j ∧T )
)2−(t(n )

j+1∧T−t(n )
j ∧T

)))2
= 0.

Recall that {B(t)2 − t : t � 0} is a martingale, by Lemma 2.47, and hence, for all r � s,

E
[(

B(s) − B(r)
)2 − (s − r)

∣∣F(r)
]

= 0 .

This allows us to simplify the previous expression as follows,

E
[( n−1∑

j=1

f
(
B(t(n )

j ∧ T )
) ((

B(t(n )
j+1 ∧ T ) − B(t(n )

j ∧ T )
)2 − (t(n )

j+1 ∧ T − t(n )
j ∧ T

)))2]

=
n−1∑
j=1

E
[
f
(
B(t(n )

j ∧ T )
)2((

B
(
t(n )
j+1 ∧ T

)
− B
(
t(n )
j ∧ T

))2 − (t(n )
j+1 ∧ T − t(n )

j ∧ T
))2]

.

We can now bound f by its maximum on the compact interval, and multiplying out the
square and dropping a negative cross term we get an upper bound, which is a constant
multiple of

n−1∑
j=1

E
[(

B(t(n )
j+1 ∧ T ) − B(t(n )

j ∧ T )
)4]+

n−1∑
j=1

E
[(

t(n )
j+1 ∧ T − t(n )

j ∧ T
)2]

. (7.3)

Using Brownian scaling on the first term, we see that this expression is bounded by a
constant multiple of

n−1∑
j=1

(
t(n )
j+1 − t(n )

j

)2 � t ∆(n),

where ∆(n) denotes the mesh, which goes to zero. This completes the proof.

We are now able to formulate and prove a first version of Itô’s formula.
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Theorem 7.13 (Itô’s formula I) Let f : R → R be twice continuously differentiable such
that E

∫ t

0 f ′(B(s)
)2

ds < ∞ for some t > 0. Then, almost surely, for all 0 � s � t,

f
(
B(s)
)
− f
(
B(0)
)

=
∫ s

0
f ′(B(u)

)
dB(u) + 1

2

∫ s

0
f ′′(B(u)

)
du.

Proof. We denote the modulus of continuity of f ′′ on [−M,M ] by

ω(δ,M) := sup
x , y ∈[−M , M ]

|x −y |< δ

f ′′(x) − f ′′(y) .

Then, by Taylor’s formula, for any x, y ∈ [−M,M ] with |x − y| < δ,∣∣f(y) − f(x) − f ′(x)(y − x) − 1
2 f ′′(x)(y − x)2

∣∣ � ω(δ,M) (y − x)2 .

Now, for any sequence 0 = t1 < . . . < tn = t with δB := max1�i�n−1
∣∣B(ti+1)−B(ti)

∣∣
and MB = max0�s�t |B(s)|, we get

∣∣ n−1∑
i=1

(
f(B(ti+1)) − f(B(ti))

)
−

n−1∑
i=1

f ′(B(ti)
)(

B(ti+1) − B(ti)
)

−
n−1∑
i=1

1
2 f ′′(B(ti)

)(
B(ti+1) − B(ti)

)2∣∣ � ω(δB ,MB )
n−1∑
i=1

(
B(ti+1) − B(ti)

)2
.

Note that the first sum is simply f(B(t)) − f(B(0)). By the definition of the stochas-
tic integral and Theorem 7.12 we can choose a sequence of partitions with mesh go-
ing to zero, such that, almost surely, the first subtracted term on the left converges to∫ t

0 f ′(B(s)
)
dB(s), the second subtracted term converges to 1

2

∫ t

0 f ′′(B(s)
)
ds, and the

sum on the right hand side converges to t. By continuity of the Brownian path ω(δB ,MB )
converges almost surely to zero. This proves Itô’s formula for fixed t, or indeed almost
surely for all rational times 0 � s � t. As all the terms in Itô’s formula are continuous
almost surely, we get the result simultaneously for all 0 � s � t.

Next, we provide an enhanced version of Itô’s formula, which allows the function f to
depend not only on the position of Brownian motion, but also on a second argument, which
is assumed to be increasing in time.

Theorem 7.14 (Itô’s formula II) Suppose {ζ(s) : s � 0} is an increasing, continuous
adapted stochastic process. Let f : R × R → R be twice continuously differentiable in the
x-coordinate, and once continuously differentiable in the y-coordinate. Assume that

E
∫ t

0

[
∂xf(B(s), ζ(s))

]2
ds < ∞,

for some t > 0. Then, almost surely, for all 0 � s � t,

f
(
B(s),ζ(s)

)
− f
(
B(0), ζ(0)

)
=
∫ s

0
∂xf
(
B(u), ζ(u)

)
dB(u)

+
∫ s

0
∂yf
(
B(u), ζ(u)

)
dζ(u) +

1
2

∫ s

0
∂xxf
(
B(u), ζ(u)

)
du.
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Proof. To begin with, we inspect the proof of Theorem 7.12 and see that it carries over
without difficulty to the situation, when f is allowed to depend additionally on an adapted
process {ζ(s) : s � 0}, i.e. we have for any partitions 0 = t(n )

1 < . . . < t(n )
n = t with mesh

going to zero, in probability,

n−1∑
j=1

f
(
B
(
t(n )
j

)
, ζ
(
t(n )
j

)) (
B
(
t(n )
j+1

)
− B
(
t(n )
j

))2
−→
∫ t

0
f(B(s), ζ(s)) ds . (7.4)

We denote the modulus of continuity of ∂yf by

ω1(δ,M) = sup
−M �x 1 , x 2 , y 1 , y 2 �M

|x 1 −x 2 |∨|y 1 −y 2 |< δ

∣∣∂yf(x1 , y1) − ∂yf(x2 , y2)
∣∣,

and the modulus of continuity of ∂xxf by

ω2(δ,M) = sup
−M �x 1 , x 2 , y 1 , y 2 �M

|x 1 −x 2 |∨|y 1 −y 2 |< δ

∣∣∂xxf(x1 , y1) − ∂xxf(x2 , y2)
∣∣.

Now take x, x0 , y, y0 ∈ [−M,M ] with |x−x0 |∨|y−y0 | < δ. By the mean value theorem,
there exists a value ỹ ∈ [−M,M ] with the property that|ỹ − y| ∨ |ỹ − y0 | < δ such that

f(x, y) − f(x, y0) = ∂yf(x, ỹ) (y − y0),

and hence ∣∣f(x, y) − f(x, y0) − ∂yf(x0 , y0) (y − y0)
∣∣ � ω1(M, δ) (y − y0).

Taylor’s formula implies that∣∣f(x, y0)−f(x0 , y0)−∂xf(x0 , y0)(x−x0)− 1
2 ∂xxf(x0 , y0)(x−x0)2

∣∣ � ω2(δ,M)(x−x0)2 .

Combining the last two formulas using the triangle inequality, we get that∣∣f(x, y) − f(x0 , y0) − ∂yf(x0 , y0) (y − y0)

− ∂xf(x0 , y0) (x − x0) − 1
2 ∂xxf(x0 , y0)(x − x0)2

∣∣
� ω1(δ,M) (y − y0) + ω2(δ,M)(x − x0)2 .

(7.5)

Now, for any sequence 0 = t1 < . . . < tn = t define

δ := max
1�i�n−1

∣∣B(ti+1) − B(ti)
∣∣ ∧ max

1�i�n−1

∣∣ζ(ti+1) − ζ(ti)
∣∣,

and

M := max
0�s�t

|B(s)| ∧ max
0�s�t

|ζ(s)|.
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We get from (7.5),∣∣∣f(B(t), ζ(t)
)
− f
(
B(0), ζ(0)

)
−

n−1∑
i=1

∂xf
(
B(ti), ζ(ti)

) (
B(ti+1) − B(ti)

)
−

n−1∑
i=1

∂yf
(
B(ti), ζ(ti)

) (
ζ(ti+1) − ζ(ti)

)
− 1

2

n−1∑
i=1

∂xxf
(
B(ti), ζ(ti)

) (
B(ti+1) − B(ti)

)2∣∣∣
� ω1(δ,M)

(
ζ(t) − ζ(0)

)
+ ω2(δ,M)

n−1∑
i=1

(
B(ti+1) − B(ti)

)2
.

We can choose a sequence of partitions with mesh going to zero, such that, almost surely,
the following convergence statements hold,

• the first sum on the left converges to
∫ t

0 ∂xf
(
B(s), ζ(s)

)
dB(s) by the definition of the

stochastic integral,
• the second sum on the left converges to

∫ t

0 ∂yf
(
B(s), ζ(s)

)
dζ(s) by definition of the

Stieltjes integral,
• the third sum on the left converges to 1

2

∫ t

0 ∂xxf
(
B(s), ζ(s)

)
ds by (7.4),

• the sum on the right hand side converges to t by Theorem 7.12.

By continuity of the Brownian path ω1(δ,M) and ω2(δ,M) converge almost surely to zero.
This proves the enhanced Itô’s formula for fixed t, and looking at rationals and exploiting
continuity as before, we get the result simultaneously for all 0 � s � t.

With exactly the same technique, we obtain a version of Itô’s formula for higher dimen-
sional Brownian motion. The detailed proof will be an exercise, see Exercise 7.4. To give
a pleasant formulation, we introduce some notation for functions f : Rd+m → R, where
we interpret the argument as two vectors, x ∈ Rd and y ∈ Rm . We write ∂j for the partial
derivative in direction of the jth coordinate, and

∇xf = (∂1f, . . . , ∂df) and ∇y f = (∂d+1f, . . . , ∂d+m f)

for the vector of derivatives in the directions of x, respectively y. For integrals we use the
scalar product notation∫ t

0
∇xf
(
B(u), ζ(u)

)
· dB(u) =

d∑
i=1

∫ t

0
∂if(B(u), ζ(u)) dBi(u),

and ∫ t

0
∇y f
(
B(u), ζ(u)

)
· dζ(u) =

m∑
i=1

∫ t

0
∂d+if(B(u), ζ(u)) dζi(u).

Finally, for the Laplacian in the x-variable we write

∆xf =
d∑

j=1

∂jj f .



200 Stochastic integrals and applications

Theorem 7.15 (Multidimensional Itô’s formula) Let {B(t) : t � 0} be a d-dimensional
Brownian motion and suppose {ζ(s) : s � 0} is a continuous, adapted stochastic process
with values in Rm and increasing components. Let f : Rd+m → R be such that the partial
derivatives ∂if and ∂jkf exist for all 1 � j, k � d, d+1 � i � d+m and are continuous.
If, for some t > 0,

E
∫ t

0

∣∣∇xf
(
B(s), ζ(s)

)∣∣2 ds < ∞,

then, almost surely, for all 0 � s � t,

f
(
B(s), ζ(s)

)
− f
(
B(0), ζ(0)

)
=
∫ s

0
∇xf
(
B(u), ζ(u)

)
· dB(u)

+
∫ s

0
∇y f
(
B(u), ζ(u)

)
· dζ(u) + 1

2

∫ s

0
∆xf
(
B(u), ζ(u)

)
du .

(7.6)

Remark 7.16 As the Itô formula holds almost surely simultaneously for all times s ∈ [0, t],
it also holds for stopping times bounded by t. Suppose now that f : U → R satisfies the
differentiability conditions on an open set U , and K ⊂ U is compact. Take a smooth
function g : Rm → [0, 1] with compact support inside U , such that g ≡ 1 on K. Then
f∗ = fg : Rm → R satisfies f∗ = f on K and all relevant derivatives are bounded, so that
the conditions of Theorem 7.15 are satisfied. Let T be the first exit time from K. Applying
Theorem 7.15 to f∗ yields (7.6) for f , almost surely, for all times s ∧ T , for s � t. �

To appreciate the following discussion, we introduce a localisation of the notion of a mar-
tingale.

Definition 7.17. An adapted stochastic process {X(t) : 0 � t � T} is called a local
martingale if there exist stopping times Tn , which are almost surely increasing to T , such
that {X(t ∧ Tn ) : t � 0} is a martingale, for every n. �

The following theorem is a substantial extension of Corollary 2.53.

Theorem 7.18 Let D ⊂ Rd be a domain and f : D → R be harmonic on D. Suppose
that {B(t) : 0 � t � T} is a Brownian motion started inside D and stopped at the time T

when it first exits the domain D.

(a) The process {f(B(t)) : 0 � t � T} is a local martingale.

(b) If we have

E
∫ t∧T

0

∣∣∇f(B(s))
∣∣2 ds < ∞ for all t > 0,

then {f(B(t ∧ T )) : t � 0} is a martingale.

Proof. Suppose that Kn , n ∈ N, is an increasing sequence of compact sets whose
union is D, and let Tn be the associated exit times. By Theorem 7.15 in conjunction with
Remark 7.16,

f
(
B(t ∧ Tn )

)
= f
(
B(0)
)

+
∫ t∧Tn

0
∇f
(
B(s)
)
· dB(s) ,
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whence {f
(
B(t ∧ Tn )

)
: t � 0} is a martingale, which proves (a).

Obviously, almost surely,

f
(
B(t ∧ T )

)
= lim

n↑∞
f
(
B(t ∧ Tn )

)
. (7.7)

For any t � 0, the process {f(B(t ∧ Tn )) : n ∈ N} is a discrete-time martingale by the
optional stopping theorem. By our integrability assumption,

E
[
f
(
B(t ∧ Tn )

)2] = E
∫ Tn ∧t

0

∣∣∇f
(
B(s)
)∣∣2 ds � E

∫ T ∧t

0

∣∣∇f
(
B(s)
)∣∣2 ds < ∞,

so that the martingale is L2-bounded and convergence in (7.7) holds in the L1-sense. Tak-
ing limits in the equation

E
[
f
(
B(t ∧ Tm )

) ∣∣F(s ∧ Tn )
]

= f
(
B(s ∧ Tn )

)
, for m � n and t � s ,

first for m ↑ ∞, then n ↑ ∞, gives

E
[
f
(
B(t ∧ T )

) ∣∣F(s ∧ T )
]

= f
(
B(s ∧ T )

)
, for t � s.

This shows that {f(B(t ∧ T )) : t � 0} is a martingale and completes the proof.

Example 7.19 The radially symmetric functions (related to the radial potential),

f(x) =

{
log |x| if d = 2,

|x|2−d if d � 3.

are harmonic on the domain Rd\{0}. For a d-dimensional Brownian motion {B(t) : t � 0}
with B(0) �= 0, the process {f(B(t)) : t � 0} is however not a martingale. Indeed, it is a
straightforward calculation to verify that

lim
t↑∞

E log |B(t)| = ∞, if d = 2,

and

lim
t↑∞

E[|B(t)|2−d ] = 0, if d � 3,

contradicting the martingale property. Hence the integrability condition in Theorem 7.18(b)
cannot be dropped without replacement, in other words a local martingale is not necessar-
ily a martingale. �

7.2 Conformal invariance and winding numbers

We now focus on planar Brownian motion {B(t) : t � 0} and formulate an invariance
property which is at the heart of the rôle of Brownian motion in the context of planar
random curves. Throughout this section we use the identification of R2 and C and use
complex notation when it is convenient.



202 Stochastic integrals and applications

To motivate the main result suppose that f : C → C is analytic, i.e. everywhere complex
differentiable, and write f = f1 + if2 for the decomposition of f into a real and an imag-
inary part. Then, by the Cauchy–Riemann equations ∂1f1 = ∂2f2 and ∂2f1 = −∂1f2 ,
we have ∆f1 = ∆f2 = 0. Then Itô’s formula (if applicable) states that almost surely, for
every t � 0,

f
(
B(t)
)

=
∫ t

0
f ′(B(s)

)
dB(s) ,

where dB(s) is short for dB1(s) + i dB2(s) with B(s) = B1(s) + iB2(s). The right hand
side defines a continuous process with independent increments, and it is at least plausible
that they are Gaussian. Moreover, its expectation vanishes and

E
[( ∫ t

0
f ′(B(s)

)
dB(s)

)2]
= E
∫ t

0

∣∣f ′(B(s))
∣∣2 ds ,

suggesting that {f(B(t)) : t � 0} is a Brownian motion ‘travelling’ with the modified
speed

t �→
∫ t

0
|f ′(B(s))|2 ds.

To turn this heuristic into a powerful theorem we allow the function to be an analytic map
f : U → V between domains in the plane. Recall that such a map is called conformal if it
is a bijection.

Theorem 7.20 Let U be a domain in the complex plane, x ∈ U , and let f : U → V be
analytic. Let {B(t) : t � 0} be a planar Brownian motion started in x and

τU = inf
{
t � 0: B(t) �∈ U

}
its first exit time from the domain U . Then the process {f(B(t)) : 0 � t � τU } is a time-
changed Brownian motion, i.e. there exists a planar Brownian motion {B̃(t) : t � 0} such
that, for any t ∈ [0, τU ),

f(B(t)) = B̃(ζ(t)), where ζ(t) =
∫ t

0

∣∣f ′(B(s))
∣∣2 ds .

If, additionally, f is conformal, then ζ(τU ) is the first exit time from V by {B̃(t) : t � 0}.

Remark 7.21 Note that, as f is complex differentiable, the derivative Df(x) is just multi-
plication by a complex number f ′(x), and f can be approximated locally around x by its
tangent z �→ f(x) + f ′(x)(z − x). The derivative of the time change is

∂tζ(t) = |f ′(B(t))|2 =
(
∂1f1(B(t))

)2 +
(
∂2f1(B(t))

)2
. �

Remark 7.22 The famous Riemann mapping theorem states that for any pair of simply
connected open sets U, V � C there exists a conformal mapping f : U → V , see, e.g.,
[Ru87] or [Ah78]. This ensures that there are plenty of examples for Theorem 7.20. �
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Proof. Note first that the derivative of f is nonzero except for an at most countable set of
points, which does not have a limit point in U . As this set is not hit by Brownian motion,
we may remove it from U and note that the resulting set is still open. We may therefore
assume that f has nonvanishing derivative everywhere on U .

We may also assume, without loss of generality, that f is a mapping between bounded
domains. Otherwise choose Un ⊂ Kn ⊂ U such that Un is open with

⋃
Un = U

and Kn is compact, which implies that Vn = f(Un ) is bounded. Then the process
{f(B(t)) : t � τUn } is a time-changed Brownian motion for all n, and this extends imme-
diately to the process {f(B(t)) : t � τU }.

The main argument of the proof is based on stochastic integration. Recall that the Cauchy–
Riemann equations imply that the vectors ∇f1 and ∇f2 are orthogonal and |∇f1 | =
|∇f2 | = |f ′|. We start by defining for each t � 0, a stopping time

σ(t) = inf
{
s � 0 : ζ(s) � t

}
,

which represents the inverse of the time change. Let {B̃(t) : t � 0} be a Brownian motion
independent of {B(t) : t � 0}, and define a process {W (t) : t � 0} by

W (t) = f
(
B(σ(t) ∧ τU )

)
+ B̃(t) − B̃(t ∧ ζ(τU )), for t � 0.

In rough words, at the random time ζ(τU ) an independent Brownian motion is attached at
the endpoint of the process {f(B(σ(t))) : 0 � t � ζ(τU )}. Denote by G(t) the σ-algebra
generated by {W (s) : s � t}. It suffices to prove that the process {W (t) : t � 0} is a
Brownian motion.
It is obvious that the process is continuous almost surely and hence it suffices to show that
its finite dimensional distributions coincide with those of a Brownian motion. Recalling
the Laplace transform of the bivariate normal distribution, this is equivalent to showing
that, for any 0 � s � t and λ ∈ C,

E
[
e〈λ,W (t)〉 ∣∣G(s)

]
= exp

( 1
2 |λ|

2(t − s) + 〈λ,W (s)〉
)
.

where we have used 〈 · , · 〉 to denote the scalar product. This follows directly once we
show that, for x ∈ U ,

E
[
e〈λ,W (t)〉 ∣∣W (s) = f(x)

]
= exp

( 1
2 |λ|2 (t − s) + 〈λ, f(x)〉

)
. (7.8)

For simplicity of notation we may assume s = 0. For the proof we first evaluate the
expectation with respect to the independent Brownian motion {B̃(t) : t � 0} inside, which
gives

E
[
e〈λ,W (t)〉 ∣∣W (0) = f(x)

]
= Ex exp

(
〈λ, f(B(σ(t) ∧ τU ))〉 + 1

2 |λ|
2 (t − ζ(σ(t) ∧ τU )

))
.

We use the multidimensional Itô’s formula for the bounded mapping

F (x, u) = exp
(
〈λ, f(x)〉 + 1

2 |λ|2(t − u)
)
,

which is defined on U × (−1,∞), see Remark 7.16. To prepare this, note that ∂iie
g =

[∂iig + (∂ig)2eg ] and hence

∆eg =
[
∆g + |∇g|2

]
eg . (7.9)



204 Stochastic integrals and applications

For g = 〈λ, f〉 we have ∇g =
∑2

i=1 λi∇fi , which implies |∇g|2 = |λ|2 |f ′|2 as the
vectors ∇fi are orthogonal with norm |f ′|. Moreover, ∆g = 0 by the analyticity of f .
Applying (7.9) gives

∆ e〈λ,f (x)〉 = |λ|2 |f ′(x)|2 e〈λ,f (x)〉 .

Moreover, we have

∂u exp
( 1

2 |λ|2 (t − u)
)

= − 1
2 |λ|2 exp

( 1
2 |λ|2 (t − u)

)
.

We now let Un = {x ∈ U : |x − y| � 1
n for all y ∈ ∂U}. Then |f ′(x)| is bounded

away from zero on Un and therefore the stopping time T = σ(t) ∧ τUn is bounded. The
multidimensional version of Itô’s formula gives, almost surely,

F
(
B(T ), ζ(T )

)
= F
(
B(0), ζ(0)

)
+
∫ T

0
∇xF
(
B(s), ζ(s)

)
· dB(s)

+
∫ T

0
∂uF
(
B(s), ζ(s)

)
dζ(s) + 1

2

∫ T

0
∆xF
(
B(s), ζ(s)

)
ds .

Looking back at the two preparatory displays and recalling that dζ(u) = |f ′(B(u))|2 du

we see that the two terms in the second line cancel each other. Making use of bounded
convergence and the fact that the stochastic integral has zero expectation, see Exercise 7.2,
we obtain that

E
[
e〈λ,W (t)〉 ∣∣W (0) = f(x)

]
= Ex

[
F
(
B(σ(t) ∧ τU ), ζ(σ(t) ∧ τU )

)]
= lim

n→∞
Ex

[
F
(
B(T ), ζ(T )

)]
= F
(
x, 0
)

= exp
( 1

2 |λ|
2t + 〈λ, f(x)〉

)
.

This shows (7.8) and thus completes the proof of the main statement. It remains to note
that, if f is conformal then as t ↑ τu the point f(B(t)) converges to a boundary point of V .
Hence ζ(τU ) is the first exit time from V by the process {B̃(t) : t � 0}.

As a first application we look at harmonic measure and exploit its conformal invariance in
order to give an explicit formula in an interesting special case.

Theorem 7.23 Suppose U, V ⊂ R2 are domains and f : Ū → V̄ is continuous and maps
U conformally into V .

(a) If x ∈ U , then µ∂U (x, · ) ◦ f−1 = µ∂V (f(x), · ).

(b) Suppose additionally that U = Kc and V = Lc are the complements of nonpolar
compact sets and lim

x→∞
f(x) = ∞. Then

µK ◦ f−1 = µL .

Proof. (a) follows from Theorem 7.20 together with the continuity of f on Ū , which
ensures that the first hitting point of ∂U by a Brownian motion is mapped onto the first
hitting point of ∂V by its conformal image. For (b) take the limit x → ∞ and recall The-
orem 3.46.
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Example 7.24 We find the harmonic measure from infinity on the unit interval

[0, 1] =
{
x + iy : y = 0, 0 � x � 1

}
.

The starting point is the harmonic measure on the circle ∂B(0, 1), which we know is the
uniform distribution �. Let U be the complement of the unit ball B(0, 1) and V the
complement of the interval [−1, 1], and take the conformal mapping

f : U → V, f(z) =
1
2

(
z +

1
z

)
,

which satisfies our conditions. Hence � ◦ f−1 is the harmonic measure on [−1, 1]. If
z = x + iy = cos θ + i sin θ ∈ ∂B(0, 1), then |f ′(z)|2 = sin2 θ, and hence |f ′(z)| = |y| =√

1 − x2 . Recalling that every x ∈ [−1, 1] has two preimages, we get that the density of
� ◦ f−1 at x = cos θ is

2
2π|f ′(eiθ )| =

1
π

1√
1 − x2

.

Mapping V via z �→ z2 onto the complement of [0, 1], noting that |f ′(z)| = 2|z| and that
again we have two preimages, we obtain that the harmonic measure on [0, 1] is

dµ[0,1](x) =
1
π

1√
x(1 − x)

dx,

which is the Beta( 1
2 , 1

2 ) distribution. �

As a further important application of conformal invariance we calculate the probability that
a planar Brownian motion exits a cone before leaving a disc, see Figure 7.1.

x0
1

r

Fig. 7.1. The Brownian path does not exit the cone before leaving the disc.

Theorem 7.25 Let α ∈ (0, 2π] and denote by W [α] an open cone with vertex in the origin,
symmetric about the x-axis, with opening angle α. Let {B(t) : t � 0} be planar Brownian
motion started in x = (1, 0), and denote T (r) = inf{t � 0: |B(t)| = r}. Then, for r > 1,

P
{
B[0, T (r)] ⊂ W [α]

}
=

2
π

arctan
( 2r

π
α

r
2 π
α − 1

)
.
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Proof. For ease of notation we identify R2 with the complex plane. In the first step we
use the conformal map f : W [α] → W [π] defined by f(x) = xπ/α to map the cone onto
a halfspace. Let B∗ = f ◦ B, which by conformal invariance is a time-changed Brownian
motion started in the point B∗(0) = 1. We thus have that{

B[0, T (r)] ⊂ W [α]
}

=
{
B∗[0, T (rπ/α )] ⊂ W [π]

}
.

It therefore suffices to show the result in the case α = π. So let {B(t) : t � 0} be a
Brownian motion started in B(0) = 1 and look at the stopping time S = min{t�0:
Re(B(t))�0}. We use reflection on the imaginary axis, i.e. for f(x, y) = (−x, y) we let

B̃(t) =
{

B(t) if t � S,

f(B(t)) if t � S.

Then B̃ is a Brownian motion started in B̃(0) = 1 and, denoting T̃ (r) = inf{t�0:
|B̃(t)| = r}, we have

P{Re(B(T (r))) > 0}
= P{Re(B(T (r))) > 0, T (r) < S} + P{Re(B(T (r))) > 0, T (r) > S}
= P{T (r) < S} + P{Re(B̃(T̃ (r))) < 0}.

As {T (r) < S} is the event whose probability we need to bound, it just remains to find

P{Re(B(T (r))) > 0} − P{Re(B(T (r))) < 0}.

By Brownian scaling we may assume that the Brownian motion is started at B(0) = 1/r

and T = min{t � 0: |B(t)| = 1}. We apply the conformal map

f : B(0, 1) → B(0, 1), f(z) =
z − 1/r

1 − z/r
,

which is a Möbius transformation mapping the starting point of the Brownian motion to
the origin and fixing the point 1. As this maps the segment {z ∈ ∂B(0, 1) : Re(z) < 0}
onto a segment of length 2 arctan r 2 −1

2r we obtain the result.

The next result represents planar Brownian motion in polar coordinates. Again we identify
R2 with the complex plane.

Theorem 7.26 (Skew-product representation) Suppose {B(t) : t � 0} is a planar Brow-
nian motion with B(0) = 1. Then there exist two independent linear Brownian motions
{Wi(t) : t � 0}, for i = 1, 2, such that

B(t) = exp
(
W1(H(t)) + iW2(H(t))

)
, for all t � 0,

where

H(t) =
∫ t

0

ds

|B(s)|2 = inf
{

u � 0:
∫ u

0
exp(2W1(s)) ds > t

}
.

Remark 7.27 By the result, both the logarithm of the radius, and the continuous deter-
mination of the angle of a planar Brownian motion are time-changed Brownian motions.



7.2 Conformal invariance and winding numbers 207

The time-change itself depends only on the radius of the motion and ensures that the angle
changes slowly away from the origin, but rapidly near the origin. �

Proof. Note first that H(t) itself is well-defined by Corollary 2.26. Moreover, the
claimed equality for H(t) follows easily from the fact that both sides have the same value
at t = 0 and the same derivative.

As the continuous processes {W1(t) : t � 0} and {W2(t) : t � 0} can be constructed
uniquely from {B(t) : t � 0} and vice versa we may start with a planar Brownian motion
{W (t) : t � 0} and let W (t) = W1(t) + i W2(t) be its decomposition into real and
imaginary part. It suffices to show that the process {B(t) : t � 0} constructed from this
pair of linear Brownian motions is a planar Brownian motion. By Theorem 7.20,

exp
(
W (t)
)

= B(ζ(t)), (7.10)

where {B(t) : t � 0} is a planar Brownian motion and

ζ(t) =
∫ t

0
exp(2W1(s)) ds.

By definition H is the inverse function of ζ. Hence, using (7.10) for t = H(s), we get

B(s) = exp
(
W (H(s))

)
= exp

(
W1(H(s)) + iW2(H(s))

)
,

which is the desired result.

Example 7.28 By the skew-product representation, for a planar Brownian motion {B(t) :
t � 0}, we have log |B(t)| = W1(H(t)) and hence the process {log |B(t)| : t � 0} is
a time-changed Brownian motion in dimension one. However, recall from Example 7.19
that it is not a martingale. �

For further applications, we need to study the asymptotics of the random clock H(t) more
carefully. To state the next result let {W1(t) : t � 0} be a linear Brownian motion as
in Theorem 7.26 and, for a > 0, let {Wa

1 (t) : t � 0} be the Brownian motion given by
Wa

1 (t) = a−1W1(a2t). For each such Brownian motion we look at the first hitting time of
level b, defined as Ta

b = inf{t � 0: Wa
1 (t) = b}.

Theorem 7.29 For every ε > 0 we have

lim
t→∞

P
{∣∣∣ 4H(t)

(log t)2 − T
1
2 log t

1

∣∣∣ > ε
}

= 0.

The proof uses the following simple fact, sometimes known as Laplace’s method.

Lemma 7.30 For any continuous f : [0, t] → R and t > 0,

lim
a↑∞

1
a

log
∫ t

0
exp(af(v)) dv = max

0�s�t
f(s).
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Proof. The upper bound is obvious, by replacing f by its maximum. For the lower
bound, let s ∈ [0, t] be a point where the maximum is taken. We use continuity to find, for
any ε > 0, some 0 < δ < 1 such that f(r) � f(s)−ε for all r ∈ (s−δ, s+δ). Restricting
the limit to this interval gives a lower bound of max0�s�t f(s) − ε, and the result follows
as ε > 0 was arbitrary.

Proof of Theorem 7.29. Recall that W1(0) = 0. We abbreviate a = a(t) = 1
2 log t. As

we have, for any δ > 0,

lim
ε↓0

P
{

T
1
2 log t

1+ε − T
1
2 log t

1−ε > δ
}

= lim
ε↓0

P
{

T 1
1+ε − T 1

1−ε > δ
}

= 0

it suffices to show that

lim
t↑∞

P
{ 4H(t)

(log t)2 > T
1
2 log t

1+ε

}
= 0, and lim

t↑∞
P
{ 4H(t)

(log t)2 < T
1
2 log t

1−ε

}
= 0.

We first show that

lim
t↑∞

P
{ 4H(t)

(log t)2 > T
1
2 log t

1+ε

}
= 0. (7.11)

We have { 4H(t)
(log t)2 > T

1
2 log t

1+ε

}
=
{∫ a2 T a

1 + ε

0
exp(2W1(u)) du < t

}
=
{ 1

2a
log
∫ a2 T a

1 + ε

0
exp(2W1(u)) du < 1

}
,

recalling that a = 1
2 log t. Note now that

1
2a

log
∫ a2 T a

1 + ε

0
exp(2W1(u)) du =

log a

a
+

1
2a

log
∫ T a

1 + ε

0
exp(2aWa

1 (u)) du,

and the right hand side has the same distribution as

log a

a
+

1
2a

log
∫ T 1

1 + ε

0
exp(2aW1(u)) du.

Laplace’s method gives that, almost surely,

lim
a↑∞

1
2a

log
∫ T 1

1 + ε

0
exp(2aW1(u)) du = sup

0�s�T 1
1 + ε

W1(s) = 1 + ε.

Hence,

lim
a↑∞

P
{∣∣∣ log a

a
+

1
2a

log
∫ T 1

1 + ε

0
exp(2aW1(u)) du − (1 + ε)

∣∣∣ > ε
}

= 0.

This proves (7.11). In the same way one can show that

lim
t↑∞

P
{ 4H(t)

(log t)2 < T
1
2 log t

1−ε

}
= 0,

and this completes the proof.
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Remark 7.31 As {Wa
1 (t) : t � 0} is a Brownian motion for every a > 0, the law of Ta

1
does not depend on a > 0. Therefore, Theorem 7.29 implies that

4H(t)
(log t)2

d−→ T1 ,

where T1 = inf{s � 0: W (s) = 1
}

. The distribution of T1 is, by Theorem 2.35 given by
the density (2πs3)−1/2 exp(−1/(2s)). �

We are now able to determine the asymptotic law of the winding numbers θ(t) = W2(H(t))
of a planar Brownian motion, as t → ∞.

Theorem 7.32 (Spitzer’s law) For any x ∈ R,

lim
t→∞

P
{ 2

log t
θ(t) � x

}
=
∫ x

−∞

dy

π(1 + y2)
.

In other words, the law of 2θ(t)
log t converges to a standard symmetric Cauchy distribution.

Proof. We define {Wa
2 (t) : t � 0} by Wa

2 (t) = (1/a)W2(a2t). Then,

a−1θ(t) = a−1W2(H(t)) = Wa
2 (a−2H(t)).

By Theorem 7.29 and the uniform continuity of {Wa
2 (t) : t � 0} on compact sets we get,

for a = a(t) = 1
2 log t,

lim
t→∞

P
{∣∣∣2θ(t)

log t
− Wa

2
(
Ta

1
)∣∣∣ > ε

}
= lim

t→∞
P
{∣∣∣Wa

2
( 4H (t)

(log t)2

)
− Wa

2
(
Ta

1
)∣∣∣ > ε

}
= 0.

The law of the random variable Wa
2 (Ta

1 ) does not depend on the choice of a. By Theo-
rem 2.37, see also Exercise 7.5, it is Cauchy distributed.

7.3 Tanaka’s formula and Brownian local time

In this section we establish a deep connection between Itô’s formula and Brownian local
times for linear Brownian motion {B(t) : t � 0}. The basic idea is to give an analogue of
Itô’s formula for the function f : R → R, f(t) = |t − a|. Note that this function is not
twice continuously differentiable, so Itô’s formula cannot be applied directly.

To see what we are aiming at, let’s apply Itô’s formula informally. We have in the distri-
butional sense that f ′(x) = sign(x − a) and f ′′(x) = 2δa . Hence Itô’s formula would
give

|B(t) − a| − |B(0) − a| =
∫ t

0
sign(B(s) − a) dB(s) +

∫ t

0
δa(B(s)) ds,

The last integral can be interpreted as the time spent by Brownian motion at level a and
hence it is natural to expect that it is the local time La(t). Tanaka’s formula confirms this
intuition.
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Theorem 7.33 (Tanaka’s formula) Let {B(t) : t � 0} be linear Brownian motion. Then,
for every a ∈ R, almost surely, for all t > 0,

|B(t) − a| − |B(0) − a| =
∫ t

0
sign(B(s) − a) dB(s) + La(t),

where sign x = 1{x>0} − 1{x<0}.

Remark 7.34 There is an easy analogue of Tanaka’s formula for simple random walk on
the integers, see Exercise 7.8. �

Tanaka’s formula can be used to generalise Itô’s formula to functions which are not twice
continuously differentiable.

Corollary 7.35 Suppose that f : R → R is twice differentiable such that f ′ has compact
support, but do not assume that f ′′ is continuous. Then

f
(
B(t)
)
− f
(
B(0)
)

=
∫ t

0
f ′(B(s)

)
dB(s) + 1

2

∫ t

0
f ′′(B(s)

)
ds .

Proof. Under our assumptions on f there exist constants b, c such that

f ′(x) = 1
2

∫
sign(x − a) f ′′(a) da + c and f(x) = 1

2

∫
|x − a| f ′′(a) da + cx + b.

Integrating Tanaka’s formula with respect to 1
2 f ′′(a) da and exchanging this integral with

the stochastic integral, which is justified by Exercise 7.9, gives

f
(
B(t)
)
− f
(
B(0)
)

=
∫ t

0
f ′(B(s)

)
dB(s) + 1

2

∫
La(t) f ′′(a) da .

By Theorem 6.18 the last term equals 1
2

∫ t

0 f ′′(B(s)
)
ds.

For the proof of Tanaka’s formula we define, for fixed a ∈ R,

L̃a(t) := |B(t) − a| − |B(0) − a| −
∫ t

0
sign(B(s) − a) dB(s) for t � 0,

and show that this represents the density at point a of the occupation measure.

Lemma 7.36 For every t � 0 and a ∈ R,

L̃a(t) = lim
ε↓0

1
ε

∫ t

0
1(a,a+ε)(B(s)) ds, in probability.

Proof. Using the strong Markov property the statement can be reduced to the case
a = 0. The main idea of the proof is now to use convolution to make |x| smooth, and then
use Itô’s formula for the smooth function. For this purpose, recall that, for any δ > 0 we
can find smooth functions g, h : R → [0, 1] with compact support such that g � 1(0,1) � h

and
∫

g = 1 − δ,
∫

h = 1 + δ. This reduces the problem to showing that

L̃0(t) = lim
ε↓0

1
ε

∫ t

0
f
(
ε−1B(s)

)
ds, in probability,
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for f : R → [0, 1] smooth, with compact support in [−1, 2] and
∫

f = 1. Let

fε(x) = ε−1
∫

|x − a| f(ε−1a) da =
∫

|x − εa| f(a) da.

The function fε is smooth. Moreover, f ′
ε(x) =

∫
sign(x − εa)f(a) da and f ′′

ε (x) =
2ε−1f(ε−1x).
Itô’s formula gives

fε(B(t)) − fε(B(0)) −
∫ t

0
f ′

ε(B(s)) dB(s) = ε−1
∫ t

0
f
(
ε−1B(s)

)
ds. (7.12)

Now we let ε ↓ 0 for each term. From the definition of fε we infer that |fε(x)− |x|| � 3ε.
In other words, fε(x) → |x| uniformly and this ensures convergence in probability of the
first two terms on the left hand side of (7.12). To deal with the third term, we observe that,
for x �= 0,

f ′
ε(x) =

∫
sign
(
x − εa

)
f(a) da −→ sign(x) as ε ↓ 0.

Now we use the isometry property (7.2) to infer that

E
[( ∫ t

0
sign(B(s)) dB(s) −

∫ t

0
f ′

ε(B(s)) dB(s)
)2]

= E
∫ t

0
(sign(B(s)) − f ′

ε(B(s)))2 ds.

The right hand side converges to zero by the bounded convergence theorem. Hence we
have shown that, in probability,

lim
ε↓0

ε−1
∫ t

0
g
(
ε−1B(s)

)
ds = lim

ε↓0
fε(B(t)) − fε(B(0)) −

∫ t

0
f ′

ε(B(s)) dB(s)

= |B(t)| − |B(0)| −
∫ t

0
sign(B(s)) dB(s) = L̃0(t).

Proof of Theorem 7.33. First fix t � 0 and recall from Theorem 6.19 that, almost
surely, the occupation measure µt given by µt(A) =

∫ t

0 1A (B(s)) ds has a continuous
density given by {La(t) : a ∈ R}. Therefore, for every a ∈ R, we have

La(t) = lim
ε↓0

µt(a, a + ε)
ε

= lim
ε↓0

1
ε

∫ t

0
1(a,a+ε)(B(s)) ds.

On the other hand, given a ∈ R, by Lemma 7.36 there exists a sequence εn ↓ 0 such that,
almost surely,

L̃a(t) = lim
n↑∞

1
εn

∫ t

0
1(a,a+εn )(B(s)) ds.

Hence, for every a ∈ R and t � 0, we have La(t) = L̃a(t) almost surely. Finally, for
any a ∈ R, both the local time {La(t) : t � 0} and {L̃a(t) : t � 0} are almost surely
continuous and therefore they agree.
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Corollary 7.37 For every a ∈ R, almost surely, for all t � 0,

1
2 La(t) = (B(t) − a)+ − (B(0) − a)+ −

∫ t

0
1{B (s)>a} dB(s),

and

1
2 La(t) = (B(t) − a)− − (B(0) − a)− +

∫ t

0
1{B (s)�a} dB(s).

Proof. The right sides in these formulas add up to La(t), while their difference is zero.

We now use Tanaka’s formula to prove Lévy’s theorem describing the joint law of the
modulus and local time of a Brownian motion.

Theorem 7.38 (Lévy) The processes

{ (|B(t)|, L0(t)) : t � 0} and { (M(t) − B(t),M(t)) : t � 0}

have the same distribution.

Remark 7.39 This result extends both Theorem 2.34 where it was shown that the processes
{|B(t)| : t � 0} and {M(t)−B(t) : t � 0} have the same distribution, and Theorem 6.10
where it was shown that {L0(t) : t � 0} and {M(t) : t � 0} have the same distribution.
Exercise 6.2 suggests an alternative proof using random walk methods. �

As a preparation for the proof we find the law of the process given by integrating the sign
of a Brownian motion with respect to that Brownian motion.

Lemma 7.40 For every a ∈ R, the process {W (t) : t � 0} given by

W (t) =
∫ t

0
sign(B(s) − a) dB(s)

is a standard Brownian motion.

Proof. Assume, without loss of generality, that a < 0. Suppose that T = inf{t >

0: B(t) = a}. Then W (t) = B(t) for all t � T and hence {W (t) : 0 � t � T} is a
(stopped) Brownian motion. By the strong Markov property the process {B̃(t) : t � 0}
given by B̃(t) = B(t + T ) − a is a Brownian motion started in the origin, which is
independent of {W (t) : 0 � t � T}. As

W (t + T ) = W (T ) +
∫ t+T

T

sign(B(s) − a) dB(s) = B(T ) +
∫ t

0
sign(B̃(s)) dB̃(s),

it suffices to show that the second term is a Brownian motion to complete the proof. Hence
we may henceforth assume that a = 0. Now fix 0 � s < t and recall that W (t) − W (s)
is independent of F(s). For the proof it hence suffices to show that W (t) − W (s) has
a centred normal distribution with variance t − s. Choose s = t(n )

1 < . . . < t(n )
n = t

with mesh ∆(n) ↓ 0, and approximate the progressively measurable process H(u) =
sign(B(u)) by the step processes

Hn (u) = sign
(
B(t(n )

j )
)

if t(n )
j < u � t(n )

j+1 .
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It follows from the fact that the zero set of Brownian motion is a closed set of measure
zero, that lim E

∫ t

s
(Hn (u) − H(u))2 du = 0, and hence

W (t) − W (s) =
∫ t

s

H(u) dB(u) = L2 − lim
n→∞

∫ t

s

Hn (u) dB(u)

= L2 − lim
n→∞

n−1∑
j=1

sign
(
B(t(n )

j )
) (

B(t(n )
j+1) − B(t(n )

j )
)
.

From the independence of the Brownian increments and elementary properties of the nor-
mal distribution, one can see that the random variables on the right all have a centred
normal distribution with variance t − s. Hence this also applies to W (t) − W (s).

Proof of Theorem 7.38. By Tanaka’s formula we have

|B(t)| =
∫ t

0
sign(B(s)) dB(s) + L0(t) = W (t) + L0(t) .

Define a standard Brownian motion {W̃ (t) : t � 0} by

W̃ (t) = −W (t) for all t � 0,

and let {M̃(t) : t � 0} be the associated maximum process. We show that

M̃(t) = L0(t) for all t � 0,

which implies that {(|B(t)|, L0(t)) : t � 0} and {(M̃(t) − W̃ (t), M̃(t)) : t � 0} agree
pointwise, and the result follows as the latter process agrees in distribution with

{(M(t) − B(t),M(t)) : t � 0}.

To show that M̃(t) = L0(t) we first note that

W̃ (s) = L0(s) − |B(s)| � L0(s),

and hence, taking the maximum over all s � t, we get M̃(t) � L0(t). On the other hand,
the process {L0(t) : t � 0} increases only on {t : B(t) = 0}, and on this set we have
L0(t) = W̃ (t) � M̃(t). Hence the proof is complete, as {M̃(t) : t � 0} is increasing.

7.4 Feynman–Kac formulas and applications

In this section we answer some natural questions about Brownian motion that involve time.
For example, we find the probability that linear Brownian motion exits a given interval by a
fixed time. Our main tool is the close relationship between the expectation of certain func-
tionals of the Brownian path and the heat equation with dissipation term. This goes under
the name of Feynman–Kac formula, and the theorems that make up this theory establish a
strong link between parabolic partial differential equations and Brownian motion.

Definition 7.41. Let U ⊂ Rd be either open and bounded, or U = Rd . A twice
differentiable function u : (0,∞) × U → [0,∞) is said to solve the heat equation with
heat dissipation rate V : U → R and initial condition f : U → [0,∞) on U if we have
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• lim
x →x 0

t↓0

u(t, x) = f(x0), whenever x0 ∈ U ,

• lim
x →x 0
t→t 0

u(t, x) = 0, whenever x0 ∈ ∂U ,

• ∂tu(t, x) = 1
2 ∆xu(t, x) + V (x)u(t, x) on (0,∞) × U ,

where the Laplacian ∆x acts on the space variables x. �

Remark 7.42 The solution u(t, x) describes the temperature at time t at x for a heat flow
with cooling with rate −V (x) on the set {x ∈ U : V (x) < 0}, and heating with rate V (x)
on the set {x ∈ U : V (x) > 0}, where the initial temperature distribution is given by f(x)
and the boundary of U is kept at zero temperature. �

Instead of going for the most general results linking the heat equation to Brownian motion,
we give some of the more basic forms of the Feynman–Kac formula together with appli-
cations. Our first theorem in this spirit, an existence result for the heat equation in the case
U = Rd , will lead to a new, more analytic proof of the second arcsine law, Theorem 5.28.

Theorem 7.43 Suppose V : Rd → R is bounded. Then u : [0,∞) × Rd → R defined by

u(t, x) = Ex

{
exp
(∫ t

0
V
(
B(r)
)
dr
)}

,

solves the heat equation on Rd with dissipation rate V and initial condition one.

Proof. The easiest proof is by a direct calculation. Expand the exponential in a power
series, then the terms in the expansion are a0(x, t) := 1 and, for n � 1,

an (x, t) :=
1
n!

Ex

[ ∫ t

0
· · ·
∫ t

0
V (B(t1)) · · ·V (B(tn ))dt1 . . . dtn

]
= Ex

[ ∫ t

0
dt1

∫ t

t1

dt2 · · ·
∫ t

tn −1

dtn V (B(t1)) · · ·V (B(tn ))
]

=
∫

dx1 · · ·
∫

dxn

∫ t

0
dt1 · · ·

∫ t

tn −1

dtn

n∏
i=1

V (xi)
n∏

i=1

p(ti − ti−1 , xi−1 , xi) ,

with the conventions x0 = x and t0 = 0. Using 1
2 ∆xp(t1 , x, x1) = ∂t1 p(t1 , x, x1) and

then integration by parts we get

1
2
∆xan (x) =

∫
dx1V (x1)

∫ t

0
dt1∂t1 p(t1 , x, x1)an−1(x1 , t − t1)

= −
∫

dx1V (x1)
∫ t

0
dt1p(t1 , x, x1)∂t1 an−1(x, t − t1) − V (x) an−1(x, t)

= ∂tan (x, t) − V (x) an−1(x, t).

Adding up all these terms, and noting that differentiation under the summation sign is
allowed, verifies the validity of the differential equation. The requirement on the initial
condition follows easily from the boundedness of V .
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As an application we give a proof of the second arcsine law, Theorem 5.28, which does not
rely on the first arcsine law. We use Theorem 7.43 with V (x) = λ 1[0,∞)(x). Then

u(t, x) := Ex

[
exp
(
− λ

∫ t

0
1[0,∞)(B(s)) ds

)]
solves

∂tu(t, x) = 1
2 ∂xxu(t, x) − λ 1[0,∞)(x)u(t, x) , u(0, x) = 1 for all x ∈ R.

To turn this partial differential equation into ordinary differential equations, we take the
Laplace transform

g(x) =
∫ ∞

0
u(t, x) e−ρt dt ,

which satisfies the equation

ρ g(x) + λV (x) g(x) − 1
2 g′′(x) = 1 .

This can be rewritten as

(ρ + λ) g(x) − 1
2 g′′(x) = 1 if x > 0 ,

ρ g(x) − 1
2 g′′(x) = 1 if x < 0 .

Solving these two linear ordinary differential equations gives

g(x) = 1
λ+ρ + Ae

√
2ρx + Be−

√
2ρx if x > 0 ,

g(x) = 1
ρ + C e

√
2ρx + De−

√
2ρx if x < 0 .

As g must remain bounded as ρ ↑ ∞, we must have A = D = 0. Moreover, g must
be continuously differentiable in zero, hence C and B can be calculated from matching
conditions. After an elementary calculation we obtain

g(0) =
1√

ρ(ρ + λ)
.

On the other hand, with

X(t) =
1
t

∫ t

0
1[0,∞)(B(s)) ds

we have, using Brownian scaling in the second step,

g(0) = E0

[ ∫ ∞

0
exp
(
− ρt − λtX(t)

)
dt
]

= E0

[ ∫ ∞

0
exp
(
− ρt − λtX(1)

)
dt
]

= E0

[ 1
ρ + λX(1)

]
.

Now we let ρ = 1 and from

E0

[ 1
1 + λX(1)

]
=

1√
1 + λ

and the expansions

1√
1 + λ

=
∞∑

n=0

(−λ)n
1
2

3
2 · · · 2n−1

2

n!
,
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and ∫ 1

0
xn− 1

2 (1 − x)−
1
2 dx =

Γ(2n+1
2 ) Γ(1

2 )
Γ(n + 1)

= π
1
2

3
2 · · · 2n−1

2

n!
,

we get for the moments of X(1), by a comparison of coefficients,

E
[
X(1)n

]
=

1
π

∫ 1

0
xn 1√

x(1 − x)
dx,

which by (3.11) in Chapter 2 of [Du95] implies that X(1) is arcsine distributed.

Our second version of the Feynman–Kac formula is a uniqueness result for the case of zero
dissipation rate, which will allow us to express the probability that linear Brownian motion
exits an interval before a fixed time t in two different ways.

Theorem 7.44 If u is a bounded, twice continuously differentiable solution of the heat
equation on the domain U , with zero dissipation rate and continuous initial condition g,
then

u(t, x) = Ex

[
g
(
B(t)
)
1{t < τ}

]
, (7.13)

where τ is the first exit time from the domain U .

Proof. The proof is based on Itô’s formula, Theorem 7.15, and Remark 7.16. We let
K ⊂ U be compact and denote by σ the first exit time from K. Fixing t > 0 and applying
Itô’s formula with f(x, y) = u(t − y, x) and ζ(s) = s gives, for all s < t,

u(t − s ∧ σ,B(s ∧ σ)) − u(t, B(0))

=
∫ s∧σ

0
∇xu(t − v,B(v)) · dB(v)

−
∫ s∧σ

0
∂tu(t − v,B(v)) dv + 1

2

∫ s∧σ

0
∆xu(t − v,B(v)) dv.

As u solves the heat equation, the last two terms on the right cancel. Hence, taking expec-
tations,

Ex

[
u(t − s ∧ σ,B(s ∧ σ))

]
= Ex

[
u(t, B(0))

]
= u(t, x),

using that the stochastic integral has vanishing expectation. Exhausting U by compact
sets, i.e. letting σ ↑ τ , and distinguishing the events s < σ and s � σ leads to Ex [u(t −
s,B(s)) 1{s < τ}] = u(t, x). Taking a limit s ↑ t gives the required result.

As an application of Theorem 7.44 we calculate the probability that a linear Brownian
motion stays, up to time t, within an interval. As a warm-up we suggest to look at Exer-
cise 7.10 where the easy case of a halfline is treated. Here we focus on intervals [a, b], for
a < 0 < b, and give two different formulas for the probability of staying in [a, b] up to
time t. To motivate the first formula, we start with a heuristic approach, which gives the
correct result, and then base the rigorous proof on the Feynman–Kac formula.
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For our heuristics we think of the transition (sub-)density, qt : [0, a] × [0, a] → [0, 1] of a
Brownian motion, which is killed upon leaving the interval [0, a]. In a first approximation
we subtract from the transition density p(t, x, y) of an unkilled Brownian motion the tran-
sition density for all the paths that reach level 0. By the reflection principle (applied to the
first hitting time of level 0) the latter is equal to p(t, x,−y).

We then subtract the transition density of all the paths that reach level a, which, again by
the reflection principle, equals p(t, x, 2a − y), then add again the density of all the paths
that reach level 0 after hitting a, as these have already been subtracted in the first step. This
gives the approximation term p(t, x, y) − p(t, x,−y) − p(t, x, 2a − y) + p(t, x, 2a + y).

Of course the iteration does not stop here (for example we have double-counted some
paths that reach level 0 after hitting a). Eventually we have to consider an infinite series of
alternating reflections at levels 0 and a to obtain the density

qt(x, y) =
∞∑

k=−∞

{
p(t, x, 2ka + y) − p(t, x, 2ka − y)

}
.

Integrating this over y ∈ [0, a] makes the following theorem plausible.

Theorem 7.45 Let 0 < x < a. Then

Px

{
B(s) ∈ (0, a) for all 0 � s � t

}
=

∞∑
k=−∞

{
Φ
( 2ka+a−x√

t

)
− Φ
( 2ka−x√

t

)
− Φ
( 2ka+a+x√

t

)
+ Φ
( 2ka+x√

t

)}
,

(7.14)

where Φ(x) is the distribution function of a standard normal distribution.

Proof. The left hand side in (7.14) agrees with the right hand side in Theorem 7.44
for U = (0, a) and f = 1. The series on the right hand side is absolutely convergent, and
hence satisfies the boundary conditions at x = 0 and x = a. It is also not difficult to verify
that it is bounded. Elementary calculus gives

∂tΦ
( 2ka+a−x√

t

)
= − 2ka+a−x

2t3 / 2 p(t, x, 2ka + a) = 1
2 ∂xxΦ

( 2ka+a−x√
t

)
,

and similarly for the other summands. Hence termwise differentiation shows that the right
hand side satisfies the heat equation. To see that the initial condition is fulfilled, note that
(as t ↓ 0) the sums over all k > 0 and k < 0 converge to zero. Among the four terms
belonging to k = 0, two terms with positive sign and one term with negative sign converge
to one, whereas one term converges to zero.

The solution of the heat equation is not in the form one would get by a naïve separation
of variables approach. This approach yields a different, equally valuable, expression for
the probability of interest. Indeed, writing u(t, x) = v(t)w(x) one expects w to be an
eigenfunction of 1

2 ∂xx on (0, a) with zero boundary conditions. These eigenfunctions are

sin
( kπ (2x−a)

2a

)
, for k even, cos

( kπ (2x−a)
2a

)
, for k odd,

with eigenvalues −k2π2/(2a2). As we are only interested in solutions symmetric about
a/2 only the cosine terms will contribute. For v we are looking for the eigenfunctions of
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∂t with the same eigenvalues, which are

exp
(
− k 2 π 2

2a2 t
)
, for k odd,

and considering the initial condition (and shifting the cosine by π/2) leads to the solution

u(t, x) =
4
π

∞∑
n=0

1
2n + 1

exp
(
− (2n+1)2 π 2

2a2 t
)

sin
( (2n+1)πx

a

)
. (7.15)

Therefore (7.15) is an alternative representation of the probability in (7.14). For practical
purposes this series is more useful when t is large, as the convergence is faster, whereas
the series in the theorem converges fast only for small values of t > 0.

We now prove an elliptic, or time-stationary, version of the Feynman–Kac formula. This
will enable us to describe the distribution of the total time spent by a transient Brownian
motion in unit ball in terms of a Laplace transform.

Theorem 7.46 Let d � 3 and V : Rd → [0,∞) be bounded. Define

h(x) := Ex

[
exp
(
−
∫ ∞

0
V (B(t)) dt

)]
.

Then h : Rd → [0,∞) satisfies the equation

h(x) = 1 −
∫

G(x, y)V (y)h(y) dy for all x ∈ Rd .

Remark 7.47 Informally, the integral equation in Theorem 7.46 implies 1
2 ∆h = V h,

which is also what one gets from letting t ↑ ∞ in Theorem 7.43. See also Exercise 2.20
for a converse result in a similar spirit. �

Proof. Define the ‘resolvent operator’

RV
λ f(x) :=

∫ ∞

0
e−λtEx

[
f(B(t)) e−

∫ t
0 V (B (s)) ds

]
dt .

Using the fundamental theorem of calculus in the second step we obtain

R0
λf(x)−RV

λ f(x) = Ex

∫ ∞

0
dt e−λt−

∫ t
0 V (B (s)) ds f(B(t))

(
e
∫ t

0 V (B (s)) ds − 1
)

= Ex

∫ ∞

0
dt e−λt−

∫ t
0 V (B (s)) ds f(B(t))

∫ t

0
V (B(s)) e

∫ s
0 V (B (r)) dr ds .

Using Fubini’s theorem and the Markov property, we may continue with

= Ex

∫ ∞

0
ds e−λs V (B(s))

∫ ∞

0
dt exp

(
− λt −

∫ t

0
V (B(s + u)) du

)
f(B(s + t))

= Ex

∫ ∞

0
ds e−λsV (B(s))RV

λ f(B(s)) = R0
λ

(
V RV

λ f
)
(x) .

The function h is related to the resolvent operator by the equation

h(x) = lim
λ↓0

λRV
λ 1(x) .
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Letting f ≡ 1 we obtain 1 − λRV
λ 1 = λR0

λ

(
V RV

λ 1
)
, and as λ ↓ 0 we get

1 − h(x) = R0
0
(
V h
)
(x) =

∫
G(x, y)V (y)h(y) dy .

We use Theorem 7.46 to give an independent proof of the three-dimensional case of the
Ciesielski–Taylor identity, which we have obtained from random walk considerations in
Theorem 5.35. Key to this is the following proposition.

Proposition 7.48 For a standard Brownian motion {B(t) : t � 0} in dimension three let
T =
∫∞

0 1{B(t) ∈ B(0, 1)} dt be the total occupation time of the unit ball. Then

E
[
e−λT
]

= sech(
√

2λ) .

Proof. Let V (x) = λ1B(0,1) and define h(x) = Ex [e−λT ] as in Theorem 7.46. Then

h(x) = 1 − λ

∫
B(0,1)

G(x, y)h(y) dy for all x ∈ Rd .

Clearly, we are looking for a rotationally symmetric function h. The integral on the
right can therefore be split into two parts: First, the integral over B(0, |x|), which is the
Newtonian potential due to a symmetric mass distribution on B(0, |x|) and therefore re-
mains unchanged if the same mass is concentrated at the origin. Second, the integral over
B(0, 1)\B(0, |x|), which is harmonic on the open ball B(0, |x|) with constant value on the
boundary, so itself is constant. Hence, for x ∈ B(0, 1), to

1 − h(x) =
λ

2π|x|

∫
B(0,|x|)

h(y) dy + λ

∫
B(0,1)\B(0,|x|)

h(y)
2π|y| dy.

With u(r) = rh(x) for |x| = r we have, for 0 < r < 1,

r − u(r) = 2λ
∫ r

0
su(s) ds + 2λr

∫ 1

r

u(s) ds ,

and by differentiation u′′ = 2λu on (0, 1). Hence

u(r) = Ae
√

2λr + Be−
√

2λr .

The boundary conditions u(0) = 0 and u′(1) = 1 give A = 1/(
√

2λ(e
√

2λ + e−
√

2λ)) and
B = −A. Then

h(0) = lim
r↓0

u(r)
r

= 1 − 2λ

∫ 1

0
u(r) dr

= 1 − A
√

2λ
(
e
√

2λ + e−
√

2λ − 2
)

=
2

e
√

2λ + e−
√

2λ
= sech(

√
2λ) ,

as required to complete the proof.

