
Probability and Its Applications

Andrei N. Borodin

Stochastic 
Processes





More information about this series at http://www.springer.com/series/4893

Probability and Its Applications is designed for monographs on all aspects of prob-
ability theory and stochastic processes, as well as their connections with and appli-
cations to other areas such as mathematical statistics and statistical physics.

Probability and Its Applications

Series editors
Steffen Dereich, Universität Münster, Münster, Germany
Davar Khoshnevisan, The University of Utah, Salt Lake City, USA
Andreas E. Kyprianou, University of Bath, Bath, UK
Sidney I. Resnick, Cornell University, Ithaca, USA



Andrei N. Borodin

Stochastic Processes



Andrei N. Borodin
St. Petersburg Department of 

Steklov  Mathematical Institute  
St. Petersburg, Russia

and

Department of Mathematics and  Mechanics 
St. Petersburg State University  
St.  Petersburg, Russia

ISSN  2297-0371 ISSN  2297-0398 (electronic)
Probability and Its Applications
ISBN 978-3-319-62309-2 ISBN 978-3-319-62310-8 (eBook)
https://doi.org/10.1007/978-3-319-62310-8

Library of Congress Control Number: 2017956746

Original Russian edition published by LAN Publishing, St. Petersburg, 2013
© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part 
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or 
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar 
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, express or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

Printed on acid-free paper

This book is published under the trade name Birkhäuser 
The registered company is Springer International Publishing AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



v

CONTENTS

Preface ix

Notation xiii

Chapter I. Basic facts 1

§ 1. Random variables 1
§ 2. Conditional expectations 8
§ 3. Stochastic processes. Continuity criterion 18
§ 4. Stopping times 24
§ 5. Martingales 27
§ 6. Markov processes 43
§ 7. Processes with independent increments 51
§ 8. Gaussian processes 56
§ 9. Stationary processes 59
§10. Brownian motion process 64
§11. Brownian bridge 76

Chapter II. Stochastic calculus 85

§ 1. Stochastic integration with respect to Brownian motion 85
§ 2. Stochastic integrals with variable upper limit 89
§ 3. Extension of the class of integrands 94
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PREFACE

The aim of the book is to give a rigorous and at the same time accessible
presentation of the theory of stochastic processes. This imposed hard restrictions
on the selection of material, which reflects of course the preferences of the author.

As befits a theory, this presentation is largely self-contained. The text includes
a very limited number of references to assertions, whose proofs should be looked for
in other books. As a rule, this does not affect on the main style of the presentation.
Accordingly, the different parts of the book can serve a source of ready materials for
lecture courses. The text contains many examples showing how to apply theoretical
results to solving concrete problems.

We do not dwell on the history of the creation of the theory of stochastic pro-
cesses. This was covered brilliantly in many monographs that are much closer in
time to the milestones of the theory than this book.

A significant part of the book is devoted to the classical theory of stochastic
processes. At the same time there are new topics not presented previously in
books. As to well-known results, we try to clarify the main ideas of the proofs,
sometimes providing them with new approaches.

The first chapter contains basic facts of Probability Theory that will be useful
for more detailed treatment in the subsequent chapters. Considerable attention is
paid to conditional probabilities and conditional expectations, which are effective
tools in the theory of stochastic processes. The foundations of the theory of mar-
tingales created by J. L. Doob are explained. The value of this theory is difficult to
overestimate. Martingales were effectively applied outside probability theory, for
example, in mathematical analysis. We consider only discrete-time martingales.
The basic ideas of the theory of martingales are well illustrated for the case of a
discrete-time parameter. Furthermore, the results for this case form a basis for the
continuous-time theory. For our purposes the discrete time is sufficient and each
time we need the continuous case, a corresponding justification will be given. We
introduce a fairly detailed description of Markov processes. The Markov property
provides a basic way of random changes, which is closest to what happens in reality.
The chapter is completed with a consideration of a Brownian motion process. It is
no exaggeration to assert that the Brownian motion is the fundamental stochastic
process. Far ahead of its time many brilliant conjectures of P. Lévy were confirmed
just for this process.

The second chapter is devoted to stochastic calculus, the foundations of which
were laid down by K. Itô. At the initial stage of the creation of this theory, it
was almost impossible to foresee how fruitful it will become. Its role in the theory
of stochastic processes can be compared with the role of differential calculus in
mathematical analysis or other disciplines. The theory of stochastic differential
equations is the natural development of the theory of ordinary differential equa-
tions. Stochastic integrals with respect to Brownian motion, whose sample paths
have unbounded variation, differ fundamentally from the classical integrals. This
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difference leads to the fact that the stochastic differentials of superpositions of
smooth functions with the solutions of the stochastic differential equations depend
on the second derivatives of functions under differentiation, while this is absolutely
impossible in the classical analysis. This difference also shows that descriptions of
some physical phenomena, having a constructive nature and including stochastic
interactions, are based on second-order differential equations. This gives a possible
answer to the following fundamental question: why many phenomena in the real
world are described by second-order differential equations? The role of the stochas-
tic analysis in the description of the real world is not completely understood at the
present time. At the end of the book, in Appendix 1, the problem of heat transfer is
treated by means of the rigorous mathematical arguments. The approach is based
on the energy exchange between individual molecules. This description is close to
the real physical process.

The third chapter presents the theory of distributions of functionals of Brownian
motion. The foundations of this theory were laid by A. N. Kolmogorov and M. Kac.
In 1931 the famous forward and backward Kolmogorov’s equations were introduced.
An impetus to the emergence of probabilistic representations for the solutions of
parabolic equations with potential was given in the doctoral thesis of the Nobel
prizewinner in physics R. Feynman. He described the solutions of the Schrödinger
equation in terms of path integrals. M. Kac saw in this result an analogy with the
theory of distributions of integral functionals of Brownian motion and established
the basis for this theory. The third chapter is devoted to the investigation of
distributions of functionals of Brownian motion stopped at various random times.
A sufficiently rich collection of stopping random times is considered. For all of
them we derive effective results that enable us to compute distributions of various
functionals of Brownian motion stopped at these moments. These results have
already been used in Mathematical Statistics, Insurance Theory and Financial
Mathematics.

The fourth chapter is devoted to a class of diffusion processes, generalizing the
Brownian motion in a natural way. The necessity of studying the diffusion processes
was probably realized by physicists earlier than by mathematicians. A striking
example of this is the Einstein–Smoluchowski equation, describing the motion of
a light particle in a viscous fluid. On the one hand, the random motion of fluid
molecules interacting via collisions makes the particle move randomly, and, on the
other hand, the viscosity restricts the speed of the movement. These two factors
had a significant role in the discovery of the Einstein–Smoluchowski stochastic
differential equation. A rigorous mathematical definition of diffusion processes was
given by A. N. Kolmogorov. After the appearance of Itô’s stochastic calculus,
it was shown that under certain assumptions the diffusion processes defined by
Kolmogorov are the solutions of the corresponding stochastic differential equations.

The fifth chapter is entirely devoted to a detailed study of the properties of
Brownian local time, the cornerstone in the structure of additive functionals of a
Brownian motion. The Brownian local time is the simplest positive continuous
additive functional of a Brownian motion, in the sense that any such functional
can be represented by the Stieltjes integral of the Brownian local time with re-
spect to a non-decreasing function. This shows that the Brownian local time is
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extremely useful for studying functionals of Brownian motion. Even from a purely
mathematical point of view, the Brownian local time is a very interesting object to
investigate. This is manifested in a number of deep properties, discovered through
careful consideration, and in the beauty of analytical methods used to prove them.
The concept of the Brownian local time and its most important properties emerged
thanks to the intuition of P. Lévy. A special landmark in the study of the Brown-
ian local time is F. Knight and D. Ray’s description of the local time as a Markov
process with respect to the space parameter. Methods enabling to compute the dis-
tributions of functionals of the Brownian local time play an important role in the
study of properties of the Brownian local time. The main progress in this sphere
was made possible thanks to the fact that, in contrast to the real potential, which
corresponds to the integral functional in the theory of distributions, the Dirac δ-
function corresponds to the local time. Involvement of the Dirac δ-function makes
differential problems much simpler than those for real potentials.

The subject of the sixth chapter is a class of diffusions with jumps. The appear-
ance of this topic is mainly dictated by needs of Financial Mathematics. In this
theory, the continuous variation of the price of some assets is interrupted occasion-
ally by abrupt collapses or, conversely, by growth of their ratings. An important
feature here is the presence of random factors affecting the price of the asset. Be-
tween moments of jumps the process evolves as a classical diffusion. The most
natural way of the appearance of jumps is the following. On disjoint intervals of
arbitrarily small length the jumps occur independently with the probability pro-
portional to the interval length. In fact, this probability may also depends on the
value of the process at a moment of jump. In this way one comes to the processes
having the Markov property. This, in turn, allows us to develop a sufficiently rich
theory of such processes, which to some extent is comparable with the theory of
classical diffusions.

The final, seventh chapter is devoted to the invariance principle. The Brownian
motion and, more generally, diffusions are idealized limiting objects for random
walks or more general processes with discrete time that have a recurrent structure.
The random walk describes objectively some phenomena occurring in reality. A
good example is given by the model of heat transfer (for details, see Appendix 1).
This model is a perfect illustration of the following paradigm: the random walk is
a simple and intuitively understandable process as regards the structure of sample
paths, whereas its finite-dimensional distributions are rather complicated and the
distributions of various functionals of the process are in fact extremely compli-
cated. But the sample paths of a Brownian motion process are difficult to imagine
at all. They are continuous, but non-differentiable almost everywhere. The level
sets of a Brownian motion are Cantor sets (closed, uncountable, with zero topolog-
ical dimension, and without isolated points), whereas there are only finitely many
points in the level sets of a random walk. The finite-dimensional distributions of
a Brownian motion are rather simple. Moreover, one can fined explicit formulas
for distributions of many functionals of a Brownian motion. In this situation, it
is important to know how the Brownian motion process and the correspondingly
transformed random walk can be close to each other. It is natural to use the
specifics of both the random walk and the Brownian motion, in a certain extent,
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identifying these processes.

In Appendix 1 the advantages of random walk and Brownian motion modelling
are clearly demonstrated in the study of heat transfer. Using the random walk,
we visually describe how heat is transferred, whereas using a Brownian motion
approximation of it we derive a differential equation describing the change of the
temperature in time and in space.

Appendix 2 contains a summary of the main properties of the special functions
that are relevant to Probability Theory.

The theory of distributions of nonnegative functionals of processes is largely
based on the Laplace transform of the distributions of these functionals. Appen-
dix 3 contains tables of the inverse Laplace transforms that are often used in this
theory.

In Appendix 4, we gather certain second-order differential equations and their
nonnegative linearly independent solutions that are used to express Laplace trans-
forms of transition functions of various diffusion processes.

Appendix 5 contains examples of transformations of measures generated by some
well-known diffusions.

Finally, in Appendix 6 formulas that can be used for computing the moments
of the distribution of a functional by its Laplace transform are given.

A. Yu. Zaitsev carefully read the manuscript and made many useful comments,
which contributed to a significant improvement of the text. I am truly grateful to
him for this great work. I am thankful to I. Ponomarenko for the help with the
translation of some parts of the book. My thanks also go to the reviewers for their
valuable suggestions.

Finally, I want to thank the staff of Birkhäuser for their excellent work when
preparing the book. It is also my pleasure to thank the copy–editor whose careful
work made the text more readable.

St. Petersburg, Russia, July 2017 A. N. Borodin
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NOTATION

:= stands for ”is defined to be equal to.”

[a] – largest integer not exceeding a.

a+ := max{0, a}.

a ∨ b := max{a, b}.

a ∧ b := min{a, b}.

R, R+ – real line and nonnegative axis.

Z – set of integers.

N – set of natural numbers.

Ac – complement of set A.

1IA(·) – indicator function.

(Ω,F ,P) – probability space.

(Ω,F , {Ft},P) – filtered probability space, see § 4 Ch. I.

{Ft} – filtration, see § 4 Ch. I.

{Gt0} – natural filtration, see § 4 Ch. I.

B(E) – σ-algebra of Borel subsets of E.

C(E) – space of continuous functions from E to R.

Cb(E) – space of continuous bounded functions from E to R.

L2(m) – space of functions square integrable with respect to the measure m.

mes – Lebesgue measure.

δy(x) – Dirac δ-function.

L−1
γ – inverse Laplace transform with respect to γ.

Px – probability measure associated with a process started at x.

Ex – expectation associated with a process started at x.

Cov(X,Y ) – covariance of random variables X and Y .

E
{
X;A

}
:= E

{
X(ω)1IA(ω)

}
.

E
{
X
∣∣Q} – conditional expectation with respect to the σ-algebra Q.

W (t) – Brownian motion, see § 10 Ch. I.

W+(t) := |W (t)| – reflected Brownian motion, see § 10 Ch. III.

U(t) – Ornstein–Uhlenbeck process, see § 16 Ch. IV.

R(n)(t) – Bessel process of order n/2− 1, see § 16 Ch. IV.
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Q(n)(t) – radial Ornstein–Uhlenbeck process, see § 16 Ch. IV.

σ
(
X(t), t ∈ Σ

)
– σ-algebra of events generated by the process X, see § 3 Ch. I.

m(·) – density of the speed measure, see § 11 Ch. IV.

S(·) – scale, see § 11 Ch. IV.

P (s, x, t,D) – transition function of Markov process, see § 6 Ch. I.

p(s, x, t, y) – transition density of Markov process, see § 6 Ch. I.

p(t, x, y) – transition density of homogeneous Markov process.

G◦
α(x, y) – Green’s function, see § 11 Ch. IV.

ψ(x) – fundamental increasing solution, see § 12 Ch. II.

ϕ(x) – fundamental decreasing solution, see § 12 Ch. II.

L – generator of homogeneous diffusion, see § 9 Ch. IV.

`(t, x) – local time with respect to the Lebesgue measure, see § 5 Ch. II.

%(t, z) = inf{s : `(s, z) = t } – inverse local time.

L(t, x) – local time with respect to the speed measure, see § 14 Ch. IV.

Ĥ(t) :=inf{s ≤ t : X(s)= inf
0≤s≤t

X(s)} – location of the minimum before time t.

Ȟ(t) :=inf{s ≤ t : X(s)= sup
0≤s≤t

X(s)} – location of the maximum before time t.

Hz := min{s : X(s) = z} – first hitting time of z.

Ha,b := min{s : X(s) /∈ (a, b)} – first exit time from (a, b).

τ – exponentially distributed time independent of Brownian motion.

ln(·) – natural logarithm

sh(·), ch(·), th(·), cth(·) – hyperbolic functions, see Appendix 2.

Iν(·), Kν(·) – modified Bessel functions, see Appendix 2.

Erfc(·) – error function, see Appendix 2.

Dν(·) – parabolic cylinder functions, see Appendix 2.

M(a, b, ·), U(a, b, ·) – Kummer functions, see Appendix 2.

Mn,m(·), Wn,m(·) – Whittaker functions, see Appendix 2.

Sν(·, ·), Cν(·, ·), Fν(·, ·) – two-parameter functions associated with Bessel func-
tions, see Appendix 2.

F (α, β, γ, ·), G(α, β, γ, ·), – hypergeometric functions, see Appendix 2.

Pµν (·), Q̃µν (·), – Legendre functions, see Appendix 2.



CHARTER I

BASIC FACTS

§ 1. Random variables

We recall here the classical definition of a probability space.
Let Ω be an abstract set, which is treated as the set of elementary outcomes or

sample points of a random experiment.
A collection F of subsets of Ω is called a σ-algebra if it has the following prop-

erties:
1) Ω ∈ F ;
2) if A ∈ F , then Ac ∈ F , where Ac := Ω \A denotes the complement of A;

3) if Al ∈ F , l = 1, 2, . . . , then
∞⋃
l=1

Al ∈ F .

By the second property, the empty set ∅ = Ωc, which is the complement of Ω,
also belongs to F .

The elements of the σ-algebra F are called events.
The following equalities hold true:{ ∞⋃

l=1

Al

}c

=
∞⋂
l=1

Ac
l ,

{ ∞⋂
l=1

Al

}c

=
∞⋃
l=1

Ac
l .

The difference of two events is defined as A \B = A
⋂
Bc.

It follows from the definition that the σ-algebra F is closed with respect to a
countable number of operations on events.

A probability measure defined on a σ-algebra of events A ∈ F is a function
P : A→ [0, 1] which satisfies the following conditions:

1) P(Ω) = 1;
2) for any countable sequence of events {An}∞n=1 that are disjoint (Ak

⋂
Al = ∅

if k 6= l)

P
( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An).

The triplet (Ω,F ,P) is called a probability space. This space is always assumed
to be given initially.

Let B(R) be the smallest σ-algebra containing all intervals of the form [a, b).
This σ-algebra is called the Borel σ-algebra on R. Similarly, let B(Rn) be the
smallest σ-algebra containing all the sets [a1, b1)× [a2, b2)× · · · × [an, bn).

A measurable mapping X : (Ω,F) → (R,B(R)) is called a random variable.
In other words, it is a mapping Ω → R such that for any Borel set ∆ the set
{ω : X(ω) ∈ ∆} belongs to F . The reason underlying this definition is that a
probability must be assigned to all sets of the form {ω : X(ω) ∈ ∆}.

The argument ω in the notation of a random variable X = X(ω) is usually
omitted, because neither the nature of the set Ω, nor its structure are relevant in
probability theory.

© Springer International Publishing AG 2017
A. N. Borodin, Stochastic Processes, Probability and Its
Applications, https://doi.org/10.1007/978-3-319-62310-8_1
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2 I BASIC FACTS

A measurable mapping f : (Rn,B(Rn)) → (R,B(R)) is called a Borel function
or a measurable function.

With each random variable X we associate its distribution

PX(∆) := P({ω : X(ω) ∈ ∆}), ∆ ∈ B(R).

It is a probability measure on B(R). To define a distribution uniquely it is sufficient
to consider the sets (−∞, x), x ∈ R instead of arbitrary Borel sets ∆. The function

FX(x) := P({ω : X(ω) ∈ (−∞, x)}) =: P(X < x), x ∈ R,

is called the distribution function of the random variable X.
If there exists a nonnegative measurable function fX(x), x ∈ R, such that

FX(x) =

x∫
−∞

fX(y) dy

for every x ∈ R, then fX(x) is called the density of the random variable X.
For a distribution with a continuous density fX , the mean value theorem for

integrals, shows that

P(X ∈ [x, x+ δ)) ∼ fX(x)δ as δ ↓ 0. (1.1)

This formula expresses the main meaning of a density: the principal value of the
probability that the random variable belongs to an infinitesimally small interval
containing a given point is equal to the density at this point multiplied by the
length of the interval.

If g : R → R is a measurable function and X is a random variable, then
Y = g(X) is also a random variable.

Let g(x), x ∈ R, be a strictly monotone function, g(R) be the image of R under
the function g, and g(−1)(y), y ∈ g(R), be the inverse function. Suppose that X
has a continuous density fX . Let g be a continuously differentiable function with
nowhere vanishing derivative. Then the random variable Y = g(X) has the density

fY (y) = fX(g
(−1)(y))

|g′(g(−1)(y))|
1Ig(R)(y), (1.2)

where

1I∆(x) =
{

1, if x ∈ ∆,
0, if x 6∈ ∆,

is the indicator function. This formula generalizes to piecewise strictly monotone
functions g, i.e., functions for which there exists a partition of R into intervals
Ik, k = 1, 2, . . . , n, such that g is strictly monotone in each Ik. Assume that g
is continuously differentiable on the interiors of these intervals. Let g(−1)

k be the
inverse of g restricted to Ik. Then for Y the density fY exists and is given by

fY (y) =
n∑
k=1

fX(g
(−1)
k (y))

|g′(g(−1)
k (y))|

1Ig(Ik)(y). (1.3)
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The expectation of a random variable X is defined by the formula

EX :=
∫
Ω

X(ω)P(dω) =

∞∫
−∞

xPX(dx)
(

brief notation EX :=
∫
Ω

XdP
)

where it is assumed that the absolute moment is finite:

E|X| =
∫
Ω

|X(ω)|P(dω) <∞.

In terms of the distribution function FX , the expectation EX is expressed by the
Stieltjes integral

EX =

∞∫
−∞

x dFX(x).

The expectation of a measurable function g of X is given by

Eg(X) =

∞∫
−∞

g(x) dFX(x).

The variance of X is defined by the formula

VarX := E(X −EX)2 = EX2 −E2X.

To estimate the expectation of a product of random variables we can apply the
Hölder inequality

|EXY | ≤ E1/p|X|pE1/q|Y |q,

where 1

p
+ 1

q
= 1, p > 1, q > 1.

The following Jensen inequality holds: for any convex function g(x), x ∈ R, and
any random variable X with finite absolute moment,

g(EX) ≤ Eg(X). (1.4)

Indeed, if g is a convex function, then for any number, in particular for EX, there
exists a constant C such that

g(x) ≥ g(EX) + (x−EX)C for all x ∈ R.

Substituting instead of x the random variable X and computing the expectation,
we obtain (1.4).

Estimates of probabilities of events generated by a random variable can be ex-
pressed via moments of this random variable.

Chebyshev’s inequalities hold true: for a nonnegative random variable X and
any ε > 0,

P(X ≥ ε) ≤ EX

"
; (1.5)

and for any random variable Y with finite variance and any δ > 0,

P(|Y −EY | ≥ δ) ≤ VarY

�2
. (1.6)

The following result is the main tool for the investigation of properties that hold
with probability one, or equivalently almost surely (a.s.).
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Lemma 1.1 (Borel–Cantelli, part 1). Let A1, A2, . . . be a sequence of
events. Then the event

lim sup
n

An :=
∞⋂
n=1

∞⋃
m=n

Am

consists of those and only those sample points ω that belong to an infinite number
of events An, n = 1, 2, . . . .

If
∞∑
n=1

P(An) <∞, then P
(

lim sup
n

An

)
= 0.

The proof is obvious:

P
(

lim sup
n

An

)
≤ P

( ∞⋃
m=n

Am

)
≤

∞∑
m=n

P(Am) → 0 as n→∞.

Remark 1.1. The first part of the Borel–Cantelli lemma states that if
∞∑
n=1

P(An) <∞, then

P
((

lim sup
n

An

)c)
= P

( ∞⋃
n=1

∞⋂
m=n

Ac
m

)
= 1,

i.e., for almost all sample points ω (a.s.) there exists a number n0 = n0(ω), such
that ω ∈ Ac

m for all m ≥ n0.

In probability theory we must deal with different types of convergence of random
variables.

A sequence of random variables Xn converges to the variable X in mean if
E|Xn −X| → 0, and in mean square if E(Xn −X)2 → 0.

A sequence of random variables Xn converges to the variable X in probability if
P(|Xn −X| ≥ ε) → 0 for any ε > 0.

From (1.5) and (1.6) it follows that the convergence in mean or in mean square
implies the convergence in probability.

We say that a sequence of random variables Xn converges to the variable X
with probability one (a.s.) if the set of all sample points for which convergence of
numerical sequences Xn(ω) → X(ω) holds, has probability one, i.e.,

P(ω : Xn(ω) → X(ω)) = 1.

It is convenient to treat the convergence in probability by using the following
statement.

Proposition 1.1. Xn → X in probability if and only if for any sequence nm of
natural numbers there exists a subsequence nmk

such that Xnmk
→ X a.s.

Proof. For any sequences εk ↓ 0 and nm, set

nmk
:= min

{
nm : P(|Xnm −X| > εk) ≤

1

2k

}
.
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Such a sequence nmk
exists by virtue of the convergence Xnm

→ X in probability.
Thus we have

P(|Xnmk
−X| > εk) ≤

1

2k
.

The series of these probabilities converges. Then, by the first part of the Borel–
Cantelli lemma (see Remark 1.1), there exists a.s. a number k0 = k0(ω) such
that

|Xnmk
−X| ≤ εk for all k ≥ k0.

This implies that Xnmk
→ X a.s.

To derive the opposite implication we proceed by contradiction. Suppose that
Xn does not converge to X in probability. Then there exist ε > 0, δ > 0, and a
sequence nm, such that

P(|Xnm −X| > ε) ≥ δ.

This is absurd, since we can choose a subsequence nmk
such that Xnmk

→ X a.s.
�

A family of random variables {Xα}α∈A is called uniformly integrable if

lim
c→∞

sup
α∈A

∫
{|Xα|≥c}

|Xα| dP = 0.

For such families it obviously holds that sup
α∈A

E|Xα| <∞.

Proposition 1.2. Let {Xα}α∈A be a family of random variables with finite
absolute moments and suppose there exists a nonnegative increasing function G(x),
x ∈ [0,∞), such that

lim
x→∞

G(x)

x
= ∞ and M := sup

α∈A
EG(|Xα|) <∞.

Then the family of random variables {Xα}α∈A is uniformly integrable.

Proof. For any ε > 0 we choose cε so large that G(x)/x ≥ M/ε for all x ≥ cε.
Then for any c ≥ cε the event {|Xα| ≥ c} implies {|Xα| ≤ εG(|Xα|)/M} and,
therefore, ∫

{|Xα|≥c}

|Xα| dP ≤ "

M

∫
Ω

G(|Xα|) dP ≤ ε.

This proves the uniform integrability. �

Proposition 1.3. Let {Xn}n∈N be a uniformly integrable family of random
variables and let Xn → X in probability. Then the random variable X is integrable
and E|Xn −X| → 0.

Proof. We use Proposition 1.1 and choose a subsequence nk such that Xnk
→ X

a.s. Then the integrability of the variable X is a consequence of Fatou’s lemma:

E|X| = E lim inf
nk

|Xnk
| ≤ lim inf

nk

E|Xnk
| <∞.
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Let A := {a : P(X = a) > 0} be the set of atoms of the distribution of the random
variable X. This set is countable. For positive b 6∈ A we consider the truncated
variables Xb

n = Xn1I{|Xn|<b}, X
b = X1I{|X|<b}. Then

E|Xn −X| ≤ E|Xb
n −Xb|+ E{|Xn|1I{|Xn|≥b}}+ E{|X|1I{|X|≥b}}. (1.7)

In view of the integrability of X and the uniform integrability of Xn, for any ε > 0
we can choose b /∈ A such that

E{|X|1I{|X|≥b}} ≤ ε/3 and sup
n

E{|Xn|1I{|Xn|≥b}} ≤ ε/3.

By the Lebesgue dominated convergence theorem, E|Xb
n−Xb| → 0. Consequently,

there exists a number n0 such that E|Xb
n −Xb| ≤ ε/3 for all n ≥ n0. By (1.7), for

these n the estimate E|Xn −X| ≤ ε is valid, which completes the proof. �

It is not difficult to understand that one can consider complex-valued random
variables. The real and imaginary parts of them are real-valued random variables.
The expectation of a complex-valued random variable is defined in a natural way
via the expectations of the real and the imaginary parts.

The function

ϕ(α) :=
∞∫

−∞

eiαx dFX(x) = EeiαX , α ∈ R,

is called the characteristic function of the random variable X.

Proposition 1.4. Suppose that the random variable X has a finite absolute
moment of nth order (E|X|n < ∞). Then the characteristic function of X is n
times differentiable, and for every 0 ≤ k ≤ n,

EXk = (−i)k dk

d�k
ϕ(α)

∣∣∣
α=0

.

Corollary 1.1. The expectation and the variance are given by the formulas

EX = −iϕ′(0), VarX = −ϕ′′(0) + (ϕ′(0))2. (1.8)

In order to distinguish the characteristic function of a given random variable X
from other characteristic functions, we sometimes use for it the notation ϕX(α).

The next result shows that the distribution function of a random variable is
uniquely defined by its characteristic function.

Proposition 1.5 (inversion formula). The following statements hold:
1. For an integer-valued random variable X,

P(X = k) = 1

2�

π∫
−π

e−iαkϕX(α) dα, k = 0,±1,±2, . . . .
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2. For any points y, z of continuity of the distribution function FX ,

FX(y)− FX(z) = 1

2�
lim
c→∞

c∫
−c

e−i�y − e−i�z

−i�
ϕX(α) dα. (1.9)

3. If the characteristic function ϕX(α) is absolutely integrable, then X has the
continuous density

fX(x) = 1

2�

∞∫
−∞

e−iαxϕX(α) dα. (1.10)

The covariance of a two real-valued random variables X and Y is defined to be

Cov(X,Y ) := E{(X −EX)(Y −EY )} = E{XY } −EXEY.

A collection of random variables X1, X2, . . . , Xn is often referred to as a random
vector

→
X = (X1, X2, . . . , Xn).

With each random vector
→
X we associate its distribution P→

X
(B), B ∈ B(Rn),

which is the measure uniquely determined by the finite-dimensional distributions

P→
X

(∆1 ×∆2 × · · · ×∆n) := P
( n⋂
k=1

{ω : Xk(ω) ∈ ∆k}
)

=: P
(
X1 ∈ ∆1, X2 ∈ ∆2, . . . , Xn ∈ ∆n

)
, ∆k ∈ B(R), k = 1, 2, . . . , n.

The function

F→
X

(~x) := P
(
X1 < x1, X2 < x2, . . . , Xn < xn

)
, ~x ∈ Rn,

is called the finite-dimensional distribution function of the vector
→
X .

The random variables X1, X2, . . . , Xn are said to have a joint density if there
exists a nonnegative measurable function f→

X
(~x), ~x ∈ Rn, such that

F→
X

(~x) =

x1∫
−∞

x2∫
−∞

· · ·
xn∫

−∞

f→
X

(~y) dy1dy2 . . . dyn

for every ~x = (x1, x2, . . . , xn) ∈ Rn.
As in the one-dimensional case, for a finite-dimensional distribution with a con-

tinuous density f→
X

we have

P
(
X1 ∈ [x1, x1 + δ1), . . . , Xn ∈ [xn, xn + δn)

)
∼ f→

X
(~x) δ1 · · · δn as δk ↓ 0.

Suppose that the variables
→
X = (X1, X2, . . . , Xn) have a joint continuous density

f→
X

. Let ~g : Rn → Rn be a continuously differentiable mapping with non-vanishing
Jacobian. Then the random variable

→
Y = ~g(

→
X) has the density

f→
Y

(~y ) =
{
f→
X

(~g (−1)(~y ))
∣∣ det J~g (−1)(~y )

∣∣, ~y ∈ G,
0, ~y 6∈ G,

(1.11)
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where G := {~y : ~y = ~g(~x) for some ~x ∈ Rn} and J~h(~x) :=
{

@

@xl
hk(~x)

}n
k,l=1

is the

matrix whose determinant is called the Jacobian of the mapping ~h : Rn → Rn.

Let g : Rn → R be a measurable mapping. Then the expectation of the random
variable Y := g(

→
X) is equal to

EY =
∫
Ω

Y (ω)P(dω) =
∫
Rn

g(~x)P→
X

(dx1 × dx2 × · · · × dxn) =
∫
Rn

g(~x)F→
X

(d~x).

The characteristic function of the random vector
→
X = (X1, X2, . . . , Xn) is given

by the formula ϕ→
X

(~α) := E exp
(
i(~α,

→
X)
)
, ~α ∈ Rn, where (~α,

→
X) :=

n∑
k=1

αkXk.

The characteristic function ϕ→
X

(~α) uniquely determines the distribution of
→
X .

§ 2. Conditional expectations

If one knows that a event B of positive probability has occurred, one can consider
the conditional probability of some event A given B. For B such that P(B) > 0
this conditional probability is defined by the formula

P(A|B) := P(A
⋂
B)

P(B)
. (2.1)

Since P(Ω|B) = 1, the conditional probability P(·|B) is itself a probability measure
defined on the σ-algebra F .

Formula (2.1) becomes clear if one considers a discrete model of sample points
with equal probabilities. In this model Ω = {ω1, ω2, . . . , ωn} is the sample space of
a finite number of elementary events having equal probabilities

P({ω1}) = P({ω2}) = · · · = P({ωn}) = 1

n
= 1

card

.

By cardA one denotes the cardinality (the number of points) of the event A.
Usually the uniform models are motivated by arguments including symmetry and
homogeneity properties. For example, in the experiment of tossing a coin it is
assumed that the coin is symmetric and is made from a homogeneous material.

For the uniform model, P(A) := cardA

card

. The conditional probability P(A|B)

can be treated as the usual probability for the new sample space Ω1 = B. We
again have the uniform model reduced to the event B. Therefore,

P(A|B) = card(A
⋂
B)

card
1
= card(A

⋂
B)= card


cardB= card

= P(A

⋂
B)

P(B)
.

The event A is said to be independent of the event B with P(B) > 0 if

P(A|B) = P(A).
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This means that the probability of the event A does not depend on whether B
occurs or not. By the definition of the conditional probability, this is equivalent to

P(A
⋂
B) = P(A)P(B). (2.2)

Since for P(A) > 0

P(B|A) = P(B
⋂
A)

P(A)
= P(A)P(B)

P(A)
= P(B),

we see that the event B is also independent of the event A and we say that the
events A and B are independent.

The events A1, A2, . . . , An are said to be independent if for all choices of indices
1 ≤ l1 < l2 < · · · < lk ≤ n,

P(Al1
⋂
Al2
⋂
. . .
⋂
Alk) = P(Al1)P(Al2) . . .P(Alk). (2.3)

The random variables X1, X2, . . . , Xn are said to be independent if for any Borel
sets ∆k, k = 1, 2, . . . , n,

P(X1 ∈ ∆1, X2 ∈ ∆2, . . . , Xn ∈ ∆n) =
n∏
k=1

P(Xk ∈ ∆k). (2.4)

A necessary and sufficient condition for X1, X2, . . . , Xn to be independent is the
following: for every ~x ∈ Rn,

F→
X

(~x) =
n∏
k=1

FXk
(xk),

where FXk
(xk) = P(Xk < xk), k = 1, 2, . . . , n, are the marginal distribution func-

tions. If the joint density f→
X

exists, then this is equivalent to

f→
X

(~x) =
n∏
k=1

fXk
(xk), ~x ∈ Rn,

where fXk
(xk), xk ∈ R, k = 1, 2, . . . , n, are the marginal densities of the random

variables Xk.
One more necessary and sufficient independence condition for random variables

is the following. The random variables X1, X2, . . . , Xn are independent if and only
if (iff) for any bounded Borel functions gk, k = 1, 2, . . . , n,

E
(
g1(X1)g2(X2) · · · gn(Xn)

)
=

n∏
k=1

E gk(Xk). (2.5)

For the indicator functions, gk(x) = 1I∆k
(x), formulas (2.4) and (2.5) coincide.

It is clear that (2.4) implies (2.5) for linear combinations of the indicator functions,
i.e., for

gm(x) =
m∑
k=1

cm,k1I∆m,k
(x), ∆m,k ∈ B(R). (2.6)
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Since every bounded Borel function can be uniformly approximated by functions
of the form (2.6), the equivalence of (2.4) and (2.5) is established.

To characterize the independence of random variables it is sufficient to take
instead of arbitrary bounded Borel functions the family of complex-valued functions
{eiαx}α∈R.

The function

ϕ~X(~α) = E exp
(
i
n∑
k=1

αkXk

)
, ~α ∈ Rn,

is the characteristic function of the random vector
→
X . Therefore the random vari-

ables X1, X2, . . . , Xn are independent iff

ϕ~X(~α) =
n∏
k=1

ϕXk
(αk), ~α ∈ Rn. (2.7)

From this formula, as a special case, we have the following result. If X1, X2, . . . , Xn

are independent random variables and Sn =
n∑
k=1

Xk, then

ϕSn(α) =
n∏
k=1

ϕXk
(α), α ∈ R,

i.e., the characteristic function of a sum of independent random variables is equal
to the product of the characteristic functions of the terms.

The conditional expectation of a random variable given an event B is defined for
P(B) > 0 by the formula

E{X|B} :=
∫
Ω

X(ω)P(dω|B) = E{X1IB}
P(B)

. (2.8)

This equality can be explained in the following way. For the simple case, where
X = 1IA this is the consequence of the definition of conditional probability:

E{1IA|B} =
∫
A

P(dω|B) = P(A|B) = P(A
⋂
B)

P(B)
= E(1IA1IB)

P(B)
.

By the linearity property, this is true for X =
m∑
k=1

cm,k1IAm,k
. Since an arbitrary

random variable X with E|X| <∞ can be approximated by a linear combination
of indicator functions, the general case of (2.8) follows.

Further, we define the conditional expectation E{X|Q} of a random variable X
given a σ-algebra Q. If Q is the algebra generated by a finite number of disjoint
sets Bk, k = 1, . . . ,m, then for ω ∈ Bk,

E{X|Q} := E{X|Bk} =
E{X1IBk

}
P(Bk)

. (2.9)
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Therefore, E{X|Q} is a random variable that is constant on the sets Bk. For
arbitrary B ∈ Q we have B = Bk1

⋃
Bk2

⋃
. . .
⋃
Bkm and∫

B

E{X|Q}dP =
m∑
l=1

E{X|Bkl
}P(Bkl

) =
m∑
l=1

E{X1IBkl
} =

∫
B

X dP.

As a result, we obtain the equality which underlies the definition of the conditional
expectation of a random variable X given an arbitrary σ-algebra Q.

Let X be a random variable with E|X| < ∞. The conditional expectation
E{X|Q} of X given a σ-algebra Q ⊆ F is the Q-measurable random variable such
that ∫

B

E{X|Q} dP =
∫
B

X dP
(
E{E{X|Q}1IB} = E{X1IB}

)
(2.10)

for every B ∈ Q. The a.s. existence of a unique conditional expectation fol-
lows from the Radon–Nikodým theorem, because the charge µ defined by µ(B) :=∫
B

XdP, B ∈ Q, is absolutely continuous with respect to the measure P (P(Λ) = 0

implies µ(Λ) = 0 for Λ ∈ Q). Therefore, the conditional expectation E{X|Q} is
the Radon–Nikodým derivative d�

dP
(ω).

The conditional probability P(A|Q) for a set A ∈ F given a σ-algebra Q ⊆ F is
defined by the formula P(A|Q) := E{1IA|Q}.

According to (2.10), the determining property of conditional probability is∫
B

P(A|Q) dP = P(A
⋂
B), for every B ∈ Q. (2.11)

We say that a random variable X does not depend on a σ-algebra Q if for any
Borel set ∆ and any set B ∈ Q, the events {X ∈ ∆} and B are independent.

The basic properties of conditional expectations.

1) Linearity. For arbitrary constants α, β and random variables X, Y with finite
absolute moments,

E{αX + βY |Q} = αE{X|Q}+ βE{Y |Q} a.s. (2.12)

This follows from (2.10).

2) If X does not depend on the σ-algebra Q, then

E{X|Q} = EX a.s. (2.13)

Indeed, for every B ∈ Q∫
B

E{X|Q} dP =
∫
B

X dP = E(1IBX) = E1IBEX =
∫
B

EX dP.
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This implies (2.13).

3) If Y is Q-measurable, then

E{XY |Q} = YE{X|Q} a.s. (2.14)

It is sufficient to prove this equality for a simple random variable Y = 1IA, A ∈ Q,
since then linearity and approximation can be applied. For every B ∈ Q∫

B

E{X1IA|Q} dP =
∫
B

1IAX dP =
∫

B
⋂
A

X dP

=
∫

B
⋂
A

E{X|Q} dP =
∫
B

1IAE{X|Q} dP.

This implies (2.14).

4) For Q ⊆M,
E{X|Q} = E{E{X|M}|Q} a.s. (2.15)

4′) For A ∈M,
E{X|A} = E{E{X|M}|A}.

Since for every B ∈ Q it holds that B ∈M, we have∫
B

E{X|Q} dP =
∫
B

X dP =
∫
B

E{X|M} dP =
∫
B

E{E{X|M}|Q} dP.

This implies (2.15).
5) If X ≤ Y a.s., then E{X|Q} ≤ E{Y |Q} a.s.

This follows from the linearity property and the fact that if Z ≥ 0 a.s., then, by
definition of the conditional expectation, E{Z|Q} ≥ 0 a.s.

6) |E{X|Q}| ≤ E{|X||Q} a.s.

This follows from property 5) if one takes into account that −|X| ≤ X ≤ |X|.

7) If E sup
n∈N

|Xn| <∞ and Xn → X a.s., then

E{Xn|Q} → E{X|Q} a.s.

Indeed, if Xn → X a.s., then sup
m≥n

|Xm −X| ↓ 0 a.s. Therefore,

|E{Xn|Q} −E{X|Q}| ≤ E{|Xn −X| |Q} ≤ E
{

sup
m≥n

|Xm −X|
∣∣∣Q} a.s.

The right-hand side of this inequality decreases monotonically and tends to zero
due to the fact that, by the Lebesgue dominated convergence theorem,

E
{
E
{

sup
m≥n

|Xm −X|
∣∣∣Q}} = E

{
sup
m≥n

|Xm −X|
}
→ 0.
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7′) If {Xn}n∈N is a uniformly integrable family of random variables and Xn → X
in probability, then E{Xn|Q} → E{X|Q} in mean.

This property is an obvious consequence of Proposition 1.3, because

E|E{Xn|Q} −E{X|Q}| ≤ E|Xn −X| → 0.

Clearly, being a random variable, the conditional probability P(A|Q) is defined
only up to the set of “exceptionality” ΛA, which has measure zero (P(ΛA) = 0). For
this reason, in the general case the conditional measure P(·|Q) cannot be defined
simultaneously for all sets of the σ-algebra F . Hence, in general the important
equality

E{X|Q} :=
∫
Ω

X(ω)P(dω|Q)

cannot be obtained. In the case when this is possible, the family of probabilities
P(A|Q), A ∈ F , is called regular.

In general case it is proved (see, for example, Shiryaev (1980) Ch. II § 7) that
for a random variable X there exist the conditional distribution

PX(∆|Q) = P({ω : X(ω) ∈ ∆}|Q),

defined on the σ-algebra of Borel sets B(R). This is due to the structure of Borel
sets on the real line, in which subintervals with rational endpoints play a decisive
role.

For any Borel function g(x), x ∈ R, satisfying E|g(X)| <∞, one has the equality

E{g(X)|Q} =

∞∫
−∞

g(x)PX(dx|Q), a.s. (2.16)

This formula holds for indicator functions and therefore holds for linear combina-
tions of indicators. Formula (2.16) can be proved for an arbitrary Borel function
with the help of approximation of Borel function by indicators.

An important consequence of this formula is the Jensen inequality for conditional
expectations: for any convex function g(x), x ∈ R, and any random variable X
with finite absolute moment,

g(E{X|Q}) ≤ E{g(X)|Q}, a.s.

By (2.16), this follows from the Jensen inequality (1.4).

The smallest σ-algebra σ(Y ) containing the events {ω : Y (ω) ∈ ∆}, ∆ ∈ B(R),
is called the σ-algebra generated by the random variable Y .

For an arbitrary random variable Y there exists a Borel function ϕ(y) such that

E{X|σ(Y )} = ϕ(Y ) a.s. (2.17)
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Indeed, by the definition of the conditional expectation, for any set ∆ ∈ B(R)∫
{Y ∈∆}

E{X|σ(Y )} dP =
∫

{Y ∈∆}

X dP =: µ(∆).

Obviously, µ is a σ-finite charge on the σ-algebra B(R). In addition, µ(∆) = 0
if P(Y ∈ ∆) = 0, i.e., µ is absolutely continuous with respect to the distribution of
the random variable Y (PY (∆) = P(Y ∈ ∆)). By the Radon–Nikodým theorem,
there exists a Borel function ϕ such that

µ(∆) =
∫
∆

ϕ(y)PY (dy).

Applying the integration by substitution formula, we obtain

µ(∆) =
∫

{Y ∈∆}

ϕ(Y ) dP.

Comparing this with the definitions of the charge µ and conditional expectation,
we have (2.17).

The function ϕ is defined only on the set Y (Ω) := {y :y=Y (ω) for some ω∈Ω}.
Usually one sets

E{X|Y = y} := ϕ(y) (2.18)

and call ϕ(y) the conditional expectation of the random variable X given {Y = y}.
Here it is important to note that the probability of the event {Y = y} can be equal
to zero and so the standard definition (see (2.8)) is not applicable.

For this conditional expectation the following analog of the fourth property
holds: if σ(Y ) ⊆M, then

E{X|Y = y} = E{E{X|M}|Y = y}.

A more natural way to define the expectation given {Y = y} is the following:

E{X|Y = y} := lim
δ↓0

E{X|Y ∈ [y, y + δ)} = lim
δ↓0

E{X1I[y;y+�)(Y )}
P(Y ∈ [y; y + �))

, (2.19)

provided the limit exists.

If ϕ is a right continuous function, then definitions (2.18) and (2.19) are equiv-
alent. Indeed, applying the definition of conditional expectation with respect to a
σ-algebra and the mean value theorem for integrals, we obtain

E{X1I[y,y+δ)(Y )} =
∫

Y ∈[y,y+δ)

X dP =
∫

Y ∈[y,y+δ)

E{X|σ(Y )} dP

=
∫

Y ∈[y,y+δ)

ϕ(Y ) dP =
∫

[y,y+δ)

ϕ(z)dzP(Y < z) = (ϕ(y) + o(1))P(Y ∈ [y, y + δ)).
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Here o(1) stands for a variable converging to zero as δ → 0. From this equality it
follows that the limit in (2.19) exists and coincides with (2.18).

Example 2.1. Suppose that the random variables X,Y have a continuous
joint density f(x, y). Then the density of the variable Y is given by fY (y) =
∞∫

−∞

f(x, y) dx. Suppose fY (y) is strictly positive on the set Y (Ω). Then for any

Borel set ∆

P(X ∈ ∆|Y = y) =

∫
�

f(x; y) dx

fY (y)
, y ∈ Y (Ω). (2.20)

Indeed, by (2.19),

P(X ∈ ∆|Y = y) = lim
δ↓0

P(X ∈ �; Y ∈ [y; y + �))

P(Y ∈ [y; y + �))

= lim
δ↓0

y+�∫
y

∫
�

f(x; z) dx dz

y+�∫
y

fY (z) dz

=

∫
�

f(x; y) dx

fY (y)
.

The function f(x|y) := f(x; y)

fY (y)
is naturally called the conditional density of the

random variable X given {Y = y}.
It is easy to see that for any bounded Borel function g(x), x ∈ R,

E{g(X)|Y = y} =

∞∫
−∞

g(x)f(x; y)
fY (y)

dx, y ∈ Y (Ω). (2.21)

Example 2.2. Suppose that the random variables X, Y have a continuous
joint density f(x, y). Let g(x, y) be bounded measurable function continuous with
respect to y. Then

E{g(X,Y )|Y = y} = E{g(X, y)|Y = y}, y ∈ Y (Ω). (2.22)

Indeed, by (2.19),

E{g(X,Y )|Y = y} = lim
δ↓0

E{g(X;Y )1I[y;y+�)(Y )}
P(Y ∈ [y; y + �))

= lim
δ↓0

y+�∫
y

∞∫
−∞

g(x; z)f(x; z) dx dz

y+�∫
y

fY (z) dz

=

∞∫
−∞

g(x, y)f(x; y)
fY (y)

dx = lim
δ↓0

E{g(X; y)1I[y;y+�)(Y )}
P(Y ∈ [y; y + �))

= E{g(X, y)|Y = y}.

For further purposes we need the following statement.



16 I BASIC FACTS

Lemma 2.1. Let H(x, ω), x ∈ R, be a bounded B(R)×F-measurable function
independent of the σ-algebra Q. Let X be Q-measurable random variable. Then

E
{
H(X,ω)

∣∣Q} = h(X), (2.23)

where h(x) = EH(x, ω).

Proof. First we consider the special case in which the function H(x, ω) has the
form

H(x, ω) =
n∑
k=1

bk(x)ρk(ω), (2.24)

where bk(x) are bounded Borel functions and the random variables ρk(ω), k =
1, . . . , n, are independent of the σ-algebra Q. Then

h(x) =
n∑
k=1

bk(x)Eρk(ω).

Applying the linearity property of the conditional expectation and (2.14), (2.13),
we have

E{H(X,ω)|Q} =
n∑
k=1

E{bk(X)ρk(ω)|Q}

=
n∑
k=1

bk(X)E{ρk(ω)|Q} =
n∑
k=1

bk(X)Eρk(ω) = h(X).