Recall that the Ciesielski–Taylor identity, stated in Theorem 5.35, states that the first exit
time from the unit ball by a standard Brownian motion in dimension one and the total
occupation time of the unit ball by a standard Brownian motion in dimension d = 3 have
the same distribution.
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Proof of the Ciesielski–Taylor identity. The Laplace transform of the first exit time
from the unit interval (−1, 1) is given in Exercise 2.18. It coincides with the Laplace trans-
form of T given in Proposition 7.48. Hence the two distributions coincide.

Exercises

Exercise 7.1. S Show that for F ∈ D[0, 1] the Paley–Wiener integral
∫ 1

0 F ′ dB of Lemma 1.41
almost surely agrees with the stochastic integral of Definition 7.8.

Exercise 7.2. S Suppose {H(s, ω) : s � 0 , ω ∈ Ω} is progressively measurable and
{B(t) : t � 0} a linear Brownian motion. Show that for any stopping time T with

E
[ ∫ T

0
H(s)2 ds

]
< ∞,

we have

(a) E
[ ∫ T

0
H(s) dB(s)

]
= 0,

(b) E
[( ∫ T

0
H(s) dB(s)

)2]
= E
[ ∫ T

0
H(s)2 ds

]
.

Exercise 7.3. Suppose that f : [0, 1] → R is in the Dirichlet space, i.e. f(t) =
∫ t

0 f ′(s) ds

for all t ∈ [0, 1] and f ′ ∈ L2(0, 1). Then, almost surely,∫ 1

0
f ′(s) dB(s) = lim

n→∞
n

n∑
j=0

(
f
(

j+1
n

)
− f
(

j
n

))(
B
(

j+1
n

)
− B
(

j
n

))
.

Exercise 7.4. S Give a detailed proof of the multidimensional Itô formula, Theorem 7.15.

Exercise 7.5. S Give an alternative proof of Theorem 2.37 based on a conformal mapping
of the halfplanes {(x, y) : x > t} onto the unit disk, which exploits our knowledge of har-
monic measure on spheres.

Exercise 7.6. S Let {B(t) : t � 0} be a planar Brownian motion. Show that, if θ(t) is the
continuous determination of the angle of B(t), we have, almost surely,

lim inf
t↑∞

θ(t) = −∞ and lim sup
t↑∞

θ(t) = ∞.

Exercise 7.7. Formalise and prove the statement that, for every ε > 0, a planar Brownian
motion winds around its starting point infinitely often in any time interval [0, ε].
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Exercise 7.8. Show that, for simple random walk {Sn : n = 0, 1, . . .} on the integers we
have the following analogue of Tanaka’s formula: For every a ∈ Z, almost surely,

|Sn − a| − |S0 − a| =
n−1∑
j=0

sign(Sj − a)
[
Sj+1 − Sj

]
+ La(n),

where La(n) =
∑n−1

j=0 1{Sj = a} is the number of visits to a before time n.

Exercise 7.9. S Show that under suitable conditions, stochastic integrals and ordinary inte-
grals can be interchanged: Suppose h : R → [0,∞) is a continuous function with compact
support. Then, almost surely,∫ ∞

−∞
h(a)
(∫ t

0
sign(B(s)− a) dB(s)

)
da =

∫ t

0

(∫ ∞

−∞
h(a) sign(B(s)− a) da

)
dB(s).

Hint. Write the outer integral on the left hand side as a limit of Riemann sums and use
that the integrand has a continuous modification.

Exercise 7.10.

(a) Show that the function u : (0,∞) × (0,∞) → R given by

u(t, x) =

√
2
πt

∫ x

0
e−

z 2
2 t dz

solves the heat equation on the domain (0,∞) with zero dissipation rate and con-
stant initial condition f = 1.

(b) Infer from this that, for x > 0,

Px

{
B(s) > 0 for all s � t

}
=

√
2
πt

∫ x

0
e−

z 2
2 t dz.

(c) Explain how the result of (b) could have been obtained from the reflection principle.

Exercise 7.11. Prove the Erdős–Kac theorem: Let X1 ,X2 , . . . be a sequence of inde-
pendent identically distributed random variables with mean zero and variance one. Let
Sn = X1 + · · · + Xn and Tn = max{|S1 |, . . . , |Sn |}. Then

lim
n→∞

P{Tn < x} =
4
π

∞∑
n=0

(−1)n

2n + 1
exp
(
− (2n + 1)2π2

8x2

)
.

Exercise 7.12. S Let T be the total occupation time in the unit ball by a standard Brownian
motion in R3 . Show that

(a) lim
x↓0

√
1
x e

1
2 x P
{
T < x

}
=
√

8
π ,

(b) lim
x↑∞

e
π 2
8 x P
{
T > x

}
= 4

π .
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Notes and comments

The first stochastic integral with a random integrand was defined by Itô [It44] but stochas-
tic integrals with respect to Brownian motion with deterministic integrands were known to
Paley, Wiener and Zygmund already in 1933, see [PWZ33] and Section 1.4. Our stochastic
integral is by far not the most general construction possible, the complete theory of Itô in-
tegration is one of the cornerstones of modern probability. Interesting further material can
be found, for example, in the books of McKean [McK69], Chung and Williams [CW90],
Rogers and Williams [RW00a, RW00b] or Durrett [Du96]. Itô’s formula, first proved in
[It51], plays a central rôle in stochastic analysis, quite like the fundamental theorem of
calculus does in real analysis. The version we give is designed to minimise the technical
effort to get to the desired applications, but a lot more can be said if the discussion is ex-
tended to the concept of semimartingales, the references above provide the background for
this. The formula is also at the heart of the theory of stochastic differential equations, a
recommended introduction into this theory is Øksendal [Ok03] and a standard reference is
Ikeda and Watanabe [IW89].

Conformal invariance was known to Lévy and a sketch of a proof is given in the book
[Le48]. This fact does not extend to higher dimensions d � 3. There are not many
interesting conformally invariant maps anyway, but essentially the only one, inversion on a
sphere, fails. This is easy to see, as the image of Brownian motion stopped on the boundary
of the punctured domain B(0, 1) \ {0} has zero probability of not hitting B(0, 1).

There is rich interaction between complex analysis and Brownian motion, which re-
lies on conformal invariance. The conformal invariance of harmonic measure, which we
proved in Theorem 7.23, is not easy to obtain by purely analytical means. Another result
from complex analysis, which can be proved effectively using Brownian motion is Picard’s
theorem, see Davis [Da75] for the original paper or Durrett [Du84] for an exposition. The
theorem states that a nonconstant entire function has a range which omits at most one point
from the complex plane. Only very recently a completely new perspective on conformal
invariance has opened up through the theory of conformally invariant random curves de-
veloped by Lawler, Schramm, and Werner, see e.g. [We04].

The skew-product representation has many nice applications, for more examples see Le
Gall [LG92], which also served as the backbone of our exposition. The first result about the
windings of Brownian motion is Spitzer’s law, due to F. Spitzer in [Sp58]. There are plenty
of extensions of it, including pathwise laws, see Shi [Sh98] or [Mö02], windings around
more than one point, and joint laws of windings and additive functionals, see Pitman and
Yor [PY86]. A discussion of some problems related to this can be found in Yor [Yo92].

Spitzer’s paper [Sp58] also initiated substantial research on Brownian motion in a cone.
He shows that, if τ is the first exit time of a planar Brownian motion from a cone with
opening angle α, then Eτp < ∞ if and only if p < π

2α . This has been extended to higher
dimensions by Burkholder [Bu77] and to more general cones, for example, by Bañuelos
and Smits [BS97]. The skew-product representation plays an important rôle in the latter
paper, which also contains a formula for the last time before one, when a Brownian motion
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was in a cone, having started at its vertex. This is a natural generalisation of the first arcsine
law to more than one dimension.

Tanaka’s formula offers many fruitful openings, among them the Meyer–Tanaka for-
mula, which generalises Itô’s formula to general convex functions, see the original work of
Meyer [Me76] or the book by Durrett [Du96], and the theory of local times for semimartin-
gales, which is presented in [RY94]. The formula goes back to the paper by Tanaka [Ta63].
Alternative to our approach, Tanaka’s formula can be taken as a definition of Brownian lo-
cal time. Then continuity can be obtained from the Kolmogorov-Čentsov theorem and
moment estimates based on the Burkholder–Davis–Gundy inequalities, see for example
the book by Karatzas and Shreve [KS91].

The Feynman–Kac formula is a classical application in stochastic calculus, which is
discussed in more detail in [KS91]. It can be exploited to obtain an enormous variety
of distributional properties of Brownian motion, see Borodin and Salminen [BS02] for
(literally!) thousands of examples. The converse, application of Brownian motion to study
equations, is of course equally natural. Del Moral [DM04] gives an impressive account of
the wide applicability of this formula and its variants.

The identity between the two formulas describing the probability that a Brownian mo-
tion stays between two barriers serves as a standard example for the Poisson summation
formula, see X.5 and XIX.5 in Feller [Fe66]. According to Feller it was discovered origi-
nally in connection with Jacobi’s theory of transformations of theta functions, see Satz 277
in Landau [La09]. The ‘iterated reflection’ argument, which we have used to determine
the transition density of a Brownian motion with absorbing barriers may also be used to
determine transition densities for a Brownian motion which is reflected at the barriers, see
X.5 in [Fe66]. In higher dimensions Brownian motion reflected at the boundaries of a
domain is an interesting subject, not least because of its connections to partial differential
equations with Neumann boundary conditions, see, for example, Brosamler [Br76].

The Erdős–Kac law plays an important rôle for the Kolmogorov–Smirnov test known
from non-parametric statistics, see e.g. [Fe68]. Plenty of proofs of the arcsine law are
known: Besides the two provided in this book, there is also an approach of Kac [Ka51]
based on the Meyer–Tanaka formula, and Rogers and Williams, see III.24 in [RW00a],
provide a proof based on local time theory.

The Ciesielski–Taylor identity was found by Ciesielski and Taylor in 1962 by an ex-
plicit calculation, see [CT62]. It extends to arbitrary dimensions d, stating that the law
of the exit times from the unit ball by a standard Brownian motion in dimension d equals
the law of the total occupation time in the unit ball by the standard Brownian motion in
dimension d + 2. The argument given here is taken from Spitzer [Sp76], see also III.20
in Rogers and Williams [RW00a]. Many proofs of this fact are known, see for example
Yor [Yo92], but none provides a geometrically intuitive explanation and it may well be that
none exists. The tail estimates in Exercise 7.12 are crucial ingredients for the Hausdorff
dimension results of Dembo et al. [DPRZ00a, DPRZ00b].
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Potential theory of Brownian motion

In this chapter we develop the key facts of the potential theory of Brownian motion. This
theory is centred around the notions of a harmonic function, the energy of a measure, and
the capacity of a set. The probabilistic problem at the heart of this chapter is to find the
probability that Brownian motion visits a given set.

8.1 The Dirichlet problem revisited

We now take up the study of the Dirichlet problem again and ask for sharp conditions on the
domain which ensure the existence of solutions, which allow us to understand the problem
for domains with very irregular boundaries, like for example connected components of
the complement of a planar Brownian curve. For this task, stochastic integrals and Itô’s
formula will be a helpful tool. As a warm-up, we suggest to use these tools to give a
probabilistic proof of the mean value property of harmonic functions, see Exercise 8.1.

Recall from Example 3.15 that the existence of a solution of the Dirichlet problem may be
in doubt by the fact that Brownian motion started at the boundary ∂U may not leave the
domain U immediately. Indeed, we show here that this is the only problem that can arise.

Definition 8.1. A point x ∈ A is called regular for the closed set A ⊂ Rd if the first
hitting time TA = inf{t > 0: B(t) ∈ A} satisfies Px{TA = 0

}
= 1. A point which is not

regular is called irregular. �

Remark 8.2 In the case d = 1 we have already seen that for any starting point x ∈ R,
almost surely a Brownian motion started in x returns to x in every interval [0, ε) with
ε > 0. Hence every point is regular for any set containing it. �

We already know a condition which implies that a point is regular, namely the Poincaré
cone condition introduced in Chapter 3.

Theorem 8.3 If the domain U ⊂ Rd satisfies the Poincaré cone condition at x ∈ ∂U , then
x is regular for the complement of U .

Proof. Suppose x ∈ ∂U satisfies the condition, then there is an open cone V with base x

and angle α > 0, such that V ∩ B(x, r) ⊂ U c for a suitable r > 0. Then the first exit time
τU for the domain satisfies

224
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Px{τU � t} � Px{B(t) ∈ V ∩ B(x, r)}
� Px{B(t) ∈ V } − Px{B(t) �∈ B(x, r)}
= Px{B(1) ∈ V } − Px{B(1) �∈ B(x, r/

√
t)},

where Brownian scaling was used in the last step. For t ↓ 0 the subtracted term goes to
zero, and hence Px{τU = 0} = limt↓0 Px{τU � t} � P{B(1) ∈ V } > 0. By Blumen-
thal’s zero-one law we have Px{τU = 0} = 1, in other words x is regular for U c .

Remark 8.4 An alternative criterion for regularity, with a similar proof, will be given in
Exercise 8.2. At the end of the present chapter we will give a sharp condition for a point
to be regular, namely Wiener’s test of regularity. �

Theorem 8.5 (Dirichlet Problem) Suppose U ⊂ Rd is a bounded domain and let ϕ be a
continuous function on ∂U . Define τ = min{t � 0: B(t) ∈ ∂U}, and define u : U → R
by

u(x) = Ex

[
ϕ(B(τ))

]
.

(a) A solution to the Dirichlet problem exists if and only if the function u is a solution
to the Dirichlet problem with boundary condition ϕ.

(b) u is a harmonic function on U with u(x) = ϕ(x) for all x ∈ ∂U and is continuous
at every point x ∈ ∂U that is regular for the complement of U .

(c) If every x ∈ ∂U is regular for the complement of U , then u is the unique continuous
function u : U → R which is harmonic on U such that u(x) = ϕ(x) for all x ∈ ∂U .

Proof. For the proof of (a) let v be any solution of the Dirichlet problem on U with
boundary condition ϕ. Define open sets Un ↑ U by

Un =
{
x ∈ U : |x − y| > 1

n for all y ∈ ∂U
}
.

Let τn be the first exit time of Un and τ the first exit time from U , which are stopping
times. By the multidimensional version of Itô’s formula, we obtain

v(B(t∧τn )) = v(B(0))+
d∑

i=1

∫ t∧τn

0
∂xi v(B(s)) dBi(s)+ 1

2

d∑
i=1

∫ t∧τn

0
∂xi xi v(B(s)) ds .

Note that ∂xi
v is bounded on the closure of Un , and thus everything is well-defined. The

last term vanishes as ∆v(x) = 0 for all x ∈ U . Taking expectations the second term on
the right also vanishes, by Exercise 7.2, and we get that

Ex

[
v(B(t ∧ τn ))

]
= Ex

[
v(B(0))

]
= v(x), for x ∈ Un .

Note that v, and hence the integrand on the left hand side, are bounded. Moreover, it is
easy to check using boundedness of U and a reduction to the one-dimensional case, that τ

is almost surely finite. Hence, as t ↑ ∞ and n → ∞, bounded convergence yields that the
left hand side converges to Ex [v(B(τ))] = Ex [ϕ(B(τ))]. The result follows, as the right
hand side depends neither on t nor on n.
The harmonicity statement of (b) is included in Theorem 3.8, and u = ϕ on ∂U is obvious
from the definition. It remains to show the continuity claim. For a regular x ∈ ∂U we now
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show that if Brownian motion is started at a point in U , which is sufficiently close to x, then
with high probability the Brownian motion hits U c , before leaving a given ball B(x, δ).
We start by noting that, for every t > 0 and η > 0 the set

O(t, η) :=
{
z ∈ U : Pz{τ � t

}
> η
}

is open. Indeed, if z ∈ O(t, η), then for some small s > 0 and δ > 0 and large M > 0, we
have

Pz

{
|B(s) − z| � M, B(u) ∈ U c for some s � u � t

}
> η + δ.

By the Markov property the left hand side above can be written as∫
B(z ,M )

Pξ

{
B(u) ∈ U c for some 0 � u � t − s

}
p(s, z, ξ) dξ.

Now let ε > 0 be sufficiently small, so that |p(s, z, ξ) − p(s, y, ξ)| < δ/L(B(0,M)) for
all |z − y| < ε and ξ ∈ Rd . Then we have

Py{τ � t
}

� Py

{
B(u) ∈ U c for some s � u � t

}
> η,

hence the ball B(z, ε) is in O(t, η), which therefore must be open. Given ε > 0 and δ > 0
we now choose t > 0 small enough, such that for τ ′ = inf{s > 0: B(s) �∈ B(x, δ)} we
have

Pz

{
τ ′ < t

}
< ε/2 for all |x − z| < δ/2.

By regularity we have x ∈ O(t, 1−ε/2), and hence we can choose 0 < θ < δ/2 to achieve
B(x, θ) ⊂ O(t, 1 − ε/2). We have thus shown that,

|x − z| < θ ⇒ Pz

{
τ < τ ′} > 1 − ε. (8.1)

To complete the proof, let ε > 0 be arbitrary. Then there is a δ > 0 such that |ϕ(x) −
ϕ(y)| < ε for all y ∈ ∂U with |x − y| < δ. Choose θ as in (8.1). For all z ∈ U with
|z − x| < δ ∧ θ we get

|u(x) − u(z)| =
∣∣Ez [ϕ(x) − ϕ(B(τ))]

∣∣ � 2‖ϕ‖∞ Pz

{
τ ′ < τ} + ε � ε (2‖ϕ‖∞ + 1).

As ε > 0 can be arbitrarily small, u is continuous at x ∈ ∂U . Finally, part (c) follows
easily from (b) and the maximum principle.

A further classical problem of partial differential equations, the Poisson problem, is related
to Brownian motion in a way quite similar to the Dirichlet problem.

Definition 8.6. Let U ⊂ Rd be a bounded domain and g : U → R be continuous. A
continuous function u : U → R, which is twice continuously differentiable on U is said to
be the solution of Poisson’s problem for g if

• u(x) = 0 for all x ∈ ∂U , and

• − 1
2 ∆u(x) = g(x) for all x ∈ U . �

A probabilistic approach to the Poisson problem will be developed in Exercises 8.3 and 8.4.
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Remark 8.7

(a) For g bounded, any solution u of Poisson’s problem for g equals

u(x) = Ex

[ ∫ T

0
g(B(t)) dt

]
for x ∈ U ,

where T := inf{t > 0: B(t) �∈ U}. Conversely, if g is Hölder continuous and
every x ∈ ∂U is regular for the complement of U , then the function u defined by
the displayed equation solves the Poisson problem for g.

(b) If u solves Poisson’s problem for g ≡ 1 in a domain U ⊂ Rd , then u(x) = Ex [T ]
is the average time it takes a Brownian motion started in x to leave the set U . �

8.2 The equilibrium measure

In Chapter 3 we have studied the distribution of the location of the first entry of a Brownian
motion into a closed set Λ, the harmonic measure. In the case of a transient (or killed)
Brownian motion there is a natural counterpart to this by looking at the distribution of
the position of the last exit from a closed set. This leads to the notion of the equilibrium
measure, which we discuss and apply in this section.
To motivate the next steps we first look at a simple random walk {Xn : n ∈ N} in d � 3.
Let A ⊂ Zd be a bounded set, then by transience the last exit time γ = max{n ∈ N : Xn ∈
A} is finite on the event that the random walk ever hits A. Note that γ is not a stopping
time. Then, for any x ∈ Zd and y ∈ A,

Px

{
X hits A and Xγ = y

}
=

∞∑
k=0

Px

{
Xk = y,Xj �∈ A for all j > k

}
=

∞∑
k=0

Px

{
Xk = y}Py{γ = 0},

and introducing the Green’s function G(x, y) =
∑∞

k=0 Px

{
Xk = y} we get, for all y ∈ A,

Px

{
X hits A and Xγ = y

}
= G(x, y) Py{γ = 0}.

This holds also, obviously, for all y ∈ Zd \ A. Summing over all y ∈ Zd gives

Px

{
X ever hits A

}
=
∑
y∈Zd

G(x, y)Py{γ = 0}.

The formula allows us to describe the probability of ever hitting a set as a potential with
respect to the measure y �→ Py{γ = 0}, which is supported on A. Our aim in this section
is to extend this to Brownian motion.
Note that the argument above relied heavily on the transience of the random walk. This is
no different in the case of Brownian motion. In order to include the two-dimensional case
we ‘kill’ the Brownian motion, either when it exits a large domain or at an independent
exponential stopping time. Note that both possibilities preserve the strong Markov prop-
erty, in the case of exponential killing this is due to the lack-of-memory property of the
exponential distribution.
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To formally explain our setup we now suppose that {B(t) : 0 � t � T} is a transient
Brownian motion in the sense of Chapter 3. Recall that this means that {B(t) : 0 � t � T}
is a d-dimensional Brownian motion killed at time T , and one of the following holds:

(1) d � 3 and T = ∞,
(2) d � 2 and T is an independent exponential time,
(3) d � 2 and T is the first exit time from a bounded domain D containing 0.

We use the convention that D = Rd in cases (1) and (2). In all cases, transient Brownian
motion is a Markov process and, by Theorem 3.30 its transition kernel has a density, which
we denote by p∗(t, x, y). Note that in case (2,3) the function p∗(t, x, y) is only a subprob-
ability density because of the killing, indeed it is strictly smaller than the corresponding
density without killing. The associated Green’s function

G(x, y) =
∫ ∞

0
p∗(t, x, y) dt,

is always well-defined and finite for all x �= y.

Theorem 8.8 (Last exit formula) Suppose {B(t) : 0 � t � T} is a transient Brownian
motion and Λ ⊂ Rd a compact set. Let

γ = sup
{
t ∈ (0, T ] : B(t) ∈ Λ

}
be the last exit time from Λ, using the convention γ = 0 if the path does not hit Λ. Then
there exists a finite measure ν on Λ called the equilibrium measure, such that, for any
Borel set A ⊂ Λ and x ∈ D,

Px

{
B(γ) ∈ A, 0 < γ � T

}
=
∫

A

G(x, y) dν(y).

Remark 8.9 Observe that, given Λ, the equilibrium measure is uniquely determined by
the last exit formula. The proof of Theorem 8.8 is similar to the simple calculation in the
discrete case, the equilibrium measure is constructed as limit of the measure ε−1Py{0 <

γ � ε} dy. �

Proof of Theorem 8.8. Let Uε be a uniform random variable on [0, ε], independent of the
Brownian motion and the killing time. Then, for any bounded and continuous f : D → R,

Ex

[
f(B(γ − Uε)) 1{Uε < γ}

]
= ε−1

∫ ∞

0
Ex

[
f(B(t))1{t < γ � t + ε}

]
dt

= ε−1
∫ ∞

0
Ex

[
f(B(t))1{t � T}PB (t){0 < γ � ε}

]
dt .

Using the notation ψε(x) = ε−1Px{0 < γ � ε} this equals∫ ∞

0
Ex

[
f · ψε(B(t))1{t � T}

]
dt =
∫ ∞

0

∫
D

p∗(t, x, y) f · ψε(y) dy dt

=
∫

D

f(y)G(x, y)ψε(y) dy.
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This means that the subprobability measure ηε defined by

ηε(A) = Px

{
B(γ − Uε) ∈ A, Uε < γ � T

}
has the density G(x, y)ψε(y). Therefore also,

G(x, y)−1 dηε(y) = ψε(y) dy. (8.2)

Observe now that, by continuity of the Brownian path, limε↓0 ηε = η0 in the sense of weak
convergence, where the measure η0 on Λ is defined by

η0(A) = Px

{
B(γ) ∈ A, 0 < γ � T

}
,

for all Borel sets A ⊂ Λ. As, for fixed x ∈ D, the function y �→ G(x, y)−1 is continuous
and bounded on Λ, we infer that, in the sense of weak convergence

lim
ε↓0

G(x, y)−1 dηε = G(x, y)−1 dη0 .

By (8.2) the measure ψε(y) dy therefore converges weakly to a limit measure ν, which
does not depend on x, and satisfies G(x, y)−1 dη0(y) = dν(y) for all x ∈ D. As η0 has
no atom in x we therefore obtain that dη0(y) = G(x, y) dν(y) for all x ∈ D. Integrating
over any Borel set A gives the statement.

A direct representation of the equilibrium measure as a last exit distribution can be obtained
in cases (1) and (3) when the Brownian motion is started at a random point.

Theorem 8.10 Suppose Λ is a compact nonpolar set and

Λ ⊂ B(z, r).

Let {B(t) : 0 � t � T} be a transient Brownian motion started uniformly on ∂B(z, r) and
stopped as in case (1) or as in (3) with D = B(z,R) for R > r. Let γ be the last exit
time from Λ, as in Theorem 8.8. Then the equilibrium measure ν satisfies, for any Borel
set A ⊂ Λ,

ν(A)
ν(Λ)

= P
{
B(γ) ∈ A

∣∣ 0 < γ � T
}
.

The proof follows from the following interesting lemma.

Lemma 8.11 In the setup of Theorem 8.10, the value of the integral∫
G(x, y) dσz,r (x)

is independent of the choice of y ∈ B(z, r).

Proof. By Theorem 3.35 the mapping y �→ I(y) =
∫

G(x, y) dσz,r (x) is harmonic on
B(z, r). Fix a point y ∈ B(z, r) and let s = |y− z|, so that s < r. By rotational invariance
we have I(w) = I(y) for all w ∈ ∂B(z, s). Hence, I(z) =

∫
I(w) d�z,s(w) = I(y).
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Proof of Theorem 8.10. Take the last exit formula from Theorem 8.8 and integrate the
variable x with respect to σz,r . Using Fubini’s theorem, we obtain

P
{
B(γ) ∈ A, 0 < γ � T

}
=
∫

Px

{
B(γ) ∈ A, 0 < γ � T

}
dσz,r (x)

=
∫

A

∫
G(x, y) dσz,r (x) dν(y) = c ν(A),

where c is the joint value of the integrals in Lemma 8.11. Dividing both sides by P{0 <

γ � T} = c ν(Λ) gives the result.

As a first application we give an estimate for the probability that Brownian motion in Rd ,
for d � 3, hits a set contained in an annulus around x.

Corollary 8.12 Suppose {B(t) : t � 0} is Brownian motion in Rd , with d � 3, and
Λ ⊂ B(x,R) \ B(x, r) is compact. Then

R2−dν(Λ) � Px

{
{B(t) : t � 0} ever hits Λ

}
� r2−dν(Λ),

where ν is the equilibrium measure on Λ.

Proof. By Theorem 8.8 in the case A = Λ we have

Px

{
{B(t) : t � 0} ever hits Λ

}
=
∫

Λ
G(x, y) dν(y).

Recall that G(x, y) = |x − y|2−d and use that R2−d � G(x, y) � r2−d .

Theorem 8.5 makes us interested in statements claiming that the set of irregular points of
a set A is small. The following fundamental result will play an important rôle in the next
chapter.

Theorem 8.13 Suppose A ⊂ Rd , d � 2, is a closed set and let Ar be the set of regular
points for A. Then, for all x ∈ Rd ,

Px

{
B(t) ∈ A \ Ar for some t > 0

}
= 0,

in other words, the set of irregular points is polar for Brownian motion.

For the proof of Theorem 8.13 we have to develop a tool of independent interest, the
strong maximum principle. A special case of this is the following statement, from which
Theorem 8.13 follows without too much effort.

Theorem 8.14 Let {B(t) : t � 0} be a d-dimensional Brownian motion, and T an indepen-
dent exponential time. Let Λ ⊂ Rd be a compact set and define τ = inf{t > 0: B(t) ∈ Λ}.
If for some ϑ < 1, we have Px

{
τ < T

}
� ϑ for all x ∈ Λ, then Px

{
τ < T

}
� ϑ for all

x ∈ Rd .
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Proof of Theorem 8.13. We can write the set of irregular points of A as a countable
union of compact sets

A \ Ar =
∞⋃

�=1

∞⋃
m=1

∞⋃
n=1

{
x ∈ A ∩ B(0,m) : Px{τ(A) � T (n)

}
� 1 − 1

�

}
,

where T (n) is an independent exponential time with mean 1/n and τ(A) is the first hitting
time of A. It suffices to prove that Brownian motion does not hit any fixed set in the union,
so let �,m, n be fixed and take T = T (n), ϑ = 1 − 1/� and a compact set

Λ =
{

x ∈ A ∩ B(0,m) : Px{τ(A) � T
}

� ϑ
}

.

If x ∈ Λ, then, writing τ for the first hitting time of Λ ⊂ A,

Px{τ � T
}

� Px{τ(A) � T
}

� ϑ,

for all x ∈ Λ and therefore by Theorem 8.14 for all x ∈ Rd .
Now suppose x ∈ Rd is the arbitrary starting point of a Brownian motion {B(t) : t � 0}
and Λ(ε) = {y ∈ Rd : |y − z| � ε for some z ∈ Λ}. Define τε as the first hitting time of
Λ(ε). Clearly, as Λ is closed,

lim
ε↓0

Px

{
τε � T

}
= Px

{
τ � T

}
.

Moreover, by the strong Markov property applied at the stopping time τε and the lack of
memory property of exponential random variables,

Px

{
τ � T

}
� Px

{
τε � T

}
max
z∈Λε

Pz

{
τ � T

}
� Px

{
τε � T

}
ϑ,

and letting ε ↓ 0 we obtain

Px

{
τ � T

}
� Px

{
τ � T

}
ϑ.

As ϑ < 1 this implies Px

{
τ � T

}
= 0, and as T is independent of the Brownian motion

and can take arbitrarily large values with positive probability, we infer that the Brownian
motion started in x never hits Λ.

The idea in the proof of Theorem 8.14 is to use the equilibrium measure ν to express
Px

{
τ < T

}
as a potential, which means that, denoting the parameter of the exponential

by λ > 0,

Px

{
τ < T

}
=
∫

Gλ (x, y) dν(y),

where Gλ is the Green’s function for the Brownian motion stopped at time T , i.e.

Gλ (x, y) =
∫ ∞

0
e−λt p(t, x, y) dt.

Recall that for any fixed y the function x �→ Gλ(x, y) is subharmonic on Rd \ {y}, by
Theorem 3.35 (iii), and this implies that

Uλν(x) =
∫

Gλ(x, y)dν(y)
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is subharmonic on Λc . If Uλν was also continuous on the closure of Λc , then the maximum
principle in Theorem 3.5 would tell us that Uλν has its maxima on the boundary ∂Λ and
this would prove Theorem 8.14. However we do not know the continuity of Uλν on the
closure of Λc , so we need a strengthening of the maximum principle.

We now let K be a kernel, i.e. a measurable function K : Rd ×Rd → [0,∞]. Suppose that
x �→ K(x, y) is subharmonic outside {y}, and that K(x, y) is a continuous and decreasing
function of the distance |x − y|. For any finite measure µ without atoms let

Uµ(x) =
∫

K(x, y) dµ(y)

be the potential of µ at x with respect to the kernel K.

Theorem 8.15 (Strong maximum principle) If µ is supported by the compact set Λ, then,
for any ϑ > 0, we have the equivalence

Uµ(x) � ϑ for all x ∈ Λ ⇔ Uµ(x) � ϑ for all x ∈ Rd .

Remark 8.16 Note that this completes the proof of Theorem 8.14 and hence of Theo-
rem 8.13 by applying it to the special case of the kernel K = Gλ and the equilibrium
measure. �

The proof we present relies on a beautiful geometric lemma.

Lemma 8.17 There is a number N depending only on the dimension d such that the fol-
lowing holds: For every x ∈ Rd and every closed set Λ there are N nonoverlapping closed
cones V1 , . . . , VN with vertex x such that, if ξi is a point of Λ ∩ Vi closest to x, then any
point y ∈ Λ with y �= x is no further to some ξi than to x.

x

y

ξ
π
3

Λ

Fig. 8.1. The geometric argument in Lemma 8.17.
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Proof. The proof is elementary by looking at Figure 8.1: Let N be the number of closed
cones with circular base, vertex in the origin and opening angle π/3 needed to cover Rd .
Replace each of the cones in this collection by a subcone (not necessarily with circular
base) such that the collection still covers Rd but the cones are non-overlapping. Let V be
a shift of such a cone with vertex in x, ξ be a point in V ∩ Λ which is closest to x, and
y ∈ Λ ∩ V be arbitrary. The triangle with vertices in x, ξ and y has at most angle π/3 at
the vertex x, and hence by the geometry of triangles, the distance of y and ξ is no larger
than the distance of y and x.

Proof of Theorem 8.15. Of course, only the implication ⇒ needs proof. Take µ

satisfying Uµ(x) � ϑ for all x ∈ Λ. Note that, by monotone convergence,

Uµ(x) = lim
δ↓0

∫
|x−y |>δ

K(x, y) dµ(y). (8.3)

Hence, for a given η > 0, by Egorov’s theorem, there exists a compact subset F ⊂ Λ such
that, µ(F ) > µ(Λ) − η and the convergence in (8.3) is uniform on F . If we define µ1 to
be the restriction of µ to F , then we can find, for every ε > 0 some δ > 0 such that

sup
x∈F

∫
|x−y |�δ

K(x, y) dµ1(y) < ε.

Now let {xn} ⊂ Rd be a sequence converging to x0 ∈ F . Then, as the kernel K is
bounded on sets bounded away from the diagonal,

lim sup
n→∞

Uµ1 (xn ) �
∫

K(x0 , y) dµ1(y) + lim sup
n→∞

∫
|y−xn |�δ

K(xn , y) dµ1(y).

We now want to compare K(xn , y) with K(ξ, y) for ξ ∈ F . Here we use Lemma 8.17 for
the point x = xn and obtain ξ1 , . . . , ξN ∈ F such that

K(xn , y) �
N∑

i=1

K(ξi , y),

where we have used that K depends only on the distance of the arguments and is decreasing
in it. We thus have∫

|y−xn |�δ

K(xn , y) dµ1(y) �
N∑

i=1

∫
|y−ξi |�δ

K(ξi , y) dµ1(y) � Nε.

As ε > 0 was arbitrary we get

lim sup
n→∞

Uµ1 (xn ) � Uµ1 (x0).

As the converse statement

lim inf
n→∞

Uµ1 (xn ) � Uµ1 (x0)

holds obviously by Fatou’s lemma, we obtain the continuity of Uµ1 on F . Continuity of
Uµ1 on F c is obvious from the properties of the kernel and the fact that µ1 is supported
by F , so that we have continuity of Uµ1 on all of Rd . By the maximum principle, Theo-
rem 3.5, we infer that Uµ1 (x) � ϑ.
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To complete the proof let x �∈ Λ be arbitrary, and denote its distance to Λ by �. Then
K(x, y) � C(�) for all y ∈ Λ. Therefore

Uµ(x) � Uµ1 (x) + ηC(�) � ϑ + η C(�),

and the result follows by letting η ↓ 0.

8.3 Polar sets and capacities

One of our ideas to measure the size of sets in Chapter 4 was based on the notion of
capacity. While this notion appeared to be useful, but maybe a bit artificial at the time,
we can now understand its true meaning. This is linked to the notion of polarity, namely
whether a set has a positive probability of being hit by a suitably defined random set.

More precisely, we ask, which sets are polar for the range of a d-dimensional Brownian
motion {B(t) : t � 0}. Recall that a Borel set A ⊂ Rd is polar for Brownian motion if,
for all x,

Px

{
B(t) ∈ A for some t > 0

}
= 0.

In the case d = 1 we already know that only the empty set is polar, whereas by Corol-
lary 2.26 points are polar for Brownian motion in all dimensions d � 2. The general
characterisation of polar sets requires an extension of the notion of capacities to a bigger
class of kernels.

Definition 8.18. Suppose A ⊂ Rd is a Borel set and K : Rd × Rd → [0,∞] is a kernel.
Then the K-energy of a measure µ is defined to be

IK (µ) =
∫∫

K(x, y) dµ(x) dµ(y),

and the K-capacity of A is defined as

CapK (A) =
[
inf
{
IK (µ) : µ a probability measure on A

}]−1
.

Recall that the α-energy of a measure and the Riesz α-capacity Capα of a set defined in
Chapter 4 correspond to the kernel K(x, y) = |x − y|−α . �

Remark 8.19 In most of our applications the kernels are of the form K(x, y) = f(|x−y|)
for some decreasing function f : [0,∞) → [0,∞]. In this case we simply write If instead
of IK and call this the f -energy. We also write Capf instead of CapK and call this the
f -capacity. �

Theorem 8.20 (Kakutani’s theorem) A closed set Λ is polar for d-dimensional Brownian
motion if and only if it has zero f -capacity for the radial potential f defined by

f(ε) :=

{ ∣∣ log(1/ε)
∣∣ if d = 2,

ε2−d if d � 3.
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Remark 8.21 We call the kernel K(x, y) = f(|x−y|), where f is the radial potential, the
potential kernel. Up to constants, it agrees with the Green kernel in d � 3. �

Instead of proving Kakutani’s theorem directly, we aim for a stronger, quantitative result
in the framework of transient Brownian motions given in Definition 3.28. Recall that this
means that {B(t) : 0 � t � T} is a d-dimensional Brownian motion killed at time T , and
either (1) d � 3 and T = ∞, (2) d � 2 and T is an independent exponential time, or
(3) d � 2 and T is the first exit time from a bounded domain D containing the origin. This
result gives, for compact sets Λ ⊂ Rd , a quantitative estimate of

P0
{
∃0 < t < T such that B(t) ∈ Λ

}
in terms of capacities. However, even if d = 3 and T = ∞, one cannot expect that

P0
{
∃t > 0 such that B(t) ∈ Λ

}

 Capf (Λ)

for the radial potential f in Theorem 8.20. Observe, for example, that the left hand side
depends strongly on the starting point of Brownian motion, whereas the right hand side is
translation invariant. Similarly, if Brownian motion is starting at the origin, the left hand
side is invariant under scaling, i.e. remains the same when Λ is replaced by λΛ for any
λ > 0, whereas the right hand side is not. For a direct comparison of hitting probabilities
and capacities, it is therefore necessary to use a capacity function with respect to a scale-
invariant modification of the Green kernel G, called the Martin kernel, which we now
introduce.

Definition 8.22. We define the Martin kernel M : D × D → [0,∞] by

M(x, y) :=
G(x, y)
G(0, y)

for x �= y,

and otherwise by M(x, x) = ∞. �

We need the following technical proposition, which is easy to verify directly from the form
of the Green’s function G in case (1). For the other two cases we give a conceptual proof.

Proposition 8.23 For every compact set Λ ⊂ D ⊂ Rd there exists a constant C depending
only on Λ such that, for all x, y ∈ Λ and sufficiently small ε > 0,

sup
|x−z |<ε

ε−d

∫
B(y ,ε)

G(z, ξ)
G(x, y)

dξ � C.

Proof. Fix a compact set Λ ⊂ D and ε > 0 smaller than one tenth of the distance of Λ
and Dc and let x, y ∈ Λ. We abbreviate

hε(z, y) =
∫
B(y ,ε)

G(z, ξ) dξ for z ∈ D.

We first assume that |x − y| > 4ε and show that in this case

sup
|x−x̃|<ε

sup
|y−ỹ |<ε

G(x̃, ỹ) � CG(x, y). (8.4)
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With τ = inf{0 < t � T : B(t) �∈ B(x, 2ε)} we note that, for all x̃ ∈ B(x, ε),

G(x̃, y) = Ex̃

[
G(B(τ), y), τ � T

]
.

This is the average of G(· , y) with respect to the harmonic measure µ∂B(x,2ε)(x̃, · ). This
measure has a density with respect to the uniform measure on the sphere ∂B(x, 2ε), which
is bounded from above by an absolute constant. In the cases (1) and (3) this can be seen
directly from Poisson’s formula. Therefore G(x̃, y) � CG(x, y) and repetition of this
argument, introducing now ỹ ∈ B(y, ε) and fixing x̃ gives the claim.
Now look at the case |x − y| � 4ε. We first observe that, for some constant c > 0,
G(x, y) � cε2−d , which is obvious in all cases. Now let z ∈ B(x, ε). Decomposing the
Brownian path on its first exit time τ from B(x, 8ε) and denoting the uniform distribution
on ∂B(x, 8ε) by � we obtain for constants C1 , C2 > 0,

hε(z, y) � Ez [τ ∧ T ] + Ez

[
hε(B(τ), y), τ � T

]
� C1ε

2 + C2ε
d

∫
G(w, y) d�(w),

where we have used (8.4). As
∫

G(w, y) d�(w) � C3G(x, y) putting all facts together
gives hε(z, y) � C4ε

dG(x, y), as required.

The following theorem shows that (in all three cases of transient Brownian motions) Martin
capacity is indeed a good estimate of the hitting probability.

Theorem 8.24 Let {B(t) : 0 � t � T} be a transient Brownian motion and A ⊂ D

closed. Then

1
2 CapM (A) � P0{∃0 < t � T such that B(t) ∈ A} � CapM (A) (8.5)

Proof. Let µ be the (possibly sub-probability) distribution of B(τ) for the stopping time
τ = inf{0 < t � T : B(t) ∈ A}. Note that the total mass of µ is

µ(A) = P0{τ � T} = P0{B(t) ∈ A for some 0 < t � T}. (8.6)

The idea for the upper bound is that if the harmonic measure µ is nonzero, it is an obvious
candidate for a measure of finite M -energy. Recall from the definition of the Green’s
function, for any y ∈ D,

E0

∫ T

0
1{|B(t) − y| < ε} dt =

∫
B(y ,ε)

G(0, z) dz. (8.7)

By the strong Markov property applied to the first hitting time τ of A,

P0
{
|B(t) − y| < ε and t � T

}
� P0
{
|B(t) − y| < ε and τ � t � T

}
= EP

{
|B(t − τ) − y| < ε | F(τ)

}
.

Integrating over t and using Fubini’s theorem yields

E0

∫ T

0
1{|B(t) − y| < ε} dt �

∫
A

∫
B(y ,ε)

G(x, z) dz dµ(x).
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Combining this with (8.7) we infer that∫
B(y ,ε)

∫
A

G(x, z) dµ(x) dz �
∫
B(y ,ε)

G(0, z) dz .

Dividing by L(B(0, ε)) and letting ε ↓ 0 we obtain∫
A

G(x, y) dµ(x) � G(0, y),

i.e.
∫

A
M(x, y) dµ(x) � 1 for all y ∈ D. Therefore, IM (µ) � µ(A) and thus if we use

µ/µ(A) as a probability measure we get

CapM (A) � [IM (µ/µ(A))]−1 � µ(A),

which by (8.6) yields the upper bound on the probability of hitting A.
To obtain a lower bound for this probability, a second moment estimate is used. It is easily
seen that the Martin capacity of A is the supremum of the capacities of its compact subsets,
so we may assume that A is a compact subset of the domain D\{0}. We take ε > 0 smaller
than half the distance of A to Dc ∪ {0}. For x, y ∈ A let

hε(x, y) =
∫
B(y ,ε)

G(x, ξ) dξ

denote the expected time which a Brownian motion started in x spends in the ball B(y, ε).
Also define

h∗
ε (x, y) = sup

|x−z |<ε

∫
B(y ,ε)

G(z, ξ) dξ.

Given a probability measure ν on A, and ε > 0, consider the random variable

Zε =
∫

A

∫ T

0

1{B(t) ∈ B(y, ε)}
hε(0, y)

dt dν(y) .

Clearly E0Zε = 1. By symmetry, the second moment of Zε can be written as

E0Z
2
ε = 2E0

∫ T

0
ds

∫ T

s

dt

∫∫
1{B(s) ∈ B(x, ε), B(t) ∈ B(y, ε)}

hε(0, x)hε(0, y)
dν(x) dν(y)

� 2E0

∫∫ ∫ T

0
ds 1{B(s) ∈ B(x, ε)} h∗

ε (x, y)
hε(0, x)hε(0, y)

dν(x) dν(y)

= 2
∫∫

h∗
ε (x, y)

hε(0, y)
dν(x) dν(y).

(8.8)

Observe that, for all fixed x, y ∈ A we have limε↓0 L(B(0, ε))−1 h∗
ε (x, y) = G(x, y) and

limε↓0 L(B(0, ε))−1 hε(0, y) = G(0, y). Moreover, by Proposition 8.23 and the fact that
G(0, y) is bounded away from zero and infinity for all y ∈ A, for 0 < ε < 1 and some
constant C,

h∗
ε (x, y)

hε(0, y)
� C

G(x, y)
G(0, y)

= C M(x, y).

Hence, if ν is a measure of finite energy, we can use dominated convergence and obtain,

lim
ε↓0

EZ2
ε � 2

∫∫
G(x, y)
G(0, y)

dν(x) dν(y) = 2IM (ν). (8.9)
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Clearly, the hitting probability P{∃t > 0, y ∈ A such that B(t) ∈ B(y, ε)} is at least

P{Zε > 0} � (EZε)2

EZ2
ε

= (EZ2
ε )−1 ,

where we have used the Paley–Zygmund inequality in the second step. Compactness of
A, together with transience and continuity of Brownian motion, imply that if the Brow-
nian path visits every ε-neighbourhood of the compact set A then it intersects A itself.
Therefore, by (8.9),

P{∃t > 0 such that B(t) ∈ A}� lim
ε↓0

(EZ2
ε )−1 � 1

2IM (ν)
.

Since this is true for all probability measures ν on A, we get the desired conclusion.

Remark 8.25 The right hand inequality in (8.5) can be an equality: look at the case d = 3,
T = ∞, our case (1), and take a sphere in Rd centred at the origin, which has hitting
probability and capacity both equal to one. Exercise 8.7 shows that the constant 1/2 on the
left cannot be increased. �

Proof of Theorem 8.20. It suffices, by taking countable unions, to consider compact
sets Λ which have positive distance from the origin. First consider the case d � 3. Then
G(0, x) is bounded away from zero and infinity. Hence the set Λ is polar if and only if its
f -capacity vanishes, where f(ε) = ε2−d .
In the case d = 2 we choose a large ball B(0, R) containing Λ. By Lemma 3.37 the Green’s
function for the Brownian motion stopped upon leaving B(0, R) satisfies

G(x, y) = − 1
π log |x − y| + Ex

[ 1
π log |B(T ) − y|

]
.

The second summand of G(x, y) is bounded from above if x, y ∈ Λ, and G(0, y) is
bounded from zero. Hence only the contribution from − log |x − y| decides about finite-
ness of the Martin energy of a probability measure. Therefore, any probability measure on
Λ with finite Martin energy has finite f -energy for f(ε) = − log ε, and vice versa. This
completes the proof.

The estimates in Theorem 8.24 are valid beyond the Brownian motion case. The following
proposition, which has a very similar proof to Theorem 8.24, shows that one has an anal-
ogous result in a discrete setup. We will see a surprising application of this in Chapter 9.

Proposition 8.26 Let {Xn : n ∈ N} be a transient Markov chain on a countable state
space S, and, for any initial state ρ, set

G(x, y) = Ex

[ ∞∑
n=0

1{y}(Xn )

]
and M(x, y) =

G(x, y)
G(ρ, y)

.

Then, for any subset Λ of S,

1
2 CapM (Λ) � Pρ

{
{Xn : n ∈ N} hits Λ

}
� CapM (Λ) .
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Proof. To prove the right hand inequality, we may assume that the hitting probabil-
ity is positive. Let τ = inf{n : Xn ∈ Λ} and let ν be the measure ν(A) = Pρ{τ <

∞ and Xτ ∈ A}. In general, ν is a sub-probability measure, as τ may be infinite. By the
Markov property, for y ∈ Λ,∫

Λ

G(x, y) dν(x) =
∑
x∈Λ

Pρ{Xτ = x}G(x, y) = G(ρ, y) ,

whence
∫

Λ M(x, y) dν(x) = 1. Therefore IM (ν) = ν(Λ), IM

(
ν/ν(Λ)

)
= [ν(Λ)]−1 ;

consequently, since ν/ν(Λ) is a probability measure,

CapM (Λ) � ν(Λ) = Pρ

{
{Xn} hits Λ

}
.

This yields one inequality. Note that the Markov property was used here.
For the reverse inequality, we use the second moment method. Given a probability measure
µ on Λ, set

Z =
∫

Λ

∞∑
n=0

1{y}(Xn )
dµ(y)
G(ρ, y)

.

Eρ [Z] = 1, and the second moment satisfies

Eρ [Z2 ] = Eρ

∫
Λ

∫
Λ

∞∑
m=0

∞∑
n=0

1{x}(Xm )1{y}(Xn )
dµ(x)dµ(y)

G(ρ, x)G(ρ, y)

� 2Eρ

∫
Λ

∫
Λ

∑
m�n

1{x}(Xm )1{y}(Xn )
dµ(x)dµ(y)

G(ρ, x)G(ρ, y)
.

Observe that

∞∑
m=0

Eρ

∞∑
n=m

1{x}(Xm )1{y}(Xn ) =
∞∑

m=0

Pρ{Xm = x}G(x, y) = G(ρ, x)G(x, y) .

Hence

Eρ [Z2 ] � 2
∫

Λ

∫
Λ

G(x, y)
G(ρ, y)

dµ(x) dµ(y) = 2IM (µ) ,

and therefore

Pρ

{
{Xn} hits Λ

}
� Pρ{Z > 0} �

(
Eρ [Z]

)2
Eρ [Z2 ]

� 1
2IM (µ)

.

We conclude that Pρ

{
{Xn} hits Λ

}
� 1

2 CapM (Λ).

Recall from Corollary 8.12 that we have already seen estimates for the probability that
Brownian motion hits a set, which were given in terms of the total mass of the equilibrium
measure. The following theorem reveals the relationship between the equilibrium measure
and capacities.
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Theorem 8.27 Let Λ ⊂ Rd be a nonpolar, compact set and G : Rd × Rd → [0,∞] the
Green’s function of a transient Brownian motion. Then

CapG (Λ) =
{

IG

( ν

ν(Λ)

)}−1
= ν(Λ).

where ν is the equilibrium measure of Λ. Moreover, the probability measure ν/ν(Λ) is the
unique minimiser of the G-energy over the set of all probability measures on Λ.

Remark 8.28 If Λ is polar, we have CapG (Λ) = 0 = ν(Λ). �

For the proof we first note that, for the Green’s function G of a transient Brownian motion,
the G-energy of a signed measure is always nonnegative.

Lemma 8.29 Let µ, ν be finite measures on Rd and G the Green’s function G of a transient
Brownian motion. Then, for σ = µ − ν, we have∫∫

G(x, y) dσ(x) dσ(y) � 0.

Equality holds if and only if ν = µ.

Proof. From the Chapman–Kolmogorov equation we have

p∗(t, x, y) =
∫

p∗(t/2, x, z) p∗(t/2, z, y) dz.

Integrating with respect to dσ(x) dσ(y) and using the symmetry of p∗(t, · , · ) gives∫∫
p∗(t, x, y) dσ(x) dσ(y) =

∫ (∫
p∗(t/2, x, z) dσ(x)

)2
dz � 0.

Integrating over time shows that
∫∫

G(x, y) dσ(x) dσ(y) � 0.
Equality in the last formula implies that∫

p∗(t/2, x, z) dσ(x) = 0 for L-almost every z and t.

Now fix a continuous function f : Rd → [0,∞) with compact support. We have

f(x) = lim
t↓0

∫
f(z) p∗(t/2, x, z) dz,

and therefore ∫
f(x) dσ(x) = lim

t↓0

∫∫
f(z) p∗(t/2, x, z) dz dσ(x) = 0,

and therefore σ = 0 as required.
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Proof of Theorem 8.27. Let ν be the equilibrium measure and define ϕ(x) =∫
G(x, y) dν(y). By the last exit formula, Theorem 8.8, ϕ(x) is the probability that a

Brownian motion started at x hits Λ before time T . Hence ϕ(x) � 1 for every x and, if
x is a regular point for Λ, then ϕ(x) = 1. Also by the last exit formula, because irregu-
lar points are never hit by a Brownian motion, see Theorem 8.13, we have ϕ(x) = 1 for
ν-almost every point. This implies that

IG (ν) =
∫

Λ
ϕ(x) dν(x) = ν(Λ).

Suppose now that µ is an arbitrary measure on Λ with µ(Λ) = ν(Λ) and assume that µ has
finite energy. Note that µ does not charge the set of irregular points, as otherwise this set
would have positive capacity with respect to the Green and hence also the Martin kernel
and so would be nonpolar by Theorem 8.24. Then, starting with Lemma 8.29 and using
also the symmetry of G,

0 �
∫∫

G(x, y) d(ν − µ)(x) d(ν − µ)(y)

= IG (µ) + IG (ν) − 2
∫∫

G(x, y) dν(x) dµ(y)

= IG (µ) + ν(Λ) − 2
∫

Λ
ϕ(y) dµ(y) � IG (µ) − ν(Λ),

using in the last step that ϕ(y) = 1 on the set of regular points, and thus µ-almost every-
where. This implies that IG (µ) � ν(Λ) = IG (ν), so that ν/ν(Λ) is a minimiser in the
definition of CapG . Conversely, if IG (µ) = IG (ν) and µ(Λ) = ν(Λ), the same calculation
shows that ∫∫

G(x, y) d(ν − µ)(x) d(ν − µ)(y) = 0,

and hence, by Lemma 8.29, we have µ = ν. This completes the proof.

If d � 3, Theorem 8.27 shows that the normalised equilibrium measure νΛ := ν
ν (Λ) min-

imises the energy with respect to the potential kernel, which is∫∫
f(|x − y|) dµ(x) dµ(y)

for the radial potential f(r) = r2−d , over the set of all probability measures µ on Λ. We
now show an analogous statement in d = 2, recall that in this case the radial potential
equals f(r) = − log(r) for r < 1.

Theorem 8.30 Let Λ ⊂ R2 be a nonpolar, compact set and νR be the equilibrium measure
of Λ for planar Brownian motion stopped at ∂B(0, R). Then the limit

νΛ = lim
R↑∞

νR

νR (Λ)

exists and minimises the energy

−
∫∫

log |x − y| dµ(x) dµ(y)

over the set of all probability measures µ on Λ.
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Remark 8.31 For a compact, nonpolar set Λ ⊂ Rd the probability measure νΛ is defined
in the case d = 2 by Theorem 8.30 and in the case d � 3 as the normalised equilibrium
measure on Λ. We have shown that it minimises the energy∫∫

f(|x − y|) dµ(x) dµ(y)

for the radial potential f , over the set of all probability measures µ on Λ. We therefore call
νΛ the energy–minimising measure on Λ. Only in the case d � 3 we have proved that this
measure is the unique minimiser of the energy with respect to the radial potential, but in
d = 2 this will follow from Theorem 8.33 below. �

We postpone the proof of the existence of the limit of νR/νR (Λ) until the proof of Theo-
rem 8.33, and first show the energy–minimisation property for arbitrary sequential limits.

First fix R > 0 and recall from Theorem 8.27 that νR/νR (Λ) minimises the energy∫∫
G(R ) (x, y) dµ(x) dµ(y)

over all probability measure µ on Λ, where G(R ) is the Green’s function associated with
the Brownian motion stopped upon leaving B(0, R). Our first step shows convergence of
these Green’s functions to the potential kernel.

Lemma 8.32 For x, y ∈ R2 we have

lim
R↑∞

G(R ) (x, y) − 1
π

log R = − 1
π

log |x − y|,

and the convergence is uniform on compact subsets on R2 × R2 .

Proof. Recall from Lemma 3.37 that

G(R ) (x, y) = −1
π log |x − y| + 1

π Ex

[
log
∣∣B(T (R ) ) − y

∣∣],
where T (R ) is the first exit time from B(0, R). Note that, for any compact set K ⊂ R2 ,

log
∣∣∣z − y

R

∣∣∣ −→ 0, as R ↑ ∞,

uniformly in z ∈ ∂B(0, 1) and y ∈ K. Using this, we see that

G(R ) (x, y) − 1
π log R = − 1

π log |x − y| + 1
π Ex

[
log
∣∣B (T (R ) )

R − y
R

∣∣]
−→− 1

π log |x − y|,

uniformly in x, y ∈ K.
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Proof of Theorem 8.30. Let µ be an arbitrary probability measure on Λ. For a
radius R > 0 and threshold M > 0 we define

G(R )

M (x, y) =
(
G(R ) (x, y) − 1

π log R
)
∧ M.

Then ∫∫
G(R )

M (x, y) dνR (x) dνR (y )
νR (Λ)2 �

∫∫
G(R ) (x, y) dνR (x) dνR (y )

νR (Λ)2 − 1
π log R

�
∫∫

G(R ) (x, y) dµ(x) dµ(y) − 1
π log R.

Hence, for any M > 0, using Lemma 8.32,

lim sup
R↑∞

∫∫
G(R )

M (x, y) dνR (x) dνR (y )
νR (Λ)2 � − 1

π

∫∫
log |x − y| dµ(x) dµ(y). (8.10)

To analyse the limsup first note that, by Lemma 8.32,

lim
R↑∞

∫∫ [−1
π log |x − y| ∧ M

] dνR (x) dνR (y )
νR (Λ)2 −

∫∫
G(R )

M (x, y) dνR (x) dνR (y )
νR (Λ)2 = 0.

If a sequence Rn ↑ ∞ is chosen such that, in the sense of weak convergence,

lim
n↑∞

νRn

νRn (Λ)
= νΛ ,

then, by Exercise 8.10, we have

lim
n↑∞

∫∫ [−1
π log |x−y|∧M

] dνR n (x) dνR n (y )
νR n (Λ)2 =

∫∫ [−1
π log |x−y|∧M

]
dνΛ(x) dνΛ(y).

Combining this and inserting the limit in (8.10), we obtain∫∫ [−1
π log |x − y| ∧ M

]
dνΛ(x) dνΛ(y) � − 1

π

∫∫
log |x − y| dµ(x) dµ(y).

Now let M ↑ ∞ and use monotone convergence to obtain

−
∫∫

log |x − y| dνΛ(x) dνΛ(y) � −
∫∫

log |x − y| dµ(x) dµ(y).

As µ was arbitrary, this proves the minimality property of νΛ .

We conclude this section by showing that the energy–minimising measure agrees with the
harmonic measure from infinity, which was introduced in Chapter 3. In the course of
the proof we also add the missing part to Theorem 8.30, the existence of the limit in the
case d = 2.

Theorem 8.33 Let Λ ⊂ Rd , for d � 2, be a compact, nonpolar set. Then

νΛ = µΛ ,

i.e. the energy–minimising measure for the radial potential agrees with the harmonic mea-
sure from infinity.
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We first give a proof of Theorem 8.33 for the case d = 2, which uses the skew-product rep-
resentation, see Theorem 7.26. Fix 0 < r < R and let {B(t) : t � 0} be a Brownian mo-
tion started uniformly on the sphere ∂B(0, R). Let τr := τ(B(0, r)) be the first hitting time
of the small ball inside, which is finite almost surely, and τr,R := τ(B(0, r), ∂B(0, R)) the
time of first return to the starting sphere afterwards. Moreover, let

σR := sup
{
0 � t < τr : B(t) ∈ ∂B(0, R)

}
,

the time of the last visit to ∂B(0, R) before the smaller ball is visited. We call the path
{e(t) : 0 � t � τr,R − σR} given by

e(t) := B(σR + t)

a Brownian excursion in B(0, R) conditioned to hit B(0, r). We denote by τe := τr,R −σR

the lifetime of the excursion. Note that this is also the first positive time when the excursion
returns to its starting sphere. The main ingredient of the proof is the following time-reversal
property of the excursions.

Lemma 8.34 The laws of the paths {e(t) : 0 � t � τe} and {e(τe − t) : 0 � t � τe}
coincide.