For an arbitrary H one can prove (2.23) with the help of approximation of H by
functions taking the form (2.24). �

We conclude this section by proving the following result, which is an addition
to Lemma 1.1.

Lemma 2.2 (Borel–Cantelli, part 2). If the events A1, A2, . . . are indepen-

dent and
∞∑
n=1

P(An) = ∞, then P
(

lim sup
n

An

)
= 1.

Proof. If A1, A2, . . . are independent, then the complements Ac
1, A

c
2, . . . are

also independent. Note that for the complement of the set lim sup
n

An the following

relation holds: (
lim sup

n
An

)c

:=
∞⋃
n=1

∞⋂
m=n

Ac
m.

By independence, for any n

P
( ∞⋂
m=n

Ac
m

)
=

∞∏
m=n

P
(
Ac
m

)
.
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In view of the inequality ln(1− x) ≤ −x, 0 ≤ x < 1, we have

ln
( ∞∏
m=n

P
(
Ac
m

))
=

∞∑
m=n

ln
(
1−P(Am)

)
≤ −

∞∑
m=n

P(Am) = −∞.

Consequently, P
( ∞⋂
m=n

Ac
m

)
= 0 for any n. Therefore, P

((
lim sup

n
An

)c)
= 0, or

P
(

lim sup
n

An

)
= 1. �

Exercises.

2.1. Let Ω = {ω : ω ∈ [−1/2, 1/2]}, F = B([−1/2, 1/2]), P(dω) = dω. Let
X(ω) = ω2. Prove that

P(A|σ(X)) = 1

2
1IA(ω) + 1

2
1IA(−ω), E{Y |σ(X)} = 1

2
Y (ω) + 1

2
Y (−ω).

2.2. Let (Ω,F ,P) be the same probability space as in 2.1. Let Y be a random
variable with E|Y | <∞. Compute E{Y |σ(X)}

1) for X(ω) = ω 1I[0,1/2](ω)− 3ω 1I[−1/2,0)(ω);

2) for X(ω) = ω2 1I[0,1/2](ω)− 2ω 1I[−1/2,0)(ω).

2.3. Let (Ω,F ,P) be the same probability space as in 2.1.

1) For X(ω) = (ω − 1/4)+ compute E{ω2|σ(X)}.

2) For X(ω) = |ω − 1/4| compute E{(ω + 1/4)3|σ(X)} and E{(ω + 1/4)3|X = x}.

2.4. Let Ω = {ω : ω ∈ [−1/2, 1/2]}, F = B([−1/2, 1/2]), P(dω) = (1 − 2ω) dω.
Compute E{Y |σ(X)} and E{Y |X = x}

1) for X(ω) = ω2;

2) for X(ω) = 2ω1I[0,1/2](ω)− 3ω1I[−1/2,0)(ω).

2.5. Let Ω = {ω : ω ∈ [−1/2, 1/2]}, F = B([−1/2, 1/2]), P(dω) = dω. Compute
E{(ω + 1/2)3|σ(X)}, where X(ω) = (|ω − 1/4| − 1/8)+.

2.6. Suppose that the random variables X, Y , and Z have a strictly positive
continuous joint density f(x, y, z), (x, y, z) ∈ R3. Compute for a bounded measur-
able function g(x, y, z) the conditional expectation E{g(X,Y, Z)|Y/Z = t}.

2.7. Let Y,X,Z be random variables such that E|Y | < ∞ and the σ-algebras
σ(Y,X) and σ(Z) are independent. Here σ(Y,X) is the σ-algebra generated by
the two random variables Y , X (the smallest σ-algebra containing the events {ω :
Y (ω) ∈ ∆1, X(ω) ∈ ∆2,∆k ∈ B(R)}). Prove that

E{Y |σ(X,Z)} = E{Y |σ(X)} a.s.
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2.8. Let Q ⊂ F and Y be an arbitrary F-measurable random variable with
finite second moment. Prove that among all Q-measurable random variables X
with finite second moments there is an a.s. unique random variable X0 = E{Y |Q}
that minimizes the distance (E(Y − X)2)1/2. The random variable E{Y |Q} can
be treated as a projection of Y on the set of Q-measurable random variables.

2.9. Let Xl, l = 1, 2, . . . , n, be independent identically distributed random
variables with continuous distribution function F . Set I := min{X1, X2, . . . , Xn}
and M := max{X1, X2, . . . , Xn}. Prove that if x < y, then

P(x ≤ I,M < y) = (F (y)− F (x))n,

P(I ≥ x|M = y) =
(
1− F (x)

F (y)

)n−1

.

2.10. Let Xl, l = 1, 2, . . . , n, be independent identically distributed random
variables with continuous distribution function F . SetM := max{X1, X2, . . . , Xn}.
Prove that for every k, 1 ≤ k ≤ n,

P(Xk < x|M = y) =

{ (n− 1)F (x)

nF (y)
, if x < y,

1, if x ≥ y.

§ 3. Stochastic processes. Continuity criterion

Let Σ be an arbitrary set. A stochastic process is a family

X = {X(t, ω), t ∈ Σ}

of random variables depending on some parameter t. As in the case of random
variables, the argument ω in the notation of a process is, as a rule, omitted.

If Σ is a subinterval of the nonnegative real half-line, then the parameter t is
referred to as the time, and X is called a continuous time process.

If Σ is a subset of Rk, then X(t), t ∈ Σ, is called a multiparameter process. We
assume throughout the presentation that Σ is a subset of [0,∞). If Σ = N, where
N is the set of natural numbers, then X is called a stochastic sequence.

For a given sample point ω ∈ Ω, the mapping t → X(t, ω) is called a sample
path, or trajectory, or realization of the process X(t), t ∈ Σ.

The sample space Ω can be very complicated, therefore when considering a
particular process it is convenient to interpret Ω as the set of sample paths of the
process. To every sample point there corresponds a sample path of the process.

Two stochastic processes X(t) and Y (t), t ∈ Σ, defined on the same probabil-
ity space are said to be stochastically equivalent or modifications of each other if
P(X(t) = Y (t)) = 1 for all t ∈ Σ.
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Two stochastic processes X(t) and Y (t), t ∈ Σ, defined on the same probability
space are said to be indistinguishable or equivalent if there exists a set Λ ∈ F such
that P(Λ) = 0 and X(t, ω) = Y (t, ω) for all t ∈ Σ and ω ∈ Ω \ Λ.

To every stochastic process X there is associated the family of finite-dimensional
distributions

Pt1,t2,...,tn(∆1 ×∆2 × · · · ×∆n)

:= P(X(t1) ∈ ∆1, X(t2) ∈ ∆2, . . . , X(tn) ∈ ∆n), ∆k ∈ B(R), (3.1)

for all tk ∈ Σ, k = 1, . . . , n.
For a fixed (t1, . . . , tn), the corresponding element of this family is the finite-

dimensional distribution of the random vector (X(t1), . . . , X(tn)).

A stochastic process X is considered to be defined if the family of its finite-
dimensional distributions is given. A process with the given family of finite-
dimensional distributions is not unique. Such a process can have different path
properties and we should choose the process with the best ones.

Obviously, the family of finite-dimensional distributions satisfies the following
conditions of symmetry and consistency: for any n ≥ 2, tk ∈ Σ, ∆k ∈ B(R),
k = 1, . . . , n,

1) Pt1,t2,...,tn(∆1 ×∆2 × · · · ×∆n) = Ptl1 ,tl2 ,...,tln (∆l1 ×∆l2 × · · · ×∆ln), where
(l1, l2, . . . , ln) is any permutation of (1, 2, . . . , n);

2) Pt1,...,tk−1,tk,tk+1,...,tn(∆1 × · · · ×∆k−1 ×R×∆k+1 × . . .∆n) =
Pt1,...,tk−1,tk+1,...,tn(∆1 × · · · ×∆k−1 ×∆k+1 × . . .∆n) for every 1 ≤ k ≤ n.

Theorem 3.1 (Kolmogorov). Let a family of finite-dimensional distributions
Pt1,t2,...,tn(∆1×∆2×· · ·×∆n), satisfying the symmetry and consistency conditions
be given. Then there exist a probability space (Ω,F ,P) and a process X(t), t ∈ Σ,
defined on this space such that its family of finite-dimensional distributions coincide
with the given one.

The proof of the Kolmogorov theorem can be found, for example, in Bulinskii
and Shiryaev (2003).

Two stochastic processes taking values in the same state space (R,B(R)), but
not necessarily defined on the same probability space, are said to be identical in
law if they have the same finite-dimensional distributions.

For a process X(t), t ∈ Σ, the sets

{ω : X(t1, ω) ∈ ∆1, X(t2, ω) ∈ ∆2, . . . , X(tn, ω) ∈ ∆n},

tk ∈ Σ, ∆k ∈ B(R), are called cylinder sets. These sets form an algebra. The
smallest σ-algebra containing the algebra of cylinder sets is called the σ-algebra
of events generated by the process X and is denoted by G = σ{X(t), t ∈ Σ}. Let
Gba = σ{X(t), t ∈ Σ ∩ [a, b]} be the σ-algebra of events generated by the process X
when the time is varying from a to b.
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For a fixed time t ∈ Σ, let Gt0 be the σ-algebra describing the past of the process,
G∞t be the σ-algebra describing the future of the process, and Gtt = σ(X(t)) be the
σ-algebra describing the present state of the process.

A family of finite-dimensional distributions determines a probability measure
on the algebra of cylinder sets. According to Kolmogorov’s theorem (see Karatzas
and Shreve (2000) p. 50) this measure can be extended to a probability measure
on G = σ{X(t), t ∈ Σ}. This measure is usually denoted by PX and is called the
measure associated with the process X.

A stochastic process X(t), t ∈ [a, b], is called measurable if the mapping (t, ω) →
X(t, ω) is B([a, b])×F-measurable.

A process X(t), t ∈ [a, b], is said to be stochastically continuous or continuous
in probability if for any t ∈ [a, b] and ε > 0,

lim
s→t

P(|X(s)−X(t)| > ε) = 0, (3.2)

and continuous in mean square if for every t ∈ [a, b],

lim
s→t

E|X(s)−X(t)|2 = 0. (3.3)

As we have already mentioned, a process is characterized by its finite-dimensional
distributions, however, one can provide many examples of processes that have the
same finite-dimensional distributions, but the trajectories of which display essen-
tially different properties.

Example 3.1. Let η be a random variable uniformly distributed on [0, 1] and let
f1(x) ≡ 0, f2(x) = 1I{1}(x), x ∈ [0,∞). Consider the processes X1(t) = f1(t + η)
and X2(t) = f2(t + η), t ∈ [0, 1]. These processes are stochastically equivalent
(from the probabilistic point of view they are modifications of each other), since
P(X1(t) 6= X2(t)) = P(η = 1− t) = 0 for any t ∈ [0, 1]. However,

P
(

sup
t∈[0,1]

X1(t) = 0
)

= P
(

sup
t∈[0,1]

X2(t) = 1
)

= 1,

which is rather unnatural.

In order to avoid unnecessary work, we should introduce some restrictions on
processes: a property of weak regularity (separability), thanks to which behavior
of trajectories of a process is determined by their values on a countable parameter
set.

A process X(t), t ∈ [a, b], is called separable if there exists a countable dense
subset ∆0 ⊂ [a, b] such that a.s. for every t ∈ [a, b] \ ∆0 the value X(t) belongs to
the set of all limits of values X(sn) for different subsequences sn ∈ ∆0, sn → t.

In other words, a trajectory of the process X must have the following property:
there exists an event Λ of zero probability such that the graph (t,X(t, ω)), t ∈ [0, 1],
is contained in the closure of the graph (s,X(s, ω)), s ∈ ∆0 for any ω ∈ Ω \ Λ.



§ 3. STOCHASTIC PROCESSES 21

Lemma 3.1. Let X(t), t ∈ [a, b], be a stochastically continuous process. Then

there is a separable process X̃(t), t ∈ [a, b], stochastically equivalent to it, taking
values in the extended real line [−∞,∞]. For the set of separability ∆0 one can
take any dense countable subset of [a, b].

The proof can be found, for example, in Ventzel (1981).
A process X(t), t ∈ [a, b], is said to be continuous or to have a.s. continuous

paths if there exists a set Λ ∈ F such that P(Λ) = 0 and the mapping t→ X(t, ω),
t ∈ [a, b], is continuous for all ω ∈ Ω \ Λ.

The following continuity criterion for stochastic processes is due to A. N. Kol-
mogorov.

Theorem 3.2. Assume that for a process X(t), t ∈ [a, b], there exist positive
constants α, β, and M such that

E|X(t)−X(s)|α ≤M |t− s|1+β for any s, t ∈ [a, b]. (3.4)

Then the process X has a continuous modification X̃.

For any 0 < γ < β/α the sample paths of the process X̃(t), t ∈ [a, b], satisfy a.s.
the Hölder condition

|X̃(t)− X̃(s)| ≤ Lγ |t− s|γ , (3.5)

where Lγ is a random coefficient independent of s and t.

Proof. The stochastic continuity of X follows from condition (3.4). Indeed, by
the Chebyshev inequality, for any ε > 0

P(|X(t)−X(s)| ≥ ε) ≤ 1

"�
E|X(t)−X(s)|α ≤ M

"�
|t− s|1+β . (3.6)

This implies the stochastic continuity (3.2).
Choose an arbitrary γ ∈ (0, β/α). Consider the dyadic rational (binary rational)

points k/2n from the interval [a, b]. Using (3.6), for any neighboring dyadic rational
points (whose difference is 1/2n) we have

P
(∣∣∣X(k + 1

2n

)
−X

(
k

2n

)∣∣∣ ≥ 2−nγ
)
≤ M

2−�n
2−n(1+β) = M2−n2−n(β−αγ).

Then for any fixed n

P
(

max
a2n≤k≤b2n−1

∣∣∣X(k + 1

2n

)
−X

(
k

2n

)∣∣∣ ≥ 2−nγ
)

= P
( ⋃
a2n≤k≤b2n−1

{∣∣∣X(k + 1

2n

)
−X

(
k

2n

)∣∣∣ ≥ 2−nγ
})

≤
∑

a2n≤k≤b2n−1

P
(∣∣∣X(k + 1

2n

)
−X

(
k

2n

)∣∣∣ ≥ 2−nγ
)

≤ (b− a)2nM2−n2−n(β−αγ) = M(b− a)2−n(β−αγ).
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Since the series of these probabilities converges, the first part of the Borel–Cantelli
lemma, shows that there exists a.s. a number n0 = n0(ω) such that

max
a≤k/2n<(k+1)/2n≤b

∣∣∣X(k + 1

2n

)
−X

(
k

2n

)∣∣∣ < 2−nγ (3.7)

for all n ≥ n0. This estimate can be considered as the analogue of (3.5) for
neighboring dyadic points.

We establish now the analogue of (3.5) for all dyadic rational points that are
close enough to one another. For any dyadic rational points s < t satisfying the
condition t− s < 2−n0 , there exists m ≥ n0 such that 2−m−1 ≤ t− s < 2−m. Then
it is possible to represent the points s and t in the form

s = k2−m − 2−l1 − 2−l2 − · · · − 2−lµ , m < l1 < l2 < · · · < lµ,

t = k2−m ∓ 2−v1 ∓ 2−v2 ∓ · · · ∓ 2−vη , m < v1 < v2 < · · · < vη.

There are finitely many terms in these representations. Moreover, in the second
formula one should take the minus signs if the points s and t lie in the same interval
((k − 1)2−m, k2−m], and take the plus signs if they lie in adjoining intervals. For
the sake of definiteness we take the plus signs.

The following inequalities hold:

|X(t)−X(s)| ≤ |X(k2−m)−X(s)|+ |X(t)−X(k2−m)|

≤ |X(k2−m)−X(k2−m− 2−l1)|+ |X(k2−m− 2−l1)−X(s)|

+ |X(k2−m)−X(k2−m + 2−v1)|+ |X(k2−m + 2−v1)−X(t)|

≤ |X(k2−m)−X(k2−m−2−l1)|+ |X(k2−m−2−l1)−X(k2−m−2−l1 −2−l2)|+ · · ·

+ |X(k2−m)−X(k2−m+2−v1)|+ |X(k2−m+2−v1)−X(k2−m+2−v1 +2−v2)|+ · · · .

On the right-hand side of these inequalities there are the increments of the process
X in the neighboring dyadic rational points, and for them inequality (3.7) holds.
Therefore,

|X(t)−X(s)| ≤
∑
lj>m

2−γlj +
∑
vj>m

2−γvj

≤ 2
∞∑

l=m+1

2−γl = 21−(m+1)

1− 2−
≤ 2

1− 2−
|t− s|γ . (3.8)

This means that the process X is uniformly continuous on the set of dyadic
rational points of the interval [a, b] and on this set it satisfies the Hölder condition
with the parameter γ.

In view of (3.8), due to Cauchy’s criterion, the process X can be extended by
continuity from the set D of dyadic rational points to the whole interval [a, b]. For
any t ∈ [a, b] we set X̃(t) := lim

s→t, s∈D
X(s). It is clear that a.s. for all |t−s| < 2−n0 ,

|X̃(t)− X̃(s)| ≤ 2

1− 2−
|t− s|γ . (3.9)
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Next we verify that the process X̃ is a modification of X, i.e., P(X̃(t) = X(t)) = 1
for every t ∈ [a, b].

Since the process X is stochastically continuous, we have X(s) → X(t) as s→ t
in probability. According to Proposition 1.1 there exists a subsequence sn ∈ D,
sn → t, such that X(t) = lim

sn→t
X(sn) a.s. However, by the definition of the process

X̃, this limit is equal to X̃(t). Hence the processes X̃ and X are modifications of
each other.

To prove (3.5), we apply estimate (3.9). For arbitrary s, t we have

|X̃(t)− X̃(s)| = |X̃(t)− X̃(s)|1I{|t−s|<2−n0}(ω) + |X̃(t)− X̃(s)|1I{|t−s|≥2−n0}(ω)

≤ 2|t− s|

1− 2−
+ |X̃(t)− X̃(s)|1I{1≤(|t−s|2n0 )γ}(ω)

≤ 2|t− s|

1− 2−
+ 2n0γ |t− s|γ2 max

t∈[a,b]
|X̃(t)| = Lγ |t− s|γ ,

where Lγ = 2

1− 2−
+ 21+n0γ max

t∈[a,b]
|X̃(t)|. �

Sometimes we consider a multiparameter stochastic process, where Σ =
r∏

k=1

[ak, bk].

As in the one-parameter case, a process X
(
~t
)
, ~t ∈

r∏
k=1

[ak, bk], is said to be contin-

uous if there exists a set Λ ∈ F such that P(Λ) = 0, and the mapping ~t→ X(~t, ω),
~t ∈

r∏
k=1

[ak, bk], is continuous for all ω ∈ Ω \ Λ.

It is useful to have a similar continuity criterion for multiparameter stochastic
processes.

Theorem 3.3. Let X
(
~t
)
, ~t ∈

r∏
k=1

[ak, bk], be a multiparameter stochastic pro-

cess. Assume that there exist positive constants α, β, and M such that for any

~v, ~u ∈
r∏

k=1

[ak, bk],

E|X
(
~u
)
−X

(
~v
)
|α ≤M |~u− ~v|r+β . (3.10)

Then the process X
(
~t
)
, ~t ∈

r∏
k=1

[ak, bk], has a continuous modification X̃
(
~t
)
.

For any 0 < γ < β/α sample paths of the process X̃
(
~t
)

a.s. satisfy the Hölder
condition

|X̃
(
~u
)
− X̃

(
~v
)
| ≤ Lγ |~u− ~v|γ , (3.11)

where Lγ is a random coefficient independent of ~v and ~u.

The proof of this result is analogous to that of Theorem 3.2.
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§ 4. Stopping times

A family of σ-algebras {Ft, t ∈ Σ} on (Ω,F) is called a filtration if

Fs ⊆ Ft ⊆ F for every s ≤ t, s, t ∈ Σ.

For Σ = [0, T ], a filtration is said to be right continuous if for every t ∈ [0, T )

Ft = Ft+ :=
⋂
ε>0

Ft+ε.

The collection (Ω,F , {Ft},P) is called a filtered probability space. It is said to
satisfy the usual conditions if

1) F is P-complete,

2) F0 contains all P-null sets of F ,

3) {Ft} is right continuous.

Condition 1) means that if for set A there exists A1 and A2 in F such that
A1 ⊆ A ⊆ A2 and P(A1) = P(A2), then A belongs to F .

We say that a process X(t), t ∈ Σ, defined on a filtered probability space
(Ω,F , {Ft},P), is adapted to the filtration {Ft, t ∈ Σ} if for every t ∈ Σ the
random variable X(t) is Ft-measurable.

Notice that X(t), t ∈ Σ, is always adapted to its natural filtration Gt0 :=
σ{X(s), s ∈ Σ}, which is assumed to satisfy the usual conditions.

A stochastic process X(t), t ∈ [0, T ], defined on a filtered probability space
(Ω,F , {Ft},P), is said to be progressively measurable if for every t ∈ [0, T ] the
mapping (s, ω) → X(s, ω) from [0, t] × Ω to R is B([0, t]) × Ft-measurable, i.e.,
for every t ∈ [0, T ] and any Borel set ∆ on the real line, the inclusion {(s, ω) :
X(s, ω) ∈ ∆, s ≤ t} ∈ B([0, t])×Ft holds, where B([0, t]) is the Borel σ-algebra on
[0, t].

In other words, if the restriction of X to the interval [0, t] is a B([0, t]) × Ft-
measurable process for every t ∈ [0, T ], then it is progressively measurable.

A progressively measurable process is clearly adapted to the filtration.

Proposition 4.1. An adapted process with right or left continuous paths is
progressively measurable.

Proof. Let X(t), t ∈ [0, T ], be a right continuous process. We fix t in the
interval (0, T ]. Set Xn(s) := X(kt/2n) for s ∈ ((k − 1)t/2n, kt/2n], k = 1, 2, . . . ,
Xn(0) = X(0). For every n ∈ N the process Xn(s), s ∈ [0, t], is B([0, t]) × Ft-
measurable. Since X(s) = lim

n→∞
Xn(s), s ∈ [0, t], and the limit of measurable

functions is B([0, t]) × Ft-measurable, we see that the process X is progressively
measurable. �

Progressive measurability is very important. It, for example, guarantees, the
validity of the following property: for a progressively measurable integrable process
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X the integral
t∫

0

X(s) ds, t ∈ [0, T ], regarded as a process with respect to t, is also

progressively measurable.
A stochastic process can be considered not only at deterministic moments, but

also at some random times. We consider an important class of random times.

A stopping time with respect to a filtration {Ft, t ∈ Σ ⊆ [0,∞)} is a mapping
τ : Ω → Σ ∪ {∞} such that {τ ≤ t} ∈ Ft for every t ∈ Σ.

For Σ = 1, 2, . . . and ∆ ∈ B(R), the moment τ := min{k : X(k) ∈ ∆} is a
stopping time with respect to the natural filtration {Gk0 }, k ∈ N. Indeed,

{τ ≤ k} = {τ = 1}
⋃
{τ = 2}

⋃
. . .
⋃
{τ = k}

= {X(1) ∈ ∆}
k⋃
l=2

{X(1) 6∈ ∆, . . . , X(l − 1) 6∈ ∆, X(l) ∈ ∆},

and it is clear that this set is Gk0 -measurable.

Given a stopping time τ with respect to the filtration {Ft, t ∈ Σ ⊆ [0,∞)}, the
collection of sets

Fτ := {A : A
⋂
{τ ≤ t} ∈ Ft for all t ∈ Σ}

is a σ-algebra, as one can easily verify.
For the natural filtration Gt0 = σ{X(s), s ∈ Σ ∩ [0, t]} the σ-algebra Gτ0 can be

interpreted as σ-algebra of events generated by the process X up to the time τ .

The following Galmarino’s criterion characterizes stopping times. The proof of
this criterion can be found in Itô and McKean (1965).

A measurable with respect to G∞0 functional τ(ω) := τ(X(s, ω), s ∈ Σ ⊆ [0,∞)),
taking values in Σ

⋃
{∞}, is a stopping time with respect to the filtration {Gt0} iff

for every fixed t ∈ Σ and any sample points ω, ω̃, the conditions X(s, ω) = X(s, ω̃)
for all s ∈ Σ ∩ [0, t], τ(ω) ≤ t imply τ(ω) = τ(ω̃).

In other words, if for every sample path of X considered up to any fixed time t
one can say whether the moment τ occurs or not, then τ is a stopping time.

According to this criterion the first passage time τ := min{s : X(s) ≥ b} is a
stopping time.

The last exit time at zero, i.e., the moment ρ := max{s : X(s) = 0}, is not a
stopping time. This is due to the fact that the behavior of a sample path up to the
time t cannot determine this moment as the last visit to zero point.

Examples of stopping times.

The first hitting time of a level z is defined as follows Hz := min{s : X(s) = z}.

A significant role for different applications plays the moment

Ha,b := min{s : X(s) /∈ (a, b)},
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which is the first exit time from the interval (a, b).

A process X can be stopped at the moment inverse of integral functional. This
moment is defined by the formula

ν(t) := min
{
s :

s∫
0

g(X(v)) dv = t
}
,

where g is a nonnegative measurable function.

Let
θv = min

{
t : sup

0≤s≤t
X(s)− inf

0≤s≤t
X(s) ≥ v

}
be the first moment at which the range of X reaches a given value v > 0. The
moment θv is called the inverse range time of the process X.

Properties of stopping times.

1. If τ is a stopping time, then {τ < t} ∈ Ft and {τ = t} ∈ Ft.
Indeed,

{τ < t} =
∞⋃
k=1

{
τ ≤ t− 1

k

}
,

{
τ ≤ t− 1

k

}
∈ Ft−1/k ⊆ Ft,

and {τ = t} = {τ ≤ t} \ {τ < t}.

2. If t0 is a nonnegative constant, then τ = t0 is a stopping time.

3. If τ is a stopping time, then τ + t0 is a stopping time for a nonnegative
constant t0, since {τ + t0 ≤ t} = {τ ≤ t− t0} ∈ Ft−t0 ⊆ Ft.

4. If σ and τ are stopping times, then σ ∨ τ := max{σ, τ} is a stopping time.
Indeed, {σ ∨ τ ≤ t} = {σ ≤ t} ∩ {τ ≤ t} ∈ Ft.

5 If σ and τ are stopping times, then σ ∧ τ := min{σ, τ} is a stopping time.
Indeed, {σ ∧ τ ≤ t} = {σ ≤ t} ∪ {τ ≤ t} ∈ Ft.

6. If τn, n ∈ N, are stopping times, then inf
n∈N

τn and sup
n∈N

τn are stopping times.

Indeed,
{

sup
n∈N

τn ≤ t
}

=
⋂
n∈N

{τn ≤ t} ∈ Ft,

{
inf
n∈N

τn ≤ t
}

=
⋂
m∈N

{
inf
n∈N

τn < t+ 1

m

}
=
⋂
m∈N

⋃
n∈N

{
τn < t+ 1

m

}
∈
⋂
m∈N

Ft+1/m=Ft.

Here we used the fact that the filtration
{
Ft
}

is right continuous.

7. If τn, n ∈ N, are stopping times, then lim inf
n

τn and lim sup
n

τn are stopping

times.
Indeed, lim sup

n
τn = inf

m∈N
sup
n≥m

τn, and lim inf
n

τn = sup
m∈N

inf
n≥m

τn.
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8. A stopping time τ is an Fτ -measurable random variable.
Set A := {τ ≤ s}. Then for arbitrary t ∈ Σ,

A ∩ {τ ≤ t} = {τ ≤ s ∧ t} ∈ Fs∧t ⊆ Ft.

By the definition of Fτ , we have A ∈ Fτ .

9. If σ and τ are stopping times such that σ ≤ τ , then Fσ ⊆ Fτ .
If A ∈ Fσ, we have A ∩ {σ ≤ t} ∈ Ft for every t ∈ Σ. Since σ ≤ τ , one has the

inclusion {τ ≤ t} ⊆ {σ ≤ t}, and

A
⋂
{τ ≤ t} = A

⋂
{τ ≤ t}

⋂
{σ ≤ t} =

{
A
⋂
{σ ≤ t}

}⋂
{τ ≤ t} ∈ Ft.

By the definition of Fτ , we have A ∈ Fτ .

Proposition 4.2. Let X(t), t ∈ [0,∞), be a stochastic process progressively
measurable with respect to the filtration {Ft, t ∈ [0,∞)}, and τ be a stopping time
with respect to this filtration. Then the random variable X(τ) is Fτ -measurable.

Proof. For any t ∈ [0,∞) and an arbitrary Borel sets ∆, consider the event Q :=
{X(τ) ∈ ∆}

⋂
{τ ≤ t}. Obviously, Q = {X(τ ∧ t) ∈ ∆}

⋂
{τ ≤ t}. The random

variable X(τ ∧ t) is Ft-measurable as a superposition of measurable mappings:
ω → (τ(ω) ∧ t, ω) from (Ω,Ft) to ([0, t] × Ω,B([0, t]) × Ft) and (s, ω) → X(s, ω)
from ([0, t]×Ω,B([0, t])×Ft) to (R,B(R)). Now, since the events {X(τ ∧ t) ∈ ∆}
and {τ ≤ t} are Ft-measurable, the event Q is Ft-measurable. By the definition
of the σ-algebra Fτ , we have {X(τ) ∈ ∆} ∈ Fτ and this means that the random
variable X(τ) is Fτ -measurable. �

Corollary 4.1. Let X(t), t ∈ [0,∞), be a right continuous stochastic process
and τ be a stopping time with respect to the natural filtration {Gt0}. Then the
random variable X(τ) is Gτ0 -measurable.

Indeed, by Proposition 4.1, a right continuous stochastic process is progressively
measurable with respect to the natural filtration.

§ 5. Martingales

Let (Ω,F ,P) be a probability space and let Σ be a subset of the nonnegative
integers or a subset of the nonnegative real line. Let {Ft}t∈Σ be a family of σ-
algebras such that Fs ⊆ Ft ⊆ F for every s ≤ t, s, t ∈ Σ.

A stochastic process X(t), t ∈ Σ, is called a martingale (respectively, super-
martingale, submartingale) with respect to the filtration {Ft}t∈Σ if

1) E|X(t)| <∞ for every t ∈ Σ,

2) for every t ∈ Σ the random variable X(t) is Ft-measurable,

3) E{X(t)|Fs} = X(s) (respectively, E{X(t)|Fs} ≤ X(s), E{X(t)|Fs} ≥ X(s))
a.s. for every pair s, t ∈ Σ such that s < t.
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A martingale, supermartingale or submartingale will be usually denoted by ap-
pending the filtration, i.e., (X(t),Ft), t ∈ Σ.

Examples of martingales.

Let ηl, l = 1, 2, . . . , be independent identically distributed random variables and
Fk = σ(ηl, 1 ≤ l ≤ k) be the σ-algebra of events generated by these variables.

1) Assume that Eη1 = 0. Then the process X(k) :=
k∑
l=1

ηl, k = 1, 2, . . . , is a

martingale with respect to the σ-algebras {Fk}∞k=1.
Indeed, for 1 ≤ m < k

E
{
X(k)

∣∣Fm} = E
{
X(m) +

k∑
l=m+1

ηl

∣∣∣Fm} = X(m) +
k∑

l=m+1

Eηl = X(m).

Note that for the cases Eη1 < 0 and Eη1 > 0 the process X(k), k = 1, 2, . . . , is a
supermartingale and a submartingale, respectively.

2) Let Eη1 = 0, Eη2
1 = σ2 < ∞. Then the process Y (k) :=

( k∑
l=1

ηl
)2 − kσ2,

k = 1, 2, . . . , is a martingale with respect to the σ-algebras {Fk}∞k=1.
Indeed, for arbitrary m ≥ 1

E
{
Y (m+ 1)

∣∣Fm} = E
{
Y (m) + 2ηm+1

m∑
l=1

ηl + η2
m+1 − σ2

∣∣∣Fm}

= Y (m) + 2
m∑
l=1

ηlEηm+1 + σ2 − σ2 = Y (m).

Note that, by the 4th property of conditional expectations, the equalities

E
{
Y (m+ 1)

∣∣Fm} = Y (m), m = 1, 2, . . . ,

imply E
{
Y (k)

∣∣Fm} = Y (m) for arbitrary integers 1 ≤ m < k.

3) Let ϕ(α) = Eeiαη1 , α ∈ R, be the characteristic function of the random

variable η1. Then the process Z(k) := 1

'k(�)
exp

(
iα

k∑
l=1

ηl

)
, k = 1, 2, . . . , is a

martingale with respect to the σ-algebras {Fk}∞k=1.
Indeed, for arbitrary m ≥ 1

E
{
Z(m+ 1)

∣∣Fm} = 1

'm+1(�)
exp

(
iα

m∑
l=1

ηl

)
Eeiαηm+1 = Z(m).

4) Let ηl, l = 1, 2, . . . , be Bernoulli’s random variables such that P(η1 = 1) = p,

P(η1 = −1) = 1 − p. Then the process U(k) :=
(
1− p

p

) k∑
l=1

ηl

, k = 1, 2, . . . , is a

martingale with respect to the σ-algebras {Fk}∞k=1.
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Indeed, for any m ≥ 1

E
{
U(m+ 1)

∣∣Fm} = U(m)E
(
1− p

p

)η1
= U(m).

5) Let f(x)>0, x∈R, be the density of η1 and, accordingly, f(x1)f(x2)· · ·f(xk)
be the joint density of the i.i.d. random variables ηl, l = 1, 2, . . . , k. Let g be some
other density. In the theory of hypothesis testing there is the process of likelihood
ratio

V (k) := g(�1)g(�2) · · · g(�k)
f(�1)f(�2) · · · f(�k)

, k = 1, 2, . . . .

This process is a martingale with respect to the σ-algebras {Fk}∞k=1.
Indeed, for arbitrary m ≥ 1

E
{
V (m+ 1)

∣∣Fm} = V (m)E g(�m+1)

f(�m+1)
= V (m)

∫
R

g(x)

f(x)
f(x) dx = V (m).

6) Let X be a random variable with E|X| < ∞ and {Ft, t ∈ Σ} be an ar-
bitrary filtration. Then the process X(t) := E{X|Ft}, t ∈ Σ, is a martingale.
This is a simple consequence of the 4th property of conditional expectations:
E{E{X|Ft}|Fs} = E{X|Fs} for any s < t.

The definition of martingales (supermartingales or submartingales) can be based
on corresponding integral relations instead of conditional expectations.

Assume that the random variables µ and η have finite moments E|µ| <∞ and
E|η| < ∞. Let the random variable µ be measurable with respect to a σ-algebra
Q ⊆ F . Then the inequality

µ ≥ E{η|Q}
(
resp. µ ≤ E{η|Q}

)
a.s. (5.1)

is equivalent to∫
B

µdP ≥
∫
B

η dP
(
resp.

∫
B

µdP ≤
∫
B

η dP
)

(5.2)

for every set B ∈ Q. An analogous statement holds for equality.
This is the consequence of the definition of conditional expectation given the

σ-algebra Q (see (2.10)): E{η|Q} is the Q-measurable random variable such that∫
B

E{η|Q}dP =
∫
B

ηdP

for every B ∈ Q.

1. A random time change.
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Theorem 5.1. Let (X(k),Fk), k = 1, 2, . . . , be a supermartingale. Assume
that σ and τ are two integer-valued bounded stopping times with respect to
{Fk}∞k=1 such that

1 ≤ σ(ω) ≤ τ(ω) ≤ n for almost all ω ∈ Ω

and some integer n. Then X(σ) is Fσ-measurable and

E{X(τ)|Fσ} ≤ X(σ) a.s. (5.3)

Proof. We note first that E|X(σ)| <∞ and E|X(τ)| <∞. Indeed,

E|X(τ)| =
n∑
k=1

∫
{τ=k}

|X(τ)| dP =
n∑
k=1

∫
{τ=k}

|X(k)| dP ≤
n∑
k=1

E|X(k)| <∞.

Since for any Borel set B and arbitrary k = 1, 2, . . . ,

{X(σ) ∈ B}
⋂
{σ ≤ k} =

k∑
l=1

(
{X(l) ∈ B}

⋂
{σ = l}

)
∈ Fk,

the variable X(σ) is Fσ-measurable.
Thanks to the equivalence of (5.1) and (5.2), it suffices to show that for any

B ∈ Fσ ∫
B

X(σ) dP ≥
∫
B

X(τ) dP. (5.4)

We prove first this inequality for the case τ − σ ≤ 1. We have∫
B

(X(σ)−X(τ)) dP =
n∑
k=1

∫
B∩{σ=k}∩{τ>σ}

(X(σ)−X(τ)) dP

=
n∑
k=1

∫
B∩{σ=k}∩{τ>k}

(X(k)−X(k + 1)) dP. (5.5)

Since τ is a stopping time, {τ > k} = Ω \ {τ ≤ k} ∈ Fk for every k = 1, 2, . . . , n.
By the definition of the σ-algebra Fσ (see § 3),

B
⋂
{σ = k} = {B

⋂
{σ ≤ k}} \ {B

⋂
{σ ≤ k − 1}} ∈ Fk.

Thus B
⋂
{σ = k}

⋂
{τ > k} ∈ Fk and from the definition of a supermartingale and

(5.2) it follows that ∫
B∩{σ=k}∩{τ>k}

(X(k)−X(k + 1)) dP ≥ 0.
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As a result, we have that (5.5) implies (5.4) for the special case τ − σ ≤ 1.
Set τk := τ ∧ (σ+ k), k = 0, 1, . . . , n. It is clear that τ0 = σ ≤ τ1 ≤ . . . ≤ τn = τ

and τk+1− τk ≤ 1. From the properties of stopping times it follows that τk is again
a stopping time. Now we can apply n times the inequality (5.4) for the special
case. Finally, we have∫

B

X(σ) dP ≥
∫
B

X(τ1) dP ≥
∫
B

X(τ2) dP ≥ · · · ≥
∫
B

X(τn) dP =
∫
B

X(τ) dP.

This proves (5.4) in the general case. �

Theorem 5.1 implies the following result.

Theorem 5.2 (random time change). Let
(
X(k),Fk

)
, k = 1, . . . , n, be a

supermartingale and 1 ≤ τ1 ≤ τ2 ≤ · · · ≤ τm be stopping times with respect
to {Fk}nk=1, having the state space {1, 2, . . . , n}. Then the sequence X(τl), l =
1, 2, . . . ,m, is a supermartingale with respect to the filtration {Fτl

}ml=1.

Indeed, according to the 9th property of stopping times, Fτl
⊆ Fτj

for l < j.
Therefore {Fτl

}, l = 1, 2, . . . ,m, is a filtration. Moreover, from (5.3) one obtains
the supermartingale inequality

E{X(τj)|Fτl
} ≤ X(τl) a.s.

Corollary 5.1. Let
(
X(k),Fk

)
, k = 1, . . . , n, be a supermartingale and 1 ≤

ρ ≤ n be an integer-valued stopping time with respect to {Fk}nk=1. Then

EX(1) ≥ EX(ρ) ≥ EX(n). (5.6)

This is a consequence of (5.4) for B = Ω and for the stopping times σ = 1, τ = ρ
or σ = ρ, τ = n, respectively.

Remark 5.1. If
(
X(k),Fk

)
, k = 1, 2, . . . , is a submartingale, then

(
−X(k),Fk

)
is a supermartingale. Consequently, for a submartingale there are results analogous
to Theorems 5.1, 5.2, and Corollary 5.1 with opposite inequalities in (5.3) and (5.6).
For a martingale

(
X(k),Fk

)
the inequalities (5.3) and (5.6) must be replaced by

equalities.

Thus for a martingale
(
X(k),Fk

)
, k = 1, 2, . . . , we have

EX(1) = EX(ρ) = EX(n).

Example 5.1. Set X(k) :=
k∑
j=1

ηj , where ηj , j = 1, 2, . . . , are independent

random variables with Eη1 = 0. Let τl := min{k : X(k) ≥ l}, l = 1, 2, . . . ,m, be
the first passage times. It is clear that 1 ≤ τ1 ≤ τ2 ≤ · · · ≤ τm. Then the sequence
X(τl ∧ n), l = 1, 2, . . . ,m, is a martingale with respect to the natural filtration.

2. Martingale inequalities.
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Theorem 5.3. Let
(
X(k),Fk

)
, k = 1, 2, . . . , n, be a nonnegative submartin-

gale. Then for any y > 0,

P
(

max
1≤k≤n

X(k) ≥ y
)
≤ 1

y
E
{
X(n)1I{

max
1≤k≤n

X(k)≥y
}} ≤ 1

y
EX(n). (5.7)

Proof. Set A :=
{

max
1≤k≤n

X(k) ≥ y
}

, A1 := {X(1) ≥ y},

Ak := {X(1) < y, . . . ,X(k − 1) < y,X(k) ≥ y}, k = 2, . . . , n.

Let ρ := min{k : X(k) ≥ y} be the first moment at which the sequence X(k)
exceed y. Then Ak = {ρ = k} ∈ Fk. It is clear that A = {1 ≤ ρ ≤ n}, the sets Ak

are disjoint, and A =
n⋃
k=1

Ak. Then

EX(n) ≥ E
{
X(n)1I{

max
1≤k≤n

X(k)≥y
}} =

∫
A

X(n) dP =
n∑
k=1

∫
Ak

X(n) dP

=
n∑
k=1

∫
Ak

E{X(n)|Fk} dP ≥
n∑
k=1

∫
Ak

X(k) dP ≥ y
n∑
k=1

P(Ak) = yP(A).

Thus, the inequalities (5.7) are proved. �

Remark 5.2. The inequality (5.7) is remarkable for the following reason: the
probability of the event, depending on the whole sample path of X, is estimated
by the expectation of X at the last moment n.

Corollary 5.2 (Doob’s inequalities). Let
(
X(k),Fk

)
, k = 1, . . . , n, be a

martingale. Assume that E|X(n)|p <∞ for some 1 ≤ p <∞. Then for any y > 0

P
(

max
1≤k≤n

|X(k)| ≥ y
)
≤ 1

yp
E|X(n)|p, (5.8)

and if 1 < p <∞, then

E
{

max
1≤k≤n

|X(k)|p
}
≤
(

p

p− 1

)p
E|X(n)|p. (5.9)

Proof. The process
(
|X(k)|p,Fk

)
, k = 1, . . . , n, is a submartingale. Indeed,

using Jensen’s inequality for conditional expectations, we see that for l < k

E{|X(k)|p|Fl} ≥ |E{X(k)|Fl}|p = |X(l)|p.

For a nonnegative submartingale we can apply (5.7). Then

P
(

max
1≤k≤n

|X(k)| ≥ y
)

= P
(

max
1≤k≤n

|X(k)|p ≥ yp
)
≤ 1

yp
E|X(n)|p.
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To prove (5.9), we set Mn := max
1≤k≤n

|X(k)|. Since there is no a priori information

that the absolute moment of order p exists for Mn, we must apply a truncation
procedure. For an arbitrary constant C > 0,

(Mn ∧ C)p =

Mn∧C∫
0

p yp−1 dy = p

C∫
0

yp−11I{Mn≥y} dy.

Applying the inequality on the left-hand side of (5.7), we get

E(Mn ∧ C)p = p

C∫
0

yp−1P(Mn ≥ y) dy ≤ p

C∫
0

yp−2E{|X(n)|1I{Mn≥y}} dy

= pE
{
|X(n)|

Mn∧C∫
0

yp−2 dy

}
= p

p− 1
E
{
|X(n)|(Mn ∧ C)p−1

}
.

By Hölder’s inequality,

E(Mn ∧ C)p ≤ p

p− 1
E(p−1)/p(Mn ∧ C)pE1/p|X(n)|p.

This implies that
E(Mn ∧ C)p ≤

(
p

p− 1

)p
E|X(n)|p.

Letting C →∞, we obtain (5.9). �

Example 5.1 (Kolmogorov’s inequality). Let ηl, l = 1, 2, . . . , be inde-
pendent identically distributed random variables with Eηl = 0, Eη2

l = σ2. The

process X(k) :=
k∑
l=1

ηl, k = 1, 2, . . . , is a martingale with respect to the σ-algebras

Fk = σ(ηl, 1 ≤ l ≤ k). Applying (5.8) with p = 2, we have

P
(

max
1≤k≤n

∣∣∣ k∑
l=1

ηl

∣∣∣ ≥ y
)
≤ EX2(n)

y2
= �2n

y2
. (5.10)

Inequalities analogous to (5.8) and (5.9) hold for a martingale
(
X(t),Ft

)
with

a continuous time parameter from a finite interval.

Corollary 5.3 (Doob’s inequalities). Let
(
X(t),Ft

)
, t ∈ [0, T ], be a right

continuous martingale. Let E|X(T )|p < ∞ for some 1 ≤ p < ∞. Then for any
y > 0

P
(

sup
0≤t≤T

|X(t)| ≥ y
)
≤ 1

yp
E|X(T )|p, (5.11)

and if 1 < p <∞, then

E
{

sup
0≤t≤T

|X(t)|p
}
≤
(

p

p− 1

)p
E|X(T )|p. (5.12)
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Proof. Let D be the set of dyadic rational points of the interval [0, T ]. We can
choose an increasing sequence Dn of finite subsets of D such that

⋃
nDn = D.

Applying (5.8) and (5.9), we have

P
(

sup
t∈Dn∪{T}

|X(t)| ≥ y
)
≤ 1

yp
E|X(T )|p,

E
{

sup
t∈Dn∪{T}

|X(t)|p
}
≤
(

p

p− 1

)p
E|X(T )|p.

Since X is a right continuous process,

sup
t∈Dn∪{T}

|X(t)| ↑ sup
0≤t≤T

|X(t)| as n→∞ a.s.

and the passage to the limit in the previous inequalities proves the corollary. �

3. Decomposition of submartingales.

Theorem 5.4 (Doob’s decomposition). Any submartingale
(
X(k),Fk

)
, k =

0, 1, 2, . . . , can be represented uniquely in the form

X(k) = M(k) +A(k), (5.13)

where
(
M(k),Fk

)
is a martingale and A(k), k = 1, 2, . . . , is an Fk−1-measurable

nondecreasing process, A(0) = 0.

Proof. Set M(0) := X(0), A(0) = 0,

M(k) := M(k−1)+(X(k)−E{X(k)|Fk−1}) = X(0)+
k∑
l=1

(X(l)−E{X(l)|Fl−1}),

A(k) := A(k − 1) + (E{X(k)|Fk−1} −X(k − 1)) =
k∑
l=1

(E{X(l)|Fl−1} −X(l− 1)).

Since X(k), k = 0, 1, 2, . . . , is a submartingale,

E{X(k)|Fk−1} −X(k − 1) ≥ 0

and thus A(k) is nondecreasing process. It is obvious that A(k) is Fk−1-measurable.
The process A is usually called predictable, since at moment k it is Fk−1-

measurable.
The process M(k) is Fk-measurable and

E{M(k)|Fk−1} = M(k − 1) + (E{X(k)|Fk−1} −E{X(k)|Fk−1}) = M(k − 1).

Therefore
(
M(k),Fk

)
is a martingale.

It is clear that

M(k) +A(k) = X(0) +
k∑
l=1

(X(l)−X(l − 1)) = X(k)
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and, consequently, (5.13) holds.
Now suppose there is another decomposition: X(k) = M ′(k) + A′(k), k =

0, 1, 2, . . . , A′(0) = 0. Then X(k + 1)−X(k) equals

M ′(k + 1)−M ′(k) +A′(k + 1)−A′(k) = M(k + 1)−M(k) +A(k + 1)−A(k).

Applying to this equality the conditional expectation given Fk, we have

A′(k + 1)−A′(k) = A(k + 1)−A(k).

Since A′(0) = A(0) = 0, we have A′(k) = A(k), k = 0, 1, 2, . . . . Thus representation
(5.13) is unique. �

From decomposition (5.13) it follows that the submartingale
(
X(k),Fk

)
, k =

0, 1, 2, . . . , transforms into a martingale after the subtraction of the process A(k).
The predictable process

(
A(k),Fk−1

)
involved in Doob’s decomposition (5.13)

is called a compensator of the submartingale X(k).
Doob’s decomposition is important for the investigation of the square-integrable

martingales
(
M(k),Fk

)
, k = 0, 1, 2, . . . , i.e., the martingales having a finite second

moment EM2(k) <∞ for every k ≥ 0.
The process

(
M2(k),Fk

)
, k = 0, 1, 2, . . . , is a submartingale and, by Doob’s

decomposition,
M2(k) = m(k) + 〈M〉(k),

where
(
m(k),Fk

)
, k = 0, 1, 2, . . . , is a martingale and 〈M〉 =

(
〈M〉(k),Fk−1

)
is a

compensator.
The compensator 〈M〉 is called the quadratic characteristic of the martingale M

and it essentially determines its structure and properties.
From the proof of Theorem 5.4 it follows that

〈M〉(k) =
k∑
l=1

(E{M2(l)|Fl−1} −M2(l − 1))

=
k∑
l=1

E{M2(l)−M2(l − 1)|Fl−1} =
k∑
l=1

E{(M(l)−M(l − 1))2|Fl−1}.

The variable on the right-hand side of these equalities is the conditional quadratic
variation of the martingale. On the other hand, it is the compensator of the
submartingale M2.

For example, the martingale M(k) :=
k∑
l=1

ηl, k = 1, 2, . . . , where ηl are in-

dependent random variables with Eηl = 0, Eη2
l = σ2

l , has the compensator

〈M〉(k) =
k∑
l=1

σ2
l .
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4. Convergence of martingales.

Here we present some auxiliary result concerning the number of upcrossings of
an interval by a stochastic process.

Let X(k), k = 1, 2, . . . , be a stochastic process and a < b. Set τ0 := 0 and
σ1 := ∞ if min

k
X(k) > a. Next we set τ1 := ∞ if σ1 = ∞ or max

k
X(k) < b. In the

remaining cases we set

σ1 := min{k > 0 : X(k) ≤ a},
τ1 := min{k > σ1 : X(k) ≥ b},
................................................

σm := min{k > τm−1 : X(k) ≤ a},
τm := min{k > σm : X(k) ≥ b}.

The indices k that lie between σm and τm correspond to the m-th upcrossing of
the interval [a, b] by the process X.

The number of upcrossings of the interval [a, b] before time n by the stochastic
process X is defined as follows

βn(a, b) :=
{

0, if τ1 > n,

max{m : τm ≤ n}, if τ1 ≤ n.

Theorem 5.5. Let
(
X(k),Fk

)
, k = 1, 2, . . . , be a submartingale. Then

Eβn(a, b) ≤
1

b− a
E(X(n)− a)+, (5.14)

where q+ := max{0, q}.

Remark 5.3. An important aspect of the inequality (5.14) is that the expec-
tation of βn(a, b), depending on the whole sample path of the process X up to the
time n, is estimated by the expectation of X only at the last moment n.

Proof of Theorem 5.5. The process Y (k) = (X(k) − a)+ is a nonnegative sub-
martingale. Indeed, if Jensen’s inequality for the conditional expectation given Fl
is applied to the function (X(k)− a)+ for 1 ≤ l < k, then

E{(X(k)− a)+|Fl} ≥
(
E{X(k)− a|Fl}

)+ ≥ max{0, X(l)− a} = (X(l)− a)+.

It is clear that the number of upcrossings of the interval [a, b] by the submartin-
gale X coincides with the number of upcrossings of the interval [0, b − a] by the
submartingale Y . Therefore, it is sufficient to prove (5.14) only for a nonnegative
submartingale X and a = 0, i.e., to prove the estimate

Eβn(0, b) ≤
1

b
EX(n). (5.15)

Let X(0) = 0. Set F0 = {∅,Ω}, where ∅ is the empty set. For any j = 1, 2, . . . ,
set

ξj :=
{

1, if σm < j ≤ τm for some m,
0, if τm−1 < j ≤ σm for some m.
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Then it is not hard to see that

b βn(0, b) ≤
n∑
j=1

ξj
(
X(j)−X(j − 1)

)
.

This holds, because the variable ξj is equal to 1 if the index j corresponds to an
intersection from downwards to upwards, and it is equal to 0 otherwise. Since

{ξj = 1} =
⋃
m

{
{σm < j}

⋂
{j ≤ τm}

}
=
⋃
m

{
{σm ≤ j − 1} \ {τm ≤ j − 1}

}
and σm, τm, m = 1, 2, . . . , are stopping times, the event {ξj = 1} is Fj−1-
measurable. Using this fact, the definitions of the conditional expectation and
of a submartingale, we have

bEβn(0, b) ≤ E
n∑
j=1

ξj
(
X(j)−X(j − 1)

)
=

n∑
j=1

∫
{ξj=1}

(
X(j)−X(j − 1)

)
dP

=
n∑
j=1

∫
{ξj=1}

(
E{X(j)|Fj−1} −X(j − 1)

)
dP

≤
n∑
j=1

∫
Ω

(
E
{
X(j)

∣∣Fj−1

}
−X(j − 1)

)
dP =

n∑
j=1

(EX(j)−EX(j − 1)) = EX(n).

The estimate (5.15) is valid and, consequently, the theorem is proved. �

Theorem 5.6. Let
(
X(k),Fk

)
, k = 1, 2, . . . , be a submartingale such that

sup
k

EX+(k) <∞. (5.16)

Then X(k) converges a.s. as k →∞ to a limit X∞ and E|X∞| <∞.

Remark 5.4. For a submartingale X(k), k = 1, 2, . . . , the inequality (5.16) is
equivalent to the inequality sup

k
E|X(k)| <∞.

Indeed, for a submartingale X(k), k = 1, 2, . . . , we have

EX+(k) ≤ E|X(k)| = 2EX+(k)−EX(k) ≤ 2EX+(k)−EX(1).

Proof of Theorem 5.6. We use a proof by contradiction. Assume that

P
(
lim sup

k
X(k) > lim inf

k
X(k)

)
> 0.

Since{
lim sup

k
X(k) > lim inf

k
X(k)

}
=

⋃
a<b

rational

{
lim sup

k
X(k) > b > a > lim inf

k
X(k)

}
,
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there exist a and b such that

P
(
lim sup

k
X(k) > b > a > lim inf

k
X(k)

)
> 0. (5.17)

Let βn(a, b) be the number of upcrossings of the interval [a, b] by the submartingale
X(k), k = 1, . . . , up to the time n. This number is increasing in n and there exists
the limit β∞(a, b) := lim

n→∞
βn(a, b), possibly infinite. By (5.14),

Eβn(a, b) ≤
E(X(n)− a)+

b− a
≤ EX+(n) + |a|

b− a
.

Using (5.16) and Fatou’s lemma, we obtain

Eβ∞(a, b) := lim
n→∞

Eβn(a, b) ≤
supnEX

+(n) + |a|
b− a

<∞.

This, however, contradicts (5.17), from which it follows that with positive proba-
bility β∞(a, b) = ∞. Thus,

P
(
lim sup

k
X(k) = lim inf

k
X(k)

)
= 1

and X(k) converges a.s. as k →∞ to some limit X∞. By Fatou’s Lemma,

E|X∞| = Elim inf
k

|X(k)| ≤ lim inf
k

E|X(k)| ≤ sup
k

E|X(k)| <∞. (5.18)

The theorem is proved. �

Corollary 5.4. Let
(
X(k),Fk

)
, k = 1, 2, . . . , be a supermartingale such that

sup
k

E|X(k)| <∞. Then X(k) converges a.s. to a limit X∞ and E|X∞| <∞.

Here we use the first part of Remark 5.1.

Corollary 5.5. Let
(
X(k),Fk

)
, k = 1, 2, . . . , be a nonnegative martingale.

Then X(k) converges a.s. to a limit X∞.

Let us discuss what happens with the convergence of submartingales if condition
(5.16) fails. Let Hz := inf{k ≥ 1 : X(k) > z}, z > 0, be the first exceeding moment
of the level z. We set Hz = ∞ if sup

k
X(k) ≤ z.

Theorem 5.7. Let
(
X(k),Fk

)
, k = 0, 1, 2, . . . , be a nonnegative submartingale,

X(0) = 0, and let X(k) = M(k)+A(k) be its Doob’s decomposition. Assume that
for every z > 0

E
{
∆XHz

1I{Hz<∞}
}
<∞,

where ∆Xk = X(k)−X(k − 1).
Then

{A(∞) <∞} = {X(k) converges } a.s. (5.19)
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Proof. Let ρz := inf{k ≥ 1 : A(k + 1) > z}, z > 0. Set ρz = ∞ if sup
k
A(k) ≤ z.

Since M(k) is a martingale with zero mean and A(ρz) ≤ z, Theorem 5.2 and
Remark 5.1 show that

EX(k ∧ ρz) = EA(k ∧ ρz) ≤ z.

Set Yz(k) := X(k ∧ ρz). Then
(
Yz(k),Fk

)
is a nonnegative submartingale with

sup
k

EYz(k) ≤ z. By Theorem 5.6, the process Yz(k) converges a.s. as k → ∞.

Therefore,

{A(∞) ≤ z} = {ρz = ∞} ⊆ {X(k) converges } a.s.,

and, consequently,

{A(∞) <∞} =
⋃
z>0

{A∞ ≤ z} ⊆ {X(k) converges } a.s.

To prove the opposite inclusion, we start with the estimate

X(k ∧Hz) ≤ X(Hz) ≤ z + (X(Hz)−X(Hz − 1))1I{Hz<∞}.

Thus,
EA(Hz) = E lim inf

k
A(k ∧Hz) ≤ lim inf

k
EA(k ∧Hz) <∞.

Consequently, A(Hz) < ∞ a.s. and {Hz = ∞} ⊆ {A(∞) < ∞}. As a result, we
have

{X(k) converges } ⊆
{

sup
k
X(k) <∞

}
=
⋃
z>0

{
sup
k
X(k) ≤ z

}
=
⋃
z>0

{Hz = ∞} ⊆ {A(∞) <∞}.

�

An important application of Theorem 5.7 is the following assertion.

Lemma 5.1 (Borel–Cantelli–Lévy). Let Fl, l = 1, 2, . . . , be an increasing
sequence of σ-algebras and Al ∈ Fl for every l. Then the events{

ω :
∞∑
l=1

P(Al|Fl−1) <∞
}

and
{
ω :

∞∑
l=1

1IAl
(ω) <∞

}
(5.20)

coincide a.s.

Remark 5.5. The Borel–Cantelli-Lévy lemma states that the number of oc-
currences of the events Ak is a.s. finite or infinite according to whether the series
of their conditional probabilities P(Ak|Fk−1) is a.s. finite or infinite.

Proof of Lemma 5.1. The sequence X(k) =
k∑
l=1

1IAl
, k = 1, 2, . . . , is a nonnega-

tive Fk-adapted submartingale. In the proof of Theorem 5.4 we showed that

A(k) =
k∑
l=1

P(Al|Fl−1)

is the corresponding increasing process. Now (5.20) is a direct consequence of
(5.19). �

The following results can be useful for proving convergence of sequences.
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Lemma 5.2 (Toeplitz). Let ak, k = 1, 2, . . . , be a sequence of nonnegative

numbers such that
∞∑
k=1

ak = ∞. Let xn → x. Then

( n∑
k=1

ak

)−1 n∑
k=1

akxk → x.

Proof. Let bn :=
n∑
k=1

ak. For an arbitrary ε > 0 we choose n0 = n0(ε) such that

|xn − x| ≤ ε/2 for all n ≥ n0 and choose n1 > n0, such that the inequality

1

bn1

n0∑
k=1

ak|xk − x| ≤ "

2

holds. Then for n > n1∣∣∣ 1
bn

n∑
k=1

akxk − x
∣∣∣ ≤ 1

bn1

n0∑
k=1

ak|xk − x|+ 1

bn

n∑
k=n0+1

ak|xk − x| ≤ ε.

�

Lemma 5.3 (Kronecker). Let xk, k = 1, 2, . . . , be a sequence of real numbers

such that
∞∑
k=1

xk converges. Let bk, k = 1, 2, . . . , be a monotone sequence of positive

numbers tending to infinity (bk ↑ ∞). Then
1

bn

n∑
k=1

bkxk → 0.

Proof. Set sn :=
n−1∑
k=1

xk, b0 := 0. Then sn → s :=
∞∑
k=1

xk. Using this and the

Toeplitz lemma, we have

1

bn

n∑
k=1

bkxk = 1

bn

n∑
k=1

bk(sk+1 − sk) = sn+1 −
1

bn

n∑
k=1

(bk − bk−1)sk → s− s = 0.

�

Theorem 5.8 (Strong law of large numbers). Let Xk, k = 1, 2, . . . , be
independent identically distributed random variables with VarX1 <∞. Then

1

n

n∑
k=1

Xk → EX1, a.s.

Proof. One can assume that EX1 = 0, since otherwise one should consider the
centralized random variables Xk − EXk. By Kronecker’s lemma with bk = k,

xk = Xk

k
, it suffices to prove that the series

∞∑
k=1

Xk

k
converges a.s. The process
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Y (n) :=
n∑
k=1

Xk

k
is a martingale with respect to the natural filtration. Obviously,

EY 2(n) =
n∑
k=1

VarX1

k2
. Therefore,

sup
n

E|Y (n)| ≤ sup
n

E1/2|Y (n)|2 ≤
√

VarX1

( ∞∑
k=1

1

k2

)1/2

<∞,

and by Theorem 5.6, the sequence Y (n) converges a.s as n→∞. �

To conclude this section we describe the basic construction that leads to mar-
tingales with discrete time.

Let {Fn}, n = 1,2, . . . , be an increasing family of σ-algebras. Let H(n, x),
x ∈ R, be a sequence of bounded stochastic processes such that for every n, the
process H(n, x), x ∈ R, is B(R)×Fn-measurable and independent of the σ-algebra
Fn−1. We define the process Xn, n = 1, 2, . . . , by the recurrence formula

Xn := Xn−1 +H(n,Xn−1), X0 = x. (5.21)

Set h(n, x) := EH(n, x). If h(n, x) ≡ 0, then the process Xn is a martingale with
respect to the filtration {Fn}n≥1.
Indeed, for every n the random variableXn is Fn-measurable. Applying Lemma 2.1,
we get E

{
H(n,Xn−1)

∣∣Fn−1

}
= h(n,Xn−1). Therefore,

E
{
Xn

∣∣Fn−1

}
= Xn−1 + h(n,Xn−1) = Xn−1.

It is clear that if h(n, x) ≥ 0 for all n, x, then the process Xn is a submartingale.
If the opposite inequality holds we get a supermartingale.

The following construction is an important particular case of (5.21). Let ξn, n =
1, 2, . . . , be a sequence of independent random variables with zero mean (Eξn = 0).
Let Gn = σ(ξk, 1 ≤ k ≤ n) be the σ-algebra of events generated by these variables
up to the time n. We define the process

Xn := Xn−1 + h(n,Xn−1) + g(n,Xn−1) ξn, X0 = x, (5.22)

where h(n, x), g(n, x), n = 1, 2, . . . , are sequences of bounded measurable functions.
If h(n, x) ≡ 0, then Xn is a martingale with respect to the filtration {Gn}.

The analogue of the recurrence relation (5.22) for processes with continuous time
leads to the concept of a stochastic differential equation, which will be considered
in the Section 7 of the next chapter.

Exercises.

5.1. Let ηk, k = 1, 2, . . . , be i.i.d. random variables. Let Fk = σ(ηl, 1 ≤ l ≤ k)
be the σ-algebra of events generated by these variables up to the time k. Prove
that the process Xn is a martingale
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1) if Xn =
n∏
k=1

ηk and Eηk = 1;

2) if Xn = S3
n−3nσ2Sn−nµ, where Sn =

n∑
k=1

ηk, Eηk = 0, σ2 = Eη2
k and µ = Eη3

k.

5.2. Let ηk, k = 1, 2, . . . , be i.i.d. random variables, Fk = σ(ηl, 1 ≤ l ≤ k)
be the σ-algebra of events generated by these variables up to the time k. Suppose
that Eη4

k < ∞ and Eηk = 0. Compute the compensator of the submartingale( n∑
k=1

ηk

)4

.

5.3. Let X(k), Y (k), k = 0, 1, 2, . . . , be martingales with respect to a filtration
Fk. Suppose that X(0) = Y (0) = 0 and EX2(k) < ∞, EY 2(k) < ∞ for all k.
Prove that

E(X(n)Y (n)) =
n∑
k=1

E((X(k)−X(k − 1))((Y (k)− Y (k − 1))).

5.4. Let (X(k),Fk), k = 0, 1, 2, . . . , be a martingale with EX2(k) <∞. Prove
that for k < l < m < n,

Cov((X(n)−X(m))(X(k)−X(l))) = 0.

Compute this covariance for k < m < l < n and for m < k < l < n.

5.5. Let (X(k),Fk), k = 0, 1, 2, . . . , be a martingale with EX2(k) < ∞. As-
sume that σ and τ are two integer-valued bounded stopping times with respect to
{Fk}∞k=1 such that σ ≤ τ . Prove that

E{(X(τ)−X(σ))2|Fσ} = E{X2(τ)|Fσ} −X2(σ).

5.6. Let g(x), x ∈ R, be a nondecreasing positive convex function and let
(X(k),Fk), k = 0, 1, 2, . . . , be a martingale. Prove that for any y > 0

P
(

max
1≤k≤n

X(k) ≥ y
)
≤ Eg(X(n))

g(y)
.

5.7. Let (X(k),Fk), k = 0, 1, 2, . . . , be a martingale with EX(k) = 0 and
EX2(k) <∞. Prove that for any y > 0

P
(

max
1≤k≤n

X(k) ≥ y
)
≤ EX2(n)

EX2(n) + y2
.

Hint: For every z ≥ 0, the process (X(k) + z)2 is a submartingale and

P
(

max
1≤k≤n

X(k) ≥ y
)
≤ P

(
max

1≤k≤n
(X(k) + z)2 ≥ (y + z)2

)
.
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5.8. Let (M(k),Fk), k = 0, 1, 2, . . . , be a martingale with EM2(k) <∞. Prove
that sup

k
EM2(k) <∞ iff

∞∑
l=1

E(M(k)−M(k − 1))2 <∞.

5.9. Let ηk, k = 1, 2, . . . , be i.i.d. random variables with Eη2
1 <∞. Let τ be a

bounded stopping time with respect to the filtration Gk = σ(ηl, 1 ≤ l ≤ k). Prove
the Wald identities

E
τ∑
l=1

ηl = EτEη1, E
( τ∑
l=1

ηl − τEη1
)2

= Eτ Var η1,

E
(

1

'� (�)
exp

(
α

τ∑
l=1

ηl

))
= 1,

where ϕ(α) = Eeαη1 , α ∈ R.

5.10. Write out the analog of the Wald identity for the third moment of
τ∑
l=1

ηl.

§ 6. Markov processes

For a stochastic process X(t), t ∈ Σ ⊆ [0,∞), we consider

Gvu = σ{X(t), t ∈ Σ
⋂

[u, v]},

i.e., the σ-algebra of events generated by the process X when the time is varying
from u to v.

As already mentioned, for a fixed time t ∈ Σ, the σ-algebra Gt0 is called the
σ-algebra describing the past of the process, G∞t is called the σ-algebra describing
the future of the process, and Gtt is called the σ-algebra describing the present state
of the process. Such names are especially appropriate for Markov processes.

A stochastic process X(t), t ∈ Σ, is called a Markov process if for every t ∈ Σ
and any Borel sets A ∈ Gt0, B ∈ G∞t

P(AB|Gtt) = P(A|Gtt)P(B|Gtt) a.s. (6.1)

In other words, a process is Markov if for any fixed present state the future of the
process does not depend on the past (the Markov property).

This definition implies that (6.1) is preserved when one inverts the time, i.e., if
X(t), t ∈ [0, T ], is a Markov process, then Y (t) = X(T − t), t ∈ [0, T ], is also a
Markov process.
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Proposition 6.1. The Markov property (6.1) is equivalent to the following one:
for every t ∈ Σ and any set B ∈ G∞t

P(B|Gt0) = P(B|Gtt) a.s. (6.2)

Proof. We prove first that (6.1) implies (6.2). Using the definition of the condi-
tional probability P(B|Gt0) or, equivalently, the conditional expectation E

{
1IB |Gt0

}
and applying the properties of conditional expectations, we get∫

A

P(B|Gt0) dP = E
{
1IA1IB

}
= E

{
E
{
1IA1IB

∣∣Gtt}} = E
{
E
{
1IB
∣∣Gtt}E{1IA∣∣Gtt}}

= E
{
1IAE

{
1IB
∣∣Gtt}} =

∫
A

P(B|Gtt) dP

for any A ∈ Gt0. Since A is an arbitrary set of the σ-algebra Gt0, this implies (6.2).
We now prove that (6.2) implies (6.1). Let A ∈ Gt0 and B ∈ G∞t be arbitrary

random events. Then, applying the properties of conditional expectations, we have

E
{
1IA1IB

∣∣Gtt} = E
{
E
{
1IA1IB

∣∣Gt0}∣∣Gtt} = E
{
1IAE

{
1IB
∣∣Gt0}∣∣Gtt}

= E
{
1IAE

{
1IB
∣∣Gtt}∣∣Gtt} = E

{
1IA
∣∣Gtt}E{1IB∣∣Gtt}.

This is exactly (6.1). �

If the stochastic process X starts at the time t0, then in the definition of the
Markov property (6.2) the σ-algebra Gtt0 can be taken instead of Gt0.

Proposition 6.2. The process X is a Markov process iff for every t ∈ Σ and
any bounded G∞t -measurable function G

E{G|Gt0} = E{G|Gtt} a.s. (6.3)

Proof. Obviously, (6.2) is a particular case of (6.3) for G = 1IB . We deduce
(6.3) from (6.2). By the linearity property of the conditional expectation, (6.3)
holds for linear combinations of indicators, i.e., for the random variables Gn(ω) =
n∑
k=1

gn,k1IBn,k
(ω), where gn,k ∈ R, Bn,k ∈ G∞t , k = 1, 2, . . . , n.

Any bounded G∞t -measurable function G can be uniformly approximated by
functions that are linear combinations of indicators, i.e., for each n there exists a
function Gn of the form above such that

sup
ω∈Ω

|G(ω)−Gn(ω)| < 1

n
.

Then by the 6th property of conditional expectations, we have

|E{G(ω)|Gt0} −E{Gn(ω)|Gt0}| <
1

n
, |E{G(ω)|Gtt} −E{Gn(ω)|Gtt}| <

1

n
.

Passing to the limit as n → ∞ and using (6.3) for the functions Gn, we get (6.3)
for an arbitrary bounded G∞t -measurable functions G. �
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Proposition 6.3. The process X is a Markov process iff for every t ∈ Σ and
any bounded Gt0-measurable function F , and G∞t -measurable function G

E{FG|Gtt} = E{F |Gtt}E{G|Gtt} a.s. (6.4)

In view of (6.1), the proof of this statement is similar to that for Proposition 6.2.

Proposition 6.4. The Markov property is equivalent to one of the following:
1) for all t < v, t, v ∈ Σ, and any bounded Borel function g

E{g(X(v))|Gt0} = E{g(X(v))|Gtt} a.s., (6.5)

2) for all t < v, t, v ∈ Σ and any Borel set ∆

P(X(v) ∈ ∆|Gt0) = P(X(v) ∈ ∆|Gtt) a.s. (6.6)

Proof. It is clear that (6.3) implies (6.5), which in turn implies (6.6). Analo-
gously to the proof of Proposition 6.2, we can deduce (6.5) from (6.6). We now

prove that (6.5) implies (6.3) for functions of the form G =
m∏
k=1

gk(X(tk)), where

tk ∈ Σ, t ≤ t1 < t2 < · · · < tm, and gk, k = 1, 2, . . . ,m, are arbitrary bounded
Borel functions.

Since Gtm−1
tm−1

= σ(X(tm−1)), by (2.17), there exists a Borel function ϕm−1(x),
x ∈ R, such that

E
{
gm(X(tm))

∣∣Gtm−1
tm−1

}
= ϕm−1(X(tm−1)).

By the properties of the conditional expectation (2.14), (2.15), and (6.5),

E{G|Gt0} = E
{m−1∏
k=1

gk(X(tk))E
{
gm(X(tm))

∣∣Gtm−1
0

}∣∣∣Gt0}

= E
{m−1∏
k=1

gk(X(tk))E
{
gm(X(tm))

∣∣Gtm−1
tm−1

}∣∣∣Gt0}

= E
{m−1∏
k=1

gk(X(tk))ϕm−1(X(tm−1))
∣∣∣Gt0}.

Analogously,

E{G|Gtt} = E
{m−1∏
k=1

gk(X(tk))ϕm−1(X(tm−1))
∣∣∣Gtt}.

Thus we reduced the conditional expectations of the original random function to
those of a function that depends on the process X considered in a smaller number
of the time moments. Repeating this procedure, we come to a random function
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that depends on the process X at only one time point. Applying in this case (6.5),
we obtain

E
{ m∏
k=1

gk(X(tk))
∣∣∣Gt0} = E

{ m∏
k=1

gk(X(tk))
∣∣∣Gtt}.

The extension of this equality to the similar one for arbitrary bounded G∞t -measu-
rable functions G is realized by means of approximation, a standard procedure in
mathematical analysis. �

Remark 6.1. If Σ = {0, 1, 2, . . . }, then a Markov process X is called a Markov
chain and for every t ∈ Σ in conditions (6.5), (6.6) it suffices to take v = t+ 1.

Indeed, setting ϕv(X(v)) := g(X(v)), using (2.17) for k < v, and setting

ϕk(X(k)) := E{ϕk+1(X(k + 1))|Gkk} = E{ϕk+1(X(k + 1))|Gk0 },

we get

E{g(X(v))|Gt0} = E{E{g(X(v))|Gv−1
0 }|Gt0} = E{E{ϕv(X(v))|Gv−1

v−1}|Gt0}
= E{ϕv−1(X(v − 1))|Gt0} = · · · = ϕt(X(t)) = E{ϕt+1(X(t+ 1))|Gtt}
= E{E{ϕt+2(X(t+2))|Gt+1

0 }|Gtt} = E{ϕt+2(X(t+2))|Gtt} = · · · = E{g(X(v))|Gtt}.

For the sake of specificity we assume that the state space of the Markov process
X is (R,B(R)), although one can consider some other metric space.

The function P (s, x, t,∆) is called a transition function (transition probability)
of the Markov process X if for all s ≤ t, s, t ∈ Σ, and every Borel set ∆

P(X(t) ∈ ∆|Gss) = P (s,X(s), t,∆) a.s., (6.7)

and the following conditions hold:
1) for any fixed s, x, t, the mapping ∆ → P (s, x, t,∆) is a measure on the σ-

algebra of Borel sets;
2) P (s, ·, t,∆) is a Borel function for any fixed s, t, ∆;
3) P (s, x, s,∆) = 1I∆(x) for all s ∈ [0, T ], x ∈ R and ∆ ∈ B(R);
4) for all s < v < t, s, v, t ∈ Σ, x ∈ R, and every ∆ ∈ B(R), the Chapman–

Kolmogorov equation holds:

P (s, x, t,∆) =

∞∫
−∞

P (s, x, v, dy)P (v, y, t,∆).

If there exists a nonnegative function p(s, x, t, y) that is B(R)×B(R)-measurable
as a function of (x, y)∈R2 for all s<t, s, t∈Σ, and satisfies

P (s, x, t,∆) =
∫
∆

p(s, x, t, y) dy
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for every Borel set ∆, then p(s, x, t, y) is called a transition density of the Markov
process X.

Note that, according to (2.17), for every Markov process X there exists a Borel
function ϕ such that

P(X(t) ∈ ∆|Gss) = ϕ(X(s)) a.s.

The set of exclusivity, where this equality fails, has probability zero and may depend
on s, t and ∆. Therefore, there is no guarantee that the function ϕ is defined
for all s, t, and ∆ simultaneously and has good properties with respect to these
parameters. This explains the necessity of the conditions 1) and 2).

As to the condition 3), we have P (s,X(s), s,∆) = 1I∆(X(s)) a.s., but this does
not guarantee that P (s, x, s,∆) = 1I∆(x) for all x ∈ R.

The origin of the condition 4) can be explained as follows. Since P (s,X(s), t, ·)
is the conditional distribution, using the Markov property and properties (2.15),
(2.16) of the conditional expectation, we get for s < v < t

P (s,X(s), t,∆) = P(X(t) ∈ ∆|Gs0) = E{P(X(t) ∈ ∆|Gv0 )|Gs0}

= E{P (v,X(v), t,∆)|Gss} =

∞∫
−∞

P (v, y, t,∆)P (s,X(s), v, dy) a.s. (6.8)

Thus we have an analogue of 4) with a random variable X(s) instead of a fixed x,
and this equality holds a.s. It is necessary additionally to require the validity of
such an equality for every fixed x.

From (6.5)–(6.7) it follows that for any bounded measurable function g

E{g(X(t))|Gs0} = E{g(X(t))|Gss} =

∞∫
−∞

g(y)P (s,X(s), t, dy) a.s. (6.9)

Suppose that for any fixed s, t, ∆ the function P (s, ·, t,∆) is right continuous.
Then, due to (2.18) and (2.19),

P(X(t) ∈ ∆|X(s) = x) = P (s, x, t,∆). (6.10)

If for any bounded continuous function g the function

G(x) :=
∞∫

−∞

g(y)P (s, x, t, dy)

is continuous in x for all s < t, then, by (6.9) and (2.17)–(2.19), the equality

E{g(X(t))|X(s) = x} =

∞∫
−∞

g(y)P (s, x, t, dy) (6.11)

holds.
The finite-dimensional distributions of a Markov process can be expressed in

terms of its transition function and the initial distribution.



48 I BASIC FACTS

Proposition 6.5. Let 0 = t0 < t1 < · · · < tn, ∆k ∈ B(R), k = 0, 1, . . . , n, and
let Pt0(∆) = P(X(t0) ∈ ∆) be the distribution of the initial value of the process.
Then

P(X(t0) ∈ ∆0, X(t1) ∈ ∆1, X(t2) ∈ ∆2, . . . , X(tn) ∈ ∆n)

=
∫
∆0

Pt0(dx0)
∫
∆1

P (t0, x0, t1, dx1)
∫
∆2

P (t1, x1, t2, dx2) · · ·

· · ·
∫

∆n−1

P (tn−2, xn−2, tn−1, dxn−1)
∫

∆n

P (tn−1, xn−1, tn, dxn). (6.12)

Remark 6.2. If one takes for the initial moment a value t1 > 0, then for the
initial distribution Pt1(·) one should choose

Pt1(∆) =

∞∫
−∞

Pt0(dx0)P (t0, x0, t1,∆), ∆ ∈ B(R).

Remark 6.3. If the moments t1, . . . , tn are not ordered, then the finite-dimen-
sional distributions are determined by the condition of symmetry (permutability of
the time moments). The Chapman–Kolmogorov equation implies the consistency
condition (see § 3).

Remark 6.4. From (6.12) it follows that a Markov process is determined if its
initial distribution and its transition function are given.

Proof of Proposition 6.5. We set

gn(x) := 1, gk−1(x) :=

∞∫
−∞

gk(y)1I∆k
(y)P (tk−1, x, tk, dy), k = 1, . . . , n.

Then, taking into account (6.9), we have

P
( n∏
k=0

{X(tk) ∈ ∆k}
)

= E
{ n∏
k=0

1I∆k
(X(tk))

}

=E
{ n−1∏
k=0

1I∆k
(X(tk))E

{
1I∆n

(X(tn))
∣∣Gtn−1

0

}}
=E

{ n−1∏
k=0

1I∆k
(X(tk)) gn−1(X(tn−1))

}
.

Using the iterations, we get

P
( n∏
k=0

{X(tk) ∈ ∆k}
)

=E
{ n−2∏
k=0

1I∆k
(X(tk)) gn−2(X(tn−2))

}
= · · ·
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=E{1I∆0(X(t0))g0(X(t0))}=
∫
∆0

P(dx0)g0(x0)=
∫
∆0

P(dx0)
∫
∆1

P (t0, x, t1, dx1)g1(x1)

= · · · =
∫
∆0

P(dx0)
∫
∆1

P (t0, x, t1, dx1)
∫
∆2

P (t1, x1, t2, dx2) · · ·

· · ·
∫

∆n−1

P (tn−2, xn−2, tn−1, dxn−1)
∫

∆n

P (tn−1, xn−1, tn, dxn)gn(xn).

Thus formula (6.12) is proved. �

The following statement is a consequence of Kolmogorov’s theorem (see Theo-
rem 3.1 § 3).

Proposition 6.6. Assume that P (s, x, t,∆) satisfies conditions 1)–4). Then
there exists a Markov process with the transition function P (s, x, t,∆).

Set Σ = [0,∞) or Σ = {0, 1, 2, . . . }. The Markov process X(t), t ∈ Σ, is called
homogeneous if its transition function P (s, x, t,∆) is invariant under the shift along
the time axis: P (s + h, x, t + h,∆) = P (s, x, t,∆) for any h ∈ Σ. In this case
we set P (t, x,∆) := P (0, x, t,∆) and call P (t, x,∆) a transition function of the
homogeneous Markov process X.

In many situations we have to consider the whole family of Markov processes
dependent on a nonrandom initial value.

For brevity we denote by Px and Ex the probability and the expectation with
respect to the process X given X(0) = x ∈ R, and we consider them as functions
of x. This convention enables us, for example, to write EX(s), where instead of the
argument x appears the random variable X(s), which does not mean the expecta-
tion with respect to the process, having initial value X(s). With this convention,
the equality (6.11) for the homogeneous Markov process X is rewritten as

G(x) := E{g(X(t))|X(s) = x} =

∞∫
−∞

g(y)P (t− s, x, dy) = Exg(X(t− s)).

If for any bounded continuous g the function G(x) is continuous in x for every
t− s, then X is called a Feller process.

When studying Markov processes, the following question arises: does the inde-
pendence of the future from the past hold when instead of a fixed present moment
one takes a random time? The answer is affirmative if we restrict our consideration
to stopping times as defined in § 4.

Let Gτ0 be the σ-algebra of events generated by the process X up to the stopping
time τ (see the definition in § 4).

A family of homogeneous Markov processes X(t), t ∈ [0,∞), X(0) = x ∈ R, is
called a strong Markov process if

1) the processX is progressively measurable with respect to the natural filtration
{Gt0};

2) for a fixed ∆, the transition function P (t, x,∆) is B([0,∞))×B(R)-measurable;
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3) for any stopping time τ with respect to the natural filtration {Gt0}, any Borel
set ∆, and any t ≥ 0, x ∈ R

Px(X(τ + t) ∈ ∆|Gτ0 )1I{τ<∞} = P (t,X(τ),∆)1I{τ<∞} Px-a.s. (6.13)

Here and in what follows Px-a.s. means a.s. with respect to the measure Px.

Proposition 6.7. Let X(t), t ∈ [0,∞), be a homogeneous strong Markov pro-
cess. Then for any stopping time τ with respect to the filtration Gt0, for any bounded
Borel function g(~x), ~x ∈ Rm, and any ~t ∈ [0,∞)m, x ∈ R

Ex{g(X(τ + t1), . . . , X(τ + tm))|Gτ0 }1I{τ<∞}

= EX(τ)g(X(t1), . . . , X(tm))1I{τ<∞} Px-a.s. (6.14)

For m = 1 this statement is derived from (6.13) by approximating of a bounded

Borel function g(x), x ∈ R, by the functions
n∑
k=1

gn,k1I∆n,k
(x).

For functions g(~x) =
m∏
k=1

gk(xk) the proof is similar to that of Proposition 6.4,

because Gs+τ0 ⊆ Gt+τ0 for any s < t (see property 9 of § 4). Any bounded Borel
function g(~x), ~x ∈ Rm, is approximated by functions of the described form.

Important examples of separable metric spaces are C([0, T ]), the space of contin-
uous functions on [0, T ] with the uniform norm, and the Skorohod space D([0, T ]).
The latter consists of all real-valued right continuous functions on [0, T ] that have
left-hand limits. We define a metric on D([0, T ]) by the formula

ρT (x, y) := inf
φ

{
sup

0≤t≤T
|x(t)− y(φ(t))|+ sup

0≤t≤T
|t− φ(t)|

}
,

where the infimum is taken over all monotone continuous mappings φ : [0, T ] →
[0, T ], satisfying φ(0) = 0, φ(T ) = T .

The metric on D([0,∞)) can be defined by

ρ∞(x, y) :=
∞∑
n=1

2−n
(
ρn(x, y) ∧ 1

)
.

If it is known that the sample paths of a processX belong to the spaceD([0,∞)),
then Proposition 6.7 takes the following form.

Proposition 6.8. Let X(t), t ∈ [0,∞), be a homogeneous strong Markov pro-
cess with sample paths from the space D([0,∞)). Then for every x ∈ R, any
stopping time τ with respect to the filtration {Gt0}, and any bounded measurable
functional ℘(X(t), 0 ≤ t <∞), defined on D([0,∞)), we have

Ex{℘(X(τ + t), 0 ≤ t <∞)|Gτ0 }1I{τ<∞}

= EX(τ)℘(X(t), 0 ≤ t <∞)1I{τ<∞} Px-a.s.

The strong Markov property means that the process starts anew at each finite
stopping time.
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Proposition 6.9. Every right continuous with left-hand limits Feller process
is a strong Markov process.

For the proof, see Dynkin (1960), p. 99, p. 104.
Every homogeneous Markov chain is a strong Markov process (see, for example,

Shiryaev (1980)).

Example 6.1. Consider the example of a Markov process with discrete time
(Markov chain).

Let ξn, n = 0, 1, 2, . . . , be a sequence of independent random variables. For
n = 1, 2, . . . we set

Xn := fn(Xn−1, ξn), X0 = ξ0, (6.15)

where fn(x, y), (x, y) ∈ R2 are Borel functions. Let Gkm = σ(Xn,m ≤ n ≤ k) be
the σ-algebra generated by Xn when m ≤ n ≤ k. Then Xn, n = 0, 1, 2, . . . , is a
Markov process.

To prove this, we use Remark 6.1. For an arbitrary bounded Borel function
g(x), x ∈ R, denote hn(x) := Eg(fn(x, ξn)). For every n the variable Xn is Gn0 -
measurable and the variable ξn+1 is independent of the σ-algebra Gn0 . Applying
Lemma 2.1, we get

E
{
g(Xn+1)

∣∣Gn0 } = E
{
g(fn+1(Xn, ξn+1))

∣∣Gn0 } = hn+1(Xn).

Applying Lemma 2.1 again, we similarly obtain

E
{
g(Xn+1)

∣∣Gnn} = E
{
g(fn+1(Xn, ξn+1))

∣∣Gnn} = hn+1(Xn).

Therefore, by (6.5) with v = t+ 1, the Markov property holds.

§ 7. Processes with independent increments

Let Σ = [0,∞) or Σ = {0, 1, 2, . . . }.
A process X(t), t ∈ Σ, is called a process with independent increments if for any

collection of increasing times 0 = t0 < t1 < t2 < · · · < tn the variables X(t0),
X(t1)−X(t0), . . . ,X(tn)−X(tn−1) are independent.

The differences X(t)−X(s), s < t, are called the increments of the process.

Remark 7.1. In order to determine a process with independent increments it
suffices to specify its initial distribution and the distributions of its increments.

Indeed, using the independence of increments, the characteristic function of the
finite-dimensional distribution can be transformed as follows:

E exp
(
i
n∑
k=0

αkX(tk)
)

= E exp
(
i
n∑
k=0

( n∑
l=k

αl

)
(X(tk)−X(tk−1))

)

=
n∏
k=0

E exp
(
i

( n∑
l=k

αl

)
(X(tk)−X(tk−1))

)
,
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where we set X(t−1) :=0. As a result, the distributions of the increments uniquely
determine the characteristic function of the finite-dimensional distribution and
therefore the finite-dimensional distribution itself.

A process with independent increments, X(t), t ∈ [0,∞), is called homogeneous
if X(0) = x, x ∈ R, and the distributions of increments X(u) − X(v), v < u,
depend on v, u only via the difference u− v.

For the characteristic function of a homogeneous process with independent in-
crements there holds the Lévy–Khintchine formula

Eeiα(X(t)−X(0)) (7.1)

=exp
(
itαγ − 1

2
tσ2α2 + t

∫
0<|y|≤1

(
eiαy − 1− iαy

)
Π(dy) + t

∫
|y|>1

(
eiαy − 1

)
Π(dy)

)
,

where γ ∈ R, σ ∈ R, and Π is a measure defined on
(
R \ [−ε, ε],B

(
R \ [−ε, ε]

))
for every ε > 0 such that lim

δ↓0

∫
�<|y|<∞

y2

1 + y2
Π(dy) <∞.

The proof of this and of more general formulas for nonhomogeneous processes
with independent increments can be found in Skorohod (1991).

Example 7.1. Let ξn, n = 0, 1, 2, . . . , be a sequence of independent random
variables. Then the sequence of partial sums

X(n) =
n∑
k=1

ξk, X(0) = 0,

is a process with independent increments.
Example 7.2. A Poisson process with intensity λ > 0 is a process N(t),

t ∈ [0,∞), N(0) = 0, with independent increments having the Poisson distribution

P(N(t)−N(s) = k) = (�(t− s))k

k!
e−λ(t−s), k = 0, 1, 2, . . . .

Proposition 7.1. The process N(t) can be represented as follows:

N(t) =

 max
{
l :

l∑
k=1

τk ≤ t
}
, for τ1 ≤ t,

0, for τ1 > t,

where τk, k = 1, 2, . . . , are independent exponentially distributed with the param-
eter λ > 0 random variables, P(τk ≥ t) = e−λt, t ≥ 0.

The proof of Proposition 7.1 can be found, for example, in Karlin and Taylor
(1981).

This proposition states that the sample paths of the Poisson process are arranged
in the following way: they take zero value during the time τ1, then the process
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increases by one and remains the same during the time τ2, after that the process
increases again by one and remains the same during the time τ3, and so on.

In other words, the process N(t), t ≥ 0, describes the number of events occur-
ring up to the time t if the events occur through independent random intervals,
distributed exponentially with the parameter λ.

The Poisson process has an important practical application due to the following
interpretation that underlies its structure.

We divide the time interval [0, t] into small subintervals of the length ∆ and
then let their length go to zero. Suppose that on each interval [k∆, (k + 1)∆) the
moment of the unit jump may occur independently with probability λ∆. Then in
the limit as ∆ → 0 the time of the first occurrence of a jump (the moment τ1) has
the exponential distribution with the parameter λ. Indeed,

P(τ1 ≥ t) ≈
(
1− λ∆

)[t/∆] ≈ e−λt.

Due to this interpretation of the occurrence of jumps, the consecutive moments of
jumps occur through the independent time intervals distributed according to the
exponential law. From here it follows also that if for a given nonrandom moment
the process has some particular meaning, then regardless of when the previous
jump occurred, the time until the subsequent moment of jump is again distributed
exponentially with the parameter λ. This property is called no aftereffects or the
Markov property, considered in the previous section.

Example 7.3. The compound Poisson process is the process

Nc(t) :=
N(t)∑
k=1

Yk, t ≥ 0,

where Yk, k = 1, 2, . . . , are i.i.d. random variables independent of the process N .
In contrast to the Poisson process, here the sizes of the jumps are identically

distributed random variables. The interpretation of the occurrence of moments of
jumps is the same as for the Poisson process.

Let F (y), y ∈ R, be the distribution function of the variables Yk, and ϕ(α),
α ∈ R, be their characteristic function. Then the characteristic function of the
increments of the process Nc(t) can be computed as follows:

Eeiα(Nc(t)−Nc(s)) = E exp
(
iα

N(t−s)∑
k=1

Yk

)
= e−λ(t−s)

∞∑
k=0

(�(t− s))k

k!
ϕk(α)

= eλ(t−s)(ϕ(α)−1) = exp
(
λ(t− s)

∞∫
−∞

(eiαy − 1) dF (y)
)
. (7.2)

This is a particular case of the Lévy–Khintchine formula (7.1).
The most important example of a continuous process with independent incre-

ments is Brownian motion, which is considered in § 10.
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Proposition 7.2. Every process with independent increments is a Markov pro-
cess.

Proof. LetX be a process with independent increments. We use Proposition 6.4.
For any bounded Borel function g(x), x ∈ R, and any fixed t < v we denote
h(x) := Eg(X(v) − X(t) + x). Set Gts := σ(X(v), s ≤ v ≤ t). The variable X(t)
is Gt0-measurable and the variable X(v)−X(t) is independent of the σ-algebra Gt0.
Applying Lemma 2.1, we get

E
{
g(X(v))

∣∣Gt0} = E
{
g(X(v)−X(t) +X(t))

∣∣Gt0} = h(X(t)).

Applying Lemma 2.1 again, we analogously obtain

E
{
g(X(v))

∣∣Gtt} = E
{
g(X(v)−X(t) +X(t))

∣∣Gtt} = h(X(t)).

This proves the Markov property (6.5).
For g(z) = 1I∆(z) the last equality implies that the transition probability is given

by
P (t, x, v,∆) = P(X(v)−X(t) + x ∈ ∆). (7.3)

�

Proposition 7.3. Let X(t), t ≥ 0, be a right continuous homogeneous process
with independent increments. Then X is a strong Markov process.

Proof. A right continuous process is progressively measurable with respect to the
natural filtration σ-algebras {Gt0}. We prove (6.14), from which (6.13) obviously
follows. For this proof it suffices to consider an arbitrary continuous bounded
function g(~y), ~y ∈ Rm.

Note that {τ < ∞} ∈ Gτ0 . Therefore, instead of (6.14) it suffices to prove that
for all ~t ∈ [0,∞)m and any A ∈ Gτ0 ,

Ex{1IA1I{τ<∞}g(X(τ + t1), . . . , X(τ + tm))}

= Ex{1IA1I{τ<∞}EX(τ)g(X(t1), . . . , X(tm))}. (7.4)

For every s ≥ 0, we set

h(y) := Exg(X(s+ t1)−X(s) + y, . . . ,X(s+ tm)−X(s) + y).

By the homogeneity and independence of increments, we have

Eyg(X(t1), . . . , X(tm)) = Exg(X(t1)−X(0) + y, . . . ,X(tm)−X(0) + y) = h(y).

Therefore (7.4), is rewritten in the form

Ex{1IA1I{τ<∞}g(X(τ + t1), . . . , X(τ + tm))} = Ex{1IA1I{τ<∞}h(X(τ)). (7.5)

Applying Lemma 2.1, we obtain

Ex
{
g(X(s+ t1), . . . , X(s+ tm))

∣∣Gs0}
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= Ex
{
g(X(s+ t1)−X(s) +X(s), . . . , X(s+ tm)−X(s) +X(s))

∣∣Gs0} = h(X(s))

a.s. with respect to the measure Px.
Consider the random variables

τn :=
∞∑
k=1

k2−n1IΩk,n
, n ∈ N,

where Ω1,n = {τ ≤ 2−n}, Ωk,n = {(k − 1)2−n < τ ≤ k2−n} for k = 2, 3, . . . . It
is obvious that τn ↓ τ as n → ∞ for all ω ∈ {τ < ∞}. In addition, for every
n ∈ N the variable τn is a stopping time with respect to the filtration {Gt0}, since
{τn ≤ t} = {τ ≤ [t2n]2−n} ∈ G[t2n]2−n

0 ⊆ Gt0, where [a] denotes the integer part of
a.

By the definition of the σ-algebra Gτ0 , we have

A
⋂
{τn = k2−n} = A

⋂
Ωk,n ∈ Gk2

−n

0 .

Since {τ <∞} =
∞⋃
k=1

Ωk,n,

Ex{1IA1I{τ<∞}g(X(τn + t1), . . . , X(τn + tm))}

=
∞∑
k=1

Ex{1IA1I{τn=k2−n} g(X(k2−n + t1), . . . , X(k2−n + tm))}

=
∞∑
k=1

Ex{1IA∩{τn=k2−n} Ex{g(X(k2−n + t1), . . . , X(k2−n + tm))|Gk2
−n

0 }}

=
∞∑
k=1

Ex{1IA∩{τn=k2−n} h(X(k2−n)} = E{1IA1I{τ<∞}h(X(τn))}. (7.6)

The process X is right continuous, therefore X(τn + t) → X(τ + t) a.s. for every
t ≥ 0. Since the function h(y) is continuous and bounded together with g(~y), by
the Lebesgue dominated convergence theorem, we have

E{1IA1I{τ<∞}g(X(t1 + τ), . . . , X(tm + τ))}

= lim
n

E{1IA1I{τ<∞}g(X(t1 + τn) . . . , X(tm + τn))}

and
E{1IA1I{τ<∞}h(X(τ))} = lim

n
E{1IA1I{τ<∞}h(X(τn))}.