Proof. We invoke the skew-product representation of {B(t) : t � 0} established in
Theorem 7.26. This allows us to write

B(t) = exp
(
W1(H(t)) + iW2(H(t))

)
, for all t � 0,

where {W1(t) : t � 0}, with W1(0) = log R, and {W2(t) : t � 0}, with W2(0) uniformly
distributed on [0, 2π), are two independent linear Brownian motions. We further have

H−1(u) =
∫ u

0
e2W 1 (s) ds,

so that {H−1(t) : t � 0} is a continuous, strictly increasing process adapted to the natural
filtration of {W1(t) : t � 0}. Hence, H(τr ) = inf{u � 0: W1(u) = log r}, H(σR ) =
sup{0 � u < H(τr ) : W1(u) = log R} and H(τr,R ) = inf{u > H(τr ) : W1(u) =
log R}. By Exercise 5.12 (b) the one-dimensional excursions {e1(s) : 0 � s � τe

1 } defined
by

e1(s) = W1(H(σR ) + s), τ e
1 = H(τr,R ) − H(σR ),

are time-reversible in law. Marking quantities defined with respect to the time-reversed
excursion by ˜, we obtain for all 0 � s � τe

1 ,

H−1(H(σR ) + s
)
− σR =

∫ H (σR )+s

H (σR )
e2W 1 (u) du =

∫ s

0
e2e1 (u) du

d=
∫ s

0
e2e1 (τ e

1 −u) du = H̃−1(s).

For any 0 � t � τr,R −σR we write s = H(σR +t)−H(σR ), or equivalently t = H̃−1(s).
Hence ∣∣B(σR + t)

∣∣ = exp
(
W1(H(σR + t))

)
= exp

(
e1(s)
)

d= exp
(
e1(τe

1 − s)
)

= exp
(
e1(τe

1 − H̃(t))
)

=
∣∣B̃(t)

∣∣.
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As H(σr + t) =
∫ t

0 |B(σr + u)|−2 du, this implies that H(σR + t) d= H̃(t) and therefore,

B(σR + t) = exp
(
W1(H(σR + t)) + iW2(H(σR + t))

)
d= exp

(
W1(H̃(t)) + iW2(H̃(t))

)
= B̃(t),

as required.

Proof of Theorem 8.33 for d = 2. Let νΛ = lim νRn
/νRn

(Λ) be any subsequential
limit taken along a sequence Rn ↑ ∞. Fix r > 0 so that Λ ⊂ B(0, r). For R > r, let
γR = 0 if the Brownian motion {B(t) : t � 0} does not hit Λ before time τr,R , and

γR := sup
{
0 � t � τr,R : B(t) ∈ Λ

}
,

otherwise. By Theorem 8.10, for any Borel set A ⊂ Λ,

νΛ(A) = lim
n→∞

νRn (A)
νRn (Λ)

= lim
n→∞

P
{
B(γRn

) ∈ A
∣∣ γRn

> 0
}

= lim
n→∞

P
{
e(γRn − σRn ) ∈ A

∣∣ {e(t) : 0 � t � τe} hits Λ
}

= lim
n→∞

P
{
e(τr,Rn

− γRn
) ∈ A

∣∣ {e(t) : 0 � t � τe} hits Λ
}
,

where we have used Lemma 8.34 in the last step. Now, fixing Rn , let {B∗(t) : t � 0} be a
Brownian motion started uniformly on ∂B(0, Rn ) whose associated excursion in B(0, Rn )
conditioned to hit B(0, r) is {e(τe − t) : 0 � t � τe}. Note that e(τr,Rn − γRn ) =
B∗(τ∗(Λ)), where τ∗(Λ) is the first hitting time of Λ by {B∗(t) : t � 0}. Hence the last
line in the previous display equals

lim
n→∞

P
{
B∗(τ∗(Λ)) ∈ A

∣∣ {B∗(t) : 0 � t � τ∗
r,Rn

} hits Λ
}
,

where τ∗
r,Rn

is the time of first return of {B∗(t) : t � 0} after hitting B(0, r). As n → ∞,
the probability of the conditioning event goes to one, so that we can conclude that

νΛ(A) = lim
n→∞

P
{
B∗(τ∗(Λ)) ∈ A

}
= µΛ(A),

where we used the definition of the harmonic measure from infinity in the final step.

We now give a proof of Theorem 8.33 for the case d � 3. Again a ‘time-reversal’ argument
is crucial. We start by constructing a family of probability measures µt , for t > 0, on the
space C(R, Rd) of continuous functions from the reals to Rd by

µt(A) =
1
ct

∫
Px

{
{B(s) : s ∈ R} ∈ A, τB(0,r) < t

}
dx, for A ⊂ C(R, Rd) Borel,

where {B(s) : s ∈ R} under Px is a two-sided Brownian motion with B(0) = x,

τB(0,r) = inf{s > 0: B(s) ∈ B(0, r)}

is the first hitting time of the fixed ball B(0, r) after time zero, and ct =
∫

Px{τB(0,r) <
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t} dx is the normalising constant. Observe that ct < ∞ for any t > 0, see Exercise 8.11.
The following lemma contains the required time-reversal property.

Lemma 8.35

(a) The laws of {B(s) : s � 0} and {B(t − s) : s � 0} under µt agree;

(b) as t ↑ ∞, the law of {B(τB(0,r) + s) : s � 0} under µt converges in the to-
tal variation distance to the law of a Brownian motion started uniformly on the
sphere ∂B(0, r).

Proof. (a) From Fubini’s theorem, we obtain that∫
Px

{
{B(s) : s ∈ R} ∈ A, τB(0,r) < t

}
dx

= E0

∫
1
{
{x + B(s) : s ∈ R} ∈ A, τB(−x,r) < t

}
dx.

Abbreviate σB(x,r) = inf{s � 0: B(t − s) ∈ B(x, r)}. Using first the Markov property
and then the shift-invariance of the Lebesgue measure, we continue

= E0

∫
1
{
{x + B(t − s) − B(t) : s ∈ R} ∈ A, σB(B (t)−x,r) < t

}
dx

= E0

∫
1
{
{x + B(t − s) : s ∈ R} ∈ A, σB(−x,r) < t

}
dx.

Finally, using Fubini’s theorem again and then observing that σB(0,r) < t if and only if
τB(0,r) < t, we can continue,

=
∫

Px

{
{B(t − s) : s ∈ R} ∈ A, σB(0,r) < t

}
dx

=
∫

Px

{
{B(t − s) : s ∈ R} ∈ A, τB(0,r) < t

}
dx.

(b) It is clear from the symmetry of the Lebesgue measure, that the law of {B(τB(0,r) +
s) : s � 0} under the probability measure µ∗

t , given by

µ∗
t (A) =

1
c∗t

∫
B(0,r)c

Px

{
{B(s) : s ∈ R} ∈ A, τB(0,r) < t

}
dx, for A ⊂ C(R, Rd) Borel,

is the law of a Brownian motion started uniformly on the sphere ∂B(0, r). Here the nor-
malising constant is c∗t =

∫
B(0,r)c Px{τB(0,r) < t} dx. The total variation distance of µt

and µ∗
t is

sup
A

∣∣µ∗
t (A) − µt(A)

∣∣
�
∣∣∣ 1
c∗t

− 1
ct

∣∣∣ ∫
B(0,r)c

Px

{
τB(0,r) < t

}
dx +

1
ct

∫
B(0,r)

Px

{
τB(0,r) < t

}
dx

�
∣∣∣ 1
c∗t

− 1
ct

∣∣∣ c∗t +
1
ct
L
(
B(0, r)

)
.

As ct = c∗t + L(B(0, r)), it suffices to show that c∗t → ∞. This follows from the hitting
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estimate of Corollary 3.19 as

lim
t↑∞

c∗t =
∫
B(0,r)c

Px{τB(0,r) < ∞} dx =
∫
B(0,r)c

rd−2

|x|d−2 dx

= rd

∫
B(0,1)c

|x|2−d dx = ∞,

and this completes the proof.

Proof of Theorem 8.33 for d > 2. Let r > 0 such that Λ ⊂ B(0, r), and look at a
Brownian motion started uniformly on ∂B(0, r). Define γ � 0 as γ = 0, if the Brownian
motion never hits Λ, and γ = sup{t > 0: B(t) ∈ Λ} otherwise. By Theorem 8.10 and
Lemma 8.35(b), for any Borel set A ⊂ Λ,

νΛ(A) = P
{
B(γ) ∈ A

∣∣ γ > 0
}

= lim
t↑∞

µt

{
B(γt) ∈ A

∣∣ γt > 0
}
,

where γt = 0 if {B(t) : t � 0} does not hit Λ during the time [0, t] and otherwise is the
last time s ∈ [0, t] with B(s) ∈ Λ. We now express all the events in terms of the time
reversed Brownian motion {B∗(s) : s � 0} defined by B∗(s) = B(t − s). Recall from
Lemma 8.35(a) that, under µt , this process has the same law as {B(t) : t � 0}. Let τ∗ be
the first hitting time of Λ by {B∗(s) : s � 0} and note that τ∗ < t if and only if γt > 0. If
this is the case, then τ∗ = t − γt . Hence

νΛ(A) = lim
t↑∞

µt

{
B∗(τ∗) ∈ A

∣∣ τ∗ < t
}
.

Define τ∗
B(0,r) = inf{s > 0: B∗(s) ∈ B(0, r)} and look at the embedded Brownian

motion {B∗∗(s) : s � 0} defined by B∗∗(s) = B∗(τ∗
B(0,r) + s). If B(t) �∈ B(0, r) its first

hitting time of Λ equals

τ∗∗ := inf{s : B∗∗(s) ∈ Λ} = τ∗ − τ∗
B(0,r) .

Hence, we obtain

νΛ(A) = lim
t↑∞

µt

{
B∗∗(τ∗∗) ∈ A

∣∣ τ∗ < t
}

= P
{
B(τ) ∈ A

∣∣ τ < ∞
}

= µΛ(A),

where τ is the first hitting time of Λ by the Brownian motion {B(t) : t � 0}, which is
started uniformly on ∂B(0, r), and we have used Theorem 3.50 in the last step.

Example 8.36 Recall from Example 7.24 that the Beta( 1
2 , 1

2 ) distribution on [0, 1] given
by the density

g(x) = 1
π

1√
x(1−x)

dx,

is the harmonic measure of the unit interval embedded in the plane. By Theorem 8.33 the
function g therefore maximises the expression∫ 1

0

∫ 1

0
f(x) log |x − y| f(y) dx dy

over all probability densities f on [0, 1]. �
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8.4 Wiener’s test of regularity

In this section we concentrate on d � 3 and find a sharp criterion for a point to be regular
for a closed set Λ ⊂ Rd . This criterion is given in terms of the capacity of the intersection
of Λ with annuli, or shells, concentric about x.
To fix some notation let k > � be integers and x ∈ Rd , and define the annulus

Ax(k, �) :=
{
y ∈ Rd : 2−k � |y − x| � 2−�

}
.

Abbreviate Ax(k) := Ax(k + 1, k) and let

Λk
x := Λ ∩ Ax(k) .

We aim to prove the following result.

Theorem 8.37 (Wiener’s test) A point x ∈ Rd is regular for the closed set Λ ⊂ Rd , d � 3,
if and only if

∞∑
k=1

2k(d−2)Cd−2
(
Λk

x

)
= ∞ ,

where Cd−2 is the Newtonian capacity introduced in Definition 4.31.

In the proof, we may assume, without loss of generality, that x = 0. We start the proof
with an easy observation.

Lemma 8.38 There exists a constant c > 0, which depends only on the dimension d, such
that, for all k, we have

c 2k(d−2)Cd−2(Λk
0 )�CapM (Λk

0 ) � c 2(k+1)(d−2)Cd−2(Λk
0 ).

Proof. Observe that, as z ∈ Λk
0 implies 2−k−1 � |z| � 2−k , we obtain the statement by

estimating the denominator in the Martin kernel M .

The crucial step in the proof is a quantitative estimate, from which Wiener’s test follows
quickly.

Lemma 8.39 There exists a constant c > 0, depending only on the dimension d, such that

1−exp
(
−c

k−1∑
j=�

CapM (Λj
0)
)

� P0
{
{B(t) : t � 0} hits Λ∩A0(k, �)

}
�

k−1∑
j=�

CapM (Λj
0) .

Proof. For the upper bound we look at the event D(j) that a Brownian motion started
in 0 hits Λj

0 . Then, using Theorem 8.24, we get P0
(
D(j)
)

� CapM

(
Λj

0

)
. Therefore

P0
{
{B(t) : t � 0} hits Λ ∩ A0(k, �)

}
� P0

( k−1⋃
j=�

D(j)
)
�

k−1∑
j=�

CapM (Λj
0),

and this completes the proof of the upper bound.
For the lower bound we look at the event E(z, j) that a Brownian motion started in some
point z ∈ ∂B(0, 2−j ) and stopped upon hitting ∂B(0, 2−j+4) hits Λj−2

0 . Again we use
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either Theorem 8.24, or Corollary 8.12 in conjunction with Theorem 8.27, to get, for con-
stants c1 , c2 > 0 depending only on the dimension d,

Pz

{
{B(t) : t � 0} ever hits Λj−2

0

}
� c1
(
2−(j−1) − 2−j

)2−d
Cd−2
(
Λj−2

0

)
,

and, for any y ∈ ∂B(0, 2−j+4),

Py

{
{B(t) : t � 0} ever hits Λj−2

0

}
� c2
(
2−(j−4) − 2−(j−2))2−d

Cd−2
(
Λj−2

0

)
.

Therefore, for a constant c > 0 depending only on the dimension d,

P
(
E(z, j)

)
� Pz

{
{B(t)} ever hits Λj−2

0

}
− max

y∈∂B(0,2−j + 4 )
Py

{
{B(t)} ever hits Λj−2

0

}
� c 2j (d−2)Cd−2

(
Λj−2

0

)
.

Now divide {� + 2, . . . , k + 1} into (at most) four subsets such that each subset I satisfies
|i − j| � 4 for all i �= j ∈ I . Choose a subset I which satisfies

∑
j∈I

2(j−2)(d−2)Cd−2(Λ
j−2
0 ) � 1

4

k−1∑
j=�

2j (d−2) Cd−2(Λ
j
0). (8.11)

Now we have with τj = inf{t � 0: |B(t)| = 2−j},

P0
{
{B(t) : t � 0} avoids Λ ∩ A0(k, �)

}
� P0

( ⋂
j∈I

E
(
B(τj ), j

)c)
�
∏
j∈I

sup
z∈∂B(0,2−j )

P
(
E(z, j)c) �

∏
j∈I

(
1 − c 2j (d−2)Cd−2

(
Λj−2

0

) )
� exp

(
− c
∑
j∈I

2j (d−2) Cd−2(Λ
j−2
0 )
)
,

using the estimate log(1 − x) � − x in the last step. The lower bound now follows from
(8.11) and Lemma 8.38 when we pass to the complement.

Proof of Wiener’s test. Suppose
∑∞

k=1 2k(d−2)Cd−2
(
Λk

0
)

= ∞. Therefore, by
Lemma 8.39 and Lemma 8.38, for all k ∈ N,

P0
{
{B(t) : t � 0} hits Λ ∩ B(0, 2−k )

}
� 1 − exp

(
− c

∞∑
j=k

CapM (Λj
0)
)

= 1.

Since points are polar, for any ε, δ > 0 there exists a large k such that

P0
{
{B(t) : t � ε} hits B(0, 2−k )

}
< δ .

Combining these two facts we get for the first hitting time τ = τ(Λ) of the set Λ,

P0
{
τ < ε

}
� P0
{
{B(t) : t � 0} hits Λ ∩ B(0, 2−k )

}
− P0
{
{B(t) : t � ε} hits B(0, 2−k )} � 1 − δ.

As ε, δ > 0 were arbitrary, the point 0 must be regular.
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Now suppose that
∑∞

k=1 2k(d−2)Cd−2
(
Λk

0
)

< ∞. Then

∞∑
k=1

P0
{
{B(t) : t � 0} hits Λ ∩ A0(k)

}
�

∞∑
k=1

CapM (Λk
0 ) < ∞.

Hence, by the Borel Cantelli lemma, almost surely there exists a ball B(0, ε) such that
{B(t) : t � 0} does not hit B(0, ε) ∩ Λ. By continuity we therefore must have inf{t >

0: B(t) ∈ Λ} > 0 almost surely, hence the point 0 is irregular.

x1-1 10

-1

1

x2↪ x3

Λ

G

Fig. 8.2. Lebesgue’s thorn.

Example 8.40 The following example is due to Lebesgue [Le24], and is usually called
Lebesgue’s thorn. For any α > 0 we define an open subset G ⊂ (−1, 1)3 with a cusp at
zero by

G :=
{
(x1 , x2 , x3) ∈ (−1, 1)3 :

√
x2

2 + x2
3 > xα

1 if x1 � 0
}

,

see Figure 8.2. Now the origin is an irregular point for Λ = Gc if α > 1. For the proof it
suffices, by Wiener’s test, to check that

∞∑
k=1

2kC1
(
Λk

0
)

< ∞.

Note that, for any probability measure µ on Λk
0 , we have I1(µ) � 2αk and, hence,

∞∑
k=1

2kC1
(
Λk

0
)

�
∞∑

k=1

2k(1−α) < ∞ ,

verifying Wiener’s test of irregularity. Conversely, the Poincaré cone condition, see Theo-
rem 8.3, shows that for α � 1 the origin is regular for Λ = Gc . �
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Exercises

Exercise 8.1. S Let U ⊂ Rd be a domain and u : U → R subharmonic. Use Itô’s formula
to show that, for any ball B(x, r) ⊂ U ,

u(x) � 1
L(B(x, r))

∫
B(x,r)

u(y) dy.

Exercise 8.2. Let x ∈ U ⊂ Rd be a domain and suppose that

lim inf
r↓0

L(B(x, r) ∩ U c)
rd

> 0.

Show that x is regular for the complement of U .

Exercise 8.3. S Suppose g is bounded and u a solution of Poisson’s problem for g. Show
that this solution has the form

u(x) = Ex

[ ∫ T

0
g(B(t)) dt

]
, for x ∈ U ,

where T := inf{t > 0: B(t) �∈ U}. Observe that this implies that the solution, if it exists,
is always uniquely determined.

Exercise 8.4. Let

u(x) = Ex

[ ∫ T

0
g(B(t)) dt

]
, for x ∈ U ,

where T := inf{t > 0: B(t) �∈ U}. Show that,

(a) If g is Hölder continuous, then the function u : U → R solves − 1
2 ∆u = g.

(b) If every point x ∈ ∂U is regular for the complement of U , then u(x) = 0 for all
x ∈ ∂U .

Exercise 8.5. S Let a > 0 and τ a standard exponential random variable independent
of the standard Brownian motion {B(t) : t � 0} in Rd . Show that there exist constants
0 < c < C depending only on a and d, such that for any compact set A ⊂ B(0, a), we
have

c P0
{
B[0, 1] ∩ A �= ∅

}
� P0
{
B[0, τ ] ∩ A �= ∅

}
� C P0

{
B[0, 1] ∩ A �= ∅

}
.

Exercise 8.6. Suppose Λ ⊂ Rd , for d � 3, is compact and γ the last exit time from Λ
defined as in Theorem 8.8. Show that

lim
x→∞

Px

{
B(γ) ∈ A | γ > 0

}
=

ν(A)
ν(Λ)

.



252 Potential theory of Brownian motion

Exercise 8.7. For d � 3 consider the spherical shell

ΛR = {x ∈ Rd : 1 � |x| � R}.

Show that limR→∞ CapM (ΛR ) = 2.

Exercise 8.8. Let {X(a) : a � 0} be a stable subordinator of index 1
2 as defined in

Theorem 2.35, and

K(s, t) : =
{

(t − s)−1/2 0 � s � t ,

0 s > t � 0 .

Let M(s, t) = K(s, t)/K(0, t), then for any subset Λ of (0,∞),

1
2 CapM (Λ) � P0

{
{X(a) : a � 0} hits Λ

}
� CapM (Λ) .

Exercise 8.9. Let {B(t) : t � 0} be a standard linear Brownian motion.

(a) For the kernel M of Exercise 8.8, show that CapM (Zeros) = 0 almost surely.

(b) Let A ⊂ (0,∞). Show that

P0
{
∃t ∈ A with B(t) = 0

}{ > 0 if dim A > 1
2 ,

= 0 if dim A < 1
2 .

Exercise 8.10. S Let µn , µ be Borel probability measures on a compact metric space X .
Suppose µn → µ in the sense of weak convergence, as defined in Section 12.1 of the ap-
pendix. Show that µn ⊗ µn → µ ⊗ µ in the sense of weak convergence of probability
measures on X × X .

Exercise 8.11. S Let {B(s) : s � 0} under Px be a Brownian motion in Rd , d � 3, with
B(0) = x, and denote by

τB(0,1) = inf{s > 0: B(s) ∈ B(0, 1)}

the first hitting time of the unit ball after time zero. Show that there exist constants 0 <

c < C < ∞ such that, for t � 1,

c t �
∫

Px{τB(0,1) < t} dx � C t .

Exercise 8.12. Show that exactly one of the probability measures µ on the closed unit
disc in the plane that minimise the energies∫∫

log
1

|x − y| dµ(x) dµ(y) and
∫∫

1
|x − y| dµ(x) dµ(y)

is concentrated on the boundary of the disc.
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Exercise 8.13. Let Λ ⊂ R2 be a nonpolar, compact set and νλ be the equilibrium measure
for planar Brownian motion stopped at an independent exponential time with parameter λ.
Then the limit

lim
λ↓0

νλ

νλ (Λ)

exists and is equal to the energy-minimising measure νΛ .
Hint. Use ideas from Theorem 3.34 and Theorem 8.30.

Notes and comments

The proof of the last exit formula is taken from Chung’s beautiful paper [Ch73], but the
existence of an energy-minimising measure is a much older fact. For the case of the Newto-
nian potential (d = 3) it was determined by Gauss as the charge distribution on the surface
of a conductor which minimises the electrostatic energy. Classically, the equilibrium mea-
sure is defined as the measure ν on Λ that maximises ν(Λ) among those with potential
bounded by one. Then ν/ν(Λ) is the energy-minimising probability measure, see Car-
leson [Ca67]. Rigorous results and extensions to general Riesz-potentials are due to Frost-
man in his ground-breaking thesis [Fr35]. Our discussion of the strong maximum princi-
ple follows Carleson [Ca67], Bass [Ba95] describes an alternative approach. The classical
proof of Lemma 8.29 uses Fourier transform and Plancherel’s theorem, see [Ca67].

Characterising the polar sets for Brownian motion is related to the following question:
for which sets A ⊂ Rd are there nonconstant bounded harmonic functions on Rd \ A?
Such sets are called removable for bounded harmonic functions. Consider the simplest
case first. When A is the empty set, it is obviously polar, and by Liouville’s theorem there
is no bounded harmonic function on its complement. Nevanlinna [Ne70] proved in the
1920s that for d � 3 there exist nonconstant bounded harmonic functions on Rd \A if and
only if CapG (A) > 0, where G(x, y) = f(|x−y|) for the radial potential f as before. Just
to make this result more plausible, note that the function h(x) =

∫
G(x, y)µ(dy), where

µ is a measure on A of finite G-energy, would make a good candidate for such a function,
see Theorem 3.35.

Loosely speaking, G-capacity measures whether a set A is big enough to hide a pole
of a harmonic function inside. Recall from Theorem 4.32 that dim A > d − 2 implies
existence of such functions, and dim A < d − 2 implies nonexistence. Kakutani [Ka44b]
showed that there exist bounded harmonic functions on Rd \ A if and only if A is polar
for Brownian motion. The precise hitting estimates we give are fairly recent, our proof is
a variant of the original proof by Benjamini et al. in [BPP95]. Proposition 8.26 goes back
to the same paper.
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An interesting question is, which subsets of compact sets are charged by the harmonic
measure µA . Clearly µA does not charge polar sets, and in particular, in d � 3, we have
µA (B) = 0 for all Borel sets with dim(B) < d − 2. In the plane, by a famous theorem of
Makarov, see [Ma85], we have that

• any set B of dimension < 1 has µA (B) = 0,
• there is a set S ⊂ A with dim S = 1 such that µA (Sc) = 0.

However, the outer boundary, which supports the harmonic measure, may have a dimension
much bigger than one. An interesting question arising in the context of self-avoiding curves
asks for the dimension of the outer boundary of the image B[0, 1] of a Brownian motion.
Based on scaling arguments from polymer physics, Benoit Mandelbrot conjectured in 1982
that this set should have fractal dimension 4/3. Bishop et al. [BJPP97] showed that the
outer boundary has dimension > 1. In 2001 Mandelbrot’s conjecture was finally proved
by Lawler, Schramm and Werner [LSW01c], see Chapter 11 for more information.

There are some fine results about the hitting probabilities of small balls within a given
time in the literature. Le Gall [LG86b] shows, using a classical diffusion argument, that
for d � 3 we have, as ε ↓ 0,

P0
{
τ(B(x, ε)) � t

}
∼
(

d
2 − 1

)
L(B(0, 1)) εd−2

∫ t

0
ps(0, y) ds.

This should be compared to the result of Exercise 8.11. The analogous result for the planar
case is due to Spitzer [Sp58]. Further fine results from [LG86b] refer to the hitting of
several small balls in a given time, and some asymptotic results for the volume of Wiener
sausages, the neighbourhoods of the Brownian path.
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Intersections and self-intersections of Brownian paths

In this chapter we study multiple points of d-dimensional Brownian motion. We shall
see, for example, in which dimensions the Brownian path has double points and explore
how many double points there are. This chapter also contains some of the highlights of
the book: a proof that planar Brownian motion has points of infinite multiplicity, the in-
tersection equivalence of Brownian motion and percolation limit sets, and the surprising
dimension-doubling theorem of Kaufman.

9.1 Intersection of paths: Existence and Hausdorff dimension

9.1.1 Existence of intersections

Suppose that {B1(t) : t � 0} and {B2(t) : t � 0} are two independent d-dimensional
Brownian motions started in arbitrary points. The question we ask in this section is, in
which dimensions the ranges, or paths, of the two motions have a nontrivial intersection,
in other words whether there exist times t1 , t2 > 0 such that B1(t1) = B2(t2). As this
question is easy if d = 1 we assume d � 2 throughout this section.

We have developed the tools to decide this question in Chapter 4 and Chapter 8. Keeping
the path {B1(t) : t � 0} fixed, we have to decide whether it is a polar set for the second
Brownian motion. By Kakutani’s theorem, Theorem 8.20, this question depends on its
capacity with respect to the potential kernel. As the capacity is again related to Hausdorff
measure and dimension, the results of Chapter 4 are crucial in the proof of the following
result.

Theorem 9.1

(a) For d � 4, almost surely, two independent Brownian paths in Rd have an empty
intersection, except for a possible common starting point.

(b) For d � 3, almost surely, the intersection of two independent Brownian paths in Rd

is nontrivial, i.e. contains points other than a possible common starting point.

255
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Remark 9.2 In the case d � 3, if the Brownian paths are started at the same point, then
almost surely, the paths intersect before any positive time t > 0, see Exercise 9.1 (a). �

Proof of (a). Note that it suffices to look at one Brownian motion and show that its path
is, almost surely, a set of capacity zero with respect to the potential kernel. If d � 4, the
capacity with respect to the potential kernel is a multiple of the Riesz (d− 2)-capacity. By
Theorem 4.27 this capacity is zero for sets of finite (d−2)-dimensional Hausdorff measure.
Now note that if d � 5 the dimension of a Brownian path is two, and hence strictly smaller
than d − 2, so that the (d − 2)-dimensional Hausdorff measure is zero, which shows that
the capacity must be zero.

If d = 4 the situation is only marginally more complicated, although the dimension of the
Brownian path is 2 = d − 2 and the simple argument above does not apply. However,
we know from (4.2) in Chapter 4 that H2(B[0, 1]) < ∞ almost surely, which implies that
Cap2(B[0, 1]) = 0 by Theorem 4.27. This implies that an independent Brownian motion
almost surely does not hit any of the segments B[n, n + 1], and therefore avoids the path
entirely.

Proof of (b). If d = 3, the capacity with respect to the potential kernel is a multiple of the
Riesz 1-capacity. As the Hausdorff dimension of a path is two, this capacity is positive by
Theorem 4.32. Therefore two Brownian paths in d = 3 intersect with positive probability.

Suppose now the two Brownian motions start at different points. We may assume that one
is the origin and the other one is denoted x. By rotational invariance, the probability that
the paths do not intersect depends only on |x|, and by Brownian scaling we see that it is
completely independent of the choice of x �= 0. Denote this probability by q and, given
any ε > 0, choose a large time t such that

P
{
B1(t1) �= B2(t2) for all 0 < t1 , t2 � t

}
� q + ε.

Then, using the Markov property,

q � P
{
B1(t1) �= B2(t2) for all t1 , t2 � t

}
P
{
B1(t1) �= B2(t2) for all t1 , t2 > t

}
� q(q + ε).

As ε > 0 was arbitrary, we get q � q2 , and as we know that q < 1 we obtain that q = 0.
This shows that two Brownian paths started in different points intersect almost surely. If
they start in the same point, by the Markov property,

P
{
B1(t1) �= B2(t2) for all t1 , t2 > 0

}
= lim

t↓0
t > 0

P
{
B1(t1) �= B2(t2) for all t1 , t2 > t

}
= 0,

as required to complete the argument in the case d = 3. A path in d � 2 is the projection
of a three dimensional path on a lower dimensional subspace, hence if two paths in d = 3
intersect almost surely, then so do two paths in d = 2.
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It is equally natural to ask, for integers p > 2 and d � 3, whether a collection of p inde-
pendent d-dimensional Brownian motions

{B1(t) : t � 0}, . . . , {Bp(t) : t � 0}

intersect, i.e. whether there exist times t1 , . . . , tp > 0 such that B1(t1) = · · · = Bp(tp).

Theorem 9.3

(a) For d � 3, almost surely, three independent Brownian paths in Rd have an empty
intersection, except for a possible common starting point.

(b) For d = 2, almost surely, the intersection of any finite number p of independent
Brownian paths in Rd is nontrivial, i.e. contains points other than a possible com-
mon starting point.

In the light of our discussion of the case p = 2, it is natural to approach the question
about the existence of intersections of p paths, by asking for the Hausdorff dimension and
measure of the intersection of p − 1 paths. This leads to an easy proof of (a).

Lemma 9.4 Suppose {Bi(t) : t � 0}, for i = 1, 2, are two independent Brownian motions
in d = 3. Then, almost surely, for every compact set Λ ⊂ R3 not containing the starting
points of the Brownian motions, we have H1(B1 [0,∞) ∩ B2 [0,∞) ∩ Λ) < ∞.

Proof. Fix a cube Cube ⊂ R3 of unit side length not containing the starting points.
It suffices to show that, almost surely, H1(B1 [0,∞) ∩ B2 [0,∞) ∩ Cube) < ∞. For this
purpose let Cn be the collection of dyadic subcubes of Cube of side length 2−n , and In

be the collection of cubes in Cn which are hit by both motions. By our hitting estimates,
Corollary 3.19, there exists C > 0 such that, for any cube E ∈ Cn ,

P
{
E ∈ In

}
= P
{
∃s > 0 with B(s) ∈ E

}2 � C2−2n .

Now, for every n, the collection In is a covering of B1 [0,∞) ∩ B2 [0,∞) ∩ Cube, and

E
[ ∑

E∈In

|E|
]

= 23n P
{
E ∈ In

}√
32−n � C

√
3.

Therefore, by Fatou’s lemma, we obtain

E
[
lim inf
n→∞

∑
E∈In

|E|
]

� lim inf
n→∞

E
[ ∑

E∈In

|E|
]

� C
√

3.

Hence the liminf is finite almost surely, and we infer from this that H1(B1 [0,∞)∩B2 [0,∞)∩
Cube) is finite almost surely.

Proof of Theorem 9.3 (a). It suffices to show that, for any cube Cube of unit side length
which does not contain the origin, we have Cap1(B1 [0,∞)∩B2 [0,∞)∩Cube) = 0. This
follows directly from Lemma 9.4 and the energy method, Theorem 4.27.
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For Theorem 9.3 (b) it would suffice to show that the Hausdorff dimension of the set
B1(0,∞) ∩ . . . ∩Bp−1(0,∞) is positive in the case d = 2. In fact, it is a natural question
to ask for the Hausdorff dimension of the intersection of Brownian paths in any case when
the set is nonempty. The problem was raised by Itô and McKean in the first edition of their
influential book [IM74], and has since been resolved by Taylor [Ta66] and Fristedt [Fr67].
The substantial problem of finding lower bounds for the Hausdorff dimension of the inter-
section sets is best approached using the technique of stochastic co-dimension, which we
discuss now.

9.1.2 Stochastic co-dimension and percolation limit sets

Given a set A, the idea behind the stochastic co-dimension approach is to take a suitable
random test set Θ, and check whether P{Θ ∩ A �= ∅} is zero or positive. In the latter
case this indicates that the set is large, and we should therefore get a lower bound on
the dimension of A. A natural choice of such a random test set would be the range of
Brownian motion. Recall that, for example in the case d = 3, if P{B[0,∞)∩A �= ∅} > 0,
this implies that dim A � 1.

Of course, in order to turn this idea into a systematic technique for finding lower bounds
for the Hausdorff dimension, an entire family of test sets is needed to tune the size of the
test set in order to give sharp bounds. For this purpose, Taylor [Ta66] used stable processes
instead of Brownian motion. This is not the easiest way and also limited, because stable
processes only exist across a limited range of parameters. The approach we use in this
book is based on using the family of percolation limit sets as test sets.

Suppose that C ⊂ Rd is a fixed compact unit cube. We denote by Cn the collection of
compact dyadic subcubes (relative to C) of side length 2−n . We also let

C =
∞⋃

n=0

Cn .

Given γ ∈ [0, d] we construct a random compact set Γ[γ] ⊂ C inductively as follows: We
keep each of the 2d compact cubes in C1 independently with probability p = 2−γ . Let S1

be the collection of cubes kept in this procedure and S(1) their union. Pass from Sn to
Sn+1 by keeping each cube of Cn+1 , which is not contained in a previously rejected cube,
independently with probability p. Denote by S =

⋃∞
n=1 Sn and let S(n + 1) be the union

of the cubes in Sn+1 . Then the random set

Γ[γ] :=
∞⋂

n=1

S(n)

is called a percolation limit set. The usefulness of percolation limit sets in fractal geome-
try comes from the following theorem.
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Theorem 9.5 (Hawkes 1981) For every γ ∈ [0, d] and every closed set A ⊂ C the
following properties hold

(i) if dim A < γ, then almost surely, A ∩ Γ[γ] = ∅,

(ii) if dim A > γ, then A ∩ Γ[γ] �= ∅ with positive probability,

(iii) if dim A > γ, then

(a) almost surely dim
(
A ∩ Γ[γ]

)
� dim A − γ and,

(b) for all ε > 0, with positive probability dim
(
A ∩ Γ[γ]

)
� dim A − γ − ε.

Remark 9.6 Observe that the first part of the theorem gives a lower bound γ for the Haus-
dorff dimension of a set A, if we can show that A∩ Γ[γ] �= ∅ with positive probability. As
with so many ideas in fractal geometry one of the roots of this method lies in the study of
trees, more precisely percolation on trees, see [Ly90]. �

Remark 9.7

(a) The stochastic co-dimension technique and the energy method are closely related:
A set A is called polar for the percolation limit set, if

P{A ∩ Γ[γ] �= ∅} = 0.

We shall see in Theorem 9.18 that a set is polar for the percolation limit set if and
only if it has γ-capacity zero.

(b) For d � 3, the criterion for polarity of a percolation limit set with γ = d − 2
therefore agrees with the criterion for the polarity for Brownian motion, recall The-
orem 8.20. This ‘equivalence’ between percolation limit sets and Brownian motion
has a quantitative strengthening which is discussed in Section 9.2 of this chapter. �

Proof of (i) in Hawkes’ theorem. The proof of part (i) is based on the first mo-
ment method, which means that we essentially only have to calculate an expectation. Be-
cause dim A < γ there exists, for every ε > 0, a covering of A by countably many sets
D1 ,D2 , . . . with

∑∞
i=1 |Di |γ < ε. As each set is contained in no more than a constant

number of dyadic cubes of smaller diameter, we may even assume that D1 ,D2 , . . . ∈ C.
Suppose that the side length of Di is 2−n , then the probability that Di ∈ Sn is 2−nγ . By
picking from D1 ,D2 , . . . those cubes which are in S we get a covering of A ∩ Γ[γ]. Let
N be the number of cubes picked in this procedure, then

P{A ∩ Γ[γ] �= ∅} � P{N > 0} � EN =
∞∑

i=1

P{Di ∈ S} =
∞∑

i=1

|Di |γ < ε.

As this holds for all ε > 0 we infer that, almost surely, we have A ∩ Γ[γ] = ∅.
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Proof of (ii) in Hawkes’ theorem. The proof of part (ii) is based on the second moment
method, which means that a variance has to be calculated. We also use the easy part of
Frostman’s lemma in the form of Theorem 4.32, which states that, as dim A > γ, there
exists a probability measure µ on A such that Iγ (µ) < ∞.
Now let n be a positive integer and define the random variables

Yn =
∑

C∈Sn

µ(C)
|C|γ =

∑
C∈Cn

µ(C)2nγ 1{C∈Sn }.

Note that Yn > 0 implies S(n) ∩ A �= ∅ and, by compactness, if Yn > 0 for all n we even
have A ∩ Γ[γ] �= ∅. As Yn+1 > 0 implies Yn > 0, we get that

P
{
A ∩ Γ[γ] �= ∅

}
� P
{
Yn > 0 for all n

}
= lim

n→∞
P
{
Yn > 0

}
.

It therefore suffices to give a positive lower bound for P{Yn > 0} independent of n.
A straightforward calculation gives for the first moment E[Yn ] =

∑
C∈Cn

µ(C) = 1. For
the second moment we find

E[Y 2
n ] =

∑
C∈Cn

∑
D∈Cn

µ(C)µ(D) 22nγ P{C ∈ Sn and D ∈ Sn}.

The latter probability depends on the dyadic distance of the cubes C and D: if 2−m is the
side length of the smallest dyadic cube which contains both C and D, then the probability
in question is 2−2γ (n−m )2−γm . The value m can be estimated in terms of the Euclidean
distance of the cubes, indeed if x ∈ C and y ∈ D then

|x − y| �
√

d2−m .

This gives a handle to estimate the second moment in terms of the energy of µ. We find
that

E[Y 2
n ] =

∑
C∈Cn

∑
D∈Cn

µ(C)µ(D)2γm � dγ/2
∫∫

dµ(x) dµ(y)
|x − y|γ = dγ/2Iγ (µ).

Plugging these moment estimates into the easy form of the Paley–Zygmund inequality,
Lemma 3.23, gives P{Yn > 0} � d−γ/2Iγ (µ)−1 , as required.

Proof of (iii) in Hawkes’ theorem. For part (iii) note that the intersection Γ[γ] ∩ Γ[δ]
of two independent percolation limit sets has the same distribution as Γ[γ + δ]. Suppose
first that δ > dim A − γ. Then, by part (i), A ∩ Γ[γ] ∩ Γ[δ] = ∅ almost surely, and
hence, by part (ii), dim A ∩ Γ[γ] � δ almost surely. Letting δ ↓ dim A − γ completes
the proof of part (a). Now suppose that δ < dim A − γ. Then, with positive probability,
(A ∩ Γ[γ]) ∩ Γ[δ] �= ∅, by part (ii). And using again part (i) we get that dim A ∩ Γ[γ] � δ

with positive probability, completing the proof of part (b).

9.1.3 Hausdorff dimension of intersections

We can now use the stochastic codimension approach to find the Hausdorff dimension of
the intersection of two Brownian paths, whenever it is nonempty. Note that the following
theorem also implies Theorem 9.3 (b).
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Theorem 9.8 Suppose d � 2 and p � 2 are integers such that p(d − 2) < d. Suppose that

{B1(t) : t � 0}, . . . , {Bp(t) : t � 0}

are p independent d-dimensional Brownian motions. Let Rangei = Bi [0,∞) be the range
of the process {Bi(t) : t � 0}, for 1 � i � p. Then, almost surely,

dim
(
Range1 ∩ . . . ∩ Rangep

)
= d − p(d − 2).

Remark 9.9 A good way to make this result plausible is by recalling the situation for the
intersection of linear subspaces of Rd : If the spaces are in general position, then the co-
dimension of the intersection is the sum of the co-dimensions of the subspaces. As the
Hausdorff dimension of a Brownian path is two, the plausible codimension of the intersec-
tion of p paths is p(d − 2), and hence the dimension is d − p (d − 2). �

Remark 9.10 Assuming the theorem, if the Brownian paths are started in the same point,
then almost surely, dim(B1 [0, t1 ]∩· · ·∩Bp [0, tp ]) = d−p(d−2), for any t1 , . . . , tp > 0,
see Exercise 9.1 (b). �

For the proofs of the lower bounds in Theorem 9.8 we use the stochastic codimension
method, but first we provide a useful zero-one law.

Lemma 9.11 For any γ > 0 the probability of the event{
dim
(
Range1 ∩ . . . ∩ Rangep

)
� γ
}

is either zero or one, and independent of the starting points of the Brownian motions.

Proof. For t ∈ (0,∞] denote S(t) = B1(0, t) ∩ · · · ∩ Bp(0, t) and let

p(t) = P{dim S(t) � γ}.

We start by considering the case that all Brownian motions start at the origin. Then, by
monotonicity of the events,

P
{

dim S(t) � γ for all t > 0
}

= lim
t↓0

p(t).

The event on the left hand side is in the germ-σ-algebra and hence, by Blumenthal’s zero-
one law, has probability zero or one. By scaling, however, p(t) does not depend on t at all,
so we have either p(t) = 0 for all t > 0 or p(t) = 1 for all t > 0.

In the first case we note that, by the Markov property applied at time t,

0 = P
{

dim S(∞) � γ
}

=
∫

P
{

dim S(∞) � γ | B1(t) = x1 , . . . , Bp(t) = xp

}
dµ(x1 , . . . , xp),
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where µ is the product of p independent centred, normally distributed random variables
with variances t. As µ � Lpd , we have P{dim S(∞) � γ} = 0 for Lpd -almost every
vector of starting points. Finally, for an arbitrary configuration of starting points,

P
{

dim S(∞) � γ
}

= lim
t↓0

P
{

dim{x ∈ Rd : ∃ti � t such that x = B1(t1) = · · · = Bp(tp)} � γ
}

= 0.

A completely analogous argument can be carried out for the second case.

Proof of Theorem 9.8. First we look at d = 3 (and hence p = 2) and note that,
by Lemma 9.4, we have dim(Range1 ∩ Range2) � 1, and hence only the lower bound
remains to be proved. Suppose γ < 1 is arbitrary, and pick β > 1 such that γ + β < 2.
Let Γ[γ] and Γ[β] be two independent percolation limit sets, independent of the Brownian
motions. Note that Γ[γ] ∩ Γ[β] is a percolation limit set with parameter γ + β. Hence, by
Theorem 9.5 (ii) and the fact that dim(Range1) = 2 > γ + β, we have

P
{
Range1 ∩ Γ[γ] ∩ Γ[β] �= ∅

}
> 0.

Interpreting Γ[β] as the test set and using Theorem 9.5 (i) we obtain

dim
(
Range1 ∩ Γ[γ]

)
� β with positive probability.

As β > 1, given this event, the set Range1 ∩ Γ[γ] has positive capacity with respect to the
potential kernel in R3 and is therefore nonpolar with respect to the independent Brownian
motion {B2(t) : t � 0}. We therefore have

P
{
Range1 ∩ Range2 ∩ Γ[γ] �= ∅

}
> 0.

Using Theorem 9.5 (i) we infer that dim(Range1 ∩Range2) � γ with positive probability.
Lemma 9.11 shows that this must in fact hold almost surely, and the result follows as γ < 1
was arbitrary.

Next, we look at d = 2 and any p � 2. Note that the upper bounds are trivial. For the lower
bounds, suppose γ < 2 is arbitrary, and pick β1 , . . . , βp > 0 such that γ+β1+· · ·+βp < 2.
Let Γ[γ] and Γ[β1 ], . . . ,Γ[βp ] be independent percolation limit sets, independent of the p

Brownian motions. Then

Γ[γ] ∩
p⋂

i=1

Γ[βi ]

is a percolation limit set with parameter γ +β1 + · · ·+βp . Hence, by Theorem 9.5 (ii) and
the fact that dim(Range1) = 2 > γ + β1 + · · · + βp , we have

P
{

Range1 ∩ Γ[γ] ∩
p⋂

i=1

Γ[βi ] �= ∅
}

> 0.

Interpreting Γ[βp ] as the test set and using Theorem 9.5 (i) we obtain

dim
(
Range1 ∩ Γ[γ] ∩

p−1⋂
i=1

Γ[βi ]
)

� βp with positive probability.
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As βp > 0, given this event, the set

Range1 ∩ Γ[γ] ∩
p−1⋂
i=1

Γ[βi ]

has positive capacity with respect to the potential kernel in R2 and is therefore nonpolar
with respect to the independent Brownian motion {B2(t) : t � 0}. We therefore have

P
{
Range1 ∩ Range2 ∩ Γ[γ] ∩

p−1⋂
i=1

Γ[βi ] �= ∅
}

> 0.

Iterating this procedure p − 1 times we obtain

P
{ p⋂

i=1

Rangei ∩ Γ[γ] �= ∅
}

> 0.

Using Theorem 9.5 (i) we infer that dim(
⋂p

i=1 Rangei) � γ with positive probability.
Lemma 9.11 shows that this must in fact hold almost surely, and the result follows as
γ < 2 was arbitrary.

9.2 Intersection equivalence of Brownian motion and percolation limit sets

The idea of quantitative estimates of hitting probabilities has a natural extension: two ran-
dom sets may be called intersection-equivalent if their hitting probabilities for a large class
of test sets are comparable. This concept of equivalence allows surprising relationships be-
tween random sets which, at first sight, might not have much in common. In this section we
establish intersection equivalence between Brownian motion and suitably defined percola-
tion limit sets, and use this to characterise the polar sets for the intersection of Brownian
paths. We start the discussion by formalising the idea of intersection equivalence.

Definition 9.12. Two random closed sets A and B in Rd are intersection-equivalent
in the compact set U if there exist two positive constants c, C such that, for any closed
set Λ ⊂ U ,

c P{A ∩ Λ �= ∅} � P{B ∩ Λ �= ∅} � CP{A ∩ Λ �= ∅}. (9.1)

Using the symbol a 
 b to indicate that the ratio of a and b is bounded from above and
below by positive constants which do not depend on Λ we can write this as

P{A ∩ Λ �= ∅} 
 P{B ∩ Λ �= ∅}.
�

Remark 9.13 Let G be the collection of all closed subsets of Rd . Formally, we define a
random closed set as a mapping A : Ω → G such that, for every compact Λ ⊂ Rd , the set
{ω : A(ω) ∩ Λ = ∅} is measurable. �

The philosophy of the main result of this section is that we would like to find a class of
particularly simple sets which are intersection-equivalent to the paths of transient Brownian
motion. If these sets are easier to study, we can ‘translate’ easy results about the simple sets
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into hard ones for Brownian motion. A good candidate for these simple sets are percolation
limit sets: they have excellent features of self-similarity and independence between the fine
structures in different parts. Many of their properties can be obtained from classical facts
about Galton–Watson branching processes.

We introduce percolation limit sets with generation dependent retention probabilities. De-
note by Cn the compact dyadic cubes of side length 2−n . For any sequence p1 , p2 , . . . in
(0, 1) we define families Sn of compact dyadic cubes inductively by including any cube in
Cn which is not contained in a previously rejected cube, independently with probability pn .
Define

Γ =
∞⋂

n=1

⋃
S∈Sn

S,

to be the percolation limit set for the sequence p1 , p2 , . . ..
To find a suitable sequence of retention probabilities we compare the hitting probabilities
of dyadic cubes by a percolation limit set on the one hand and a transient Brownian on the
other. (This is obviously necessary to establish intersection equivalence). We assume that
percolation is performed in a cube Cube at positive distance from the origin, at which a
transient Brownian motion is started. Supposing for the moment that the retention proba-
bilities are such that the survival probability of any retained cube is bounded from below,
for any cube Q ∈ Cn , the hitting estimates for the percolation limit set are

P
{
Γ ∩ Q �= ∅

}

 p1 · · · pn .

By Theorem 8.24, on the other hand,

P
{
B[0, T ] ∩ Q �= ∅

}

 CapM (Q) 
 1/f(2−n ) ,

for the radial potential

f(ε) =

{
log2(1/ε) for d = 2,

ε2−d for d � 3 ,

where we have chosen basis 2 for the logarithm for convenience of this argument. Then we
choose the sequence p1 , p2 , . . . of retention probabilities such that p1 · · · pn = 1/f(2−n ).
More explicitly, we choose p1 = 22−d and, for n � 2,

pn =
f(2−n+1)
f(2−n )

=

{
n−1

n for d = 2,

22−d for d � 3 .
(9.2)

The retention probabilities are constant for d � 3, but generation dependent for d = 2.

Theorem 9.14 Let {B(t) : 0 � t � T} denote transient Brownian motion started at the
origin and Cube ⊂ Rd a compact cube of unit side length not containing the origin. Let
Γ be a percolation limit set in Cube with retention probabilities chosen as in (9.2). Then
the range of the Brownian motion is intersection-equivalent to the percolation limit set Γ
in the cube Cube.
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Before discussing the proof, we look at an application of Theorem 9.14 to our understand-
ing of Brownian motion. We first make two easy observations.

Lemma 9.15 Suppose that A1 , . . . , Ak , F1 , . . . , Fk are independent random closed sets,
with Ai intersection-equivalent to Fi for 1 � i � k. Then A1 ∩ A2 ∩ . . . ∩ Ak is
intersection-equivalent to F1 ∩ F2 ∩ . . . ∩ Fk .

Proof. By induction, we can reduce this to the case k = 2. It then clearly suffices
to show that A1 ∩ A2 is intersection-equivalent to F1 ∩ A2 . This is done by conditioning
on A2 ,

P
{
A1 ∩ A2 ∩ Λ �= ∅

}
= E
[
P{A1 ∩ A2 ∩ Λ �= ∅ |A2}

]

 E
[
P{F1 ∩ A2 ∩ Λ �= ∅ |A2}

]
= P{F1 ∩ A2 ∩ Λ �= ∅}.

Lemma 9.16 For independent percolation limit sets Γ1 and Γ2 with retention probabilities
p1 , p2 , . . . and q1 , q2 , . . ., respectively, their intersection Γ1 ∩ Γ2 is a percolation limit set
with retention probabilities p1q1 , p2q2 , . . ..

Proof. This is obvious from the definition of percolation limit sets and independence.

These results enable us to recover the results about existence of nontrivial intersections of
Brownian paths from the survival criteria of Galton–Watson trees, see Section 12.4 of the
appendix.

As an example, we take a look at the intersection of two Brownian paths in Rd , d � 3. By
Theorem 9.14 and Lemma 9.15, the intersection of these paths is intersection-equivalent
(in any unit cube not containing the starting points) to the intersection of two independent
percolation limit sets with constant retention parameters p = 22−d . This intersection, by
Lemma 9.16, is another percolation limit set, but now with parameter p2 = 24−2d . Now
observe that this set has a positive probability of being nonempty if and only if a Galton–
Watson process with binomial offspring distribution with parameters n = 2d and p =
24−2d has a positive survival probability. Recalling the criterion for survival of Galton–
Watson trees from Proposition 12.37 in the appendix, we see that this is the case if and
only if the mean offspring number np strictly exceeds 1, i.e. if 4 − d > 0. In other words,
in d = 3 the two paths intersect with positive probability, in all higher dimensions they
almost surely do not intersect.

We now give the proof of Theorem 9.14. A key rôle in the proof is played by a fundamental
result of Russell Lyons concerning survival probabilities of general trees under the perco-
lation process, which has great formal similarity with the quantitative hitting estimates for
Brownian paths of Theorem 8.24.

Recall the notation for trees from Section 12.4 in the appendix. As usual we define, for
any kernel K : ∂T × ∂T → [0,∞], the K-energy of the measure µ on ∂T as

IK (µ) =
∫∫

K(x, y) dµ(x) dµ(y),
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and the K-capacity of the boundary of the tree by

CapK (∂T ) =
[
inf
{
IK (µ) : µ a probability measure on ∂T

}]−1
.

Given a sequence p1 , p2 , . . . of probabilities, percolation on T is obtained by removing
each edge of T of order n independently with probability 1−pn and retaining it otherwise,
with mutual independence among edges. Say that a ray ξ survives the percolation if all
the edges on ξ are retained, and say that the tree boundary ∂T survives if some ray of T

survives.

Theorem 9.17 (Lyons) If percolation with retention probabilities p1 , p2 , . . . is performed
on a rooted tree T , then

CapK (∂T ) � P
{

∂T survives the percolation
}

� 2CapK (∂T ) , (9.3)

where the kernel K is defined by K(x, y) =
∏|x∧y |

i=1 p−1
i .

Proof. For two vertices v, w we write v ↔ w if the shortest path between the vertices
is retained in the percolation. We also write v ↔ ∂T if a ray through vertex v survives the
percolation and v ↔ Tn if there is a self-avoiding path of retained edges connecting v to a
vertex of generation n. Note that, with ρ denoting the root of the tree, K(x, y) = P{ρ ↔
x ∧ y}−1 by definition of the kernel K. By the finiteness of the degrees,

{ρ ↔ ∂T} =
⋂
n

{ρ ↔ Tn} .

We start with the left inequality in (9.3) and consider the case of a finite tree T first. We
extend the definition of the boundary ∂T to finite trees by letting ∂T be the set of leaves,
i.e., the vertices with no offspring. Let µ be a probability measure on ∂T and set

Y =
∑

x∈∂T

µ(x)
1{ρ ↔ x}
P{ρ ↔ x} .

Then E[Y ] =
∑

x∈∂T

µ(x) = 1, and

E[Y 2 ] = E

⎡⎣∑
x∈∂T

∑
y∈∂T

µ(x)µ(y)
1{ρ ↔ x, ρ ↔ y}

P{ρ ↔ x}P{ρ ↔ y}

⎤⎦
=

∑
x∈∂T

∑
y∈∂T

µ(x)µ(y)
P{ρ ↔ x and ρ ↔ y}
P{ρ ↔ x}P{ρ ↔ y} .

Thus,

E[Y 2 ] =
∑

x,y∈∂T

µ(x)µ(y)
1

P{ρ ↔ x ∧ y} = IK (µ).

Using the Paley–Zygmund inequality in the second step, we obtain

P{ρ ↔ ∂T} � P{Y > 0} �
(
E[Y ]
)2

E[Y 2 ]
=

1
IK (µ)

.
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The left hand side does not depend on µ, so optimising the right hand side over µ yields

P{ρ ↔ ∂T} � sup
µ

1
IK (µ)

= CapK (∂T ) ,

which proves the lower bound for finite trees. For T infinite, let µ be any probability
measure on ∂T . This induces a probability measure µ̃ on the set Tn , consisting of those
vertices which become leaves when the tree T is cut off after the nth generation, by letting

µ̃(v) = µ
{
ξ ∈ ∂T : v ∈ ξ

}
, for any vertex v ∈ Tn .

By the finite case considered above,

P{ρ ↔ Tn} �
( ∑

x,y∈Tn

K(x, y)µ̃(x)µ̃(y)
)−1

.

Each ray ξ must pass through some vertex x ∈ Tn . This implies that K(x, y) � K(ξ, η)
for x ∈ ξ and y ∈ η. Therefore,∫

∂T

∫
∂T

K(ξ, η) dµ(ξ) dµ(η) �
∑

x,y∈Tn

K(x, y)µ̃(x)µ̃(y) � 1
P{ρ ↔ Tn}

.

Hence P{ρ ↔ Tn} � IK (µ)−1 for any probability measure µ on ∂T . Optimising over µ

and passing to the limit as n → ∞, we get P{ρ ↔ ∂T} � CapK (∂T ) .

It remains to prove the right hand inequality in (9.3). Assume first that T is finite. There
is a Markov chain {Vk : k ∈ N} hiding here: Suppose the offspring of each individual is
ordered from left to right, and note that this imposes a natural order on all vertices of the
tree by saying that x is to the left of y if there are siblings v, w with v to the left of w,
such that x is a descendant of v and y is a descendant of w. The random set of leaves that
survive the percolation may thus be enumerated from left to right as V1 , V2 , . . . , Vr . The
key observation is that the random sequence ρ, V1 , V2 , . . . , Vr ,∆,∆, . . . is a Markov chain
on the state space ∂T ∪ {ρ,∆}, where ρ is the root and ∆ is a formal absorbing cemetery.
Indeed, given that Vk = x, all the edges on the unique path from ρ to x are retained, so
that survival of leaves to the right of x is determined by the edges strictly to the right of the
path from ρ to x, and is thus conditionally independent of V1 , . . . , Vk−1 , see Figure 9.1.

This verifies the Markov property, so Proposition 8.26 may be applied. The transition
probabilities for the Markov chain above are complicated, but it is easy to write down the
Green kernel G. For any vertex x let path(x) be the set of edges on the shortest path from
ρ to x. Clearly, G(ρ, y) equals the probability that y survives percolation, so

G(ρ, y) =
|y |∏

n=1

pn .

If x is to the left of y, then G(x, y) is equal to the probability that the range of the Markov
chain contains y given that it contains x, which is just the probability of y surviving given
that x survives. Therefore,

G(x, y) =
|y |∏

n=|x∧y |+1

pn ,
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ρ

Fig. 9.1. The Markov chain embedded in the tree.

and hence

M(x, y) =
G(x, y)
G(ρ, y)

=
|x∧y |∏
n=1

p−1
n .

Now G(x, y) = 0 for x on the right of y; thus (keeping the diagonal in mind)

K(x, y) � M(x, y) + M(y, x)

for all x, y ∈ ∂T , and therefore IK (µ) � 2IM (µ) . Now apply Proposition 8.26 to Λ =
∂T :

CapK (∂T ) � 1
2 CapM (∂T ) � 1

2 P
{
{Vk : k ∈ N} hits ∂T

}
= 1

2 P{ρ ↔ ∂T} .

This establishes the upper bound for finite T . The inequality for general T follows from
the finite case by taking limits.

The main remaining task is to translate Lyons’ theorem, Theorem 9.17, into hitting esti-
mates for percolation limit sets using a ‘tree representation’ as in Figure 9.2, and relating
the capacity of the tree boundary to the capacity of the percolation limit set.

Theorem 9.18 Let Γ be a percolation limit set in the unit cube Cube with retention param-
eters p1 , p2 , . . .. Then, for any closed set Λ ⊂ Cube we have

P
{
Γ ∩ Λ �= ∅

}

 Capf (Λ) ,

for any decreasing f satisfying f(2−k ) = p−1
1 · · · p−1

k .

Remark 9.19 This result extends parts (i) and (ii) of Hawkes’ theorem, Theorem 9.5, in
two ways: It includes generation dependent retention and gives a quantitative estimate. �

The key to this theorem is the following representation for the f -energy of a measure.
Recall that Dn denotes the collection of half-open dyadic cubes of side length 2−n .
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Fig. 9.2. Percolation limit set and associated tree

Lemma 9.20 Suppose f : (0,∞) → (0,∞) is a decreasing function, and denote h(n) =
f(2−n ) − f(21−n ) for n � 1, and h(0) = f(1). Then, for any measure µ on the unit
cube [0, 1)d ,

If (µ) 

∞∑

n=0

h(n)
( ∑

Q∈Dn

µ(Q)2
)

,

where the implied constants depend only on d.

Proof of the lower bound in Lemma 9.20. Fix an integer � such that
√

d � 2� . For
any x, y ∈ [0, 1]d we write n(x, y) = max

{
n : x, y ∈ Q for some Q ∈ Dn

}
. Note that

n(x, y) = n + � implies |x− y| �
√

d2−n−� � 2−n and hence f(|x− y|) � f(2−n ). We
thus get

If (µ) =
∫∫

f( |x − y|) dµ(x) dµ(y)

�
∞∑

n=0

f(2−n )µ ⊗ µ
{
(x, y) : n(x, y) = n + �

}
=

∞∑
n=0

f(2−n )
[
Sn+�(µ) − Sn+�+1(µ)

]
,

where Sn (µ) =
∑

Q∈Dn
µ(Q)2 . Note that, by the Cauchy–Schwarz inequality,

Sn (µ) =
∑

Q∈Dn

µ(Q)2 =
∑

Q∈Dn

( ∑
V ∈Dn + 1

V ⊂Q

µ(V )
)2

� 2d
∑

V ∈Dn + 1

µ(V )2 = 2d Sn+1(µ) .