Now, passing in (7.6) to the limit as τn ↓ τ , we get (7.5). �

We have actually proved the following statement.
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Proposition 7.4. Let τ be an a.s. a finite stopping time with respect to the
natural filtration {Gt0} of the right continuous homogeneous process with indepen-
dent increments X(t), t ≥ 0, X(0) = 0. Then X(t+ τ) −X(τ), t ≥ 0, is a process
independent of the σ-algebra Gτ0 and identical in law to X.

Indeed, regarding a function g as a function of increments of the process, we
only need to prove the following analogue of (7.4):

E{1IAg(X(t1 + τ)−X(τ), . . . , X(tm + τ)−X(τ))}

= E{1IA}Eg(X(t1)−X(0), . . . , X(tm)−X(0))}.

Obviously, the analogue of (7.6) is

E{1IAg(X(t1 + τn)−X(τn), . . . , X(tm + τn)−X(τn))}

= E{1IA}E{g(X(t1)−X(0), . . . , X(tm)−X(0))},

and this, after passage to the limit, gives the required result.

Proposition 7.5. A separable stochastically continuous process with indepen-
dent increments a.s. has no discontinuities of the second kind.

For the proof see Skorohod (1991).

§ 8. Gaussian processes

A random variable X is called Gaussian or normally distributed with an average
m and a variance σ2 if its density is given by

f(x) = 1
√
2��

e−(x−m)2/2σ2
, x ∈ R. (8.1)

Its distribution is also uniquely determined by the characteristic function

ϕX(α) = EeiαX = 1
√
2��

∞∫
−∞

eiαxe−(x−m)2/2σ2
dx = eiαm−α2σ2/2, α ∈ R. (8.2)

A stochastic process X(t), t ∈ [0, T ], is called Gaussian if its finite-dimensional
distributions are Gaussian, i.e., for any t1 < t2 < · · · < tn the characteristic
function of the random vector

→
X := (X(t1), X(t2), . . . , X(tn)) has the form

ϕ→
X

(~α) = E exp
(
i(~α,

→
X)
)

= exp
(
i(~α, →m)− 1

2
(R~α, ~α)

)

= exp
(
i
n∑
k=1

αkmk −
1

2

n∑
k=1

n∑
l=1

αkαlrk,l

)
, ~α ∈ Rn,
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where →m = (m1,m2, . . . ,mn) is the vector of expectations, mk := EX(tk), and
R = {rk,l}nk,l=1 is the covariance matrix,

rk,l := Cov(X(tk), X(tl)) = E
{
(X(tk)−mk)(X(tl)−ml)

}
.

The covariance matrix is a symmetric positive semi-definite matrix, because for
any real vector ~α = (α1, α2, . . . , αn)

(R~α, ~α) =
n∑
k=1

n∑
l=1

αkαlrk,l

= E
n∑
k=1

n∑
l=1

αkαl(X(tk)−mk)(X(tl)−ml) = E
( n∑
k=1

αk(X(tk)−mk)
)2

≥ 0.

The characteristic function uniquely determines the finite-dimensional distribu-
tions of the vector

→
X . Thus the finite-dimensional distributions of the Gaussian

process X are uniquely determined by the expectations EX(t), t ∈ [0, T ], and the
covariance function Cov(X(s), X(t)), (s, t) ∈ [0, T ]× [0, T ].

In the nondegenerate case, in which the covariance matrix is strongly positive
definite

(
(R~α, ~α) = 0 only if α1 = α2 = · · · = αn = 0

)
, the Gaussian distribution

of the vector
→
X has the density

f(x1, x2, . . . , xn) = |A|1=2

(2�)n=2
exp

(
− 1

2

n∑
k,l=1

ak,l(xk −mk)(xl −ml)
)
, ~x ∈ Rn,

where |A| := detA and A = {ak,l}nk,l=1 is the inverse of the covariance matrix R.

The general form of the two-dimensional density of the Gaussian vector (X1, X2)
is

f(x1, x2) = 1

2��1�2
√
1− r2

exp
(
− (x1 −m1)2

2(1− r2)�21
+ r(x1 −m1)(x2 −m2)

(1− r2)�1�2
− (x2 −m2)2

2(1− r2)�22

)
,

(8.3)

where m1 = E(X1), m2 = E(X2), σ2
1 = Var(X1), σ2

2 = Var(X2), r = Cov(X1; X2)

�1�2
.

Proposition 8.1. For a Gaussian random vector
→
X = (X(t1), . . . , X(tn)) the

noncorrelatedness of the coordinates (Cov(X(tk), X(tl)) = 0, k 6= l) is equivalent
to their independence.

Proof. If the coordinates of the Gaussian random vector
→
X are uncorrelated,

then the matrix R is diagonal and the characteristic function ϕ→
X

(~α) has the form

ϕ→
X

(~α) =
n∏
k=1

ϕX(tk)(αk),

i.e., it is equal to the product of the characteristic functions of the coordinates.
Therefore, the coordinates are independent. The converse is obvious. �
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Proposition 8.2. A stochastic process X is Gaussian iff for any tk ∈ [0, T ] and
any αk ∈ R, k = 1, 2, . . . , n, the linear combination

L := α1X(t1) + α2X(t2) + · · ·+ αnX(tn)

is a Gaussian random variable.

Proof. Let R and →m be the covariance matrix and the expectation of the random
vector

→
X = (X(t1), X(t2), . . . , X(tn)). Set ~α := (α1, α2, . . . , αn), then L = (~α,

→
X).

It is clear that m := EL = (~α, →m) and σ2 := E(L−EL)2 = (R~α, ~α).
If X is a Gaussian process, then for arbitrary real γ

EeiγL = E exp
(
iγ(~α,

→
X)
)

= exp
(
iγ(~α, →m)− 2

2
(R~α, ~α)

)
= E exp

(
iγm− 2�2

2

)
.

This implies that L is a Gaussian random variable.
The opposite implication follows easily from the equalities

E exp
(
i(~α,

→
X)
)

= EeiL = E exp
(
im− �2

2

)
= exp

(
i(~α, →m)− 1

2
(R~α, ~α)

)
.

�

Proposition 8.3. Let X(s), s ∈ [0, T ], X(0) = x, be a Gaussian process. Then
its finite-dimensional distributions are uniquely determined by the family of one-
dimensional distributions of the increments X(u)−X(v) for all 0 ≤ v < u ≤ T .

Proof. The proof of this statement can be based on the fact that for such a
process the covariances are expressed in terms of the expectations and the variances
of the increments. Since X(0) = x, we have EX(u) = x+ E(X(u)−X(0)) and

EX2(u) = x2 + 2xE(X(u)−X(0)) + E(X(u)−X(0))2.

The covariance function can be expressed as

Cov(X(v), X(u)) = E(X(v)X(u))−EX(v)EX(u)

= 1

2

(
EX2(v) + EX2(u)−E(X(u)−X(v))2

)
−EX(v)EX(u).

Thus the covariance function is expressed via the expectations of increments and
the expectation of the square of increments. �

Proposition 8.4. Let Xn, n = 1, 2, . . . , be a sequence of Gaussian random
variables that converges in probability to a variable X. Then X is also a Gaussian
random variable.

Proof. Let mn = EXn, σ2
n = DXn. For an arbitrary α ∈ R, by the Lebesgue

dominated convergence theorem

EeiαX = lim
n→∞

EeiαXn = lim
n→∞

eiαmn−α2σ2
n/2, α ∈ R.

This implies the existence of the limits m := lim
n→∞

mn, σ2 := lim
n→∞

σ2
n. Conse-

quently, EeiαX = eiαm−α2σ2/2. �
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Corollary 8.1. Let Xn(t), t ∈ Σ, n = 1, 2, . . . , be a sequence of Gaussian
processes. Suppose that Xn(t) → X(t) in probability for every t ∈ Σ. Then the
process X is Gaussian.

This statement follows from Propositions 8.2 and 8.4, since the limit of an

arbitrary linear combination
l∑

k=1

αkXn(tk), αk ∈ R, is the linear combination

l∑
k=1

αkX(tk), which has a Gaussian distribution.

§ 9. Stationary processes

Set Σ := [0,∞) or Σ = (−∞,∞) in the case of continuous time, and Σ :=
{0, 1, 2, . . . } or Σ = {0,±1,±2, . . . } in the case of discrete time.

A process X(t), t ∈ Σ, is said to be strictly stationary if for arbitrary tk ∈ Σ,
k = 1, . . . , n, and any t ∈ Σ the finite-dimensional distribution of the random
vector

(
X(t1 + t), X(t2 + t), . . . , X(tn + t)

)
is independent of t.

In other words, a strictly stationary process is a process whose finite-dimensional
distributions are invariant under any shift of the parameter belonging to the pa-
rameter set.

Among the moment characteristics of distributions of a stochastic process the
first two moments: m(t) := EX(t), the expectation (mean), and

R(s, t) := Cov(X(s), X(t)) = E
(
(X(s)−m(s))(X(t)−m(t))

)
,

the covariance function (correlation function), are of particular importance.
For a strictly stationary processes it is obvious thatm(t) is constant as a function

of t ∈ Σ and R(s, t) = R(0, t−s) depends only on the difference of the arguments for
all s, t ∈ Σ. This is due to the fact that the shift of the parameter does not change
the one-dimensional and the two-dimensional distributions. As a rule, one sets
R(t) := R(0, t− s) and calls R(t), t ∈ Σ, the covariance function of the stationary
process.

Often, only such conditions on the moments are realized, although the process
is not a strictly stationary.

A process X(t), t ∈ Σ, is said to be a wide sense stationary if E|X(t)|2 < ∞,
m(t) = m for all t ∈ Σ, and R(s, t) = R(0, t− s) for all s, t ∈ Σ.

Remark 9.1. A Gaussian wide sense stationary process is a strictly stationary.

Indeed, the finite-dimensional distributions of a Gaussian process are uniquely
determined by the mean and the covariance function.

Example 9.1. Let A>0, α>0, and ϕ be independent random variables and ϕ
be uniformly distributed in [0, 2π]. Then the process X(t) := A sin(αt+ϕ), t ∈ R,
(a random sinusoid) is strictly stationary.
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The concepts of stationary process in a strict and in a wide sense can be extended
to the complex-valued processes X if the covariance function is defined by

R(s, t) := E
(
(X(s)−m(s))(X(t)−m(t))

)
,

where the bar denotes complex conjugation. The determining conditions for a
wide sense stationary complex-valued process are m(t) = m for all t ∈ Σ and
R(s, t) = R(t− s) for all s, t ∈ Σ.

In order to describe the structure of a wide sense stationary complex-valued
process it is necessary to introduce the integral of a nonrandom measurable function
with respect to the orthogonal stochastic measure defined below.

Let M be the collection of sets consisting of all intervals of the form ∆ = [a, b).
Suppose that G(·) is a σ-additive measure defined on M. Such measure can be

extended to a measure on the σ-algebra of Borel sets.
Let a complex random variable Z(∆) be associated to each ∆ ∈ M so that the

following conditions are satisfied:
1) E|Z(∆)|2 <∞, Z(∅) = 0, where ∅ is the empty set;
2) for any disjoint sets ∆1 and ∆2 from M,

Z(∆1

⋃
∆2) = Z(∆1) + Z(∆2) a.s.;

3) E{Z(∆1)Z(∆2)} = G(∆1

⋂
∆2) (orthogonality property).

The family of random variables {Z(∆)}, ∆ ∈ M is called an orthogonal stochastic
measure and G(∆) is called its structure function.

Consider a class S(M) of simple complex-valued functions of the form

f(y) =
m∑
k=1

bk1I∆k
(y), ∆k ∈ M, (9.1)

where bk, k = 1, 2, . . . ,m, are some complex constants.
The stochastic integral of f ∈ S(M) with respect to the orthogonal stochastic

measure Z is defined by the formula

I(f, Z) :=

∞∫
−∞

f(y)Z(dy) :=
m∑
k=1

bkZ(∆k). (9.2)

Any two functions f and g from S(M) can be written as a linear combination of
indicator functions of the same disjoint sets. One can assume that

g(y) =
m∑
k=1

ck1I∆k
(y), ∆k ∈ M, k = 1, 2. . . . ,m, (9.3)

where ∆k

⋂
∆l = ∅ for k 6= l.
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By the orthogonality property of the stochastic measure Z(·),

E
(∫

R

f(y)Z(dy)
∫
R

g(y)Z(dy)
)

=
m∑
k=1

bkckG(∆k)=

∞∫
−∞

f(y)g(y)G(dy). (9.4)

Let L2(G(dy)) be the space of complex-valued functions whose modulus squared
is integrable with respect to G. The complex-valued random variables I(f, Z) for
f ∈ S(M) belong to the space L2(P(dω)) of complex-valued random variables with
finite absolute second moment. This space is equipped with the scalar product
(µ, η) = E{µη}. The class of simple functions S(M) is dense in L2(G(dy)). By
(9.4), the mapping (9.2) is a linear isometric mapping from S(M) into L2(P(dω)),
therefore it can be extended uniquely to a linear isometric mapping from the whole
space L2(G(dy)) into L2(P(dω)). Thus for any function f in L2(G(dy)) the integral∫
R

f(y)Z(dy) is well defined. For more information on the extension by isometry see

§ 1 Ch. II, where the construction of a stochastic integral with respect to a Brownian
motion is considered. According to this extension, for any f ∈ L2(G(dy)) and any
sequence of simple functions fn ∈ S(M) such that

lim
n→∞

∞∫
−∞

|f(y)− fn(y)|2G(dy) = 0,

the relation
∞∫

−∞

f(y)Z(dy) = l. i.m.

∞∫
−∞

fn(y)Z(dy) (9.5)

holds, where l. i.m. denotes the limit in mean square.
The integral (9.5) defines an orthogonal stochastic measure

Z(∆) :=
∞∫

−∞

1I∆(y)Z(dy), ∆ ∈ B(R),

because, by isometry, we have the equality

E{Z(∆1)Z(∆2)} =

∞∫
−∞

1I∆1(y)1I∆2(y)G(dy) = G
(
∆1

⋂
∆2

)
. (9.6)

Let Σ = R. We provide a description of covariance functions as well as a wide
sense complex-valued stationary processes themselves that are continuous in mean
square.

Let R(t), t ∈ R, be the covariance function of X. If EX(t) = 0, then for every
t ∈ R

|R(t+h)−R(t)|= |R((X(t+h)−X(t))X(0))| ≤ E1/2|X(t+h)−X(t)|2E1/2|X(0)|2.

Therefore, if the process X is continuous in mean square, then the covariance
function is continuous.



62 I BASIC FACTS

Theorem 9.1 (Bochner–Khintchine). Let R(t), t ∈ R, be a covariance
function continuous at zero. Then

R(t) =

∞∫
−∞

eity dG(y), t ∈ R, (9.7)

where G(y), y ∈ R, is a bounded right continuous nondecreasing function.

The function G(y), y ∈ R, is called the spectral function of the stationary process
X. With the function G one can associate the measure defined on the sets [a, b)
by the formula G([a, b)) := G(b) − G(a), and in (9.7) the Stieljes integral can be
replaced by the integral with respect to the measure G(dy).

Theorem 9.2. Let X(t), t ∈ R, be a centered (EX(t) = 0) stationary process
continuous in mean square. Then

X(t) =

∞∫
−∞

eity Z(dy), t ∈ R, a.s., (9.8)

where Z(dy) is an orthogonal stochastic measure such that E|Z(dy)|2 =G(dy).

The measure Z is called the spectral random measure of the stationary process
X.

Remark 9.2. Formula (9.8) informally represents the wide sense stationary
process X as a “continuous” sum of mutually uncorrelated harmonic oscillations
of different frequencies with random amplitudes. The spectral function determines
the average of the squares of amplitudes.

Proof of Theorem 9.2. The family of functions F(R) that are finite linear combi-
nations for different t ∈ R of the functions eity, y ∈ R, is dense in L2(G(dy)), since

G is a finite measure. For any function f(y) =
n∑
k=1

αke
itky, y ∈ R, αk ∈ C, where

C is the set of complex numbers, we define the mapping Ψ : F(R) → L2(P(dω))

by the formula Ψ(f) :=
n∑
k=1

αkX(tk). Let Ψ(g) =
n∑
k=1

βkX(tk). By choosing the

coefficients, we may assume that the linear combinations of values of the process
X are taken at the same points {tk}. By (9.7), the equalities

E
{
Ψ(f)Ψ(g)

}
=

n∑
k=1

n∑
l=1

αkβlE
{
X(tk)X(tl)

}

=
n∑
k=1

n∑
l=1

αkβl

∞∫
−∞

ei(tk−tl)y dG(y) =

∞∫
−∞

f(y)g(y) dG(y)

hold. On the right-hand side there is the scalar product of the functions f and g
in the space L2(G(dy)), and on the left-hand side there is the scalar product of the



§ 9. STATIONARY PROCESSES 63

random variables Ψ(f) and Ψ(g) in the space L2(P(dω)). Thus the mapping Ψ is
isometric. We extend it by isometry to the whole space L2(G(dy)). As a result,
we get a linear isometric mapping Ψ : L2(G(dy)) → L2(P(dω)). If ∆ ∈ B(R),
then 1I∆(y) ∈ L2(G(dy)). Therefore, we can set Z(∆) := Ψ(1I∆). By the isometry,
(9.6) holds. By linearity, for any disjoint sets ∆1 and ∆2 from B(R) one has that
Z(∆1

⋃
∆2) = Z(∆1) + Z(∆2) holds a.s., since 1I∆1∪∆2 = 1I∆1 + 1I∆2 . Therefore,

Z(·) is an orthogonal stochastic measure.

Set Y (t) :=
∞∫

−∞

eity Z(dy) and prove that the processesX and Y are modifications

of each other, i.e., P(X(t) = Y (t)) = 1 for every t ∈ R. Indeed, in view of the
isometric mapping Ψ, we have

E
{
X(t)Z(∆)

}
= E

{
Ψ(eit·)Ψ(1I∆(·))

}
=

∞∫
−∞

eity1I∆(y)G(dy).

Hence, this equality is true for an arbitrary linear combination
m∑
k=1

bkZ(∆k) instead

of Z(∆). Now, by (9.5), this is true for the integral Y (t):

E
{
X(t)Y (t)

}
=

∞∫
−∞

eitye−ity G(dy) = R(0) = E|X(t)|2.

Hence, we get

E|X(t)−Y (t)|2 = E
{
(X(t)−Y (t))(X(t)− Y (t))

}
= E

{
X(t)X(t)

}
−E

{
X(t)Y (t)

}
−E
{
Y (t)X(t)

}
+ E

{
Y (t)Y (t)

}
= R(0)−R(0)−R(0) +R(0) = 0.

Thus P(X(t) = Y (t)) = 1 for every t ∈ R and the theorem is proved. �

For a stationary sequence X(k), k ∈ Z, we have the following analogue of The-
orem 9.2.

Theorem 9.3. Let X(k), k ∈ Z, be a centered (EX(k) = 0) stationary se-
quence. Then

R(k) =

π∫
−π

eiky dG(y), k ∈ Z, (9.9)

where G(y) is a right continuous nondecreasing function, and

X(k) =

π∫
−π

eiky Z(dy), k ∈ Z, a.s., (9.10)

where Z(dy) is an orthogonal stochastic measure such that E|Z(dy)|2 =G(dy).
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§ 10. Brownian motion process

A Brownian motion started at x is a stochastic process W (t), t ∈ [0,∞), with
W (0) = x and with the finite-dimensional distributions

P(W (t1) ∈ ∆1,W (t2) ∈ ∆2, . . . ,W (tn) ∈ ∆n) (10.1)

=
∫
∆1

dx1
e−(x1−x)2=2t1

√
2�t1

∫
∆2

dx2
e−(x2−x1)

2=2(t2−t1)√
2�(t2 − t1)

· · ·
∫

∆n

dxn
e−(xn−xn−1)

2=2(tn−tn−1)√
2�(tn − tn−1)

,

where 0 < t1 < t2 < · · · < tn, ∆k ∈ B(R), k = 1, 2, . . . , n.

These finite-dimensional distributions determine a finite additive measure on the
algebra of cylinder sets. The measure PW that extends this measure from cylinder
sets to the σ-algebra σ(W (s), s ∈ [0,∞)), generated by the process W , is referred
to as the Wiener measure.

The Brownian motion W can be considered on a finite time interval [0, T ]. For
the interval [0, T ], the Brownian motion is determined by the finite-dimensional
distributions with the time from [0, T ] and the measure PT

W associated with this
process is defined on the σ-algebra σ(W (s), s ∈ [0, T ]).

From (10.1) it follows that the random vector (W (t1),W (t2), . . . ,W (tn)) has
the joint density

p~t (~x) =
n∏
k=1

ϕtk−tk−1(xk − xk−1), (10.2)

where ϕt(x) = e−x
2=2t

√
2�t

is the Gaussian density with mean 0 and variance t, t0 = 0,

~t = (t1, . . . , tn), x0 = x, ~x = (x1, . . . , xn) ∈ Rn. The vector of the increments

(W (t1)−W (0),W (t2)−W (t1), . . . ,W (tn)−W (tn−1))

has the joint density q~t (~y) =
n∏
k=1

ϕtk−tk−1(yk). Indeed, to compute this joint

density one can use formula (1.11) with ~g(~x) = (x1 − x, x2 − x1, . . . , xn − xn−1),
~x = (x1, x2, . . . , xn) ∈ Rn. Here

~g (−1)(~y) =
(
x+ y1, x+ y1 + y2, . . . , x+

n∑
k=1

yk

)
,

and it is easy to see that det J~g (−1)(~y ) = 1.

Since this joint density is the product of the marginal densities, a Brownian
motion is a process with independent increments.

From the expression for the marginal density it follows that for every s < t the
increment W (t)−W (s) is normally distributed with

E(W (t)−W (s)) = 0, E(W (t)−W (s))2 = t− s. (10.3)
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The characteristic function of the increment has the form

Eeiα(W (t)−W (s)) = e−α
2(t−s)/2, α ∈ R. (10.4)

Notice that (10.4) is valid also for a complex α.
From (10.2) it follows that the Brownian motion W is a Gaussian process. Since

W (0) = x, the process W has the mean EW (t) = x and the covariance function

Cov(W (s),W (t)) := E((W (s)− x)(W (t)− x)) = min{s, t}. (10.5)

By differentiating the characteristic function with respect to α, it is easy to
compute all moments of the increments of Brownian motion. The odd moments
are equal to zero, while the even moments are given by

E(W (t)−W (s))2m = (2m− 1)!!(t− s)m, m = 1, 2, . . . , (10.6)

where (2m− 1)!! is the product of all odd numbers from 1 to 2m− 1.

Continuity. From (10.6) with m = 2 and Kolmogorov’s continuity criterion it
follows that the Brownian motion W has a continuous modification. It is natural
to consider a Brownian motion with continuous paths. In order not to change the
notation, we assume that the process W is itself continuous.

As a consequence, we can define a Brownian motion as follows:
A Brownian motion, W (t), t ∈ [0,∞), started at x, is a continuous process with

independent Gaussian increments, with mean zero and with the variance of an
increment equal to the length of the interval for which the increment is considered.

The following construction of a Brownian motion W with the initial value
W (0) = 0 was suggested by Paley and Wiener (1934).

Let ξk, k = 1, 2, . . . , be a sequence of independent Gaussian random variables
with mean 0 and variance 1. Then the series

W (t) := t
√
�
ξ0 +

∞∑
n=1

2n−1∑
k=2n−1

√
2 sin(kt)

k
√
�

ξk

converges a.s. uniformly in t ∈ [0, π] and determines the Brownian motion for
this interval. Such particular grouping of terms is needed to ensure the uniform
convergence of the series.

The uniform convergence implies continuity of the process W , defined by this
formula, and implies that it is a Gaussian process. Also, one can verify that

E(W (s)W (t)) = st

�
+ 2

�

∞∑
k=1

sin(ks) sin(kt)

k2
= min{s, t},

which is in accordance with (10.5).

For an estimation of the tail probabilities of increments of Brownian motion, i.e.,
the probabilities P(W (t)−W (s) > h), the following result is of key importance.
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Lemma 10.1. For any h > 0

h

h2 + 1
e−h

2/2 <

∞∫
h

e−y
2/2 dy <

1

h
e−h

2/2. (10.7)

Proof. This result is a consequence of the relations
∞∫
h

e−y
2/2 dy <

∞∫
h

y

h
e−y

2/2 dy = 1

h
e−h

2/2

=

∞∫
h

(
1 + 1

y2

)
e−y

2/2 dy <
(
1 + 1

h2

) ∞∫
h

e−y
2/2 dy.

�

Corollary 10.1. As h/
√
t− s→∞,

P(W (t)−W (s) > h) =

∞∫
h

e−y
2=2(t−s)√
2�(t− s)

dy ∼
√
t− s

h
√
2�
e−h

2/2(t−s). (10.8)

1. Characterizations of Brownian motion.
A characterization by conditional characteristic function.

Proposition 10.1. A process X(t), t ∈ [0, T ], X(0) = x, adapted to a filtration
{Ft}, is a Brownian motion if for any 0 ≤ s < t ≤ T and α ∈ R,

E
{
eiα (X(t)−X(s))

∣∣Fs} = e−α
2(t−s)/2 a.s. (10.9)

Proof. Taking the expectation of both sides of (10.9), we have

Eeiα (X(t)−X(s)) = e−α
2(t−s)/2,

and, consequently, the increments X(t)−X(s) are normally distributed with mean
zero and variance t−s. The even moments of these increments are given by (10.6).
Therefore, by Kolmogorov’s continuity criterion, it follows that X is a continuous
process. Now it is sufficient to verify that increments of X are independent. For
0 = s0 < s1 < · · · < sm < sm+1 and αk ∈ R, k = 0, . . . ,m, we have

E exp
(
i

m∑
k=0

αk(X(sk+1)−X(sk))
)

= E
{
E
{
exp
(
i

m∑
k=0

αk(X(sk+1)−X(sk))
)∣∣∣Fsm

}}
=E

{
exp

(
i
m−1∑
k=0

αk(X(sk+1)−X(sk))
)
E
{

exp
(
iαm(X(sm+1)−X(sm))

)∣∣∣Fsm

}}
= exp

(
− α2

m(sm+1 − sm)/2
)
E exp

(
i
m−1∑
k=0

αk(X(sk+1)−X(sk))
)

= . . .

= exp
(
−

m∑
k=0

α2
k(sk+1 − sk)/2

)
=

m∏
k=0

E exp
(
i

m∑
k=0

αk(X(sk+1)−X(sk))
)
.
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This implies the independence of the increments of the process X and so, by defi-
nition, X is a Brownian motion. �

Lévy’s characterization.

Theorem 10.1. LetX(t), t ∈ [0, T ], X(0) = x, be a continuous process adapted
to a filtration {Ft}. If for any 0 ≤ s < t ≤ T ,

E{X(t)−X(s)|Fs} = 0 a.s., (10.10)

E{(X(t)−X(s))2|Fs} = t− s a.s., (10.11)

then X is a Brownian motion.

Remark 10.1. Since equalities (10.10) and (10.11) can be written in the form

E{X(t)|Fs} = X(s), E{X2(t)− t|Fs} = X2(s)− s a.s., (10.12)

Lévy’s characterization can be formulated as follows: a continuous Ft-adapted
process X(t), X(0) = x, is a Brownian motion if X(t) and X2(t)−t are martingales
with respect to the filtration {Ft}. This is the martingale characterization of a
Brownian motion.

Proof of Theorem 10.1. For arbitrary h > 0 and t ∈ [0, T − h] we compute the
conditional characteristic function of the variable X(t+ h)−X(t) with respect to
the σ-algebra Ft, i.e., E

{
eiα(X(t+h)−X(t))

∣∣Ft}, α ∈ R, and then apply Proposi-
tion 10.1.

Set Xn
k := X

(
t+ kh

n

)
−X

(
t+ (k−1)h

n

)
, k = 1, 2, . . . , n. For arbitrary α ∈ R,

E
{

exp
(
iα(X(t+h)−X(t))

)∣∣Ft}−exp
(
−α2h/2

)
(10.13)

=
n−1∑
r=0

E
{

exp
(
iα

r+1∑
k=1

Xn
k

)
− exp

(
iα

r∑
k=1

Xn
k − h�2

2n

)∣∣∣∣Ft} exp
(
− n− r − 1

2n
hα2

)
.

In this sum, all terms except the first and the last ones cancel out. We represent
the expectation of the difference of the exponents in the following form:

E
{

exp
(
iα

r∑
k=1

Xn
k

)(
eiαX

n
r+1 − e−hα

2/2n
)∣∣∣∣Ft}

= E
{

exp
(
iα

r∑
k=1

Xn
k

)
E
{(
eiαX

n
r+1 − e−hα

2/2n
)∣∣∣Ft+ rh

n

}∣∣∣∣Ft}

= E
{

exp
(
iα

r∑
k=1

Xn
k

)
E
{(
eαX

n
r+1 − 1− iαXn

r+1 + �2

2
(Xn

r+1)
2
)∣∣∣Ft+ rh

n

}∣∣∣∣Ft}

+E
{

exp
(
iα

r∑
k=1

Xn
k

)(
1− �2

2n
h− e−hα

2/2n
)∣∣∣∣Ft}. (10.14)



68 I BASIC FACTS

To estimate the right-hand side of (10.14) we prove that

E
{

(X(t+ h)−X(t))4
∣∣∣Ft} ≤ 3h2. (10.15)

Obviously,
n∑
k=1

|Xn
k |2+δ ≤ max

1≤k≤n
|Xn

k |δ
n∑
k=1

(Xn
k )2.

It is clear that max
1≤k≤n

|Xn
k |δ → 0 a.s., because of the continuity of X, while the

variables
n∑
k=1

(Xn
k )2 are bounded in probability

(
P
( n∑
k=1

(Xn
k )2 > C

)
−→
C→∞

0
)
.

Since E
n∑
k=1

(Xn
k )2 = h, we see that for any δ > 0 it holds that

n∑
k=1

|Xn
k |2+δ → 0 in

probability. As a consequence we have

(X(t+ h)−X(t))4 = lim
n→∞

{( n∑
k=1

Xn
k

)4

+ 3
n∑
k=1

(Xn
k )4 − 4

n∑
k=1

(Xn
k )3

n∑
l=1

Xn
l

}
.

(10.16)

Further we need an auxiliary result.

Proposition 10.2. Let ξ and η be nonnegative random variables with Eξ <∞,
Eη <∞. Let ξ be G-measurable and E{ξE{η|G}} <∞.

Then E{ξη} <∞.

Proof. Set ξN := ξ1I{ξ<N} + N1I{ξ≥N}. It is clear that ξN is a G-measurable
increasing sequence of functions and lim

N→∞
ξN ↑ ξ. By the Lebesgue dominated

convergence theorem,

E{ξη} = lim
N→∞

E{ξNη} = lim
N→∞

E{E{ξNη|G}}

= lim
N→∞

E{ξNE{η|G}} = E{ξE{η|G}} <∞.

�

On the right-hand side of (10.16) there are no terms (Xn
k )4 and (Xn

k )3Xn
l , be-

cause if we raise the first term to the fourth power, they disappear.
As to other terms we can apply Proposition 10.2, since by the Hölder inequality

E{|Xn
k ||Ft+(k−1)h/n} ≤ (E{(Xn

k )2|Ft+(k−1)h/n})1/2 ≤ (h/n)1/2.

Using (10.11), we have

E{(Xn
k )2(Xn

l )2|Ft} = E{E{(Xn
k )2(Xn

l )2|Ft+kh/n}|Ft}

= E{(Xn
k )2E{(Xn

l )2|Ft+kh/n}|Ft} = (h/n)2, k < l.
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Using (10.10) and (10.11), we see that for k < j < l < r or k = j < l < r or
k < j = l < r,

E{Xn
kX

n
j X

n
l X

n
r |Ft} = E{Xn

kX
n
j X

n
l E{Xn

r |Ft+(r−1)h/n}|Ft}} = 0,

while for k < j < l

E{Xn
kX

n
j (Xn

l )2|Ft} = E{Xn
kX

n
j E{(Xn

l )2|Ft+(l−1)h/n}|Ft}}

= h

n
E{Xn

kE{Xn
j |Ft+(j−1)h/n}|Ft} = 0.

Now, taking into account (10.16), Fatou’s Lemma yields

E
{

(X(t+ h)−X(t))4
∣∣∣Ft} = E

{
lim inf
n→∞

6
∑

1≤k<j≤n

(Xn
k )2(Xn

j )2
∣∣∣Ft}

≤ 6 lim inf
n→∞

E
{ ∑

1≤k<j≤n

(Xn
k )2E

{
(Xn

j )2
∣∣Ft+(j−1)h/n

}∣∣∣Ft}
= lim inf

n→∞
3n(n− 1)h

2

n2
= 3h2.

The estimate (10.15) is proved. As a consequence of (2.16) and Jensen’s inequality,
we have

E
{
|X(t+ h)−X(t)|3

∣∣∣Ft} ≤
(
E
{

(X(t+ h)−X(t))4
∣∣∣Ft})3/4

≤ 33/4h3/2.

Therefore,

E
{
|Xn

r |3
∣∣Ft+(r−1)h/n

}
≤ 33=4h2

n3=2
.

Since ∣∣eiαx − 1− iαx+ �2x2

2

∣∣ ≤ |�x|3

6
,

we have

E
{∣∣∣eαXn

r+1 − 1− iαXn
r+1 + �2

2
(Xn

r+1)
2
∣∣∣∣∣∣Ft+rh/n} ≤ |�|3h3=2

2n3=2
.

From (10.14) and the inequality |1− x− e−x| ≤ x2

2
, 0 < x, we deduce that

E
{

exp
(
iα

r∑
k=1

Xn
k

)(
eiαX

n
r+1 − e−hα

2/2n
)∣∣∣∣Ft} ≤ |�|3h3=2

2n3=2
+ �4h2

8n2
.

Applying this estimate in (10.13), we obtain∣∣E{eiα(X(t+h)−X(t))
∣∣Ft}− e−α

2h/2
∣∣ ≤ |�|3h3=2

2n1=2
+ �4h2

8n
−→
n→∞

0.

Thus for arbitrary 0 ≤ t < v ≤ T and α ∈ R

E
{
eiα(X(v)−X(t))

∣∣Ft} = e−α
2(v−t)/2 a.s.,

and by the characterization property (10.9), the process X(t), t ∈ [0, T ], is a
Brownian motion. �
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2. Basic properties of Brownian motion.

Hölder continuity. The mapping t→W (t) is locally Hölder continuous of order
γ for every 0 < γ < 1/2. In other words, for all T > 0, 0 < γ < 1/2, and almost
all ω there exists a coefficient LT,γ(ω) such that for all s, t ∈ [0, T ],

|W (t)−W (s)| ≤ LT,γ(ω)|t− s|γ . (10.17)

Indeed, in view of (10.6), Kolmogorov’s condition (3.4) holds with α = 2m,
β = m− 1 for an arbitrary nonnegative integer m. According to (3.5), the sample
paths of the Brownian motion W are a.s. Hölder continuous of order γ for every
0 < γ <

m− 1

2m
. Since m is arbitrary, we have (10.17) for 0 < γ < 1/2.

Nowhere differentiability. Brownian paths are a.s. nowhere locally Hölder con-
tinuous of order α ≥ 1/2. In particular, Brownian paths are nowhere differentiable
for all time moments (see, for example, Bulinskii and Shiryaev (2003) Ch. III § 1).

The exact modulus of continuity of Brownian motion.

Theorem 10.2. For any T > 0

lim sup
∆↓0

1√
2� ln(1=�)

sup
t∈[0,T ]

|W (t+ ∆)−W (t)| = 1 a.s. (10.18)

Proof. It can be assumed without loss of generality that T = 1 and W (0) = 0.
Set h(t) :=

√
2t ln(1/t), 0 < t < e−1. To establish (10.18) it suffices to prove that

for any ε > 0

lim sup
∆↓0

1

h(�)
sup
t∈[0,1]

|W (t+ ∆)−W (t)| ≥ 1− ε a.s. (10.19)

lim sup
∆↓0

1

h(�)
sup
t∈[0,1]

|W (t+ ∆)−W (t)| ≤ 1 + 3ε+ 2ε2 a.s. (10.20)

We first prove (10.19). Using the independence of the increments of the Brownian
motion W , (10.8), (10.7), and the estimate 1− x < e−x, 0 < x < 1, we have

P
(

max
1≤k≤2n

∣∣∣W ( k
2n

)
−W

(k − 1

2n

)∣∣∣ ≤ (1−ε)h
( 1

2n

))
=
(
1−

∞∫
(1−ε)

√
2n ln 2

1
√
2�
e−v

2/2 dv

)2n

<
(
1− (1− ")

√
2n ln 2

(1− ")22n ln 2 + 1
exp(−(1−ε)2n ln 2)

)2n

< exp
(
− (1− ")

√
2n ln 2

(1− ")22n ln 2 + 1
2ε(2−ε)n

)
.

The series of these terms converges. Then, by the first part of Borel–Cantelli
lemma,

lim
n→∞

1

h(1=2n)
max

1≤k≤2n

∣∣∣W ( k
2n

)
−W

(k − 1

2n

)∣∣∣ > 1− ε a.s.,

which obviously implies (10.19).
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We next prove (10.20). Set δ := "

2 + "
. By (10.7),

P
(

max
0≤k=j−i≤2nδ

0≤i<j≤2n

|W (j2−n)−W (i2−n)| > (1 + ε)h(k2−n)
)

≤
∑

0≤k=j−i≤2nδ

0≤i<j≤2n

P
(
|W (j2−n)−W (i2−n)| > (1 + ε)h(k2−n)

)

≤ 2n
2nδ∑
k=1

√
k2−n

√
2�(1 + ")h(k2−n)

exp
(
− (1 + ")2h2(k2−n)

2k2−n

)
= 2n

2
√
�

2nδ∑
k=1

2−n(1+")
2
k(1+")

2

(1 + ") ln(2n=k)

≤ A12n(1−(1+ε)2+δ((1+ε)2+1)) = A12−2n(1+ε)ε/(2+ε).

The probabilities are estimated by quantities forming a convergent series. Hence,
by the first part of Borel–Cantelli lemma, there exists a.s. a number m = m(ω)
such that for all n ≥ m, k = j − i ≤ 2nδ, 0 ≤ i < j ≤ 2n

|W (j2−n)−W (i2−n)| ≤ (1 + ε)h(k2−n). (10.21)

Set ∆ := t − s > 0. Since 2−l(1−δ) tends monotonically to zero as l → ∞,
no matter how small ∆ is, it will always be between two sequential terms of this
sequence. Let 2−(n+1)(1−δ) ≤ ∆ < 2−n(1−δ). Since we must consider only arbitrary
small values of ∆, we can assume that n ≥ m. We represent s and t in the binary
rational form

s = i2−n −
∞∑
v=1

2−pv , t = j2−n +
∞∑
v=1

2−qv ,

where n < p1 < p2 < · · · and n < q1 < q2 < · · · . Set s0 := i2−n, sl :=

i2−n −
l∑

v=1
2−pv , t0 := j2−n, tl := j2−n +

l∑
v=1

2−qv . The process W (t), t ∈ [0, 1], is

a.s. continuous in t, therefore,

W (s) = W (s0) +
∞∑
l=1

(W (sl)−W (sl−1)),

W (t) = W (t0) +
∞∑
l=1

(W (tl)−W (tl−1)).

By the triangle inequality,

|W (t)−W (s)| ≤ |W (t0)−W (s0)|+
∞∑
l=1

|(W (sl)−W (sl−1)|

+
∞∑
l=1

|W (tl)−W (tl−1)| ≤ (1 + ε)
{
h(k2−n) +

∑
p>n

h(2−p) +
∑
q>n

h(2−q)
}
.
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To estimate the differences W (t0) − W (s0), W (sl) − W (sl−1), W (tl) − W (tl−1)
we used inequality (10.21). This can be done, because the points sl, tl satisfy the
conditions under which (10.21) holds. For some constant K and all sufficiently
large n, ∑

p>n

h(2−p) ≤ Kh(2−n) ≤ εh(2−(n+1)(1−δ)) ≤ εh(∆),

because the function h(∆), 0 < ∆ < e−1, is strictly increasing. Finally, since
∆ ≥ k2−n, we have

|W (t)−W (s)| ≤ (1 + 3ε+ 2ε2)h(∆)

and, consequently, (10.20) is valid. The theorem is proved. �

Stochastic exponent. For any α the process M(t) := eαW (t)−α2t/2, t ≥ 0, (a
stochastic exponent) is a martingale with respect to the natural filtration Gt0 =
σ{W (v), 0 ≤ v ≤ t}, i.e., for every s < t,

E
{
eα(W (t)−W (s))

∣∣∣Gs0} = eα
2(t−s)/2 a.s. (10.22)

This follows from the facts that the Brownian motion W is a process with inde-
pendent increments and that (10.4) is valid for −iα instead of α.

Strong Markov property. Let W (t), t ≥ 0, be a Brownian motion and Gt0 =
σ{W (s), 0 ≤ s ≤ t} be the natural filtration. Let τ be a finite stopping time with
respect to the filtration {Gt0}. Then the process W (t + τ) − W (τ), t ≥ 0, is a
Brownian motion independent of Gτ0 .

This property follows from Proposition 7.4.

Quadratic variation. For any sequence of subdivisions s = tn,0 < tn,1 < · · · <
tn,n = t, satisfying the condition lim

n→∞
max

0≤k≤n−1
|tn,k+1 − tn,k| = 0, the limit

lim
n→∞

∑
0≤k≤n−1

|W (tn,k+1)−W (tn,k)|2 = t− s (10.23)

holds in mean square. We say that the quadratic variation of W on [s, t] is t− s.

Proof. The random variable

Vn :=
∑

0≤k≤n−1

|W (tn,k+1)−W (tn,k)|2

has the mean
EVn =

∑
0≤k≤n−1

(tn,k+1 − tn,k) = t− s.

Using the fact that the variance of a sum of independent variables is equal to the
sum of variances of the terms, we get

E(Vn − (t− s))2 = VarVn =
∑

0≤k≤n−1

Var(|W (tn,k+1)−W (tn,k)|2)
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=
∑

0≤k≤n−1

E|W (tn,k+1)−W (tn,k)|4 − (tn,k+1 − tn,k)2 = 2
∑

0≤k≤n−1

(tn,k+1 − tn,k)2

≤ 2 max
0≤k≤n−1

|tn,k+1 − tn,k| (t− s). (10.24)

The right-hand side of this formula tends to zero as n → ∞. This proves the
statement. �

3. Basic properties of W with zero initial value (W (0) = 0).

Spatial homogeneity. For every x ∈ R the process x+W is a Brownian motion
starting at x.

This is a consequence of the fact that the finite-dimensional density, expressed
by (10.2), depends only on the differences xk − xk−1, k = 1, . . . , n.

Indeed, using (10.1) with x = 0, we have

P(x+W (t1) ∈ A1, . . . , x+W (tn) ∈ An) = P(W (t1) ∈ A1−x, . . . ,W (tn) ∈ An−x)

=
∫

A1−x

dx1
e−x

2
1=2t1

√
2�t1

∫
A2−x

dx2
e−(x2−x1)2=2(t2−t1)√

2�(t2 − t1)
· · ·

∫
An−x

dxn
e−(xn−xn−1)

2=2(tn−tn−1)√
2�(tn − tn−1)

=
∫
A1

dx1
e−(x1−x)2=2t1

√
2�t1

∫
A2

dx2
e−(x2−x1)

2=2(t2−t1)√
2�(t2 − t1)

· · ·
∫
An

dxn
e−(xn−xn−1)

2=2(tn−tn−1)√
2�(tn − tn−1)

.

Comparing this with (10.1), we see that x+W (t) is the Brownian motion starting
at x.

Symmetry. The process −W is a Brownian motion, since the Gaussian density
(10.2) is even.

Scaling. For every c > 0 the process {
√
cW (t/c) : t ≥ 0} is a Brownian motion.

This statement follows from the fact that under such a transformation the equal-
ities (10.3) remain valid.

Time reversibility. For a given T > 0 the processes {W (t), 0 ≤ t ≤ T} and
{W (T )−W (T − t), 0 ≤ t ≤ T} are identical in law.

Indeed, these processes have independent increments and they satisfy (10.3).

Strong law of large numbers:

lim
t→∞

W (t)

t
= 0 a.s.

This result, in particular, is a consequence of (10.25).

Time inversion. The process given by

Z(t) :=
{

0, if t = 0,
tW (1/t), if t > 0,

is a Brownian motion.
This is a Gaussian process with mean zero and Cov(Z(s), Z(t)) = stmin{1/s, 1/}

= min{s, t}. By the strong law of large numbers, it is continuous at 0. Thus, it is
a Brownian motion.

The law of the iterated logarithm.
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Theorem 10.3. The following relation holds

lim sup
t→∞

W (t)
√
2t ln ln t

= 1 a.s. (10.25)

As a consequence of the symmetry property of Brownian motion, we have the
following result.

Corollary 10.2. The following relation holds:

lim inf
t→∞

W (t)
√
2t ln ln t

= −1 a.s.

Using the time inversion property of a Brownian motion, we obtain one more
corollary.

Corollary 10.3. The following relation holds:

lim sup
t↓0

W (t)√
2t ln ln(1=t)

= 1 a.s.

Proof of Theorem 10.3. We first prove that for any 0 < ε < 1

lim sup
t→∞

W (t)
√
2t ln ln t

≤ 1 + ε a.s. (10.26)

By (10.22), M(t) := eαW (t)−α2t/2, t ≥ 0, is a martingale with respect to the natural
filtration Gt0 = σ{W (v), 0 ≤ v ≤ t}. By the Doob inequality (5.11) with p = 1, for
any α > 0 and β > 0 we have

P
(

sup
0≤s≤t

(W (s)− αs/2) > β
)

= P
(

sup
0≤s≤t

M(s) > eαβ
)
≤ e−αβEM(t) = e−αβ .

(10.27)
Set h(t) :=

√
2t ln ln t. For a fixed 0 < ε < 1 set θ := 1 + 2"

1 + "
, α := (1 + ε)θ−nh(θn)

and β := h(θn)/2. By (10.27),

P
(

sup
0≤s≤θn+1

(W (s)− αs/2) > β
)
≤ e−αβ = e−(1+ε) ln(n ln θ) = (ln θ)−(1+ε)n−(1+ε).

This series of probabilities converges, and by the first part of the Borel–Cantelli
lemma (see § 1), there exists a number n0 = n0(ω) such that for all n ≥ n0

sup
0≤s≤θn+1

(W (s)− αs/2) ≤ β a.s.

In particular, for θn ≤ t < θn+1, n ≥ n0,

W (t) ≤ sup
0≤s≤θn+1

W (s) ≤ ��n+1

2
+ β =

(
�(1 + ")

2
+ 1

2

)
h(θn) < (1 + ε)h(t). (10.28)
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This proves (10.26).
It now remains to prove that for any 0 < ε < 1

lim sup
t→∞

W (t)
√
2t ln ln t

≥ 1− ε a.s. (10.29)

Choose an arbitrary 0 < δ < ε. Set tn := θn, with θ > 1 such that (1− �)2�

� − 1
= 1.

Consider the sequence of independent events

An :=
{
W (tn+1)−W (tn) ≥ (1− δ)h(tn+1)

}
.

By (10.8),

P(An) ∼
√
� − 1

2
√
�(1− �)

√
� ln((n+ 1) ln �)

exp
(
− (1− �)2� ln((n+ 1) ln �)

� − 1

)
∼ 1

2(n+ 1) ln �
√
� ln(n+ 1)

.

The series of these probabilities diverges, and by the second part of the Borel–
Cantelli lemma (Lemma 2.2), we see that a.s. for infinitely many n

W (tn+1) ≥ (1− δ)h(tn+1) +W (tn).