(9.4)
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Rearranging the sum and using this � times, we obtain that
∞∑

n=0

f(2−n )
[
Sn+�(µ) − Sn+�+1(µ)

]
=

∞∑
n=0

h(n)Sn+�(µ) �
∞∑

n=0

h(n) 2−d� Sn (µ) ,

which is our statement with c = 2−d� .

Proof of the upper bound in Lemma 9.20. For
√

d 21−n � |x − y| >
√

d 2−n , we
have

∞∑
k=0

h(k)1{
√

d 21−k � |x − y|} = f(
√

d 2−n ) � f(|x − y|) ,

and hence we can decompose the integral as

If (µ) =
∫∫

f(|x − y|) dµ(x) dµ(y)

�
∫∫ ∞∑

k=0

h(k)1{
√

d 21−k � |x − y|} dµ(x) dµ(y) .

For cubes Q1 , Q2 ∈ Dn we write Q1 ∼ Q2 if there exist q1 ∈ Q1 and q2 ∈ Q2 with
|q1 − q2 | �

√
d2−n (though note that ∼ is not an equivalence relation). Then∫∫

1{
√

d 21−k � |x − y|} dµ(x) dµ(y) = µ ⊗ µ
{
(x, y) : |x − y| �

√
d 21−k

}
�

∑
Q 1 , Q 2 ∈Dk −1

Q 1 ∼Q 2

µ(Q1)µ(Q2) � 1
2

∑
Q 1 , Q 2 ∈Dk −1

Q 1 ∼Q 2

(
µ(Q1)2 + µ(Q2)2

)
,

using the inequality of the geometric and arithmetic mean in the last step. As, for each
cube Q1 , the number of cubes Q2 with Q1 ∼ Q2 is bounded by some constant Cd > 0,
we obtain that

If (µ) � Cd +1
2

∞∑
k=0

h(k)
∑

Q∈Dk −1

µ(Q)2 � (Cd + 1) 2d−1
∞∑

k=0

h(k)
∑

Q∈Dk

µ(Q)2 ,

using (9.4) from above. This completes the proof of the upper bound.

Proof of Theorem 9.18. Denote the coordinatewise minimum of Cube by x0 . We
employ the canonical mapping R from the boundary of a 2d -ary tree Υ, where every ver-
tex has 2d children, to the cube Cube. Formally, label the edges from each vertex to its
children in a one-to-one manner with the vectors in Θ = {0, 1}d . Then the boundary ∂Υ
is identified with the sequence space ΘZ+

and we define R : ∂Υ = ΘZ+ → Cube by

R(ω1 , ω2 , . . .) = x0 +
∞∑

n=1

2−nωn .

We now use the representation given in Lemma 9.20 to relate the K-energy of a measure
µ on ∂Υ (with K as in Theorem 9.17) to the f -energy of its image measure µ ◦ R−1 on
Cube, showing that

IK (µ) 
 If (µ ◦ R−1) (9.5)
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where the implied constants depend only on the dimension d. Indeed the K-energy of a
measure µ on ∂Υ satisfies, by definition,

IK (µ) =
∫∫ |x∧y |∏

i=1

p−1
i dµ(x) dµ(y) =

∫∫ ∑
v�x∧y

( |v |∏
i=1

p−1
i −

|v |−1∏
i=1

p−1
i

)
dµ(x) dµ(y),

where we count all ancestors v of x∧ y and we interpret the contribution of the root v = ρ

as one. Interchanging summation and integration we obtain

IK (µ) =
∑
v∈Υ

( |v |∏
i=1

p−1
i −

|v |−1∏
i=1

p−1
i

)∫∫
1{x � v, y � v} dµ(x) dµ(y)

=
∑
v∈Υ

( |v |∏
i=1

p−1
i −

|v |−1∏
i=1

p−1
i

)
µ
(
{ξ ∈ ∂T : v ∈ ξ

})2
,

whereas the f -energy of the measure µ ◦ R−1 satisfies, by Lemma 9.20,

If

(
µ ◦ R−1) 
 ∞∑

k=0

h(k)
∑

D∈Dk

µ
(
R−1(D)

)2
,

where

h(k) = f(2−k ) − f(2−k+1) = p−1
1 · · · p−1

k − p−1
1 · · · p−1

k−1

by our assumptions on f . Now R−1(D) is contained in no more than 3d sets of the form
{ξ ∈ ∂T : v ∈ ξ

}
, for |v| = k, in such a way that over all cubes D ∈ Dk no such set is

used in more than 3d covers. Conversely each set R−1(D) contains an individual set of
this form entirely, so that we obtain (9.5).
Any closed set Λ in the unit cube Cube can be written as the image R(∂T ) of the bound-
ary of some subtree T of the regular 2d -ary tree. As any measure ν on R(∂T ) ⊂ Cube

can be written as µ ◦ R−1 for an appropriate measure µ on ∂T it follows from (9.5)
that CapK (∂T ) 
 Capf (R(∂T )). We perform percolation with retention parameters
p1 , p2 , . . . on the tree T . Then, by Theorem 9.17,

P
{
Γ ∩ Λ �= ∅

}
= P
{

∂T survives the percolation
}


 CapK (∂T ) 
 Capf (Λ) .

Proof of Theorem 9.14. As the cube Cube has positive distance to the starting point
of Brownian motion, we can remove the denominator and smaller order terms from the
Martin kernel in Theorem 8.24, as in the proof of Theorem 8.20. We thus obtain

P
{
B[0, T ] ∩ Λ �= ∅

}

 Capf (Λ) ,

where f is the radial potential. For the choice of retention probabilities in (9.2) we can
apply Theorem 9.18, which implies

Capf (Λ) 
 P
{
Γ ∩ Λ �= ∅

}
,

and combining the two displays gives the result.
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The intersection equivalence approach enables us to characterise the polar sets for the
intersection of p independent Brownian motions in Rd and give a quantitative estimate of
the hitting probabilities.

Theorem 9.21 Let B1 , . . . , Bp be independent Brownian motions in Rd starting in arbi-
trary fixed points and suppose p(d − 2) < d. Let

S =
{
x ∈ Rd : ∃ t1 , . . . , tp > 0 with x = B1(t1) = · · · = Bp(tp)

}
.

Then, for any closed set Λ, we have

P
{
S ∩ Λ �= ∅

}
> 0 if and only if Capf p (Λ) > 0 ,

where f is the radial potential.

Proof. We may assume that Λ is contained in a unit cube at positive distance from
the starting points. Let Γ be a percolation limit set in that cube, with retention probabil-
ities p1 , p2 , . . . satisfying p1 · · · pn = 1/fp(2−n ). By Theorem 9.14, Lemma 9.15 and
Lemma 9.16, the random set S is intersection-equivalent to Γ in that cube. Theorem 9.18
characterises the polar sets for Γ, completing the argument.

9.3 Multiple points of Brownian paths

A point x ∈ Rd has multiplicity p, or is a p-fold multiple point, for a Brownian motion
{B(t) : t � 0} in Rd , if there exist times 0 < t1 < · · · < tp with

x = B(t1) = · · · = B(tp).

The results of the previous section also provide the complete answer to the question of the
existence of such points.

Theorem 9.22 Suppose d � 2 and {B(t) : t ∈ [0, 1]} is a d-dimensional Brownian motion.
Then, almost surely,

• if d � 4 no double points exist, i.e. Brownian motion is injective,

• if d = 3 double points exist, but triple points fail to exist,

• if d = 2 points of any finite multiplicity exist.

Proof. To show nonexistence of double points in d � 4 it suffices to show that for
any rational α ∈ (0, 1), almost surely, there exists no times 0 � t1 < α < t2 � 1 with
B(t1) = B(t2). Fixing such an α, the Brownian motions {B1(t) : 0 � t � 1 − α} and
{B2(t) : 0 � t � α} given by

B1(t) = B(α + t) − B(α) and B2(t) = B(α − t) − B(α)

are independent and hence, by Theorem 9.1, they do not intersect, almost surely, proving
the statement.



9.3 Multiple points of Brownian paths 273

To show existence of double points in d � 3 we apply Theorem 9.1 in conjunction with
Remark 9.2, to the independent Brownian motions {B1(t) : 0 � t � 1

2 } and {B2(t) :
0 � t � 1

2 } given by

B1(t) = B
( 1

2 + t
)
− B
( 1

2

)
and B2(t) = B

( 1
2 − t
)
− B
( 1

2

)
,

to see that, almost surely, the two ranges intersect.

To show nonexistence of triple points in d = 3 we observe that it suffices to show that for
any three rationals 0 < α1 < α2 < α3 and ε < (α3 − α2) ∧ (α2 − α1), almost surely
there are no times ti ∈ (αi, αi + ε) such that B(t1) = B(t2) = B(t3). By conditioning
the Brownian motion on its values at the times αi and αi + ε, for i ∈ {1, 2, 3}, we obtain
three Brownian bridges {Bi(t) : 0 � t � ε} given by

Bi(t) = B(αi + t) − B(αi), for i ∈ {1, 2, 3}.

By Exercise 9.2 the probability that these three bridges intersect is zero, for any values
B(αi), B(αi + ε). Taking an expectation over these values we obtain the result.

To show the existence of p-multiple points in R2 fix δ > 0 and numbers

0 < α1 < α2 < · · · < αp < αp+1 = δ.

Let ε > 0 small enough that αi + ε < αi+1 for i ∈ {1, . . . , p} and condition the Brownian
motion on its values at the times αi and αi + ε, for i ∈ {1, . . . , p}. We obtain p Brownian
bridges {Bi(t) : 0 � t � ε} given by

Bi(t) = B(αi + t) − B(αi), for i ∈ {1, . . . , p}.

By Exercise 9.2 these bridges intersect with positive probability, for any values B(αi),
B(αi + ε). Taking an expectation over these values we obtain that, for δ > 0, the path
{B(t) : 0 � t � δ} has a p-multiple point with positive probability. By Brownian scaling
this probability is independent of the choice of δ, and letting δ ↓ 0, we obtain

Prob
{

for all δ > 0 exist 0 < t1 < · · · < tp < δ with B(t1) = · · · = B(tp)
}

> 0.

By Blumenthal’s zero–one law this probability must be one, so that we have a p-multiple
point almost surely, which completes the proof.

Theorem 9.23 Let {B(t) : 0 � t � 1} be a planar Brownian motion. Then, almost surely,
for every positive integer p, there exist points x ∈ R2 which are visited exactly p times by
the Brownian motion.

Proof. Note first that it suffices to show this with positive probability. Indeed, by Brow-
nian scaling, the probability that the path {B(t) : 0 � t � r} has points of multiplicity
exactly p does not depend on r. By Blumenthal’s zero-one law it therefore must be zero
or one. The idea of the proof is now to construct a set Λ such that Capf p (Λ) > 0 but
Capf p + 1 (Λ) = 0 for the radial potential f . By Exercise 9.3 the first condition implies
that the probability that Λ contains a p-fold multiple point is positive. The second condi-
tion ensures that it almost surely does not contain a p + 1-fold multiple point. Hence the
p-multiple points found in Λ must be strictly p-multiple.
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We construct the set Λ by iteration, starting from a compact unit cube Cube. In the nth

construction step we divide each cube retained in the previous step into its four nonover-
lapping dyadic subcubes and retain only one of them, say the bottom left cube, except at
the steps with number

n = �4 k
p + 1 �, for k = p + 1, p + 2, . . .,

when we retain all four subcubes. The number k(n) of times within the first n steps when
we have retained all four cubes satisfies k(n) 
 (log n) p+1

log 4 . Denoting by Sn the set of

all dyadic cubes retained in the nth step, we define the compact set

Λ =
∞⋂

n=1

⋃
S∈Sn

S .

The calculation of the capacity of Λ will be based on the formula given in Lemma 9.20.
Observe that, if fp(ε) = logp(1/ε) is the pth power of the 2-dimensional radial potential,
then the associated function is

h( p ) (n) = fp(2−n ) − fp(21−n ) 
 np − (n − 1)p 
 np−1 .

Note that the number g(n) of cubes kept in the first n steps of the construction satisfies
g(n) 
 4k(n) 
 np+1 . By our construction

∑∞
n=0 np−1 g(n)−1 < ∞, but

∑∞
n=0 np g(n)−1 =

∞. For the measure µ distributing the unit mass equally among the retained cubes of the
same side length (hence giving mass g(n)−1 to each retained cube), we have

If p (µ) 

∞∑

n=0

h( p ) (n)
( ∑

Q∈Dn

µ(Q)2
)



∞∑
n=0

np−1 g(n)−1 < ∞ ,

and hence Capf p (Λ) > 0. For the converse statement, note that( ∑
Q∈Dn

ν(Q)2
)( ∑

Q∈Dn

1{Q retained }
)

� 1,

for any probability measure ν on Λ, by the Cauchy–Schwarz inequality. Hence,

If p + 1 (ν) 

∞∑

n=0

h( p + 1 ) (n)
( ∑

Q∈Dn

ν(Q)2
)

�
∞∑

n=0

h( p + 1 ) (n) g(n)−1



∞∑

n=0

np g(n)−1 = ∞ ,

verifying that Capf p + 1 (Λ) = 0. This completes the proof.

Knowing that planar Brownian motion has points of arbitrarily large finite multiplicity, it
is an interesting question whether there are points of infinite multiplicity.

Theorem* 9.24 Let {B(t) : t � 0} be a planar Brownian motion. Then, almost surely,
there exists a point x ∈ R2 such that the set {t � 0: B(t) = x} is uncountable.
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The rest of this section is devoted to the proof of this interesting result and will not be used
in the remainder of the book. It may be skipped on first reading.

Let us first describe the rough strategy of the proof: We start by finding two disjoint in-
tervals I1 and I2 with B(I1) ∩ B(I2) �= ∅. Inside these we find disjoint subintervals
I11 , I12 ⊂ I1 and I21 , I22 ⊂ I2 such that the four Brownian images B(Iij ) intersect. Con-
tinuing this way, we construct a binary tree T of time intervals where rays in T represent
sequences of nested intervals and the intersection of each such sequence will be mapped to
the same point by the Brownian motion.

Throughout the proof we use the following notation. For any open or closed sets A1 , A2 , . . .

and a Brownian motion B : [0,∞) → R2 define stopping times

τ(A1) := inf{t � 0: B(t) ∈ A1},

τ(A1 , . . . , An ) := inf{t � τ(A1 , . . . , An−1) : B(t) ∈ An}, for n � 2,

where, as usual, the infimum of the empty set is taken to be infinity. We say the Brownian
motion upcrosses the shell B(x, 2r) \ B(x, r) twice before a stopping time T if,

τ
(
B(x, r),B(x, 2r)c ,B(x, r),B(x, 2r)c) < T.

We call the paths of Brownian motion between τ(B(x, r)) and τ(B(x, r), B(x, 2r)c), and
between τ(B(x, r),B(x, 2r)c ,B(x, r)) and τ(B(x, r),B(x, 2r)c ,B(x, r), B(x, 2r)c) the
upcrossing excursions, see Figure 9.3.

B

(2)

(1)

B

B

Fig. 9.3. The path B : [0,∞) → R2 upcrosses the shell twice; the upcrossing excursions are bold
and marked B ( 1 ) , B ( 2 ) .

From now on let T be the first exit time of Brownian motion from the unit ball.

Lemma 9.25 There exist constants 0 < c0 < C0 such that, if 2 < m < n are two integers
and B a ball of radius 2−n with centre at distance at least 2−m and at most 3× 2−m from
the origin, we have

c0
m

n
� P0
{
τ(B) < T

}
� C0

m

n
.
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Proof. For the lower bound we note that the disk of radius 1
2 around the centre of B

is contained in the unit disk, so that the first exit time T ′ from this disk satisfies T ′ � T .
Theorem 3.18 gives the lower bound for P0{τ(B) < T ′}. Similarly, for the upper bound
we look at the disk of radius 2 around the centre of B, which contains the unit disk.

Recall from Theorem 3.44 that the density of B(T ) under Pz is given by the Poisson kernel,
which is

P(z, w) =
1 − |z|2
|z − w|2 for any z ∈ B(0, 1) and w ∈ ∂B(0, 1).

Lemma 9.26 Consider Brownian motion started at z ∈ B(0, r) where r < 1, and stopped
at time T when it exits the unit ball. Let τ � T be a stopping time, and let A ∈ F(τ).
Then we have

(i) Pz

(
A
∣∣B(T )

)
= Pz (A)

Ez

[
P(B(τ), B(T ))

∣∣A]
P(z,B(T ))

.

(ii) If Pz

(
{B(τ) ∈ B(0, r)}

∣∣A) = 1, then(1 − r

1 + r

)2
Pz (A) � Pz

(
A
∣∣B(T )

)
�
(1 + r

1 − r

)2
Pz (A) almost surely.

Proof. (i) Let I ⊂ ∂B(0, 1) be a Borel set. Using the strong Markov property and the
assumption A ∈ F(τ) in the second step, we get

Pz

(
A
∣∣ {B(T ) ∈ I}

)
Pz{B(T ) ∈ I} = Pz (A) Pz

(
{B(T ) ∈ I}

∣∣A)
= Pz (A) Ez

[
PB (τ )

{
B(T ) ∈ I

} ∣∣A] .
As a function of I , both sides of the equation define a finite measure with total mass Pz (A).
Comparing the densities of the measures with respect to the surface measure on ∂B(0, 1)
gives

Pz

(
A
∣∣B(T )

)
P(z,B(T )) = Pz (A) Ez

[
P(B(τ), B(T ))

∣∣A] .
(ii) The assumption of this part and (i) imply that the ratio Pz (A|B(T ))/Pz (A) can be
written as an average of ratios P(u,w)/P(z, w) where w = B(T ) ∈ ∂B(0, 1) and
u, z ∈ B(0, r). The assertion follows by finding the minimum and maximum of P(u,w)
as u ranges over B(0, r).

The following lemma, concerning the common upcrossings of L Brownian excursions, will
be the engine driving the proof of Theorem 9.24.

Lemma 9.27 Let n > 5 and let {x1 , . . . , x4n −5 } be points such that the balls B(xi, 21−n )
are disjoint and contained in the shell {z : 1

4 � |z| � 3
4 }. Consider L independent Brow-

nian upcrossing excursions W1 , . . . ,WL , started at prescribed points on ∂B(0, 1) and
stopped when they reach ∂B(0, 2). Let S denote the number of centres xi , 1 � i � 4n−5

such that the shell B(xi, 2−n+1) \ B(xi, 2−n ) is upcrossed twice by each of W1 , . . . ,WL .
Then there exist constants c, c∗ > 0 such that

P
{
S > 4n (c/n)L

}
� cL

∗
L!

. (9.6)
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Moreover, the same estimate (with a suitable constant c∗) is valid if we condition on the
end points of the excursions W1 , . . . ,WL .

Proof of Lemma 9.27. By Lemma 9.25, for any z ∈ ∂B(0, 1), the probability of Brow-
nian motion starting at z hitting the ball B(xi, 2−n ) before reaching ∂B(0, 2) is at least c0

n ,
and the probability of the second upcrossing excursion of B(xi, 2−n+1)\B(xi, 2−n ), when
starting at ∂B(xi, 21−n ) is at least 1/2. Thus

ES � 4n−5
( c0

2n

)L

. (9.7)

We now estimate the second moment of S. Consider a pair of centres xi, xj such that
2−m � |xi−xj | � 21−m for some m < n−1. For each k � L, let Vk = Vk (xi, xj ) denote
the event that the balls B(xi, 2−n ) and B(xj , 2−n ) are both visited by Wk . Given that
B(xi, 2−n ) is reached first, the conditional probability that Wk will also visit B(xj , 2−n )
is at most C0

m
n , by Lemma 9.25. We conclude that P(Vk ) � 2C2

0
m
n2 whence

P
( L⋂

k=1

Vk

)
�
(
2C2

0
m

n2

)L

.

For each m < n − 1 and i � 4n−5 , the number of centres xj such that 2−m � |xi −
xj | � 21−m is at most a constant multiple of 4n−m . Using that the diagonal terms are of
lower order, we deduce that there exists C1 > 0 such that

ES2 � CL
1 42n

n2L

n∑
m=1

mL4−m � (2C1)L42nL!
n2L

, (9.8)

where the last inequality follows, e.g., from taking x = 1/4 in the binomial identity

∞∑
m=0

(
m + L

L

)
xm = (1 − x)−L−1 .

Now (9.7), (9.8) and the Paley–Zygmund inequality, see Exercise 3.5, yield (9.6). The final
statement of the lemma follows from Lemma 9.26.

Proof of Theorem 9.24. Fix an increasing sequence {ni : i � 1} to be chosen later,
and let N� =

∑�
i=1 ni with N0 = 0. Denote qi = 4ni −5 and Qi = 4Ni −5i . We begin by

constructing a nested sequence of centres with which we associate a forest, i.e. a collection
of trees, in the following manner. The first level of the forest consists of Q1 centres,
{x( 1 )

1 , . . . , x( 1 )

Q 1
}, chosen such that the balls {B(x( 1 )

k , 2−N1 +1) : 1 � k � Q1} are disjoint
and contained in the annulus {z : 1

4 � |z| � 3
4 }.

Continue this construction recursively. For � > 1 suppose that level � − 1 of the forest
has been constructed. Level � consists of Q� vertices {x( � )

1 , . . . , x( � )

Q�
}. Each vertex x( �−1 )

i ,
1 � i � Q( �−1 ) , at level � − 1 has q� children {x( � )

j : (i − 1)q� < j � iq�} at level �; the
balls of radius 2−N� +1 around these children are disjoint and contained in the annulus{

z : 1
4 2−N�−1 � |z − x( �−1 )

i | � 3
4 2−N�−1

}
.

Recall that T = inf{t > 0: |B(t)| = 1}. We say that a level one vertex x( 1 )

k survived if
the Brownian motion upcrosses the shell B(x( 1 )

k , 2−N1 +1) \ B(x( 1 )

k , 2−N1 ) twice before T .
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A vertex at the second level x( 2 )

k is said to have survived if its parent vertex survived,
and in each upcrossing excursion of its parent, the Brownian motion upcrosses the shell
B(x( 2 )

k , 2−N2 +1) \ B(x( 2 )

k , 2−N2 ) twice. Recursively, we say a vertex x( � )

k , at level � of the
forest, survived if its parent vertex survived, and in each of the 2�−1 upcrossing excursions
of its parent, the Brownian motion upcrosses the shell

B(x( � )

k , 2−N� +1) \ B(x( � )

k , 2−N� )

twice. Note at this point that if there is an infinite ray of surviving vertices

x( 1 )

k(1) , x
( 2 )

k(2) , x
( 3 )

k(3) , . . .

such that x( � + 1 )

k(�+1) is a child of x( � )

k(�) , for � = 1, 2, . . ., then the sequence of compact balls

centred in x( � )

k(�) with radius 2−N� is nested. Therefore there exists exactly one point x in

the intersection of these balls. For any level �, there are 2� disjoint upcrossing excursions of
the shell B(x( � )

k(�) , 2
−N� +1)\B(x( � )

k(�) , 2
−N� ). Each of these contains two disjoint excursions

at level �+1. Thus the time intervals corresponding to these excursions form a binary tree,
where the children of an interval at level � are the two intervals at level � + 1 it contains.
An infinite ray in this tree is a nested sequence of compact intervals and their intersection
is a time t with B(t) = x. Since there are uncountably many rays, x has uncountable
multiplicity.

Now, for any � � 1, let S� denote the number of vertices at level � of the forest that
survived. Using the notation of Lemma 9.27, let

Γ� = 4n�

( c

n�

)L

and p� =
cL
∗

L!
,

where L = L(�) = 2�−1 . Lemma 9.27 with n = n1 states that

P{S1 > Γ1} � p1 = c∗ . (9.9)

For � > 1, the same lemma, and independence of excursions in disjoint shells given their
endpoints, yield

P
(
{S�+1 � Γ�+1}

∣∣ {S� > Γ�}
)

� (1 − p�+1)Γ� � exp(−p�+1Γ�) . (9.10)

By picking n� large enough, we can ensure that p�+1Γ� > �, whence the right hand side of
(9.10) is summable in �. Consequently

α = P
( ∞⋂

�=1

{S� > Γ�}
)

= P{S1 > Γ1}
∞∏

�=1

P
(
{S�+1 > Γ�+1}

∣∣ {S� > Γ�}
)

> 0 .

(9.11)

Thus with probability at least α, there is a ray of surviving vertices x( � )

k(�) and, as seen
above, this yields a point visited by Brownian motion uncountably many times before it
exits the unit disk.
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Let Hr denote the event that Brownian motion, killed on exiting B(0, r), has a point of
uncountable multiplicity. As explained above, (9.11) implies that P(H1) � α > 0. By
Brownian scaling, P(Hr ) does not depend on r, whence

P
( ∞⋂

n=1

H1/n

)
� α .

The Blumenthal zero-one law implies that this intersection has probability 1, so there are
points of uncountable multiplicity almost surely.

9.4 Kaufman’s dimension doubling theorem

In Theorem 4.33 we have seen that d-dimensional Brownian motion maps any set of di-
mension α almost surely into a set of dimension 2α. Surprisingly, by a famous result of
Kaufman, the dimension doubling property holds almost surely simultaneously for all sets.

Theorem 9.28 (Kaufman 1969) Let {B(t) : t � 0} be Brownian motion in dimension
d � 2. Almost surely, for any set A ⊂ [0,∞), we have

dim B(A) = 2 dim A.

Before discussing the proof, let us look at some consequences of Theorem 9.28. The
power of this result lies in the fact that the dimension doubling formula can now be applied
to arbitrary random sets.

As a first application we ask, how big the sets

T (x) =
{
t � 0: B(t) = x

}
of times mapped by d-dimensional Brownian motion onto the same point x can possibly
be. We have seen so far in this chapter and Theorem 6.40 that, almost surely,

• in dimension d � 4 all sets T (x) consist of at most one point,
• in dimension d = 3 all sets T (x) consist of at most two points,
• in dimension d = 2 at least one of the sets T (x) is uncountable,
• in dimension d = 1 all sets T (x) have at least Hausdorff dimension 1

2 .

We use Kaufman’s theorem to determine the Hausdorff dimension of the sets T (x) in the
case of planar and linear Brownian motion.

Corollary 9.29 Suppose {B(t) : t � 0} is a planar Brownian motion. Then, almost surely,
for all x ∈ R2 , we have dim T (x) = 0.

Proof. By Kaufman’s theorem, almost surely, dim T (x) = 1
2 dim{x} = 0 for all x.

Corollary 9.30 Suppose {B(t) : t � 0} is a linear Brownian motion. Then, almost surely,
for all x ∈ R, we have dim T (x) = 1

2 .
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Proof. The lower bound was shown in Theorem 6.40. For the upper bound let
{W (t) : t � 0} be a Brownian motion independent of {B(t) : t � 0}. Applying Kauf-
man’s theorem for the planar Brownian motion given by B̃(t) = (B(t),W (t)) we get,
almost surely, for every x,

dim T (x) = dim B̃−1({x} × R) � 1
2 dim({x} × R) = 1

2 ,

which proves the upper bound.

We now prove Kaufman’s theorem. Recall that, by Corollary 1.20, almost surely, the func-
tion {B(t) : t � 0} is α-Hölder continuous for any α < 1

2 . Hence, by Proposition 4.14,
irrespective of the dimension d, almost surely,

dim B(A) � 2 dim A and for all sets A ⊂ [0,∞).

Hence only the lower bound dim B(A) � 2 dim A requires proof. We first focus on the
case d � 3. The crucial idea here is that one uses a standardised covering of B(A) by
dyadic cubes and ensures that, simultaneously for all possible covering cubes the preim-
ages allow an efficient covering. An upper bound for dim A follows by selecting from the
coverings of all preimages.

Lemma 9.31 Consider a cube Q ⊂ Rd centred at a point x and having diameter 2r. Let
{B(t) : t � 0} be d-dimensional Brownian motion, with d � 3. Define recursively

τQ
1 = inf{t � 0 : B(t) ∈ Q} ,

τQ
k+1 = inf{t � τQ

k + r2 : B(t) ∈ Q}, for k � 1,

with the usual convention that inf ∅ = ∞. Then there exists 0 < θ < 1 depending only on
the dimension d, such that Pz{τQ

n+1 < ∞} � θn for all z ∈ Rd and n ∈ N.

Proof. It is sufficient to show that for some θ as above,

Pz

{
τQ
k+1 = ∞

∣∣ τQ
k < ∞

}
> 1 − θ.

Observe that the quantity on the left can be bounded from below by

Pz

{
τQ
k+1 = ∞

∣∣ |B(τQ
k +r2)−x| > 3r, τQ

k < ∞
}
Pz

{
|B(τQ

k +r2)−x| > 3r
∣∣ τQ

k < ∞
}
.

The second factor is bounded from below by infy∈Q Py{|B(r2)− x| > 3r}, by the strong
Markov property. Using transience of Brownian motion in d � 3, the first factor is bounded
from below by infy �∈B(x,3r) Py{τ(Q) = ∞

}
, where, as before, τ(Q) denotes the first hit-

ting time of Q. Both bounds are positive and do not depend on the scaling factor r.

Recall that Cm denotes the set of dyadic cubes of side length 2−m inside Cube = [− 1
2 , 1

2 ]d .

Lemma 9.32 In the setup of Lemma 9.31, there exists a random variable C = C(ω) such
that, almost surely, for all m and for all cubes Q ∈ Cm we have τQ


mC +1� = ∞.
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Proof. From Lemma 9.31 we get that

∞∑
m=1

∑
Q∈Cm

P
{
τQ

cm+1� < ∞

}
�

∞∑
m=1

2dm θcm .

Now choose c so large that 2dθc < 1. Then, by the Borel–Cantelli lemma, for all but
finitely many m we have τQ


cm+1� = ∞ for all Q ∈ Cm . Finally, we can choose a random
C(ω) > c to handle the finitely many exceptional cubes.

Proof of Theorem 9.28 for d > 2. As mentioned before we can focus on the ‘�’
direction. We fix L and show that, almost surely, for all subsets S of [−L,L]d we have

dim B−1(S) � 1
2 dim S. (9.12)

Applying this to S = B(A)∩[−L,L]d successively for a countable unbounded set of L we
get the desired conclusion. By scaling, it is sufficient to prove (9.12) for L = 1/2. The idea
now is to verify (9.12) for all paths satisfying Lemma 9.32 using completely deterministic
reasoning. As this set of paths has full measure, this verifies the statement.
Hence fix a path {B(t) : t � 0} satisfying Lemma 9.32 for a constant C > 0. If β > dim S

and ε > 0 there exists a covering of S by binary cubes {Qj : j ∈ N} ⊂
⋃∞

m=1 Cm such
that
∑

|Qj |β < ε. If Nm denotes the number of cubes from Cm in such a covering, then

∞∑
m=1

Nm 2−mβ < ε.

Consider the inverse image of these cubes under {B(t) : t � 0}. Since we chose this path
so that Lemma 9.32 is satisfied, this yields a covering of B−1(S), which for each m � 1
uses at most CmNm intervals of length r2 = d2−2m .
For γ > β we can bound the γ/2-dimensional Hausdorff content of B−1(S) from above by

∞∑
m=1

CmNm (d2−2m )γ/2 = C dγ/2
∞∑

m=1

mNm 2−mγ .

This can be made small by choosing a suitable ε > 0. Thus B−1(S) has Hausdorff dimen-
sion at most γ/2 for all γ > β > dim S, and therefore dim B−1(S) � dim S/2.

In d = 2 we cannot rely on transience of Brownian motion. To get around this problem,
we can look at the Brownian path up to a stopping time. A convenient choice of stopping
time for this purpose is τ∗

R = min
{
t : |B(t)| = R

}
. For the two dimensional version of

Kaufman’s theorem it is sufficient to show that, almost surely,

dim B(A) � 2 dim(A ∩ [0, τ∗
R ]) for all A ⊂ [0,∞).

Lemma 9.31 has to be changed accordingly.

Lemma 9.33 Consider a cube Q ⊂ R2 centred at a point x and having diameter 2r, and
assume that the cube Q is inside the ball of radius R about the origin. Let {B(t) : t � 0}
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be planar Brownian motion. Define τQ
k as in Lemma 9.31. Then there exists c = c(R) > 0

such that, with 2−m−1 < r < 2−m , for any z ∈ R2 ,

Pz

{
τQ
k < τ∗

R

}
�
(
1 − c

m

)k

� e−ck/m . (9.13)

Proof. It suffices to bound Pz{τQ
k+1 � τ∗

R | τQ
k < τ∗

R} from below by

Pz

{
τQ
k+1 � τ∗

R

∣∣ |B(τQ
k +r2)−x| > 2r, τQ

k < τ∗
R

}
Pz

{
|B(τQ

k +r2)−x| > 2r
∣∣ τQ

k < τ∗
R

}
.

The second factor can be bounded from below by a positive constant, which does not
depend on r and R. The first factor is bounded from below by the probability that planar
Brownian motion started at any point in ∂B(0, 2r) hits ∂B(0, 2R) before ∂B(0, r). Using
Theorem 3.18 this probability is given by

log 2r − log r

log 2R − log r
� 1

log2 R + 2 + m
.

This is at least c/m for some c > 0 which depends on R only.

The bound (9.13) on P{τQ
k < τ∗

R} in two dimensions is worse by a linear factor than the
corresponding bound in higher dimensions. This, however, does not make a significant
difference in the proof of the two dimensional version of Theorem 9.28, which can now be
completed in the same way, see Exercise 9.9.

There is also a version of Kaufman’s theorem for Brownian motion in dimension one.

Theorem 9.34 Suppose {B(t) : t � 0} is a linear Brownian motion. Then, almost surely,
for all nonempty closed sets S ⊂ R, we have

dim B−1(S) = 1
2 + 1

2 dim S.

Remark 9.35 Note that here it is essential to run Brownian motion on an unbounded time
interval. For example, for the point x = max0�t�1 B(t) the set {t ∈ [0, 1] : B(t) = x}
is a singleton almost surely. The restriction to closed sets comes from Frostman’s lemma,
which we have proved for closed sets only, and can be relaxed accordingly. �

Proof. For the proof of the upper bound let {W (t) : t � 0} be a Brownian motion
independent of {B(t) : t � 0}. Applying Kaufman’s theorem for the planar Brownian
motion given by B̃(t) = (B(t),W (t)) we get almost surely, for all S ⊂ R,

dim B−1(S) = dim B̃−1(S × R) � 1
2 dim(S × R) = 1

2 + 1
2 dim S,

where we have used the straightforward fact that dim(S × R) = 1 + dimS.
The lower bound requires a more complicated argument, based on Frostman’s lemma. For
this purpose we may suppose that S ⊂ (−M,M) is closed and dim S > α. Then there
exists a measure µ supported by S such that

µ(B(x, r)) � rα for all x ∈ S, 0 < r < 1.
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Let �a be the measure with cumulative distribution function given by the local time at level
a. Let ν be the measure on B−1(S) given by

ν(A) =
∫

µ(da) �a(A), for A ⊂ [0,∞) Borel.

Then, by Theorem 6.19, for a given ε > 0, one can find a constant C > 0 such that

�a(B(x, r)) = La(x + r) − La(x − r) � Cr
1
2 −ε

for all a ∈ [−M,M ] and 0 < r < 1. By Hölder continuity of Brownian motion there
exists, for given ε > 0, a constant c > 0 such that, for every x ∈ [0, 1],

|B(x + s) − B(x)| � cr
1
2 −ε for all s ∈ [−r, r].

From this we get the estimate

ν(B(x, r)) =
∫

µ(da)
[
La(x + r) − La(x − r)

]
�
∫ B (x)+cr

1
2 −ε

B (x)−cr
1
2 −ε

µ(da)
[
La(x + r) − La(x − r)

]
� cαr

α
2 −εαCr

1
2 −ε for all x ∈ S, 0 < r < 1.

Hence, by the mass distribution principle, we get the lower bound α/2 + 1/2 − ε(1 + α)
for the dimension and the result follows when ε ↓ 0 and α ↑ dim S.

As briefly remarked in the discussion following Theorem 4.33, Brownian motion is also
‘capacity-doubling’. This fact holds for a very general class of kernels, we give an elegant
proof of this fact here.

Theorem 9.36 Let {B(t) : t ∈ [0, 1]} be d-dimensional Brownian motion and A ⊂ [0, 1] a
closed set. Suppose f is decreasing and there is a constant C > 0 with∫ 1

0

f(r2x)
f(x)

rd−1 dr � C for all x ∈ (0, 1) , (9.14)

and let φ(x) = x2 . Then, almost surely,

Capf

(
A
)

> 0 if and only if Capf ◦φ

(
B(A)

)
> 0 .

Remark 9.37 Condition (9.14) is only used in the ‘only if’ part of the statement. Note that
if f(x) = x−α is a power law, then (9.14) holds if and only if 2α < d. �

Proof. We start with the ‘only if’ direction, which is easier. Suppose Capf (A) > 0. This
implies that there is a mass distribution µ on A such that the f -energy of µ is finite. Then
µ ◦ B−1 is a mass distribution on B(A) and we will show that it has finite f ◦ φ-energy.
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Indeed,

If ◦φ

(
µ ◦ B−1) =

∫∫
f ◦ φ
(
|x − y|

)
µ ◦ B−1(dx)µ ◦ B−1(dy)

=
∫∫

f
(
|B(s) − B(t)|2

)
µ(ds)µ(dt) .

Hence,

EIf ◦φ

(
µ ◦ B−1) =

∫∫
Ef
(
|X|2 |s − t|

)
µ(ds)µ(dt) ,

where X is a d-dimensional standard normal random variable. Using polar coordinates
and the monotonicity of f we get, for a constant κ(d) depending only on the dimension,

E
[
f
(
|X|2 |s − t|

)]
= κ(d)

∫ ∞

0
f(r2 |s − t|) e−r 2 /2 rd−1 dr

� f(|s − t|)κ(d)
(∫ 1

0

f(r2 |s − t|)
f(|s − t|) r1−d

dr +
∫ ∞

1
e−r 2 /2 rd−1 dr

)
.

By (9.14) the bracket on the right hand side is bounded by a constant independent of |s−t|,
and hence E[If ◦φ(µ◦B−1)] < ∞, which in particular implies If ◦φ(µ◦B−1) < ∞ almost
surely.

The difficulty in the ‘if’ direction is that a measure on B(A) with finite f ◦ φ-energy
cannot easily be transported backwards onto A. To circumvent this problem we use the
characterisation of capacity in terms of polarity with respect to percolation limit sets, recall
Theorem 9.18. We may assume, without loss of generality, that f(1/4) = 1.

Fix a unit cube Cube such that Capf ◦φ(B(A) ∩ Cube) > 0 with positive probability, and
let Γ be a percolation limit set with retention probabilities associated to the decreasing
function f(x2/4) as in Theorem 9.18, which is independent of Brownian motion. Then,
by Theorem 9.18, we have B(A) ∩ Γ �= ∅ with positive probability. Define a random
variable

T = inf
{
t ∈ A : B(t) ∈ Γ

}
,

which is finite with positive probability. Hence the measure µ given by

µ(B) = P
{
T ∈ B, T < ∞

}
is a mass distribution on A. We shall show that it has finite f -energy, which completes the
proof. Again we use the polarity criterion of Theorem 9.18 to do this. Let Sn =

⋃
S∈Sn

S

be the union of all cubes retained in the construction up to step n. Then, by looking at the
retention probability of any fixed point in Cube, we have, for any s ∈ A,

P
{
B(s) ∈ Sn

}
� p1 · · · pn =

1
f ◦ φ(2−n−1)

. (9.15)

Conversely, by a first entrance decomposition,

P
{
B(s) ∈ Sn

}
� P
{
B(s) ∈ Sn , B(T ) ∈ Sn , T < ∞

}
=
∫ s

0
µ(dt) P

{
B(s) ∈ Sn

∣∣B(t) ∈ Sn

}
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Given B(t) ∈ Sn and
√

s − t � 2−n+k for some k ∈ {0, . . . , n}, the probability that B(s)
and B(t) are contained in the same dyadic cube Q ∈ Cn−k is bounded from below by a
constant. Given this event, we know that Q is retained in the percolation (otherwise we
could not have B(t) ∈ Sn ) and the probability that the cube in Cn , that contains B(s), is
retained in the percolation is at least pn−k+1 · · · pn (interpreted as 1 if k = 0). Therefore∫ s

0
µ(dt) P

{
B(s) ∈ Sn

∣∣B(t) ∈ Sn

}
� c

n∑
k=0

µ
(
[s − 2−2n+2k , s − 2−2n+2k−2)

)
pn−k+1 · · · pn

� c
n∑

k=0

µ
(
[s − 2−2n+2k , s − 2−2n+2k−2)

) f ◦ φ(2−n+k−1)
f ◦ φ(2−n−1)

� c
1

f ◦ φ(2−n−1)

∫ s−2−2 n −2

0
µ(dt) f

(
s − t
)
,

using the monotonicity of f in the last step. Finiteness of the f -energy follows by compar-
ing this with (9.15), cancelling the factor 1/f ◦φ(2−n ), integrating over µ(ds), and letting
n → ∞. This completes the proof.

Exercises

Exercise 9.1.
(a) Suppose that {B1(t) : t � 0}, {B2(t) : t � 0} are independent standard Brownian

motions in R3 . Then, almost surely, B1 [0, t] ∩ B2 [0, t] �= {0} for any t > 0.

(b) Suppose that {B1(t) : t � 0}, . . . , {Bp(t) : t � 0} are p independent standard
Brownian motions in Rd , and d > p(d − 2). Then, almost surely,

dim
(
B1 [0, t1 ] ∩ · · · ∩ Bp [0, tp ]

)
= d − p(d − 2) for any t1 , . . . , tp > 0.

Exercise 9.2. Let {X ( 1 ) (t) : 0 � t � 1}, . . . , {X ( p ) (t) : 0 � t � 1} be p independent
d-dimensional Brownian bridges with X ( i ) (0) = xi ∈ Rd and X ( p ) (1) = yi ∈ Rd .

(a) Show that if d = 3 and p = 3, almost surely, the intersection of the ranges of the
Brownian bridges is empty (except possibly at the start and end points).

(b) Show that if d = 2 and p arbitrary, with positive probability, the intersection of the
ranges of the independent Brownian bridges is nonempty.

Exercise 9.3. S For a d-dimensional Brownian motion {B(t) : t � 0} we denote by

S(p) =
{
x ∈ Rd : ∃0 < t1 < · · · < tp < 1 with x = B(t1) = · · · = B(tp)

}
the set of p-fold multiple points. Show that, for d > p (d − 2),

(a) dim S(p) = d − p (d − 2), almost surely.



286 Intersections and self-intersections of Brownian paths

(b) for any closed set Λ, we have

P
{
S(p) ∩ Λ �= ∅

}
> 0 if and only if Capf p (Λ) > 0 ,

where the decreasing function f is the radial potential.

Exercise 9.4. In the situation of Exercise 9.3, show that the ratio

P{S(p) ∩ Λ �= ∅}
Capf p (Λ)

may be unbounded.

Exercise 9.5. Let {B(t) : t � 0} be a standard linear Brownian motion. Show that its zero
set is intersection-equivalent to Γ[1

2 ] in any compact unit interval not containing the origin.
Hint. Use Exercise 8.8.

Exercise 9.6.

(a) Let A be a set of rooted trees. We say that A is inherited if every finite tree is in A,
and if T ∈ A and v ∈ V is a vertex of the tree then the tree T (v), consisting of all
successors of v, is in A.

Prove the Galton–Watson 0–1 law: For a Galton–Watson tree, conditional on sur-
vival, every inherited set has probability zero or one.

(b) Show that for the percolation limit sets Γ[γ] ⊂ Rd with 0 < γ < d we have

P
{

dim Γ[γ] = d − γ | Γ[γ] �= ∅
}

= 1.

Exercise 9.7. Consider a linear Brownian motion {B(t) : t � 0} and let A1 , A2 ⊂ [0,∞).

(a) Show that if dim(A1 × A2) < 1/2 then P{B(A1) intersects B(A2)} = 0.

(b) Derive the same conclusion under the weaker assumption that A1 ×A2 has vanish-
ing 1/2-dimensional Hausdorff measure.

(c) Show that if Cap1/2(A1 × A2) > 0, then P{B(A1) intersects B(A2)} > 0.

Exercise 9.8. S Use Exercise 9.7 to find a set A ⊂ [0,∞) such that the probability that a
linear Brownian motion {B(t) : t � 0} is one-to-one on A is strictly between zero and one.

Exercise 9.9. Complete the proof of Theorem 9.28 in the case d = 2.

Exercise 9.10. S Let {B(t) : 0 � t � 1} be a planar Brownian motion. For every a ∈ R
define the sets S(a) = {y ∈ R : (a, y) ∈ B[0, t]}, consisting of the vertical slices of
the path. Show that, almost surely, dim S(a) = 1, for every a ∈ (min{x : (x, y) ∈
B[0, t]},max{x : (x, y) ∈ B[0, t]}).
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Notes and comments

The question whether there exist p-multiple points of a d-dimensional Brownian motion
was solved in various stages in the early 1950s. First, Lévy showed in [Le40] that almost
all paths of a planar Brownian motion have double points, and Kakutani [Ka44a] showed
that if n � 5 almost no paths have double points. The cases of d = 3, 4 where added by
Dvoretzky, Erdős and Kakutani in [DEK50] and the same authors showed in [DEK54] that
planar Brownian motion has points of arbitrary multiplicity. Finally, Dvoretzky, Erdős,
Kakutani and Taylor showed in [DEKT57] that there are no triple points in d = 3. Clearly
the existence of p-fold multiple points is essentially equivalent to the problem whether p

independent Brownian motions have a common intersection.

The problem of finding the Hausdorff dimension of the set of p-fold multiple points
in the plane, and of double points in R3 , was still open when Itô and McKean wrote their
influential book on the sample paths of diffusions in 1964, see p.261 in [IM74], but was
solved soon after by Taylor [Ta66] and Fristedt [Fr67]. Perkins and Taylor [PT88] provide
fine results when Brownian paths in higher dimensions ‘come close’ to self-intersecting.
The method of stochastic codimension, which we use to find these dimensions, is due to
Taylor [Ta66], who used the range of stable processes as ‘test sets’. The restriction of the
stable indices to the range α ∈ (0, 2] leads to complications, which can be overcome by
a projection method of Fristedt [Fr67] or by using multiparameter processes, see Khosh-
nevisan [Kh02]. The use of percolation limit sets as test sets is much more recent and
due to Khoshnevisan et al. [KPX00], though similar ideas are used in the context of trees
at least since the pioneering work of Lyons [Ly90]. The latter paper is also the essential
source for our proof of Hawkes’ theorem.

Some very elegant proofs of these classical facts were given later: Rosen [Ro83] pro-
vides a local time approach, and Kahane [Ka86] proves a general formula for the inter-
section of independent random sets satisfying suitable conditions. The bottom line of Ka-
hane’s approach is that the formula ‘codimension of the intersection is equal to the sum of
codimensions of the intersected sets’ which is well-known from linear subspaces in general
position can be extended to the Hausdorff dimension of a large class of random sets, which
includes the paths of Brownian motion, see also Falconer [Fa97a] and Mattila [Ma95].
The intersection equivalence approach we describe in Section 9.2 is taken from [Pe96a],
[Pe96b]. The proof of Lyons’ theorem we give is taken from Benjamini et al. [BPP95].
See Theorem 2.1 in Lyons [Ly92] for the original proof.

Exact Hausdorff gauges allow a distinction of the sizes of the set of p-multiple points
of a planar Brownian motion for different values of p. Le Gall [LG87b] showed that, for
d = 2, the set of p-multiple points has positive and σ-finite Hausdorff measure for the
gauge function

ψp(r) = r2 [ log(1/r) log log log(1/r)
]p

,

and in d = 3 the set of double points has positive and finite Hausdorff measure for

ψ(r) = r
[
log log(1/r)

]2
.
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Turning to packing measures, which we will introduce properly in Chapter 10, results for
the packing gauge of the double points were given by Le Gall in [LG87c] in d = 2, where
it turns out that the φ-packing measure is either zero or infinite, depending whether∫

0+

φ(r)
r3 [log(1/r)]p+1 < ∞.

The case of d = 3 turned out to be quite different and was only recently resolved in [MS09],
where it turns out that the φ-packing measure is either zero or infinite, and the integral test
distinguishing between these cases depends on an intersection exponent, see for example
Chapter 11 for a definition. These dimension gauges imply in particular that H2(Sp) =
P2(Sp) = 0 almost surely, if Sp is the set of p-multiple points of a planar Brownian
motion, and that H1(S2) = 0, P1(S2) = ∞ almost surely, if S2 is the set of double points
of Brownian motion in R3 .

An interesting line of generalisation is whether almost-sure properties of Brownian
motion also hold quasi-everywhere, a stronger notion due to Fukushima [Fu80]. Roughly
speaking, a property holds quasi-everywhere if an Ornstein-Uhlenbeck process on path
space, whose stationary measure is the Wiener measure, never fails to have the property.
For example, in the context of intersections, Lyons [Ly86] showed that Brownian motion
has no double points quasi-everywhere if and only if d � 6, and Penrose [Pe89] that the
set of double points of quasi-every Brownian motion in dimension three has Hausdorff
dimension one. A similar line of research are the dynamical theories of Brownian motion
initiated by Nelson [Ne67].

Hendricks and Taylor conjectured in 1976 a characterisation of the polar sets for the
multiple points of a Brownian motion or a more general Markov process, which included
the statement of Theorem 9.21. Sufficiency of the capacity criterion in Theorem 9.21 was
proved by Evans [Ev87a, Ev87b] and independently by Tongring [To88], see also Le Gall,
Rosen and Shieh [LRS89]. The full equivalence was later proved in a much more general
setting by Fitzsimmons and Salisbury [FS89]. A quantitative treatment of the question,
which sets contain double points of Brownian motion is given in [PP07].

Points of multiplicity strictly n where identified by Adelman and Dvoretzky [AD85]
and the result is also an immediate consequence of the exact Hausdorff gauge function
identified by Le Gall [LG86a]. The existence of points of infinite multiplicity in the planar
case was first stated in Dvoretzky et al. [DEK58] though their proof seems to have a gap.
Le Gall [LG87a] proves a stronger result: Two sets A,B ⊂ R are said to be of the same
order type if there exists an increasing homeomorphism φ of R such that φ(A) = B. Le
Gall shows that, for any totally disconnected, compact A ⊂ R, almost surely there exists
a point x ∈ R2 such that the set {t � 0: B(t) = x} has the same order type as A. In
particular, there exist points of countably infinite and uncountable multiplicity. Le Gall’s
proof is based on the properties of natural measures on the intersection of Brownian paths.
Our proof avoids this and seems to be new.
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Substantial generalisations of Exercise 9.7 can be found in papers by Khoshnevisan
[Kh99] and Khoshnevisan and Xiao [KX05]. For example, in Theorem 8.2 of [Kh99] it
is shown that the condition in part (c) is an equivalence. The question of the Hausdorff
dimension of the intersection of a Brownian image B(A) with a given set F ⊂ Rd has
been open for a while. It seems that at the time of writing a solution has been achieved by
Khoshnevisan and Xiao.

Kaufman proved his dimension doubling theorem in [Ka69]. The version for Brown-
ian motion in dimension one is due to Serlet [Se95]. The capacity-doubling result in the
given generality is new, but Khoshnevisan and Xiao, see Question 1.1 and Theorem 7.1
in [KX05], prove the special case when f is a power law using a different method. Their
argument is based on the investigation of additive Lévy processes and works for a class
of processes much more general than Brownian motion. Theorem 9.36 does not hold
uniformly for all sets A. Examples can be constructed along the lines in Perkins and Tay-
lor [PT87].

In this book we do not construct a measure on the intersection of p Brownian paths.
However this is possible and yields the intersection local time first studied by Geman,
Horowitz and Rosen [GHR84], see also Rosen [Ro83]. This quantity plays a key rôle in
the analysis of Brownian paths and Le Gall [LG92] gives a very accessible account of
the state of research in 1991, which is still worth reading. Recent research deals with
the Hausdorff dimension of subsets of the intersections with special properties, like thick
times, see [DPRZ02] and [KM02], or thin times, see [KM05].



10

Exceptional sets for Brownian motion

The techniques developed in this book so far give a fairly satisfactory picture of the be-
haviour of a Brownian motion at a typical time, like a fixed time or a stopping time. In this
chapter we explore exceptional times, for example times where the path moves slower or
faster than in the law of the iterated logarithm, or does not wind as in Spitzer’s law. Again
Hausdorff dimension is the right tool to describe just how rare an exceptional behaviour
is, but we shall see that another notion of dimension, the packing dimension, can provide
additional insight.

10.1 The fast times of Brownian motion

In a famous paper from 1974, Orey and Taylor raise the question how often on a Brownian
path the law of the iterated logarithm fails. To understand this, recall that, by Corollary 5.3
and the Markov property, for a linear Brownian motion {B(t) : t � 0} and for every
t ∈ [0, 1], almost surely,

lim sup
h↓0

|B(t + h) − B(t)|√
2h log log(1/h)

= 1.

This contrasts sharply with the following result (note the absence of the iterated loga-
rithm!).

Theorem 10.1 Almost surely, we have

max
0�t�1

lim sup
h↓0

|B(t + h) − B(t)|√
2h log(1/h)

= 1.

Remark 10.2 At the time t ∈ [0, 1] where the maximum in Theorem 10.1 is attained, the
law of the iterated logarithm fails and it is therefore an exceptional time. �

Proof. The upper bound follows from Lévy’s modulus of continuity, Theorem 1.14, as

sup
0�t<1

lim sup
h↓0

|B(t + h) − B(t)|√
2h log(1/h)

� lim sup
h↓0

sup
0�t�1−h

|B(t + h) − B(t)|√
2h log(1/h)

= 1.

290
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Readers who have skipped the proof of Theorem 1.14 given in Chapter 1 will be able to
infer the upper bound directly from Remark 10.5 below. It remains to show that there exists
a time t ∈ [0, 1] such that

lim sup
h↓0

|B(t + h) − B(t)|√
2h log(1/h)

� 1.

Recall from Theorem 1.13 and scaling that, almost surely, for every constant c <
√

2 and
every ε > 0 there exist 0 < h < ε and t ∈ [0, 1 − h] with∣∣B(t + h) − B(t)

∣∣ > c
√

h log(1/h).

Using the Markov property this implies that, for c <
√

2, the sets

M(c, ε) =
{
t ∈ [0, 1] : there is h ∈ (0, ε) such that

∣∣B(t+h)−B(t)
∣∣ > c
√

h log(1/h)
}

are almost surely dense in [0, 1]. By continuity of Brownian motion they are open, and
clearly M(c, ε) ⊂ M(d, δ) whenever c > d and ε < δ. Hence, by Baire’s (category)
theorem, the intersection⋂

c <
√

2 , ε > 0
c , ε∈Q

M(c, ε) =
{

t ∈ [0, 1] : lim sup
h↓0

∣∣B(t + h) − B(t)
∣∣√

2h log(1/h)
� 1
}

is dense and hence nonempty almost surely.

To explore how often we come close to the exceptional behaviour described in Theo-
rem 10.1 we introduce a spectrum of exceptional points. Given a > 0 we call a time
t ∈ [0, 1] an a-fast time if

lim sup
h↓0

|B(t + h) − B(t)|√
2h log(1/h)

� a ,

and t ∈ [0, 1] is a fast time if it is a-fast for some a > 0. By Theorem 10.1 fast times
exist, in fact the proof even shows that the set of fast times is the intersection of countably
many open dense sets in [0, 1] and hence is dense and uncountable. Conversely it is imme-
diate from the law of the iterated logarithm that the set has Lebesgue measure zero, recall
Remark 1.28. The appropriate notion to measure the quantity of a-fast times is, again,
Hausdorff dimension.

Theorem 10.3 (Orey and Taylor 1974) Suppose {B(t) : t � 0} is a linear Brownian
motion. Then, for every a ∈ [0, 1], we have almost surely,

dim
{

t ∈ [0, 1] : lim sup
h↓0

|B(t + h) − B(t)|√
2h log(1/h)

� a
}

= 1 − a2 .

The rest of this section is devoted to the proof of this result. We start with a proof of the
upper bound, which also shows that there are almost surely no a-fast times for a > 1.

So fix an arbitrary a > 0. Let ε > 0 and η > 1, having in mind that we later let η ↓ 1
and ε ↓ 0. The basic idea is to cover the interval [0, 1) by a collection of intervals of the
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form [jη−k , (j + 1)η−k ) with j = 0, . . . , �ηk − 1� and k � 1. Any such interval of length
h := η−k is included in the covering if, for h′ := kη−k ,

|B(jh + h′) − B(jh)| > a(1 − 4ε)
√

2h′ log(1/h′).

Let Ik = Ik (η, ε) be the collection of intervals of length η−k chosen in this procedure.

Lemma 10.4 Almost surely, for every ε > 0 and δ > 0, there is an η > 1 and m ∈ N such
that the collection I = I(ε, δ) =

{
I ∈ Ik (η, ε) : k � m

}
is a covering of the set of a-fast

times consisting of intervals of diameter no bigger than δ.

Proof. We first note that by Theorem 1.12 there exists a constant C > 0 such that,
almost surely, there exists ρ > 0 such that, for all s, t ∈ [0, 2] with |s − t| � ρ,∣∣B(s) − B(t)

∣∣ � C
√
|s − t| log(1/|s − t|). (10.1)

Choose η > 1 such that
√

η − 1 � aε/C. Let M be the minimal integer with Mη−M � ρ

and m � M such that mη−m < δ (to ensure that our covering sets have diameter no bigger
than δ) and kη−k < �η−� for all k > � � m. Now suppose that t ∈ [0, 1] is an a-fast time.
By definition there exists 0 < u < mη−m such that

|B(t + u) − B(t)| � a(1 − ε)
√

2u log(1/u).

We pick the unique k � m such that kη−k < u � (k − 1)η−k+1 , and let h′ = kη−k . By
(10.1), we have

|B(t + h′) − B(t)| � |B(t + u) − B(t)| − |B(t + u) − B(t + h′)|
� a(1 − ε)

√
2u log(1/u) − C

√
(u − h′) log(1/(u − h′)).

As 0 � u − h′ � (η − 1)kη−k , and by our choice of η and by choosing m sufficiently
large, the subtracted term can be made smaller than aε

√
2h′ log(1/h′). Hence there exists

k � m such that

|B(t + h′) − B(t)| � a(1 − 2ε)
√

2h′ log(1/h′).

Now let j be such that t ∈ [jη−k , (j + 1)η−k ). As before let h = η−k . Then, by the
triangle inequality and using (10.1) twice, we have

|B(jh + h′) − B(jh)|
� |B(t + h′) − B(t)| − |B(t) − B(jh)| − |B(jh + h′) − B(t + h′)|
� a(1 − 2ε)

√
2h′ log(1/h′) − 2C

√
h log(1/h)

> a(1 − 4ε)
√

2h′ log(1/h′),

using in the last step that, by choosing m sufficiently large, the subtracted term can be
made smaller than 2aε

√
2h′ log(1/h′).

Proof of the upper bound in Theorem 10.3. This involves only a first moment
calculation. All there is to show is that, for any γ > 1−a2 there exists ε > 0 such that, for
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any δ > 0 sufficiently small, the random variable
∑

I∈I(ε,δ) |I|γ is finite, almost surely.
For this it suffices to verify that its expectation is finite. Note that

E
[ ∑

I∈I(ε,δ)

|I|γ
]

=
∞∑

k=m


ηk −1�∑
j=0

η−kγ P
{ |B (jη−k +kη−k )−B (jη−k )|√

2 kη−k log(ηk /k)
> a(1 − 4ε)

}
.