By the symmetry property of Brownian motion, (10.28) implies that for all n ≥ n0

we have −W (tn) < (1 + ε)h(tn). Therefore a.s. for infinitely many n ≥ n0,

W (tn+1) ≥ (1− δ)h(tn+1)− (1 + ε)h(tn) = h(tn+1)
(
1− δ− (1 + ")

√
�

√
ln(n ln �)√

ln((n+ 1) ln �)

)
= h(tn+1)

(
1− δ − (1 + ε)

√
1− (1− δ)2

√
ln(n ln �)√

ln((n+ 1) ln �)

)
≥ (1− ε)h(tn+1)

for sufficiently large n0 and small δ such that δ + (1 + ε)
√

2δ − δ2 < ε. �

Exercises.

Let W (s), s ≥ 0 be a Brownian motion with W (0) = 0.

10.1. Prove that

E exp
(
λ

t∫
0

f(s)W (s) ds
)

= exp
(
λ2

t∫
0

dsf(s)

s∫
0

vf(v) dv
)
, λ ∈ R,

for a continuous function f(s), s ≥ 0.

10.2. Compute

P
(
a <

t∫
0

s2W (s) ds < b

)
.
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10.3. Let Gs0 = σ(W (v), 0 ≤ v ≤ s) be the σ-algebra of events generated by the
Brownian motion W up to the time s. Compute

E
{( t∫

0

v3W (v) dv
)2∣∣∣∣Fs

0

}

for 0 < s < t.

10.4. Prove that the process V (t) := W 4(t) − 6tW 2(t) + 3t2, t ≥ 0, is a
martingale with respect to the natural filtration {Gt0}.

10.5. Prove that the process V (t) :=
(
4+ 1

3
W (t)

)3

− 1

3

t∫
0

(
4+ 1

3
W (s)

)
ds, t ≥ 0,

is a martingale with respect to the natural filtration {Gt0}.

10.6. Prove that the process V (t) :=
(
W (t) + 2t

)
exp

(
− 2W (t)− 2t

)
, t ≥ 0, is

a martingale with respect to the natural filtration {Gt0}.

10.7. Prove that the process V (t) := et/2 cosW (t), t ≥ 0, is a martingale with
respect to the natural filtration {Gt0}.

§ 11. Brownian bridge

A bridge from x to z of a stochastic process X(s), s ∈ [0, t], X(0) = x, is a
process Xx,t,z(s), s ∈ [0, t], such that its finite-dimensional distributions coincide
with those of X(s), s ∈ [0, t], given the condition X(t) = z, i.e., for any 0 < t1 <
t2 < · · · < tn < t and xk ∈ R, k = 1, 2, . . . , n,

P(Xx,t,z(t1) < x1, Xx,t,z(t2) < x2, . . . , Xx,t,z(tn) < xn)

= P(X(t1) < x1, X(t2) < x2, . . . , X(tn) < xn|X(t) = z).

If the finite-dimensional distributions of a process X have a continuous joint
density, then the right-hand side of this equality is

d

dz
P(X(t1) < x1; X(t2) < x2; : : : ; X(tn) < xn; X(t) < z)

d

dz
P(X(t) < z)

,

and the definition of a bridge can be expressed as follows: Xx,t,z(s), s ∈ [0, t], is a
process such that for any 0 < t1 < t2 < · · · < tn < t and xk ∈ R, k = 1, 2, . . . , n,

@

@x1
· · · @

@xn
P(Xx,t,z(t1) < x1, Xx,t,z(t2) < x2, . . . , Xx,t,z(tn) < xn)

=

@

@x1
· · ·

@

@xn

@

@z
P(X(t1) < x1; X(t2) < x2; : : : ; X(tn) < xn; X(t) < z)

d

dz
P(X(t) < z)

. (11.1)
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For a Brownian motion W the process Wx,t,z(s), s ∈ [0, t], is called a Brownian
bridge from x to z on the interval [0, t].

In view of (10.2), the joint density of the Brownian bridge Wx,t,z(s), s ∈ [0, t],
with the starting point x and the end point z is given by

pt,z,~t (~x) : = @

@x1
· · · @

@xn
P(Wx,t,z(t1) < x1,Wx,t,z(t2) < x2, . . . ,Wx,t,z(tn) < xn)

=
n∏
k=1

ϕtk−tk−1(xk − xk−1)
't−tn (z − xn)

't(z − x)
, (11.2)

where x0 = x, t0 = 0.
For the time moments 0 < v < u < t the two-dimensional density of Wx,t,z(s)

has the form

pv,u(x1, x2) =
√
t

2�
√
(t− u)(u− v)v

exp
(
− (x1 − x)2

2v
− (x2 − x1)2

2(u− v)
− (z − x2)2

2(t− u)
+ (z − x)2

2t

)
.

Since in (11.2) the product of Gaussian densities is again Gaussian density,
pt,z,~t (~x) is a Gaussian density of n-dimensional random variable and hence the
process Wx,t,z(s), s ∈ [0, t], is Gaussian.

The joint density (11.2) generates a measure on C([0, t]), the space of continuous
functions on [0, t] with the uniform norm. Then an equivalent definition of the
Brownian bridge Wx,t,z(s), s ∈ [0, t], is the following: it is a process such that for
any bounded continuous functional ℘ on C([0, t]),

E℘(Wx,t,z(s), 0 ≤ s ≤ t) = E{℘(W (s), 0 ≤ s ≤ t)|W (t) = z}.

A Brownian bridge is a spatially homogeneous process. For every x ∈ R the
process x+W0,t,z(s), s ∈ [0, t], is a Brownian bridge with the starting point x and
the end point z + x.

This is a consequence of the fact that the finite-dimensional density, expressed
by (11.2), depends only on the differences xk−xk−1, k = 1, . . . , n and z−xn, z−x.

Using the two-dimensional Gaussian density of Wx,t,z one can compute its mean
and covariance function.

Proposition 11.1. The Gaussian process Wx,t,z(s), s ∈ [0, t], has the mean

EWx,t,z(s) = x+ s

t
(z − x), (11.3)

and the covariance function

Cov(Wx,t,z(v),Wx,t,z(u)) = v − vu

t
for 0 ≤ v < u ≤ t. (11.4)

Proof. In order to compute the mean and the covariance of the Brownian bridge,
we will represent its two-dimensional density (see the expression following (11.2))
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in the standard form (8.3). Without loss of generality, we can assume that x = 0.
It is easy to verify that

x21
2v

+ (x2−x1)2

2(u− v)
+ (z−x2)2

2(t− u)
− z2

2t
= u(x1−vz=t)2

2(u− v)v
− (x1−vz=t)(x2−uz=t)

u− v
+ (t−v)(x2−uz=t)2

2(t− u)(u− v)
.

Now (8.3) obviously implies (11.3) for x = 0. From (8.3) it is easy to deduce (11.4).
�

Set
W ◦
x,t,z(s) := W (s)− s

t
(W (t)− z), s ∈ [0, t].

It is obvious that W ◦
x,t,z is a Gaussian process with the mean

EW ◦
x,t,z(s) = x+ s

t
(z − x), (11.5)

and the covariance function

Cov(W ◦
x,t,z(v),W

◦
x,t,z(u)) = v − vu

t
for 0 ≤ v < u ≤ t. (11.6)

Thus the Gaussian processes W ◦
x,t,z and Wx,t,z have the same finite-dimensional

distributions, i.e., from the probabilistic point of view they are the same process.

Using the notation Wx,t,z instead of W ◦
x,t,z, the statement proved above can be

formulated as follows: for the Brownian bridge Wx,t,z the representation

Wx,t,z(s) = W (s)− s

t
(W (t)− z), s ∈ [0, t], (11.7)

holds true.

Time reversibility of Brownian bridge means that the finite-dimensional distri-
butions of the processes Wx,t,z(s) and Wz,t,x(t − s), s ∈ [0, t], coincide. To verify
the validity of this property we can proceed as follows. Using the representation
W (s) = x+ W̃ (s), where W̃ is a Brownian motion with W̃ (0) = 0, formula (11.7),
the symmetry and time reversibility properties of W̃ , we get

Wx,t,z(s) = x+W̃ (s)− s

t
(W̃ (t)+x−z) dist= x− (W̃ (t)−W̃ (t−s))− s

t
(x−z−W̃ (t))

= z + W̃ (t− s)− t− s

t
(W̃ (t) + z − x) = Wz,t,x(t− s),

where dist= denotes the equality of finite-dimensional distributions of a processes.

We present another approach to the proof of (11.7) to illustrate some interesting
properties of a Brownian bridge.
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Proposition 11.2. Let F be such that |F (y)| ≤ eK|y|, y ∈ R, for some K > 0.
Then for any 0 < v < u < t :

EF (Wx,t,z(u)−Wx,t,z(v))

=
√
t e(z−x)

2=2t
√
t− u+ v

E
{
F (W (u)−W (v)) exp

(
− (W (u)−W (v) + x− z)2

2(t− u+ v)

)}
. (11.8)

Proof. Using the expression for the two-dimensional density of the Brownian
bridge Wx,t,z, we get

EF (Wx,t,z(u)−Wx,t,z(v))

=

∞∫
−∞

dx1
e−(x1−x)2=2v

√
2�v

∞∫
−∞

dx2F (x2 − x1)
e−(x2−x1)

2=2(u−v)√
2�(u− v)

√
2�t e−(z−x2)

2=2(t−u)√
2�(t− u) e−(z−x)2=2t

=
√

2πt e(z−x)
2/2t

∞∫
−∞

dα
e−�

2=2v
√
2�v

∞∫
−∞

dγF (γ) e
−2=2(u−v)√
2�(u− v)

e−(+x−z+�)2=2(t−u)√
2�(t− u)

.

Since the convolution of two Gaussian densities is again a Gaussian density, with
the variance equal to the sum of the variances, we have the equality

∞∫
−∞

dα
e−�

2=2v
√
2�v

e−(+x−z+�)2=2(t−u)√
2�(t− u)

= 1√
2�(t− u+ v)

e−(γ+x−z)2/2(t−u+v), (11.9)

from which (11.8) follows. �

We now compute the characteristic function of increments of a Brownian bridge.
By (11.8), for F (y) = eiλy, λ ∈ R,

Eeiλ(Wx,t,z(u)−Wx,t,z(v)) =
√
t e(z−x)

2/2t

∞∫
−∞

eiλy
e−(y+x−z)2=2(t−u+v)

√
t− u+ v

e−y
2=2(u−v)√
2�(u− v)

dy

= exp
(
i�(z − x)

t
(u− v)− �2

2t
(t− u+ v)(u− v)

)
, 0 ≤ v < u ≤ t. (11.10)

This equality can be justified as follows. Under the integral sign there is a Gaussian
density multiplied by an exponential. Since

(y + x− z)2

t− u+ v
+ y2

u− v
= t

(t− u+ v)(u− v)

(
y2 − 2y(z − x)(u− v)

t

)
+ (z − x)2

t− u+ v
,

the variance of this Gaussian distribution is equal to (t− u+ v)(u− v)/t and the
mean is equal to (z − x)(u− v)/t. Then the characteristic function must be of the
form (11.10). �
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Proposition 11.3. For any 0 ≤ v ≤ u ≤ t,

Eeiλ(W◦
x,t,z(u)−W◦

x,t,z(v)) = exp
(
i�(z − x)

t
(u− v)− �2

2t
(t− u+ v)(u− v)

)
.

This statement can be easily verified, since the Brownian motion W has inde-
pendent Gaussian increments.

Thus the characteristic function of the increments W ◦
x,t,z(u)−W ◦

x,t,z(v) coincide
with (11.10). Then according to Proposition 8.3 the Gaussian processes W ◦

x,t,z and
Wx,t,z have the same finite-dimensional distributions.

We now prove (11.7) the third time, but in a very special way (see Billingsley
(1968) p. 83).

Let C([0, t]) be the space of continuous functions on [0, t] with the uniform norm.
We prove that for any Borel set E ⊂ C([0, t])

P(W ◦
x,t,z ∈ E) = P(W ∈ E|W (t) = z). (11.11)

Then, by definition, W ◦
x,t,z is a Brownian bridge.

Instead of the conditional measure in the function space C([0, t]) it is convenient
to use the conditional expectation of bounded continuous functionals. To establish
(11.11), one can prove that for any bounded continuous functional ℘ on C([0, t])

E℘(W ◦
x,t,z(s), 0 ≤ s ≤ t) = E{℘(W (s), 0 ≤ s ≤ t)|W (t) = z}. (11.12)

Using the definition of the conditional expectation (see 2.19), to establish (11.7)
we must prove that

E℘(W ◦
x,t,z(s), 0 ≤ s ≤ t) = lim

δ↓0

E{}(W (s); 0 ≤ s ≤ t)1I[z;z+�)(W (t))}
P(W (t) ∈ [z; z + �))

. (11.13)

An important property is that the process W ◦
x,t,z(s), s ∈ [0, t], is independent of

the variable W (t). This statement is true, because for any s ∈ [0, t]

E
(
(W ◦

x,t,z(s)−EW ◦
x,t,z(s))(W (t)−EW (t))

)
= s− s

t
t = 0,

i.e., the variable W (t) is uncorrelated with each of the variables W ◦
x,t,z(t1), . . . ,

W ◦
x,t,z(tn) and all the variables are Gaussian.
Using this independence and continuity of the functional ℘, we get
E

{
}

(
W (s); 0 ≤ s ≤ t

)
1I[z;z+�)(W (t))

}
P(W (t) ∈ [z; z + �))

−E℘
(
W ◦
x,t,z(s), 0 ≤ s ≤ t

)

=
E

{(
}

(
W (s); 0 ≤ s ≤ t

)
− }

(
W ◦
x;t;z(s); 0 ≤ s ≤ t

))
1I[z;z+�)(W (t))

}
P(W (t) ∈ [z; z + �))

=

E

�∫
0

(
}

(
W ◦
x;t;z(s) +

s
t y; 0 ≤ s ≤ t

)
− }

(
W ◦
x;t;z(s); 0 ≤ s ≤ t

)) 1√
2�t

e−(y+z−x)2=2t dy

P(W (t) ∈ [z; z + �))

= E
(
℘
(
W ◦
x,t,z(s) + s

t
ỹδ, 0 ≤ s ≤ t

)
− ℘

(
W ◦
x,t,z(s), 0 ≤ s ≤ t

))
−→
δ→0

0.
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Here we applied the mean value theorem for integrals. The variable ỹδ is some
random point from the interval (0, δ). This completes the proof of (11.13) and,
consequently, (11.7). �

Considering the space C([v, u]) of continuous functions on [v, u] with the uniform
norm, it is possible to generalize Proposition 11.2.

Proposition 11.4. For any bounded measurable functional ℘ on C([v, u]), 0 ≤
v < u < t,

E℘(Wx,t,z(s)−Wx,t,z(v), v ≤ s ≤ u) (11.14)

=
√
t e(z−x)

2=2t
√
t− u+ v

E
{
℘(W (s)−W (v), v ≤ s ≤ u) exp

(
− (W (u)−W (v) + x− z)2

2(t− u+ v)

)}
.

Proof. Since the finite-dimensional distributions of a process can be expressed
in terms of the finite-dimensional distributions of its increments, it is sufficient
to prove that for an arbitrary bounded measurable function F (~x), ~x ∈ Rm, and
v = t1 < t2 < · · · < tm = u

EF (Wx,t,z(t2)−Wx,t,z(t1),Wx,t,z(t3)−Wx,t,z(t2), . . . ,Wx,t,z(tm)−Wx,t,z(tm−1))

=
√
t e(z−x)

2=2t
√
t− u+ v

E
{
F (W (t2)−W (t1),W (t3)−W (t2), . . . ,W (tm)−W (tm−1))

× exp
(
− (W (u)−W (v) + x− z)2

2(t− u+ v)

)}
. (11.15)

Using (11.2), n = 2, we get

EF (Wx,t,z(t2)−Wx,t,z(t1),Wx,t,z(t3)−Wx,t,z(t2), . . . ,Wx,t,z(tm)−Wx,t,z(tm−1))

=

∞∫
−∞

dx1
e−(x1−x)2=2v

√
2�v

∞∫
−∞

dx2
e−(x2−x1)2=2(t2−t1)√

2�(t2 − t1)
· · ·

∞∫
−∞

dxm
e−(xm−xm−1)

2=2(tm−tm−1)√
2�(tm − tm−1)

× F (x2 − x1, x3 − x2, . . . , xm − xm−1)
e−(z−xm)2=2(t−u)√

2�(t− u)

√
2�t

e−(z−x)2=2t

=
√

2πt e(z−x)
2/2t

∞∫
−∞

dα
e−�

2=2v
√
2�v

∞∫
−∞

dγ2 · · ·
∞∫

−∞

dγmF (γ2, . . . , γm)

× e−
2
2=2(t2−t1)√
2�(t2 − t1)

· · · e
−2

m=2(tm−tm−1)√
2�(tm − tm−1)

exp
(
−

( ∑m
k=2 k + x− z + �

)2
=2(t− u)

)√
2�(t− u)
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=
√
2�t

e−(z−x)2=2t

∞∫
−∞

dγ2 · · ·
∞∫

−∞

dγmF (γ2, . . . , γm) e
−2

2=2(t2−t1)√
2�(t2 − t1)

· · · e
−2

m=2(tm−tm−1)√
2�(tm − tm−1)

× exp
(
−

( ∑m
k=2 k + x− z

)2
=2(t− u+ v)

)√
2�(t− u+ v)

. (11.16)

Here in the last equality we used (11.9). Now, taking into account the independence
of increments of a Brownian motion and the form of the density of increments, we
see that the right-hand side of (11.16) is equal to the right-side side of (11.15). �

Remark 11.1. Let P∆Wx,t,z and P∆W be the measures associated with the
processes Wx,t,z(t) − Wx,t,z(v) and W (t) − W (v), t ∈ [v, u], respectively. Then
from (11.14) for the choice

℘(Z(s), v ≤ s ≤ u) = 1IA(Z(s), v ≤ s ≤ u), A ⊆ C([v, u]),

it follows that the measure P∆Wx,t,z is absolutely continuous with respect to the
measure P∆W on the σ-algebra Qu

v := σ(W (s) −W (v), v ≤ s ≤ u). The corre-
sponding Radon–Nikodým derivative is

dP�Wx,t,z

dP�W

∣∣∣
Qu

v

=
√
t e(z−x)

2=2t
√
t− u+ v

exp
(
− (W (u)−W (v) + x− z)2

2(t− u+ v)

)
a.s.

A Brownian motion with linear drift µ is a process of the form W (µ)(t) :=
µt+W (t), t ∈ [0,∞).

This is a process with independent Gaussian incrementsW (µ)(t)−W (µ)(s), s < t,
having mean µ(t−s) and variance t−s. The density of the increment has the form

ϕ(µ)
t−s(y) := d

dy
P(W (µ)(t)−W (µ)(s) < y) = 1√

2�(t− s)
e−(y−µ(t−s))2/2(t−s)

= 1√
2�(t− s)

eµy−µ
2(t−s)/2−y2/2(t−s) = eµy−µ

2(t−s)/2ϕt−s(y), (11.17)

where ϕt(y) is the Gaussian density with mean 0 and variance t.

A Brownian motion with linear drift, as well as a Brownian motion, possesses
the property of spatial homogeneity.

According to (11.1), the joint density of a bridge of Brownian motion with linear
drift µ (W (µ)

x,t,z(s), s ∈ [0, t],) with starting point x and end point z has the following
form: for any 0 = t0 < t1 < · · · < tn < t, x = x0, and xi ∈ R

@

@x1
· · · @

@xn
P(W (µ)

x,t,z(t1) < x1, W
(µ)
x,t,z(t2) < x2, . . . ,W

(µ)
x,t,z(tn) < xn)

=
n∏
k=1

ϕ(µ)
tk−tk−1

(xk − xk−1)
'(�)
t−tn (z − xn)

'(�)
t (z − x)

=
n∏
k=1

ϕtk−tk−1(xk − xk−1)
't−tn (z − xn)

't(z − x)
. (11.18)
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The last equality follows from (11.17) and the equalities

n∑
k=1

(tk − tk−1) + t− tn = t,
n∑
k=1

(xk − xk−1) + z − xn = z − x.

Comparing formulas (11.18) and (11.2), we come to the conclusion that the
distributions of the bridge of Brownian motion with linear drift coincide with those
of the Brownian bridge. Therefore the bridges Wx,t,z(s) and W (µ)

x,t,z(s), s ∈ [0, t],
are identical in law, i.e., from the probabilistic point of view they are the same
process.

This can be also established in another way. Like for a Brownian motion, the
analogue of the formula (11.7) holds true:

W (µ)
x,t,z(s) = W (µ)(s)− s

t
(W (µ)(t)− z), s ∈ [0, t]. (11.19)

Substituting in the right-hand side of (11.19) the expression W (µ)(s) = µs+W (s),
we obtain

W (µ)
x,t,z(s) = W (s)− s

t
(W (t)− z), (11.20)

and hence W (µ)
x,t,z(s) = Wx,t,z(s), s ∈ [0, t].

Proposition 11.5. A bridge of a Gaussian process X(s), s ∈ [0, t], with X(0) =
x, has the following representation:

Xx,t,z(s) = X(s)− Cov(X(s); X(t))

Cov(X(t); X(t))
(X(t)− z). (11.20)

This statement can be proved analogously to the proof of (11.12), since the
process Xx,t,z(s), s ∈ [0, t], is independent of the variable X(t). The independence
is due to the fact that the variable X(t) is uncorrelated with each of the variables
Xx,t,z(s), s ∈ [0, t], and all the variables are Gaussian.

Since, in general, a Gaussian process is not continuous, we have to prove directly
the equality for the distributions involved in the definition of a bridge. In this case
one should use the continuity of Gaussian finite-dimensional distributions with
nondegenerate coordinates.

Exercises.

11.1. Let W (s), s ≥ 0 be a Brownian motion with W (0) = x. Compute the

conditional distribution of
t∫

0

s2W (s) ds given that W (t) = z.

11.2. Let W (s), s ≥ 0 be a Brownian motion with W (0) = x. Compute

E
{ t∫

0

W 2(s) ds
∣∣∣∣W (t) = z

}
.
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11.3. Let W (s), s ≥ 0 be a Brownian motion with W (0) = 0. Compute

E
{

exp
( t∫

0

sW (s) ds
)∣∣∣∣W (t) = z

}
.

11.4. Let W (s), s ≥ 0 be a Brownian motion with W (0) = x. Compute
E
{
(W (s)−W (t/2))2

∣∣W (t) = z
}

for s ≤ t.

11.5. Compute for 0 ≤ v < u ≤ t the second and the third moments of the
increments of Wx,t,z, i.e., E(Wx,t,z(u)−Wx,t,z(v))2 and E(Wx,t,z(u)−Wx,t,z(v))3.

11.6. For what Q(s), s ∈ [0, t], is the process

Qx,t,z(s) := Q(s)− sh s

sh t
(Q(t)− z), s ∈ [0, t],

a bridge? Here sh t := et − e−t

2
.



CHAPTER II

STOCHASTIC CALCULUS

§ 1. Stochastic integration with respect to Brownian motion

In this section we present the basic facts of the theory of stochastic integration
in the case when the integrator is a Brownian motion W . Let (Ω,F , {Ft},P) be a
filtered probability space satisfying the usual conditions (see § 4 Ch. I) and W (t),
t ∈ [0, T ], be an Ft-measurable Brownian motion in this space. We also assume
that for all v > t the increments W (v) −W (t) are independent of the σ-algebra
Ft. For {Ft} one can take the completed natural filtration, i.e., the family of the
σ-algebras Gt0 = σ{W (s), s ∈ [0, t]}, generated by the Brownian motion W up to
the time t.

The goal is to give some meaning to the stochastic integrals of the type

t∫
0

f(s) dW (s). (1.1)

Since the Brownian motion W has an infinite variation on any interval, it is not
possible to define such integrals by means of classical approaches of the theory of
integration. The approach proposed here is that the stochastic integral (1.1) can
be defined via an isometry. The notion to which this approach leads us is called the
Itô integral and the theory is called stochastic calculus. For a nonrandom function
f , the integral (1.1) can be considered (see § 9 Ch. I) as the integral with respect
to the orthogonal stochastic measure defined by Z(∆) := W (b)−W (a), ∆ = [a, b),
and having the structure function G(∆) = b− a.

Consider the class H2[0, T ] of progressively measurable with respect to {Ft}
stochastic processes f(t), t ∈ [0, T ], satisfying the condition

T∫
0

Ef2(s) ds <∞. (1.2)

In the present description we does not exclude the case T = ∞. In this case the
interval [0, T ] is replaced by [0,∞).

Consider the class of simple processes of the form

f̄(s) =
m−1∑
k=0

fk1I[sk,sk+1)(s), s ∈ [0, T ], (1.3)

where 0 = s0 < s1 < · · · < sm = T , the random variables fk are Fsk
-measurable,

and Ef2
k < ∞, k = 0, . . .m− 1. In the case T = ∞, we set fm−1 ≡ 0. Obviously,

the function f̄ belongs to H2[0, T ].
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The stochastic integral of f̄ with respect to W is defined to be

T∫
0

f̄(s) dW (s) :=
m−1∑
k=0

fk(W (sk+1)−W (sk)). (1.4)

For arbitrary constants α and β,

T∫
0

(αf̄1(s) + βf̄2(s)) dW (s) = α

T∫
0

f̄1(s) dW (s) + β

T∫
0

f̄2(s) dW (s). (1.5)

The mean of the stochastic integral defined by (1.4) equals zero, i.e.,

E

T∫
0

f̄(s) dW (s) = 0. (1.6)

Indeed, since fk is Fsk
-measurable, the variables fk and W (sk+1) − W (sk) are

independent. Therefore, in view of (10.3) Ch. I, we have

E{fk(W (sk+1)−W (sk))} = EfkE(W (sk+1)−W (sk)) = 0.

Hence the expectation of the sum (1.4) is zero and (1.6) holds.
For the variance of the stochastic integral we have

E
( T∫

0

f̄(s) dW (s)
)2

=

T∫
0

Ef̄2(s) ds. (1.7)

Indeed, since fk and W (sk+1)−W (sk) are independent, by (10.3) Ch. I, we have

E{f2
k (W (sk+1)−W (sk))2} = Ef2

kE(W (sk+1)−W (sk))2 = Ef2
k (sk+1 − sk).

For k < l the random variables fk(W (sk+1)−W (sk))fl are Fsl
-measurable and the

increments W (sl+1)−W (sl) are independent of Fsl
. Therefore,

Ik,l := E{fk(W (sk+1)−W (sk))fl(W (sl+1)−W (sl))}

= E{fk(W (sk+1)−W (sk))fl}E(W (sl+1)−W (sl)) = 0.

Here to prove that the expectation is finite we used the estimate

E|fk(W (sk+1)−W (sk))fl| ≤ E1/2{f2
k (W (sk+1)−W (sk))2}E1/2{f2

l }

= E1/2{f2
k}(sk+1 − sk)1/2E1/2{f2

l } <∞.
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Now it is easy to check (1.7):

E
( T∫

0

f̄(s) dW (s)
)2

= E
(m−1∑
k=0

fk(W (sk+1)−W (sk))
)2

=
m−1∑
k=0

E{f2
k (W (sk+1)−W (sk))2}+ 2

∑
0≤k<l≤m−1

Ik,l

=
m−1∑
k=0

Ef2
k (sk+1 − sk) =

T∫
0

Ef̄2(s) ds.

Formula (1.7) is of key importance for the definition of the stochastic integral for
the class of random processes H2[0, T ].

Let L2(P) be the space of square integrable random variables. Then L2(P) is a
Hilbert space when equipped with the norm (EX2)1/2, X ∈ L2(P).

For a function f ∈ H2[0, T ], the norm is
( T∫

0

Ef2(s) ds
)1/2

.

In view of (1.7), for a class of simple processes f̄ ∈ H2[0, T ] the mapping

f̄ →
T∫

0

f̄(s) dW (s) (1.8)

is an isometry from a subset of H2[0, T ] into L2(P).

Proposition 1.1. The set of simple processes is dense in the space H2[0, T ],
i.e., for any process f ∈ H2[0, T ] there exists a sequence of simple processes f̄n ∈
H2[0, T ] such that

lim
n→∞

T∫
0

E(f(s)− f̄n(s))2 ds = 0. (1.9)

Proof. Without loss of generality, we can assume that f is bounded. Otherwise
we set fN (t) := f(t)1I[−N,N ](f(t)) and use the fact that

lim
N→∞

T∫
0

E(f(s)− fN (s))2 ds = 0.

For a continuous bounded f , set f̄n(s) := f([ns]/n), where [a] denotes the
largest integer not exceeding a. Then (1.9) follows from the Lebesgue dominated
convergence theorem for integrals of uniformly bounded functions.

Now to prove Proposition 1.1 it is enough to approximate a bounded progres-
sively measurable process f by continuous processes. Such processes are

f̂n(s) := n

s∫
(s−1/n)+

f(v) dv, n = 1, 2, . . . .



88 II STOCHASTIC CALCULUS

where a+ = max{0, a}. It is clear that f̂n, n = 1, 2, . . . , are uniformly bounded
progressively measurable processes, because they are continuous. Set F (s) :=
s∫

0

f(v) dv. Then F is a.s. a function of bounded variation. By the Lebesgue dif-

ferentiation theorem, for almost all s ∈ [0, T ] there exists F ′(s) and the equality
f(s) = F ′(s) = lim

n→∞
f̂n(s) holds. By the Lebesgue dominated convergence theo-

rem,

lim
n→∞

T∫
0

E(f(s)− f̂n(s))2 ds = 0.

This completes the proof. �

In view of Proposition 1.1, the linear isometry (1.8) can be extended uniquely to
a linear isometry from the whole H2[0, T ] into L2(P), thus defining the stochastic
integral of f ∈ H2[0, T ] with respect to the Brownian motion.

This means the following. Consider the sequence {fn} of functions, satisfying
(1.9). Using the inequality

T∫
0

E(f̄m(s)− f̄n(s))2 ds ≤ 2

T∫
0

E(f(s)− f̄m(s))2 ds+ 2

T∫
0

E(f(s)− f̄n(s))2 ds

and formulas (1.5), (1.7), we have

E
( T∫

0

f̄m(s) dW (s)−
T∫

0

f̄n(s) dW (s)
)2

=

T∫
0

E(f̄m(s)− f̄n(s))2 ds −→
m→∞
n→∞

0.

Thus the sequence
T∫
0

f̄n(s) dW (s) is Cauchy for the mean square convergence.

Therefore, there exists a limit, which is assigned to be the stochastic integral of f
with respect to the Brownian motion W .

Thus, for a function f ∈ H2[0, T ] such that (1.9) holds we set

T∫
0

f(s) dW (s) := l. i.m.

T∫
0

f̄n(s) dW (s), (1.10)

where l. i.m. denotes the limit in mean square.

By (1.10), the properties (1.5)–(1.7) are valid for all processes from the space
H2[0, T ]:
1) for any constants α and β,

T∫
0

(αf1(s) + βf2(s)) dW (s) = α

T∫
0

f1(s) dW (s) + β

T∫
0

f2(s) dW (s) a.s.;
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2) the mean of the stochastic integral equals zero, i.e.,

E

T∫
0

f(s) dW (s) = 0; (1.11)

3) the variance of the stochastic integral satisfies the relation

E
( T∫

0

f(s) dW (s)
)2

=

T∫
0

Ef2(s) ds; (1.12)

4) if

lim
n→∞

T∫
0

E(f(s)− fn(s))2 ds = 0,

then
T∫

0

f(s) dW (s) = l. i.m.

T∫
0

fn(s) dW (s). (1.13)

In addition to the first property, from the construction of the stochastic integral
one can deduce that for any bounded Fv-measurable random variable ξ and any
t > v

T∫
0

ξ1I[v,t)(s)f(s) dW (s) = ξ

T∫
0

1I[v,t)(s)f(s) dW (s) a.s. (1.14)

§ 2. Stochastic integrals with variable upper limit

Define a family of stochastic integrals with variable upper limit by setting

t∫
0

f(s) dW (s) :=

T∫
0

1I[0,t)(s)f(s) dW (s), for every t ∈ [0, T ]. (2.1)

Then the following problem arises. Formula (1.10) defines the stochastic integral
uniquely up to a set Λf of probability zero. This set depends on the integrand.
Definition (2.1) involves a whole family of integrands depending on the time pa-
rameter t. Therefore, it is possible that the probability of the union of sets Λ1I[0,t)f

is not zero. In this case the integrals are not determined as a function of t on a set
of nonzero probability. We overcome this difficulty by proving that the stochastic
integral, as a function of t, is a.s. continuous Ft-measurable martingale.

For v < t it is natural to set

t∫
v

f(s) dW (s) :=

T∫
0

1I[v,t)(s)f(s) dW (s). (2.2)
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Then
t∫
v

f(s) dW (s) =

t∫
0

f(s) dW (s)−
v∫

0

f(s) dW (s),

since 1I[v,t)(s) = 1I[0,t)(s)− 1I[0,v)(s) and the linearity property holds.
The following generalizations of the properties 2), 3) of § 1 hold: for every v < t

E
{ t∫
v

f(s) dW (s)
∣∣∣∣Fv} = 0 a.s., (2.3)

E
{( t∫

v

f(s) dW (s)
)2∣∣∣∣Fv} =

t∫
v

E
{
f2(s)|Fv

}
ds a.s. (2.4)

Indeed, for any Fv-measurable bounded random variable ξ we have

E
{
ξE
{ t∫
v

f(s) dW (s)
∣∣∣∣Fv}} = E

{
E
{
ξ

t∫
v

f(s) dW (s)
∣∣∣∣Fv}}

= E
{
ξ

T∫
0

1I[v,t)(s)f(s) dW (s)
}

= E

T∫
0

ξ1I[v,t)(s)f(s) dW (s) = 0,

where (1.14) and (1.11) were used. Since the random variable ξ is arbitrary, this
implies (2.3).

Similarly, using (1.14) and (1.12), we have

E
{
ξ2E

{( t∫
v

f(s) dW (s)
)2∣∣∣∣Fv}} = E

( T∫
0

ξ1I[v,t)(s)f(s) dW (s)
)2

=

T∫
0

E
{
ξ21I[v,t)(s)f2(s)

}
ds = E

{
ξ2

t∫
v

f2(s) ds
}

= E
{
ξ2

t∫
v

E
{
f2(s)|Fv

}
ds

}
.

This implies (2.4).

Theorem 2.1. Let f ∈ H2[0, T ]. Then the process I(t) :=
t∫

0

f(s) dW (s),

t ∈ [0, T ], is an a.s. continuous martingale such that for any ε > 0

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f(s) dW (s)
∣∣∣∣ ≥ ε

)
≤ 1

"2

T∫
0

Ef2(s) ds, (2.5)
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E sup
0≤t≤T

∣∣∣∣
t∫

0

f(s) dW (s)
∣∣∣∣2 ≤ 4

T∫
0

Ef2(s) ds. (2.6)

Proof. The case T = ∞ can be considered as the limiting case for Tn = n. So
we can assume that T < ∞. We first prove the theorem for the simple processes
defined by (1.3). For such processes, for t ∈ [sl, sl+1), l = 0, . . . ,m− 1, we have

I(t) =

T∫
0

1I[0,t)(s)f̄(s) ds =
l−1∑
k=0

fk(W (sk+1)−W (sk)) + fl(W (t)−W (sl)). (2.7)

Since the Brownian motion is a.s. continuous, the process I(t) is also continuous.
From (2.3) it follows that for v < t

E
{ t∫

0

f̄(s) dW (s)
∣∣∣∣Fv} =

v∫
0

f̄(s) dW (s),

i.e., for simple processes I(t) is a martingale. By Doob’s inequality for martingales
(5.11), p = 2, Ch. I,

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f̄(s) dW (s)
∣∣∣∣ ≥ ε

)
≤ 1

"2
E
( T∫

0

f̄(s) dW (s)
)2

= 1

"2

T∫
0

Ef̄2(s) ds.

The equality on the right-hand side is due to (1.7). This proves (2.5). Similarly,
from the second Doob inequality for martingales (see (5.12), p = 2, Ch. I) it follows
that (2.6) is also valid. Thus for simple processes the theorem is proved.

For an arbitrary f ∈ H2[0, T ], using (1.9) we can choose a subsequence of the
integer numbers nk such that

T∫
0

E(f(s)− f̄nk
(s))2 ds ≤ 1

2k
.

Then
T∫

0

E(f̄nk+1(s)− f̄nk
(s))2 ds ≤ 2

T∫
0

E(f(s)− f̄nk+1(s))
2 ds

+2

T∫
0

E(f(s)− f̄nk
(s))2 ds ≤ 3

2k
.

The process f̄nk+1(s)− f̄nk
(s) is simple, therefore, (2.5) applies. We have

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f̄nk+1(s) dW (s)−
t∫

0

f̄nk
(s) dW (s)

∣∣∣∣ ≥ 1

k2

)
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= P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

(
f̄nk+1(s)− f̄nk

(s)
)
dW (s)

∣∣∣∣ ≥ 1

k2

)

≤ k4

T∫
0

E(f̄nk+1(s)− f̄nk
(s))2 ds ≤ 3k4

2k
.

Since the series of these probabilities converges, the first part of the Borel–Cantelli
lemma, shows that there exists a.s. a number k0 = k0(ω) such that for all k > k0

sup
0≤t≤T

∣∣∣∣
t∫

0

f̄nk+1(s) dW (s)−
t∫

0

f̄nk
(s) dW (s)

∣∣∣∣ < 1

k2
.

Then the sequence of integrals

t∫
0

f̄nm
(s) dW (s) =

t∫
0

f̄n0(s) dW (s) +
m−1∑
k=0

( t∫
0

f̄nk+1(s) dW (s)−
t∫

0

f̄nk
(s) dW (s)

)
converges a.s. uniformly in [0, T ] to some limit, which, by definition, is a stochastic
integral I(t), i.e.,

sup
0≤t≤T

∣∣∣∣I(t)−
t∫

0

f̄nm
(s) dW (s)

∣∣∣∣→ 0, as m→∞.

Since a uniform limit of continuous functions is continuous, the process I(t), t ∈
[0, T ] is a.s. continuous. From (2.3) it follows that I(t) is a martingale and the
estimates (2.5), (2.6) hold. �

A very important property of stochastic integrals follows from (2.5) and (2.6).
Let

lim
n→∞

T∫
0

E(f(s)− fn(s))2 ds = 0, fn, f ∈ H2[0, T ].

Then

sup
t∈[0,T ]

∣∣∣∣
t∫

0

f(s) dW (s)−
t∫

0

fn(s) dW (s)
∣∣∣∣→ 0 as n→∞ (2.8)

in probability and in mean square.
This property enables us to justify the passage to a limit in different schemes

involving stochastic integrals.

Here is a simple example of an interesting class of Gaussian processes expressed
via the stochastic integral. For nonrandom functions h(s) and g(s), s ∈ [0, T ], set

W (t) := x+ h(t) +

t∫
0

g(s) dW (s).
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It is clear that W (t), t ∈ [0, T ], is a Gaussian process with the mean x+ h(t) and
the covariance

Cov(W (s),W (t)) =

s∫
0

g2(v) dv, for s ≤ t.

This is a process with independent increments, it is identical in law to the process

h(t) +W
( t∫
0

g2(s) ds
)
, W (0) = x.

It is easy to understand (see (11.21) Ch. I) that for h(0) = 0 the process

W
◦
x,t,z(s) := W (s)−

s∫
0

g2(v) dv

t∫
0

g2(v) dv

(W (t)− z) (2.9)

is the bridge from x to z of the process W .

For every µ ∈ R, the process W with h(t) = µ

t∫
0

g2(s) ds has the same bridge as

for µ = 0.

Exercises.

2.1. Compute the conditional distribution of
t∫

0

s dW (s) given W (t) = z.

2.2. Check whether the following equalities hold true for some ε > 0:

1) E
{ t∫
v

f(s) dW (s)
∣∣∣Fv+ε} = 0 a.s.

2) E
{( t∫

v

f(s) dW (s)
)2∣∣∣Fv+ε} =

t∫
v

E
{
f2(s)|Fv+ε

}
ds a.s.

3) E
{ t∫
v

f(s) dW (s)
∣∣∣Fv−ε} = 0 a.s.

4) E
{( t∫

v

f(s) dW (s)
)2∣∣∣Fv−ε} =

t∫
v

E
{
f2(s)|Fv−ε

}
ds a.s.

2.3. Prove directly from the definition of the Itô integral that

t∫
0

s dW (s) = tW (t)−
t∫

0

W (s) ds

(the integration by parts formula).
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2.4. Deduce directly from the definition of the Itô integral that

2

t∫
s

W (v) dW (v) = W 2(t)−W 2(s)− (t− s).

Hint: Use the result about the quadratic variation of the Brownian motion.

§ 3. Extension of the class of integrands

The condition that processes from H2[0, T ] must have a finite second moment
is rather restrictive. Using an approach based on the truncation of integrands,
the definition of the stochastic integral can be generalized to a class of stochastic
processes broader than H2[0, T ].

Let L2[0, T ] be a class of progressively measurable with respect to the filtration
{Ft} stochastic processes f(t), t ∈ [0, T ], satisfying the condition

P
( T∫

0

f2(s) ds <∞
)

= 1. (3.1)

Clearly, H2[0, T ] ⊂ L2[0, T ].

For simple processes from L2[0, T ] of the form (1.3), where it is not supposed
that the second moments of fk, k = 0, . . .m− 1, are finite, the stochastic integral
with variable upper limit is defined by (2.7).

For further arguments we need the following estimate. For any simple process
f̄ ∈ L2[0, T ] and any C > 0, N > 0,

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f̄(s) dW (s)
∣∣∣∣ ≥ C

)
≤ P

( T∫
0

f̄2(s) ds > N

)
+ N

C2 . (3.2)

To prove this inequality define fN (t) := f̄(t)1I[0,N ]

( t∫
0

f̄2(v) dv
)
. It is clear that

the process fN (t) is progressively measurable with respect to the σ-algebras {Ft}

and
T∫
0

f̄2
N (s) ds ≤ N . Therefore, fN (t) ∈ H2[0, T ] and the estimate (2.5) can be

applied. Then

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f̄(s) dW (s)
∣∣∣∣ ≥ C

)
≤ P

(
sup

0≤t≤T

∣∣∣∣
t∫

0

fN (s) dW (s)
∣∣∣∣ ≥ C

)

+P
(
f̄(t) 6= fN (t) for some t ∈ [0, T ]

)
≤ N

C2 + P
( T∫

0

f̄2(s) ds > N

)
.
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Here the obvious inclusion{ t∫
0

f̄2(s) ds > N for some t ∈ [0, T ]
}
⊆
{ T∫

0

f̄2(s) ds > N

}
was taken into account. The inequality (3.2) is proved.

Proposition 3.1. The set of simple processes is dense in the space L2[0, T ], i.e.,
for any process f ∈ L2[0, T ] there exists a sequence of simple processes f̄n ∈ L2[0, T ]
such that

lim
n→∞

T∫
0

(f(s)− f̄n(s))2 ds = 0 a.s. (3.3)

The proof of this statement is analogous to the proof of Proposition 1.1. It is
only necessary to replace the mean square convergence by the a.s. convergence.

From (3.3) it follows that
T∫

0

(f̄m(s)− f̄n(s))2 ds→ 0, as m→∞, n→∞,

in probability. For every m, n, ε > 0 and δ > 0, letting in (3.2) C = ε, N = δε2,
we have

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f̄m(s) dW (s)−
t∫

0

f̄n(s) dW (s)
∣∣∣∣ ≥ ε

)

≤ P
( T∫

0

(f̄m(s)− f̄n(s))2 ds > δε2
)

+ δ. (3.4)

Letting first m → ∞, n → ∞, and then δ → 0, we obtain that the sequence of

processes
t∫

0

f̄n(s) dW (s), t ∈ [0, T ], is Cauchy in the uniform norm sup
t∈[0,T ]

| · | for

the convergence in probability.
Therefore, there exists a stochastic process I(t), t ∈ [0, T ], such that

sup
t∈[0,T ]

∣∣∣∣I(t)−
t∫

0

f̄n(s) dW (s)
∣∣∣∣→ 0

in probability. We set I(t) :=
t∫

0

f(s) dW (s).

Since according to Proposition 1.1 in Ch. I the convergence in probability is
equivalent to a.s. convergence for some subsequences, we see that the process I(t)
is a.s. continuous.

Now we can prove by passage to the limit as n → ∞ in (3.2), applied for the
processes f̄n, that (3.2) is also valid for all processes f ∈ L2[0, T ].

As a result, we have the following theorem.
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Theorem 3.1. Let f∈L2[0, T ]. Then the process I(t) =
t∫

0

f(s)dW (s), t ∈ [0, T ],

is a.s. continuous, and for any C > 0, N > 0,

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f(s) dW (s)
∣∣∣∣ ≥ C

)
≤ P

( T∫
0

f2(s) ds > N

)
+ N

C2 . (3.5)

We conclude by pointing out an important property following from (3.5). Let

lim
n→∞

T∫
0

(f(s)− fn(s))2 ds = 0, fn, f ∈ L2[0, T ],

in probability. Then

sup
t∈[0,T ]

∣∣∣∣
t∫

0

f(s) dW (s)−
t∫

0

fn(s) dW (s)
∣∣∣∣→ 0 as n→∞, (3.6)

in probability.

In addition to the stochastic integral with variable upper limit, we define an
integral with a random upper limit.

Let ρ be a stopping time with respect to the filtration {Ft, t ∈ [0,∞)}. Let
f(s), s ∈ [0,∞), be a progressively measurable stochastic process satisfying the
condition

P
( ∞∫

0

f2(s) ds <∞
)

= 1. (3.7)

Then
ρ∫

0

f(s) dW (s) :=

∞∫
0

1I[0,ρ)(s)f(s) dW (s). (3.8)

Note that, by the definition of a stopping time, {ρ ≤ s} ∈ Fs for every s. Then
1I[0,ρ)(s) = 1 − 1I[0,s](ρ) is an Fs-measurable right continuous process. Therefore,
it is progressively measurable and the stochastic integral on the right-hand side of

(3.8) is well defined. The variable
�∫
0

f(s) dW (s) has mean zero, if
∞∫
0

Ef2(s) ds <∞,

and it is Fρ-measurable, because the integral as the process of the upper limit is
continuous.

For finite stopping times (P(ρ <∞) = 1) instead of (3.7) it is enough to assume
that for any T > 0

P
( T∫

0

f2(s) ds <∞
)

= 1, (3.9)
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since in this case

P
( ∞∫

0

1I[0,ρ)(s)f2(s) ds <∞
)

= 1.

§ 4. Itô’s formula

It is often of interest to study the properties of the process f(W (t)), t ≥ 0, where
f is a given smooth function. For the investigation of such processes the technique
of stochastic differentiation is very effective. Here we present some results due to
K. Itô.

Let W (t), t ∈ [0, T ], be a Brownian motion adapted to the filtration {Ft} and
let for all v > t the increments W (v)−W (t) be independent of the σ-algebra Ft.

Let the stochastic processes a(s), b(s), s ∈ [0, T ], be progressively measurable
with respect to the σ-algebras {Fs}.

Assume that

T∫
0

|a(s)| ds <∞,

T∫
0

b2(s) ds <∞, a.s.,

i.e.,
√
|a(·)| ∈ L2[0, T ], b(·) ∈ L2[0, T ].

Let X(t), t ∈ [0, T ], be a stochastic process such that X(0) is F0-measurable. If

X(t) = X(0) +

t∫
0

a(v) dv +

t∫
0

b(v) dW (v) (4.1)

holds a.s. for all t ∈ [0, T ], then we say that X(t) has a stochastic differential of
the form

dX(t) = a(t) dt+ b(t) dW (t). (4.2)

Formula (4.2) is the brief symbolic notation for (4.1).

Theorem 4.1 (Itô’s formula). Let f(x), x ∈ R, be a twice continuously
differentiable function. Then

df(W (t)) = f ′(W (t)) dW (t) + 1

2
f ′′(W (t)) dt. (4.3)

Proof. According to the definition of the stochastic differential, it is sufficient to
prove that for all 0 ≤ t ≤ T

f(W (t))− f(W (0)) =

t∫
0

f ′(W (v)) dW (v) + 1

2

t∫
0

f ′′(W (v)) dv a.s. (4.4)
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The stochastic integral is well defined because f ′(W (·)) ∈ L2[0, T ]. If equality (4.4)
holds a.s. for a fixed t, then it holds a.s. for all t ∈ [0, T ], because all terms figuring
in it are continuous processes.

We first assume that f(x), x ∈ R, is a three times continuously differentiable
function with bounded derivatives f ′, f ′′, f ′′′.

Consider an arbitrary sequence of subdivisions 0 = tn,0 < tn,1 < · · · < tn,n = t
of the interval [0, t], satisfying the condition

lim
n→∞

max
0≤k≤n−1

|tn,k+1 − tn,k| = 0. (4.5)

We use the equality

f(W (t))− f(W (0)) =
n−1∑
k=0

(
f(W (tn,k+1))− f(W (tn,k))

)
.

Applying Taylor’s formula to the function f(x), x ∈ R, we have that for every
k = 0, . . . , n− 1

f(W (tn,k+1))− f(W (tn,k)) = f ′(W (tn,k))(W (tn,k+1)−W (tn,k))

+1

2
f ′′(W (tn,k))(W (tn,k+1)−W (tn,k))2 + 1

6
f ′′′(W (t̃n,k))(W (tn,k+1)−W (tn,k))3,

where t̃n,k is some random point in the interval [tn,k, tn,k+1].
By summing these expressions, we obtain

f(W (t))− f(W (0)) =
n−1∑
k=0

f ′(W (tn,k))(W (tn,k+1)−W (tn,k))

+1

2

n−1∑
k=0

f ′′(W (tn,k))(tn,k+1 − tn,k) + 1

6

n−1∑
k=0

f ′′′(W (t̃n,k))(W (tn,k+1)−W (tn,k))3

+1

2

n−1∑
k=0

f ′′(W (tn,k))
[
(W (tn,k+1)−W (tn,k))2 − (tn,k+1 − tn,k)

]
=: In,1 + In,2 + In,3 + In,4. (4.6)

Since

tn(v) :=
n−1∑
k=0

tn,k1I[tn,k,tn,k+1)(v) → v as n→∞

uniformly in v ∈ [0, t], using the continuity of Brownian motion paths and of f ′,
we get

t∫
0

(
f ′(W (v))− f ′(W (tn(v)))

)2
dv → 0 as n→∞, a.s.
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By the definition of the stochastic integral,

In,1 =

t∫
0

f ′(W (tn(v))) dW (v) →
t∫

0

f ′(W (v)) dW (v) as n→∞, (4.7)

in probability.
Since f ′′ is continuous,

In,2 = 1

2

t∫
0

f ′′(W (tn(v))) dv →
1

2

t∫
0

f ′′(W (v)) dv as n→∞, a.s. (4.8)

Using the assumption that |f ′′′(x)| ≤ C for all x ∈ R, we obtain

|In,3| ≤
C

6

n−1∑
k=0

|W (tn,k+1)−W (tn,k)|3

≤ C

6
max

0≤k≤n−1
|W (tn,k+1)−W (tn,k)|

n−1∑
k=0

|W (tn,k+1)−W (tn,k)|2.

By the continuity of Brownian motion paths and condition (4.5) on the sequence
of subdivisions of {tn,k}, we have

max
0≤k≤n−1

|W (tn,k+1)−W (tn,k)| → 0 a.s.

Since the Brownian motion W has the finite quadratic variation (see (10.23) Ch. I),

n−1∑
k=0

|W (tn,k+1)−W (tn,k)|2 → t as n→∞,

in mean square. Therefore, In,3 → 0 in probability.
To prove the convergence In,4 → 0 in probability we estimate EI2

n,4:

EI2
n,4 ≤

1

4

n−1∑
k=0

E
{
(f ′′(W (tn,k)))2

[
(W (tn,k+1)−W (tn,k))2 − (tn,k+1 − tn,k)

]2}
+1

2

∑
0≤k<l≤n−1

E
{
f ′′(W (tn,k))

[
(W (tn,k+1)−W (tn,k))2−(tn,k+1−tn,k)

]
f ′′(W (tn,l))

×
[
(W (tn,l+1)−W (tn,l))2 − (tn,l+1 − tn,l)

]}
. (4.9)

For k < l the random variables

f ′′(W (tn,k))
[
(W (tn,k+1)−W (tn,k)2 − (tn,k+1 − tn,k)

]
f ′′(W (tn,l)) (4.10)



100 II STOCHASTIC CALCULUS

are Ftn,l
-measurable and the increments W (tn,l+1) −W (tn,l) are independent of

Ftn,l
. Therefore, the expectation after the sign of the double sum is equal to the

product of the expectations of the random variables (4.10), and the expectation

E{(W (tn,l+1)−W (tn,l))2 − (tn,l+1 − tn,l)} = 0.

Thus the second sum on the right-hand side of (4.9) equals zero. Since |f ′′(x)| ≤ C,
x ∈ R, we obtain

EI2
n,4 ≤

C2

4

n−1∑
k=0

E
[
(W (tn,k+1)−W (tn,k))2 − (tn,k+1 − tn,k)

]2

= C2

4

n−1∑
k=0

Var{(W (tn,k+1)−W (tn,k))2} ≤
C2

2
max

0≤k≤n−1
|tn,k+1 − tn,k| t.

Here we used the estimate (10.24) Ch. I. Using condition (4.5), we finally have

In,4 → 0 (4.11)

in mean square and, consequently, in probability.
From (4.6), using the limits (4.7), (4.8) and the convergence of the random

variables In,3, In,4 to zero in probability, we get (4.4).

The convergence (4.11) plays a very important role in the whole theory of sto-
chastic differentiation, because it enables us to replace the second-order increments
(W (tn,k+1)−W (tn,k))2 by the first-order ones tn,k+1−tn,k, when applying Taylor’s
formula. In the limiting case this can be expressed as follows: the square of the dif-
ferential of the Brownian motion

(
(dW (t))2

)
coincides with dt, i.e., (dW (t))2 = dt.

To prove (4.4) without the assumption that the derivatives f ′, f ′′, and f ′′′

are bounded, we can use the approximation of f by a sequence of functions with
bounded derivatives up to the third order.

We first prove (4.4) for a twice continuously differentiable function f with
bounded support. Set

f̂n(x) = n

x∫
x−1/n

f(v) dv, n = 1, 2, . . . .

These functions are three times continuously differentiable. They have bounded
support and bounded third derivative. The first and the second derivatives are
uniformly bounded and

f̂n(x) → f(x), f̂ ′n(x) → f ′(x), f̂ ′′n (x) → f ′′(x), as n→∞

uniformly in x ∈ R.
Indeed, by the mean value theorem for integrals, we have f̂n(x) = f(xn),

f̂ ′n(x) = f(x)− f(x− 1=n)

1=n
= f ′(x̃n), f̂ ′′n (x) = f ′(x)− f ′(x− 1=n)

1=n
= f ′′(x̂n),
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where xn, x̃n, x̂n, are some points from the interval [x, x−1/n]. Using the fact that
f and its derivatives f ′, f ′′ are uniformly continuous because they have bounded
support, we obtain the desired approximation.

For the functions f̂n(x) equality (4.4) holds. Now, taking into account (3.6) and
the continuity of the Brownian motion, we can pass to the limit in (4.4) for the
functions f̂n(x). This proves (4.4) for twice continuously differentiable functions f
with bounded support.

As the second step we approximate a twice continuously differentiable function
f by the functions

fn(x) = f(x)1I[−n,n](x) + gn(x)1I(n,n+1](x) + gn(x)1I[−n−1,−n)(x)

with bounded support. Here the functions gn(x) are such that fn(x), x ∈ R, is
twice continuously differentiable function for every n.

From (2.5) for f ≡ 1 it follows that

P
(

sup
0≤t≤T

|W (t)| ≥ n
)
≤ T

n2
. (4.12)

Then for any ε > 0

P
( T∫

0

(f ′(W (v))−f ′n(W (v)))2 dv > ε

)
≤ P

(
sup

0≤t≤T
|W (t)| ≥ n

)
≤ T

n2
→ 0 (4.13)

as n→∞. Similarly,

P
( T∫

0

|f ′′(W (v))− f ′′n (W (v))| dv > ε

)
→ 0 as n→∞. (4.14)

Taking into account these estimates and (3.6), we can pass to the limit in (4.4) for
functions fn. Thus (4.4) holds for twice continuously differentiable functions and
this completes the proof. �

Remark 4.1. The main feature of Itô’s formula is that the second derivative
appears in the expression for the first differential. This is impossible in the standard
analysis. In stochastic analysis it is the consequence of the properties of Brownian
motion.

The analog of (4.4) holds even if the function f has no second derivative.

Theorem 4.2. Let f(x), x ∈ R, be a differentiable function, whose first deriv-
ative has the form

f ′(x) = f ′(0) +

x∫
0

g(y)dy, (4.15)
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where g(x), x ∈ R, is a measurable function bounded on any finite interval. Then
a.s. for all 0 ≤ t ≤ T

f(W (t))− f(W (0)) =

t∫
0

f ′(W (v)) dW (v) + 1

2

t∫
0

g(W (v)) dv. (4.16)

Proof. It is sufficient to prove (4.16) for a function g with bounded support. Oth-
erwise g(x), x ∈ R, can be approximated by the functions gn(x) = g(x)1I[−n,n](x)
and we can apply the arguments used before in (4.12)–(4.14) for the proof of The-
orem 4.1.

Assume that {x : g(x) 6= 0} ⊆ [a, b] for some a < b. Set

f̂n(x) := n

x∫
x−1/n

f(y) dy, n = 1, 2, . . . .

These are the twice continuously differentiable functions and

f̂n(x) → f(x), f̂ ′n(x) → f ′(x)

uniformly in x ∈ R. Moreover,

f̂ ′′n (x) = n

x∫
x−1/n

g(y) dy → g(x)

for almost all x.
Then

T∫
0

E|g(W (s))− f̂ ′′n (W (s))| ds ≤
T∫

0

b∫
a

|g(x)− f̂ ′′n (x)| e
−(x−x0)

2=2s
√
2�s

dxds→ 0

as n→∞, where W (0) = x0.
For the functions f̂n(x) equality (4.4) holds and we can pass to the limit. This

proves the theorem. �

Further, we derive Itô’s formula for the case when f depends also on the time
parameter t.

Theorem 4.3. Let f(t, x), (t, x) ∈ [0, T ]×R, be a continuous function with con-

tinuous partial derivatives
@

@t
f(t, x), @

@x
f(t, x) and with continuous partial deriva-

tives
@2

@x2
f(t, x) for x 6= xk, where min

k∈Z
(xk+1−xk) ≥ δ > 0 for some δ > 0. Assume

that at the points xk the second order partial derivatives have left and right limits
uniformly bounded in [0, T ]. Then

df(t,W (t)) = @

@t
f(t,W (t)) dt+ @

@x
f(t,W (t)) dW (t) + 1

2

@2

@x2
f(t,W (t)) dt, (4.17)
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where at the points xk the second partial derivatives are treated as the left limits
of the corresponding derivatives.

Proof. According to the definition of a stochastic differential it is sufficient to
prove that for all 0 ≤ t ≤ T ,

f(t,W (t))− f(0,W (0)) =

t∫
0

@

@v
f(v,W (v)) dv

+

t∫
0

@

@x
f(v,W (v)) dW (v) + 1

2

t∫
0

@2

@x2
f(v,W (v)) dv. (4.18)

We first prove (4.18) for the case when f(t, x) = σ(t)g(x) and there exists the
continuous derivatives σ′ and g′. Moreover, we assume that exists the continuous
derivative g′′(x) for x ∈ R \ {xk}k∈Z with bounded left and right limits at the
points xk. Using subdivisions of the interval [0, t], as in the proof of Theorem 4.2,
we can write

σ(t)g(W (t))−σ(0)g(W (0)) =
n−1∑
k=0

(
σ(tn,k+1)g(W (tn,k+1))−σ(tn,k)g(W (tn,k))

)

=
n−1∑
k=0

g(W (tn,k+1))(σ(tn,k+1)− σ(tn,k)) +
n−1∑
k=0

σ(tn,k)(g(W (tn,k+1))− g(W (tn,k))).

(4.19)
By Theorem 4.2,

g(W (tn,k+1))− g(W (tn,k)) =

tn,k+1∫
tn,k

g′(W (v)) dW (v) + 1

2

tn,k+1∫
tn,k

g′′(W (v)) dv.

Set

t+n (v) :=
n−1∑
k=0

tn,k+11I[tn,k,tn,k+1)(v).

Then using the representation

σ(tn,k+1)− σ(tn,k) =
tn,k+1∫
tn,k

σ′(v) dv

and the notation tn(v) introduced in the proof of Theorem 4.1, one can write (4.19)
in the form

σ(t)g(W (t))− σ(0)g(W (0)) =

t∫
0

σ′(v)g(W (t+n (v)) dv
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+

t∫
0

σ(tn(v))g′(W (v)) dW (v) + 1

2

t∫
0

σ(tn(v))g′′(W (v)) dv. (4.20)

Since tn(v) → v and t+n (v) → v uniformly in v ∈ [0, t], the passage to the limit
in (4.20) proves (4.18) for the special case f(t, x) = σ(t)g(x). Here to justify the
passage to the limit for the stochastic integral we can apply (3.6).

It is clear that (4.18) is valid for the functions

fn(t, x) :=
n∑
k=0

σn,k(t)gn,k(x), (4.21)

where the functions gn,k have the same properties as the function g above.
For an arbitrary smooth function f(t, x) there exists a sequence of functions

fn(t, x), of the form (4.21), such that for any N > 0

lim
n→0

sup
0≤t≤T

sup
|x|≤N

(
|f(t, x)− fn(t, x)|+

∣∣∣ @
@t
f(t, x)− @

@t
fn(t, x)

∣∣∣) = 0,

lim
n→0

sup
0≤t≤T

sup
|x|≤N

∣∣∣ @
@x
f(t, x)− @

@x
fn(t, x)

∣∣∣ = 0,

lim
n→0

sup
0≤t≤T

sup
|x|≤N,x6∈D

∣∣∣ @2
@x2

f(t, x)− @2

@x2
fn(t, x)

∣∣∣ = 0,

where D := {xk}k∈Z. Using arguments similar to those stated in (4.12)–(4.14), it
is not difficult to complete the proof of the theorem for the general case. �

We now consider the general form of the Itô formula for twice continuously
differentiable functions of several arguments.

Theorem 4.4. Let f(t, ~x), (t, ~x) ∈ [0, T ] × Rd, be a continuous function with

continuous partial derivatives
@

@t
f(t, ~x), @

@xi
f(t, ~x), @2

@xi@xj
f(t, ~x), i, j = 1, . . . , d.

Suppose that the coordinates of the vector process
→
X(t), x ∈ [0, T ], have the

stochastic differentials

dXi(t) = ai(t) dt+ bi(t) dW (t), i = 1, . . . , d,

where the functions ai(t) and bi(t), t ∈ [0, T ], are right continuous and have left
limits.

Then the process f(t,
→
X(t)), x ∈ [0, T ], has the stochastic differential given by

df(t,
→
X(t)) = @

@t
f(t,

→
X(t)) dt+

d∑
i=1

ai(t)
@

@xi
f(t,

→
X(t)) dt

+
d∑
i=1

bi(t)
@

@xi
f(t,

→
X(t)) dW (t) + 1

2

d∑
i=1

d∑
j=1

bi(t)bj(t)
@2

@xi@xj
f(t,

→
X(t)) dt. (4.22)
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Remark 4.2. One can prove (4.22) under the assumption that the second-order

partial derivatives @2

@xi@xj
f(t, ~x), i, j = 1, . . . , d, do not exist at vector points ~xk,

k ∈ Z, with coordinates satisfying for some δ > 0 the inequality

min
1≤i≤d,k∈Z

(xi,k+1 − xi,k) ≥ δ > 0.

Proof of Theorem 4.4. According to the definition of the stochastic differential,
it is sufficient to prove that a.s. for all 0 ≤ t ≤ T

f(t,
→
X(t))− f(0,

→
X(0)) =

t∫
0

@

@v
f(v,

→
X(v)) dv +

d∑
i=1

t∫
0

ai(v)
@

@xi
f(v,

→
X(v)) dv

+
d∑
i=1

t∫
0

bi(v)
@

@xi
f(v,

→
X(v)) dW (v) + 1

2

d∑
i=1

d∑
j=1

t∫
0

bi(v)bj(v)
@2

@xi@xj
f(v,

→
X(v)) dv.

(4.23)
We prove first (4.23) in the case when the processes ai and bi, i = 1, . . . , d, are
simple. Without loss of generality we can assume that the intervals of constancy
are the same for all processes ai, bi, i.e.,

ai(s) =
m−1∑
k=0

ai,k1I[sk,sk+1)(s), bi(s) =
m−1∑
k=0

bi,k1I[sk,sk+1)(s), i = 1, . . . , d,

where 0 = s0 < s1 < · · · < sl < · · · < sm = T , and the random variables ai,k, bi,k
are Fsk

-measurable, k = 0, . . .m− 1, i = 1, . . . , d.
In this case the coordinate process Xi for v ∈ [sk, sk+1) has the form

Xi(v) = Xi(sk) + ai,k(v − sk) + bi,k(W (v)−W (sk)), i = 1, . . . , d.

Set for v ∈ [sk, sk+1)

g(v, x) := f(v,
→
X(sk) + ~ak(v − sk) +~bk(x−W (sk))),

where ~ak = (a1,k, . . . , ad,k), ~bk = (b1,k, . . . , bd,k).
We can apply Theorem 4.3, although in the definition of the function g we have

the random variables Xi(sk), W (sk), ai,k, and bi,k (however, it is important that
these random variables are Fsk

-measurable). Since

@

@v
g = @

@v
f +

d∑
i=1

ai,k
@

@xi
f,

@

@x
g =

d∑
i=1

bi,k
@

@xi
f,

@2

@x2
g =

d∑
i=1

d∑
j=1

bi,kbj,k
@2

@xi@xj
f
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for v ∈ [sk, sk+1), using (4.18) we have

f(sk+1,
→
X(sk+1))− f(sk,

→
X(sk)) = g(sk+1,W (sk+1))− g(sk,W (sk))

=

sk+1∫
sk

@

@v
g(v,W (v)) dv +

sk+1∫
sk

@

@x
g(v,W (v)) dW (v) + 1

2

sk+1∫
sk

@2

@x2
g(v,W (v)) dv

=

sk+1∫
sk

@

@v
f(v,

→
X(v))dv +

sk+1∫
sk

d∑
i=1

ai(v)
@

@xi
f(v,

→
X(v)) dv

+

sk+1∫
sk

d∑
i=1

bi(v)
@

@xi
f(v,

→
X(v))dW (v) + 1

2

sk+1∫
sk

d∑
i=1

d∑
i=j

bi(v)bj(v)
@2

@xi@xj
f(v,

→
X(v))dv.

If t ∈ [sl, sl+1) for some l, then summing these equalities for k = 0, . . . , l − 1, and
adding the analogous equality for the interval [sl, t), we obtain (4.23) in the case
when ai and bi, i = 1, . . . , d, are simple processes.

In the general case we can approximate Xi, i = 1, . . . , d, by the processes

Xi,n(t) = Xi(0) +

t∫
0

ai,n(v) dv +

t∫
0

bi,n(v) dW (v),

where the simple processes ai,n and bi,n are such that

t∫
0

|ai(v)− ai,n(v)| dv → 0,

t∫
0

(bi(v)− bi,n(v))2 dv → 0, as n→∞ a.s.

Passage to the limit as n → ∞ in (4.23), done for
→
Xn(t) = (X1,n(t), . . . , Xd,n(t)),

completes the proof. �

Notice that for bi(t) ≡ 0, t ∈ [0, T ], i = 1, . . . , d, formula (4.22) turns into the
classical formula of differentiation of composition of functions. However, in the case
when the stochastic differential is included, the second derivatives of functions with
respect to the spatial variables play an important role. This is due to the fact that
when computing the principal values of the increments of functions of stochastic
processes one can use Taylor’s formula. Thus, when considering the squares of
stochastic differentials, the term (dW (t))2 has, in fact, the first order equal to dt.

We now give an informal description of the generalized Itô’s formula, using the
following rule:
the differential of function of several stochastic processes is computed by applying
Taylor’s formula, where one sets (dt)2 = 0, dt dW (t) = 0, (dW (t))2 = dt, and the
differentials of higher orders must be equal to zero.

To illustrate this rule, consider a function with two spatial variables. Let
f(t, x, y), t ∈ [0,∞), x, y ∈ R, be a continuous function with continuous partial
derivatives f ′t , f

′
x, f

′
y, f

′′
x,x, f

′′
x,y, and f ′′y,y.
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Suppose that the processes X and Y have the stochastic differentials

dX(t) = a(t) dt+ b(t) dW (t), dY (t) = c(t) dt+ q(t) dW (t).

Then according to the rule stated above,

(dX(t))2 = (a(t))2(dt)2 + 2a(t)b(t) dt dW (t) + (b(t))2(dW (t))2 = b2(t) dt.

Similarly, (dY (t))2 = q2(t) dt , dX(t)dY (t) = b(t)q(t) dt. It is clear that the
differentials of higher orders of the processes X, Y are equal to zero.

Applying Taylor’s formula, we obtain

df(t,X(t), Y (t)) = f ′t(t,X(t), Y (t)) dt+ f ′x(t,X(t), Y (t)) dX(t)

+ f ′y(t,X(t), Y (t)) dY (t) + 1

2
f ′′x,x(t,X(t), Y (t))(dX(t))2

+ f ′′x,y(t,X(t), Y (t))dX(t)dY (t) + 1

2
f ′′y,y(t,X(t), Y (t))(dY (t))2.

Therefore,

df(t,X(t), Y (t)) = f ′t(t,X(t), Y (t)) dt+ f ′x(t,X(t), Y (t)){a(t) dt+ b(t) dW (t)}

+ f ′y(t,X(t), Y (t)){c(t) dt+ q(t) dW (t)}+ 1

2
f ′′x,x(t,X(t), Y (t))b2(t) dt

+ f ′′x,y(t,X(t), Y (t))b(t)q(t)dt+ 1

2
f ′′y,y(t,X(t), Y (t))q2(t) dt. (4.24)

Remark 4.3. One can consider independent Brownian motions W1(t) and
W2(t), t ≥ 0. Suppose that the processes X the Y have the stochastic differentials

dX(t) = a(t) dt+ b(t) dW1(t), dY (t) = c(t) dt+ q(t) dW2(t).

In this case dX(t)dY (t) = 0, since one must set dW1(t)dW2(t) = 0. This is a
consequence of the fact that for any s < t

E{(W1(t)−W1(s))(W2(t)−W2(s))} = E(W1(t)−W1(s))E(W2(t)−W2(s)) = 0.

This feature must be taken into account when applying Taylor’s formula for com-
puting the differential df(t,X(t), Y (t)).

As an application of Theorem 4.4, we derive the Burkholder–Davis–Gundy in-
equality for stochastic integrals.

Lemma 4.1. Let h(v), v ∈ [s, t], be a progressively measurable process. Then
for k = 1, 2, . . . the inequality

E sup
s≤u≤t

( u∫
s

h(v) dW (v)
)2k

≤ 2kk2k
(

2k

2k − 1

)(2k−1)k

E
( t∫
s

h2(v) dv
)k

(4.25)
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holds.

Proof. Set

Z(u) :=

u∫
s

h(v) dW (v), s ≤ u ≤ t,

and τN := inf{u ≥ s : |Z(u)| = N}, assuming τN = t for sup
s≤u≤t

|Z(u)| < N . Then

{τN ≥ v} =
{

sup
s≤u≤v

|Z(u)| ≤ N
}
∈ Fv for every v ∈ [0, t].

For a fixed s the process

Z(u ∧ τN ) =

u∫
s

1I{v≤τN}h(v) dW (v), s ≤ u ≤ t,

is a martingale with respect to the family of σ-algebras {Fu}. By Doob’s inequality
for martingales (see (5.12) Ch. I),

E sup
s≤u≤t∧τN

Z2k(u) = E sup
s≤u≤t

Z2k(u ∧ τN ) ≤
(

2k

2k − 1

)2k

EZ2k(t ∧ τN ). (4.26)

Applying to the process Z2k(t) Itô’s formula and substituting t ∧ τN instead of t,
we have

Z2k(t∧τN ) = 2k

t∫
s

1I{v≤τN}Z
2k−1(v)h(v) dW (v)+k(2k−1)

t∧τN∫
s

Z2k−2(v)h2(v) dv.

Since the expectation of the stochastic integral is zero,

EZ2k(t ∧ τN ) = k(2k − 1)E
( t∧τN∫

s

Z2k−2(v)h2(v) dv
)
.

Next applying Hölder’s inequality, we obtain

EZ2k(t ∧ τN ) ≤ k(2k − 1)E
(

sup
s≤u≤t∧τN

Z2k−2(u)

t∫
s

h2(v)) dv
)

≤ k(2k − 1)E(k−1)/k
(

sup
s≤u≤t∧τN

Z2k−2(u)
)k/(k−1)

E1/k

( t∫
s

h2(v)) dv
)k
.

In view of (4.26), this yields

E sup
s≤u≤t∧τN

Z2k(u)≤2k2
(

2k

2k − 1

)2k−1

E(k−1)/k sup
s≤u≤t∧τN

Z2k(u)E1/k

( t∫
s

h2(v)) dv
)k
,
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or

E1/k sup
s≤u≤t∧τN

Z2k(u) ≤ 2k2
(

2k

2k − 1

)2k−1

E1/k

( t∫
s

h2(v)) dv
)k
.

By raising both sides of this inequality to the power k, letting N →∞ and applying
Fatou’s lemma (see (5.18) Ch. I), we get (4.25). �

As it was noticed by R. L. Stratonovich (1966), for special integrands it is
possible to define a stochastic integral different from Itô’s integral.

Example 4.1. Let f(x), x ∈ R, be a continuously differentiable function. Let
0 = tn,0 < tn,1 < · · · < tn,n = T be an arbitrary sequence of subdivisions of the
interval [0, T ], satisfying (4.5). Then the limits in probability
T∫

0

f(W (t))�dW (t) := lim
n→∞

n−1∑
k=0

f(W (tn,k+1))(W (tn,k+1)−W (tn,k)), (4.27)

T∫
0

f(W (t)) ◦ dW (t) := lim
n→∞

n−1∑
k=0

f
(
W
( tn;k + tn;k+1

2

))
(W (tn,k+1)−W (tn,k)) (4.28)

exist.
The existence is due to (4.11). Indeed, assuming that f is a twice continuously

differentiable function with bounded second derivative f ′′ and applying Taylor’s
formula, we have
n−1∑
k=0

f(W (tn,k+1))(W (tn,k+1)−W (tn,k)) =
n−1∑
k=0

f(W (tn,k))(W (tn,k+1)−W (tn,k))

+
n−1∑
k=0

f ′(W (tn,k))(W (tn,k+1)−W (tn,k))2+ 1

2

n−1∑
k=0

f ′′(W (t̃n,k))(W (tn,k+1)−W (tn,k))3.

The last sum tends to zero in probability analogously to In,3. In view of (4.11),

the second sum on the right-hand side of this equality tends to
T∫
0

f ′(W (t)) dt. We

conclude that the limit (4.27) exists and
T∫

0

f(W (t)) � dW (t) =

T∫
0

f(W (t)) dW (t) +

T∫
0

f ′(W (t)) dt. (4.29)

Analogously,
n−1∑
k=0

f
(
W
( tn;k + tn;k+1

2

))
(W (tn,k+1)−W (tn,k))=

n−1∑
k=0

f(W (tn,k))(W (tn,k+1)−W (tn,k))

+
n−1∑
k=0

f ′(W (tn,k))
(
W
( tn;k + tn;k+1

2

)
−W (tn,k)

)
(W (tn,k+1)−W (tn,k))

+ 1

2

n−1∑
k=0

f ′′(W (t̃n,k))
(
W
( tn;k + tn;k+1

2

)
−W (tn,k)

)2(W (tn,k+1)−W (tn,k)).
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The main quantities on the right-hand side of this equality are the first sum, which
tends to Itô’s integral, and the term

n−1∑
k=0

f ′(W (tn,k))
(
W
( tn;k + tn;k+1

2

)
−W (tn,k)

)2
,

which tends to 1

2

T∫
0

f ′(W (t)) dt. Therefore,

T∫
0

f(W (t)) ◦ dW (t) =

T∫
0

f(W (t)) dW (t) + 1

2

T∫
0

f ′(W (t)) dt. (4.30)

Exercises.

4.1. Use Itô’s formula to prove that for a Brownian motion W with W (0) = 0,

t∫
0

W 4(s) dW (s) = 1

5
W 5(t)− 2

t∫
0

W 4(s) ds.

4.2. Use Itô’s formula to compute the differentials:

1) d
(
W 3(t)− t2

2
+

t∫
0

W 2(s) dW (s)
)
;

2) d
(
W (t) shW (t)

)
, where shx := ex − e−x

2
;

3) d exp
(
W 2(t) +W 3(t)

)
.

4.3. Prove that the process et/2 cosW (t), t ≥ 0, is a martingale.

4.4. Use Itô’s formula to compute the differentials:

1) d exp
(
W 5(t) +

t∫
0

W 4(s) dW (s)
)
;

2) d
(
W 3(t) exp

(
W 2(t)

))
.

4.5. Suppose that the process V has the differential

dV (t) = µV (t) dt+ σV (t) dW (t), V (0) = x > 0.

Write out lnV (t).

4.6. Suppose that the process Z has the differential

dZ(t) =
(
nσ2 − 2γZ(t)

)
dt+ 2σ

√
Z(t) dW (t).
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Compute d
√
Z(t).

4.7. Prove that the following stochastic processes are martingales:

1)
(
c+ 1

3
W (t)

)3 − 1

3

t∫
0

(
c+ 1

3
W (s)

)
ds for any c ∈ R;

2) (W (t) + t) exp
(
−W (t)− 1

2
t
)
.

§ 5. Brownian local time. Tanaka’s formula

Let X(t), t ∈ [0, T ], be a progressively measurable with respect to a filtration
{Ft} stochastic process. The occupation measure of the process X up to the time
t is the measure µt defined by

µt(∆) :=

t∫
0

1I∆(X(s))ds, ∆ ∈ B(R), 0 ≤ t ≤ T, (5.1)

where 1I∆(·) is the indicator function.
In other words, µt(∆) is equal to the Lebesgue measure (mes) of the time spent

by a sample path of the process X in the set ∆ up to the time t (µt(∆) = mes{s :
X(s) ∈ ∆, s ∈ [0, t]}). This is a random measure that depends on the path of the
process.

If a.s. for every t the measure µt has a density, i.e., there exists a nonnegative
random function `(t, x) such that

µt(∆) =
∫
∆

`(t, x) dx (5.2)

for any Borel set ∆, then the density `(t, x) is called the local time of the process
X at the level x up to the time t.

In the special case when in (5.2) the process `(t, x) is continuous in x, one has
the following equivalent definition: if a.s. for all (t, x) ∈ [0, T ]×R there exists the
limit

`(t, x) = lim
δ↓0

lim
ε↓0

1

� + "

t∫
0

1I[x−δ,x+ε)(X(s))ds a.s., (5.3)

then `(t, x) is called the local time of the process X.
From (5.3) it follows that for any fixed x the local time `(t, x) is a nondecreasing

random function with respect to t, which increases only on the set {t : X(t) = x}.
As a rule, the Lebesgue measure of this set is zero and the most natural measure
for such a set turned out to be the local time at the level x.

From the definition of µt it obviously follows that the support of µt is included
in the set {

x : inf
0≤s≤t

X(s) ≤ x ≤ sup
0≤s≤t

X(s)
}
.
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If the process X has continuous paths, the support of µt is a.s. finite. Then

t∫
0

f(X(s))ds =

∞∫
−∞

f(x)µt(dx) a.s. (5.4)

for any locally integrable function f . Indeed, by (5.1),

t∫
0

1I∆(X(s))ds =

∞∫
−∞

1I∆(x)µt(dx)

and f can be approximated by the functions
n∑
k=1

cn,k1I∆n,k
(x), ∆n,k ∈ B(R).

In particular, if the local time `(t, x) exists, then

t∫
0

f(X(s))ds =

∞∫
−∞

f(x)`(t, x)dx a.s. (5.5)

Let W (t), t ∈ [0, T ], be a Brownian motion adapted to a filtration {Ft} and
let for all v > t the increment W (v) −W (t) be independent of the σ-algebra Ft.
Assume that W (0) = x0.

The concept of a local time was introduced by P. Lévy (1939). G. Trotter
(1958) proved that for a Brownian motion there exists a continuous local time (the
Brownian local time). The following result is due to H. Tanaka.

Theorem 5.1 (Tanaka’s formula). The Brownian local time `(t, x) exists.
The local time `(t, x) is an a.s. jointly continuous process in (t, x) ∈ [0, T ]×R, and

(W (t)− x)+ − (W (0)− x)+ =

t∫
0

1I[x,∞)(W (s)) dW (s) + 1

2
`(t, x), (5.6)

where a+ = max{a, 0}.

Proof. We prove first that for the process

Jx(t) :=

t∫
0

1I[x,∞)(W (s)) dW (s)

there exist a modification that is continuous in (t, x) ∈ [0, T ]×R.
Note first that for a fixed x the process Jx(t) is continuous in t by the property

of the stochastic integral as a function of the upper limit. Let us consider Jx(·)
as a random variable taking values in the space of continuous functions on [0, T ].
This space is a Banach space when equipped with the norm ‖f‖ := sup

t∈[0,T ]

|f(t)|.



§ 5. BROWNIAN LOCAL TIME. TANAKA'S FORMULA 113

Analogously to the proof of Theorem 3.2 Ch. I for real-valued processes one
can derive Kolmogorov’s continuity criterion for processes with values in a Banach
space.

This criterion implies that for any N > 0 the process Jx, x ∈ [−N,N ] is a.s.
continuous with respect to the norm ‖ · ‖ if there exist positive constants α, β, and
MN such that

E‖Jx − Jy‖α ≤MN |x− y|1+β , |x|, |y| ≤ N. (5.7)

For any 0 < γ < β/α, the sample paths of the process Jx, x ∈ [−N,N ] a.s. satisfy
the Hölder condition

‖Jx − Jy‖ ≤ LN,γ(ω)|x− y|γ . (5.8)

Indeed, from the proof of the analog of Theorem 3.2 Ch. I it follows that (5.8) is
true for the set D of dyadic rational points. By Cauchy’s criterion, the process
Jy, y ∈ D

⋂
[−N,N ], can be extended by continuity to the whole interval [−N,N ].

Since

lim
y→x

T∫
0

E
(
1I[y,∞)(W (s))− 1I[x,∞)(W (s))

)2
ds = 0,

we have by (2.8) that for all x ∈ [−N,N ] the process Jx has the desired form as a
stochastic integral. Moreover, in view of the a.s. continuity of stochastic integrals
for a countable number of particular integrands and the uniform convergence in
t ∈ [0, T ], the process Jx(t), t ∈ [0, T ], is a.s. continuous with respect to t for all x
simultaneously.

We now prove (5.7). We have

E‖Jx − Jy‖4 = E sup
t∈[0,T ]

∣∣∣∣
t∫

0

1I[x,y)(W (s)) dW (s)
∣∣∣∣4 for x < y.

By (4.25), k = 2,

E‖Jx − Jy‖4 ≤ 360E
∣∣∣∣
T∫

0

1I[x,y)(W (s)) ds
∣∣∣∣2

= 720

T∫
0

ds

T∫
s

duE
[
1I[x,y)(W (s))1I[x,y)(W (u))

]

= 720

T∫
0

ds

T∫
s

du

y∫
x

y∫
x

e−(x1−x0)
2=2s

√
2�s

e−(x2−x1)2=2(u−s)√
2�(u− s)

dx1dx2

≤ 360

�
|x− y|2

T∫
0

ds

T∫
s

du
1√

s(u− s)
= MT |x− y|2.

Thus for the process Jx the Hölder condition (5.8) holds for 0 < γ < 1/4.
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Applying (4.25) for an arbitrary even power, we can prove the estimate

E‖Jx − Jy‖2k ≤Mk,T |x− y|k, k = 1, 2, . . . .

Therefore (5.8) holds for any 0 < γ < 1/2.
The continuity of Jx(t) in (t, x) follows from (5.8), because

|Jx(t)− Jy(s)| ≤ |Jx(t)− Jx(s)|+ ‖Jx(·)− Jy(·)‖.

We now prove that for arbitrary r ∈ R there the limit

`(t, r) := lim
α↑r

lim
β↓r

1

� − �

t∫
0

1I[α,β)(W (s))ds a.s. (5.9)

exists uniformly in t ∈ [0, T ] and (5.6) holds for x = r.
Set

fα,β(x) :=

x∫
−∞

z∫
−∞

1I[�;�)(y)

� − �
dy dz.

By the formula of stochastic differentiation (4.16), a.s. for all t ∈ [0, T ],

1

2

t∫
0

1I[�;�)(W (s))

� − �
ds = fα,β(W (t))− fα,β(W (0))−

t∫
0

f ′α,β(W (s)) dW (s). (5.10)

It is clear that

f ′α,β(x) =

x∫
−∞

1I[�;�)(y)

� − �
dy =


1, β ≤ x,
x− �

� − �
, α < x < β,

0, x ≤ α,

−→
α↑r, β↓r

1I[r,∞)(x), for x 6= r,

fα,β(x) =

x∫
−∞

z∫
−∞

1I[�;�)(y)

� − �
dy dz =


x− � + �

2
, β ≤ x,

(x− �)2

2(� − �)
, α < x < β,

0, x ≤ α,

−→
α↑r, β↓r

(x− r)+.

Since
|1I[r,∞)(x)− f ′α,β(x)| ≤ 1I[α,β)(x), α < r < β,

and, consequently,
|(x− r)+ − fα,β(x)| ≤ |β − α|,

we have

sup
t∈[0,T ]

∣∣(W (t)− r)+ − fα,β(W (t))
∣∣ ≤ |β − α| −→

α↑r, β↓r
0 a.s. (5.11)



§ 5. BROWNIAN LOCAL TIME. TANAKA'S FORMULA 115

Let us prove that

t∫
0

f ′α,β(W (s)) dW (s) = 1

� − �

β∫
α

Jy(t) dy a.s. (5.12)

It is clear that

f ′α,β(x) =

x∫
−∞

1I[�;�)(y)

� − �
dy = 1

� − �

β∫
α

1I[y,∞)(x) dy.

Then (5.12) can be written in the form

1

� − �

t∫
0

β∫
α

1I[y,∞)(W (s)) dy dW (s) = 1

� − �

β∫
α

t∫
0

1I[y,∞)(W (s)) dW (s) dy

and this is the switching the order of integration formula (analog of Fubini’s theo-
rem) and for the stochastic integral such formula must be proved.

Set
qn(x) = 1

� − �

∑
α≤k/n≤β

1I[k/n,∞)(x)
1

n
.

Since ∣∣∣∣qn(x)− 1

� − �

β∫
α

1I[[yn]/n,∞)(x) dy
∣∣∣∣ ≤ 2

n(� − �)
,

we have
|f ′α,β(x)− qn(x)| ≤

3

n(� − �)
. (5.13)

Using the continuity of Jx in x, we obtain

t∫
0

qn(W (s)) dW (s) = 1

� − �

∑
α≤k/n≤β

t∫
0

1I[k/n,∞)(W (s)) dW (s) 1
n

= 1

� − �

∑
α≤k/n≤β

Jk/n(t)
1

n
−→
n→∞

1

� − �

β∫
α

Jy(t) dy.

This together with (5.13) imply (5.12).

Substituting (5.12) into (5.10), we have

1

2

t∫
0

1I[�;�)(W (s))

� − �
ds = fα,β(W (t))− fα,β(W (0))− 1

� − �

β∫
α

Jy(t) dy.
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Applying (5.11) and taking into account the continuity of Jx (see (5.8)), we see
that the limit (5.9) exists uniformly in t ∈ [0, T ], and (5.6) holds for x = r. The
statement that equality (5.6) holds for all t and x simultaneously follows from the
continuity of Jx(t) and (W (t) − x)+ in (t, x). This also implies the continuity of
`(t, x) in (t, x) ∈ [0, T ]×R.

Moreover, since
sup
z∈R

|(z − x)+ − (z − y)+| ≤ |x− y|,

from (5.6) and (5.8), it follows that for any 0 < γ < 1/2 and N > 0

‖`(·, x)− `(·, y)‖ ≤ BN,γ(ω)|x− y|γ , x, y ∈ [−N,N ]. (5.14)

We can prove that Brownian local time paths with respect to x are a.s. nowhere
locally Hölder continuous of order γ ≥ 1/2 (see Ch. V § 11). In particular, they are
nowhere differentiable in x. The theorem is proved. �

Since the local time has the finite support{
x : inf

0≤s≤t
W (s) ≤ x ≤ sup

0≤s≤t
W (s)

}
,

from (5.5) it follows that for any locally integrable function f and any t > 0,

t∫
0

f(W (s)) ds =

∞∫
−∞

f(x)`(t, x) dx a.s., (5.15)

and the integral on the right-hand side is finite.

From (5.9) we have

E`(t, x) = lim
α↑x

lim
β↓x

t∫
0

E
(
1I[�;�)(W (s))

� − �

)
ds =

t∫
0

1
√
2�s

e−(x−x0)
2/2s ds. (5.16)

Here 1
√
2�s

e−(x−x0)
2/2s is the density of the variable W (s), W (0) = x0.

Using Tanaka’s formula (5.6) one can generalize Itô’s formula (4.16) as follows.

Theorem 5.2. Let b be a function of bounded variation on any finite interval.
Set

f(x) := f0 +

x∫
0

b(y)dy, (5.17)

where f0 is a constant.
Then a.s. for all t ∈ [0, T ],

f(W (t))− f(W (0)) =

t∫
0

b(W (s)) dW (s) + 1

2

∞∫
−∞

`(t, x) b(dx), (5.18)
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where b(dx) is the signed measure (charge) associated to b via its representation as
a difference of two nondecreasing functions.

Remark 5.1. The differential form of (5.18) is the following formula:

df(W (t)) = b(W (t)) dW (t) + 1

2

∞∫
−∞

`(dt, x) b(dx).

Remark 5.2. If b(dx) has a bounded density, then b(dx) = g(x) dx, b(x) =
f ′(x) and, in view of (5.15), formula (5.18) transforms into (4.16).

Remark 5.3. Let the function f be twice continuously differentiable except at
the finite number of points x1 < x2 < · · · < xm, in which f is assumed to have the
right and left derivatives. Then from (5.18) it follows that

f(W (t))− f(W (0)) =

t∫
0

m∑
k=0

f ′(W (s))1I(xk,xk+1)(W (s)) dW (s)

+ 1

2

t∫
0

m∑
k=0

f ′′(W (s))1I(xk,xk+1)(W (s)) ds

+ 1

2

m∑
k=1

(f ′(xk + 0)− f ′(xk − 0))`(t, xk) a.s., (5.19)

where we set x0 = −∞, xm+1 = ∞.

Proof of Theorem 5.2. It suffices to prove (5.18) only for a nondecreasing func-
tion b, since any function of bounded variation is the difference of two nondecreasing
functions.

For the functions

bn(x) :=
n∑
k=1

cn,k1I[rn,k,∞)(x) (5.20)

equality (5.18) follows from Tanaka’s formula (5.6).
Now set

fn(x) := f0 +

x∫
0

bn(y)dy = f0 +
n∑
k=1

cn,k(x− rn,k)+.

Then, by (5.6),

fn(W (t))− fn(W (0)) =

t∫
0

bn(W (s)) dW (s) + 1

2

∞∫
−∞

`(t, x) bn(dx) a.s. (5.21)
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It is clear that any nondecreasing function can be uniformly approximated on
any compact set by functions of the form (5.20), i.e., for any N > 0

sup
|x|≤N

|b(x)− bn(x)| → 0 as n→∞. (5.22)

One can ensure that bn(N) = b(N) and bn(−N) = b(−N). Of course, the sequence
of functions bn depends on N . It is clear that

sup
|x|≤N

|f(x)− fn(x)| ≤ 2N sup
|x|≤N

|b(x)− bn(x)|. (5.23)

Since, by (4.12),
P
(

sup
0≤t≤T

|W (t)| ≥ N
)
≤ T

N2 , (5.24)

and by the choice of N , this probability can be made sufficiently small, we can
restrict ourselves to the consideration of the set ΩN =

{
sup

0≤t≤T
|W (t)| < N

}
. From

(5.23), (5.22), and (3.6) it follows that

sup
t∈[0,T ]

|f(W (t))− fn(W (t))| −→
n→∞

0, |f(W (0))− fn(W (0))| −→
n→∞

0, (5.25)

sup
t∈[0,T ]

∣∣∣∣
t∫

0

b(W (s)) dW (s)−
t∫

0

bn(W (s)) dW (s)
∣∣∣∣ −→
n→∞

0 (5.26)

in probability given the set ΩN .
Let us prove that

sup
t∈[0,T ]

∣∣∣∣
N∫

−N

`(t, x) b(dx)−
N∫

−N

`(t, x) bn(dx)
∣∣∣∣ −→
n→∞

0 a.s. (5.27)

By (5.14),

sup
t∈[0,T ]

∣∣∣∣
N∫

−N

`(t, x) b(dx)−
N∫

−N

`(t, [xm]
m ) b(dx)

∣∣∣∣
≤ sup

|x|≤N
‖`(·, x)− `(·, [xm]

m )‖(b(N)− b(−N)) ≤ BN;(!)

m
(b(N)− b(−N)).

Analogously, in view of (5.22),

sup
t∈[0,T ]

∣∣∣∣
N∫

−N

`(t, x) bn(dx)−
N∫

−N

`(t, [xm]
m ) bn(dx)

∣∣∣∣
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≤ sup
|x|≤N

‖`(·, x)− `(·, [xm]
m )‖(bn(N)− bn(−N)) ≤ BN;(!)

m
(b(N)− b(−N)).

In addition, we have the estimate

sup
t∈[0,T ]

∣∣∣∣
N∫

−N

`(t, [xm]
m ) b(dx)−

N∫
−N

`(t, [xm]
m ) bn(dx)

∣∣∣∣
= sup
t∈[0,T ]

∣∣∣∣
N∫

−N

`(t, [xm]
m ) (b(dx)− bn(dx))

∣∣∣∣
≤

[Nm]∑
k=−[Nm]

`(T, km )
∣∣b(k+1

m )− b( km )− bn(k+1
m ) + bn( km )

∣∣.
Now letting first n→∞ and then m→∞, we obtain (5.27).

Taking into account (5.24)–(5.27) we see that the passage to the limit in (5.21)
leads to (5.18). �

Similarly, we can prove the following generalization of the special case of Theo-
rem 4.3 where f(t, x) = σ(t)f(x).

Theorem 5.3. Let f be the function defined by (5.17) and σ(t), t ≥ 0, be a
function with locally integrable derivative.

Then a.s. for all t ∈ [0, T ],

σ(t)f(W (t))− σ(0)f(W (0)) =

t∫
0

σ′(s)f(W (s)) ds

+

t∫
0

σ(s)b(W (s)) dW (s) + 1

2

∞∫
−∞

t∫
0

σ(s)`(ds, x) b(dx). (5.28)

Proof. We can apply the method used to establish formulas (4.19) and (4.20).
Considering subdivisions of [0, t], as in the proof of Theorem 4.1, we can write,
according to (5.18), that

f(W (tn,k+1))−f(W (tn,k))=

tn,k+1∫
tn,k

f ′(W (v)) dW (v)+1

2

∞∫
−∞

(`(tn,k+1, x)−`(tn,k)) b(dx).

The analog of (4.20) is the relation

σ(t)f(W (t))− σ(0)f(W (0)) =

t∫
0

σ′(v)f(W (t+n (v)) dv
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+

t∫
0

σ(tn(v))f ′(W (v)) dW (v) + 1

2

∞∫
−∞

t∫
0

σ(tn(v))`(dv, x) b(dx). (5.29)

The function σ(v), v ∈ [0, T ], is uniformly continuous with a modulus of continuity
∆(δ) → 0 as δ → 0. Using this, we have

∣∣∣∣
t∫

0

(σ(tn(v))− σ(v))`(dv, x)
∣∣∣∣ ≤ ∆

(
max

1≤k≤n
|tn,k − tn,k−1|

)
`(t, x).