So it all boils down to an estimate of a single probability, which is very simple as it involves
just one normal random variable, namely B(jη−k + kη−k ) − B(jη−k ). More precisely,
for X standard normal,

P
{ |B(jη−k + kη−k ) − B(jη−k )|√

2kη−k log(ηk/k)
> a(1 − 4ε)

}
= P
{
|X| > a(1 − 4ε)

√
2 log(ηk/k)

}
� 1

a(1−4ε)
√

log(ηk /k)π
exp
{
− a2 (1 − 4ε)2 log(ηk/k)

}
� η−ka2 (1−4ε)3

,

(10.2)

for all sufficiently large k and all 0 � j < 2k , using the estimate for normal random
variables of Lemma 12.9 in the penultimate step. Given γ > 1 − a2 we can finally find
ε > 0 such that γ + a2 (1 − 4ε)3 > 1, so that

∞∑
k=m

ηk −1∑
j=0

η−kγ P
{ |B(jη−k + kη−k ) − B(jη−k )|√

2kη−k log(ηk/k)
> a(1 − 4ε)

}
�

∞∑
k=1

ηkη−kγ η−ka2 (1−4ε)3
< ∞,

completing the proof of the upper bound in Theorem 10.3.

Remark 10.5 If a > 1 one can choose γ < 0 in the previous proof, which shows that there
are no a-fast times as the empty collection is suitable to cover the set of a-fast times. �

For the lower bound we have to work harder. We divide, for any positive integer k,
the interval [0, 1] into nonoverlapping dyadic subintervals [j2−k , (j + 1)2−k ] for j =
0, . . . , 2k − 1. As before, we denote this collection of intervals by Ck and by C the union
over all collections Ck for k � 1. To each interval I ∈ C we associate a {0, 1}-valued
random variable Z(I) and then define sets

A(k) :=
⋃

I ∈Ck
Z ( I )= 1

I and A :=
∞⋂

n=1

∞⋃
k=n

A(k) .

Because 1A = lim sup 1A(k) the set A is often called the limsup fractal associated with
the family (Z(I) : I ∈ C). We shall see below that the set of a-fast times contains a large
limsup fractal and derive the lower bound from the following general result on limsup
fractals.
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Theorem 10.6 Suppose that (Z(I) : I ∈ C) is a collection of random variables with values
in {0, 1} such that pk := P{Z(I) = 1} is the same for all I ∈ Ck . For I ∈ Cm , with
m � n, define

Mn (I) :=
∑

J ∈Cn
J ⊂I

Z(J) .

Let ζ(n) � 1 and 0 < γ < 1 be such that

(1) Var(Mn (I)) � ζ(n) E[Mn (I)] = ζ(n) pn2n−m ,

(2) lim
n↑∞

2n(γ−1) ζ(n) p−1
n = 0,

then dim A � γ almost surely for the limsup fractal A associated with (Z(I) : I ∈ C).

The idea of the proof of Theorem 10.6 is to construct a probability measure µ on A and
then use the energy method. To this end, we choose an increasing sequence �0 , �1 , . . . such
that M�k

(D) > 0 for all D ∈ C�k −1 . We then define a (random) probability measure µ

in the following manner: Assign mass 2−�0 to each of the intervals I ∈ C�0 . Proceed
inductively: if J ∈ Cm with �k−1 < m � �k and J ⊂ D for D ∈ C�k −1 define

µ(J) =
M�k

(J)µ(D)
M�k

(D)
. (10.3)

Then µ is consistently defined on all intervals in C and therefore can be extended to a
probability measure on [0, 1] by the measure extension theorem. Note that µ(Ac) = 0, so
that µ is supported by A. The crucial part of the proof is then to show that, for a suitable
choice of �0 , �1 , . . . the measure µ has finite γ-energy.

For the proof of Theorem 10.6 we need two lemmas. The first one is a simple combination
of two facts, which have been established at other places in the book: The bounds for
the energy of a measure established in Lemma 9.20, and the lower bound of Hausdorff
dimension in terms of capacity which follows from the energy method, see Theorem 4.27.

Lemma 10.7 Suppose B ⊂ [0, 1] is a Borel set and µ is a probability measure on B. Then

∞∑
m=1

∑
J∈Cm

µ(J)2

2−αm
< ∞ implies dim B � α.

Proof. By Lemma 9.20 with f(x) = x−α and h(n) = 2nα (1 − 2−α ) we obtain, for a
suitable constant C > 0 that

Iα (µ) � C
∞∑

m=1

∑
J∈Cm

µ(J)2

2−αm
.

If the right hand side is finite, then so is the α-energy of the measure µ. We thus obtain
dim B � α by Theorem 4.27.

For the formulation of the second lemma we use (2) to pick, for any � ∈ N an integer
n = n(�) � � such that 2n(γ−1) ζ(n) � pn 2−3� .
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Lemma 10.8 There exists an almost surely finite random variable �0 such that, for all
� � �0 and D ∈ C� , with n = n(�),

• for all D ∈ C� we have∣∣Mn (D) − EMn (D)
∣∣ < 1

2 EMn (D),

and, in particular, Mn (D) > 0;

• for a constant C depending only on γ,
n∑

m=�

2γm
∑

J ∈Cm
J ⊂D

Mn (J)2

(2n−�pn )2 � C2γ � .

Remark 10.9 The first statement in the lemma says intuitively that the variance of the ran-
dom variables Mn (D) is small, i.e. they are always close to their mean. This is essentially
what makes this proof work. �

Proof of Lemma 10.8. For m � n, J ∈ Cm we denote ∆n (J) := Mn (J) − EMn (J)
and, for � � n and D ∈ C� , set

Υn (D) :=
n∑

m=�

2mγ
∑

J ∈Cm
J ⊂D

∆n (J)2 .

By assumption (1) in Theorem 10.6 we have E
[
∆n (J)2

]
� ζ(n)pn2n−m and therefore,

for all D ∈ C� ,

EΥn (D) �
n∑

m=�

2mγ
∑

J ∈Cm
J ⊂D

E[∆n (J)2 ] �
n∑

m=�

2mγ ζ(n) pn 2n−� � 2(n+1)γ

2γ − 1
ζ(n) pn 2n−� .

By our choice of n = n(�) we thus obtain

E
[ ∑

D∈C�

Υn (D)
(2n−�pn )2

]
� 2γ

2γ − 1
ζ(n) 22�−n+nγ p−1

n � 2γ

2γ − 1
2−� .

Since the right hand side is summable in � we conclude that, almost surely, the summands
inside the last expectation converge to zero as � ↑ ∞. In particular, there exists �0 < ∞
such that, for all � � �0 we have 2−�γ � 1/4 and, for n = n(�) and D ∈ C� ,

Υn (D) �
(
2n−�pn

)2 =
(
EMn (D)

)2
.

The first statement follows from this very easily: For any � � �0 and n = n(�) we have
(recalling the definition of Υn (D)),

∆n (D)2 � 2−�γ Υn (D) � 2−�γ
(
EMn (D)

)2 � 1
4

(
EMn (D)

)2
.

In order to get the second statement we calculate,∑
J ∈Cm
J ⊂D

(EMn (J))2

(2n−�pn )2 =
∑

J ∈Cm
J ⊂D

22(�−m ) = 2�−m .
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Therefore
n∑

m=�

2mγ
∑

J ∈Cm
J ⊂D

(EMn (J))2

(2n−�pn )2 = 2�
n∑

m=�

2−m (1−γ ) � 2�γ

1 − 2−(1−γ ) . (10.4)

Now, recalling the choice of n,
n∑

m=�

2mγ
∑

J ∈Cm
J ⊂D

∆n (J)2

(2n−�pn )2 =
Υn (D)

(2n−�pn )2 � 1. (10.5)

Since Mn (J)2 =
(
EMn (J)+∆n (J)

)2 � 2
(
EMn (J)

)2 +2
(
∆n (J)

)2
, adding (10.4) and

(10.5) and setting C := 2 + 2/(1 − 2−(1−γ )) proves the second statement.

We now define �k+1 = n(�k ) for all integers k � 0. The first statement of Lemma 10.8
ensures that µ is well defined by (10.3), and together with the second statement will enable
us to check that µ has finite γ-energy.

Proof of Theorem 10.6. We can now use Lemma 10.8 to verify the condition of
Lemma 10.7 and finish the proof of Theorem 10.6. Indeed, by definition of µ,

∞∑
m=�0 +1

∑
J∈Cm

µ(J)2

2−γm
=

∞∑
k=0

�k + 1∑
m=�k +1

2γm
∑

D∈C� k

µ(D)2

M�k + 1 (D)2

∑
J ∈Cm
J ⊂D

M�k + 1 (J)2 . (10.6)

Recall that qk+1 := EM�k + 1 (D) = 2�k + 1 −�k p�k + 1 and, by the first statement of Lemma 10.8,
for every k ∈ N and D ∈ C�k

,

1
2 qk+1 � M�k + 1 (D) � 2qk+1 . (10.7)

Now, from the definition of the measure µ we get, with D ⊂ D′ ∈ C�k −1 ,

µ(D) =
M�k

(D)µ(D′)
M�k

(D′)
� 2Z(D)/qk ,

and therefore we can continue (10.6) with the upper bound

16
∞∑

k=0

1
q2
k

∑
D∈C� k

Z(D)
�k + 1∑

m=�k +1

2γm
∑

J ∈Cm
J ⊂D

M�k + 1 (J)2

q2
k+1

� 16C
∞∑

k=0

1
q2
k

∑
D∈C� k

Z(D) 2γ �k ,

using the second statement of Lemma 10.8 and the definition of qk+1 . Recall that the sum
of the indicator variables above is, by definition, equal to M�k

([0, 1]). Finally, using (10.7)
and the definition of �k = n(�k−1) we note that,

∞∑
k=1

1
q2
k

M�k
([0, 1]) 2γ �k � 2

∞∑
k=1

2�k −1

qk
2γ �k = 2

∞∑
k=1

22�k −1 −�k
2γ �k

p�k

�
∞∑

k=1

2−�k −1 +1 < ∞.

This ensures convergence of the sequence (10.6) and thus completes the proof.
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Coming back to the lower bound in Theorem 10.3 we fix ε > 0. Given I = [jh, (j + 1)h]
with h := 2−k we let Z(I) = 1 if and only if

|B(jh + h′) − B(jh)| � a(1 + ε)
√

2h′ log(1/h′), for h′ := k2−k .

Lemma 10.10 Almost surely, the set A associated with this family (Z(I) : I ∈ C) of
random variables is contained in the set of a-fast times.

Proof. Recall that by Theorem 1.12 there exists a constant C > 0 such that, almost
surely,

|B(s) − B(t)| � C
√

|t − s| log(1/|t − s|), for all s, t ∈ [0, 2].

Now assume that k is large enough that ( 2C
aε

)2 log 2 + log k � k log 2. Let t ∈ A and
suppose that t ∈ I ∈ Ck with Z(I) = 1. Then, by the triangle equality,

|B(t + h′) − B(t)|
� |B(jh + h′) − B(jh)| − |B(t + h′) − B(jh + h′)| − |B(jh) − B(t)|
� a(1 + ε)

√
2h′ log(1/h′) − 2C

√
h log(1/h)

� a
√

2h′ log(1/h′).

As this happens for infinitely many k, this proves that t is an a-fast time.

The next lemma singles out the crucial estimates of expectation and variance needed to
apply Theorem 10.6. The first is based on the upper tail estimate for a standard normal
distribution, the second on the ‘short range dependence’ of the family (Z(I) : I ∈ C).

Lemma 10.11 Define pn = E[Z(I)] for I ∈ Cn , and η(n) := 2n + 1. Then,

(a) for I ∈ Ck we have E[Z(I)] � 2−k a2 (1+ε)3
;

(b) for m � n and J ∈ Cm , we have Var Mn (J) � pn 2n−m η(n).

Proof. For part (a), denoting by X a standard normal random variable,

P
{
|B(jh + h′) − B(jh)| � a(1 + ε)

√
2h′ log(1/h′)

}
= P
{
|X| > a(1 + ε)

√
2 log(1/h′)

}
� a(1+ε)

√
2 log(1/h′)

1+2a2 (1+ε)2 log(1/h′)
1√
2π

exp
{
− a2 (1 + ε)2 log(1/h′)

}
� 2−k a2 (1+ε)3

,

(10.8)
for all sufficiently large k and all 0 � j < 2k , using the lower estimate for normal random
variables of Lemma 12.9 in the penultimate step.

For part (b) note that for two intervals J1 , J2 ∈ Cn the associated random variables Z(J1)
and Z(J2) are independent if their distance is at least n2−n . Using this whenever possible
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and the trivial estimate E[Z(J1)Z(J2)] � EZ(J1) otherwise, we get

EMn (J)2 =
∑

J 1 , J 2 ∈Cn
J 1 , J 2 ⊂J

E
[
Z(J1)Z(J2)

]
�
∑

J 1 ∈Cn
J 1 ⊂J

{
(2n + 1)EZ(J1) + EZ(J1)

∑
J 2 ∈Cn
J 2 ⊂J

EZ(J2)
}

.

Hence we obtain

E
[
(Mn (J) − EMn (J))2] �

∑
J 1 ∈Cn
J 1 ⊂J

(2n + 1)pn = pn2n−m (2n + 1),

which proves the lemma.

Proof of the lower bound in Theorem 10.3. By Lemma 10.11 the conditions of
Theorem 10.6 hold for any γ < 1 − a2 (1 + ε)3 . As, for ε > 0, the set A associated to
(Z(I) : I ∈ C) is contained in the set of a-fast times, the latter has dimension � 1− a2 .

10.2 Packing dimension and limsup fractals

In this section we ask for a precise criterion, whether a set E contains a-fast times for var-
ious values of a. It turns out that such a criterion depends not on the Hausdorff, but on the
packing dimension of the set E. We therefore begin this section by introducing the concept
of packing dimension, which was briefly mentioned in the beginning of Chapter 4, in some
detail. We choose to define packing dimension in a way which indicates its conceptual na-
ture as a dual to the notion of Hausdorff dimension. The natural dual operation to covering
a set with balls, as in the case of Hausdorff dimension, is the operation of packing balls
disjointly into the set.

Definition 10.12. Suppose E is a metric space. For every δ > 0, a δ-packing of A ⊂ E

is a countable collection of disjoint balls

B(x1 , r1),B(x2 , r2),B(x3 , r3), . . .

with centres xi ∈ A and radii 0 � ri � δ. For every s � 0 we introduce the s-value of the
packing as

∑∞
i=1 rs

i . The s-packing number of A is defined as

Ps(A) = lim
δ↓0

Ps
δ (A) for Ps

δ (A) = sup
{ ∞∑

i=1

rs
i : (B(xi, ri)) a δ-packing of A

}
. �

Note that the packing number is defined in the same way as the Hausdorff measure with
efficient (small) coverings replaced by efficient (large) packings. A difference is that the
packing numbers do not define a reasonable measure. However a small modification gives
the so-called packing measure,

Ps(A) = inf
{ ∞∑

i=1

Ps(Ai) : A =
∞⋃

i=1

Ai

}
.
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The packing dimension has a definition analogous to the definition of Hausdorff dimension
with Hausdorff measures replaced by packing measures.

Definition 10.13. The packing dimension of E is dimP E = inf{s : Ps(E) = 0}. �

Remark 10.14 It is not hard to see that

dimP E = inf{s : Ps(E) < ∞} = sup{s : Ps(E) > 0} = sup{s : Ps(E) = ∞},

a proof of this fact is suggested as Exercise 10.1. �

An alternative approach to packing dimension is to use a suitable regularisation of the
upper Minkowski dimension, recall Remark 4.4 where we have hinted at this possibility.

Theorem 10.15 For every metric space E we have

dimP E = inf
{ ∞

sup
i=1

dimM Ei : E =
∞⋃

i=1

Ei ,Ei bounded
}

.

Remark 10.16 This characterisation of the packing dimension shows that dimP E �
dimM E for all bounded sets E, and, of course, strict inequality may hold. Every countable
set has packing dimension 0, compare with the example in Exercise 4.2. Moreover, it is
not hard to see that the countable stability property is satisfied. �

Proof. Define, for every A ⊂ E and ε > 0,

P (A, ε) = max
{
k : there are disjoint balls B(x1 , ε), . . . ,B(xk , ε) with xi ∈ A

}
.

Recall from (4.1) the definition of the numbers M(A, ε) giving the number of sets of
diameter at most ε needed to cover A. We first show that

P (A, 4ε) � M(A, 2ε) � P (A, ε) .

Indeed, if k = P (A, ε) let B(x1 , ε), . . . ,B(xk , ε) be disjoint balls with xi ∈ A. Suppose
x ∈ A \

⋃k
i=1 B(xi, 2ε), then B(x, ε) is disjoint from all balls B(xi, ε) contradicting

the choice of k. Hence B(x1 , 2ε), . . . ,B(xk , 2ε) is a covering of A and we have shown
M(A, 2ε) � P (A, ε). For the other inequality let m = M(A, 2ε) and k = P (A, 4ε) and
choose x1 , . . . , xm ∈ A and y1 , . . . , yk ∈ A such that

A ⊂
m⋃

i=1

B(xi, 2ε) and B(y1 , 4ε), . . . ,B(yk , 4ε) disjoint.

Then each yj belongs to some B(xi, 2ε) and no such ball contains more than one such
point. Thus k � m, which proves P (A, 4ε) � M(A, 2ε).

Suppose now that inf{t : P t(E) = 0} < s. Then there is t < s and E =
⋃∞

i=1 Ai such
that, for every set A = Ai , we have P t(A) < 1. Obviously, P t

ε (A) � P (A, ε)εt . Letting
ε ↓ 0 gives

lim sup
ε↓0

M(A, ε)εt � lim sup
ε↓0

P (A, ε/2)εt � 2tP t(A) < 2t .

Hence dimM A � t and by definition sup∞
i=1 dimM Ai � t < s.
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To prove the opposite inequality, let 0 < t < s < dimP(E), and Ai ⊂ E be bounded
with E =

⋃∞
i=1 Ai . It suffices to show that dimM (Ai) � t for some i. Since Ps(E) > 0

there is i such that Ps(Ai) > 0. Let 0 < α < Ps(Ai), then for all δ ∈ (0, 1) we have
Ps

δ (Ai) > α and there exist disjoint balls B(x1 , r1),B(x2 , r2), B(x3 , r3), . . . with centres
xj ∈ Ai and radii rj smaller than δ with

∞∑
j=1

rs
j � α .

For every m let km be the number of balls with radius 2−m−1 < rj � 2−m . Then,
∞∑

m=0

km 2−ms �
∞∑

j=1

rs
j � α .

This yields, for some integer N � 0, 2N t(1 − 2t−s)α � kN , since otherwise
∞∑

m=0

km 2−ms <

∞∑
m=0

2mt(1 − 2t−s)2−msα = α .

Since rj � δ for all j, we have 2−N −1 < δ. Moreover,

P (Ai, 2−N −1) � kN � 2N t(1 − 2t−s)α ,

which gives

sup
0�ε�δ

P (Ai, ε)εt � P (Ai, 2−N −1)2−N t−t � 2−t(1 − 2t−s)α .

Letting δ ↓ 0, and recalling the relation of M(A, ε) and P (A, ε) established at the begin-
ning of the proof, we obtain

lim sup
ε↓0

M(Ai, ε)εt � lim sup
ε↓0

P (Ai, 2ε)εt > 0 ,

and thus dimM Ai � t, as required.

Remark 10.17 It is easy to see that, for every metric space, dimP E � dim E. This is
suggested as Exercise 10.2. �

The following result shows that every closed subset of Rd has a large subset, which is
‘regular’ in a suitable sense. It will be used in the proof of Theorem 10.28 below.

Lemma 10.18 Let A ⊂ Rd be closed.

(i) If any open set V intersecting A satisfies dimM (A ∩ V ) � α, then dimP(A) � α.
(ii) If dimP (A) > α, then there is a (relatively closed) nonempty subset Ã of A, such

that, for any open set V which intersects Ã, we have dimP (Ã ∩ V ) > α.

Proof. Let A ⊂
⋃∞

j=1 Aj , where the Aj are closed. We are going to show that there
exist an open set V and an index j such that V ∩ A ⊂ Aj . For this V and j we have,

dimM (Aj ) � dimM (Aj ∩ V ) � dimM (A ∩ V ) � α.

This in turn implies that dimP (A) � α.
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Suppose now that for any V open such that V ∩ A �= ∅, it holds that V ∩ A �⊂ Aj . Then
Ac

j is a dense open set relative to A. By Baire’s (category) theorem A∩
⋂

j Ac
j �= ∅, which

means that A �⊂
⋃

j Aj , contradicting our assumption and proving (i).
Now choose a countable basis B of the topology of Rd and define

Ã = A \
⋃{

B ∈ B : dimP(B ∩ A) � α
}
.

Then, dimP (A\ Ã) � α using stability of packing dimension. From this we conclude that

dimP Ã = dimP A > α.

If for some V open, V ∩ Ã �= ∅ and dimP (Ã ∩ V ) � α then V contains some set B ∈ B
such that Ã ∩ B �= ∅. For that set we have dimP (A ∩ B) � dimP (A \ Ã) ∨ dimP (Ã ∩
B) � α, contradicting the construction of Ã.

Example 10.19 An example of a result demonstrating the duality between Hausdorff and
packing dimension is the product formula, see [BP96]. In the dimension theory of smooth
sets (manifolds, linear spaces) we have the following formula for product sets

dim(E × F ) = dim E + dimF .

The example discussed in Exercise 10.3 shows that this formula fails for Hausdorff dimen-
sion, a reasonable formula for the Hausdorff dimension of product sets necessarily involves
information about the packing dimension of one of the factor sets. In [BP96] it is shown
that, for every Borel set A ⊂ Rd ,

dimP (A) = sup
B

{
dim(A × B) − dim(B)

}
where the supremum is over all compact sets B ⊂ Rd . One can also show that, if A satis-
fies dim A = dimP A, then the product formula dim(A × B) = dim A + dimB holds. �

Before moving back to our study of Brownian paths we study the packing dimension of
the ‘test sets’ we have used in the stochastic codimension method, see Section 9.9.1.

Theorem 10.20 Let γ ∈ [0, d] and Γ[γ] be a percolation limit set in Rd with retention
parameter 2−γ . Then

• dimP Γ[γ] � d − γ almost surely,

• dimP Γ[γ] = d − γ almost surely on Γ[γ] �= ∅.

Proof. For the first item, as packing dimension is bounded from above by the upper
Minkowski dimension, it suffices to show that dimM Γ[γ] � d − γ almost surely. For this
purpose we use the formula for the upper Minkowski dimension given in Remark 4.2. For
a given n, we cover the percolation limit set by Sn , the collection of cubes retained in
the nth construction step. The probability that a given cube of side length 2−n is in Sn is
2−nγ and hence the expected number of cubes in Sn is 2n(d−γ ) . Hence, for any ε > 0,

P
{
2n(γ−d−ε) #Sn > 1

}
� 2n(γ−d−ε)E#Sn � 2−nε ,
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which is summable. Hence, almost surely, 2n(γ−d−ε) #Sn � 1 for all but finitely many n.
Thus, almost surely,

dimM � lim sup
n↑∞

log #Sn

n log 2
� d − γ + ε for every ε > 0.

For the second item recall the corresponding statement for Hausdorff dimension from Exer-
cise 9.6. The result follows, as packing dimension is bounded from below by the Hausdorff
dimension, see Remark 10.17.

Remark 10.21 Simple modifications of the corresponding proofs for the upper bounds in
the case of Hausdorff dimension, see Exercise 10.4, show that

• dimP Range[0, 1] = 2, for Brownian motion in d � 2,

• dimP Graph[0, 1] = 3
2 , for Brownian motion in d = 1,

• dimP Zeros = 1
2 , for Brownian motion in d = 1.

Hence, at a first glance the concept of packing dimension does not seem to add a substan-
tial contribution to the discussion of fine properties of d-dimensional Brownian motion.
However, a first sign that something interesting might be going on can be found in Exer-
cise 10.5, where we show that the Hausdorff and packing dimension of the sets of a-fast
times differ. This is indicative of the fact that optimal coverings of these sets use covering
sets of widely differing size, and that optimal packings use sets of quite different scale. �

Given a set E ⊂ [0, 1] we now ask for the maximal value of a such that E contains an a-
fast time with positive probability. This notion of size is most intimately linked to packing
dimension as the following theorem shows. We denote by F (a) ⊂ [0, 1] the set of a-fast
times.

Theorem 10.22 (Khoshnevisan, Peres and Xiao) For any compact set E ⊂ [0, 1], almost
surely,

sup
t∈E

lim sup
h↓0

|B(t + h) − B(t)|√
2h log(1/h)

=
√

dimP (E).

Moreover, if dimP (E) > a2 , then dimP (F (a) ∩ E) = dimP (E).

Remark 10.23 The result can be extended from compact sets E to more general classes of
sets, more precisely the analytic sets, see [KPX00]. �

Remark 10.24 An equivalent formulation of the theorem is that, for any compact E ⊂
[0, 1], almost surely,

P
{
F (a) ∩ E �= ∅

}
=
{

1 if dimP (E) > a2 ,
0 if dimP (E) < a2 .
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Using the compact percolation limit sets E = Γ[γ] in this result and Hawkes’ theorem,
Theorem 9.5, one can obtain an alternative proof of the Orey–Taylor theorem. Indeed, by
Theorem 10.20, if γ < 1−a2 we have dimP (E) > a2 with positive probability, and there-
fore, P

{
F (a) ∩ E �= ∅

}
> 0. Hence, by Hawkes’ theorem, dim F (a) � γ with positive

probability. Brownian scaling maps a-fast times onto a-fast times. Therefore there exists
ε > 0 such that, for any n ∈ N and 0 � j � n − 1,

P
{

dim(F (a) ∩ [j/n, (j + 1)/n]) � γ
}

� ε,

and hence

P
{

dim F (a) � γ
}

� 1 − (1 − ε)n → 1.

Letting γ ↑ 1−a2 gives dim F (a) � 1−a2 almost surely. Conversely, by Theorem 10.20,
if γ > 1−a2 we have dimP (E) < a2 almost surely, and therefore, P

{
F (a)∩E �= ∅

}
= 0.

Hence, by Hawkes’ theorem, we have dim F (a) � 1 − a2 almost surely. �

Theorem 10.22 can be seen as a probabilistic interpretation of packing dimension. The
upper and lower Minkowski dimensions allow a similar definition when the order of sup
and lim are interchanged.

Theorem 10.25 For any compact E ⊂ [0, 1], almost surely,

lim sup
h↓0

sup
t∈E

|B(t + h) − B(t)|√
2h log(1/h)

=
√

dimM (E). (10.9)

Proof of the upper bounds in Theorems 10.22 and 10.25. Suppose E ⊂ [0, 1] is
compact. We assume that dimM (E) < λ < a2 and show that

lim sup
h↓0

sup
t∈E

|B(t + h) − B(t)|√
2h log(1/h)

� a almost surely. (10.10)

Note that this is the upper bound in Theorem 10.25. Once this is shown it immediately
implies

sup
t∈E

lim sup
h↓0

|B(t + h) − B(t)|√
2h log(1/h)

�
√

dimM (E) almost surely.

Now, for any decomposition E =
⋃∞

i=1 Ei , we have

sup
t∈E

lim sup
h↓0

|B(t + h) − B(t)|√
2h log(1/h)

=
∞

sup
i=1

sup
t∈cl(Ei )

lim sup
h↓0

|B(t + h) − B(t)|√
2h log(1/h)

� ∞
sup
i=1

√
dimM (Ei),

where we have made use of the fact that the upper Minkowski dimension is insensitive
under taking the closure of a set. Theorem 10.15 now implies that

sup
t∈E

lim sup
h↓0

|B(t + h) − B(t)|√
2h log(1/h)

�
√

dimP (E) almost surely,

which is the upper bound in Theorem 10.22.
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For the proof of (10.10) cover E by disjoint subintervals I = [(j/k)η−k , ((j + 1)/k)η−k )
for j = 0, . . . , �kηk − 1�, of equal length h = η−k/k such that I ∩ E �= ∅. By definition
of the upper Minkowski dimension there exists an m such that, for all k � m, no more
than ηλk different such intervals of length h = η−k/k intersect E.

Now fix ε > 0 such that λ < a2 (1 − 4ε)3 , which is possible by our condition on λ. Let
Z(I) = 1 if , for h′ = η−k ,

|B(jh + h′) − B(jh)| > a(1 − 4ε)
√

2h′ log(1/h′).

Recall from the proof of Lemma 10.4 that there is an η > 1 such that, for any m ∈ N, the
collection {

I = [(j/k)η−k , ((j + 1)/k)η−k ) : Z(I) = 1, I ∩ E �= ∅, k � m
}

is a covering of the set

M(m) :=
{

t ∈ E : sup
η−k <u � η−k + 1

|B(t + u) − B(t)|√
2u log(1/u)

� a(1 − ε) for some k � m
}

.

Moreover, we recall from (10.2), that

P{Z(I) = 1} � η−ka2 (1−4ε)3
,

and, sticking to our notation I = [(j/k)η−k , ((j + 1)/k)η−k ) for a little while longer,

∞∑
k=0


kηk −1�∑
j=0

P
{
Z(I) = 1

}
1{I ∩ E �= ∅} �

∞∑
k=0

ηλkη−ka2 (1−4ε)3
< ∞,

and hence by the Borel–Cantelli lemma there exists an m such that Z(I) = 0 whenever
I = [(j/k)η−k , ((j + 1)/k)η−k ) for some k � m. This means that the set M(m) can be
covered by the empty covering, so it must itself be empty. This shows (10.10) and com-
pletes the proof.

We embed the proof of the lower bound into a more general framework, including the
discussion of limsup fractals in a d-dimensional cube.

Definition 10.26. Fix an open unit cube Cube = x0 + (0, 1)d ⊂ Rd . For any nonnegative
integer k, denote by Ck the collection of dyadic cubes

x0 +
d∏

i=1

[ji2−k , (ji + 1)2−k ] with ji ∈ {0, . . . , 2k − 1} for all i ∈ {1, . . . , d},

and C =
⋃

k�0 Ck . Denote by (Z(I) : I ∈ C) a collection of random variables each taking
values in {0, 1}. The limsup fractal associated to this collection is the random set

A :=
∞⋂

n=1

∞⋃
k=n

⋃
I ∈Ck

Z ( I )= 1

int(I),

where int(I) is the interior of the cube I . �
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Remark 10.27 Compared with the setup of the previous section we have switched to the
use of open cubes in the definition of limsup fractals. This choice is more convenient when
we prove hitting estimates, whereas in Theorem 10.6 the choice of closed cubes was more
convenient when constructing random measures on A. �

The key to our result is the hitting probabilities for the discrete limsup fractal A under
some conditions on the random variables (Z(I) : I ∈ C).

Theorem 10.28 Suppose that

(i) the means pn = E[Z(I)] are independent of the choice of I ∈ Cn and satisfy

lim inf
n↑∞

log pn

n log 2
� − γ, for some γ > 0;

(ii) there exists c > 0 such that the random variables Z(I) and Z(J) are independent
whenever I, J ∈ Cn and the distance of I and J exceeds cn2−n .

Then, for any compact E ⊂ Cube with dimP (E) > γ, we have

P
{
A ∩ E �= ∅

}
= 1.

Remark 10.29 The second assumption, which gives us the necessary independence for the
lower bound, can be weakened, see [KPX00]. Note that no assumption is made concerning
the dependence of random variables Z(I) for intervals I of different size. �

Proof of Theorem 10.28. Let E ⊂ Cube be compact with dimP E > γ. Let Ẽ be
defined as in Lemma 10.18 for example as

Ẽ = E \
⋃

a i < b i
r a t io n a l

{ d∏
i=1

(ai, bi) : dimM

(
E ∩

d∏
i=1

(ai, bi)
)

< γ
}

.

From the proof of Lemma 10.18 we have dimP E = dimP Ẽ. Define open sets

An =
⋃

I∈Cn

{
int(I) : Z(I) = 1

}
,

and

A∗
n =

⋃
m�n

Am =
⋃

m�n

⋃
I∈Cm

{
int(I) : Z(I) = 1

}
.

By definition A∗
n ∩ Ẽ is open in Ẽ. We will show that it is also dense in Ẽ with probability

one. This, by Baire’s category theorem, will imply that

A ∩ Ẽ =
∞⋂

n=1

A∗
n ∩ Ẽ �= ∅, almost surely,

as required. To show that A∗
n ∩ Ẽ is dense in Ẽ, we need to show that for any open binary

cube J which intersects Ẽ, the set A∗
n ∩ Ẽ ∩ J is almost surely nonempty.
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For the rest of the proof, fix J and recall that dimM (Ẽ ∩ J) � dimP (Ẽ ∩ J) > γ. Take
ε > 0 small and n large enough so that Ẽ ∩ J intersects more than 2n(γ+2ε) binary cubes
of side length 2−n , and so that (log pn )/n > −(log 2)(γ + ε). Let Sn be the set of cubes
in Cn that intersect Ẽ ∩ J . Define

Tn =
∑

I∈Sn

Z(I),

so that P
{
An ∩ Ẽ ∩ J = ∅

}
= P{Tn = 0}. To show that this probability converges to

zero, by the Paley–Zygmund inequality, it suffices to prove that (Var Tn )/(ETn )2 does.
The first moment of Tn is given by

ETn = sn pn > 2(γ+2ε)n2−γn−εn = 2εn ,

where sn denotes the cardinality of Sn . The variance can be written as

Var Tn = Var
∑

I∈Sn

Z(I) =
∑

I∈Sn

∑
J∈Sn

Cov(Z(I), Z(J)).

Here each summand is at most pn , and the summands for which I and J have distance at
least cn2−n vanish by assumption. Thus∑

I∈Sn

∑
J∈Sn

Cov(Z(I), Z(J)) � pn #
{
(I, J) ∈ Sn × Sn : dist(I, J) � cn 2−n

}
� pnsn (2cn + 1)d = c(2cn + 1)d ETn .

This implies that (Var Tn )/(ETn )2 → 0. Hence, almost surely, A∗
n is an open dense set,

concluding the proof.

We now show how the main statement of Theorem 10.22 follows from this, and how the
ideas in the proof also lead to the lower bound in Theorem 10.25.

Proof of the lower bound in Theorem 10.22 and 10.25. For the lower bound we look at
a compact set E ⊂ (0, 1) with dimP (E) > a2 and first go for the result in Theorem 10.22.
Choose ε > 0 such that dimP (E) > a2 (1 + ε)3 . Associate to every dyadic interval
I = [jh, (j + 1)h] ∈ Ck with h = 2−k the random variable Z(I), which takes the value
one if and only if, for h′ = k2−k ,

|B(jh + h′) − B(jh)| � a(1 + ε)
√

2h′ log(1/h′),

and note that by Lemma 10.10 the limsup fractal associated to these random variables is
contained in the set of a-fast times. It remains to note that the collection {Z(I) : I ∈
Ck , k � 0} satisfies the condition (i) with γ = a2 (1 + ε)3 by (10.8) and condition (ii)
with c = 1. Theorem 10.28 now gives that

P
{
A ∩ E �= ∅

}
= 1,

and therefore

sup
t∈E

lim sup
h↓0

|B(t + h) − B(t)|√
2h log(1/h)

�
√

dimP (E).
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For the lower bound in Theorem 10.25 we look at a compact set E ⊂ (0, 1) with dimM (E)
> a2 and fix ε > 0 such that dimM (E) � a2 (1 + ε)6 . Hence there exists a sequence
(nk : k ∈ N) such that

#
{
I ∈ Cnk

: I ∩ E �= ∅
}

� 2nk a2 (1+ε)5
.

With Z(I) defined as above we obtain, using notation and proof of Theorem 10.28, that

P{Z(I) = 1} � 2−nk γ , with γ = a2 (1 + ε)4 ,

and

Var Tnk
� (2nk + 1)d ETnk

, for Tn =
∑

I∈Cn

Z(I) 1{I ∩ E �= ∅}.

By Chebyshev’s inequality we get, for 1/2 < η < 1,

P
{
|Tnk

− ETnk
| � (ETnk

)η
}

� (2nk + 1)d (ETnk
)1−2η .

As ETnk
is exponentially increasing in nk we can infer, using the Borel–Cantelli lemma,

that

lim
k↑∞

Tnk

ETnk

= 1 almost surely.

This implies that Tnk
�= 0 for all sufficiently large k. Hence, as Z(I) = 1 and I ∩ E �= ∅

imply that there exists t ∈ I ∩ E with |B(t + h′) − B(t)| � a
√

2h′ log(1/h′) for
h′ = nk2nk , completing the proof of Theorem 10.25.

10.3 Slow times of Brownian motion

At the fast times Brownian motion has, in infinitely many small scales, unusually large
growth. Conversely, one may ask whether there are times where a Brownian path has,
at all small scales, unusually small growth. The notion of a slow time for the Brownian
motion is related to the nondifferentiability of the Brownian path. Indeed, in our proof of
non-differentiability, we showed that almost surely,

lim sup
h↓0

|B(t + h) − B(t)|
h

= ∞, for all t ∈ [0, 1],

and in 1963 Dvoretzky showed that there exists a constant δ > 0 such that almost surely,

lim sup
h↓0

|B(t + h) − B(t)|√
h

> δ, for all t ∈ [0, 1].

In 1983 Davis and, independently, Perkins and Greenwood, found that the optimal constant
in this result is equal to one.

Theorem 10.30 (Davis, Perkins and Greenwood) Almost surely,

inf
t∈[0,1]

lim sup
h↓0

|B(t + h) − B(t)|√
h

= 1.
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Remark 10.31 We call t ∈ [0, 1] an a-slow time if

lim sup
h↓0

|B(t + h) − B(t)|√
h

� a. (10.11)

The result shows that a-slow times exist for a > 1 but not for a < 1. The Hausdorff
dimension of the set of a-slow times is studied in Perkins [Pe83]. �

For the proof of Theorem 10.30 we need to investigate the probability that the graph of a
Brownian motion stays within a parabola open to the right. The following lemma is what
we need for a lower bound.

Lemma 10.32 Let M := max0�t�1 |B(t)| and, for r < 1, define the stopping time

T = inf{t � 1: |B(t)| = M + r
√

t}.

Then ET < ∞.

Proof. By Theorem 2.48, for every t � 1, we have

E[T ∧ t] = E[B(T ∧ t)2 ]�E
[
(M + r

√
T ∧ t)2]

= EM 2 + 2rE
[
M

√
T ∧ t
]
+ r2E[T ∧ t]

� EM 2 + 2r(EM 2)1/2(E[T ∧ t])1/2 + r2E[T ∧ t],

where Hölder’s inequality was used in the last step. This gives

(1 − r2)E[T ∧ t] � E[M 2 ] + 2r
(
EM 2)1/2(

E[T ∧ t]
)1/2

,

and as E[M 2 ] < ∞ we get that E[T ∧ t] is bounded and hence ET < ∞.

Proof of the lower bound in Theorem 10.30. It suffices to show that, for any fixed
r < 1 and h0 > 0, the set

A =
{
t ∈ [0, h0 ] : |B(t + h) − B(t)| < r

√
h for all 0 < h � h0

}
is empty almost surely. By Brownian scaling we may further assume that h0 = 1. For any
interval I = [a, b] ⊂ [0, 1], we have, by the triangle inequality and Brownian scaling, for
M = max{|B(t) − B(a)| : a � t � b}, that

P
{
∃t ∈ I : |B(t + h) − B(t)| < r

√
h for all 0 < h � 1

}
� P
{
|B(a + h) − B(a)| < M + r

√
h for all b − a < h � 1

}
� P
{
T � 1

b−a

}
,

where T is as in Lemma 10.32. Dividing [0, 1] into n intervals of length 1/n we get

P{A �= ∅} �
n−1∑
k=0

P{A ∩ [k/n, (k + 1)/n] �= ∅} � nP
{
T � n

}
= E
[
n1{T � n}

]
→ 0,

using in the final step that n1{T � n} is dominated by the integrable random variable T .
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We turn to the proof of the upper bound. Again we start by studying exit times from a
parabola. For 0 < r < ∞ and a > 0 let

T (r, a) := inf{t � 0: |B(t)| = r
√

t + a}.

For the moment it suffices to note the following property of T (1, a).

Lemma 10.33 We have ET (1, a) = ∞.

Proof. Suppose that ET (1, a) < ∞. Then, by Theorem 2.48, we have that ET (1, a) =
EB(T (1, a))2 = ET (1, a) + a, which is a contradiction. Hence ET (1, a) = ∞.

For 0 < r < ∞ and a > 0 we now define further stopping times

S(r, a) := inf{t � a : |B(t)| � r
√

t}.

Lemma 10.34 If r > 1 there is a p = p(r) < 1 such that E[S(r, 1)p ] = ∞. In particular,

lim sup
n↑∞

n
P{S(r, 1) > n}
E[S(r, 1) ∧ n]

> 0.

The proof uses the following general lemma.

Lemma 10.35 Suppose X is a nonnegative random variable and EXp = ∞ for some
p < 1. Then

lim sup
n↑∞

n P{X > n}/E[X ∧ n] > 0.

Proof. Let p < 1 and suppose for contradiction that, for some ε < 1−p
2 ,

n P{X > n} < ε E[X ∧ n] for all integers n � y0 � 2. (10.12)

For all N � 1, using Fubini’s theorem in the first and substitution of variables in the second
step, we get that

E[(X ∧ N)p ] =
∫ N p

0
P{Xp > x} dx = p

∫ N

0
yp−1 P{X > y} dy ,

and hence, using (10.12) for n = �y�, we obtain

E[(X ∧ N)p ] � p

∫ y0

0
yp−1 dy + ε y0

y0 −1 p

∫ N

�y0 �
yp−2 E[X ∧ y] dy

� yp
0 + 2εp

∫ N

�y0 �
yp−2

∫ y

0
P{X > z} dz dy

� yp
0 + 2εp

∫ N

0
P{X > z}

∫ ∞

z

yp−2 dy dz

� yp
0 + ε 2

1−p E[(X ∧ N)p ],
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and hence, by choice of ε,

E[(X ∧ N)p ] � yp
0

1 − 2ε
1−p

.

This implies E[Xp ] = sup E[(X ∧ N)p ] < ∞, which contradicts to our assumption.

Proof of Lemma 10.34. Define a sequence of stopping times by τ0 = 1 and, for k � 1,

τk =
{

inf{t � τk−1 : B(t) = 0 or |B(t)| � r
√

t
}

if k is odd,
inf{t � τk−1 : |B(t)| �

√
t
}

if k is even.

For any fixed λ > 0 let ϕ(a) = P{T (1, a) > λ a} and note that, by Brownian scaling,
ϕ(a) = ϕ(1) for all a > 0. Hence, by the strong Markov property,

P
{
τ2k − τ2k−1 > λτ2k−1

∣∣B(τ2k−1) = 0
}

= E
[
ϕ(τ2k−1)

∣∣B(τ2k−1) = 0
]

= P{T (1, 1) > λ}.

Define c := P{S(0, 1) < S(r, 1)}. Now, for k � 2 and λ > 0, on {τ2k−2 < S(r, 1)},

P
{
τ2k − τ2k−1 > λτ2k−2

∣∣F(τ2k−2)
}

� P
{
τ2k − τ2k−1 > λτ2k−1

∣∣F(τ2k−2), B(τ2k−1) = 0
}

P
{
B(τ2k−1) = 0

∣∣F(τ2k−2)
}

= c P{T (1, 1) > λ}.

To pass from this estimate to the pth moments we use that, for any nonnegative random
variable X , we have EXp =

∫∞
0 P{Xp > λ} dλ. This gives

E
[
(τ2k − τ2k−1)p

]
= E
∫ ∞

0
τp
2k−2 P

{
(τ2k − τ2k−1)p > λτp

2k−2

∣∣F(τ2k−2)
}

dλ

� E
∫ ∞

0
τp
2k−2 P

{
τ2k − τ2k−1 > λ1/pτ2k−2

∣∣F(τ2k−2)
}

1{τ2k−2 < S(r, 1)} dλ

� c E
∫ ∞

0
τp
2k−2 P

{
T (1, 1) > λ1/p

}
1{τ2k−2 < S(r, 1)} dλ.

Now, using the formula for EXp again, but for X = T (1, 1) and noting that {τ2k−2 <

S(r, 1)} = {τ2k−3 < τ2k−2}, we obtain

E
[
(τ2k − τ2k−1)p

]
� cE[T (1, 1)p ] E

[
τp
2k−21{τ2k−2 < S(r, 1)}

]
� cE[T (1, 1)p ] E

[
(τ2k−2 − τ2k−3)p

]
,

and by iterating this,

E
[
(τ2k − τ2k−1)p

]
�
(
cE[T (1, 1)p ]

)k−1
E
[
(τ2 − τ1)p

]
.

Note that, by Fatou’s lemma and by Lemma 10.33, lim infp↑1 E[T (1, 1)p ] � ET (1, 1) =
∞. Hence we may pick p < 1 such that E[T (1, 1)p ] > 1/c. Then

E[S(r, 1)p ] � E[τp
2k ] � E

[
(τ2k − τ2k−1)p

]
−→ ∞,

as k ↑ ∞, which is the first statement we wanted to prove. The second statement follows
directly from the general fact stated as Lemma 10.35.
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Proof of the upper bound in Theorem 10.30. Fix r > 1 and let

A(n) =
{
t ∈ [0, 1] : |B(t + h) − B(t)| < r

√
h, for all 1

n � h � 1}.

Note that n � m implies A(n) ⊂ A(m). We show that

P
{ ∞⋂

n=1

A(n) �= ∅
}

= lim
n→∞

P
{
A(n) �= ∅

}
> 0. (10.13)

Fix n ∈ N and let v(0, n) = 0 and, for i � 1,

v(i, n) := (v(i − 1, n) + 1)

∧ inf
{
t � v(i − 1, n) + 1

n : |B(t) − B(v(i − 1, n))| � r
√

t − v(i − 1, n)
}
.

Then P{v(i + 1, n) − v(i, n) = 1 | F(v(i, n))} = P{S(r, 1) � n}, and by Brownian
scaling,

E[v(i + 1, n) − v(i, n) | F(v(i, n))] = 1
n E[S(r, 1) ∧ n]. (10.14)

Of course v(k, n) � 1 if v(i, n) − v(i − 1, n) = 1 for some i � k. Thus, for any m,

P{v(i + 1, n) − v(i, n) = 1 for some i � m such that v(i, n) � 1
}

=
m∑

i=1

P{S(r, 1) � n}P{v(i, n) � 1}

� mP{S(r, 1) � n}P{v(m,n) � 1}.

Let (nk : k ∈ N) be an increasing sequence of integers such that

nk
P{S(r, 1) � nk}
E[S(r, 1) ∧ nk ]

� ε > 0,

and E[S(r, 1) ∧ nk ] � nk/6 for all k, which is possible by Lemma 10.34.
Choose the integers mk so that they satisfy

1
3

� mk

nk
E[S(r, 1) ∧ nk ] � 1

2
.

Summing (10.14) over all i = 0, . . . ,mk − 1 and taking the expectation,

Ev(mk, nk ) =
mk

nk
E[S(r, 1) ∧ nk ],

hence P{v(mk, nk ) � 1} � 1/2. Now we get, putting all our ingredients together,

P{A(nk ) �= ∅}
� P{v(i + 1, nk ) − v(i, nk ) = 1 for some i � mk such that v(i, nk ) � 1

}
� mkP{S(r, 1) � nk}P{v(mk, nk ) � 1}

� mkP{S(r, 1) � nk}/2 � mk

2nk
εE[S(r, 1) ∧ nk ] � ε

6
.

This proves (10.13). It remains to observe that, by Brownian scaling, there exists δ > 0
such that, for all n ∈ N,

P
{
∃t ∈ [0, 1/n] : lim sup

h↓0
|B(t + h) − B(t)|/

√
h � r} � δ.
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Hence, by independence,

P
{
∃t ∈ [0, 1] : lim sup

h↓0
|B(t + h) − B(t)|/

√
h � r}�1 − (1 − δ)n −→ 1.

This completes the proof of the upper bound, and hence the proof of Theorem 10.30.

10.4 Cone points of planar Brownian motion

We now focus on a planar Brownian motion {B(t) : t � 0}. Recall from Section 7.2 that
around a typical point on the path this motion performs an infinite number of windings in
both directions. It is easy to see that there are exceptional points to this behaviour: Let

x0 = min{x : (x, 0) ∈ B[0, 1]}.

Then the Brownian motion does not perform any windings around (x0 , 0), as this would
necessarily imply that it crosses the half-line {(x, 0) : x < x0} contradicting the minimal-
ity of x0 . More generally, each point (x0 , y0) ∈ R2 with x0 = min{x : (x, y0) ∈ B[0, 1]}
has this property, if the set is nonempty. Hence, the set of such points has dimension at
least one, as the projection onto the y-axis gives a nondegenerate interval. We shall see
below that this set has indeed Hausdorff dimension one.

We now look at points where a cone-shaped area with the tip of the cone placed in the point
is avoided by the Brownian motion. These points are called cone points.

Definition 10.36. Let {B(t) : t � 0} be a planar Brownian motion. For any angle
α ∈ (0, 2π) and direction ξ ∈ [0, 2π), define the closed cone

W [α, ξ] :=
{
rei(θ−ξ) : |θ| � α/2, r � 0

}
⊂ R2 .

Given a cone x + W [α, ξ] we call its dual the reflection of its complement about the tip,
i.e. the cone x + W [2π − α, ξ + π]. A point x = B(t), 0 < t < 1, is an α-cone point if
there exists ε > 0 and ξ ∈ [0, 2π) such that

B(0, 1) ∩ B(x, ε) ⊂ x + W [α, ξ] . �

Remark 10.37 Clearly, if x = B(t) is a cone point, then there exists a small δ > 0 such
that B(t − δ, t + δ) ⊂ x + W [α, ξ]. Hence the path {B(t) : 0 � t � 1} performs only a
finite number of windings around x. �

We now identify the opening angles α for which there exist α-cone points. In the cases
where they exist, we determine the Hausdorff dimension of the set of α-cone points.
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Theorem 10.38 (Evans 1985) Let {B(t) : 0 � t � 1} be a planar Brownian motion.
Then, almost surely, α-cone points exist for any α � π but not for α < π. Moreover, if
α ∈ [π, 2π), then

dim
{
x ∈ R2 : x is an α-cone point

}
= 2 − 2π

α .

In the proof of Theorem 10.38 we identify R2 with the complex plane and use complex
notation wherever convenient. Suppose that {B(t) : t � 0} is a planar Brownian motion
defined for all positive times. We first fix an angle α ∈ (0, 2π) and a direction ξ ∈ [0, 2π)
and define the notion of an approximate cone point as follows: For any 0 < δ < ε we let

Tδ (z) := inf
{
s � 0: B(s) ∈ B(z, δ)

}
and

Sδ,ε(z) := inf
{
s � Tδ/2(z) : B(s) �∈ B(z, ε)

}
.

We say that z ∈ R2 is a (δ, ε)-approximate cone point if

B(0, Tδ (z)) ⊂ z + W [α, ξ], and B(Tδ/2(z), Sδ,ε(z)) ⊂ z + W [α, ξ] .

Note that we do not require (δ, ε)-approximate cone points to belong to the Brownian path.
The relation between cone points and approximate cone points will become clear later, we
first collect the necessary information about the probability that a given point is a (δ, ε)-
approximate cone point. The strong Markov property allows us to consider the events
happening during the intervals [0, Tδ (z)] and [Tδ/2(z), 1] separately.

Lemma 10.39 There exist 0 < c < C (depending on α) such that, for every δ > 0,

(a) for all z ∈ R2 ,

P
{
B(0, Tδ (z)) ⊂ z + W [α, ξ]

}
� C
(

δ
|z |
) π

α ,

(b) for all z ∈ R2 with 0 ∈ z + W [α/2, ξ],

P
{
B(0, Tδ (z)) ⊂ z + W [α, ξ]

}
� c
(

δ
|z |
) π

α .

Proof. We write z = |z| eiθ and apply the skew-product representation, Theorem 7.26,
to the Brownian motion {z − B(t) : t � 0} and obtain

B(t) = z − R(t) exp(i θ(t)
)
, for all t � 0,

for R(t) = exp(W1(H(t)) and θ(t) = W2(H(t)), where {W1(t) : t � 0} and {W2(t) :
t � 0} are independent linear Brownian motions started in log |z|, resp. in θ, and a strictly
increasing time-change {H(t) : t � 0} which depends only on the first of these motions.
This implies that Tδ (z) = inf{s � 0: R(s) � δ} and therefore

H(Tδ (z)) = inf
{
u � 0: W1(u) � log δ

}
=: τlog δ .
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We infer that{
B(0, Tδ (z)) ⊂ z + W [α, ξ]

}
=
{
|W2(u) + π − ξ| � α

2 for all u ∈ [0, τlog δ ]
}
.

The latter event means that a linear Brownian motion started in θ stays inside the interval
[ξ−π−α/2, ξ−π +α/2] up to the independent random time τlog δ . For the probability of
such events we have found two formulas, (7.14) and (7.15) in Chapter 7. The latter formula
gives

P
{
|W2(u) + π − ξ| � α

2 for all u ∈ [0, τlog δ ]
}

=
∞∑

k=0

4
(2k+1) π sin

( (2k+1)π (α/2+ξ−π−θ)
α

)
E
[
exp
(
− (2k+1)2 π 2

2α2 τlog δ

)]
=

∞∑
k=0

4
(2k+1) π sin

( (2k+1)π (α/2+ξ−π−θ)
α

) (
δ
|z |
)(2k+1) π

α ,

using Exercise 2.18 (a) to evaluate the Laplace transform of the first hitting times of a point
by linear Brownian motion. Now note that the upper bound, part (a) of the lemma, is easy
if |z| � 2δ, and otherwise one can bound the exact formula from above by(

δ
|z |
) π

α

∞∑
k=0

4
(2k+1) π 2−2k π

α .

The lower bound, part (b) of the lemma, follows from Brownian scaling if δ/|z| is bounded
from below. Otherwise note that, under our assumption 0 ∈ z + W [α/2, ξ], we have
|θ + π − ξ| � α

4 and thus the sine term corresponding to k = 0 is bounded from below by
sin(π/4) > 0. Thus we get a lower bound of(

δ
|z |
) π

α

[
4
π sin(π/4) −

∞∑
k=1

4
(2k+1) π

(
δ
|z |
)2k π

α

]
,

and the term in the square bracket is bounded from zero, if δ/|z| is sufficiently small.

An entirely analogous argument also provides the estimates needed for the events imposed
after the Brownian motion has hit the ball B(z, δ/2). Define, for later reference,

S ( t )
ε (z) := inf

{
s > t : B(s) �∈ B(z, ε)

}
.

Lemma 10.40 There exist constants C > c > 0 such that, for every 0 < δ < ε,

(a) for all x, z ∈ R2 with |x − z| = δ/2,

Px

{
B(0, S( 0 )

ε (z)) ⊂ z + W [α, ξ]
}

� C
(

δ
ε

) π
α .

(b) for all x, z ∈ R2 with |x − z| = δ/2 and x − z ∈ W [α/2, ξ],

Px

{
B(0, S ( 0 )

ε (z)) ⊂ z + W [α, ξ]
}

� c
(

δ
ε

) π
α .

We now focus on the upper bound in Theorem 10.38. Using the strong Markov property
we may combine Lemmas 10.39 (a) and 10.40 (a) to obtain the following lemma.
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Lemma 10.41 There exists a constant C0 > 0 such that, for any z ∈ R2 ,

P
{
z is a (δ, ε)-approximate cone point

}
� C0 |z|−

π
α ε−

π
α δ

2 π
α .

Proof. By the strong Markov property applied at the stopping time Tδ/2(z) we get

P
{
z is a (δ, ε)-approximate cone point

}
� E
[
1{B(0, Tδ (z)) ⊂ z + W [α, ξ]}PB (Tδ / 2 (z )) {B(0, S ( 0 )

ε (z)) ⊂ z + W [α, ξ]}
]

� C2 ( δ
|z |
) π

α
(

δ
ε

) π
α ,

where we have used Lemmas 10.39 (a) and 10.40 (a). The result follows with C0 := C2 .

Let M(α, ξ, ε) be the set of all points in the plane which are (δ, ε)-approximate cone points
for all δ > 0. Obviously z ∈ M(α, ξ, ε) if and only if there exists t > 0 such that z = B(t)
and B(0, t) ⊂ z + W [α, ξ], and B(t, S( t )

ε (z)) ⊂ z + W [α, ξ].

Lemma 10.42 Almost surely,

(a) if α ∈ (0, π) then M(α, ξ, ε) = ∅,

(b) if α ∈ [π, 2π) then dim M(α, ξ, ε) � 2 − 2π
α .

Proof. Take a compact cube Cube of unit side length not containing the origin. It suffices
to show that M(α, ξ, ε)∩Cube = ∅ if α ∈ (0, π) and dim M(α, ξ, ε)∩Cube � 2− 2π

α if
α ∈ (π, 2π).

Given a dyadic subcube D ∈ Dk of Cube of side length 2−k let D∗ ⊃ D be a concentric
ball around D with radius (1 +

√
2)2−k . Define the focal point x = x(D) of D to be

• if α < π the tip of the cone x + W [α, ξ] whose boundary halflines are tangent to D∗,

• if α > π the tip of the cone whose dual has boundary halflines tangent to D∗.

The following properties are easy to check: For every ε > 0 and α ∈ [0, 2π), there exists
k0 ∈ N such that for all k � k0 and D ∈ Dk and y ∈ D, we have B(y, ε) ⊃ B(x, ε/2),
and y + W [α, ξ] ⊂ x + W [α, ξ]. Moreover there exist constants C1 > c1 > 0 depending
only on α, such that

• B(y, C12−k ) ⊂ B(x,C2
1 2−k ),

• B(y, 1
2 C12−k ) ⊃ B(x, c1C12−k ), and

• |x − y| < c1C12−k .

Altogether, these properties imply that, for k large enough, if the cube D ∈ Dk contains a
(C1 2−k , ε)-approximate cone point, then its focal point x satisfies

• B(0, TC 2
1 2−k (x)) ⊂ x + W [α, ξ], and

• B(Tc1 C1 2−k (x), Sc1 C1 2−k ,ε/2(x)) ⊂ x + W [α, ξ].

See Figure 10.1 for an illustration.
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x

c1C12−k

y

1
2C12−k C12−k

C2
12−k

Fig. 10.1. Position of the points in Lemma 10.42.

Hence, by combining Lemma 10.39 (a) and Lemma 10.40 (a) as in Lemma 10.41, we find
a constant C2 > 0,

P
{
D contains a (C1 2−k , ε)-approximate cone point

}
� C2 |x(D)|− π

α ε−
π
α 2−k 2 π

α .

Note that, given Cube and ε > 0 we can find k1 � k0 such that |x(D)| is bounded away
from zero over all D ∈ Dk and k � k1 . Hence we obtain C3 > 0 such that, for all k � k1 ,

P
{
D contains a (C1 2−k , ε)-approximate cone point

}
� C3 2−k 2 π

α .

Then, if α ∈ (0, π),

P{M(α, ξ, ε) �= ∅} �
∑

D∈Dk

P
{
D contains a (C1 2−k , ε)-approximate cone point

}
� C3 22k 2−k 2 π

α
k→∞−→ 0 ,

proving part (a). Moreover, if α ∈ (π, 2π) and k � k1 , we may cover M(α, ξ, ε) ∩ Cube

by the collection of cubes D ∈ Dk which contain a (C12−k , ε)-approximate cone point.
Then, for any γ > 2 − 2π

α the expected γ-value of this covering is

E
∑

D∈Dk

2−kγ+ 1
2 γ 1{D contains a (C1 2−k , ε)-approximate cone point }

� 2
1
2 γ
∑

D∈Dk

2−kγ P
{
D contains a (C1 2−k , ε)-approximate cone point

}
� C3 2k(2− 2 π

α −γ ) k→∞−→ 0 ,

and this proves that, almost surely, dim M(α, ξ, ε) � γ.
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Proof of the upper bound in Theorem 10.38. Suppose δ > 0 is arbitrary and z ∈ R2

is an α-cone point. Then there exist a rational number q ∈ [0, 1), a rational direction
ξ ∈ [0, 2π), and a rational ε > 0, such that z = B(t) for some t ∈ (q, 1) and

B(q, t) ⊂ z + W [α + δ, ξ], and B(t, S ( t )
ε (z)) ⊂ z + W [α + δ, ξ] .