The subdivisions of the interval [0, t] satisfy (4.5), therefore in (5.29) we can pass
to the limit and get (5.28). �

Example 5.1. Compute for b > 0 the stochastic differential d| |W (t)− a| − b |.
It is obvious that

| |x− a| − b | = (a− x− b)1I(−∞,a−b)(x) + (x− a+ b)1I[a−b,a)(x)

+ (a− x+ b)1I[a,a+b)(x) + (x− a− b)1I[a+b,∞)(x).

Applying (5.19), we have

d| |W (t)− a| − b | =
(
1I(a+b,∞)(W (t))− 1I(a,a+b)(W (t)) + 1I(a−b,a)(W (t))

−1I(−∞,a−b)(W (t))
)
dW (t) + `(dt, a+ b)− `(dt, a) + `(dt, a− b).

Since the expectation of a stochastic integral equals zero, from (5.16) it follows
that

d

dt
Ex0 ||W (t)−a|−b| = 1

√
2�t

e−(a−b−x0)
2/2t+ 1

√
2�t

e−(a+b−x0)
2/2t− 1

√
2�t

e−(a−x0)
2/2t,

where the subscript in the expectation means that it is computed with respect to
the process W with W (0) = x0.

Exercises.

5.1. Compute the differentials

1) d exp
(
|W (t)|3 +

t∫
0

W 2(s) dW (s)
)

;

2) d
(
|W (t)|e|W (t)−r|);

3) d| |W (t)− a|3 − b3|, 0 < b < a.
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§ 6. Stochastic exponent

Let (Ω,F , {Ft},P) be a filtered probability space and W (t), t ∈ [0, T ], be a
Brownian motion adapted to the filtration {Ft}. Let for all v > t the increments
W (v)−W (t) be independent of the σ-algebra Ft.

For an arbitrary b ∈ L2[0, T ], consider the stochastic exponent

ρ(t) := exp
( t∫

0

b(s) dW (s)− 1

2

t∫
0

b2(s) ds
)
, t ∈ [0, T ]. (6.1)

Let us compute the stochastic differential of the process ρ. Applying Itô’s formula
(4.22), d = 1, for f(t, x) = ex and the process

X(t) =

t∫
0

b(s) dW (s)− 1

2

t∫
0

b2(s) ds,

we have

dρ(t) = ρ(t)
[
b(t) dW (t)− 1

2
b2(t) dt+ 1

2
b2(t) dt

]
= ρ(t)b(t) dW (t).

Therefore,
dρ(t) = ρ(t)b(t) dW (t), ρ(0) = 1. (6.2)

The process ρ is called the stochastic exponent by analogy with the classical expo-

nent ρ̃(t) = exp
( t∫
0

b(s) ds
)
, which is the solution of the equation

dρ̃(t) = ρ̃(t)b(t) dt, ρ̃(0) = 1.

Equation (6.2) is the simplest form of so-called stochastic differential equation (see
§ 7). According to the definition of stochastic differentials, (6.2) is equivalent to
the equation

ρ(t) = 1 +

t∫
0

ρ(s)b(s) dW (s), t ∈ [0, T ]. (6.3)

We will prove that, under some conditions, ρ(t) is a nonnegative martingale with
respect to the filtration {Ft}, with mean value Eρ(t) = 1 for every t ∈ [0, T ].

Proposition 6.1. Let b be a continuous stochastic process from L2[0, T ]. Sup-
pose that for some δ > 0

E exp
(
(1 + δ)

T∫
0

b2(s) ds
)
<∞, (6.4)
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or
sup

0≤s≤T
Eeδb

2(s) <∞. (6.5)

Then for any 0 ≤ t1 < t2 ≤ T ,

E exp
( t2∫
t1

b(s) dW (s)− 1

2

t2∫
t1

b2(s) ds
)

= 1, (6.6)

and, in addition,

E
{

exp
( t2∫
t1

b(s) dW (s)− 1

2

t2∫
t1

b2(s) ds
)∣∣∣Ft1} = 1 a.s. (6.7)

Remark 6.1. The relations (6.6) and (6.7) are valid (see Novikov (1972),
Liptser and Shiryaev (1974)) for an arbitrary process from L2[0, T ] under weaker
assumptions than (6.4), (6.5), which are taken from Gihman and Skorohod (1972).
In (6.4) the factor 1+ δ can be replaced by the factor 1/2, but to improve it to the
factor 1/2− δ is not possible.

Proof of Proposition 6.1. We assume first that b(s) = b̄(s), s ∈ [0, T ], is a simple
process defined by (1.3) and sup

0≤s≤T
|b̄(s)| ≤M , where M is nonrandom. Then

E exp
( t2∫
t1

b̄(s) dW (s)
)
≤ eM

2(t2−t1)/2.

This means that for every m > 0

E exp
(
m

t2∫
t1

b(s) dW (s)
)
≤ em

2M2(t2−t1)/2. (6.8)

Indeed, since on the interval [sk, sk+1), s0 = t1, sm = t2, k = 1, . . . ,m − 1, the
process b̄ is equal to the Fsk

-measurable random variable bk, using the properties
of conditional expectations, and (10.9) Ch. I we have

E exp
( t2∫
t1

b̄(s) dW (s)
)

= E
{
E
{

exp
(m−1∑
k=0

bk(W (sk+1)−W (sk))
)∣∣∣Fsm−1

}}

= E
{

exp
(m−2∑
k=0

bk(W (sk+1)−W (sk))
)

exp
(
b2m−1(sm − sm−1)/2

)}

≤ eM
2(sm−sm−1)/2E exp

(m−2∑
k=0

bk(W (sk+1)−W (sk))
)
≤ eM

2(t2−t1)/2.
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By (6.3),

exp
( t2∫
t1

b̄(s) dW (s)− 1

2

t2∫
t1

b̄2(s) ds
)
− 1

=

t2∫
t1

exp
( t∫
t1

b̄(s) dW (s)− 1

2

t∫
t1

b̄2(s) ds
)
b̄(t) dW (t).

Since
t2∫
t1

E
{(

exp
( t∫
t1

b̄(s) dW (s)− 1

2

t2∫
t1

b̄2(s) ds
)
b̄(t)
)2}

dt <∞,

the expectation of the stochastic integral is zero, and

E exp
( t2∫
t1

b̄(s) dW (s)− 1

2

t2∫
t1

b̄2(s) ds
)

= 1. (6.9)

Thus (6.6) is proved for bounded simple processes. Now, by (2.3), equation (6.3)
and inequality (6.8), we get E{ρ(t2)|Ft1} = ρ(t1) a.s. Hence, (6.7) holds for the
simple processes.

We turn to the proof of the statement for a continuous process b. Let b(s) = 0
for s < 0. We construct for the process b a sequence of bounded simple processes
bn(s), s ∈ [0, T ], such that

b
2

n(s) ≤ b2(s− 1/n) (6.10)

and

lim
n→∞

T∫
0

(b(s)− bn(s))2 dt = 0 a.s. (6.11)

For s ∈ [0, 1/n), we set bn(s) = 0. For s ∈ [k/n, (k+1)/n), k = 1, 2, . . . , [nT ], we
set bn(s) := min

{
inf

(k−1)/n≤s≤k/n
b(s), n

}
if inf

(k−1)/n≤s≤k/n
b(s) > 0, we set bn(s) :=

max
{

sup
(k−1)/n≤s≤k/n

b(s),−n
}

, if sup
(k−1)/n≤s≤k/n

b(s) < 0, and we set bn(s) = 0 if in

at least one point of the interval [(k− 1)/n, k/n] the process b becomes equal zero.
The simple bounded processes bn are adapted to the filtration {Ft} and (6.10) is
satisfied. Then (6.11) holds, because the process b is uniformly continuous on [0, T ].

In view of (6.11) and (3.6), the sequence of random variables

exp
( t2∫
t1

bn(s) dW (s)− 1

2

t2∫
t1

b
2

n(s) ds
)

converges in probability to the variable

exp
( t2∫
t1

b(s) dW (s)− 1

2

t2∫
t1

b2(s) ds
)
.
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If we prove that this sequence of random variables is uniformly integrable (see § 1
Ch. I), then by Proposition 1.3 of Ch. I, we can pass to the limit in (6.9), applied
to the simple processes bn and get (6.6). Equality (6.7) is proved analogously with
the help of property 7′) of the conditional expectations (see § 2 Ch. I).

Choose γ > 0 such that (1 + γ)2(1 + γ/2) = 1 + δ. Using Hölder’s inequality
and (6.9), we get

E
(

exp
( t2∫
t1

b̄n(s) dW (s)− 1

2

t2∫
t1

b̄2n(s) ds
))1+γ

= E
{
exp

(
(1+γ)

t2∫
t1

b̄n(s) dW (s)− (1 + )3

2

t2∫
t1

b̄2n(s) ds+ (1 + )(2 + )

2

t2∫
t1

b̄2n(s) ds
)}

≤
[
E
(

exp
(

(1 + γ)2
t2∫
t1

b̄n(s) dW (s)− (1 + )4

2

t2∫
t1

b̄2n(s) ds
)]1/(1+γ)

×
[
E exp

(
(1 + )2(2 + )

2

t2∫
t1

b̄2n(s) ds
)]γ/(1+γ)

≤
[
E exp

(
(1 + δ)

t2−1/n∫
t1−1/n

b2(s) ds
)]γ/(1+γ)

<∞.

By Proposition 1.2 Ch. I with G(x) = x1+γ , this implies that the corresponding
sequence of random variables is uniformly integrable. Proposition 6.1 is proved
under the condition (6.4).

We turn to the proof of this assertion under the condition (6.5).
Since the function g(x) := ex is convex, by Jensen’s inequality for the integral

of the normalized measure (see (1.4) Ch. I), we have that for v < u and δ > 0

exp
(
(1+δ)

u∫
v

b2(s) ds
)

=exp
( u∫
v

(1+δ)(u−v)b2(s) ds

u− v

)
≤

u∫
v

e(1+δ)(u−v)b
2(s) ds

u− v
.

By (6.5), for any 0 < u− v ≤ �

1 + �
there holds the estimate

E exp
(

(1 + δ)

u∫
v

b2(s) ds
)
≤ 1

u− v

u∫
v

Eeδb
2(s) ds <∞.

This is exactly the condition (6.4), therefore by the assertion proved above, we
have for any 0 < u− v ≤ �

1 + �
the equality

E
{

exp
( u∫
v

b(s) dW (s)− 1

2

u∫
v

b2(s) ds
)∣∣∣∣Fv} = 1. (6.12)
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Divide the interval [t1, t2] by points t1 = v0 < v1 < · · · < vm = t2 such that
max

1≤r≤m
(tk − tk−1) ≤

�

1 + �
. Under the assumption that (6.12) is proved for v = v0,

u = vm−1, we prove (6.12) for v = v0, u = vm. Since (6.12) holds for v = vm−1,
u = vm, we have

E
{

exp
( vm∫
v0

b(s) dW (s)− 1

2

vm∫
v0

b2(s) ds
)∣∣∣∣Fv0}

= E
{

exp
( vm−1∫

v0

b(s) dW (s)− 1

2

vm−1∫
v0

b2(s) ds
)

×E
{

exp
( vm∫
vm−1

b(s) dW (s)− 1

2

vm∫
vm−1

b2(s) ds
)∣∣∣∣Fvm−1

}∣∣∣∣Fv0}

= E
{

exp
( vm−1∫

v0

b(s) dW (s)− 1

2

vm−1∫
v0

b2(s) ds
)∣∣∣∣Fv0} = 1 .

The induction base for v = v0, u = v1 is also valid. Therefore (6.7) holds. Propo-
sition 6.1 is proved. �

Remark 6.2. Suppose that the process b(s), s ∈ [0, T ], is adapted to the filtra-
tion {Fs}, and sup

0≤s≤T
|b(s)| ≤ M for some nonrandom constant M . Then for any

m > 0

E exp
(
m

t2∫
t1

b(s) dW (s)
)
≤ em

2M2(t2−t1)/2. (6.13)

Indeed, according to Proposition 1.1, the process b can be approximated by
a sequence of bounded simple processes bn such that (2.8) holds. For a simple
processes bn we have (6.8). By Proposition 1.2 Ch. I with G(x) = x1+γ , γ > 0,
the corresponding sequence of random variables is uniformly integrable. Therefore,
we can pass to the limit under the expectation sign in (6.8) applied for bn. This
implies (6.13).

Equation (6.3) gives us the iterative procedure

ρ(t) = 1 +

t∫
0

(
1 +

t1∫
0

ρ(s)b(s) dW (s)
)
b(t1) dW (t1) = 1 +

t∫
0

b(t1) dW (t1)

+

t∫
0

t1∫
0

(
1 +

t2∫
0

ρ(s)b(s) dW (s)
)
b(t2) dW (t2)b(t1) dW (t1)
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= 1 +

t∫
0

dW (t1) b(t1) +

t∫
0

dW (t1) b(t1)

t1∫
0

dW (t2) b(t2)

+

t∫
0

dW (t1) b(t1)

t1∫
0

dW (t2) b(t2)

t2∫
0

dW (t3) b(t3) + · · · .

Formally, we have the series

ρ(t) =
∞∑
n=0

ρn(t), (6.14)

where ρ0(t) ≡ 1 and

ρn(t) :=

t∫
0

dW (t1) b(t1)

t1∫
0

dW (t2) b(t2) · · ·
tn−1∫
0

dW (tn) b(tn).

This is equivalent to the equality

ρn(t) =

t∫
0

ρn−1(t1)b(t1) dW (t1). (6.15)

Of course, we need to prove that the series (6.14) converges a.s. We assume this
first. Therefore, the stochastic exponent is represented as the sum of multiple Itô
integrals of the process b(t), t ∈ [0, T ].

The usual multiple integral has a simple expression, i.e.,

t∫
0

dt1 b(t1)

t1∫
0

dt2 b(t2) · · ·
tn−1∫
0

dtn b(tn) = 1

n!

( t∫
0

b(s) ds
)n
.

For a multiple stochastic integral ρn(t) the formula is not so simple. To derive it,
we proceed as follows.

For further purposes we consider the Hermite polynomials

Hen(t, x) := (−t)nex
2/2t d

n

dxn
e−x

2/2t = n!
∑

0≤k≤n/2

(−1)kxn−2ktk

2kk!(n− 2k)!
, n = 0, 1, 2, . . . .

As to the right-hand side of this equality, see the corresponding example of for-
mula 5 in Appendix 6. We set He0(t, x) := 1. It is easy to compute that
He1(t, x) = x, He2(t, x) = x2 − t, He3(t, x) = x3 − 3xt, He4(t, x) = x4 − 6x2t+ 3t2.

The generating function of the Hermite polynomials is determined by the formula

∞∑
n=0

n

n!
Hen(t, x) = eγx−γ

2t/2, γ ∈ R. (6.16)
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To prove (6.16), we note that the Taylor expansion of the function e−(x+∆)2/2t is

e−(x+∆)2/2t =
∞∑
n=0

�n

n!

dn

dxn
e−x

2/2t, x ∈ R.

Multiplying this equality by ex
2/2t and setting ∆ = −γt, we have (6.16):

eγx−γ
2t/2 =

∞∑
n=0

(−t)n

n!
ex

2/2t d
n

dxn
e−x

2/2t.

Using the generating function (6.16), it is easy to derive the formulas

@

@t
Hen(t, x) = −n(n− 1)

2
Hen−2(t, x),

@k

@xk
Hen(t, x) = n!

(n− k)!
Hen−k(t, x), k = 1, 2, . . . . (6.17)

Substituting x =
t∫

0

b(s) dW (s), t =
t∫

0

b2(s) ds in (6.16), we have

exp
(
γ

t∫
0

b(s) dW (s)− 2

2

t∫
0

b2(s) ds
)

=
∞∑
n=0

n

n!
Hen

( t∫
0

b2(s) ds,

t∫
0

b(s) dW (s)
)
.

(6.18)
The series on the right-hand side converges a.s., since (6.16) converge for all x ∈ R
and t > 0. The left-hand side of (6.18) is the stochastic exponent ρ(γ)(t) defined
in (6.1) with the function γb(t) instead of b(t). For this stochastic exponent the
equality (6.14) has the form

ρ(γ)(t) =
∞∑
n=0

γnρn(t), (6.19)

where ρn(t) is defined by (6.15). Comparing (6.19) with (6.18) we come to the
conclusion that the multiple Itô integral ρn(t) must be equal to

ρn(t) = 1

n!
Hen

( t∫
0

b2(s) ds,

t∫
0

b(s) dW (s)
)
, n = 1, 2, . . . . (6.20)

Below we prove (6.20) directly, using Itô’s differentiation formula. Then this implies
that the series (6.19) converges a.s for arbitrary γ, since the series (6.18) converges
a.s., and our assumption on the convergence of the series (6.14) will be proved.

We prove (6.20) by induction. It is clear that (6.20) holds for n = 0 and n = 1.
Suppose that it holds for index n−1 and let us prove it for index n. It is also evident
that (6.20) holds for t = 0, since Hen(0, 0) = 0, n = 1, 2, . . . . The last equality
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follows from (6.16). Now it is sufficient to prove that the stochastic differentials of
both sides of (6.20) coincide.

According to (6.15) and the induction hypothesis, the stochastic differential on
the left-hand side of (6.20) equals

dρn(t) = ρn−1(t)b(t) dW (t) = 1

(n− 1)!
Hen−1 b(t) dW (t). (6.21)

Here and in what follows we omit the arguments
t∫

0

b2(s) ds,
t∫

0

b(s) dW (s) in the

notation of the Hermite polynomials in (6.20).

Applying Itô’s formula (4.22) for
→
X =

( t∫
0

b2(s) ds,
t∫

0

b(s) dW (s)
)

and taking into

account formulae (6.17), we obtain the following expression for the differential on
the right-hand side (6.20):

dHen = @

@t
Hen b2(t) dt+ @

@x
Hen b(t) dW (t) + 1

2

@2

@x2
Hen b2(t) dt

= −n(n− 1)

2
Hen−2 b2(t) dt+ nHen−1 b(t) dW (t) + n(n− 1)

2
Hen−2 b2(t) dt

= n Hen−1 b(t) dW (t).

After normalization by n! this stochastic differential coincides with (6.21) and,
consequently, (6.20) is proved, because ρn(0) = 0 and Hen(0, 0) = 0 for n ≥ 1. �

Proposition 6.2. Let b(s), s ∈ [0, t], be a stochastic process from L2[0, T ].
Then

0.3E
( t∫

0

b2(s) ds
)2

≤ E
( t∫

0

b(s) dW (s)
)4

≤ 30E
( t∫

0

b2(s) ds
)2

. (6.22)

Proof. Since He4(t, x) = x4 − 6x2t+ 3t2, we have

24ρ4(t) =
( t∫

0

b(s) dW (s)
)4

− 6
( t∫

0

b(s) dW (s)
)2

t∫
0

b2(s) ds+ 3
( t∫

0

b2(s) ds
)2

.

We can assume that the function b is bounded, otherwise we can apply the trun-
cation procedure. Let sup

0≤s≤t
|b(s)| ≤ M . According to (6.15) and the definition of

the stochastic integral, in order to take the expectation of ρ4(t) we need to be sure

that
t∫

0

E(ρ3(t1)b(t1))2 dt1 <∞. In view of (6.15) and (1.12), the required estimate

follows from the inequalities

t∫
0

E(ρ3(t1)b(t1))2 dt1 ≤M2

t∫
0

E(ρ3(t1))2 dt1 = M2

t∫
0

dt1

t1∫
0

E(ρ2(t2)b(t2))2 dt2
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≤M6

t∫
0

dt1

t1∫
0

dt2

t2∫
0

E(ρ1(t3))2 dt3 ≤M8

t∫
0

dt1

t1∫
0

dt2

t2∫
0

dt3

t3∫
0

dt4 = M8t4

4!
.

Since the expectation of a stochastic integral is zero, we have Eρ4(t) = 0. Now,
from the expression for 24ρ4(t) it follows that

E
( t∫

0

b(s) dW (s)
)4

= 6E
{( t∫

0

b(s) dW (s)
)2

t∫
0

b2(s) ds
}
− 3E

( t∫
0

b2(s) ds
)2

.

Applying Hölder’s inequality, we get

E
( t∫

0

b(s) dW (s)
)4

≤ 6E1/2

( t∫
0

b(s) dW (s)
)4

E1/2

( t∫
0

b2(s) ds
)2

− 3E
( t∫

0

b2(s) ds
)2

.

Set

z := E1/2

( t∫
0

b(s) dW (s)
)4/

E1/2

( t∫
0

b2(s) ds
)2

.

Then the previous inequality can be written in the form z2 − 6z + 3 ≤ 0. This
is equivalent to 3 −

√
6 ≤ z ≤ 3 +

√
6. For nonnegative z this is equivalent to

15− 6
√

6 ≤ z2 ≤ 15 + 6
√

6. Finally this implies 0.3 ≤ z2 ≤ 30, and hence (6.22) is
proved. �

Exercises.

6.1. Let b(s), s ∈ [0, t], be a stochastic process from L2[0, T ]. Prove the estimate

c1 E
( t∫

0

b2(s) ds
)3

≤ E
( t∫

0

b(s) dW (s)
)6

≤ c2 E
( t∫

0

b2(s) ds
)3

for some positive constants c1 and c2.

§ 7. Stochastic differential equations

Let (Ω,F ,P) be a probability space. Let W (t), t ∈ [0, T ], be a Brownian motion
with a starting point x ∈ R, and ξ ∈ R be a random variable independent of W .
Let Ft := σ{ξ,W (s), 0 ≤ s ≤ t} be the σ-algebra of events generated by the
random variable ξ and by the Brownian motion in the interval [0, t].

Let a(t, x) and b(t, x), t ∈ [0, T ], x ∈ R, be measurable functions.
A process X(t), t ∈ [0, T ], X(0) = ξ, is said to be a strong solution of the

stochastic differential equation

dX(t) = a(t,X(t)) dt+ b(t,X(t)) dW (t), X(0) = ξ, (7.1)
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if X is a continuous Ft-adapted process such that a.s. for all t ∈ [0, T ]

t∫
0

(|a(s,X(s))|+ |b(s,X(s))|2) ds <∞ (7.2)

and

X(t) = ξ +

t∫
0

a(s,X(s)) ds+

t∫
0

b(s,X(s)) dW (s). (7.3)

Note that due to (7.2) the integrals in (7.3) are well defined. In this section we
follow the presentation in the book Gihman and Skorohod (1972).

1. Existence and uniqueness of solution.

Theorem 7.1. Suppose that functions a and b satisfy the Lipschitz condition:
there exists a constant CT such that for all t ∈ [0, T ] and x, y ∈ R,

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ CT |x− y|, (7.4)

and the linear growth condition: for all t ∈ [0, T ] and x ∈ R

|a(t, x)|+ |b(t, x)| ≤ CT (1 + |x|). (7.5)

Let Eξ2 <∞.
Then there exists a unique strong solution of (7.1) satisfying the condition

sup
0≤t≤T

EX2(t) <∞. (7.6)

Remark 7.1. Condition (7.5) follows from (7.4) if |a(t, 0)| + |b(t, 0)| ≤ CT for
all t ∈ [0, T ].

Remark 7.2. Conditions (7.4) and (7.5) are rather essential even for determin-
istic equations.

Indeed, the equation

dX(t)

dt
= X2(t), X(0) = 1

has the unique solution X(t) = 1

1− t
, t ∈ [0, 1]. Thus it is impossible to find a

solution, for example, in the interval [0, 2].
Generally speaking, condition (7.5) that the functions increase no faster than

linearly guarantees that the solution X of (7.3) does not explode, i.e., |X(t)| does
not tend to ∞ in a finite time.

Another important example concerns the fact that for t ∈ [0, T ] the equation

dX(t)

dt
= 3X2/3(t), X(0) = 0,
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has more than one solution. Indeed, for any t0 ∈ [0, T ] the function

X(t) =
{

0, for 0 ≤ t ≤ t0,

(t− t0)3, for t0 ≤ t ≤ T,

is a solution. In this case the Lipschitz condition (7.4) is not satisfied.

Proof of Theorem 7.1. We first prove the uniqueness. Suppose that there are
two continuous solutions satisfying (7.3) and (7.6), i.e.,

Xl(t) = ξ +

t∫
0

a(s,Xl(s)) ds+

t∫
0

b(s,Xl(s)) dW (s), l = 1, 2.

Then using the inequality (g + h)2 ≤ 2g2 + 2h2, we get

E(X1(t)−X2(t))2 ≤ 2E
( t∫

0

(a(s,X1(s))− a(s,X2(s))) ds
)2

+ 2E
( t∫

0

(b(s,X1(s))− b(s,X2(s))) dW (s)
)2

.

Applying the Hölder inequality for the first term and the isometry property (1.12)
for the second one, we have

E(X1(t)−X2(t))2 ≤ 2t

t∫
0

E(a(s,X1(s))− a(s,X2(s))2 ds

+ 2

t∫
0

E(b(s,X1(s))− b(s,X2(s)))2 ds.

Now using the Lipschitz condition (7.4) we obtain

E(X1(t)−X2(t))2 ≤ L

t∫
0

E(X1(s)−X2(s))2 ds for all t ∈ [0, T ], (7.7)

where L = 2(T + 1)C2
T .

We will often use Gronwall’s lemma.

Lemma 7.1 (Gronwall). Let g(t) and h(t), 0 ≤ t ≤ T , be bounded measurable
functions and let for some K > 0 and all t ∈ [0, T ]

g(t) ≤ h(t) +K

t∫
0

g(s) ds.
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Then

g(t) ≤ h(t) +K

t∫
0

eK(t−s)h(s) ds, t ∈ [0, T ]. (7.8)

If h is nondecreasing, then

g(t) ≤ h(t) eKt, t ∈ [0, T ]. (7.9)

Proof. Set

ψ(t) := h(t) +K

t∫
0

eK(t−s)h(s) ds, ∆(t) := ψ(t)− g(t),

and note that the function ∆(t), t ∈ [0, T ], is bounded. Since

( t∫
0

eK(t−s)h(s) ds
)′

= h(t) +K

t∫
0

eK(t−s)h(s) ds = ψ(t),

the function ψ satisfies the equation

ψ(t) = h(t) +K

t∫
0

ψ(s) ds,

and

∆(t) ≥ K

t∫
0

∆(s) ds, t ∈ [0, T ].

Since K > 0, by iteration, we get

∆(t) ≥ K2

t∫
0

s∫
0

∆(u) du ds=K2

t∫
0

(t− u)∆(u) du ≥ K3

t∫
0

(t− u)

u∫
0

∆(s) ds du

= K3

t∫
0

(t− u)2

2
∆(s) ds ≥ · · · ≥ Kn+1

n!

t∫
0

(t− s)n∆(s) ds.

The last term tends to zero as n→∞, consequently, ∆(t) ≥ 0, t ∈ [0, T ], and (7.8)
holds. For a nondecreasing function h inequality (7.9) is a simple consequence of
(7.8), because

g(t) ≤ h(t) +Kh(t)

t∫
0

eK(t−s) ds = h(t) eKt.

�
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Since sup
0≤s≤T

E
{
X2

1 (t) +X2
2 (t)

}
<∞, using Gronwall’s lemma for h ≡ 0, we deduce

from (7.7) that E(X1(t) − X2(t))2 = 0 and, consequently, P(X1(t) = X2(t)) = 1
for every t ∈ [0, T ]. Therefore, the solutions X1, X2 coincide a.s. for all rational
moments of time, and by the continuity of paths P

(
sup

0≤t≤T
|X1(t)−X2(t)| = 0

)
= 1.

The uniqueness is proved.

To prove that there exists a solution of the stochastic equation (7.3) we apply
the method of successive approximations.

Set X0(t) := ξ,

Xn(t) := ξ +

t∫
0

a(s,Xn−1(s)) ds+

t∫
0

b(s,Xn−1(s)) dW (s). (7.10)

Note that Xn(t) is a continuous Ft-adapted process for every n.
By the linear growth condition (7.5), analogously to (7.7), we have

E(X1(t)−X0(t))2 ≤ 2t

t∫
0

Ea2(s, ξ) ds+ 2

t∫
0

Eb2(s, ξ) ds ≤ Lt(1 + Eξ2) = KLt.

We now make the inductive assumption that for k = n− 1

E(Xk+1(t)−Xk(t))2 ≤
K(Lt)k+1

(k + 1)!
for all t ∈ [0, T ]. (7.11)

Then analogously to (7.7) we have

E(Xn+1(t)−Xn(t))2 ≤ L

t∫
0

E(Xn(s)−Xn−1(s))2 ds

≤ KLn+1

n!

t∫
0

sn ds = K(Lt)n+1

(n+ 1)!
.

Thus (7.11) holds for k = n and the proof of (7.11) for all k = 0, 1, 2 . . . is completed
by induction.

The estimate (7.11) will enable us to prove that the processes Xn(t) converge
a.s. uniformly in t ∈ [0, T ] to a limit. We apply the estimate

sup
0≤t≤T

|Xn+1(t)−Xn(t)| ≤
T∫

0

|a(s,Xn(s))− a(s,Xn−1(s))| ds

+ sup
0≤t≤T

∣∣∣∣
t∫

0

(b(s,Xn(s))− b(s,Xn−1(s))) dW (s)
∣∣∣∣.
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Then using Doob’s inequality (2.6) and (1.12), we obtain

E sup
0≤t≤T

|Xn+1(t)−Xn(t)|2 ≤ 2E
( T∫

0

|a(s,Xn(s))− a(s,Xn−1(s))|ds
)2

+8

T∫
0

E(b(s,Xn(s))− b(s,Xn−1(s)))2 ds ≤ 4L

t∫
0

E(Xn(s)−Xn−1(s))2 ds

≤ KLn+1Tn+1

(n+ 1)!
.

By the Chebyshev inequality,

P
(

sup
0≤t≤T

|Xn+1(t)−Xn(t)| >
1

n2

)
≤ 4n4K

Ln+1Tn+1

(n+ 1)!
.

Since the series of these probabilities converge, by the first part of the Borel–Cantelli
lemma, there exists a.s. a number n0 = n0(ω) such that for all n > n0

sup
0≤t≤T

|Xn+1(t)−Xn(t)| ≤
1

n2
.

This implies that the random variables

Xn(t) = ξ +
n−1∑
k=0

(
Xk+1(t)−Xk(t)

)
(7.12)

converge uniformly in t ∈ [0, T ] to

X(t) = ξ +
∞∑
k=0

(
Xk+1(t)−Xk(t)

)
i.e.,

P
(

lim
n→∞

sup
0≤t≤T

|Xn(t)−X(t)| = 0
)

= 1.

Therefore X(t), t ∈ [0, T ], is a continuous Ft-adapted process and, in view of (7.5),
we see that (7.2) holds.

Using (7.4) and the uniform convergence of Xn to X, one can pass to the limit
in (7.10). We have a(t,Xn(t)) → a(t,X(t)) and b(t,Xn(t)) → b(t,X(t)) a.s. uni-
formly in t ∈ [0, T ], and

T∫
0

(
b(t,Xn(t))− b(t,X(t))

)2
dt→ 0 a.s.

We now can apply (3.6) and, by passage to the limit in (7.10), prove that the
process X is the solution of equation (7.3).
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To complete the proof of Theorem 7.1 it remains to prove that this solution
satisfies (7.6).

From the inequality
( n∑
k=1

ck

)2

≤n
n∑
k=1

c2k, and (7.11), (7.12) we get that EX2
n(t)≤

C(n+ 1) for some C. From (7.10) we have

EX2
n+1(t) ≤ 3Eξ2 + 3E

( t∫
0

a(s,Xn(s)) ds
)2

+ 3E
( t∫

0

b(s,Xn(s)) dW (s)
)2

.

Applying Hölder’s inequality to the second term and the isometry property (1.12)
to the third term, and using (7.5), we obtain

EX2
n+1(t) ≤ 3Eξ2 + 3T

t∫
0

Ea2(s,Xn(s)) ds+ 3

t∫
0

Eb2(s,Xn(s)) ds

≤ 3Eξ2 + 3L

t∫
0

(1 + EX2
n(s)) ds ≤M +M

t∫
0

EX2
n(s) ds.

for some constant M . By iteration, we get that for all t ∈ [0, T ]

EX2
n+1(t) ≤M +M2t+M3 t

2

2!
+ · · ·+Mn+2 tn+1

(n+ 1)!
.

Therefore, EX2
n+1(t) ≤MeMt. By Fatou’s lemma,

EX2(t) ≤MeMt. (7.13)

This proves (7.6). �

2. Local dependence of solutions on coefficients.
The meaning of the assertions presented below is the following. If for two sto-

chastic differential equations with the same initial value the coefficients coincide for
all time moments and for the spatial variable from some interval, then the solutions
of these equations coincide up to the first exit time from this interval.

Theorem 7.2. Suppose that the coefficients a1, b1 and a2, b2 of the stochastic
differential equations

dXl(t) = al(t,Xl(t)) dt+ bl(t,Xl(t)) dW (t), Xl(0) = ξ, (7.14)

l = 1, 2, satisfy conditions (7.4), (7.5) and a1(t, x) = a2(t, x), b1(t, x) = b2(t, x), for
(t, x) ∈ [0, T ]× [−N,N ] with some N > 0. Let Eξ2 <∞.

Let Xl, l = 1, 2, be the strong solutions of (7.14) and Hl := max{t ∈ [0, T ] :
sup

0≤s≤t
|Xl(s)| ≤ N}. Then P(H1 = H2) = 1 and

P
(

sup
0≤s≤H1

|X1(s)−X2(s)| = 0
)

= 1. (7.15)
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Proof. Set

ϕ1(t) =


1, if sup

0≤s≤t
|X1(s)| ≤ N,

0, if sup
0≤s≤t

|X1(s)| > N.

It is clear that ϕ1(t) = 1 iff t ∈ [0,H1]. Since given the event {ϕ1(t) = 1} we have
a1(s,X1(s)) = a2(s,X1(s)) and b1(s,X1(s)) = b2(s,X1(s)) for all s ∈ [0, t], one
can write

ϕ1(t)(X1(t)−X2(t)) = ϕ1(t)

t∫
0

(a2(s,X1(s))− a2(s,X2(s))) ds

+ϕ1(t)

t∫
0

(b2(s,X1(s))− b2(s,X2(s))) dW (s).

Since the equality ϕ1(t) = 1 implies ϕ1(s) = 1 for all s ≤ t, using the Lipschitz
condition (7.4), we obtain analogously to (7.7) that for all t ∈ [0, T ]

E
{
ϕ1(t)(X1(t)−X2(t))2

}
≤ L

t∫
0

E
{
ϕ1(s)(X1(s)−X2(s))2

}
ds. (7.16)

By Gronwall’s lemma, E
{
ϕ1(t)(X1(t) − X2(t))2

}
= 0. Since the processes X1(t)

and X2(t) are continuous, we get

P
(

sup
0≤t≤T

(ϕ1(t)(X1(t)−X2(t))2) = 0
)

= 1.

This implies that in the interval [0,H1] the processes X1(t) and X2(t) coincide a.s.
Therefore, H2 ≥ H1 a.s. Switching the indices 1 and 2, we have that H1 ≥ H2 a.s.
Consequently, H1 = H2 a.s. and (7.15) holds. �

3. Local Lipschitz condition.
In Theorem 7.1 condition (7.4) can be weakened to the local Lipschitz condition.

Theorem 7.3. Suppose that the functions a(t, x) and b(t, x) satisfy the local
Lipschitz condition: for every N > 0 there exists a constant CN,T such that for all
t ∈ [0, T ] and x, y ∈ [−N,N ]

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ CN,T |x− y|, (7.17)

and the linear growth condition: for all t ∈ [0, T ] and x ∈ R

|a(t, x)|+ |b(t, x)| ≤ CT (1 + |x|). (7.18)

Then there exists a unique strong solution of (7.1).

Remark 7.3. The condition (7.17) holds if there exists @

@x
a(t, x) and @

@x
b(t, x)

continuous in (t, x) ∈ [0, T ]×R.
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Proof of Theorem 7.3. The proof involves a truncation procedure. We prove
first the existence of a solution of (7.1).

Set
ξN := ξ1I{|ξ|≤N} +N sign ξ1I{|ξ|>N},

aN (t, x) := a(t, x)1I[0,N ](|x|) + a(t,N signx)1I(N,∞)(|x|)

and
bN (t, x) := b(t, x)1I[0,N ](|x|) + b(t,N signx)1I(N,∞)(|x|).

Let XN (t) be a solution of the stochastic differential equation

dXN (t) = aN (t,XN (t)) dt+ bN (t,XN (t)) dW (t), XN (0) = ξN . (7.19)

For equation (7.19) all conditions of Theorem 7.1 holds. Therefore there exists a
unique continuous solution of this equation satisfying the estimate

sup
0≤t≤T

EX2
N (t) <∞.

Set HN := max{t ∈ [0, T ] : sup
0≤s≤t

|XN (s)| ≤ N}. Since for N ′ > N we have

aN (t, x) = aN ′(t, x) and bN (t, x) = bN ′(t, x) for x ∈ [−N,N ], by Theorem 7.2,
XN (t) = XN ′(t) for all t ∈ [0,HN ] a.s. Therefore,

{HN = T} ⊆
{

sup
N ′>N

sup
0≤t≤T

|XN (t)−XN ′(t)| = 0
}

and, consequently,

P
(

sup
N ′>N

sup
0≤t≤T

|XN (t)−XN ′(t)| > 0
)
≤ P(HN < T ) = P

(
sup

0≤t≤T
|XN (t)| > N

)
.

Next we will prove that

lim
N→∞

P
(

sup
0≤t≤T

|XN (t)| > N
)

= 0. (7.20)

Once this is done, then from the previous estimate and the first part of the Borel–
Cantelli lemma, it follows that for a sufficiently scarce subsequence Nn there exists
a.s. a number n0 = n0(ω) such that for all Nn ≥ Nn0

sup
N ′>Nn

sup
0≤t≤T

|XNn
(t)−XN ′(t)| = 0.

Therefore, by Cauchy’s criterion, the sequence of processes XNn
(t), t ∈ [0, T ], is

Cauchy in the uniform norm for the a.s. convergence. Thus, XNn
(t) converges to

a limit process X(t) uniformly in t ∈ [0, T ]. In the stochastic equation

XN (t) = ξN +

t∫
0

aN (s,XN (s)) ds+

t∫
0

bN (s,XN (s)) dW (s). (7.21)
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we can pass to the limit as Nn → ∞. The usual integral converges in view of the
estimates (7.17), (7.18). To justify the convergence of the stochastic integral we
can use the same estimates and (3.6). As a result, we see that the process X(t),
t ∈ [0, T ], is the strong solution of equation (7.1).

Thus it is enough to prove (7.20). Using (7.21), it is easy to prove that for any
t ∈ [0, T ]

sup
0≤s≤t

|XN (s)|2 ≤ 3ξ2N + 3T

t∫
0

a2
N (s,XN (s)) ds+ 3 sup

0≤s≤t

( s∫
0

bN (u,XN (u)) dW (u)
)2

.

We multiply this inequality by ψ(ξ), where ψ(x) = 1

1 + x2
. Then using (2.6), (7.18)

and the estimate ξ2Nψ(ξ) ≤ 1, we get

E
{
ψ(ξ)X2

N (t)
}
≤ E

{
ψ(ξ) sup

0≤s≤t
X2
N (s)

}
≤ 3 + 3TC2

T

t∫
0

E
{
ψ(ξ)(1 +X2

N (s))
}
ds

+12C2
T

t∫
0

E
{
ψ(ξ)(1 +X2

N (s))
}
ds.

By Gronwall’s lemma, we have E
{
ψ(ξ)X2

N (t)
}
≤ C for t ∈ [0, T ] and for some

constant C. Consequently,

E
{
ψ(ξ) sup

0≤s≤T
X2
N (s)

}
≤ C1

for some constant C1 independent of N .
One has the estimates

P
(

sup
0≤t≤T

|XN (t)| > N
)

= P
(
ψ(ξ) sup

0≤t≤T
X2
N (t) > N2ψ(ξ)

)
≤ P

(
ψ(ξ) sup

0≤t≤T
X2
N (t) > δN2

)
+ P(ψ(ξ) ≤ δ) ≤ C1

�N2 + P(ψ(ξ) ≤ δ),

for any δ > 0. This implies

lim sup
N→∞

P
(

sup
0≤t≤T

|XN (t)| > N
)
≤ P(ψ(ξ) ≤ δ) = P(ξ2 ≥ (1− δ)/δ).

But lim
δ↓0

P(ξ2 ≥ (1− δ)/δ) = 0. This proves (7.20) and, consequently, the existence

of the solution of (7.1).
We now prove uniqueness of a solution of (7.1). Let X1(t) and X2(t) be two a.s.

continuous solutions of (7.1), satisfying the initial condition X1(0) = X2(0) = ξ.
Set

ϕN (t) := 1I[0,N ]

(
sup

0≤v≤t
|X1(v)|

)
1I[0,N ]

(
sup

0≤v≤t
|X2(v)|

)
.
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Using the local Lipshitz condition, the isometry property (1.12) for stochastic in-
tegrals, and the fact that the equality ϕN (t) = 1 implies the equalities ϕN (s) = 1
for all s ≤ t, we can obtain (see the analogous estimate (7.7))

E
{
ϕN (t)(X1(t)−X2(t))2

}
≤ 2t

t∫
0

E
{
ϕN (s)(a(s,X1(s))− a(s,X2(s)))2

}
ds

+2

t∫
0

E
{
ϕN (s)(b(s,X1(s))− b(s,X2(s)))2

}
ds

≤ 2(T + 1)C2
N

t∫
0

E
{
ϕN (s)(X1(s)−X1(s))2

}
ds.

By Gronwall’s lemma, E
{
ϕN (t)(X1(t)−X2(t))2

}
= 0. Therefore, for arbitrary N

P
(

sup
0≤t≤T

|X1(t)−X2(t)| > 0
)
≤ P

(
sup

0≤t≤T
|X1(t)| > N

)
+P

(
sup

0≤t≤T
|X2(t)| > N

)
.

From the continuity of the solutions X1 and X2 it follows that their suprema are
finite. This implies that the probabilities on the right-hand side of this estimate
tend to zero as N →∞. Thus P

(
sup

0≤t≤T
|X1(t)−X2(t)| = 0

)
= 1, and this means

uniqueness of the solution of (7.1). �

It is convenient to have estimates for the moments of even order of the solution
of the stochastic differential equation (7.1).

Theorem 7.4. Suppose that the functions a(t, x) and b(t, x) satisfy the condi-
tions of Theorem 7.3. Let Eξ2m <∞, where m is a positive integer. Then

EX2m(t) ≤
(
Eξ2m +Kt

)
e2Kt, (7.22)

and for s < t

E(X(t)−X(s))2m ≤ K̃T
(
1 +Kt+ Eξ2m

)
(1 + (t− s)m)(t− s)me2Kt, (7.23)

for some constants K and K̃, depending only on m and CT .

Proof. We use the notations from the proof of Theorem 7.3. Since, by (7.18), the
variables ξN and the functions aN and bN are bounded by the constant CT (1+N),
then from (7.21) and (4.25) it follows that EX2m

N (t) ≤ CTN
2m(1+ t2m). Applying

Itô’s formula to X2m
N (t), we get

X2m
N (t) = ξ2mN

+

t∫
0

(
2mX2m−1

N (s)aN (s,XN (s)) +m(2m− 1)X2m−2
N (s)b2N (s,XN (s))

)
ds
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+

t∫
0

2mX2m−1
N (s)bN (s,XN (s)) dW (s).

Then

EX2m
N (t) = Eξ2mN +

t∫
0

(
2mE

{
X2m−1
N (s)aN (s,XN (s))

}

+m(2m− 1)E
{
X2m−2
N (s)b2N (s,XN (s))

})
ds

≤ Eξ2m + (2m+ 3)mC2
T

t∫
0

E
{(

1 +X2
N (s)

)
X2m−2
N (s)

}
ds.

Applying the obvious inequality x2m−2 ≤ 1 + x2m, we have

EX2m
N (t) ≤ Eξ2m + (2m+ 3)mC2

T t+ 2(2m+ 3)mC2
T

t∫
0

EX2m
N (s) ds.

By Gronwall’s lemma (see (7.9)),

EX2m
N (t) ≤

(
Eξ2m + (2m+ 3)mC2

T t
)
exp

(
2(2m+ 3)mC2

T t
)
.

Therefore, by Fatou’s lemma this implies (7.22), since XN (t) → X(t).
We now prove (7.23). Obviously

E(X(t)−X(s))2m ≤ E
( t∫
s

a(v,X(v)) dv +

t∫
s

b(v,X(v)) dW (v)
)2m

≤ 22m−1

(
E
( t∫
s

a(v,X(v)) dv
)2m

+ E
( t∫
s

b(v,X(v)) dW (v)
)2m)

.

Using (4.25) with Lk = 2kk2k
(

2k

2k − 1

)(2k−1)k

, Hölder’s inequality, (7.18), and
(7.22), we get

E(X(t)−X(s))2m≤(2(t−s))2m−1

t∫
s

Ea2m(v,X(v)) dv+LmE
( t∫
s

b2(v,X(v)) dv
)m

≤ (2(t− s))2m−1

t∫
s

Ea2m(v,X(v)) dv + Lm(t− s)m−1

t∫
s

Eb2m(v,X(v)) dv
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≤ 22m−1C2m
T (Lm + (t− s)m)(t− s)m−1

t∫
s

(1 + EX2m(v)) dv

≤ 24m−2(t− s)m−1C2m
T (Lm + (t− s)m)

t∫
s

(
1 + (Eξ2m +Kv)e2Kv

)
dv

≤ C2m
T LmK24m−1(1 + (t− s)m)(t− s)m(1 +Kt+ Eξ2m)e2Kt.

�

4. Multi-dimensional stochastic differential equations.

Consider the vector-valued stochastic differential equations.
Let

→
W (t) = (W1(t), . . . ,Wm(t)), t ∈ [0, T ], be m-dimensional Brownian motion

with independent coordinates, which are one-dimensional Brownian motions with
the initial values Wk(0) = xk, k = 1, 2, . . . ,m. Let the random vector ~ξ ∈ Rn be
independent of the process

→
W and let Ft := σ{~ξ,

→
W (s), 0 ≤ s ≤ t} be the σ-algebra

of events generated by ~ξ and the Brownian motions Wk, k = 1, 2, . . . ,m, in [0, t].
Let ~a(t, ~x), t ∈ [0, T ], ~x ∈ Rn, be a measurable function with the state space Rn

and B(t, ~x) be an n×m matrix with measurable real-valued functions as elements.

Denote by |~a| the Euclidean norm of the vector ~a. Set |B| :=
( n∑
k=1

m∑
l=1

b2k,l

)1/2

for

matrixes B with elements {bk,l}n,mk=1,l=1.
Consider the n-dimensional stochastic differential equation

d
→
X(t) = ~a(t,

→
X(t)) dt+ B(t,

→
X(t)) d

→
W (t),

→
X(0) = ~ξ. (7.24)

In coordinates this equation becomes the system of stochastic differential equations

dXk(t) = ak(t,X1(t), . . . , Xn(t))dt

+
m∑
l=1

bk,l(t,X1(t), . . . , Xn(t))dWl(t), Xk(0) = ξk, k = 1, 2, . . . , n.

The process
→
X is a strong solution of (7.24) if it is a continuous Ft-adapted process

such that a.s. for all t ∈ [0, T ],

t∫
0

(
|~a(s,

→
X(s))|+ |B(s,

→
X(s))|2

)
ds <∞ (7.25)

and
→
X(t) = ~ξ +

t∫
0

~a(s,
→
X(s)) ds+

t∫
0

B(s,
→
X(s)) d

→
W (s). (7.26)
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Theorem 7.5. Suppose that ~a(t, ~x) and B(t, ~x) satisfy the Lipschitz condition:
there exists a constant CT such that for all t ∈ [0, T ] and ~x, ~y ∈ Rn

|~a(t, ~x)− ~a(t, ~y)|+ |B(t, ~x)− B(t, ~y)| ≤ CT |~x− ~y|, (7.27)

and the condition: for all t ∈ [0, T ] and ~x ∈ Rn

|~a(t, ~x)|+ |B(t, ~x)| ≤ CT (1 + |~x|). (7.28)

Let E|~ξ|2 < ∞. Then there exists a unique strong solution of (7.24) satisfying
the condition

sup
0≤t≤T

E|
→
X(t)|2 <∞. (7.29)

By standard techniques of linear algebra, the proof of this theorem follows es-
sentially the proof of Theorem 7.1 for the one-dimensional case.