By Lemma 10.42 for every fixed choice of rational parameters this set is empty almost
surely if α + δ < π. For any α < π we can pick δ > 0 with α + δ < π and hence
there are no α-cone points almost surely. Similarly, if α � π, we use Lemma 10.42 and
the countable stability of Hausdorff dimension to obtain an almost sure upper bound of
2 − 2π/(α + δ) for the set of α-cone points. The result follows as δ > 0 was arbitrary.

We now establish the framework to prove the lower bound in Theorem 10.38. Again we
fix x0 ∈ Rd and a cube Cube = x0 + [0, 1)d . Recall the definition of the collection Dk

of dyadic half-open subcubes of side length 2−k and let D =
⋃∞

k=1 Dk . Suppose that
{Z(I) : I ∈ D} is a collection of random variables each taking values in {0, 1}. With this
collection we associate the random set

A :=
∞⋂

k=1

⋃
I ∈Dk

Z ( I )= 1

I .

Theorem 10.43 Suppose that the random variables {Z(I) : I ∈ D} satisfy the monotonic-
ity condition

I ⊂ J and Z(I) = 1 ⇒ Z(J) = 1.

Assume that, for some positive constants γ, c1 and C1 ,

(i) c1 |I|γ � EZ(I) � C1 |I|γ for all I ∈ D,

(ii) E
[
Z(I)Z(J)

]
� C1 |I|2γ dist(I, J)−γ for all I, J ∈ Dk , dist(I, J) > 0, k � 1.

Then, for λ > γ and Λ ⊂ Cube closed with Hλ(Λ) > 0, there exists a p > 0, such that

P
{

dim(A ∩ Λ) � λ − γ
}

� p .

Remark 10.44 Though formally, if the monotonicity condition holds, A is a limsup fractal,
the monotonicity establishes a strong dependence of the random variables {Z(I) : I ∈ Dk}
which in general invalidates the second assumption of Theorem 10.28. We therefore need
a result which deals specifically with this situation. �

We prepare the proof with a little lemma, based on Fubini’s theorem.

Lemma 10.45 Suppose ν is a probability measure on Rd such that νB(x, r) � Crλ for all
x ∈ Rd , r > 0. Then, for all 0 < β < λ there exists C2 > 0 such that,∫

B(x,r)
|x − y|−β ν(dy) � C2 rλ−β , for every x ∈ Rd and r > 0.
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This implies, in particular, that∫∫
|x − y|−β dν(x) dν(y) < ∞ .

Proof. Fubini’s theorem gives∫
B(x,r)

|x − y|−β ν(dy) =
∫ ∞

0
ν
{
y ∈ B(x, r) : |x − y|−β > s

}
ds

�
∫ ∞

r−β

νB(x, s−1/β ) ds + C rλ−β

� C

∫ ∞

r−β

s−λ/β ds + C rλ−β ,

which implies the first statement. Moreover,∫∫
|x − y|−β dν(x) dν(y) �

∫
dν(x)

∫
B(x,1)

|x − y|−β dν(y) + 1 � C2 + 1 .

Proof of Theorem 10.43. We show that there exists p > 0 such that, for every
0 < β < λ−γ, with probability at least p, there exists a positive measure µ on Λ∩A such
that its β-energy Iβ (µ) is finite. This implies dim(A ∩ Λ) � β by the energy method, see
Theorem 4.27.

First, given Λ ⊂ Cube with Hλ(Λ) > 0, we use Frostman’s lemma to find a Borel proba-
bility measure ν on Λ and a positive constant C such that ν(D) � C|D|λ for all Borel sets
D ⊂ Rd . Writing

An :=
⋃

I ∈Dn
Z ( I )= 1

I ,

we define µn to be the measure supported on Λ given by

µn (B) = 2nγ ν(B ∩ An ) for any Borel set B ⊂ Rd .

Then, using (i), we get

E
[
µn (An )

]
= 2nγ

∑
I∈Dn

ν(I) EZ(I) � c1 dγ/2
∑

I∈Dn

ν(I) = c1 dγ/2 .

Moreover, using (ii), we obtain

E
[
µn (An )2] = 22nγ

∑
I∈Dn

∑
J∈Dn

E[Z(I)Z(J)]ν(I)ν(J)

� C1d
γ
∑

I∈Dn

∑
J ∈Dn

d i s t ( I , J )> 0

dist(I, J)−γ ν(I)ν(J)

+ C3d
√

d
λ

22nγ 2−nλ
∑

I∈Dn

E[Z(I)]ν(I),

since for every cube I there are 3d cubes J with dist(I, J) = 0. Hence

E
[
µn (An )2] � C1

(
(1 + 2

√
d)d
)γ ∫∫ |x − y|−γ dν(x) dν(y) + C 3d

√
d

λ
dγ/2 ,
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where we use that for x ∈ I , y ∈ J with dist(I, J) > 0 we have |x − y| � (1 +
2
√

d) dist(I, J). Finiteness of the right hand side, denoted C3 , follows from the second
statement of Lemma 10.45. We now show that, for β < λ − γ we can find k(β) such that
EIβ (µn ) � k(β). Indeed,

EIβ (µn ) = 22nγ
∑

I ,J∈Dn

E[Z(I)Z(J)]
∫

I

dν(x)
∫

J

dν(y) |x − y|−β

� C1 dγ
∑

I∈Dn

∑
J ∈Dn

d i s t ( I , J )> 0

dist(I, J)−γ

∫
I

dν(x)
∫

J

dν(y) |x − y|−β

+ C1 dγ/2 2nγ
∑

I∈Dn

∑
J ∈Dn

d i s t ( I , J )= 0

∫
I

dν(x)
∫

J

dν(y) |x − y|−β .

For the first summand, we use that dist(I, J)−γ � (3
√

d)γ |x− y|−γ whenever x ∈ I and
y ∈ J , and infer boundedness from the second statement of Lemma 10.45. For the second
summand, the first statement of Lemma 10.45 gives a bound of

C1C2 dγ/2 2nγ (3
√

d2−n )λ−β
∑

I∈Dn

ν(I) � C1 C2 dγ/2 (3
√

d)λ−β .

Hence, EIβ (µn ) is bounded uniformly in n, as claimed. We thus find �(β) > 0 such that

P
{
Iβ (µn ) � �(β)

}
� k(β)

�(β)
� c2

1

8C3
.

Now, by the Paley–Zygmund inequality, see Lemma 3.23,

P
{
µn (An ) > c1

2

}
�P
{
µn (An ) > 1

2 E[µn (An )]
}

� 1
4

E[µn (An )]2

E[µn (An )2 ]
� c2

1

4C3
.

Hence we obtain that

P
{
µn (An ) > c1

2 , Iβ (µn ) < �(β)
}

� p := c2
1

8C3
.

Using Fatou’s lemma we infer that

P
{
µn (An ) >c1

2 , Iβ (µn ) < �(β) infinitely often
}

� lim inf
n→∞

P
{
µn (An ) > c1

2 , Iβ (µn ) < �(β)
}

� p .

On this event we can pick a subsequence along which µn converges to some measure µ.
Then µ is supported by A and µ(Cube) � lim inf µn (Cube) = lim inf µn (An ) � c1/2.
Finally, for each ε > 0, where the limit is taken along the chosen subsequence,∫∫

|x−y |>ε

|x − y|−β dµ(x) dµ(y) = lim
∫∫

|x−y |>ε

|x − y|−β dµn (x) dµn (y)

� lim Iβ (µn ) � �(β),

and for ε ↓ 0 we get Iβ (µ) � �(β).
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We now use Theorem 10.43 to give a lower bound for the dimension of the set of cone
points. Fix α ∈ (π, 2π) and a unit cube

Cube = x0 + [0, 1]2 ⊂ W [α/2, 0] ,

and recall the definition of the classes C and Ck of compact dyadic subcubes. Choose a
large radius R > 2 such that Cube ⊂ B(0, R/2) and define

rk := R −
k∑

j=1

2−j > R/2 .

Given a cube I ∈ Ck we denote by z its centre and let Z(I) = 1 if z is a (2−k , rk )-
approximate cone point with direction ξ = π, i.e. if

B(0, T2−k (z)) ⊂ z + W [α, π], and B(T2−k −1 (z), S2−k ,rk
(z)) ⊂ z + W [α, π] ,

and otherwise let Z(I) = 0. By our choice of the sequence (rk ) we have

I ⊂ J and Z(I) = 1 ⇒ Z(J) = 1.

Lemma 10.46 There are constants 0 < c1 < C1 < ∞ such that, for any cube I ∈ C, we
have

c1 |I|
2 π
α � P

{
Z(I) = 1

}
� C1 |I|

2 π
α .

Proof. The upper bound is immediate from Lemma 10.41. For the lower bound we use
that, for any z ∈ Cube and δ > 0,

inf
|x−z |=δ

Px

{
B(Tδ/2(z)) ∈ z + W [α/2, π]

}
= inf

|x|=1
Px

{
B(T1/2(0)) ∈ W [α/2, π]

}
=: c0 > 0 ,

and hence, if z is the centre of I ∈ Ck and δ = 2−k , using Lemmas 10.39 (b) and 10.40 (b),

P
{
Z(I) = 1

}
� E
[
1{B(0, Tδ (z)) ⊂ z + W [α, π]}EB (Tδ (z ))

[
1{B(Tδ/2(z)) ∈ z + W [α/2, π]

}
× PB (Tδ / 2 (z )){B(0, S( 0 )

rk
(z)) ⊂ z + W [α, π]}

]]
� c0 c2 δ

2 π
α

(
R|z|
)− π

α ,

which gives the desired statement, as |z| is bounded away from infinity.

Lemma 10.47 There is a constant 0 < C1 < ∞ such that, for any cubes I, J ∈ Ck , k � 1,
we have

E
[
Z(I)Z(J)

]
� C1 |I|

4 π
α dist(I, J)−

2 π
α .
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Proof. Let zI , zJ be the centres of I , resp. J , and abbreviate η := |zI −zJ | and δ := 2−k .
Then, for η > 2δ, using the strong Markov property and Lemmas 10.39 (a) and 10.40 (a),

E
[
Z(I)Z(J) 1{Tδ/2(zI ) < Tδ/2(zJ )}v

]
� E
[
1{B(0, Tδ (zI )) ⊂ zI + W [α, π]}

× EB (Tδ / 2 (zI ))

[
1{B(0, S( 0 )

η/2(zI )) ⊂ zI + W [α, π]}

× EB (Tη / 2 (zJ ))
[
1{B(0, Tδ (zJ )) ⊂ zJ + W [α, π]

}
× PB (Tδ / 2 (zJ )){B(0, S( 0 )

rk
(zJ )) ⊂ zJ + W [α, π]}

]]]
� C4 ( δ

|zI |
) π

α
(

δ
η

) 2 π
α
( 2δ

R

) π
α � C2 |I|

4 π
α dist(I, J)−

2 π
α ,

where we recall that Cube does not contain the origin and let C2 > 0 be an appropriate
constant. Suppose now that η � 2δ. Then, by a simpler argument,

E
[
Z(I)Z(J) 1{Tδ/2(zI ) < Tδ/2(zJ )}

]
� E
[
1{B(0, Tδ (zI )) ⊂ zI + W [α, π]}
× PB (Tδ / 2 (zJ )){B(0, S ( 0 )

rk
(zJ )) ⊂ zJ + W [α, π]}

]
� C2 ( δ

|zI |
) π

α
( 2δ

R

) π
α � C3 |I|

4 π
α dist(I, J)−

2 π
α .

Exchanging the rôle of I and J gives the corresponding estimate

E[Z(I)Z(J)1{Tδ/2(zI ) > Tδ/2(zJ )}] � C3 |I|
4 π
α dist(I, J)−

2 π
α ,

and the proof is completed by adding the two estimates.

Proof of the lower bound in Theorem 10.38. The set A which we obtain from our
choice of {Z(I) : I ∈ C} is contained in the set

Ã :=
{
B(t) : t > 0 and B(0, S( t )

R/2(B(t))) ⊂ B(t) + W [α, π]
}

.

Therefore, by Theorem 10.43, we have dim Ã � 2−2π/α with positive probability. Given
any 0 < δ < 1/2 and r > 0, we define a sequence τ ( δ )

1 � τ ( δ )
2 � . . . of stopping times by

τ ( δ )
1 = 0 and, for k � 1,

τ ( δ )

k := S
( τ

( δ )
k −1 )

δr

(
B(τ ( δ )

k−1)
)
.

Denoting η = R/(2r) and

A( δ )

k :=
{
B(t) : τ ( δ )

k−1 � t � τ ( δ )

k and B(τ ( δ )

k−1 , S
( t )
ηr (B(t))) ⊂ B(t) + W [α, π]

}
we have that

Ã ⊂
∞⋃

k=1

A( δ )

k .

Now fix β < 2 − 2π/α. The events {dim A( δ )

k � β} all have the same probability,
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which cannot be zero as this would contradict the lower bound on the dimension of Ã. In
particular, there exists p( δ )

R > 0 such that

P
{

dim
{
B(t) : 0 � t � S( 0 )

δr (0) and B(0, S ( t )
ηr (B(t))) ⊂ B(t) + W [α, π]

}
� β
}

� p( δ )

R .

By scaling we get that p( δ )

R does not depend on r. Hence, by Blumenthal’s zero-one law,
we have that p( δ )

R = 1 for all δ > 0, R > 0. Letting β ↑ 2 − 2π/α we get, almost surely,

dim
{
B(t) : 0 � t � S( 0 )

δ (0), B(0, S ( t )
η (B(t))) ⊂ B(t) + W [α, π]

}
� 2 − 2π

α

for every δ > 0, η > 0.

Given ε > 0, we may choose δ, η > 0 such that, with probability > 1 − ε, we have
S( 0 )

δ (0) < 1 and S( t )
η (B(t)) > 1 for all 0 � t � 1. This implies that

dim
{
B(t) : 0 � t � 1, B(0, 1) ⊂ B(t) + W [α, π]

}
� 2 − 2π

α

with probability > 1 − ε, and the result follows as ε > 0 was arbitrary.

A surprising consequence of the non-existence of cone points for angles smaller then π is
that the convex hull of the planar Brownian curve is a fairly smooth set.

Theorem 10.48 (Adelman) Almost surely, the convex hull of {B(s) : 0 � s � 1} has a
differentiable boundary.

Proof. A compact, convex subset H ⊂ R2 is said to have a corner at x ∈ ∂H if
there exists a cone with vertex x and opening angle α > π which avoids H \ {x}. If H

does not have corners, the supporting hyperplanes are unique at each point x ∈ ∂H and
thus ∂H is a differentiable boundary. So all we have to show is that the convex hull H

of {B(s) : 0 � s � 1} has no corners. Clearly, by Spitzer’s theorem, B(0) and B(1) are
not corners almost surely. Suppose any other point x ∈ ∂H is a corner, then obviously it
is contained in the path, and therefore it is a (2π − α)-cone point for some α > π. By
Theorem 10.38, almost surely, such points do not exist and this is a contradiction.

Exercises

Exercise 10.1. Show that, for every metric space E,

dimP E = inf{s : Ps(E) < ∞} = sup{s : Ps(E) > 0} = sup{s : Ps(E) = ∞}.

Exercise 10.2. S Show that, for every metric space E, we have

dimP E � dim E.

Exercise 10.3. Let {mk : k � 1} be a rapidly increasing sequence of positive integers such
that

lim
k→∞

mk

mk+1
= 0.
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Define two subsets of [0, 1] by

E =
{ ∞∑

i=1

xi

2i
: xi ∈ {0, 1} and xi = 0 if mk + 1 � i � mk+1 for some even k

}
and

F =
{ ∞∑

i=1

xi

2i
: xi ∈ {0, 1} and xi = 0 if mk + 1 � i � mk+1 for some odd k

}
.

Show that

(a) dim E = dimM E = 0 and dim F = dimM F = 0,

(b) dimP E = dimM E = 1 and dimP F = dimM F = 1,

(c) dim(E × F ) � 1.

Exercise 10.4. Show that, almost surely,

(a) dimP Range[0, 1] = 2, for Brownian motion in d � 2,

(b) dimP Graph[0, 1] = 3
2 , for Brownian motion in d = 1,

(c) dimP Zeros = 1
2 , for Brownian motion in d = 1.

Exercise 10.5. Show that, for every a ∈ [0, 1], we have almost surely,

dimP

{
t ∈ [0, 1] : lim sup

h↓0

|B(t + h) − B(t)|√
2h log(1/h)

� a
}

= 1.

Hint. This can be done directly, but it can also be derived from more general ideas, as
formulated for example in Exercise 10.9.

Exercise 10.6. Show that

lim inf
h↓0

sup
t∈E

|B(t + h) − B(t)|√
2h log(1/h)

=
√

dimM (E).

Exercise 10.7. S Use Theorem 10.43 to prove once more that the zero set of linear Brow-
nian motion has Hausdorff dimension 1

2 almost surely.

Exercise 10.8. Show that, if

lim sup
n↑∞

log pn

n log 2
� − γ, for some γ > 0,

then, for any compact E ⊂ [0, 1] with dimP (E) < γ, we have

P
{
A ∩ E �= ∅

}
= 0.

Note that no independence assumption is needed for this statement.
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Exercise 10.9. S

(a) Suppose A is a discrete limsup fractal associated to random variables {Z(I) : I ∈
Ck , k � 1} satisfying the conditions of Theorem 10.28. Then, if dimP (E) > γ,
we have almost surely, dimP (A ∩ E) = dimP (E).

(b) Show that, if dimP (E) > a2 , then almost surely

dimP (F (a) ∩ E) = dimP (E),

where F (a) is the set of a-fast times.

Exercise 10.10. S Give a proof of Lemma 10.40 (a) based on Theorem 7.25.

Exercise 10.11. Suppose K ⊂ R2 is a compact set and x ∈ R2 \ K a point outside the
set. Imagine K as a solid body, and x as the position of an observer. This observer can
only see a part of the body, which can be formally described as

K(x) =
{
y ∈ K : [x, y] ∩ K = {y}

}
,

where [x, y] denotes the compact line segment connecting x and y. It is natural to ask for
the Hausdorff dimension of the visible part of a set K. Assuming that dim K � 1, an
unresolved conjecture in geometric measure theory claims that, for Lebesgue-almost every
x �∈ K, the Hausdorff dimension of K(x) is one.
Show that this conjecture holds for the path of planar Brownian motion, K = B[0, 1], in
other words, almost surely, for Lebesgue-almost every x ∈ R2 , the Hausdorff dimension
of the visible part B[0, 1](x) is one.

Exercise 10.12. Let {B(t) : t � 0} be a planar Brownian motion and α ∈ [π, 2π). Show
that, almost surely, no double points are α-cone points.

Exercise 10.13. S Let {B(t) : t � 0} be a planar Brownian motion and α ∈ (0, π]. A point
x = B(t), 0 < t < 1, is a one-sided α-cone point if there exists ξ ∈ [0, 2π) such that

B(0, t) ⊂ x + W [α, ξ] .

(a) Show that for α � π
2 , almost surely, there are no one-sided α-cone points.

(b) Show that for α ∈ (π
2 , π], almost surely, the set of one-sided α-cone points has

Hausdorff dimension 2 − π
α .

Notes and comments

The paper [OT74] by Orey and Taylor is a seminal work in the study of dimension spectra
for exceptional points of Brownian motion. It contains a proof of Theorem 10.3 using the
mass distribution principle and direct construction of the Frostman measure. This approach
can be extended to other limsup fractals, but this method requires quite strong indepen-
dence assumptions which make this method difficult in many more general situations. In
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[OT74] the question how often on a Brownian path the law of the iterated logarithm fails
is also answered in the sense that, for θ > 1, almost surely, the set{

t > 0: lim sup
h↓0

B (t+h)−B (t)√
2h log log(1/h)

� θ
}

has zero or infinite Hausdorff measure for the gauge function φ(r) = r log(1/r)γ depend-
ing whether γ < θ2 − 1 or γ > θ2 − 1. Finer results do not seem to be known at the
moment.

Our proof of Theorem 10.3 is based on estimates of energy integrals. This method was
used by Hu and Taylor [HT97] and Shieh and Taylor [ST99], and our exposition follows
Dembo et al. [DPRZ00a] closely. In the latter paper an interesting class of exceptional
times for the Brownian motion is treated, the thick times of Brownian motion in dimen-
sion d � 3. For any time t ∈ (0, 1) we let U(t, ε) = L{s ∈ (0, 1) : |B(s) − B(t)| � ε}
the set of times where the Brownian is up to ε near to its position at time t. It is shown that,
for all 0 � a � 16

π 2 , almost surely,

dim
{
t ∈ [0, 1] : lim sup

ε↓0

U (t,ε)
ε2 log(1/ε) � a

}
= 1 − a π 2

16 .

This paper should be very accessible to anyone who followed the arguments of Sec-
tion 10.1. The method of Dembo et al. [DPRZ00a] can be extended to limsup fractals
with somewhat weaker independence properties and also extends to the study of dimen-
sion spectra with strict equality.

A third way to prove Theorem 10.3 is the method of stochastic codimension explored
in Section 10.10.2. An early reference for this method is Taylor [Ta66] who suggested
to use the range of stable processes as test sets, and made use of the potential theory of
stable processes to obtain lower bounds for Hausdorff dimension. This class of test sets is
not big enough for all problems: the Hausdorff dimension of a stable process is bounded
from above by its index, hence cannot exceed 2, and therefore these test sets can only
test dimensions in the range [d − 2, d]. A possible remedy is to pass to multiparameter
processes, see the recent book of Khoshnevisan [Kh02] for a survey. Later, initiated by
seminal papers of Hawkes [Ha81] and R. Lyons [Ly90], it was discovered that percolation
limit sets are a very suitable class of test functions, see Khoshnevisan et al. [KPX00]. Our
exposition closely follows the latter reference.

The result about the thick times of Brownian motion stated above can be interpreted
as a multifractal analysis of the occupation measure. Such an analysis can also be per-
formed in two dimensions, but the result and techniques are entirely different, see Dembo et
al. [DPRZ01]. Times at which U(t, ε) is exceptionally small for infinitely many scales ε >

0, the thin times, are investigated in Dembo et al. [DPRZ00b]. Other measures associated
with Brownian paths that have been studied from a multifractal point of view are the local
times, see Hu and Taylor [HT97] and Shieh and Taylor [ST99], and the intersection local
times of several Brownian paths, see [KM02] and [KM05].
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Kaufman [Ka75] showed that every compact set E ⊂ [0, 1] with dim(E) > a2 al-
most surely contains an a-fast time, but the more precise result involving the packing
dimension is due to Khoshnevisan et al. [KPX00]. The concept of packing dimension
was introduced surprisingly late by Tricot in [Tr82] and in [TT85] it was investigated to-
gether with the packing measure and applied to the Brownian path by Taylor and Tricot.
Lemma 10.18(i) is from [Tr82], Lemma 10.18(ii) for trees can be found in [BP94], see
Proposition 4.2(b), the general version given is in Falconer and Howroyd [FH96] and in
Mattila and Mauldin [MM97].

Several people contributed to the investigation of slow points, for example Dvoretzky
[Dv63], Kahane [Ka76], Davis [Da83], Greenwood and Perkins [GP83] and Perkins [Pe83].
There are a number of variants, for example one can allow h < 0 in (10.11) or omit the
modulus signs. The Hausdorff dimension of a-slow points is discussed in [Pe83], this class
of exceptional sets is not tractable with the limsup-method: note that an exceptional be-
haviour is required at all small scales. The crucial ingredient, the finiteness criterion for
moments of the stopping times T (r, a) is due to Shepp [Sh67].

Cone points were discussed by Evans in [Ev85], an alternative discussion can be found
in Lawler’s survey paper [La99]. Our argument essentially follows the latter paper. The
correlation condition in Theorem 10.43 appears in the strongly related context of quasi-
Bernoulli percolation on trees, see Lyons [Ly92]. An alternative notion of global cone
points requires that the entire path of the Brownian motion {B(t) : t � 0} stays inside the
cone with tip in the cone point. The same dimension formula holds for this concept. The
upper bound follows of course from our consideration of local cone points, and our proof
gives the lower bound with positive probability. The difficult part is to show that the lower
bound holds with probability one. A solution to this problem is contained in Burdzy and
San Martín [BSM89], and this technique has also been successfully used in the study of
the outer boundary, or frontier, of Brownian motion, see Lawler [La96b] and Bishop et
al. [BJPP97].

A discussion of the smoothness of the boundary of the convex hull can be found in
Cranston, Hsu and March [CHM89], but our Theorem 10.48 is older. The result was stated
by Lévy [Le48] and was probably first proved by Adelman in 1982, though this does not
seem to be published.

It is conjectured in geometric measure theory that for any set of Hausdorff dimension
dim K � 1, for Lebesgue-almost every x �∈ K, the Hausdorff dimension of the visible part
K(x) is one. For upper bounds on the dimension and the state of the art on this conjecture,
see O’Neil [ON07]. It is natural to compare this to Makarov’s theorem on the support of
harmonic measure: if the rays of light were following Brownian paths rather than straight
lines, the conjecture would hold by Makarov’s theorem, see [Ma85].
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Stochastic Loewner evolution and planar Brownian
motion

by Oded Schramm and Wendelin Werner

Appendix A: Further developments

This chapter presents an overview over some aspects of the recent development of the
stochastic Loewner evolution from the point of view of Brownian motion. Stochastic
Loewner evolution allows to address a variety of important questions on the geometry
of planar Brownian motion that cannot be answered otherwise. This chapter is intended
as an invitation to further study, and therefore does not intend to provide the same level of
detail as the chapters in the main body of the book.

11.1 Some subsets of planar Brownian paths

11.1.1 The questions

The conformal invariance of planar Brownian motion and the powerful tools of one-di-
mensional complex analysis open the way to a deep understanding of some aspects of the
geometry of the Brownian curve. For the sake of concreteness, let us begin by presenting
a couple of motivating questions.

Question 11.1 (Intersection exponent) Let {Z1(t) : t � 0} and {Z2(t) : t � 0} be two
independent planar Brownian motions started at distinct points. What is the asymptotic
decay rate as t → ∞ of P{Z1 [0, t] ∩ Z2 [0, t] = ∅}?

Fig. 11.1. Non-intersecting Brownian motions

327
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Let us insist on the fact that we are looking at the probability that (simultaneously) for all
t1 , t2 � t we have Z1(t1) �= Z2(t2), and that this is quite different from questions about
the process {Z1(t) − Z2(t) : t � 0}.

Clearly, recurrence of planar Brownian motion implies that this probability goes to 0 as
t → ∞. In fact, one can easily deduce from a subadditivity argument that the answer to
the question is t−ξ+o(1) for some positive constant ξ, and the problem is really about the
identification of ξ. The exponent ξ is often called the intersection exponent of planar
Brownian motion. As we will later discuss, knowing its value is instrumental in studying
the set of cut points in the Brownian path Z[0, 1], i.e. the set of points x ∈ R2 such that
Z[0, 1] \ {x} is disconnected:

Question 11.2 (Cut points) Are there cut points on a planar Brownian path? If so, what
is the Hausdorff dimension of the set of cut points?

Another interesting subset of the planar Brownian path Z[0, t] is its outer boundary, de-
fined as the boundary of the unbounded connected component of R2 \ Z[0, t]; see Fig-
ure 11.2.

Fig. 11.2. A Brownian path and its outer boundary.

Question 11.3 (Outer boundary) What is the Hausdorff dimension of the outer boundary
of the Brownian path?

Chris Burdzy showed that cut points do indeed exist on planar Brownian paths [Bu89,
Bu95], but direct attempts to compute these dimensions (and exponents) through the study
of Brownian motion have not been successful (some estimates have however been obtained,
see the historical notes at the end of this chapter). But, as we shall now try to explain, the
study of SLE (Stochastic Loewner Evolution) paths does allow to determine these values.
The goal of this chapter is to explain the main steps (with partial proofs only) that lead
to these answers. We will focus mainly on the intersection exponent ξ and the related
question about cut points. A more complete and detailed presentation of the results and
their proofs can be found in the original papers [LSW01a, LSW01b, LSW03], and are also
discussed in [We04, La05, La09].
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11.1.2 Reformulation in terms of Brownian hulls

We recall from Theorem 7.20 that conformal invariance is nicely expressed for Brownian
paths that are stopped at their exit times from given domains. For example, consider a
planar Brownian motion {Z(t) : t � 0} started from the origin, and stopped at its first exit
time T = TD of a given bounded simply connected domain D that contains the origin.
Consider the conformal mapping Φ = ΦD from D onto the unit disc U = B(0, 1) such
that Φ(0) = 0 and Φ′(0) is a positive real (this map exists and is unique by Riemann’s
mapping theorem, see for instance [Ah78] for basic background in complex analysis).
Then, the law of {Φ(Z(t)) : 0 � t � T} is that of a time-changed Brownian motion
started at the origin and stopped at its first exit time from the unit disc. In other words, if
we forget about the time parametrisation and worry only about the ‘trace’ of the paths (i.e.
the set of points that the Brownian motion has visited), we get an identity in law between
{Φ(Z(t)) : 0 � t � T} and {Z(t) : 0 � t � σ}, where σ = TU is the exit time from the
unit disc.

As we shall see, it is useful to consider the random set K defined as follows: We look at
the trace Z[0, σ] and we fill in its ‘holes’. In other words, we say that K is the complement
of the unbounded connected component of the complement of Z[0, σ] in the plane. We call
K the hull of Z[0, σ].

Let us now explain why the previous two questions can be reformulated in terms of the law
of the hull K.

• Let us first focus on the question about the outer boundary of the Brownian motion.
We can expect that if we can determine the Hausdorff dimension of the outer boundary
of Z[0, σ] and prove that it is almost surely equal to some value d, then the Hausdorff
dimension of the outer boundary of Z[0, 1] will also be equal to d almost surely. But the
boundary of the hull K is exactly the outer boundary of Z[0, σ]. Hence, Question 11.3
reduces to: ‘What is the Hausdorff dimension of the boundary of K?’

• A similar and slightly more involved argument applies to the set of cut points. The goal
is therefore first to determine the Hausdorff dimensions of the set of cut points of K, i.e.
of the set of points p in K such that K \ {p} is disconnected.

• Consider now two independent Brownian paths {Z1(t) : t � 0} and {Z2(t) : t�0}
started at the two points Z1(0) = 0 and Z2(0) = 1 (here 0 and 1 are viewed as ele-
ments of the complex plane). Define for each R > 1, the respective exit times T 1

R and
T 2

R of Z1 and Z2 from the disc B(0, R). It is easy to see that for each ε > 0, the prob-
ability that T 1

R does not belong to [R2−ε , R2+ε ] does decay rapidly as R → ∞. More
precisely, we get that for some positive β and all sufficiently large R,

P
{
T 1

R /∈ [R2−ε , R2+ε ] or T 2
R /∈ [R2−ε , R2+ε ]

}
� e−βRε

.

Indeed, because of scaling, the left hand side is equal to P{σ /∈ [R−ε , Rε ]}, and on the
one hand,

P
{
σ < R−ε

}
� P
{

max
s�R−ε

|Re(Z(s))| � 1/
√

2
}

+ P
{

max
s�R−ε

|Im(Z(s))| � 1/
√

2
}

� 8 P
{
Re(Z(R−ε)) � 1/

√
2
}
,
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while, on the other hand,

P{σ > N} � P
{
|Z(j + 1) − Z(j)| � 2∀j = 0, 1, . . . , N − 1

}
� P
{
|Z(1)| � 2

}N
.

Hence, up to a small error, estimating the probability that

Z1 [0, t] ∩ Z2 [0, t] = ∅

boils down to estimating the probability that

Z1 [0, T 1
R ] ∩ Z2 [0, T 2

R ] = ∅

for R =
√

t when R → ∞. More precisely, if we can show that the second one behaves
like R−2ξ+o(1) as R → ∞, then it will follow that the first one is equivalent to t−ξ+o(1)

as t → ∞.

Let us now define the hulls K1
R and K2

R of Z1 [0, T 1
R ] and Z2 [0, T 2

R ]. We can note
that Z1 [0, T 1

R ] ∩ Z2 [0, T 2
R ] = ∅ if and only if K1

R ∩ K2
R = ∅. Furthermore, conformal

invariance of planar Brownian motion shows readily that the law of K2
R is just the image

of the law of K1
R under the conformal transformation from B(0, R) onto itself that sends

the starting point of Z2 onto the origin. Hence, we have also reformulated Question 11.1
in terms of the law of K.

11.1.3 An alternative characterisation of Brownian hulls

We now explain why conformal invariance makes it possible to give a simple description
of the law of K that does seemingly not involve Brownian motion.

Let U denote the set of simply connected open subsets U ′ of the unit disc U such that
0 ∈ U ′. For any two such U ′ and U ′′ in U , we define U ′ ∧ U ′′ to be the connected
component of U ′ ∩ U ′′ that contains the origin. Clearly, U ′ ∧ U ′′ ∈ U .

For any U ′ ∈ U , we denote by m(U ′) the harmonic measure of ∂U ∩ ∂U ′ in U ′ at the
origin. This is just the probability that a Brownian path started at the origin does exit U ′

via a point on the unit circle. Because U ′ is simply connected, this happens exactly if the
hull of this Brownian motion stays in U ′ up to the time σ. Hence, if we define K as before
and set K∗ = K \ {Zσ}, we get immediately that

P
{
K∗ ⊂ U ′} = m(U ′). (11.1)

Now suppose that K is the hull of some other continuous random path (ηt , t � τ) stopped
at its first hitting of the unit disc; this second random path is not necessarily a Brownian
motion, but we suppose that it also satisfies

P
{
K∗ ⊂ U ′} = m(U ′), (11.2)

for all U ′ ∈ U , where K∗ = K \ {ητ }.

We can note that the set of events of the type {K : K ⊂ U ′} (for such hulls) when U ′

spans U is stable under finite intersections, and in fact generate the σ-algebra on which
we can define the measure on hulls. Hence, it follows from standard measure-theoretical
arguments that the laws of K and of K are identical. In other words, K (or rather its law)
is the only ‘random hull’ that has the property that for any U ′ ∈ U , (11.1) holds.
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Note that (11.2) can be also expressed in terms of the path η directly. Suppose that for
any U ′, the exit point of U ′ by η is distributed according to harmonic measure from 0
in U ′, then (11.2) follows.

Let us sum up our analysis so far: We have first reformulated our questions in terms of the
random hull K, and we have now given a simple characterisation of the law of K. The
plan will now be the following:

• Construct a random curve η that exits every domain U ′ in U according to harmonic
measure. We have just argued that this implies that the laws of K and K are identical.

• Using the construction of this other random curve η, compute the exponents and dimen-
sions that we are looking for.

It turns out that such a random path η indeed exists, and that it is one of the stochastic
Loewner evolutions, more precisely SLE(6).

11.2 Paths of stochastic Loewner evolution

11.2.1 Heuristic description

Suppose that one wishes to describe a ‘continuously growing’ curve {ηt : t � 0} that is
always ‘growing towards infinity’. More precisely, let us first suppose that {ηt : t � 0} is
a simple random curve starting at the origin.

At each time t > 0, we define the conformal map ψt from R2 \ η[0, t] into the complement
of the unit disc, such that ψt(∞) = ∞ and ψt(ηt) = 1. By Riemann’s mapping theorem,
this map ψt is unique.

Fig. 11.3. The conformal map ψt .

The crucial assumption that we will make is that for each t > 0, the random path

{ψt(ηt+s) : s � 0}

(or rather its trace) is independent of η[0, t], and that its law is independent of t. In other
words, the curve is growing towards infinity from ηt in the set R2 \η[0, t] in a ‘conformally
invariant way’.

This suggests that it is possible to define the curve {ηt : t � 0} progressively, by iterating
independent identically distributed pieces. Suppose for instance that we have already de-
fined η[0, 1] and that we wish to define what happens after time 1. The curve ψ1(η[1, u])
is independent of η[0, 1]. It is a piece of curve in R2 \ U that starts at ψ1(η1) = 1. The
conformal map ψu ◦ψ−1

1 maps R2 \(U∪ψ1(η[1, u])) onto R2 \U. It therefore characterises
the set η[1, u] and it is characterised by it. Hence, it is independent from η[0, 1].
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It follows that for u1 < u2 < . . . < un , the conformal maps

ψun ◦ ψ−1
un −1

, . . . , ψu2 ◦ ψ−1
u1

are independent. Furthermore, if we choose the time-parametrisation correctly, then they
will be identically distributed. This leads to the idea that ψt are obtained via iterations of
i.i.d. random conformal maps.

11.2.2 Loewner’s equation

Suppose now that {ηt : t � 0} is a given continuous simple curve (with no double points)
in the plane starting at the origin such that limt→∞ ηt = ∞. We define as in the previous
paragraph the conformal map ψt from R2 \ η[0, t] onto R2 \ U such that ψt(∞) = ∞ and
ψt(ηt) = 1. Recall that z �→ 1/ψt(1/z) extends analytically to the origin (one can for
instance first define this analytic map via Riemann’s mapping theorem and then define ψt),
so that ψt can be expanded as a power series in the neighbourhood of infinity. In particular,

ψt(z) ∼ a(t)z

when z → ∞ for some a(t). It is not difficult to see that t �→ a(t) is a continuous function,
and that t �→ |a(t)| is decreasing (because the set R2 \ η[0, t] is decreasing). Furthermore,
simple estimates imply that limt→0 |a(t)| = ∞ and limt→∞ |a(t)| = 0.

It is therefore possible (and natural) to reparametrise the curve {ηt : t � 0} in such a way
that the parameter t now lives in R, that limt→−∞ ηt = 0 and that |a(t)| = exp(−t).
We then define the conformal map ft from R2 \ η[−∞, t] onto R2 \ U, but this time, we
normalise it in such a way that ft(z) ∼ e−tz as z → ∞. In other words, ft is just obtained
from ψt by a rotation, and the image of ηt under ft is now wt := |a(t)|/a(t).

Theorem 11.4 (Loewner’s equation) In the previous setup, for all t � 0, one has

∂

∂t
ft(z) = −ft(z)

ft(z) + wt

ft(z) − wt
. (11.3)

Loewner’s equation has been introduced in the context of Bieberbach’s conjecture for har-
monic functions, see for instance [Du83] for a derivation of this equation.

Let us give a brief indication of where this ordinary differential equation comes from.
Recall first that the Poisson representation theorem shows that the only harmonic function
in the unit disc such that G(0) = 1 and G(z) → 0 on ∂U \ {1} is the function z �→
Re((1 + z)/(1 − z)).

A first step is to prove directly (using harmonic measure estimates) that the map t �→ wt

is continuous. Then, one notes that (for instance because of scaling) it suffices to consider
the case where t = 1. When s > 1, the function fs ◦f−1

1 is analytic from R2 \ (U∪η[1, s])
onto R2 \ U (where we view these sets as subsets of the Riemann sphere). If we define

hs(z) = − log
(
fs ◦ f−1

1 (z)/z
)
,

we get a bounded analytic function on R2 \ (U ∪ η[1, s]). The boundary values of Re(hs)
are zero on ∂U and log |z| on f1(η(1, s]), and moreover, hs(∞) = s− 1. Hence it follows
(for instance from the maximum principle) that Re(hs) is nonnegative on R2 \(U\η[1, s]).
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Consider the limit lims↓1 hs/(s − 1). Existence of this limit can be justified as follows:
First, standard compactness properties of analytic functions imply that subsequential limits
exist. Let h : R2 \ U → R denote one such subsequential limit. Clearly, h(∞) = 1
and Re(h) � 0. It is then not too hard to verify that Re(h) is continuous up to the
boundary except near w1 = f1(η1) and that Re(h) = 0 on ∂U \ {w1}. Hence, the Poisson
representation theorem (applied to z �→ h(w1/z)) implies that

Re
(
h(z)
)

= −Re

(
z + w1

z − w1

)
,

and since Im(h(∞)) = 0, we conclude that

h(z) = −z + w1

z − w1
.

As this limit does not depend on the choice of subsequence, it follows that as s ↓ 1,

fs ◦ f−1
1 (z)
z

− 1 ∼ log
(

fs ◦ f−1
1 (z)
z

)
∼ (s − 1) × w1 + z

w1 − z
,

which implies that

∂+
s

∣∣
s=1fs(z) = f1(z) × w1 + f1(z)

w1 − f1(z)
,

where ∂+
s denotes the one sided derivative from the right.

The reader can now probably already guess how to define SLEs: Just choose wt to be a
Brownian motion on the unit circle. The conformal maps ft are then defined via (11.3),
and the SLE curve can then be deduced from it.

11.2.3 The loop-erased random walk

Even if it is not really necessary in order to define stochastic Loewner evolutions and
to study consequences of their study to Brownian paths, we believe that it is useful at
this point to explain some background and motivation using discrete models. In the next
subsections, we will therefore describe two particular lattice models and their relation to
SLE paths. In those settings it can be more useful to consider random curves that grow
‘towards the inside’ of domains. This is of course almost identical to the previous case
(just use the z �→ 1/z transformation to transform outside into inside i.e. look for instance
at the conformal map gt(z) = 1/ft(1/z) instead of ft).

One such discrete example is the loop-erased random walk. In fact, this model is the one
for which the SLE model was first introduced, see [Sc00]. If G is a recurrent connected
graph containing a vertex v and a nonempty set of vertices A, then the loop-erased random
walk from v to A is the random path obtained from the simple random walk started at v

and stopped when hitting A by erasing the loops as they are created.

Let us now give a more precise definition. First, define the simple random walk S on
the graph G, which we assume to have more than one vertex. Let S(0) = v and for each
positive integer n, let the conditional distribution of S(n) given (S(0), S(1), . . . , S(n−1))
be uniform among the neighbours of S(n − 1). Let T := inf{n ∈ N : S(n) ∈ A}. Since
G is recurrent, we know that T is almost surely finite.
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We now define the loop-erasure (β(0), β(1), . . . , β(τ)) of S[0, T ] by induction: We set
β(0) = v and then for each k > 1, if β(k − 1) = S(T ), we set τ = k − 1 and finish the
procedure, whereas if β(k − 1) �= S(T ), we set

m = max{j < T : S(j) = β(k − 1)} and β(k) = S(m + 1).

An important property of the loop-erased random walk is given by the following lemma.

Lemma 11.5 Let G be a recurrent connected graph, v a vertex in G, and A a nonempty set
of vertices in G. The conditional law of (β(0), . . . , β(τ − j)) given β(τ) = x0 , . . . , β(τ −
j) = xj is that of the loop-erasure of a random walk S′ started at v, stopped at it first
hitting time T ′ of A′ = A∪{x0 , . . . , xk} and conditioned to first hit this set at S′(T ′) = xk .

This lemma can be interpreted as some sort of Markov property of the time-reversal of β.

Fig. 11.4. A loop-erased random walk

Consider a simply connected domain D in the plane R2 = C, with D �= C. Suppose that
0 ∈ D. Take δ > 0 small, and consider the square lattice δ Z2 of mesh δ. We are interested
in the loop-erasure β of the random walk on δ Z2 started at 0 and stopped when it first
uses an edge intersecting ∂D. More specifically, we are interested in the scaling limit of
β, which is the limit of the law of β as δ ↓ 0. (For the sake of brevity, we will not specify
the precise topology in which the limit is taken. This discussion is meant as a motivation,
and hence we allow ourselves not to be completely rigorous.) Let µD denote the limit law.
Figure 11.4 shows a sample of the loop-erasure of simple random walk on δ Z2 started at 0
and stopped on exiting the unit disk U.

In order to use Lemma 11.5, it turns out to be better to parametrise time ‘backwards’, i.e. to
define γ(0) to be the ‘end-point’ on ∂D, and γ(∞) = 0 (we will discuss the precise time-
parametrisation later). Suppose that γ : [0,∞] → D is a sample from µD . Since Brownian
motion is conformally invariant up to a time change and it is the limit of simple random
walk, it is somewhat reasonable to expect that γ is also conformally invariant, i.e., that if
G : D → U is a conformal homeomorphism from D to the unit disk, then µD = µU ◦G (in
fact, this result has now been proved using SLE, see [LSW04].) Moreover, Lemma 11.5
suggests that if t < ∞ is fixed, then the conditional law of γ[t,∞] given γ[0, t] is µD\γ [0,t]
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where the path is conditioned to exit this domain through γ(t). Now, the latter domain
D \ γ[0, t] is probably geometrically rather complicated, because γ is a fractal curve. But
we may simplify this domain using a conformal map.

Fig. 11.5. The conformal map gt

Let us now consider the special case where D = U. Note that γ(0) is then distributed
uniformly on the unit circle. Let gt : U\γ[0, t] → U denote the conformal homeomorphism
normalised such that gt(0) = 0 and g′t(0) is real and positive. It can be shown that g′t(0)
is continuous and increasing in t and that limt→∞ g′t(0) = ∞. Consequently, we may,
and will, choose the time parameter t so that g′t(0) = et . This is sometimes called the
parametrisation by capacity.

Loewner’s theorem allows to reconstruct γ from the function W : t �→ gt(γ(t)). In the
present setting, γ defined on [0,∞] is a simple path in U ∪ {γ(0)} satisfying γ(0) ∈ ∂U
and γ(∞) = 0, and which is parametrised by capacity in D. (The assumptions that γ is a
simple path and that ∂D is a simple closed path may be relaxed, but it is best at this point
to keep the setting simple.)
Applying Theorem 11.4 to the functions z �→ 1/gt(1/z), we get that the conformal home-
omorphisms gt satisfy the differential equation

∂

∂t
gt(z) = −gt(z)

gt(z) + Wt

gt(z) − Wt
(11.4)

at every pair of points (z, t) such that t � 0 and z ∈ U \ γ[0, t]. If z ∈ U is fixed, then
Loewner’s equation (11.4) is an ordinary differential equation for gt(z) with respect to the
variable t (as long as z /∈ γ[0, t]). Loewner’s equation can also be considered an ordinary
differential equation for gt in the space of conformal maps with image in U, but variable
domain.
Just as before, the knowledge of the function t �→ Wt allows to reconstruct the curve γ.
The Markovian-like condition of loop-erased random walk leads to the idea that the process
t → Wt has stationary and independent increments. Recall also that it is continuous and
that the law of Brownian motion is symmetric (i.e. this implies that W has no bias). All
this suggests that {Wt : t � 0} must be a Brownian motion on the unit circle.
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11.2.4 Definition of SLE

Now suppose that instead of starting with a curve γ, we start with a one dimensional
continuous path W : [0,∞) → ∂U. If z ∈ U \ {W0} is fixed, then we may consider
the solution gt(z) of the ordinary differential equation (11.4) started at g0(z) = z. There
exists a unique solution to this initial value problem as long as gt(z)−Wt is bounded away
from zero. Thus, there is some τz ∈ (0,∞] such that the solution gt(z) is defined for all
t ∈ (0, τz ) and if τz < ∞, then lim inf t↑τz |gt(z) − Wt | = 0. (In fact, it is easy to see that
the lim inf may be replaced by a lim.) Set Kt := {z ∈ U : τz � t} (we take τW 0 = 0).
It is immediate to verify that gt : U \ Kt → U is a conformal homeomorphism satisfying
gt(0) = 0 and g′t(0) = et . The one parameter family of maps gt is called the Loewner
evolution driven by Wt . The set Kt is often called the hull of the Loewner evolution at
time t. At this point we should point out that the set Kt constructed in this way does not
have to be a simple path. This brings us to the definition of SLE:

Definition 11.6. Fix some κ � 0, and set Wt = exp(iB(κt)), where {B(t) : t � 0} is
Brownian motion. Then the Loewner evolution driven by Wt is called radial stochastic
Loewner evolution with parameter κ in U, or just radial SLE(κ), from W0 to 0. �

To define radial SLE in another simply-connected domain D � C, we may start with a
conformal homeomorphism G : D → U, and solve (11.4) with g0 = G. Set KD

t := {z ∈
D : gt(z) is undefined}. Of course, the resulting process KD

· will depend on G. The point
G−1(0) is referred to as the target of the SLE.

If G1 and G2 are two conformal homeomorphisms from D to U such that G−1
1 (0) =

G−1
2 (0), then G2 = λG1 for some λ ∈ ∂U. Since the law of Wt is invariant under

rotations, it follows that the law of the evolution g· starting at G2 is obtained from the law of
the evolution starting at G1 by appropriately rotating the maps gt by λ. Consequently, the
law of KD

· is the same for G1 as for G2 . This is also the same as the law of G−1
1 (K· ∩U),

where Kt are the hulls of radial SLE in U.

Our argument based on the assumptions of conformal invariance and the analogue of
Lemma 11.5 for the loop-erased walk scaling limit γ shows that for some choice of the
constant κ, the law of the process KD

· is the same as the law of γ(0, ·) (where the starting
point of the SLE is started uniformly on the unit circle). It turns out that the correct κ for
loop-erased random walk is 2. This is explained in [Sc00, LSW04].

11.2.5 Critical percolation and SLE(6)

It will turn out that SLE(6) is a useful SLE in order to study planar Brownian motion. To
better understand why this is the case, we first turn to a model of percolation in the plane.
Let D be some simply connected domain in the plane whose boundary is a simple closed
curve. Fix two points a, b ∈ ∂D, and let A denote the counterclockwise arc from a to
b along D (not including a and b). Fix some small δ > 0, and let Hδ denote the planar
hexagonal grid of hexagons with edge length δ as in Figure 11.6. If H is a connected com-
ponent of the intersection of D with a hexagon in Hδ , we colour H white if its boundary
meets A, and colour H black if its boundary meets ∂D but does not meet A. If H is a
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hexagon of Hδ that lies entirely inside D, we colour H white or black with probability
1/2, independently. Let W denote the closure of the union of the white coloured tiles in D

and let B denote the closure of the union of the black coloured tiles. We assume that δ is
sufficiently small so that B ∩ ∂D �= ∅. It is then easy to see that there is a unique path γ,
which is the connected component of ∂B ∩ ∂W that meets ∂D. (See Figure 11.6.)

Fig. 11.6. The percolation interface

Smirnov [Sm01, Sm07] has shown that the limit as δ → 0 of the law of this interface γ

exists, and is conformally invariant, in the following sense. If D′ ⊂ C is a simply con-
nected domain whose boundary is a simple closed curve and G : D → D′ is a conformal
homeomorphism, then the image of the limit law in D is the limit law in D′, provided that
in D′ we take the points a′ := G(a) and b′ := G(b) as the two special boundary points.
(It is known that G extends to a homeomorphism from ∂D to ∂D′.) We have chosen to
discuss domains whose boundary is a simple closed curve for the sake of simplicity, but
this is by no means necessary.

Next, we consider the analogue of Lemma 11.5 in this setting. If we condition on the first
k steps of the discrete curve γ from its (deterministic) endpoint near a, the conditioning
involves only the colours of those tiles which meet this initial segment β. Moreover, on
the right hand side of β we find white tiles while on the left hand side we find black tiles.
Consequently, conditioned on β, the law of γ \ β is just the law of the interface in the
domain D \ β, where the special points are chosen as the terminal point of β and b. (If
we are to be entirely precise, we should replace the domain D \ β with D \ β̂, where β̂ is
an appropriate small neighbourhood of β \ {a small piece of its last segment}, so that the
resulting domain is a simple closed path that does not intersect a hexagon whose colour
has not been determined.) This is indeed analogous to Lemma 11.5.

Since we have conformal invariance for the scaling limit of the percolation interface and
the analogue of Lemma 11.5, we would expect the scaling limit of the interface to be given
by an SLE curve. However, the setting is different, since the percolation interface connects
two boundary points of the domain (which are fixed), while the loop-erased random walk
connects a fixed interior point with a random boundary point. Indeed, the percolation
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interface scaling is described not by a radial SLE, but by a different version of SLE called
chordal SLE.

In the chordal setting, the base domain is normally chosen to be the upper half plane H. We
let Wt := B(κt), where {B(t) : t � 0} is a standard one dimensional Brownian motion,
and let gt(z) denote the solution of the differential equation

∂

∂t
gt(z) =

2
gt(z) − Wt

(11.5)

with g0(z) = z. Then gt : H \ Kt → H is a conformal homeomorphism, where Kt :=
{z ∈ H : τz � t} and τz := inf{t > 0 : gt(z) is undefined}. This defines the chordal SLE
from 0 to infinity in H.

Fig. 11.7. Beginning of the percolation interface in the upper half-plane

Chordal SLEs are often more natural than radial SLEs in the context of models from sta-
tistical physics, and both variants are very closely related to each other. In particular, see
[LSW01b], if one looks at the beginning of a radial SLE in the unit disc, and the image
of the beginning of a chordal SLE under the conformal map from the unit disc on the up-
per half-plane that sends the points 0 and i onto 1 and 0, for the same parameter κ, then
the two laws are absolutely continuous with respect to each other (the fractal dimensions
of the curves are therefore the same). In view of applications to Brownian motion (and
more precisely to those questions that we raised at the beginning of this appendix), we can
however mostly restrict ourselves to the study of radial SLE.

It turns out that the value κ = 6 is the one that corresponds to the scaling limit of perco-
lation interfaces [Sm01] (as conjectured in [Sc00]). At this point, it is worth stressing the
following subtle point. In our discussion, we have described the construction of SLE as if
it would anyway define a simple curve. This is indeed the fact when κ � 4, see [RS05].
But, in the case of the scaling limit of percolation, one expects the scaling limit of the
discrete interfaces to have double points. Indeed, on whatever scale, the discrete interface
will ‘bounce’ on its remote past, and this will produce (in the limit when the mesh of the
lattice goes to zero) double points. Hence, one has to change the construction of the SLE
as follows (we describe it in the radial case – the chordal case is treated in a similar way):
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• Start with the Brownian motion {Wt : t � 0} on the unit circle.
• For each z in the unit disc, solve the ordinary differential equation (11.4) up to the

(random and possibly infinite) time τz .
• At each time t, denote Kt = {z ∈ U : τz � t} and Ut = U \ Kt . Then, gt is the

normalised conformal map from Ut onto U.
• Call the increasing family {Kt : t � 0} the SLE Loewner chain.

Then, with some substantial work when κ > 4, it is in fact possible [RS05] to prove that
there exists almost surely a continuous curve {γt : t � 0} such that at each t � 0, the
domain Ut is the connected component containing the origin of U \ γ[0, t] and that this
curve γ is determined by the SLE Loewner chain. We call this curve γ the SLE curve.

In order to discuss the consequences for Brownian motion, it is in fact not necessary to
know that SLE chains are ‘generated’ by curves γ. One can just work with the chain
instead of the path, but it is helpful to have this in mind in order to guide our intuition
about what goes on. In the case κ = 6, the convergence of critical percolation interfaces
to SLE(6), see [Sm07], provides a rather direct alternative proof of the fact that SLE(6)
chains are generated by paths (see also [We07]).

11.3 Special properties of SLE(6)

It is possible to prove directly via stochastic calculus methods [LSW01b, We04, La05] that
the law of the beginning of radial SLE(6) and chordal SLE(6) curves are the same. Here is
a precise statement:

Proposition 11.7 Consider a chordal SLE(6) process γ1 from 1 to −1 in the unit disc U,
and a radial SLE(6) process γ2 from 1 to 0 in U. Define

T l = inf{t > 0 : |γl [0, t] − 1| > 1/2}

for l = 1, 2. Then, the two paths γ1 [0, T 1 ] and γ2 [0, T 2 ] defined modulo time-repara-
metrisation have the same law.

We omit the proof here. The main idea is basically to express the radial Loewner evolution
as a chordal Loewner chain, and to compute how the time-parametrisations and driving
functions are transformed. It turns out that a seemingly miraculous cancellation occurs
when κ is equal to 6, that leads to this result. In fact, it is also possible to derive this relation
between radial SLE(6) and chordal SLE(6) using the relation with critical percolation (see
e.g. [We07]); this provides a transparent justification of this ‘miraculous result’.

It may be useful at this point to have a picture of the radial exploration process for perco-
lation in the discrete setting. We start with a fine-mesh δ approximation of the unit disc.
Our goal is to define a path from the boundary point 1 to the origin. We are going to define
this path dynamically. We start with the same rule as the exploration process from 1 in the
chordal case, except that we do not fix a priori the colours of the sites on the ∂U. Note
that as long as the discrete exploration path does not disconnect the origin from infinity,
there is some arc I of points on ∂U that are connected to the origin without intersecting
the exploration path. We then use the same boundary conditions to define the exploration
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process as if we would do the exploration process from 1 to one of the points in I . Note
that I is non-increasing in time, and the rule that we just described indeed determines the
exploration path up to the first time at which it disconnects the origin from ∂U. In this case,
note that the connected component of the complement of the path that contains the origin is
simply connected, and that it has a boundary point at distance δ of the tip of the exploration
process. We now force the exploration process to move to this point. Then, the exploration
process is at a boundary point of the connected component that contains the origin. Now,
we start again, as if the colours of the boundary of this domain would not have been known,
and we start exploring interfaces in this domain using the same algorithm (replacing 1 by
the end-point of the exploration).

Theorem 11.8 When the mesh of the lattice goes to zero, then the law of the radial discrete
exploration process converges to that of radial SLE(6).

We will really not use this result here, so we will not discuss its detailed proof. We refer to
[We07] for a self-contained proof in the spirit of Smirnov’s paper [Sm07], see also [CN07].

We can also use a similar construction to define the continuous analogue of our ‘discrete’
curve that is growing towards infinity from a given point. The idea is to use exactly the
same definition, except that this time the initial domain is the complement of the disc of
radius r, and the target point is infinity. Then, when the mesh of the lattice goes to 0 and
r → 0, this exploration process converges to a random curve η started at the origin that
possesses the following two properties:

• For any simply connected domain U ′ that contains the origin, the exit point of U ′ by η

is distributed according to harmonic measure from the origin in U ′ (this follows either
from the locality properties of SLE(6), or alternatively, from the conformal invariance
properties of percolation).

• For any t, the conditional law of η[t,∞) given η up to time t, is that of radial SLE(6)
from ηt to infinity in the unbounded connected component of R2 \ η[0, t].

We can therefore conclude (either by using the relation to critical percolation or via direct
derivations of the special properties of SLE(6)) that the dynamics of an ‘outwards growing’
radial SLE(6) provide a way to construct a path η that satisfies our ‘harmonic measure
condition’. It looks indeed as if computations for SLE(6) will provide useful information
for Brownian hulls.

11.4 Exponents of stochastic Loewner evolution

11.4.1 A radial computation

We now briefly browse through the computations that lead to the determination of the
exponents that we are looking for. This section will certainly seem quick to the first-time
reader. The goal is not to give a complete proof, but rather to give a flavour of the type of
stochastic calculus arguments that are used in this derivation.
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Define, for z = exp(ix) on the unit circle, the event H(x, t) that one radial SLE(6) (in the
usual parametrisation) started from 1 did not disconnect the point z from the origin in U
before time t. For reasons that we will explain in a moment, we will focus on the moments
of the derivative of gt at exp(ix) on the event H(x, t). Note already that on a heuristic
level, |g′t(eix)| measures how ‘far’ eix is from the origin in U \ γ[0, t].

More precisely, we define

f(x, t) := E
[
|g′t(exp(ix))| 1H(x,t)

]
.

The main result of this section is the following estimate:

Proposition 11.9 There is a constant c > 0 such that for all t � 1, for all x ∈ (0, 2π),

e−5t/4(sin(x/2)
)1/3 � f(x, t) � ce−5t/4(sin(x/2)

)1/3

Proof. Let Wt = exp(i
√

6B(t)) be the driving process of the radial SLE(6), with B(0) =
0. For all x ∈ (0, 2π), we define Y x

t the continuous function (with respect to t) such that

gt(eix) = Wt exp(iY x
t )

and Y x
0 = x. The function Y x

t is defined as long as H(x, t) holds. Since gt satisfies
Loewner’s differential equation, we get immediately that

d(Y x
t − B(6t)) = cot(Y x

t /2) dt. (11.6)

Let

τx := inf{t � 0 : Y x
t ∈ {0, 2π}}

denote the time at which exp(ix) is absorbed by Kt , so that

P
(
H(x, t)

)
= P{τx > t}.

We therefore want to estimate the probability, weighted by some power of |g′t(exp(eix))|
that the diffusion Y x (started from x) has not hit {0, 2π} before time t as t → ∞. This
turns out to be a rather standard problem that can be treated via the general theory of
diffusion processes: Define, for all t < τx ,

Φx
t := |g′t(exp(ix))| .

On t � τx set Φx
t := 0. Note that on t < τx we have Φx

t = ∂xY x
t and

Y x
t = B(6t) +

∫ t

0
cot(Y x

s /2) ds.

Hence, we have that, for t < τx ,

∂t log Φx
t = − 1

2 sin2(Y x
t /2)

, (11.7)

so that, for t < τx ,

Φx
t = exp

(
−1

2

∫ t

0

ds

sin2(Y x
s /2)

)
. (11.8)
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Hence,

f(x, t) = E
[
1H(x,t) exp

(
−1

2

∫ t

0

ds

sin2(Y x
s /2)

)]
.

Hence, the weighting by Φx
t can be interpreted as a (space-dependent) killing rate for the

process Y , and f(x, t) is just the probability that a given Markov process (the process Y

with the given killing rate and additional killing when it exits (0, 2π)) survives up to time t

when it starts at x. In order to estimate such probabilities, one has to look for the first
eigenfunction of the generator of this process.

It is, for instance, not difficult to see that the right hand side of (11.8) is 0 when t = τx and
that

lim
x→0

f(x, t) = lim
x→2π

f(x, t) = 0 (11.9)

holds for all fixed t > 0. Let F : [0, 2π] → R be a continuous function with F (0) =
F (2π) = 0, which is smooth in (0, 2π), and set

h(x, t) = hF (x, t) := E
[
Φx

t F (Y x
t )
]
.

By (11.8) and the general theory of diffusion Markov processes, we know that h is smooth
in (0, 2π) × R+ . The Markov property for Y x

t and (11.8) show that h(Y x
t , t′ − t) × Φx

t is
a local martingale on t < min{τx, t′}. Hence, the drift term of the stochastic differential
d
(
h(Y x

t , t′ − t)Φx
t

)
is zero at t = 0. By Itô’s formula, this means that

∂th =
6
2

∂2
xh + cot(x/2) ∂xh − 1

2 sin2(x/2)
h . (11.10)

The corresponding positive eigenfunction is
(
sin(x/2)

)1/3
. We therefore define F to be

this function, so that F (x)e−5t/4 = hF because both satisfy (11.10) on (0, 2π) × [0,∞)
and have the same boundary values. The proposition then follows easily.

11.4.2 Consequences

Let us now explain some steps that enable us to transform the previous considerations and
computations into an actual proof of the fact that ξ = 5/8. Consider a radial SLE(6)
path in the unit disc, parametrised by capacity. Define, for each r < 1, its hitting time
τr of the disc B(0, r) of radius r around the origin. A standard result from complex anal-
ysis, Koebe’s 1/4 theorem, shows that the path can not reach distance r from the origin
before time (log(1/r))/4 and that it has to do so before time log(1/r). In other words,
log(1/r) � 4τr � 4 log(1/r). Furthermore, the map t �→ |g′t(eix)| is decreasing with t

(this can for instance be seen from its expression as a killing probability). The previous
estimate can therefore be transformed into an estimate of

E
[∣∣g′τr

(exp(ix))
∣∣ 1H(x,τr )

]
as r → 0.

We can also integrate this quantity when x spans [0, 2π]. In fact, the integral expression∫ 2π

0 |g′τr
(exp(ix))|1H(x,τr ) dx is the harmonic measure (from the origin) of ∂U in the do-

main U \ γ[0, τr ]. In other words, if we start a planar Brownian motion Z from the origin,
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and stop it at the first time σ at which it hits the unit circle, we get that, for some absolute
constants c1 , c2 , . . .,

c1 r5/4 � P
{
Z[0, σ] ∩ γ[0, τr ] = ∅

}
� c2 r5/4 .

Modulo some additional arguments, this can be reformulated also in terms of a planar
Brownian motion Y started uniformly on the unit circle and stopped at its first hitting
time ρr of the circle of radius r (roughly speaking, we time-reverse Z):

c3r
5/4 � P

{
Y [0, ρr ] ∩ γ[0, τr ] = ∅

}
� c4r

5/4 .

We can then use the transformation z �→ 1/z to be back in our original setting. This last
result (after a couple more uses of monotonicity and of Koebe’s 1/4 Theorem) can then
be reformulated in this setting, and it shows that if η is our curve that is growing ‘from
the origin to infinity’ in the plane, and if Z is a Brownian motion started uniformly on the
circle of radius r,

c5r
5/4 � P

{
Z[0, σ] ∩ η[0, τ ] = ∅

}
� c6 r5/4 .

Hence, we indeed get a precise answer to Question 11.1 with ξ = 5/8 (the factor 2 comes
in because of the scaling relation between time and space).

Arguments of a similar type can be used to prove that if {Z1(t) : 0 � t � τ1} and
{Z2(t) : 0 � t � τ2} are two planar Brownian paths started at the origin and stopped
at their hitting times of the unit circle, then the probability that Z1 [0, τ1 ] ∪ Z2 [0, τ2 ] does
not disconnect the point r from infinity, does decay like r2/3+o(1) as r → 0. This expo-
nent α = 2/3 comes in fact from a similar radial SLE computation. This time, one has to
consider the moment of order 1/3 of |gt(eix)| as t → ∞ (we do however not explain here
why this 1/3 moment comes in, this has in fact to do with a chordal SLE computation, the
interested reader might consult [LSW01a, LSW01b, We04, La05]).

11.4.3 From exponents to dimensions

In papers [La96a, La96b] (before the mathematical determination of the values of the expo-
nents in [LSW01a, LSW01b]), Greg Lawler showed how to derive and use moment bounds
in order to express the Hausdorff dimension of special random subsets of the planar Brow-
nian curve in terms of the corresponding exponents.

More precisely, let {Z(t) : t � 0} denote a planar Brownian motion. Recall that p = Z(t)
is a cut point if Z[0, t] ∩ Z(t, 1] = ∅. Note that, loosely speaking, near p, there are
two independent Brownian paths starting at p: The future {Z1(s) : s ∈ [0, 1 − t]}, given
by Z1(s) = Z(t + s), and the past {Z1(s) : s ∈ [0, t]}, given by Z2(s) = Z(t − s).
Furthermore, p is a cut point if Z1 [0, 1 − t] ∩ Z2 [0, t] = {p}. Similarly, p = Z(t) is a
boundary point if Z1 [0, 1 − t] ∪ Z2 [0, t] does not disconnect p from infinity.
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Hence, the previous estimates enable us to control the probability that a given point x ∈ C
is in the ε-neighbourhood of a cut point (resp. boundary point). Independence properties
of planar Brownian paths then make it also possible to derive second moment estimates
(i.e. the probability that two given points x and x′ are both in the ε-neighbourhood of such
points) and to show that the Hausdorff dimension of the set of cut times is almost surely
1−ξ, and that the Hausdorff dimension of the set of boundary points is almost surely equal
to 1 − α/2.

The proofs use (just as in the case of cone points described in Section 10.4, see in particular
Theorem 10.43) first and second moment estimates. In fact, if one uses the relation with
critical percolation, it turns out that life can be somewhat simplified in the derivation of the
second moment estimates (see for instance [Be04]).

Recall that on the other hand, we know from SLE calculations that 2 − 2ξ = 3/4, 2 −
α = 4/3. In view of Kaufman’s dimension doubling theorem, see Theorem 9.28, we can
therefore answer our three initial questions:

Theorem 11.10

(1) The exponent ξ is equal to 5/8.
(2) The Hausdorff dimension of the set of cut points is almost surely equal to 3/4.
(3) The Hausdorff dimension of the outer boundary is almost surely equal to 4/3.

Notes and comments

The idea to use Loewner’s equation to study random growth models probably first ap-
peared in the works of Carleson and Makarov in the context of diffusion limited aggrega-
tion (DLA), see [CM01, CM02].

Conformal invariance of lattice models has now been established in various cases.
Aizenman [Ai96] was probably the first one to emphasise that the conformal invariance
conjectures that were present in various forms in the physics literature could be expressed
in terms of conformally invariant laws on curves. Kenyon used determinant computations
and estimates in order to prove several conformal invariance properties of the loop-erased
random walk (and its companion model called the uniform spanning tree), see [Ke00a,
Ke00b]. Later [LSW04] showed stronger conformal invariance properties and the conver-
gence of the loop-erased random walk to SLE(2) in the fine-mesh limit. Smirnov [Sm01,
Sm07, Sm08] proved conformal invariance for the particular critical percolation model that
we presented here, and also for the Ising model on the square lattice.

The idea that one probably had to compute the value of the Brownian exponents using
another model (that should be closely related to critical percolation scaling limits) appeared
in [LW00]. The mathematical derivation of the value of the exponents was performed in
the series of papers [LSW01a, LSW01b, LSW02]. The properties of SLE that were later
derived in [LSW03] enable us to shorten some parts of some proofs and to derive various
direct identities in law between SLE(6) boundaries and Brownian boundaries, see [We05,
We08a].
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A good reference for the relation between Brownian exponents and Hausdorff dimen-
sions is Lawler’s review paper [La99]. See also Beffara [Be04, Be08]. Determining the
Hausdorff dimensions of the SLE curves is a rather difficult question. It turns out to be
1 + κ/8 when κ � 8. This has been proved by Rohde and Schramm [RS05] for the upper
bound and Beffara [Be08] for the tricky lower bound.

The value of the Brownian intersection exponents had been predicted/conjectured be-
fore: Duplantier–Kwon [DK88] had for instance predicted the values of ξ using numerics
and non-rigorous conformal field theory considerations. Later, Duplantier [Du04] used
also ‘quantum gravity techniques’ to produce the values of all exponents. The fact that
planar Brownian motion contains cut points had first been proved by Burdzy ([Bu89] and
[Bu95]). A different shorter proof was given by Lawler in [La96a].

The fact that the dimension of the Brownian boundary is 4/3 was first observed visually
and conjectured by Mandelbrot [Ma82]. Before the proof of this conjecture, some rigorous
bounds had been derived, for instance that the dimension of the Brownian boundary is
strictly larger than 1 and strictly smaller than 3/2 (see [BJPP97, BL90, We96]). The two
exponents that we have chosen to focus on are just two examples from a continuous family
of intersection exponents, that can all be derived using these SLE methods.



Appendix B: Background and prerequisites

12.1 Convergence of distributions

In this section we collect the basic facts about convergence in distribution, see for example
the books of Billingsley [Bi95, Bi99] for more extensive treatment. While this is a familiar
concept for real valued random variables, for example in the central limit theorem, we need
a more abstract viewpoint, which allows to study convergence in distribution for random
variables with values in metric spaces, like for example function spaces.

If random variables {Xn : n � 0} converge in distribution, strictly speaking it is their
distributions and not the random variables themselves which converge. This just means
that the shape of the distributions of Xn for large n is like the shape of the distribution
of X: Sample values from Xn allow no inference towards sample values from X and,
indeed, there is no need to define Xn and X on the same probability space.

Definition 12.1. Suppose (E, ρ) is a metric space and A the Borel-σ-algebra on E.
Suppose that Xn and X are E-valued random variables. Then we say that Xn converges
in distribution to X , if, for every bounded continuous g : E → R,

lim
n→∞

E[g(Xn )] = E[g(X)].

We write Xn
d−→ X for convergence in distribution. �

Remark 12.2 Xn
d−→ X is equivalent to weak convergence of the distributions. �

Remark 12.3 If Xn
d−→ X and g : E → R is continuous, then g(Xn ) d→ g(X). But

note that, if E = R and Xn
d−→ X , this does not imply that E[Xn ] converges to E[X], as

g(x) = x is not a bounded function on R. �

Example 12.4

• Suppose E = {1, . . . ,m} is finite and ρ(x, y) = 1 − 1{x=y}. Then Xn
d−→ X if

and only if limn→∞ P{Xn = k} = P{X = k} for all k ∈ E.

• Let E = [0, 1] and Xn = 1/n almost surely. Then Xn
d−→ X , where X = 0

almost surely. However, note that limn→∞ P{Xn = 0} = 0 �= P{X = 0} = 1. �

Theorem 12.5 Suppose a sequence {Xn : n � 0} of random variables converges almost
surely to a random variable X (of course, all on the same probability space). Then Xn

converges in distribution to X .

346
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Proof. Suppose g is bounded and continuous. The g(Xn ) converges almost surely to
g(X). As the sequence is bounded it is also uniformly integrable, hence convergence holds
also in the L1-sense and this implies convergence of the expectations, i.e. E[g(Xn )] →
E[g(X)].

Theorem 12.6 (Portmanteau theorem) The following statements are equivalent

(i) Xn
d−→ X .

(ii) For all closed sets K ⊂ E, lim supn→∞ P{Xn ∈ K} � P{X ∈ K}.
(iii) For all open sets G ⊂ E, lim infn→∞ P{Xn ∈ G} � P{X ∈ G}.
(iv) For all Borel sets A ⊂ E with P{X ∈ ∂A} = 0, we have

lim
n→∞

P{Xn ∈ A} = P{X ∈ A}.

(v) For all bounded measurable functions g : E → R with

P
{
g is discontinuous at X

}
= 0

we have E[g(Xn )] → E[g(X)].

Proof. (i)⇒(ii) Let gn (x) = 1− (nρ(x,K)∧ 1), which is continuous and bounded, is 1
on K and converges pointwise to 1K . Then, for every n,

lim sup
k→∞

P{Xk ∈ K} � lim sup
k→∞

E[gn (Xk )] = E[gn (X)] .

Let n → ∞. The integrand on the right hand side is bounded by 1 and converges pointwise
and hence in the L1-sense to 1K (X).
(ii)⇒(iii) Follows from 1G = 1 − 1K for the closed set K = Gc .

(iii)⇒(iv) Let G be the interior and K the closure of A. Then, by assumption, P{X ∈
G} = P{X ∈ K} = P{X ∈ A} and we may use (iii) and (ii) (which follows immediately
from (iii)) to get

lim sup
n→∞

P{Xn ∈ A} � lim sup
n→∞

P{Xn ∈ K} � P{X ∈ K} = P{X ∈ A},

lim inf
n→∞

P{Xn ∈ A} � lim inf
n→∞

P{Xn ∈ G} � P{X ∈ G} = P{X ∈ A}.

(iv)⇒(v) From (iv) we infer that the convergence holds for g of the form g(x) =
∑N

n=1 an

1An , where An satisfies P{X ∈ ∂An} = 0. Let us call such functions elementary. Given
g as in (v) we observe that for every a < b with possibly a countable set of exceptions

P
{
X ∈ ∂{x : g(x) ∈ (a, b]}

}
= 0 .

Indeed, if X ∈ ∂{x : g(x) ∈ (a, b]} then either g is discontinuous in X or g(X) = a or
g(X) = b. The first event has probability zero and so have the last two except possibly for
a countable set of values of a, b. By decomposing the real axis in small suitable intervals
we thus obtain an increasing sequence gn and a decreasing sequence hn of elementary
functions both converging pointwise to g. Now, for all k,

lim sup
n→∞

E[g(Xn )] � lim sup
n→∞

E[hk (Xn )] = E[hk (X)] ,
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and

lim inf
n→∞

E[g(Xn )] � lim inf
n→∞

E[gk (Xn )] = E[gk (X)] .

and the right sides converge, as k → ∞, by bounded convergence, to E[g(X)].
(v)⇒(i) This is obvious.

To remember the directions of the inequalities in the Portmanteau theorem it is useful to
recall the last example Xn = 1/n → 0 and choose G = (0, 1) and K = {0} to obtain cases
where the opposite inequalities fail. We now show that the convergence of distribution as
defined here agrees with the familiar concept in the case of real random variables.

Theorem 12.7 (Helly-Bray theorem) Let Xn and X be real valued random variables and
define the associated distribution functions Fn (x) = P{Xn � x} and F (x) = P{X � x}.
Then the following assertions are equivalent.

(a) Xn converges in distribution to X ,
(b) lim

n→∞
Fn (x) = F (x) for all x such that F is continuous in x.

Proof. (a)⇒(b) Use property (iv) for the set A = (−∞, x].
(b)⇒(a) We choose a dense sequence {xn} with P{X = xn} = 0 and note that every
open set G ⊂ R can be written as the countable union of disjoint intervals Ik = (ak , bk ]
with ak , bk chosen from the sequence. We have

lim
n→∞

P{Xn ∈ Ik} = lim
n→∞

Fn (bk ) − Fn (ak ) = F (bk ) − F (ak ) = P{X ∈ Ik} .

Hence, for all N ,

lim inf
n→∞

P{Xn ∈ G} �
N∑

k=1

lim inf
n→∞

P{Xn ∈ Ik} =
N∑

k=1

P{X ∈ Ik} ,

and as N → ∞ the last term converges to P{X ∈ G}.

Finally, we note the useful fact that for nonnegative random variables Xn , rather then
testing convergence of E[g(Xn )] for all continuous bounded functions g, it suffices to
consider functions of a rather simple form.

Proposition 12.8 Suppose (X (n )
1 , . . . , X (n )

m ) are random vectors with nonnegative entries,
then

(X (n )
1 , . . . , X (n )

m ) d−→ (X1 , . . . , Xm ) ,

if and only if, for any λ1 , . . . , λm � 0,

lim
n↑∞

E
[
exp
{
−

m∑
j=1

λjX
(n )
j

}]
= E
[
exp
{
−

m∑
j=1

λjXj

}]
.

The function φ(λ1 , . . . , λm ) = E[exp{−
∑m

j=1 λjXj}] is called the Laplace transform
of (X1 , . . . , Xm ) and thus the proposition states in other words that the convergence of
nonnegative random vectors is equivalent to convergence of their Laplace transforms. The
proof, usually done by approximation, can be found as Theorem 5.3 in [Ka02].
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12.2 Gaussian random variables

In this section we have collected the facts about Gaussian random vectors, which are used
in this book. We start with a useful estimate for standard normal random variables, which
is quite precise for large x.

Lemma 12.9 Suppose X is standard normally distributed. Then, for all x > 0,

x

x2 + 1
1√
2π

e−x2 /2 � P{X > x} � 1
x

1√
2π

e−x2 /2 .

Proof. The right inequality is obtained by the estimate

P{X > x} � 1√
2π

∫ ∞

x

u

x
e−u2 /2 du =

1
x

1√
2π

e−x2 /2 .

For the left inequality we define

f(x) = xe−x2 /2 − (x2 + 1)
∫ ∞

x

e−u2 /2 du .

Observe that f(0) < 0 and limx→∞ f(x) = 0. Moreover,

f ′(x) = (1−x2 +x2 +1)e−x2 /2−2x

∫ ∞

x

e−u2 /2 du = −2x
(∫ ∞

x

e−u2 /2 du− e−x2 /2

x

)
,

which is positive for x > 0, by the first part. Hence f(x) � 0, proving the lemma.

We now look more closely at random vectors with normally distributed components. Our
motivation is that they arise, for example, as vectors consisting of the increments of a
Brownian motion. Let us clarify some terminology.

Definition 12.10. A random variable X = (X1 , . . . , Xd)T with values in Rd has the
d-dimensional standard Gaussian distribution if its d coordinates are standard normally
distributed and independent. �

More general Gaussian distributions can be derived as linear images of standard Gaussians.
Recall, e.g. from Definition 1.5, that a random variable Y with values in Rd is called
Gaussian if there exists an m-dimensional standard Gaussian X , a d × m matrix A, and a
d dimensional vector b such that Y T = AX + b. The covariance matrix of the (column)
vector Y is then given by

Cov(Y ) = E
[
(Y − EY )(Y − EY )T] = AAT ,

where the expectations are defined componentwise.
Our next lemma shows that applying an orthogonal d×d matrix does not change the distri-
bution of a standard Gaussian random vector, and in particular that the standard Gaussian
distribution is rotationally invariant. We write Id for the d × d identity matrix.

Lemma 12.11 If A is an orthogonal d×d matrix, i.e. AAT = Id , and X is a d-dimensional
standard Gaussian vector, then AX is also a d-dimensional standard Gaussian vector.
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Proof. As the coordinates of X are independent, standard normally distributed, X has a
density

f(x1 , . . . , xd) =
d∏

i=1

1√
2π

e−x2
i /2 =

1
(2π)d/2 e−|x|2 /2 ,

where | · | is the Euclidean norm. The density of AX is (by the transformation rule)
f(A−1x) |det(A−1)|. The determinant is 1 and, since orthogonal matrices preserve the
Euclidean norm, the density of X is invariant under A.

Corollary 12.12 Let X1 and X2 be independent and normally distributed with zero expec-
tation and variance σ2 > 0. Then X1 + X2 and X1 − X2 are independent and normally
distributed with expectation 0 and variance 2σ2 .

Proof. The vector (X1/σ,X2/σ)T is standard Gaussian by assumption. Look at

A =

(
1√
2

1√
2

1√
2

− 1√
2

)
.

This is an orthogonal matrix and applying it to our vector yields ((X1 +X2)/(
√

2σ), (X1−
X2)/(

√
2σ)), which thus must have independent standard normal coordinates.

The next proposition shows that the distribution of a Gaussian random vector is determined
by its expectation and covariance matrix.

Proposition 12.13 If X and Y are d-dimensional Gaussian vectors with EX = EY and
Cov(X) = Cov(Y ), then X and Y have the same distribution.

Proof. It is sufficient to consider the case EX = EY = 0. By definition, there are
standard Gaussian random vectors X1 and X2 and matrices A and B with X = AX1 and
Y = BX2 . By adding columns of zeros to A or B, if necessary, we can assume that X1

and X2 are both k-vectors, for some k, and A,B are both d × k matrices. Let A and B
be the vector subspaces of Rk generated by the row vectors of A and B, respectively. To
simplify notation assume that the first l � d row vectors of A form a basis of A. Define
the linear map L : A → B by

L(Ai) = Bi for i = 1, . . . , l.

Here Ai is the ith row vector of A, and Bi is the ith row vector of B. Our aim is to show
that L is an orthogonal isomorphism and then use the previous proposition. Let us first
show that L is an isomorphism. Our covariance assumption gives that AAT = BBT .
Assume there is a vector v1A1 + . . . vlAl whose image is 0. Then the d-vector

v = (v1 , . . . , vl , 0, . . . , 0)

satisfies vB = 0. Hence

‖vA‖2 = vAATvT = vBBTvT = 0 .
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We conclude that vA = 0. Hence L is injective and dimA � dimB. Interchanging the
rôle of A and B gives that L is an isomorphism. As the entry (i, j) of AAT = BBT is the
scalar product of Ai and Aj as well as Bi and Bj , the mapping L is orthogonal. We can
extend it on the orthocomplement of A to an orthogonal map L : Rk → Rk (or an orthog-
onal k × k-matrix). Then X = AX1 and Y = BX2 = ALTX2 . As LTX2 is standard
Gaussian, by Lemma 12.11, X and Y have the same distribution.

In particular, comparing a d-dimensional Gaussian vector with Cov(X) = Id with a Gaus-
sian vector with d independent entries and the same expectation, we obtain the following
fact.

Corollary 12.14 A Gaussian random vector X has independent entries if and only if its
covariance matrix is diagonal. In other words, the entries in a Gaussian vector are uncor-
related if and only if they are independent.

We now show that the Gaussian nature of a random vector is preserved under taking limits.

Proposition 12.15 Suppose {Xn : n ∈ N} is a sequence of Gaussian random vectors and
limn Xn = X , almost surely. If b := limn→∞ EXn and C := limn→∞ Cov Xn exist,
then X is Gaussian with mean b and covariance matrix C.

Proof. A variant of the argument in Proposition 12.13 shows that Xn converges in law
to a Gaussian random vector with mean b and covariance matrix C. As almost sure con-
vergence implies convergence of the associated distributions, this must be the law of X .

Lemma 12.16 Suppose X , Y are independent and normally distributed with mean zero
and variance σ2 , then X2 + Y 2 is exponentially distributed with mean 2σ2 .

Proof. For any bounded, measurable f : R → R we have, using polar coordinates,

Ef(X2 + Y 2) =
1

2πσ2

∫
f(x2 + y2) exp

{
− x2 +y 2

2σ 2

}
dx dy

=
1
σ2

∫ ∞

0
f(r2) exp

{
− r 2

2σ 2

}
r dr

=
1

2σ2

∫ ∞

0
f(a) exp

{
− a

2σ 2

}
da = Ef(Z) ,

where Z is exponential with mean 2σ2 .

12.3 Martingales in discrete time

In this section we recall the essentials from the theory of martingales in discrete time. A
more thorough introduction to this subject is Williams [Wi91].

Definition 12.17. A filtration (Fn : n � 0) is an increasing sequence

F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · ·

of σ-algebras.
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Let {Xn : n � 0} be a stochastic process in discrete time and (Fn : n � 0) be a filtration.
The process is a martingale relative to the filtration if, for all n � 0,

• Xn is measurable with respect to Fn ,

• E|Xn | < ∞, and

• E[Xn+1 | Fn ] = Xn , almost surely.

If we have ‘�’ in the last condition, then {Xn : n � 0} is called a submartingale, if ‘�’
holds it is called a supermartingale. �

Remark 12.18 Note that for a submartingale E[Xn+1] � E[Xn ], for a supermartingale
E[Xn+1] � E[Xn ], and hence for a martingale we have E[Xn+1] = E[Xn ]. �

Loosely speaking, a stopping time is a random time such that the knowledge about a ran-
dom process at time n suffices to determine whether the stopping time has happened at
time n or not. Here is a formal definition.

Definition 12.19. A random variable T with values in {0, 1, 2, . . .} ∪ {∞} is called a
stopping time if {T � n} = {ω : T (ω) � n} ∈ Fn for all n � 0 . �

If {Xn : n � 0} is a supermartingale and T a stopping time, then it is easy to check that
the process

{XT
n : n � 0} defined by XT

n = XT ∧n

is a supermartingale. If {Xn : n � 0} is a martingale, then both {Xn : n � 0} and
{−Xn : n � 0} are supermartingales and, hence, we have,

E
[
XT ∧n

]
= E
[
X0
]
, for all n � 0 .

Doob’s optional stopping theorem gives criteria when, letting n ↑ ∞, we obtain E[XT ] =
E[X0 ].

Theorem 12.20 (Doob’s optional stopping theorem) Let T be a stopping time and X a
martingale. Then XT is integrable and E

[
XT

]
= E
[
X0
]
, if one of the following condi-

tions hold:

(1) T is bounded, i.e. there is N such that T < N almost surely;

(2) {XT
n : n � 0} is dominated by an integrable random variable Z, i.e. |Xn∧T | � Z

for all n � 0 almost surely;

(3) E[T ] < ∞ and there is K > 0 such that supn |Xn − Xn−1 | � K.

Proof. Recall that E[XT ∧n − X0 ] = 0. The result follows in case (1) by choosing
n = N . In case (2) let n → ∞ and use dominated convergence. In case (3) observe
that |XT ∧n − X0 | = |

∑T ∧n
k=1 (Xk − Xk−1)| � KT. By assumption KT is an integrable

function and dominated convergence can be used again.
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Doob’s famous forward convergence theorem gives a sufficient condition for the almost
sure convergence of supermartingales to a limiting random variable. See 11.5 in [Wi91]
for the proof.

Theorem 12.21 (Doob’s supermartingale convergence theorem) Let {Xn : n � 0} be a
supermartingale, which is bounded in L1 , i.e. there is K > 0 such that E|Xn | � K for
all n. Then there exists an integrable random variable X on the same probability space
such that

lim
n→∞

Xn = X almost surely.

Remark 12.22 Note that if {Xn : n � 0} is nonnegative, we have E[|Xn |] = E[Xn ]
� E[X0 ] := K and thus Xn is bounded in L1 and limn→∞ Xn = X exists. �

A key question is when the almost sure convergence in the supermartingale convergence
theorem can be replaced by L1-convergence (which in contrast to almost sure convergence
implies convergence of expectations). A necessary and sufficient criterion for this is uni-
form integrability. A stochastic process {Xn : n � 0} is called uniformly integrable if, for
every ε > 0, there exists K > 0 such that

E
[
|Xn |1{|Xn | � K}

]
< ε for all n � 0 .

Sufficient criteria for uniform integrability are

• {Xn : n � 0} is dominated by an integrable random variable,
• {Xn : n � 0} is Lp -bounded for some p > 1,
• {Xn : n � 0} is L1-convergent.

The following lemma is proved in Section 13.1 of [Wi91].

Lemma 12.23 Any stochastic process {Xn : n � 0}, which is uniformly integrable and
almost surely convergent, converges also in the L1-sense.

The next result is one of the highlights of martingale theory.

Theorem 12.24 (Martingale closure theorem) Suppose that the martingale {Xn : n � 0}
is uniformly integrable. Then there is an integrable random variable X such that

lim
n→∞

Xn = X almost surely and in L1 .

Moreover, Xn = E[X | Fn ] for every n � 0.

Proof. Uniform integrability implies that {Xn : n � 0} is L1-bounded and thus, by
the martingale convergence theorem, almost surely convergent to an integrable random
variable X . Convergence in the L1-sense follows from Lemma 12.23. To check the last
assertion, we note that Xn is Fn -measurable and let F ∈ Fn . For all m � n we have, by
the martingale property,

∫
F

Xm dP =
∫

F
Xn dP . We let m → ∞. Then |

∫
F

Xm dP −∫
F

X dP| �
∫
|Xm − X| dP → 0, hence we obtain

∫
F

X dP =
∫

F
Xn dP, as required.
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There is a natural converse to the martingale closure theorem, see Section 14.2 in [Wi91]
for the proof.

Theorem 12.25 (Lévy’s upward theorem) Suppose that X is an integrable random vari-
able and Xn = E[X | Fn ]. Then {Xn : n � 0} is a uniformly integrable martingale and

lim
n→∞

Xn = E
[
X | F∞

]
almost surely and in L1 ,

where F∞ =
(⋃∞

n=1 Fn

)
is the smallest σ-algebra containing the entire filtration.

There is also a convergence theorem for ‘reverse’ martingales, which is called Lévy’s
downward theorem and is a natural partner to the upward theorem, see Section 14.4 in
[Wi91] for the proof.

Theorem 12.26 (Lévy’s downward theorem) Suppose that (Gn : n ∈ N) is a collection
of σ-algebras such that

G∞ :=
∞⋂

k=1

Gk ⊂ · · · ⊂ Gn+1 ⊂ Gn ⊂ · · · ⊂ G1 .

An integrable process {Xn : n ∈ N} is a reverse martingale if almost surely,

Xn = E
[
Xn−1

∣∣Gn

]
for all n � 2 .

Then

lim
n↑∞

Xn = E[X1 | G∞] almost surely.

An important consequence of Theorems 12.20 and 12.24 is that the martingale property
holds for well-behaved stopping times. For a stopping time T define FT to be the σ-
algebra of events A with A ∩ {T � n} ∈ Fn . Observe that XT is FT -measurable.

Theorem 12.27 (Optional sampling theorem) If the martingale {Xn : n = 1, 2, . . .} is
uniformly integrable, then for all stopping times 0 � S � T we have E[XT

∣∣FS ] = XS

almost surely.

Proof. By the martingale closure theorem, XT
n converges to XT in L1 and E[XT | Fn ] =

XT ∧n = XT
n . Dividing XT in its positive and its nonpositive part if necessary, we may

assume that XT � 0 and therefore XT
n � 0 almost surely. Taking conditional expecta-

tion with respect to FS∧n gives E
[
XT

∣∣FS∧n

]
= XS∧n . Now let A ∈ FS . We have to

show that E[XT 1A ] = E[XS 1A ]. Note first that A ∩ {S � n} ∈ FS∧n . Hence, we get
E[XT 1{A ∩ {S � n}}] = E[XS∧n1{A ∩ {S � n}}] = E[XS 1{A ∩ {S � n}}]. Letting
n ↑ ∞ and using monotone convergence gives the required result.

Of considerable practical importance are martingales {Xn : n � 0}, which are square
integrable. Note that in this case we can calculate, for m � n,

E
[
X2

m | Fn

]
= E
[
(Xm − Xn )2 | Fn

]
+ 2E[Xm | Fn ]Xn − X2

n

= E
[
(Xm − Xn )2 | Fn

]
+ X2

n � X2
n ,

(12.1)

so that {X2
n : t � 0} is a submartingale.



12.3 Martingales in discrete time 355

Theorem 12.28 (Convergence theorem for L2-bounded martingales) Suppose that the
martingale {Xn : t � 0} is L2-bounded. Then there is a random variable X such that

lim
n→∞

Xn = X almost surely and in L2 .

Proof. From (12.1) and L2-boundedness of {Xn : t � 0} it is easy to see that, for
m � n,

E
[
(Xm − Xn )2] =

m∑
k=n+1

E
[
(Xk − Xk−1)2] �

∞∑
k=1

E
[
(Xk − Xk−1)2] < ∞ .

Recall that L2-boundedness implies L1-boundedness, and hence, by the martingale conver-
gence theorem, Xn converges almost surely to an integrable random variable X . Letting
m ↑ ∞ and using Fatou’s lemma in the last display, gives L2-convergence.

We now discuss two martingale inequalities that have important counterparts in the con-
tinuous setting. The first one is Doob’s weak maximal inequality.

Theorem 12.29 (Doob’s weak maximal inequality) Let {Xj : j � 0} be a submartingale
and denote Mn := max1�j�n Xj . Then, for all λ > 0,

λP
{
Mn � λ

}
� E
[
Xn1{Mn � λ}

]
.

Proof. Define the stopping time

τ :=
{

min{k : Xk � λ} if Mn � λ

n if Mn < λ

Note that {Mn � λ} = {Xτ � λ}. This implies

λP{Mn � λ} = λP{Xτ � λ
}

= Eλ1{Xτ � λ}
� EXτ 1{Xτ � λ} = EXτ 1{Mn � λ} ,

and the result follows once we demonstrate EXτ 1{Mn � λ} � EXn1{Mn � λ}. But, as
τ is bounded by n and Xτ is a submartingale, we have E[Xτ ] � E[Xn ], which implies

E
[
Xτ 1{Mn < λ}

]
+E
[
Xτ 1{Mn � λ}

]
� E
[
Xn1{Mn < λ}

]
+ E
[
Xn1{Mn � λ}

]
.

Because, by definition of τ , we have Xτ 1{Mn < λ} = Xn1{Mn < λ}, this reduces to

E
[
Xτ 1{Mn � λ}

]
� E
[
Xn1{Mn � λ}

]
,

and this concludes the proof.

The most useful martingale inequality for us is Doob’s Lp -maximal inequality.

Theorem 12.30 (Doob’s Lp maximal inequality) Suppose {Xn : n � 0} is a martingale
or nonnegative submartingale. Let Mn = max1�k�n Xk and p > 1. Then

E
[
Mp

n

]
�
(

p
p−1

)p
E
[
|Xn |p

]
.
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We make use of the following lemma, which allows us to compare the Lp -norms of two
nonnegative random variables.

Lemma 12.31 Suppose nonnegative random variables X and Y satisfy, for all λ > 0,

λP{Y � λ} � E[X1{Y � λ}] .

Then, for all p > 1,

E
[
Y p
]

�
(

p
p−1

)p
E
[
Xp
]
.

Proof. Using the fact that X � 0 and xp =
∫ x

0 pλp−1dλ, we can express E[Xp ] as a
double integral and apply Fubini’s theorem,

E
[
Xp
]

= E
∫ ∞

0
1{X � λ} pλp−1 dλ =

∫ ∞

0
pλp−1 P{X � λ} dλ .

Similarly, using the hypothesis,

E
[
Y p
]

=
∫ ∞

0
pλp−1 P

{
Y � λ

}
dλ �

∫ ∞

0
pλp−2E

[
X1{Y � λ}

]
dλ .

We can rewrite the right hand side, using Fubini’s theorem again, and then integrating
pλp−2 and using Hölder’s inequality with q = p/(p − 1),∫ ∞

0
pλp−2 E

[
X1{Y � λ}

]
dλ = E

[
X

∫ Y

0
pλp−2 dλ

]
= q E

[
XY p−1] � q ‖X‖p‖Y p−1‖q .

Altogether, this gives E[Y p ] � q(E[Xp ])1/p (E[Y p ])1/q So, assuming E[Y p ] < ∞, the
above inequality gives, (

E[Y p ]
)1/p � q

(
E[Xp ]

)1/p
,

from which the result follows by raising both sides to the pth power. In general, if E[Y p ] =
∞, then for any n ∈ N, the random variable Yn = Y ∧ n satisfies the hypothesis of the
lemma, and the result follows by letting n ↑ ∞ and applying the monotone convergence
theorem.

Proof of Theorem 12.30. If {Xn : n � 0} is a martingale, then {|Xn | : n � 0} is
a nonnegative submartingale. Hence it suffices to prove the result for nonnegative sub-
martingales. By Doob’s weak maximal inequality,

λP
{
Mn � λ

}
� E
[
Xn1{Mn � λ}

]
,

and applying Lemma 12.31 with X = Xn and Y = Mn gives the result.

We end this section with a useful version of the Radon-Nikodým theorem, which can be
proved using martingale arguments, cf. [Du95], Chapter 4, Theorem 3.3.
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Theorem 12.32 Let µ, ν be two probability measures on a space with σ-algebra F . Assume
that (Fn : n = 1, 2, . . .) is a filtration such that Fn ↗ F (i.e. the union of all Fn generates
F) and denote µn = µ|Fn

and νn = ν|Fn
. Suppose µn � νn for all n and let

Xn =
dµn

dνn
.

(a) {Xn : n � 0} is a nonnegative martingale and therefore ν-almost surely conver-
gent. We denote

X = lim sup
n→∞

Xn .

(b) For any A ∈ F we have

µ(A) =
∫

A

X dν + µ
(
A ∩ {X = ∞}

)
. (12.2)

In particular,

(i) If ν{X = 0} = 1, then µ ⊥ ν.

(ii) If µ{X = ∞} = 0, then µ � ν.

(iii) If ν{X > 0} = 1, then ν � µ.

Proof. Note that, for any A ∈ Fn , we have∫
A

Xn+1dν =
∫

A

dµn+1

dνn+1
dνn+1 = µn+1(A) = µn (A) =

∫
A

dµn

dνn
dνn =

∫
A

Xn dν,

and hence {Xn : n � 0} is a martingale. Moreover Xn � 0 and hence, by Remark 12.22,
it is convergent, which proves (a). Claims (i), (ii) and (iii) follow easily from (12.2), so
it suffices to establish the latter. Rewrite (12.2) in the equivalent form

µ
(
A ∩ {X < ∞}

)
=
∫

A

X dν for all A ∈ F . (12.3)

For A ∈ Fk and n > k we have µ(A) =
∫

A
Xn dν whence µ(A) �

∫
A

X dν by Fatou’s
lemma. It follows that the last inequality holds for all A ∈ F , whence for all A ∈ F we
have

µ
(
A ∩ {X < ∞}

)
�
∫

A∩{X <∞}
X dν =

∫
A

X dν . (12.4)

On the other hand, for A ∈ Fk and n > k we also have

µ
(
A ∩ {Xn < M}

)
=
∫

A∩{Xn <M }
Xn dν �

∫
A

Xn ∧ M dν

whence µ(A ∩ {sup��n X� < M}) �
∫

A
Xn ∧ M dν. Taking n → ∞, bounded con-

vergence yields µ(A ∩ {X < M}) �
∫

A
X ∧ M dν so that letting M → ∞ gives

µ(A ∩ {X < ∞}) �
∫

A
X dν. Thus (12.3) holds for all A ∈ F .
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12.4 Trees and flows on trees

In this section we provide the notation for the discussion of trees, and the basic facts about
trees, which we use in this book.
Definition 12.33. A tree T = (V,E) is a connected graph described by a finite or
countable set V of vertices, which includes a distinguished vertex � designated as the root,
and a set E ⊂ V × V of ordered edges, such that

• for every vertex v ∈ V the set {w ∈ V : (w, v) ∈ E} consists of exactly one element v,
the parent, except for the root � ∈ V , which has no parent;

• for every vertex v there is a unique self-avoiding path from the root to v and the number
of edges in this path is the order or generation |v| of the vertex v ∈ V ;

• for every v ∈ V , the set of offspring or children of {w ∈ V : (v, w) ∈ E} is finite. �

Remark 12.34 Sometimes, the notation is slightly abused and the tree T is identified with
its vertex set. This should not cause any confusion. �

We introduce some further notation. For any v, w ∈ V we denote by v ∧w the element on
the intersection of the paths from the root to v, respectively w with maximal order, i.e. the
last common ancestor of v and w. We write v � w if v is an ancestor of w, which is
equivalent to v = v ∧ w.

The order |e| of an edge e = (u, v) is the order of its end-vertex v. Every infinite self-
avoiding path started in the root is called a ray. The set of rays is denoted ∂T , the
boundary of T . For any two rays ξ and η we define ξ ∧ η the vertex in the intersec-
tion of the rays, which maximises the order. Note that |ξ ∧ η| is the number of edges that
two rays ξ and η have in common. The distance between two rays ξ and η is defined to be
|ξ − η| := 2−|ξ∧η |, and this definition makes the boundary ∂T a compact metric space.

Remark 12.35 The boundary ∂T of a tree is an interesting fractal in its own right. Its Haus-
dorff dimension is log2(brT ) where br T is a suitably defined average offspring number.
This, together with other interesting aspects of trees, is discussed in depth in [LP05]. �

For infinite trees, we are interested in flows on the tree. We suppose that capacities are
assigned to the edges of a tree T , i.e. there is a mapping C : E → [0,∞). A flow of
strength c > 0 through a tree with capacities C is a mapping θ : E → [0, c] such that

• for the root we have
∑
w=�

θ
(
�,w
)

= c, for every other vertex v �= � we have

θ
(
v, v
)

=
∑

w : w=v

θ
(
v, w
)
,

i.e. the flow into and out of each vertex other than the root is conserved.

• θ(e) � C(e), i.e. the flow through the edge e is bounded by its capacity.
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A set Π of edges is called a cutset if every ray includes an edge from Π.

We now give a short proof of a famous result of graph theory, the max-flow min-cut theo-
rem of Ford and Fulkerson [FF56] in the special case of infinite trees.

Theorem 12.36 (Max-flow min-cut theorem)

max
{

strength (θ) : θ a flow with capacities C
}

= inf
{∑

e∈Π

C(e) : Π a cutset
}

.

Proof. The proof is a festival of compactness arguments.
First observe that on the left hand side the infimum is indeed a maximum, because if {θn}
is a sequence of flows with capacities C, then at every edge we have a bounded sequence
{θn (e)} and by the diagonal argument we may pass to a subsequence such that lim θn (e)
exists simultaneously for all e ∈ E. This limit is obviously again a flow with capacities C.
Secondly observe that every cutset Π contains a finite subset Π′ ⊂ Π, which is still a cutset.
Indeed, if this was not the case, we had for every positive integer j a ray ej

1 , e
j
2 , e

j
3 , . . . with

ej
i �∈ Π for all i � j. By the diagonal argument we find a sequence jk and edges el of

order l such that ejk

l = el for all k � l. Then e1 , e2 , . . . is a ray and el �∈ Π for all l, which
is a contradiction.
Now let θ be a flow with capacities C and Π an arbitrary cutset. We let A be the set
of vertices v such that there is a sequence of edges e1 , . . . , en �∈ Π with e1 = (ρ, v1),
en = (vn−1 , v) and ej = (vj−1 , vj ). By our previous observation this set is finite. Let

φ(v, e) :=
{

1 if e = (v, w) for some w ∈ V ,

−1 if e = (w, v) for some w ∈ V .

Then, using the definition of a flow and finiteness of all sums,

strength (θ) =
∑
e∈E

φ(ρ, e)θ(e) =
∑
v∈A

∑
e∈E

φ(v, e)θ(e)

=
∑
e∈E

θ(e)
∑
v∈A

φ(v, e) �
∑
e∈Π

θ(e) �
∑
e∈Π

C(e) .

This proves the first inequality.
For the reverse inequality we restrict attention to finite trees. Let Tn be the tree consisting
of all vertices Vn and edges En of order � n and look at cutsets Π consisting of edges in
En . A flow θ of strength c > 0 through the finite tree Tn with capacities C is defined as in
the case of infinite trees, except that the main condition

θ
(
v, v
)

=
∑

w : w=v

θ
(
v, w
)
,

is only required for vertices v �= ρ with |v| < n. We shall show that

max
{

strength (θ) : θ a flow in Tn with capacities C
}

� min
{∑

e∈Π

C(e) : Π a cutset in Tn

}
.

(12.5)

Once we have this, we get a sequence (θn ) of flows in Tn with capacities C and strength at
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least c = min{
∑

e∈Π C(e) : Π a cutset in T}. By using the diagonal argument once more
we can get a subsequence such that the limits of θn (e) exist for every edge, and the result
is a flow θ with capacities C and strength at least c, as required.
To prove (12.5) let θ be a flow of maximal strength c with capacities C in Tn and call a se-
quence ρ = v0 , v1 , . . . , vn with (vi, vi+1) ∈ En an augmenting sequence if θ(vi, vi+1) <

C(vi, vi+1). If there are augmenting sequences, we can construct a flow θ̃ of strength > c

by just increasing the flow through every edge of the augmenting sequence by a sufficiently
small ε > 0. As θ was maximal this is a contradiction. Hence there is a minimal cutset Π
consisting entirely of edges in En with θ(e) � C(e). Let A, as above, be the collection of
all vertices which are connected to the root by edges not in Π. As before, we have

strength (θ) =
∑
e∈E

θ(e)
∑
v∈A

φ(v, e) =
∑
e∈Π

θ(e) �
∑
e∈Π

C(e) ,

where in the penultimate step we use minimality. This proves (12.5).

Finally, we discuss the most important class of random trees, the Galton–Watson trees.
For their construction we pick an offspring distribution, given as the law of a random
variable N with values in the nonnegative integers. To initiate the recursive construction
of the tree, we sample from this distribution to determine the number of offspring of the
root. Having constructed the tree up to the nth generation and supposing this generation
is nonempty, we sample an independent copy of N for each vertex in this generation and
attach the corresponding number of offspring to it. If this procedure is infinite, i.e. if it
produces an infinite tree, we say that the Galton–Watson tree survives otherwise that it
becomes extinct. The sharp criterion below is at least as old as the work of Galton and
Watson in the middle of the nineteenth century.

Proposition 12.37 If N �= 1 with positive probability, a Galton–Watson tree survives with
positive probability if and only if EN > 1. Moreover, the extinction probability is the
smallest nonnegative fixed point of the generating function f : [0, 1] → [0, 1] given by
f(z) = EzN .

Proof. Note that the generating function of the number Zn of vertices in the nth
generation is the iterate fn = f◦ n· · · ◦f . Elementary analysis shows that fn (0) converges
increasingly to the smallest nonnegative fixed point of f . At the same time

lim
n→∞

fn (0) = lim
n→∞

P{Zn = 0} = lim
n→∞

P{Zi = 0 for some 1 � i � n}

= P{Zi = 0 for some i � 1} = P{ extinction }.

It is again an exercise in elementary analysis to see that, unless f is the identity, the small-
est nonnegative fixed point of f is one if and only if EN = f ′(1) � 1.



Hints and solutions for selected exercises

Here we give hints, solutions or additional references for the exercises marked with the
symbol S in the main body of the text.

Exercise 1.2. Using the notation from Theorem 1.3, the Brownian motion is defined on a
probability space (Ω,A, P) on which a collection {Zt : t ∈ D} of independent, standard
normally distributed random variables are defined. It is easy to see from the construction
that, for any n ∈ N, the functions Fn are jointly measurable as a function of Zd, d ∈ Dn

and t ∈ [0, 1]. Therefore it is also jointly measurable as a function of ω ∈ Ω and t ∈ [0, 1],
and this carries over to (ω, t) �→ B(ω, t) by summation and taking a limit.

Exercise 1.3. Fix times 0 < t1 < . . . < tn . Let

M :=

⎛⎜⎜⎜⎜⎝
1 0 . . . 0

−1
. . .

. . .
...

0
. . .

. . . 0
0 0 −1 1

⎞⎟⎟⎟⎟⎠ , D :=

⎛⎜⎜⎜⎜⎜⎝
1√
t1

0 . . . 0

0 1√
t2 −t1

. . .
...

...
. . .

. . . 0
0 . . . 0 1√

tn −tn −1

⎞⎟⎟⎟⎟⎟⎠ .

Then, for a Brownian motion {B(t) : t � 0} with start in x, by definition, the vector

X := D M (B(t1) − x, . . . , B(tn ) − x
)T

has independent standard normal entries. As both D and M are nonsingular, the matrix
A := M−1D−1 is well-defined and, denoting also b = (x, . . . , x), we have that(

B(t1), . . . , B(tn )
)T = AX + b .

By definition, this means that (B(t1), . . . , B(tn )) is a Gaussian random vector.

Exercise 1.5. Note that {X(t) : 0 � t � 1} is a Gaussian process, while the distributions
given in (a) determine Gaussian random vectors. Hence it suffices to identify the means
and covariances of (X(t1), . . . , X(tn )) and compare them with those given in (a). Starting
with the mean, on the one hand we obviously have EX(t) = x(1 − t) + ty, on the other
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hand∫
z

p(t, x, z)p(1 − t, z, y)
p(1, x, y)

=
1

p(1, x, y)

∫ (
z − x(1 − t) − ty

)
p(t, x, z)p(1 − t, z, y) dz + x(1 − t) + ty,

and the integral can be seen to vanish by completing the square in the exponent of the
integrand. To perform the covariance calculation one may assume that x = y = 0, which
reduces the complexity of expressions significantly, see (8.5) in Chapter 7 of [Du96] for
more details.

Exercise 1.6. B(t) does not oscillate too much between n and n + 1 if

lim sup
n→∞

1
n

[
max

n�t�n+1
B(t) − B(n)

]
= 0 .

Estimate P{max0�t�1 B(t) � εn} and use the Borel–Cantelli lemma.

Exercise 1.7. One has to improve the lower bound, and show that, for every constant
c <

√
2, almost surely, there exists ε > 0 such that, for all 0 < h < ε, there exists

t ∈ [0, 1 − h] with ∣∣B(t + h) − B(t)
∣∣ � c
√

h log(1/h).

To this end, given δ > 0, let c <
√

2 − δ and define, for integers k, n � 0, the events

Ak,n =
{

B
(
(k + 1)e−

√
n
)
− B
(
ke−

√
n
)

> c
(√

n e−
√

n
) 1

2
}

.

Then, using Lemma 12.9, for any k � 0,

P(Ak,n ) = P
{

B
(
e−

√
n
)

> c
(√

ne−
√

n
) 1

2
}

= P
{
B(1) > cn

1
4
}

� cn
1
4

c2 √n+1 e−c2 √n/2 .

Therefore, by our assumption on c, and using that 1 − x � e−x for all x � 0,

∞∑
n=0

P
( �e

√
n −1�⋂

k=0

Ac
k,n

)
�

∞∑
n=0

(
1−P(A0,n )

)e√
n −1 �

∞∑
n=0

exp
(
−(e

√
n −1)P(A0,n )

)
< ∞ .

From the Borel–Cantelli lemma we thus obtain that, almost surely, there exists n0 ∈ N
such that, for all n � n0 , there exists t ∈ [0, 1 − e−

√
n ] of the form t = ke−

√
n such that∣∣B(t + e−

√
n
)
− B(t)

∣∣ > c
(√

ne−
√

n
) 1

2 .

In addition, we may choose n0 big enough to ensure that e−
√

n0 is sufficiently small in the
sense of Theorem 1.12. Then we pick ε = e−

√
n0 and, given 0 < h < ε, choose n such

that e−
√

n+1 < h � e−
√

n . Then, for t as above,∣∣B(t + h
)
−B(t)

∣∣ � ∣∣B(t + e−
√

n
)
− B(t)

∣∣− ∣∣B(t + h
)
− B
(
t + e−

√
n
)∣∣

> c
(√

ne−
√

n
) 1

2 − C
√(

e−
√

n − e−
√

n+1
)
log
(
1/(e−

√
n − e−

√
n+1)
)
.

It is not hard to see that the second (subtracted) term decays much more rapidly than the
first, so that modifying n0 to ensure that it is below δ (

√
ne−

√
n )

1
2 gives the result.
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Exercise 1.8. Given f ∈ C[0, 1] and ε > 0 there exists n such that the function g ∈
C[0, 1], which agrees with f on the dyadic points in Dn and is linearly interpolated inbe-
tween, satisfies sup |f(t) − g(t)| < ε. Then use Lévy’s construction of Brownian motion
and the fact that normal distributions have full support to complete the proof.

Exercise 1.9. It suffices to show that, for fixed ε > 0 and c > 0, almost surely, for all
t � 0, there exists 0 < h < ε with |B(t + h) − B(t)| > chα . By Brownian scaling we
may further assume ε = 1. Note that, after this simplification, the complementary event
means that there is a t0 � 0 such that

sup
h∈(0,1)

B(t0 + h) − B(t0)
hα

� c or inf
h∈(0,1)

B(t0 + h) − B(t0)
hα

� − c .

We may assume that t0 ∈ [0, 1). Fix l � 1/(α − 1
2 ). Then t0 ∈

[
k−1
2n , k

2n

)
for any large n

and some 0 � k < 2n − l. Then, by the triangle inequality, for all j ∈ {1, . . . , 2n − k},∣∣∣B( k+j
2n

)
− B
(

k+j−1
2n

)∣∣∣ � 2c
(

j+1
2n

)α
.

Now, for any 0 � k < 2n − l, let Ωn,k be the event{∣∣B( k+j
2n

)
− B
(

k+j−1
2n

)∣∣ � 2c
(

j+1
2n

)α
for j = 1, 2, . . . , l

}
.

It suffices to show that, almost surely for all sufficiently large n and all k ∈ {0, . . . , 2n − l}
the event Ωn,k does not occur. Observe that

P(Ωn,k ) �
[
P
{
|B(1)| � 2n/2 2c

(
l+1
2n

)α}]l �
[
2n/2 2c

(
l+1
2n )α
]l

,

since the normal density is bounded by 1/2. Hence, for a suitable constant C,

P
( 2n −l⋃

k=0

Ωn,k

)
� 2n

[
2n/2 2c

(
l+1
2n

)α]l = C
[
2(1−l(α−1/2))]n ,

which is summable. Thus

P
(

lim sup
n→∞

2n −l⋃
k=0

Ωn,k

)
= 0 .

This is the required statement and hence the proof is complete.

Exercise 1.10. The proof can be found in Chapter 3 of [Du95], or Theorem 3.15 of [Ka02].

Exercise 1.12. Argue as in the proof of Theorem 1.30 with B replaced by B + f . The
resulting term

P
{∣∣B(1) +

√
2n f ((k + j)/2n ) −

√
2n f ((k + j − 1)/2n )

∣∣ � 7M/
√

2n
}

can be estimated in exactly the same manner as for the unshifted Brownian motion.
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Exercise 1.13. This can be found, together with stronger and more general results, in
[BP84]. Put I =

[
B(1), sup0�s�1 B(s)

]
, and define a function g : I → [0, 1] by setting

g(x) = sup{s ∈ [0, 1] : B(s) = x}.

First check that almost surely the interval I is nondegenerate, g is strictly decreasing, left
continuous and satisfies B(g(x)) = x. Then show that almost surely the set of disconti-
nuities of g is dense in I . We restrict our attention to the event of probability 1 on which
these assertions hold. Let

Vn =
{
x ∈ I : g(x − h) − g(x) > nh for some h ∈ (0, n−1)

}
.

Now show that Vn is open and dense in I . By the Baire category theorem, V :=
⋂

n Vn

is uncountable and dense in I. Now if x ∈ V then there is a sequence xn ↑ x such that
g(xn ) − g(x) > n(x − xn ). Setting t = g(x) and tn = g(xn ) we have tn ↓ t and
tn − t > n(B(t) − B(tn )), from which it follows that D∗B(t) � 0. On the other hand
D∗B(t) � 0 since B(s) � B(t) for all s ∈ (t, 1), by definition of t = g(x).

Exercise 1.14. We first fix some positive ε and positive a. For some small h and an interval
I ⊂ [ε, 1 − ε] with length h, we consider the event A that t0 ∈ I and we have

B(t0 + h̃) − B(t0) > −2ah1/4 for some h1/4 < h̃ � 2h1/4 .

We now denote by tL the left endpoint of I . Using Theorem 1.12 we see there exists some
positive C so that

B(t0) − B(tL ) � C
√

h log(1/h).

Hence the event A implies the following events

A1 =
{
B(tL − s) − B(tL ) � C

√
h log(1/h) for all s ∈ [0, ε]

}
,

A2 =
{
B(tL + s) − B(tL ) � C

√
h log(1/h) for all s ∈ [0, h1/4 ]

}
.

We now define T := inf(s > tL + h1/4 : B(s) > B(tL ) − 2ah1/4). Then by definition
we have that T � tL + 2h1/4 and this implies the event

A3 =
{
B(T + s) − B(T ) � 2ah1/4 + C

√
h log(1/h) for all s ∈ [0, ε]

}
.

Now by the strong Markov property, these three events are independent and we obtain

P(A) � P(A1) P(A2) P(A3).

We estimate the probabilities of these three events and obtain

P(A1) = P
{
B(ε) � C

√
h log(1/h)

}
� 1√

2πε
2C
√

h log(1/h),

P(A2) = P
{
B(h1/4) � C

√
h log(1/h)

}
� 1√

2πh1 / 4
2C
√

h log(1/h),

P(A3) = P
{
B(ε) � 2ah1/4 + C

√
h log(1/h)

}
� 1√

2πε
2
(
C h1/4 + 2ah1/4).

Hence we obtain, for a suitable constant K > 0, depending on a and ε, that

P(A) � K h9/8 log(1/h).
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Summing over a covering collection of 1/h intervals of length h gives the bound

P
{
t0 ∈ [ε, 1 − ε] and B(t0 + h̃) − B(t0) > −2ah1/4 for some h1/4 < h̃ � 2h1/4}
� K log(1/h)h1/8 .

Taking h = 2−4n−4 in this bound and summing over n, we see that

∞∑
n=1

P
{

t0 ∈ [ε, 1 − ε] and sup
2−n −1 <h � 2−n

B(t0 + h) − B(t0)
h

> −a
}

< ∞,

and from the Borel–Cantelli lemma we obtain that, almost surely, either t0 �∈ [ε, 1 − ε], or

lim sup
h↓0

B(t0 + h) − B(t0)
h

� − a.

Now recall that a and ε are arbitrary positive numbers, so taking a countable union over a

and ε gives that, almost surely, D*B(t0) = −∞, as required.

Exercise 1.15. By Brownian scaling it suffices to consider the case t = 1.
(a) We first show that, given M > 0 large, for any fixed point s ∈ [0, 1], almost surely
there exists n ∈ N such that the dyadic interval I(n, s) := [k2−n , (k+1)2−n ] containing s

satisfies ∣∣B((k + 1)2−n
)
− B
(
k2−n

)∣∣ � M 2−n/2 . (13.1)

To see this, it is best to consider the construction of Brownian motion, see Theorem 1.3.
Using the notation of that proof, let d0 = 1 and dn+1 ∈ Dn+1 \ Dn be the dyadic point
that splits the interval [k2−n , (k + 1)2−n ) containing s. This defines a sequence Zdn

, n =
0, 1, . . . of independent, normally distributed random variables. Now let

n = min
{
k ∈ {0, 1, . . .} : |Zdk

| � 3M
}
,

which is almost surely well-defined. Moreover,

3M �
∣∣Zdn

∣∣ = 2
n −1

2
∣∣2B(dn ) − B(dn − 2−n ) − B(dn + 2−n )

∣∣
� 2

n + 1
2
∣∣B(dn ) − B(dn ± 2−n )

∣∣+ 2
n −1

2
∣∣B(dn + 2−n ) − B(dn − 2−n )

∣∣,
where ± indicates that the inequality holds with either choice of sign. This implies that
either I(n, s) or I(n − 1, s) satisfies (13.1). We denote by N(s) the smallest nonnegative
integer n, for which (13.1) holds.
By Fubini’s theorem, almost surely, we have N(s) < ∞ for almost every s ∈ [0, 1]. On this
event, we can pick a finite collection of disjoint dyadic intervals [t2j , t2j+1], j = 0, . . . , k−
1, with summed lengths exceeding 1/2, say, such that the partition 0 = t0 < · · · < t2k = 1
given by their endpoints satisfies

2k∑
j=1

(
B(tj ) − B(tj−1)

)2 � M 2
k∑

j=1

(t2j+1 − t2j ) � M

2
,

from which (a) follows, as M was arbitrary.
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(b) Note that the number of (finite) partitions of [0, 1] consisting of dyadic points is count-
able. Hence, by (a), given n ∈ N, we can find a finite set Pn of partitions such that the
probability that there exists a partition 0 = t0 < · · · < tk = 1 in Pn with the property that

k∑
j=1

(
B(tj ) − B(tj−1)

)2 � n

is bigger than 1 − 1
n . Successively enumerating the partitions in P1 , P2 , . . . yields a se-

quence satisfying the requirement of (b).

Exercise 1.16. To see convergence in the L2-sense one can use the independence of the
increments of a Brownian motion,

E
[ k(n)∑

j=1

(
B
(
t(n )
j+1

)
− B
(
t(n )
j

))2 − t
]2

=
k(n)∑
j=1

E
[(

B
(
t(n )
j+1

)
− B
(
t(n )
j

))2 − (t(n )
j+1 − t(n )

j

)]2

�
k(n)∑
j=1

E
[(

B
(
t(n )
j+1

)
− B
(
t(n )
j

))4 +
(
t(n )
j+1 − t(n )

j

)2]
.

Now, using that the fourth moment of a centred normal distribution with variance σ2 is
3σ4 , this can be estimated by a constant multiple of

k(n)∑
j=1

(
t(n )
j+1 − t(n )

j

)2
,

which goes to zero. Moreover, by the Markov inequality

P
{∣∣∣ k(n)∑

j=1

(
B
(
t(n )
j+1

)
−B
(
t(n )
j

))2 − t
∣∣∣ > ε

}
� ε−2 E

[( n∑
j=1

(
B
(
t(n )
j+1

)
−B
(
t(n )
j

))2 − t
)2]

,

and summability of the right hand side together with the Borel–Cantelli lemma ensures
almost sure convergence.

Exercise 1.17. Recall (1.5) from Lemma 1.41 and note that it implies

∇(n )
2j−1B = 1

2∇
(n −1 )
j B + σnZ

( 2j−1
2n

)
, ∇(n )

2j B = 1
2∇

(n −1 )
j B − σnZ

( 2j−1
2n

)
,

where σn = 2−(n+1)/2 and Z(t) for t ∈ Dn \ Dn−1 are i.i.d. standard normal random
variables independent of Fn−1 . Hence

E
[
exp
{
− 2n
(
∇(n )

2j−1B
) (

∇(n )
2j−1F

)
− 2n
(
∇(n )

2j B
) (

∇(n )
2j F
)} ∣∣Fn−1

]
= exp

{
− 2n−1(∇(n −1 )

j B
) (

∇(n −1 )
j F

)}
× E
[
exp
{
− 2nσnZ

( 2j−1
2n

)(
∇(n )

2j−1F −∇(n )
2j F
)}]

.

The expectation equals

exp
{
2n−2 (∇(n )

2j−1F −∇(n )
2j F
)2}

= exp
{
2n−1 (∇(n )

2j−1F
)2 + 2n−1 (∇(n )

2j F
)2 − 2n−2(∇(n −1 )

j F
)2}

.

Rearranging the terms completes the proof.
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Exercise 1.19. Write F (a + h) − F (a) as an integral and apply Cauchy-Schwarz.

Exercise 2.3.
(i) If A ∈ F(S), then A ∩ {T � t} = (A ∩ {S � t}) ∩ {T � t} ∈ F+(t) .

(ii) By (i), F(T ) ⊂ F(Tn ) for all n, which proves ⊂. On the other hand, if A ∈⋂∞
n=1 F(Tn ), then for all t � 0,

A ∩ {T < t} =
∞⋃

k=1

∞⋂
n=k

A ∩ {Tn < t} ∈ F+(t) .

(iii) Look at the discrete stopping times Tn defined in the previous example. We have, for
any Borel set A ⊂ Rd ,

{B(Tn ) ∈ A}∩
{
Tn � k2−n

}
=

k⋃
m=0

(
{B(m2−n ) ∈ A}∩{Tn = m2−n}

)
∈ F+(k2−n ).

Hence B(Tn ) is F(Tn )-measurable, and as Tn ↓ T , we get that B(T ) = lim B(Tn ) is
F(Tn )-measurable for any n. Hence B(T ) is F(T )-measurable by part (ii).

Exercise 2.7. If T = 0 almost surely there is nothing to show, hence assume E[T ] > 0.
(a) By construction, Tn is the sum of n independent random variables with the law of T ,
hence, by the law of large numbers, almost surely,

lim
n→∞

Tn

n
= E[T ] > 0,

which, by assumption, is finite. This implies, in particular, that Tn → ∞ almost surely,
and together with the law of large numbers for Brownian motion, Corollary 1.11, we get al-
most surely, limn→∞ B(Tn )/Tn = 0. The two limit statements together show that, almost
surely,

lim
n→∞

B(Tn )
n

= lim
n→∞

B(Tn )
Tn

lim
n→∞

Tn

n
= 0.

(b) Again by construction, B(Tn ) is the sum of n independent random variables with the
law of B(T ), which we conveniently denote X1 ,X2 , . . .. As

lim
n→∞

Xn

n
= lim

n→∞

B(Tn )
n

− lim
n→∞

B(Tn−1)
n

= 0,

the event {|Xn | � n} occurs only finitely often, so that the Borel–Cantelli lemma implies
∞∑

n=0

P
{
|Xn | � n

}
< ∞.

Hence we have that

E[B(T )] = E|Xn | �
∞∑

n=0

P
{
|Xn | � n

}
< ∞.

(c) By the law of large numbers, almost surely,

lim
n→∞

B(Tn )
n

= lim
n→∞

1
n

n∑
j=1

Xj = E[B(T )].
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Exercise 2.9. Let S be a nonempty, closed set S with no isolated points. To see that it
is uncountable, we construct a subset with the cardinality of {1, 2}N. Start by choosing a
point x1 ∈ S. As this point is not isolated there exists a further, different point x2 ∈ S.
Now pick two disjoint closed balls B1 , B2 around these points. Again, as x1 is not isolated,
we can find two points in B1 ∩ S, around which we can put disjoint balls contained in
B1 ∩ S, similarly for B2 ∩ S, and so on. Now there is a bijection between {1, 2}N and
the decreasing sequences of balls in our construction. The intersection of the balls in each
such sequence contains, as S is closed, at least one point of S, and two points belonging to
two different sequences are clearly different. This completes the proof.

Exercise 2.13. By Fubini’s theorem,

E[Tα ] =
∫ ∞

0
P{T > x1/α} dx � 1 +

∫ ∞

1
P
{
M(x1/α ) < 1

}
dx.

Note that, by Brownian scaling, P{M(x1/α ) < 1} � C x− 1
2 α for a suitable constant C >

0, which implies that E[Tα ] < ∞, as required.

Exercise 2.16. By Exercise 2.15 the process {X(t) : t � 0} defined by

X(t) = exp
{
2bB(t) − 2b2t

}
for t � 0,

defines a martingale. Observe that T = inf{t > 0: B(t) = a + bt} is a stopping time for
the natural filtration, which is finite exactly if B(t) = a + bt for some t > 0. Then

P{T < ∞} = e−2ab E
[
X(T ) 1{T < ∞}

]
,

and because {XT (t) : t � 0} is bounded, the right hand side equals e−2ab .

Exercise 2.17. Use the binomial expansion of (B(t)+ (B(t+h)−B(t)))3 to deduce that
X(t) = B(t)3 − 3tB(t) defines a martingale. We know that Px{TR < T0} = x/R. Write
τ∗ = τ({0, R}). Then

x3 = Ex [X(0)] = Ex [X(τ∗)] = Px{TR < T0}Ex

[
X(τ∗) |TR < T0

]
= Px{TR < T0}Ex

[
R3 − 3τ∗R |TR < T0

]
= (x/R)(R3 − 3γR) = x (R2 − 3γ) .

Solving the last equation for γ gives the claim.

Exercise 2.20. Part (a) can be proved similarly to Theorem 2.51, which in fact is the special
case λ = 0 of this exercise. For part (b) choose u : U → R as a bounded solution of

1
2 ∆u(x) = λu(x), for x ∈ U ,

with lim
x→x0

u(x) = f(x0) for all x0 ∈ ∂U . Then

X(t) = e−λtu(B(t)) −
∫ t

0
e−λs
( 1

2 ∆u(B(s)) − λu(B(s))
)
ds

defines a martingale. For any compact K ⊂ U we can pick a twice continuously differ-
entiable function v : Rd → R with v = u on K and v = 0 on U c . Apply the optional
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stopping theorem to stopping times S = 0, T = inf{t � 0: B(T ) �∈ K} to get, for every
x ∈ K,

u(x) = E[X(0)] = E[X(T )] = Ex

[
e−λT f(B(T ))

]
.

Now choose a sequence Kn ↑ U of compacts and pass to the limit on the right hand side
of the equation.

Exercise 3.3. To prove the result for k = 1 estimate |u(x) − u(y)| in terms of |x − y|
using the mean value formula for harmonic functions and the fact that, if x and y are close,
the volume of the symmetric difference of B(x, r) and B(y, r) is bounded by a constant
multiple of rd−1 |x − y|. For general k note that the partial derivatives of a harmonic
function are themselves harmonic, and iterate the estimate.

Exercise 3.5. Define a random variable Y by Y := X , if X > λE[X], and Y := 0,
otherwise. Applying the Cauchy–Schwarz inequality to E[Y ] = E[Y 1{Y > 0}] gives

E[Y 1{Y > 0}] � E[Y 2 ]1/2 (P{Y > 0}
)1/2

,

hence, as X � Y � X − λE[X], we get

P
{
X > λ E[X]

}
= P{Y > 0} � E[Y ]2

E[Y 2 ]
� (1 − λ)2 E[X]2

E[X2 ]
.

Exercise 3.7. For d � 3, choose a and b such that a + br2−d = ũ(r), and a + bR2−d =
ũ(R). Notice that the harmonic functions given by u(x) = ũ(|x|) and v(x) = a + b|x|2−d

agree on ∂D. They also agree on D by Corollary 3.7. So u(x) = a + b|x|2−d . By similar
consideration we can show that u(x) = a + b log |x| in the case d = 2.

Exercise 3.8. Let x, y ∈ Rd , a = |x−y|. Suppose u is a positive harmonic function. Then

u(x) =
1

LB(x,R)

∫
B(x,R)

u(z) dz

� LB(y,R + a)
LB(x,R)

1
LB(y,R + a)

∫
B(y ,R+a)

u(z) dz =
(R + a)d

Rd
u(y).

This converges to u(y) as R → ∞, so u(x) � u(y), and by symmetry, u(x) = u(y) for
all x, y. Hence u is constant.

Exercise 3.11. Uniqueness is clear, because there is at most one continuous extension of u.
Let D0 ⊂ D be a ball whose closure is contained in D, which contains x. u is bounded and
harmonic on D1 = D0 \ {x} and continuous on D1 \ {x}. Show that this already implies
that u(z) = Ez [u(τ(D1))] on D1 and that the right hand side has an obvious harmonic
extension to D1 ∪ {x}, which defines the global extension.

Exercise 3.14. To obtain joint continuity one can show equicontinuity of G(x, · ) and
G( · , x) in D \ B(x, ε) for any ε > 0. This follows from the fact that these functions are
harmonic, by Theorem 3.35, and the estimates of Exercise 3.3.
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Exercise 3.15. Recall that

G(x, y) = − 1
π log |x − y| + 1

π Ex [log |B(τ) − y|].

The expectation can be evaluated (one can see how in the proof of Theorem 3.44). The
final answer is

G(x, y) =

{
− 1

π log |x/R − y/R| + 1
π log

∣∣ x
|x| − |x|yR−2

∣∣, if x �= 0, x, y ∈ B(0, R),
− 1

π log |y/R| if x = 0, y ∈ B(0, R).

Exercise 3.16. Suppose x, y �∈ B(0, r) and A ⊂ B(0, r) compact. Then, by the strong
Markov property applied to the first hitting time of ∂B(0, r),

µA (x, · ) =
∫

∂B(0,r)
µA (z, · ) dµ∂B(0,r)(x, dz) .

Use Theorem 3.44 to show that, for B ⊂ A Borel, µ∂B(0,r)(x,B) � Cµ∂B(0,r)(y,B) for
a constant C not depending on B. Complete the argument from there.

Exercise 4.1. Let α = log 2/ log 3. For the upper bound it suffices to find an efficient
covering of C by intervals of diameter ε. If ε ∈ (0, 1) is given, let n be the integer such
that 1/3n < 2ε � 1/3n−1 and look at the sets

[ n∑
i=1

xi

3i
,

n∑
i=1

xi

3i
+ ε
]

for (x1 , . . . , xn ) ∈ {0, 2}n .

These sets obviously cover C and each of them is contained in an open ball centred in an
interval of diameter 2ε. Hence

M(C, ε) � 2n = 3αn = 3α
(
3n−1)α � 3α (1/ε)α .

This implies dimM C � α .

For the lower bound we may assume we have a covering by intervals (xk −ε, xk +ε), with
xk ∈ C, and let n be the integer such that 1/3n+1 � 2ε < 1/3n . Let xk =

∑∞
i=1 xi,k3−i .

Then

B(xk − ε, xk + ε) ∩ C ⊂
{ ∞∑

i=1

yi

3i
: y1 = x1,k , . . . , yn = xn,k

}
,

and we need at least 2n sets of the latter type to cover C. Hence,

M(C, ε) � 2n = 3αn = (1/3)α
(
3n+1)α � (1/3)α (1/ε)α .

This implies dimM C � α .
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Exercise 4.2. Given ε ∈ (0, 1) find the integer n such that 1/(n + 1)2 � ε < 1/n2 . Then
the points in {1/k : k > n} ∪ {0} can be covered by n + 1 intervals of diameter ε, and n

further balls suffice to cover the remaining n points. Hence

M(E, ε) � 2n + 1 � 2n+1
n (1/ε)1/2 ,

implying dimM (E) � 1/2. On the other hand, as the distance between neighbouring
points is

1
k
− 1

k + 1
=

1
k(k + 1)

� 1
(k + 1)2 ,

we always need at least n − 1 sets of diameter ε to cover E, which implies

M(E, ε) � n − 1 � n−1
n+1 (1/ε)1/2 ,

hence dimM (E) � 1/2.

Exercise 4.3. Suppose E is a bounded metric space with dimM E < α. Choose ε > 0 such
that dimEM < α−ε. Then, for every k there exists 0 < δ < 1

k and a covering E1 , . . . , En

of E by sets of diameter at most δ with n � δ−α+ε . The α-value of this covering is at
most nδα � δε , which tends to zero for large k. Hence Hα

∞(E) = 0, and dim E � α.

Exercise 4.4. Indeed, as E ⊂ F implies dim E � dim F , it is obvious that

dim
∞⋃

k=1

Ek � sup
{

dim Ek : k � 1
}
.

To see the converse, we use

Hα
∞

( ∞⋃
k=1

Ek

)
� inf

{ ∞∑
k=1

∞∑
j=1

|Ej,k |α : E1,k , E2,k , . . . covers Ek

}
=

∞∑
k=1

inf
{ ∞∑

j=1

|Ej,k |α : E1,k , E2,k , . . . covers Ek

}
=

∞∑
k=1

Hα
∞(Ek ) .

Hence,

dim
∞⋃

k=1

Ek � sup
{

α � 0: Hα
∞
( ∞⋃

k=1

Ek

)
> 0
}

� sup
{

α � 0:
∞∑

k=1

Hα
∞
(
Ek

)
> 0
}

� ∞
sup
k=1

sup
{

α � 0: Hα
∞
(
Ek

)
> 0
}

.

This proves the converse inequality.
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Exercise 4.6. Suppose that f is surjective and α-Hölder continuous with Hölder constant
C > 0, and assume that Hαβ (E1) < ∞. Given ε, δ > 0 we can cover E1 with sets
B1 , B2 , . . . of diameter at most δ such that

∞∑
i=1

|Bi |αβ � Hαβ (E1) + ε .

Note that the sets f(B1), f(B2), . . . cover E2 and that |f(Bi)| � C |Bi |α � C δα . Hence

∞∑
i=1

|f(Bi)|β � Cβ
∞∑

i=1

|Bi |αβ � Cβ Hαβ (E1) + Cβ ε,

from which the claimed result for the Hausdorff measure readily follows.

Exercise 4.8. Start with d = 1. For any 0 < a < 1/2 let C(a) be the Cantor set obtained
by iteratively removing from each construction interval a central interval of 1 − 2a of its
length. Note that at the nth level of the construction we have 2n intervals each of length an .
It is not hard to show that C(a) has Hausdorff dimension log 2/ log(1/a), which solves the
problem for the case d = 1.

For arbitrary dimension d and given α we find a such that dim C(a) = α/d. Then the
Cartesian product C(a)× d. . . ×C(a) has dimension α. The upper bound is straightfor-
ward, and the lower bound can be verified, for example, from the mass distribution princi-
ple, by considering the natural measure that places mass 1/2dn to each of the 2dn cubes of
side length an at the nth construction level.

Exercise 4.14. Recall that it suffices to show that H1/2(Rec) = 0 almost surely. In the
proof of Lemma 4.21 the maximum process was used to define a measure on the set of
record points: this measure can be used to define ‘big intervals’ analogous to the ‘big
cubes’ in the proof of Theorem 4.18. A similar covering strategy as in this proof yields the
result.

Exercise 5.1. Use the Borel–Cantelli lemma for the events

En =
{

sup
n�t<n+1

B(t) − B(n) �
√

a log n
}

and test for which values of a the series P(En ) converges. To estimate the probabilities,
the reflection principle and Lemma 12.9 will be useful.

Exercise 5.2. The lower bound is immediate from the one-dimensional statement. For
the upper bound pick a finite subset S ⊂ ∂B(0, 1) of directions such that, for every x ∈
∂B(0, 1) there exists x̃ ∈ S with |x − x̃| < ε. Almost surely, all Brownian motions in
dimension one obtained by projecting {B(t) : t � 0} on the line determined by the vectors
in S satisfy the statement. From this one can infer that the limsup under consideration is
bounded from above by 1 + ε.
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Exercise 5.3. Let Ta = inf{t > 0: B(t) = a}. The proof of the upper bound can be based
on the fact that, for A < 1 and q > 1,

∞∑
n=1

P
{
ψ(T1 − T1−qn ) < 1

A 2−n
}

< ∞.

Exercise 5.4. Define the stopping time τ−1 = min{k : Sk = −1} and recall the definition
of pn from (5.4). Then

pn = P{Sn � 0} − P{Sn � 0, τ−1 < n}.

Let {S∗
j : j � 0} denote the random walk reflected at time τ−1 , that is

S∗
j = Sj for j � τ−1 ,

S∗
j = (−1) − (Sj + 1) for j > τ−1 .

Note that if τ−1 < n then Sn � 0 if and only if S∗
n � − 2, so

pn = P{Sn � 0} − P{S∗
n � − 2}.

Using symmetry and the reflection principle, we have

pn = P{Sn � 0} − P{Sn � 2} = P
{
Sn ∈ {0, 1}

}
,

which means that

pn = P{Sn = 0} =
(

n
n/2

)
2−n for n even,

pn = P{Sn = 1} =
(

n
(n−1)/2

)
2−n for n odd.

Recall that Stirling’s Formula gives m! ∼
√

2πmm+1/2e−m , where the symbol ∼ means
that the ratio of the two sides approaches 1 as m → ∞. One can deduce from Stirling’s
Formula that pn ∼

√
2/πn, which proves the result.

Exercise 5.5. Denote by In (k) the event that k is a point of increase for S0 , S1 , . . . , Sn

and by Fn (k) = In (k) \
⋃k−1

i=0 In (i) the event that k is the first such point. The events that
{Sk is largest among S0 , S1 , . . . Sk} and that {Sk is smallest among Sk , Sk+1 , . . . Sn} are
independent, and therefore P(In (k)) = pkpn−k .
Observe that if Sj is minimal among Sj , . . . , Sn , then any point of increase for S0 , . . . , Sj

is automatically a point of increase for S0 , . . . , Sn . Therefore for j � k we can write

Fn (j) ∩ In (k) =

Fj (j) ∩ {Sj � Si � Sk for all i ∈ [j, k]} ∩ {Sk is minimal among Sk , . . . , Sn} .

The three events on the right hand side are independent, as they involve disjoint sets of
summands; the second of these events is of the type considered in Lemma 5.9. Thus,

P(Fn (j) ∩ In (k)) � P(Fj (j)) p2
k−j pn−k

� p2
k−j P(Fj (j)) P {Sj is minimal among Sj , . . . , Sn} ,
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since pn−k � pn−j . Here the two events on the right are independent, and their intersection
is precisely Fn (j). Consequently P(Fn (j) ∩ In (k)) � p2

k−jP(Fn (j)) .

Decomposing the event In (k) according to the first point of increase gives

n∑
k=0

pkpn−k =
n∑

k=0

P(In (k)) =
n∑

k=0

k∑
j=0

P(Fn (j) ∩ In (k))

�
�n/2�∑
j=0

j+�n/2�∑
k=j

p2
k−jP(Fn (j)) �

�n/2�∑
j=0

P(Fn (j))
�n/2�∑
i=0

p2
i .

(13.2)

This yields an upper bound on the probability that {Sj : j = 0, . . . , n} has a point of
increase by time n/2; but this random walk has a point of increase at time k if and only if
the reversed walk {Sn − Sn−i : i = 0, . . . , n} has a point of increase at time n − k. Thus,
doubling the upper bound given by (13.2) proves the statement.

Exercise 5.7. In the proof of Exercise 5.5 we have seen that,

n∑
k=0

pkpn−k =
n∑

k=0

P(In (k)) =
n∑

k=0

k∑
j=0

P(Fn (j) ∩ In (k)) .

By Lemma 5.9, we have, for j � k � n,

P(Fn (j) ∩ In (k)) � P(Fn (j) ∩ {Sj � Si � Sk for j � i � k})
� P(Fn (j))p2

�(k−j )/2�.

Thus,

n∑
k=0

pkpn−k �
n∑

k=0

k∑
j=0

P(Fn (j))p2
�(k−j )/2� �

n∑
j=0

P(Fn (j))
n∑

i=0

p2
�i/2�.

This implies the statement.

Exercise 5.10. Suppose that X is an arbitrary random variable with vanishing expectation
and finite variance. For each n ∈ N divide the intersection of the support of X with
the interval [−n, n] into finitely intervals with mesh < 1

n . If x1 < · · · < xm are the
partition points, construct the law of Xn by placing, for any j ∈ {0, . . . , m}, atoms of size
P{X ∈ [xj , xj+1)} in position E[X | xj � X < xj+1], using the convention x0 = −∞
and xm+1 = ∞. By construction, Xn takes only finitely many values.
Observe that E[Xn ] = 0 and Xn converges to X in distribution. Moreover, one can show
that τn → τ almost surely. This implies that B(τn ) → B(τ) almost surely, and therefore
also in distribution, which implies that X has the same law as B(τ). Fatou’s lemma implies
that

E[τ ] � lim inf
n↑∞

E
[
τn

]
= lim inf

n↑∞
E
[
X2

n

]
< ∞.

Hence, by Wald’s second lemma, E[X2 ] = E[B(τ)2 ] = E[τ ].
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Exercise 5.11. Note that∣∣nL{t ∈ [0, 1] : S∗
n (t) > 0

}
− #
{
k ∈ {1, . . . , n} : Sk > 0

}∣∣
is bounded by #

{
k ∈ {1, . . . , n} : SkSk−1 � 0

}
. Hence it suffices to show that

1
n

n∑
k=1

P
{
SkSk−1 � 0

}
−→ 0.

Note that, for any M > 0, we have {SkSk−1 � 0} ⊂ {|Sk − Sk−1 | > M} ∪ {|Sk−1 | <

M}. One can now choose M > 0 so large that the probability of the first event on the right,
which does not depend on k, is arbitrarily close to zero. Donsker’s invariance principle
implies that, for any M > 0, one has P{|Sk−1 | < M} → 0, as k → ∞.

Exercise 5.12 (b). For a continuous function f : [0,∞) → R and any a > 0 define τf
a =

inf{t � 0: f(t) = a}, τf
a,0 = inf{t � τf

a : f(t) = 0} and

σf
0,a = sup{0 � t � τf

a,0 : f(t) = 0}.

Define a mapping Φa on the set of continuous functions by letting Φaf = f if τf
a,0 = ∞

and otherwise

Φaf(t) =

{
f(t) if t � σf

0,a or t � τf
a,0 ,

f(τf
a,0 + σf

a,0 − t) if σf
a,0 � t � τf

a,0 .

For fixed n ∈ N, we look at the functions S∗
n : [0,∞) → R associated to a simple random

walk as in Donsker’s invariance principle. It is easy to see that the laws of S∗
n and ΦaS∗

n

coincide.

The function Φa is continuous on the set of all continuous functions taking positive and
negative values in every neighbourhood of every zero. By Theorem 2.28, Brownian motion
is almost surely in this set. Hence, by property (v) in the Portmanteau theorem, see Theo-
rem 12.6 in the appendix, and Donsker’s invariance principle, the laws of {B(t) : t � 0}
and {ΦaB(t) : t � 0} coincide, which readily implies our claim.

Exercise 6.6. From Exercise 2.17 we get, for any x ∈ (0, 1) that

Ex

[
T1
∣∣T1 < T0

]
=

1 − x2

3
, Ex

[
T0
∣∣T0 < T1

]
=

2x − x2

3
,

where T0 , T1 are the first hitting times of the points 0, resp. 1.
Define stopping times τ (x )

0 = 0 and, for j � 1,

σ(x )
j = inf{t > τ (x )

j−1 : B(t) = x}, τ (x )
j = inf{t > σ(x )

j : B(t) ∈ {0, 1}} .

Let N (x ) = min{j � 1: B(τ (x )
j ) = 1}. Then N (x ) is geometric with parameter x. We

have ∫ T1

0
1{0 � B(s) � 1} ds = lim

x↓0

N (x )∑
j=1

(τ (x )
j − σ(x )

j ) .
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and this limit is increasing. Hence

E
∫ T1

0
1{0 � B(s) � 1} ds

= lim
x↓0

E
[
N (x ) − 1

]
E
[
τ (x )
1 − σ(x )

1

∣∣B(τ (x )
1 ) = 0

]
+ lim

x↓0
E
[
τ (x )
1 − σ(x )

1

∣∣B(τ (x )
1 ) = 1

]
= lim

x↓0

( 1
x
− 1
) 2x − x2

3
+ lim

x↓0

1 − x2

3
= 1 .

Exercise 6.7. Observe that E exp{λXj} = eλ/(2− eλ ) for all λ < log 2, and hence, for a
suitable constant C and all small λ > 0,

E exp
{
λ(Xj − 2)

}
� exp{λ2 + Cλ3},

by a Taylor expansion. Using this for λ = ε
2 we get from Chebyshev’s inequality,

P
{ k∑

j=1

(Xj − 2) > mε
}

� exp{−mε2

2 }
(
E exp{ ε

2 (Xj − 2)}
)k

� exp
{
− mε2

2

}
exp
{
m
(

ε2

4 + C ε3

8

)}
,

which proves the more difficult half of the claim. The inequality for the lower tail is
obvious.

Exercise 6.8. We have that

P
{ (X + �)2

2
� t
}

= P
{
−
√

2t − � � X �
√

2t − �
}

.

So the density of the left hand side is

1
2
√

πt
e−(2t+�2 )/2

[
e�

√
2t + e−�

√
2t
]
,

which by Taylor expansion is

1√
πt

e−(2t+�2 )/2
∞∑

k=0

(�
√

2t)2k

(2k)!
.

Recall that X2/2 is distributed as Gamma( 1
2 ), and given N the sum

∑N
i=1 Zi is distributed

as Gamma(N). By conditioning on N , we get that the density of the right hand side is

∞∑
k=0

�2k e−�2 /2tk−1/2e−t

2kk!Γ(k + 1
2 )

.

Recall that

Γ(k +
1
2
) =

√
π(2k)!
22kk!

,

and so the densities of both sides are equal.
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Exercise 7.1. Given F ∈ D[0, 1] approximate f = F ′ by the deterministic step process

fn =
2n∑
i=1

1((i−1)2−n ,i2−n ]2n
[
F
(
i2−n
)
− F
(
(i − 1)2−n

)]
.

Exercise 7.2. Use that
∫ T

0 H(s) dB(s) =
∫∞

0 HT (s) dB(s).

Exercise 7.4. First establish a Taylor formula of the form∣∣f(x, y) − f(x0 , y0) −∇y f(x0 , y0) · (y − y0)

−∇xf(x0 , y0) · (x − x0) − 1
2 (x − x0)T Hesxf(x0 , y0)(x − x0)

∣∣
� ω1(δ,M) |y − y0 | + ω2(δ,M)|x − x0 |2 ,

where Hesxf = (∂ij f) is the d × d-Hessian matrix of second derivatives in the directions
of x, and

ω1(δ,M) = sup
x 1 , x 2 ∈[−M , M ]d , y 1 , y 2 ∈[−M , M ]m

|x 1 −x 2 |∧|y 1 −y 2 |< δ

∣∣∇y f(x1 , y1) −∇y f(x2 , y2)
∣∣,

and the modulus of continuity of Hesxf by

ω2(δ,M) = sup
x 1 , x 2 ∈[−M , M ]d , y 1 , y 2 ∈[−M , M ]m

|x 1 −x 2 |∧|y 1 −y 2 |< δ

‖Hesxf(x1 , y1) − Hesxf(x2 , y2)‖,

where ‖ · ‖ is the operator norm of a matrix. Then argue as in the proof of Theorem 7.14.

Exercise 7.5. First use Brownian scaling and the Markov property, as in the original proof
of Theorem 2.37 to reduce the problem to showing that the distribution of B(T (1)) (using
the notation of Theorem 2.37) is the Cauchy distribution.
The map defined by f(z) = z

2−z , for z ∈ C, takes the half-plane {(x, y) : x < 1} onto
the unit disk and f(0) = 0. The image measure of harmonic measure on V (1) from 0
is the harmonic measure on the unit sphere from the origin, which is uniform. Hence the
harmonic measure µV (1)(0, · ) is the image measure of the uniform distribution � on the
unit sphere under f−1 , which can be calculated using the derivative of f .

Exercise 7.6. Use that θ(t) = W2(H(t)) and limt↑∞ H(t) = ∞.

Exercise 7.9. Suppose h is supported by [0, b] and look at the partitions given by t(n )

k =
bk2−n , for k = 0, . . . , 2n . By Theorem 7.33 and Theorem 6.19 we can choose a continu-
ous modification of the process {

∫ t

0 sign(B(s) − a) dB(s) : a ∈ R}. Hence the Lebesgue
integral on the left hand side is also a Riemann integral and can be approximated by the
sum

2n −1∑
k=0

b2−nh(t(n )

k )
(∫ t

0
sign(B(s) − t(n )

k ) dB(s)
)

=
∫ t

0
Fn (B(s)) dB(s),

where

Fn (x) =
2n −1∑
k=0

b2−nh(t(n )

k ) sign
(
x − t(n )

k

)
, for n ∈ N.
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This is a uniformly bounded sequence, which is uniformly convergent to the Lebesgue
integral

F (x) =
∫ ∞

−∞
h(a) sign(x − a) da.

Therefore the sequence of stochastic integrals converges in L2 to the stochastic integral∫∞
0 F (B(s)) dB(s), which is the right hand side of our formula.

Exercise 7.12. By Theorem 5.35 we may replace T by the first exit time τ from the
interval (−1, 1) by a linear Brownian motion.
For statement (a) we use that

P{τ < x} = 2P
{

max
0�t�x

B(t) > 1
}
− P
{

max
0�t�x

B(t) > 1, min
0�t�x

B(t) < −1
}
.

The subtracted term is easily seen to be of smaller order. For the first term we can use the
reflection principle and Lemma 12.9 to see that

P
{

max
0�t�x

B(t) > 1
}

= 2 P
{
B(t) > 1

}
∼ 2
√

x
2π e−

1
2 x .

Combining these results leads to the given asymptotics.

Statement (b) can be inferred from the equation

P{τ > x} = P1
{
B(s) ∈ (0, 2) for all 0 � s � x

}
and the representation of the latter probability in (7.15).

Exercise 8.1. Suppose that u is subharmonic and B(x, r) ⊂ U . Let τ be the first exit time
from B(x, r), which is a stopping time. As ∆u(z) � 0 for all z ∈ U we see from the
multidimensional version of Itô’s formula that

u(B(t ∧ τ)) � u(B(0)) +
d∑

i=1

∫ t∧τ

0

∂u

∂xi
(B(s)) dBi(s).

Note that ∂u/∂xi is bounded on the closure of B(x, r), and thus everything is well-defined.
We can now take expectations, and use Exercise 7.2 to see that

Ex

[
u(B(t ∧ τ))

]
� Ex

[
u(B(0))

]
= u(x).

Now let t ↑ ∞, so that the left hand side converges to Ex [u(B(τ))] and note that this gives
the mean value property for spheres. The result follows by integrating over r.

Exercise 8.3. Let u be a solution of the Poisson problem on U . Define open sets Un ↑ U

by

Un =
{
x ∈ U : |x − y| > 1

n for all y ∈ ∂U
}
.

Let τn be the first exit time of Un , which is a stopping time. As 1
2 ∆u(x) = −g(x) for all

x ∈ U we see from the multidimensional version of Itô’s formula that

u(B(t ∧ τn )) = u(B(0)) +
d∑

i=1

∫ t∧τn

0

∂u

∂xi
(B(s)) dBi(s) −

∫ t∧τn

0
g(B(s)) ds.
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Note that ∂u/∂xi is bounded on the closure of Un , and thus everything is well-defined.
We can now take expectations, and use Exercise 7.2 to see that

Ex

[
u(B(t ∧ τn ))

]
= u(x) − Ex

∫ t∧τn

0
g(B(s)) ds.

Note that both integrands are bounded. Hence, as t ↑ ∞ and n → ∞, bounded conver-
gence yields that

u(x) = Ex

∫ τ

0
g(B(s)) ds,

where we have used the boundary condition to eliminate the left hand side.

Exercise 8.5. First note that the lower bound is elementary, because τ > 1 with positive
probability. For the upper bound we proceed in three steps. In the first step, we prove an
inequality based on Harris’ inequality, see Theorem 5.7.
Let f1 , f2 be densities on [0,∞). Suppose that the likelihood ratio ψ(r) = f2 (r)

f1 (r) is increas-
ing, and h : [0,∞) → [0,∞) is decreasing on [a,∞). Then∫∞

0 h(r)f2(r) dr∫∞
0 h(r)f1(r) dr

� ψ(a) +

∫∞
a

f2(r) dr∫∞
a

f1(r) dr
. (13.3)

To see this, observe first that
∫ a

0 h(r)f2(r) dr � ψ(a)
∫ a

0 h(r)f1(r) dr. Write Ta =∫∞
a

f1(r) dr. Using Harris’ inequality, we get∫ ∞

a

h(r)f2(r) dr = Ta

∫ ∞

a

h(r)ψ(r)
f1(r)
Ta

dr

� Ta

∫ ∞

a

h(r)
f1(r)
Ta

dr

∫ ∞

a

ψ(r)
f1(r)
Ta

dr

=
1
Ta

∫ ∞

a

h(r)f1(r) dr

∫ ∞

a

f2(r) dr,

Combining the two inequalities proves (13.3).
As a second step, we show that, for t1 � t2 ,

P0
{
B[t2 , t2 + s] ∩ A �= ∅

}
� Ca P0

{
B[t1 , t1 + s] ∩ A �= ∅

}
,

where

Ca =
f2(a)
f1(a)

+
1

P0{|B(t1)| > a} � e
|a |2
2 t 1 +

1
P0{|B(t1)| > a}

and fj is the density of |B(tj )|. This follows by applying (13.3) with

h(r) =
∫

Py{B[0, s] ∩ A �= ∅} d�0,r (y).

Finally, to complete the proof, we show that

P0
{
B(0, τ) ∩ A �= ∅

}
� Ca

1−e−1 / 2 P
{
B[0, 1] ∩ A �= ∅

}
,

where Ca � e|a|
2

+ P0{|B( 1
2 )| > a}−1 . To this end, let H(I) = P0{B(I) ∩ A �= ∅},
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where I is an interval. Then H satisfies H[t, t + 1
2 ] � CaH[ 1

2 , 1] for t � 1
2 . Hence, we

can conclude that

EH[0, τ ] � H[0, 1] +
∞∑

j=2

e−j/2H[ j
2 , j+1

2 ] � Ca

∞∑
j=0

e−j/2H[0, 1],

which is the required statement.

Exercise 8.10. Note that X × X is itself a compact metric space. Then, by the Stone–
Weierstrass theorem, the vector space spanned by the functions of the form f(x, y) =
g(x)h(y), where g, h are continuous functions on X , is dense in the space C(X × X) of
continuous functions on X × X . Hence weak convergence is implied by the fact that,

lim
n→∞

∫
f dµn ⊗ µn = lim

n→∞

∫
g dµn

∫
h dµn =

∫
g dµ

∫
h dµ =

∫
f dµ ⊗ µ.

Exercise 8.11. For the proof of the upper bound, choose M > 0 such that

inf
x∈B(0,1)

Px

{
B(t) ∈ B(0,M) for all 0 � t � 1

}
� 1

2 .

Then, for all t � 1,∫
Px{τB(0,1) < t} dx �


t�∑
j=1

∫
Px

{
B[j − 1, j) ∩ B(0, 1) �= ∅

}
dx

� 2

t�∑
j=1

∫
Px

{
B(j) ∈ B(0,M)

}
dx

= 2

t�∑
j=1

∫
B(0,M )

∫
pj (x, y) dx dy �

(
4L(B(0, 1))Md

)
t.

For the lower bound, we argue that∫
Px{τB(0,1) < t} dx

�
�t�∑
j=1

∫
Px

{
B[0, j − 1) ∩ B(0, 1) = ∅, B(j) ∈ B(0, 1)

}
dx

�
�t�∑
j=1

∫
P0
{
B[1, j) ∩ B(0, 2) = ∅, B(j) ∈ B(x, 1)

}
dx,

reversing time in the last step. Using Fubini’s theorem, we rewrite the right hand side as

�t�∑
j=1

E0

[
1
{
B[1, j) ∩ B(0, 2) = ∅}

∫
B(B (j ),1)

dx
]

�
( 1

2L(B(0, 1))P0{B[1,∞) ∩ B(0, 2) = ∅}
)
t.
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Exercise 9.3. Use arguments as in the proof of Theorem 9.22 to transfer the results of
Theorem 9.8 from intersections of independent Brownian motions to self-intersections of
one Brownian motion.

Exercise 9.8. An example can be constructed as follows: Let A1 and A2 be two disjoint
closed sets on the line such that the Cartesian squares A2

i have Hausdorff dimension less
than 1/2 yet the Cartesian product A1 × A2 has dimension strictly greater than 1/2. Let
A be the union of A1 and A2 . Then Brownian motion {B(t) : t � 0} on A is 1-1 with
positive probability (if B(A1) is disjoint from B(A2)) yet with positive probability B(A1)
intersects B(A2).
For instance let A1 consist of points in [0, 1] where the binary nth digit vanishes whenever
(2k)! � n < (2k + 1)! for some k. Let A2 consist of points in [2, 3] where the binary
nth digit vanishes whenever (2k − 1)! � n < (2k)! for some k. Then dim(A2

i ) = 0 for
i = 1, 2 yet dim(A1 × A2) � dim(A1 + A2) = 1, in fact dim(A1 × A2) = 1.

Exercise 9.10. Let {B1(t) : 0 � t � 1} be the first component of the planar motion. By
Kaufman’s theorem, almost surely,

dim S(a) = 2 dim{t ∈ [0, 1] : B1(t) = a}

and, as in Corollary 9.30, the dimension on the right equals 1/2 for every a ∈ (min{x :
(x, y) ∈ B[0, t]},max{x : (x, y) ∈ B[0, t]}).

Exercise 10.2. For every decomposition E =
⋃∞

i=1 Ei of E into bounded sets, we have,
using countable stability of Hausdorff dimension,

∞
sup
i=1

dimM Ei � ∞
sup
i=1

dim Ei = dim
∞⋃

i=1

Ei = dim E ,

and passing to the infimum yields the statement.

Exercise 10.7. The argument is sketched in [La99].

Exercise 10.9. For (a) note that Theorem 10.28 can be read as a criterion to determine the
packing dimension of a set E by hitting it with a limsup random fractal. Hence dimP (A∩
E) can be found by evaluating P{A∩A′ ∩E = ∅} for A′ an independent copy of A. Now
use that A ∩ A′ is also a discrete limsup fractal.
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Exercise 10.10. To apply Theorem 7.25 for the proof of Lemma 10.40 (a) we shift the
cone by defining a new tip z̃ as follows:

• If α < π the intersection of the line through x parallel to the central axis of the cone
with the boundary of the dual cone,

• if α > π the intersection of the line through x parallel to the central axis of the cone
with the boundary of the cone.

Note that z + W [α, ξ] ⊂ z̃ + W [α, ξ] and there exists a constant C > 1 depending only
on α such that |z − z̃| < Cδ. There is nothing to show if Cδ > ε/2 and otherwise

Px

{
B(0, Tε(z)) ⊂ z + W [α, ξ]

}
� Px

{
B(0, Tε/2(z̃)) ⊂ z̃ + W [α, ξ]

}
.

By shifting, rotating and scaling the Brownian motion and by Theorem 7.25 we obtain an
upper bound for the right hand side of

P1
{
B(0, T ε

δ (C + 1
2 )−1 (0)) ⊂ W [α, 0]

}
= 2

π arctan
(
C0
(

δ
ε

) π
α
)

� C1
(

δ
ε

) π
α ,

where C0 , C1 > 0 are suitable constants.



Selected open problems

In this section we give a personal selection of problems related to the material of this book,
which are still open.

(1) Given an almost sure property of Brownian paths, characterise those continuous func-
tions f such that B + f also has this property almost surely.

Recall that by the Cameron–Martin theorem, Theorem 1.38, for the functions f ∈
D[0, 1] all almost sure properties of B carry over to B + f . Hence only functions
f ∈ C[0, 1] \ D[0, 1] are of interest.

The answer to this problem depends on the property one is looking at. Some problems
are easy (and fully resolved) and others are very tricky. Here are some examples:

(a) Nowhere differentiable. We have seen in Exercise 1.12 that for all continuous
functions f : [0, 1] → R, the function B + f is nowhere differentiable.

(b) Not hitting points. Taking d � 2 the problem is to characterise the functions
f : [0, 1] → Rd with the property

P
{
∃t ∈ (0, 1) such that B(t) + f(t) = 0

}
= 0. (13.1)

Recall that there are continuous space-filling curves f , so that it is plausible
that some continuous f violate the statement in the display. For d = 2 Gra-
versen [Gr82] shows that, for any α < 1/2, there exist α-Hölder continuous
functions f violating (13.1), and Le Gall [LG88a] shows that any α-Hölder con-
tinuous f with α � 1/2 satisfies (13.1). The latter paper also contains finer
results near the critical case α = 1/2 and results for dimensions d � 3. An
extension to Lévy processes is given by Mountford [Mo89].

(c) No isolated zeros. Recall from Theorem 2.28 that, for a linear Brownian motion
{B(t) : t ∈ [0, 1]}, the set Zeros = {t ∈ [0, 1] : B(t) = 0} has no isolated
points. Using the law of the iterated logarithm in the form of Corollary 5.3, one
can easily construct functions f ∈ C[0, 1] such that {t ∈ [0, 1] : B(t) + f(t) =
0} has an isolated point in the origin. The problem is therefore to characterise
those f ∈ C[0, 1] such that the process {B(t)+f(t) : 0 < t � 1} has no isolated
zeros.

(d) No double points. Take Brownian motion {B(t) : 0 � t � 1} in dimension
d = 4. Characterise those functions f ∈ C([0, 1], R4) such that the process
{B(t) + f(t) : 0 � t � 1} has no double points.
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(2) What is the minimal Hausdorff dimension of a curve contained in the path of planar
Brownian motion?

We have seen in Theorem 11.10 that the outer boundary is a curve contained in pla-
nar Brownian motion, which has Hausdorff dimension 4/3. It is not known whether
this is the curve of minimal dimension. The best known lower bound stems from Pe-
mantle [Pe97], where it is shown that the planar Brownian path does not contain a line
segment. It is also unknown whether there exists a Lipschitz curve intersecting the range
of planar Brownian motion in a set of positive length.

(3) Is the set of double points of planar Brownian motion totally disconnected?

It is natural to conjecture that, almost surely, all connected components of the set of dou-
ble points of a planar Brownian motion are singletons, but no proof is known. For Brow-
nian motion in R3 this follows from the fact that the set of double points has H1-measure
zero, together with a general fact from geometric measure theory, see e.g. [Fa97a].

(4) Can one move between any two domains of the complement of the range of a planar
Brownian motion by passing through only a finite number of points of the range?

This question is due to Wendelin Werner. To put it more formally let {B(t) : t � 0} be
a planar Brownian motion. We ask whether, almost surely, for any x, y ∈ R2 \ B[0, 1]
there exists a curve γ : [0, 1] → R2 with γ(0) = x, γ(1) = y such that

γ[0, 1] ∩ B[0, 1]

is a finite set.

(5) For which gauge functions φ does a planar Brownian motion visit some (random) point
z ∈ R2 in a set of positive φ-Hausdorff measure?

This problem is related to finding the ‘maximal multiplicity’ of points on a planar Brow-
nian curve {B(t) : t � 0}. We know from Corollary 9.29 that, almost surely,

dim
{
t > 0: B(t) = z

}
= 0 for all z ∈ R2 .

It is however unknown for which gauge functions φ we can find an (exceptional) point z

such that Hφ{t > 0: B(t) = z} > 0.

(6) What is the Hausdorff dimension of the set of points where the ‘local time’ of planar
Brownian motion takes a particular value?

This problem, which is due to Bass, Burdzy and Khoshnevisan [BBK94], requires some
background from that paper. Recall from Theorem 9.24 that planar Brownian motion
has points of infinite multiplicity. Similar arguments can also be used to show that the
Hausdorff dimension of the set of points of infinite multiplicity is still two. How far can
we go before we see a reduction in the dimension?
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A natural way is to count the number of excursions from a point. To be explicit, let
{B(s) : s � 0} be a planar Brownian motion and fix x ∈ R2 and ε > 0. Let S−1 = 0
and, for any integer j � 0, let Tj = inf{s > Sj−1 : B(s) = x} and Sj = inf{s >

Tj : |B(s) − x| � ε}. Then define

Nx
ε = max

{
j � 0: Tj < ∞

}
,

which is the number of completed excursions from x reaching ∂B(x, ε). Observe that
limε↓0 Nx

ε = ∞ if and only if x has infinite multiplicity. It is therefore a natural ques-
tion to ask how rapidly Nx

ε can go to infinity when ε ↓ 0. Bass, Burdzy and Khosh-
nevisan [BBK94] show that, almost surely,

1
2

� sup
x∈R2

lim sup
ε↓0

Nx
ε

log(1/ε)
� 2e,

where the limsup represents a ‘local time’ of planar Brownian motion in x. It is an open
problem to find the value of the supremum and to identify, for any 0 < a < 2, the value
of

dim
{

x ∈ R2 : lim
ε↓0

Nx
ε

log(1/ε)
= a
}

.

Partial progress on this problem was made by Bass, Burdzy and Khoshnevisan [BBK94],
who show a lower bound of 2 − a for the Hausdorff dimension for all 0 < a < 1

2 , and
an upper bound of 2 − a

e for all 0 < a < 2e.

(7) Does planar Brownian motion have triple points which are also pioneer points?

Let {B(t) : 0 � t � 1} be a planar Brownian motion. A point x ∈ R2 is called a
pioneer point if there exists 0 < t � 1 such that x = B(t) and x lies on the outer
boundary of B[0, t], i.e. on the boundary of the unbounded component of R2 \ B[0, t].
Note that all points on the outer boundary of B[0, 1] itself are pioneer points, but not
vice versa. Indeed, Lawler, Schramm and Werner [LSW02] show, using arguments like
in Chapter 11, that the Hausdorff dimension of the set of pioneer points is 7

4 .

Burdzy and Werner in [BW96] show that, almost surely, there are no triple points of
planar Brownian motion on the outer boundary and conjecture that there are also no
triple points which are pioneer points. It is not hard to see (using nontrivial knowledge
about intersection exponents) that the set of triple points which are also pioneer points
has Hausdorff dimension zero, but it is open whether this set is empty.
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intersection exponents, 288, 327, 343, 344, 345
intersections

dimension, 261
existence, 255, 257, 261
nonexistence, 255, 257

intrinsic, 96
inversion at the circle, 86
irregular point, 224
Itô’s formula

multidimensional, 200
nonsmooth case, 210
one-dimensional, 196
with additional dependence, 197



402 Index

Itô, Kiyoshi, 187, 195, 209, 258

Kahane, Jean-Pierre, 33, 287, 326
Kakutani’s theorem, 234
Kakutani, Shizuo, 6, 30, 34, 94, 150, 234, 253, 287
Kallianpur–Robbins law, 93, 95
Kaufman’s theorem, 115, 279
Kelvin transform, 94
kernel, 232
Khoshnevisan, Davar, 287, 302, 325, 384
Kochen–Stone lemma, 74, 91
Kolmogorov, A.N., 33, 133, 149, 223, 240

Laplace transform, 348
Laplace’s method, 207
law of

maximum, 45
law of large numbers, 14
law of the iterated logarithm

failure, 290
for Brownian motion, 118
for general random walk, 127
for simple random walk, 121
Hartman and Wintner, 127, 149
Khinchin, 119, 121, 149
Kolmogorov, 149

Lawler, Gregory, 150, 222, 254, 326, 343, 385
Le Gall, J.-F., 117, 152, 187, 222, 254, 288, 383
Lebesgue’s thorn, 250
Lévy, Paul, viii, 7, 9, 16, 22, 33, 50, 160, 212, 354
Lévy’s downward theorem, 354
Lévy’s theorem

for local time, 212
for the maximum process, 50

limsup fractal, 293
Liouville’s theorem, 70, 253
local maximum, 39
local time

at zero, 154
definition, 210
for planar Brownian motion, 385
Lévy’s theorem, 212

Loewner evolution, 336
Loewner’s equation, 332, 344
loop erasure, 334
loop-erased random walk, 333
lower envelope, 73
Lyons’ theorem, 266
Lyons, Russell, 117, 265, 287, 325

macroscopic, 1
Makarov’s theorem, 254, 326
Mandelbrot’s conjecture, 254
Markov

strong property, 43
Markov process, 49
Markov property, 37
Markov transition kernel, 49
Markov, Andrej, 63
Martin kernel, 235
martingale, 53

binary splitting, 127
discrete, 352
reverse, 354

uniformly integrable, 353
martingale inequality, 355
mass distribution, 105
mass distribution principle, 105
max-flow min-cut theorem, 359
McKean’s theorem, 102, 114
McKean, Henry, 102, 114, 117, 222, 258, 287
microscopic, 1
Minkowski dimension

lower, 97
upper, 97

modification, 194
modulus normal distribution, 49
modulus of continuity, 14, 16, 31
monotonicity, 100

in an interval, 18
multiple points

existence, 272
nonexistence, 272

neighbourhood recurrent, 72
nonpolar set, 85
nowhere differentiable, 21

optional stopping theorem, 54
Orey and Taylor’s theorem, 291
Ornstein–Uhlenbeck diffusion, 14, 61
outer boundary, 87, 326, 328, 344, 384
outer measure, 100

packing dimension, 299
packing number, 298
Paley, Wiener, Zygmund’s theorem, 21
Paley–Wiener stochastic integral, 26
Paley–Zygmund inequality, 74, 91
Pemantle, Robin, 94, 117, 150, 384
percolation, 266
percolation interface, 337
percolation limit set

definition, 258
generation dependent, 264

perfect set, 48
Perkins, Edwin, 34, 188, 287, 307, 326, 384
permutation

finite, 19
Pitman’s theorem, 64, 152
Pitman, Jim, 64, 118, 140, 152, 187, 222
Plancherel’s theorem, 253
Poincaré cone condition, 224
point of increase

global, 125
local, 123

point recurrent, 72
Poisson kernel, 85
Poisson problem

definition, 226
uniqueness, 251

Poisson’s formula, 85
Poisson, Siméon-Denis, 94
polar

for Brownian motion, 85
for percolation, 259
points, 47
set, 234



Index 403

Portmanteau theorem, 347
potential

α-potential, 108
electrostatic, 84
gravitational, 108
Newtonian, 84

potential kernel, 80, 235
product formula, 301
progressively measurable, 190

quadratic variation, 23, 195

radial potential, 234
random closed set, 263
random field, 166
random walk, 1
Ray’s theorem, 177
Ray–Knight theorem, 5, 170
record time, 106
recurrent, 72

neighbourhood, 72
point, 72

reflected Brownian motion, 146
reflection principle, 44, 70, 217
regular point, 224
regularisation, 299
removable set, 253
resolvent operator, 218
reverse Hölder, 102, 117
reverse martingale, 354
Riemann mapping theorem, 202
right-continuity, 42

sample path properties, 7
scaling invariance, 4
Schramm, Oded, 117, 150, 222
Schramm–Loewner evolution, see SLE
second arcsine law, 137, 215
second moment method, 260
semimartingale, 64
singular measure, 25
Skorokhod embedding problem, 4
Skorokhod embedding theorem, 127
SLE, 327

chordal, 338, 339
radial, 336, 339

Smirnov, Stanislav, 337
spectrum, 291
Spitzer’s law, 209
Spitzer, Frank, 94, 117, 209, 222, 254
stable subordinator, 51, 252
stationary increments, 2
stochastic integral

as martingale, 194
construction, 191
continuous, 194
Fubini’s theorem, 221
of Paley–Wiener, 26
up to finite time, 194

stochastic integration, 6, 190
stochastic Loewner evolution, see SLE

stochastic process, 7
stopping time

definition, 40

for two-sided motion, 60
reverse, 60

Strassen’s law, 150
subharmonic function, 65
submartingale, 53

tail
0-1 law, 39
σ-algebra, 39
event, 39

Tanaka’s formula, 210
Taylor, S. James, 35, 109, 117, 144, 179, 188, 223,

258, 287, 290, 324
thick times, 289, 325
thin times, 289, 325
transient, 72
trees

terminology, 358
Tricot, Claude, 326
Trotter’s theorem, 165
typical times, 20

universal object, 1
universality, 1
upcrossing excursion, 275
upper envelope, 118

value of a covering, 98
value of a packing, 298
visible part of a set, 324

Wald’s identity, see Wald’s lemma
Wald’s lemma, 55

first, 55
second, 56

weak convergence, 252, 346
Weierstrass function, 117
Werner, Wendelin, 150, 222, 384
Wiener sausage, 116, 254
Wiener’s theorem, 9
Wiener, Norbert, 9
Williams, David, 63, 146, 152, 187, 351
winding number, 209

Xiao, Yimin, 116, 289, 302

Yor, Marc, 33, 187, 222

zero set
Hausdorff dimension, 108
Hausdorff measure, 103
no isolated points, 48
uncountable, 48

zero-one law
for tail events, 39
Galton–Watson, 286
of Blumenthal, 38
of Hewitt–Savage, 19


	Cover
	Half-title
	Series-title
	Title
	Copyright
	Contents
	Preface
	Frequently used notation
	Numbers:
	Topology of Euclidean space Rd :
	Binary relations:
	Vectors, functions, and measures:
	Function spaces:
	Probability measures and σ-algebras:
	Stopping times:
	Systems of subsets in Rd :
	Potential theory:
	Sets and processes associated with Brownian motion:

	Motivation
	1 Brownian motion as a random function
	1.1 Paul Lévy’s construction of Brownian motion
	1.1.1 Definition of Brownian motion
	1.1.2 Paul Lévy’s construction of Brownian motion
	1.1.3 Simple invariance properties of Brownian motion

	1.2 Continuity properties of Brownian motion
	1.3 Nondifferentiability of Brownian motion
	1.4 The Cameron–Martin theorem
	Exercises
	Notes and comments

	2 Brownian motion as a strong Markov process
	2.1 The Markov property and Blumenthal’s 0-1 law
	2.2 The strong Markov property and the reflection principle
	2.2.1 The reflection principle
	2.2.2 The area of planar Brownian motion
	2.2.3 The zero set of Brownian motion

	2.3 Markov processes derived from Brownian motion
	2.4 The martingale property of Brownian motion
	Exercises
	Notes and comments

	3 Harmonic functions, transience and recurrence
	3.1 Harmonic functions and the Dirichlet problem
	3.2 Recurrence and transience of Brownian motion
	3.3 Occupation measures and Green’s functions
	3.4 The harmonic measure
	Exercises
	Notes and comments

	4 Hausdorff dimension: Techniques and applications
	4.1 Minkowski and Hausdorff dimension
	4.1.1 The Minkowski dimension
	4.1.2 The Hausdorff dimension
	4.1.3 Upper bounds on the Hausdorff dimension

	4.2 The mass distribution principle
	4.3 The energy method
	4.4 Frostman’s lemma and capacity
	Exercises
	Notes and comments

	5 Brownian motion and random walk
	5.1 The law of the iterated logarithm
	5.2 Points of increase for random walk and Brownian motion
	5.3 Skorokhod embedding and Donsker’s invariance principle
	5.3.1 The Dubins’ embedding theorem
	5.3.2 The Azéma–Yor embedding theorem
	5.3.3 The Donsker invariance principle

	5.4 The arcsine laws for random walk and Brownian motion
	5.5 Pitman’s 2M - B theorem
	Exercises
	Notes and comments

	6 Brownian local time
	6.1 The local time at zero
	6.2 A random walk approach to the local time process
	6.3 The Ray–Knight theorem
	6.4 Brownian local time as a Hausdorff measure
	Exercises
	Notes and comments

	7 Stochastic integrals and applications
	7.1 Stochastic integrals with respect to Brownian motion
	7.1.1 Construction of the stochastic integral
	7.1.2 Itô’s formula

	7.2 Conformal invariance and winding numbers
	7.3 Tanaka’s formula and Brownian local time
	7.4 Feynman–Kac formulas and applications
	Exercises
	Notes and comments

	8 Potential theory of Brownian motion
	8.1 The Dirichlet problem revisited
	8.2 The equilibrium measure
	8.3 Polar sets and capacities
	8.4 Wiener’s test of regularity
	Exercises
	Notes and comments

	9 Intersections and self-intersections of Brownian paths
	9.1 Intersection of paths: Existence and Hausdorff dimension
	9.1.1 Existence of intersections
	9.1.2 Stochastic co-dimension and percolation limit sets
	9.1.3 Hausdorff dimension of intersections

	9.2 Intersection equivalence of Brownian motion and percolation limit sets
	9.3 Multiple points of Brownian paths
	9.4 Kaufman’s dimension doubling theorem
	Exercises
	Notes and comments

	10 Exceptional sets for Brownian motion
	10.1 The fast times of Brownian motion
	10.2 Packing dimension and limsup fractals
	10.3 Slow times of Brownian motion
	10.4 Cone points of planar Brownian motion
	Exercises
	Notes and comments

	11 Stochastic Loewner evolution and planar Brownian motion
	11.1 Some subsets of planar Brownian paths
	11.1.1 The questions
	11.1.2 Reformulation in terms of Brownian hulls
	11.1.3 An alternative characterisation of Brownian hulls

	11.2 Paths of stochastic Loewner evolution
	11.2.1 Heuristic description
	11.2.2 Loewner’s equation
	11.2.3 The loop-erased random walk
	11.2.4 Definition of SLE
	11.2.5 Critical percolation and SLE(6)

	11.3 Special properties of SLE(6)
	11.4 Exponents of stochastic Loewner evolution
	11.4.1 A radial computation
	11.4.2 Consequences
	11.4.3 From exponents to dimensions

	12.1 Convergence of distributions
	12.2 Gaussian random variables
	Notes and comments
	12.3 Martingales in discrete time
	12.4 Trees and flows on trees

	Hints and solutions for selected exercises
	Selected open problems
	Bibliography
	Index