Remark 7.4. The m-dimensional Brownian motion
→
W ◦(t), t ∈ [0, T ], with

dependent coordinates can be obtained from
→
W (t) with independent coordinates

by a linear transformation. This means that there exists an m×m matrix C such
that

→
W ◦(t) = C

→
W (t).

This is due to the fact that the matrix of variances of the Brownian motion→
W ◦(t) is positive definite, and then

Var(
→
W ◦(1)) = CT C

for some matrix C. Here the symbol T stands for the transposition of matrices. It
is unnecessary to consider the analog of equation (7.24) for the Brownian motion
→
W ◦, since

B(t,
→
X(t)) d

→
W ◦(t) = B(t,

→
X(t))C d

→
W (t).

Exercises.

7.1. Let
→
W (t), t ∈ [0, T ], be an m-dimensional Brownian motion with inde-

pendent coordinates and Ft := σ{
→
W (s), 0 ≤ s ≤ t} be the σ-algebra of events

generated by the Brownian motions Wk, k = 1, 2, . . . ,m, in [0, t].
Let B(t), be an n×mmatrix with progressively measurable processes as elements.
Let

d
→
X(t) = B(t) d

→
W (t),

→
X(0) = ~x0.

Prove that the process

M(t) := |
→
X(t)|2 −

t∫
0

|B(s)|2ds

is a martingale with respect to the filtration Ft.
7.2. Under the assumptions of Exercise 7.1, prove for r ∈ N the formula

d|
→
X(t)|2r = 2r|

→
X(t)|2r−2(

→
X(t))TB(t) d

→
W (t)

+
(
2r(r − 1)|

→
X(t)|2r−4|(

→
X(t))TB(t)|2 + r|

→
X(t)|2r−2|B(t)|2

)
dt.
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§ 8. Methods of solving of stochastic differential equations

1. Stochastic exponent. We already have an example of a stochastic differ-
ential equation and its solution. This is the stochastic exponent (see § 6)

ρ(t) = exp
( t∫

0

b(s) dW (s)− 1

2

t∫
0

b2(s) ds
)
,

which is the solution of the equation

dρ(t) = b(t)ρ(t) dW (t), ρ(0) = 1. (8.1)

The state space of the solution of this stochastic equation is the positive real line.

2. Linear stochastic differential equation. The general form of the linear
stochastic differential equation is

dX(t) = (a(t)X(t) + r(t)) dt+ (b(t)X(t) + q(t)) dW (t), X(0) = x0. (8.2)

This equation also has an explicit solution.
For the product of the stochastic exponent ρ(t) and the ordinary exponent

ρ0(t) = exp
( t∫
0

a(s) ds
)

we have

d
(
ρ0(t)ρ(t)

)
= ρ(t) dρ0(t) + ρ0(t) dρ(t) = ρ0(t)ρ(t)

(
a(t) dt+ b(t) dW (t)

)
.

Therefore, the solution of the homogeneous linear stochastic differential equation

dY (t) = a(t)Y (t) dt+ b(t)Y (t) dW (t), Y (0) = 1. (8.3)

is the product of the ordinary exponent and the stochastic one:

Y (t) = exp
( t∫

0

b(s) dW (s) +

t∫
0

(
a(s)− 1

2
b2(s)

)
ds

)
.

It is well known how the solutions of the ordinary nonhomogeneous linear equations
are expressed via the solutions of homogeneous ones. We can expect that the
solution of equation (8.2) has the same structure. It can be checked by direct
computation that the solution of (8.2) is

X(t) = Y (t)
{
x0 +

t∫
0

q(s)Y −1(s) dW (s) +

t∫
0

(r(s)− b(s)q(s))Y −1(s) ds
}
. (8.4)

Indeed,

dX(t) = X(t){a(t) dt+ b(t) dW (t)}+ q(t) dW (t) + (r(t)− b(t)q(t)) dt
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+b(t)q(t) dt = (a(t)X(t) + r(t)) dt+ (b(t)X(t) + q(t)) dW (t).

Note that for the case q(t) ≡ 0 and r(t) ≥ 0, t ≥ 0, the state space of the linear
stochastic differential equation with initial value x0 > 0 is the positive real line.

If the ratio q(t)/b(t) is well defined for all t ≥ 0, then equation (8.2) can be
transformed to the equation with q(t) ≡ 0 by means of a shift of the variable X.
Indeed, (8.2) can be rewritten in the form

dX(t)=
{
a(t)

(
X(t)+ q(t)

b(t)

)
+r(t)−a(t) q(t)

b(t)

}
dt+b(t)

(
X(t)+ q(t)

b(t)

)
dW (t), X(0)=x0.

Setting Z(t) := X(t) + q(t)

b(t)
and assuming that q(t)

b(t)
is a differentiable function, we

have

dZ(t) =
{
a(t)Z(t)+r(t)−a(t) q(t)

b(t)
+
(
q(t)

b(t)

)′}
dt+b(t)Z(t) dW (t), Z(0) = x0+

q(0)

b(0)
.

(8.5)
Therefore, by (8.4) with q(s) ≡ 0, the solution of (8.2) can be written in the form

X(t) = Y (t)
{
x0 + q(0)

b(0)
+

t∫
0

(
r(s)− a(s) q(s)

b(s)
+
(
q(s)

b(s)

)′)
Y −1(s) ds

}
− q(t)

b(t)
. (8.6)

For the case when r(t)− a(t) q(t)
b(t)

+
(
q(t)

b(t)

)′
≡ 0, t ≥ 0, or, equivalently,

q(t)

b(t)
= q(0)

b(0)
exp

( t∫
0

a(s) ds
)
−

t∫
0

r(s) exp
( t∫
s

a(v) dv
)
ds,

we have the shifted stochastic exponent

X(t) =
(
x0 + q(0)

b(0)

)
exp

( t∫
0

b(s) dW (s) +

t∫
0

(
a(s)− 1

2
b2(s)

)
ds

)
− q(t)

b(t)

as the solution of equation (8.2).

3. Nonrandom time change. For a nonrandom function h(t) that is different

from zero for all t ≥ 0 and satisfies
t∫

0

h2(s) ds < ∞, the processes
t∫

0

h(s) dW (s)

and W
( t∫
0

h2(s) ds
)
, W (0) = 0, are identical in law. Indeed, they are Gaussian

processes with mean 0 and the variance
t∫

0

h2(s) ds. Also, these processes have

independent increments.
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Moreover, we can write

t∫
0

h(s) dW̃ (s) = W

( t∫
0

h2(s) ds
)

for some new Brownian motion W̃ (t), t ≥ 0. Indeed,

W̃ (t) =

t∫
0

h−1(s) dW
( s∫

0

h2(v) dv
)
.

The process W
( t∫
0

h2(s) ds
)

has independent increments, and there are well-develo-

ped techniques of integration with respect to such processes (see § 9 Ch. I).

Making the time substitution t→
t∫

0

h2(s) ds in the stochastic differential equa-

tion
dX(t) = a(t,X(t)) dt+ b(t,X(t)) dW (t), X(0) = x0, (8.7)

we have that the process V (t) := X
( t∫
0

h2(s) ds
)

satisfies the following stochastic

differential equation:

dV (t) = a

( t∫
0

h2(s) ds, V (t)
)
h2(t) dt+b

( t∫
0

h2(s) ds, V (t)
)
h(t) dW̃ (t), V (0) = x0.

(8.8)
Such a time substitution enables us to change the coefficients a(t, x) and b(t, x) as
functions of the time variable.

4. Random time change. Let W (t), t ∈ [0,∞), be a Brownian motion
adapted to the filtration {Ft}t≥0. Suppose that the increments W (v) −W (t) are
independent of the σ-algebra Ft for all v > t.

Let b(t), t ∈ [0,∞), be a progressively measurable with respect to the filtration

{Ft}t≥0 process such that θ(t) :=
t∫

0

b2(s) ds <∞ a.s. for every t > 0. Consider the

stochastic integral Y (t) :=
t∫

0

b(s) dW (s), t ∈ [0,∞). Suppose that
∞∫
0

b2(s) ds = ∞.

Let θ(−1)(t) := min{s : θ(s) = t} be the left continuous inverse function to θ,
defined for all t ≥ 0. Since for every s

{θ(−1)(t) > s} =
{ s∫

0

b2(v) dv < t

}
∈ Fs,

the variable θ(−1)(t) is a stopping time with respect to the filtration {Fs}s≥0.
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Theorem 8.1 (Lévy). The process W̃ (t) := Y (θ(−1)(t)), t ≥ 0 is a Brownian
motion.

Proof. For ~γ := (γ1, . . . , γn) ∈ Rn and 0 < t1 < · · · < tn denote B :=
n∑
k=1

n∑
l=1

γkγl(tk ∧ tl), where s ∧ t := min{s, t}. To prove that W̃ (t), t ∈ [0,∞),

is a Brownian motion, it is enough to verify the following formula for the charac-
teristic function:

ϕ(~γ) := E exp
(
i
n∑
k=1

γkW̃ (tk)
)

= e−B/2,

since then W̃ is a Gaussian process with mean zero and the covariance function
Cov(W̃ (s), W̃ (t)) = s ∧ t, but it is a Brownian motion.

We have

ϕ(~γ)eB/2 = E exp
(
i
n∑
k=1

γk

θ(−1)(tk)∫
0

b(s) dW (s) + 1

2

n∑
k=1

n∑
l=1

γkγl(tk ∧ tl)
)

= E exp
(
i

n∑
k=1

γk

θ(−1)(tk)∫
0

b(s) dW (s) + 1

2

n∑
k=1

n∑
l=1

γkγl

θ(−1)(tk)∧θ(−1)(tl)∫
0

b2(s) ds
)

= E exp
(
i

∞∫
0

g(s) dW (s) + 1

2

∞∫
0

g2(s) ds
)
,

where g(s) := b(s)
n∑
k=1

γk1I[0,θ(−1)(tk)](s). Note that from the above transformations

it follows that
∞∫
0

g2(s) ds = B. The process

ρ(t) := E exp
(
i

t∫
0

g(s) dW (s) + 1

2

t∫
0

g2(s) ds
)

is a uniformly integrable stochastic exponent (in formula (6.1) instead of b(s) we
have ig(s)). By (6.3) and (6.4), it is a complex-valued martingale (the real and the
imaginary parts are martingales), and Eρ(t) = 1 for every t. Letting here t→ ∞,
we get Eρ(∞) = 1. As a result, we have that ϕ(~γ)eB/2 = 1. This proves the
theorem. �

Consider a nonhomogeneous stochastic differential equation

dX(t) = a(t,X(t)) dt+ b(t,X(t)) dW (t), X(0) = x0, (8.9)

with b(t, x) > 0 for all (t, x) ∈ [0,∞)×R.
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Let θ(t) :=
t∫

0

b2(s,X(s)) ds < ∞ a.s. for every t > 0 and θ(∞) = ∞. Let

θ(−1)(t) := min{s : θ(s) = t}, t ≥ 0, be the left continuous function inverse of θ.

Set Y (t) := X(θ(−1)(t)), W̃ (t) :=
�(−1)(t)∫

0

b(s,X(s)) dW (s). By Theorem 8.1, the

process W̃ is a Brownian motion. In equation (8.9) we can make the random time
substitution. This yields

Y (t)− Y (0) =

θ(−1)(t)∫
0

a(s,X(s)) ds+

θ(−1)(t)∫
0

b(s,X(s)) dW (s)

=

t∫
0

a(θ(−1)(s), X(θ(−1)(s))) dθ(−1)(s) + W̃ (t) =

t∫
0

a(�(−1)(s); Y (s))

b2(�(−1)(s); Y (s))
ds+ W̃ (t),

because
dθ(−1)(s) = ds

�′(�(−1)(s))
= ds

b2(�(−1)(s); Y (s))
.

Thus in equation (8.9), by the random time substitution, the coefficient before the
stochastic differential is transformed to 1. We get the equation

dY (t) = a(�(−1)(t); Y (t))

b2(�(−1)(t); Y (t))
dt+ dW̃ (t), Y (0) = x0. (8.10)

A feature of this equation is that the coefficient a(�(−1)(t); Y (t))

b2(�(−1)(t); Y (t))
depends on the

stopping time θ(−1)(t). Since these stopping times are increasing in t, there exists
an increasing family of σ-algebras At := Fθ(−1)(t) connected with them (see § 4
Ch. I). The process θ(−1)(t), t ≥ 0, is adapted (see property 8 § 4 Ch. I) to the

filtration {At}t≥0. Since the process
t∫

0

b(s,X(s)) dW (s) is progressively measurable

with respect to the filtration {Ft}t≥0, the Brownian motion W̃ (t) is also adapted
to the filtration {At}t≥0 (see § 4 Ch. I). In addition, for all v > t the increments
W̃ (v) − W̃ (t) are independent of the σ-algebra At. This can be proved in the
following way. Analogously to the proofs of properties (2.3) and (2.4), we can
verify that a.s.

E
{
W̃ (v)− W̃ (t)

∣∣At} = E

{ θ(−1)(v)∫
θ(−1)(t)

b(s,X(s)) dW (s)

∣∣∣∣∣At
}

= 0,

E
{
(W̃ (v)− W̃ (t))2

∣∣At} = E

{( θ(−1)(v)∫
θ(−1)(t)

b(s,X(s)) dW (s)

)2∣∣∣∣∣At
}
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= E

{ θ(−1)(v)∫
θ(−1)(t)

b2(s,X(s)) ds

∣∣∣∣∣At
}
ds = v − t.

Since the process of W̃ is continuous, by Lévy’s characterization (see Theorem 10.1
Ch. I) these two properties guarantee that W̃ is a Brownian motion. This is a
different proof than the one given above in Theorem 8.1. At the end of the proof
of Theorem 10.1 Ch. I it was established that for any 0 ≤ t < v and α ∈ R,

E
{
eiα(W̃ (v)−W̃ (t))

∣∣At} = e−α
2(v−t)/2 a.s.

This equality is equivalent to the fact that the random variables W̃ (v)− W̃ (t) are
independent of the σ-algebra At.

The adaptivity of the random coefficient of equation (8.10) with the filtration
{At}t≥0 and the independence of W̃ (v)− W̃ (t) for every v > t of the σ-algebra At
enables us to prove that there exists a unique solution of such an equation.

5. Reduction to linear stochastic differential equations. Consider the
homogeneous stochastic differential equation

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), X(0) = x0, (8.11)

where the coefficients a and b are independent of the time variable.

For this equation we describe a method of reduction to a linear stochastic dif-
ferential equation. Let f(x), x ∈ R, be a twice continuously differentiable function
which has the inverse f (−1)(x).

Set X̃(t) := f(X(t)), t ≥ 0. Write out the stochastic differential equation for
the process X̃(t). Applying Itô’s formula, we have

df(X(t)) = f ′(X(t))a(X(t)) dt+ f ′(X(t))b(X(t)) dW (t) + 1

2
f ′′(X(t))b2(X(t)) dt.

Setting

ã(x) := f ′(f (−1)(x))a(f (−1)(x)) + 1

2
f ′′(f (−1)(x))b2(f (−1)(x)), (8.12)

b̃(x) := f ′(f (−1)(x))b(f (−1)(x)), (8.13)

and using the equality X(t) = f (−1)(X̃(t)), we obtain

dX̃(t) = ã(X̃(t)) dt+ b̃(X̃(t)) dW (t), X̃(0) = f(x0). (8.14)

Therefore, the substitution X̃(t) = f(X(t)) reduces equation (8.11) to equation
(8.14).

We derive conditions on the coefficients a(x) and b(x), x ∈ R, under which
equation (8.11) can be further reduced to a linear one, i.e., ã(x) = αx + r and
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b̃(x) = βx + q for some constants α, β, r, and q. For these coefficients the linear
stochastic differential equation has (see (8.6)) the solution of the form

X̃(t) =
(
f(x0) + q

�

)
eβ(W (t)−W (0))+(α−β2/2)t

+ �r − �q

�

t∫
0

eβ(W (t)−W (s))+(α−β2/2)(t−s) ds− q

�
.

Using expressions (8.12) and (8.13), for the coefficients ã and b̃, we get

f ′(x)a(x) + 1

2
f ′′(x)b2(x) = αf(x) + r, (8.15)

f ′(x)b(x) = βf(x) + q. (8.16)

Suppose that b(x) is a continuously differentiable function such that b(x) 6= 0 for
all x from the state space of the process X.

In the case β 6= 0 the first-order differential equation (8.16) has the solution

f(x) = c

�
exp

(
β

x∫
x0

dy

b(y)

)
− q

�
, (8.17)

where c is some constant and x0 is the starting point of X.
By (8.16),

f ′′(x)b(x) + b′(x)f ′(x) = βf ′(x),

or
f ′′(x)b2(x) = (β − b′(x))(βf(x) + q). (8.18)

Substituting this expression in equation (8.15), we have(
a(x)

b(x)
+ 1

2
(β − b′(x))

)
(βf(x) + q) = αf(x) + r, (8.19)

or (
a(x)

b(x)
− b′(x)

2
+ �

2
− �

�

)(
f(x) + q

�

)
= �r − �q

�2
.

In the case β = 0 equation (8.16) has the solution

f(x) = q

x∫
x0

dy

b(y)
+ h, (8.20)

where h is some constant, and (8.19) for β = 0 is transformed to the equality

a(x)

b(x)
− b′(x)

2
= α

x∫
x0

dy

b(y)
+ �h+ r

q
. (8.21)

Thus, we can formulate the following statement.
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Proposition 8.1. For a continuously differentiable coefficient b(x) that is dif-
ferent from zero for all x from the state space of X, the homogeneous stochastic
differential equation (8.11) is reducible to the homogeneous linear stochastic dif-
ferential equation in the following cases.

If for some constants α, r, q and β 6= 0, c 6= 0

a(x) = b(x)
(
b′(x)

2
+ �

�
− �

2
+ �r − �q

�c
exp

(
− β

x∫
x0

dy

b(y)

))
, (8.22)

then the process X̃(t) := c

�
exp

(
β

X(t)∫
x0

dy

b(y)

)
− q

�
satisfies the equation

dX̃(t) = (αX̃(t) + r) dt+ (βX̃(t) + q) dW (t), X̃(0) = c− q

�
. (8.23)

If for some constants α, r, h, and q 6= 0,

a(x) = b(x)
(
b′(x)

2
+ α

x∫
x0

dy

b(y)
+ �h+ r

q

)
, (8.24)

then the process X̃(t) := q

X(t)∫
x0

dy

b(y)
+ h satisfies the equation

dX̃(t) = (αX̃(t) + r) dt+ q dW (t), X̃(0) = h. (8.25)

6. Reduction to ordinary differential equations. Consider a nonhomoge-
neous stochastic differential equation

dX(t) = a(t,X(t)) dt+ b(t)X(t) dW (t), X(0) = x0. (8.26)

Here it is important that the coefficient in front of the stochastic differential is
linear. Let ρ(t) be the stochastic exponent

ρ(t) = exp
( t∫

0

b(s) dW (s)− 1

2

t∫
0

b2(s) ds
)
.

Compute the stochastic differential of the process X(t)ρ−1(t). By Itô’s formula,

d(X(t)ρ−1(t)) = ρ−1(t){a(t,X(t)) dt+ b(t)X(t) dW (t)}

−X(t)ρ−2(t)b(t)ρ(t) dW (t) +X(t)ρ−3(t)b2(t)ρ2(t) dt

−ρ−2(t)b(t)X(t)b(t)ρ(t) dt = ρ−1(t)a(t,X(t)) dt.
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Setting Z(t) := X(t)ρ−1(t), we see that this process satisfies the ordinary differen-
tial equation

Z ′(t) = ρ−1(t) a(t, ρ(t)Z(t)), Z(0) = x0. (8.27)

Therefore, multiplying the solution of equation (8.26) by the factor ρ−1(t), we
transform this stochastic differential equation into the “deterministic” differential
equation, which is valid for each sample path of the process ρ(t), t ≥ 0.

Equation (8.27) is rather complicated for the investigations, since it has nowhere
differentiable coefficient ρ(t). An example of the class of functions a(t, x), t ≥ 0,
x ≥ 0, for which it has an explicit solution is

a(t, x) = a(t)xγ .

Nevertheless, equation (8.27) can be useful for numerical computations.

Combining the approaches described above and in Subsection 5, we can reduce
an arbitrary homogeneous stochastic differential equation

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), X(0) = x0, (8.28)

with continuously differentiable coefficient b(x) that is different from zero for all x
from the state space of X, to a “deterministic” differential equation, which is valid
for each sample path of the process.

Consider the function f , defined by (8.17) for q = 0, β = 1 and c = 1, i.e.,

f(x) = exp
( x∫
x0

dy

b(y)

)
. (8.29)

The functionB(x) :=
x∫

x0

dy

b(y)
has the inverseB(−1)(x). This implies that the function

f(x) has the inverse f (−1)(x) = B(−1)(lnx).
According to (8.12), (8.16), and (8.18), the process X̃(t) = exp(B(X(t))) satis-

fies the stochastic differential equation

dX̃(t) = ã(X̃(t)) dt+ X̃(t) dW (t), X̃(0) = 1, (8.30)

where
ã(x) = x

(
a(B(−1)(lnx)))

b(B(−1)(lnx)))
+ 1

2
− b′(B(−1)(lnx)))

2

)
. (8.31)

Then equation (8.30) takes the form (8.26) with b(t) ≡ 1. Therefore, the process
Z(t) = X̃(t) eW (0)−W (t)+t/2 satisfies the ordinary differential equation

Z ′(t) = eW (0)−W (t)+t/2 ã(Z(t) eW (t)−W (0)−t/2), Z(0) = 1. (8.32)

Finally,

X(t) = B(−1)(ln X̃(t)) = B(−1)(lnZ(t) +W (t)−W (0)− t/2).



152 II STOCHASTIC CALCULUS

Exercises.
8.1. Solve the linear stochastic differential equation

dV (t) = µV (t) dt+ σV (t) dW (t), V (0) = x0 > 0.

8.2. Solve the linear stochastic differential equation

dU(t) = −γU(t) dt+ σ dW (t), U(0) = x0 > 0.

8.3. Solve the linear stochastic differential equation

dZ(t) = (βZ(t) + σ) dW (t), Z(0) = x0 > 0.

8.4. Solve the stochastic differential equation

dX(t) = 1

X(t)
dt+ βX(t) dW (t), X(0) = x0 > 0.

8.5. Solve the stochastic differential equation

dX(t) = X−γ(t) dt+ βX(t) dW (t), X(0) = x0 > 0.

8.6. Solve the stochastic differential equation

dX(t) = aX(t)(1− gX(t)) dt+ bX(t) dW (t), X(0) = x0 > 0.

8.7. Let σ(x), x ∈ R, be a function with bounded derivative such that the
integral

S(x) :=

x∫
x0

1

�(y)
dy

is finite for all x ∈ R.
Let the process X(t), t ∈ [0, T ], be a solution of the stochastic differential

equation

dX(t) = 1

2
σ(X(t))σ′(X(t)) dt+ σ(X(t)) dW (t), X(0) = x0.

Prove that Z(t) := S(X(t)), t ∈ [0, T ], is a Brownian motion.

8.8. Solve for γ 6= 1 the stochastic differential equation

dX(t) =
(
aX(t)− gXγ(t)

)
dt+ bX(t) dW (t), X(0) = x0 > 0.

8.9. Solve for integer m 6= 1 the stochastic differential equation

dX(t) =
(
m

2
X2m−1(t) + µXm(t)

)
dt+Xm(t) dW (t), X(0) = x0 > 0.
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8.10. Under what conditions on the parameters a, b, n, for m 6= 1 is the
stochastic differential equation

dX(t) = aXn(t) dt+ bXm(t) dW (t), X(0) = x0 > 0.

reducible to the linear one? What is the solution?

8.11. Let X(t) be a solution of the stochastic differential equation

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), X(0) = x0,

with a continuously differentiable coefficient b(x) different from zero for all x from
the state space of X.

Compute the function f(x) such that the process X̃(t) = f(X(t)), t ≥ 0, satisfies
the equation containing only the pure stochastic differential (the factor before dt
is zero).

§ 9. Dependence of solutions of stochastic
differential equations on initial values

Consider a stochastic differential equation with nonrandom initial value:

dXx(t) = a(t,Xx(t)) dt+ b(t,Xx(t)) dW (t), Xx(0) = x. (9.1)

The integral analog of this equation is the following:

Xx(t) = x+

t∫
0

a(s,Xx(s)) ds+

t∫
0

b(s,Xx(s)) dW (s). (9.2)

1. Continuous dependence of solutions on initial values. We want to
consider solutions of (9.2) for all x ∈ R simultaneously. Moreover, it is better to
consider them as a process of (t, x).

Then the following problem arises. A solution of the stochastic differential equa-
tion (9.2), as it was proved in § 7, exists a.s. It can depend on the initial value.
Therefore, there is a set Λx of probability zero, where the solution does not ex-
ists. The probability of the union of the sets Λx can be nonzero. In this case the
solutions of (9.2) are not determined as a function of x on a set of nonzero proba-
bility. We had the analogous situation when considering the stochastic integral as
a function of the variable upper limit.

The main approach to overcome this difficulty is to prove that the process Xx(t),
(t, x) ∈ [0, T ]×R, can be chosen to be continuous.

Theorem 9.1. Suppose that the functions a(t, x) and b(t, x) satisfy the condi-
tions (7.4) and (7.5). Then there exist a modification Xx(t) of a solution of (9.1)
a.s. jointly continuous in (t, x) ∈ [0, T ]×R.
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If X(t), t ∈ [0, T ], is the solution of the equation

X(t) = ξ +

t∫
0

a(s,X(s)) ds+

t∫
0

b(s,X(s)) dW (s), (9.3)

with a square integrable random initial value ξ independent of the process W (t),
t ∈ [0, T ], then

P
(

sup
0≤t≤T

|X(t)−Xξ(t)| = 0
)

= 1. (9.4)

Proof. From (9.2) it is easy to derive that

sup
0≤v≤t

|Xx(v)−Xy(v)| ≤ |x− y|+
t∫

0

|a(s,Xx(s))− a(s,Xy(s))| ds

+ sup
0≤v≤t

∣∣∣ v∫
0

(b(s,Xx(s))− b(s,Xy(s))) dW (s)
∣∣∣.

Applying Doob’s inequality (2.6) and estimating as in (7.7), we get

E sup
0≤v≤t

(Xx(v)−Xy(v))2 ≤ 3|x−y|2+3E
( t∫

0

|a(s,Xx(s))−a(s,Xy(s))| ds
)2

+12

t∫
0

E(b(s,Xx(s))−b(s,Xy(s)))2ds≤ 3|x−y|2+3(T+4)C2
T

t∫
0

E(Xx(s)−Xy(s))2ds

≤ 3|x− y|2 + 3(T + 4)C2
T

t∫
0

E sup
0≤v≤s

(Xx(v)−Xy(v))2ds.

By (7.6), from the second inequality it follows that E sup
0≤v≤t

(Xx(v) − Xy(v))2,

t ∈ [0, T ], is bounded. Then by Gronwall’s lemma (see (7.9)),

E sup
0≤v≤t

(Xx(v)−Xy(v))2 ≤ 3|x− y|2e3(T+4)C2
T t, t ∈ [0, T ]. (9.5)

Now we can apply arguments similar to those used to prove the continuity of
Jx(t), (t, x) ∈ [0, T ]×R, in § 5. For every fixed x the process Xx(t) is continuous in
t. Let us consider Xx(·) as a random variable taking values in the space C([0, T ]) of
continuous functions on [0, T ]. This space, when equipped with the uniform norm
‖f‖ := sup

t∈[0,T ]

|f(t)| is a Banach space. Then (9.5) can be written as

E‖Xx −Xy‖2 ≤MT |x− y|2. (9.6)



§ 9. DEPENDENCE OF SOLUTIONS ON INITIAL VALUES 155

Applying Kolmogorov’s continuity criterion in the form (5.7), (5.8), we obtain that
for any 0 < γ < 1/2 and N > 0 a.s.

‖Xx −Xy‖ ≤ LN,γ(ω)|x− y|γ , x, y ∈ D
⋂

[−N,N ], (9.7)

where D is the set of dyadic (binary rational) points k/2n of R. Since D is count-
able, Theorem 7.1 shows that a.s. for every y ∈ D and for all t ∈ [0, T ] there exists
a unique solution Xy(t) of the equation

Xy(t) = y +

t∫
0

a(s,Xy(s)) ds+

t∫
0

b(s,Xy(s)) dW (s). (9.8)

Using (9.7) we can a.s. extend the processes Xy from the dyadic set D to the whole
real line by setting Xx(t) = lim

y→x,y∈D
Xy(t). This limit is uniform in t ∈ [0, T ],

therefore, Xx(t) is a.s. continuous in t ∈ [0, T ] simultaneously for all x. Due to
this, (7.4), and (3.6), the passage to the limit in (9.8) as y → x, y ∈ D, proves that
Xx(t) is a.s. the solution of equation (9.2) for all (t, x) ∈ [0, T ]×R.

From (9.7) we get that for any 0 < γ < 1/2 the processes Xx a.s. satisfy the
Hölder condition

sup
0≤t≤T

|Xx(t)−Xy(t)| ≤ LN,γ(ω)|x− y|γ , x, y ∈ [−N,N ], (9.9)

for all integer N .

The joint continuity of the solution Xx(t) in (t, x) follows from (9.9) and from
the continuity of Xx(t) in t for all x. Indeed, for arbitrary x, y ∈ [−N,N ] and
s, t ∈ [0, T ]

|Xx(t)−Xy(s)| ≤ |Xx(t)−Xx(s)|+ ‖Xx(·)−Xy(·)‖. (9.10)

Substituting in (9.2) instead of x the random variable ξ, satisfying the condition
of Theorem 9.1, we have a.s for all t ∈ [0, T ]

Xξ(t) = ξ +

t∫
0

a(s,Xξ(s)) ds+

t∫
0

b(s,Xξ(s)) dW (s). (9.11)

To explain this equality we do the following. Set ξn(ω) :=
∞∑
−∞

k
n1IΩk,n

(ω), where

Ωk,n =
{
ω : ξ(ω) ∈

[
k
n ,

k+1
n

)}
. Then from (9.2), applied for x = k

n and a.s. all
ω ∈ Ωk,n, we have for all t ∈ [0, T ] the equation

Xξn(t) = ξn +

t∫
0

a(s,Xξn(s)) ds+

t∫
0

b(s,Xξn(s)) dW (s).
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Since |ξ − ξn| ≤ 1/n, applying (9.9), we can pass to the limit in this equation. As
a result, we have (9.11). This stochastic equation coincides with (9.3), therefore
by the uniqueness of the solution, the processes Xξ(t) and X(t), t ∈ [0, T ], are
indistinguishable in the sense of (9.4). �

Now we are going to prove a generalization of Theorem 9.1. Consider the family
Xs,x(t), 0 ≤ s ≤ t ≤ T , of solutions of the stochastic differential equation

Xs,x(t) = x+

t∫
s

a(q,Xs,x(q)) dq +

t∫
s

b(q,Xs,x(q)) dW (q), t ∈ [s, T ]. (9.12)

Theorem 9.2. Suppose that the functions a(t, x) and b(t, x) satisfy conditions
(7.4), (7.5). Then there exists a modification Xs,x(t) of a solution of (9.12) a.s.
jointly continuous in (s, t, x), 0 ≤ s ≤ t ≤ T , x ∈ R. Moreover, for the solution
X(t), t∈ [0, T ], of equation (9.3) the following equality holds a.s. for all s∈ [0, T ] :

X(t) = Xs,X(s)(t), t ∈ [s, T ], (9.13)

Proof. The main approach to the proof of this result is the same as for Theo-
rem 9.1, but there are some technical differences. Set as(q, x) := a(q, x)1I[s,∞)(q),
bs(q, x) := b(q, x)1I[s,∞)(q). Consider the stochastic differential equation

X̃s,x(t) = x+

t∫
0

as(q, X̃s,x(q)) dq +

t∫
0

bs(q, X̃s,x(q)) dW (q), t ∈ [0, T ]. (9.14)

The conditions of Theorem 7.1 and 7.4 are satisfied, so there exists a unique strong
solution of (9.14), obeying the estimate

sup
0≤t≤T

EX̃2m
s,x (t) < Km,x,T , (9.15)

where m is a positive integer. It is clear that X̃s,x(t) = x1I[0,s](t)+Xs,x(t)1I[s,T ](t).
From (9.14) we deduce the estimate

sup
0≤v≤t

|X̃s,x(v)− X̃u,y(v)| ≤ |x− y|+
t∫

0

|as(q, X̃s,x(q))− au(q, X̃u,y(q))| dq

+ sup
0≤v≤t

∣∣∣∣
v∫

0

(bs(q, X̃s,x(q))− bu(q, X̃u,y(q))) dW (q)
∣∣∣∣.

Note that for s < u

as(q, x)− au(q, y) = a(q, x)1I[s,u](q) + (a(q, x)− a(q, y))1I[u,T ](q).
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Using conditions (7.4), (7.5), we have

|as(q, x)− au(q, y)| ≤ CT ((1 + |x|)1I[s,u](q) + |x− y|).

Then, applying the analogous inequality for bs(q, x), (4.25), (9.15) and the Hölder
inequality, we get for x, y ∈ [−N,N ] and for t ∈ [0, T ] the estimate

E sup
0≤v≤t

(X̃s,x(v)− X̃u,y(v))2m

≤ Km,T,N

(
|x− y|2m + |u− s|m +

t∫
0

E
(
X̃s,x(q)− X̃u,y(q)

)2m
dq

)
.

≤ Km,T,N

(
|x− y|2m + |u− s|m +

t∫
0

E sup
0≤v≤q

(
X̃s,x(v)− X̃u,y(v)

)2m
dq

)
.

Finally, by Gronwall’s lemma (see (7.9)),

E sup
0≤v≤t

(X̃s,x(v)− X̃u,y(v))2m ≤ K̃m,T,N

(
|x− y|2m + |u− s|m

)
.

Applying Kolmogorov’s continuity criterion (the analog of Theorem 3.3 for pro-
cesses with values in Banach spaces), we deduce that for every 0 < γ < 1/2 and
N > 0, a.s. for all s, u ∈ D

⋂
[0, T ] and x, y ∈ D

⋂
[−N,N ]

sup
0≤v≤t

∣∣X̃s,x(v)− X̃u,y(v)
∣∣ ≤ LN,T,γ(ω)

(
|u− s|γ + |x− y|γ

)
, (9.16)

where D is the set of dyadic (binary rational) points.
Using (9.16) we can a.s. extend the processes X̃u,y from the dyadic set D ×D

to the whole real plane by setting

X̃s,x(t) = lim
y→x,y∈D

lim
u→s,u∈D

X̃u,y(t), s ∈ [0, T ], x ∈ [−N,N ].

This limit is uniform in t ∈ [0, T ], therefore X̃s,x(t) is a.s. continuous in t ∈ [0, T ]
for all s, x simultaneously. Due to this, (7.4), and (3.6), the passage to the limit
in (9.14) as sn → s, xn → x, (sn, xn) ∈ D × D, proves that X̃s,x(t) is a.s. the
solution of equation (9.14) for all (s, t, x) ∈ [0, T ]2 × R. Analogously to the proof
of Theorem 9.1, one establishes that the process X̃s,x(t), (s, t, x) ∈ [0, T ]2 × R, is
continuous and, consequently, the same is true for the process Xs,x(t), 0 ≤ s ≤ t ≤
T , x ∈ R. The equality (9.13) also holds (see the end of the proof of Theorem 9.1).

�

Remark 9.1. Let τ be a stopping time with respect to the filtration Ft :=
σ{ξ,W (s), 0 ≤ s ≤ t}, where ξ is a random variable independent of the Brownian
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motion W . Then for the set {τ ≤ t ≤ T} the following stochastic differential
equation

Xτ,x(t) = x+

t∫
τ

a(q,Xτ,x(q)) dq +

t∫
τ

b(q,Xτ,x(q)) dW (q), t ∈ [τ, T ], (9.17)

makes sense.

This is due to the fact that for a fixed x the processes aτ (q, x) := a(q, x)1I[τ,∞)(q)
and bτ (q, x) := b(q, x)1I[τ,∞)(q) are adapted to the filtration Fq, q ≥ 0.

2. Differentiability of solutions with respect to the initial value. Con-
sider the question of differentiability of the solution Xx with respect to the initial
value x. Since Xx is a random function, we should treat the derivative with respect
to x in the mean square sense. If for a random function Z(x), x ∈ R, there exists
the random function V (x) such that

lim
∆→0

E
(
Z(x+�)− Z(x)

�
− V (x)

)2

= 0,

we call V (x) the mean square derivative of Z and set d

dx
Z(x) := V (x).

The mean square differentiability is important, for example, for the proof that
the function u(x) := Ef(Xx(t)) is continuously differentiable, where f(x), x ∈ R,
has a continuous bounded first derivative.

Theorem 9.3. Suppose that the functions a(t, z) and b(t, z), (t, z) ∈ [0, T ]×R,
are continuous, and have continuous bounded partial derivatives a′z(t, z) and b′z(t, z)
with respect to z.

Then the continuous solution Xx(t) of (9.1) has a stochastically continuous in

(t, x) ∈ [0, T ] × R mean square derivative X(1)
x (t) := d

dx
Xx(t), which satisfies the

equation

X(1)
x (t) = 1 +

t∫
0

a′z(s,Xx(s))X(1)
x (s) ds+

t∫
0

b′z(s,Xx(s))X(1)
x (s) dW (s). (9.18)

Remark 9.2. Under the assumptions of Theorem 9.3, the functions a and b
satisfy the Lipschitz condition (7.4) and the linear growth condition (7.5).

Remark 9.3. The function X(1)
x (t) satisfying equation (9.18) has the form (see

(8.3))

X(1)
x (t) = exp

( t∫
0

b′z(s,Xx(s)) dW (s) +

t∫
0

{
a′z(s,Xx(s))−

1

2

(
b′z(s,Xx(s)

)2}
ds

)
.

(9.19)
This derivative is positive and, therefore for every fixed t, the process Xx(t) is a.s.
an increasing function with respect to x.

Proof of Theorem 9.3. We start with an auxiliary result.
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Lemma 9.1. Let a∆(t) and b∆(t), t ∈ [0, T ], ∆ ∈ [−1, 1], be a family of uni-
formly bounded progressively measurable processes, i.e., |a∆(t)| ≤ K, |b∆(t)| ≤ K
for all t ∈ [0, T ] and some nonrandom constant K. Suppose that for every ∆ a
progressively measurable process Y∆(t), t ∈ [0, T ], satisfies the equation

Y∆(t) = 1 +

t∫
0

a∆(s)Y∆(s) ds+

t∫
0

b∆(s)Y∆(s) dW (s). (9.20)

Then for any p ∈ R,
EY p∆(t) ≤ e|p|(|p|K+1)Kt. (9.21)

If a∆(t) → a0(t) and b∆(t) → b0(t) as ∆ → 0 in probability for every t ∈ [0, T ],
then Y∆(t) → Y0(t) in probability and in mean square, where Y0 is the solution of
(9.20) for ∆ = 0.

Proof. We note first that Y∆(t) can be represented (see (8.3)) in the form

Y∆(t) = exp
( t∫

0

b∆(s) dW (s) +

t∫
0

(
a∆(s)− 1

2
b2∆(s)

)
ds

)
(9.22)

and, consequently, Y∆(t) is a nonnegative process.
Using the Hölder inequality and (6.13), we have

EY p∆(t) ≤ E1/2 exp
(

2p

t∫
0

b∆(s) dW (s)
)
E1/2 exp

(
2p

t∫
0

a∆(s) ds
)
≤ ep

2K2te|p|Kt.

Note that the estimate (9.21) is valid for both positive and negative p.
Since the coefficients a∆ and b∆, ∆ ∈ [−1, 1], are uniformly bounded and they

converge in probability, they converge also in mean square. Therefore,

lim
∆→0

t∫
0

E(b∆(s)− b0(s))2 ds = 0, lim
∆→0

t∫
0

E|a∆(s)− a0(s)| ds = 0.

Then, in view of (2.8), we can pass to the limit in (9.22) and get that Y∆(t) → Y0(t)
in probability.

For arbitrary ε > 0, we have

E(Y∆(t)− Y0(t))2 = E{1I[0,ε](|Y∆(t)− Y0(t)|)(Y∆(t)− Y0(t))2}
+ E{1I(ε,∞)(|Y∆(t)− Y0(t)|)(Y∆(t)− Y0(t))2} =: I1,∆ + I2,∆.

Using the convergence Y∆(t) → Y0(t) in probability, we see that the first term
on the right-hand side of this equality tends to zero by the Lebesgue dominated
convergence theorem. The second term is estimated by Hölder’s inequality as
follows:

I2,∆ ≤ P1/2(|Y∆(t)− Y0(t)| > ε)E1/2(Y∆(t)− Y0(t))4.
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This term also tends to zero in view of (9.21), p = 4, and the convergence Y∆(t) →
Y0(t) in probability. Consequently, Y∆(t) → Y0(t) in mean square. Lemma 9.1 is
proved. �

We continue the proof of the theorem. Since a(t, x), b(t, x) have bounded deriva-
tives with respect to x, the functions

ã(t, x, y) := a(t; y)− a(t; x)

y − x
, b̃(t, x, y) := b(t; y)− b(t; x)

y − x
, x 6= y,

can be extended continuously to the diagonal x = y by setting ã(t, z, z) := a′z(t, z),
b̃(t, z, z) := b′z(t, z).

For a fixed x and ∆ 6= 0, set Y∆(t) := Xx+�(t)−Xx(t)

�
, t ∈ [0, T ]. Since

Xx+∆(t)−Xx(t) = ∆ +

t∫
0

(a(s,Xx+∆(s))− a(s,Xx(s))) ds

+

t∫
0

(b(s,Xx+∆(s))− b(s,Xx(s))) dW (s),

the process Y∆(t) satisfies equation (9.20) with the coefficients

a∆(t) := ã(t,Xx+∆(t), Xx(t)), b∆(t) := b̃(t,Xx+∆(t), Xx(t)).

These coefficients are uniformly bounded, because the functions a(t, z) and b(t, z)
have continuous bounded derivatives with respect to z.

By (9.9), Xx+∆(t) −→ Xx(t) as ∆ → 0 a.s. Therefore,

a∆(t) → a′z(t,Xx(t)), b∆(t) → b′z(t,Xx(t)) as ∆ → 0 a.s.

Finally, applying Lemma 9.1, we have that as ∆ → 0 the variables Y∆(t) converge
in probability and in mean square to the limit Y0(t) which is said to be the derivative
X(1)
x (t) = d

dx
Xx(t). The limit process X(1)

x (t) satisfies (9.19) and (9.18).
In view of (9.9), the conditions on the coefficients a, b, and (3.6),

sup
t∈[0,T ]

∣∣∣∣
t∫

0

b′z(t,Xy(t)) dW (s)−
t∫

0

b′z(t,Xx(t)) dW (s)
∣∣∣∣ −→ 0 as y → x

in probability. The ordinary integral in (9.19) is also continuous with respect
to x, uniformly in t ∈ [0, T ]. This and (9.19) imply that the process X(1)

x (t),
(t, x) ∈ [0, T ]×R, is stochastically continuous, and so continuous in mean square.

�

Remark 9.4. Under the assumptions of Theorem 9.3,

E
(
X(1)
x (t)

)p ≤ e|p|(|p|K+1)Kt (9.23)

for any p ∈ R.

Indeed, (9.23) is a consequence of (9.21) and Fatou’s lemma.

3. Second derivative of a solution with respect to the initial value.
Similarly to the proof of Theorem 9.3, we can prove the following result concerning
the second-order derivative of Xx(t) with respect to the initial value x.
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Theorem 9.4. Suppose that the functions a(t, z) and b(t, z), (t, z) ∈ [0, T ]×R,
are continuous, and have continuous partial derivatives a′z(t, z), b

′
z(t, z), a

′′
zz(t, z),

b′′zz(t, z) with respect to z.
Then the continuous solution Xx(t) of equation (9.1) has a stochastically con-

tinuous in (t, x) ∈ [0, T ] × R mean square second-order derivative X(2)
x (t) :=

d2

dx2
Xx(t) = d

dx
X(1)
x (t), which satisfies the equation

X(2)
x (t) =

t∫
0

a′′zz(s,Xx(s))(X(1)
x (s))2 ds+

t∫
0

a′z(s,Xx(s))X(2)
x (s) ds

+

t∫
0

b′′zz(s,Xx(s))(X(1)
x (s))2 dW (s) +

t∫
0

b′z(s,Xx(s))X(2)
x (s) dW (s). (9.24)

Remark 9.5. The function X(2)
x (t) satisfying this equation has (see (8.4)) the

form

X(2)
x (t) = X(1)

x (t)
{ t∫

0

b′′zz(s,Xx(s))X(1)
x (s) dW (s)

+

t∫
0

(
a′′zz(s,Xx(s))− b′z(s,Xx(s))b′′zz(s,Xx(s))

)
X(1)
x (s) ds

}
. (9.25)

Proof of Theorem 9.4. From (9.18) for ∆ ∈ [−1, 1], it follows that

X(1)

x+∆(t)−X(1)
x (t) =

t∫
0

(
a′z(s,Xx+∆(s))X(1)

x+∆(s)− a′z(s,Xx(s))X(1)
x (s)

)
ds

+

t∫
0

(
b′z(s,Xx+∆(s))X(1)

x+∆(s)− b′z(s,Xx(s))X(1)
x (s)

)
dW (s). (9.26)

Since a(t, x) and b(t, x) have bounded second derivatives with respect to x, the
functions

ã′(t, x, y) :=
a′y(t; y)− a′x(t; x)

y − x
, b̃′(t, x, y) :=

b′y(t; y)− b′x(t; x)

y − x
, x 6= y,

can be extended continuously to the diagonal x = y by the equalities ã′(t, z, z)
:= a′′zz(t, z), b̃

′(t, z, z) := b′′zz(t, z). We also denote

a′∆(t) := ã′(t,Xx+∆(t), Xx(t)), b′∆(t) := b̃′(t,Xx+∆(t), Xx(t)).
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These coefficients are uniformly bounded, because the functions a(t, x) and b(t, x)
have continuous bounded second derivatives with respect to x.

For a fixed x and ∆ 6= 0 we set Z∆(t) :=
X(1)
x+�(t)−X(1)

x (t)

�
and, as in the proof

of Theorem 9.3, we set Y∆(t) := Xx+�(t)−Xx(t)

�
, t ∈ [0, T ].

Then (9.26) can be rewritten in the form

Z∆(t) =

t∫
0

a′∆(s)Y∆(s)X(1)

x+∆(s) ds+

t∫
0

b′∆(s)Y∆(s)X(1)

x+∆(s) dW (s)

+

t∫
0

a′z(s,Xx(s))Z∆(s) ds+

t∫
0

b′z(s,Xx(s))Z∆(s) dW (s). (9.27)

This stochastic differential equation, as equation for the process Z∆, has the form
(8.2). The coefficients of its linear homogeneous part are of the same form as in
(9.18). Therefore, according to (8.4) and the fact that in this case (8.3) is exactly
(9.18), the solution (9.27) has the form

Z∆(t) = X(1)
x (t)

{ t∫
0

b′∆(s)Y∆(s)X(1)

x+∆(s)
(
X(1)
x (s)

)−1
dW (s)

+

t∫
0

(
a′∆(s)− b′z(s,Xx(s)) b′∆(s)

)
Y∆(s)X(1)

x+∆(s)
(
X(1)
x (s)

)−1
ds

}
. (9.28)

Using this representation, it is not hard to get the estimate

sup
0≤∆≤1

sup
0≤t≤T

EZ2n
∆ (t) <∞ (9.29)

for any positive integer n.
Indeed, taking into account the boundedness of the functions a′∆, b′∆, b′z, the

estimate (4.25), and the nonnegativity of the processes Y∆, X(1)
x , we get

EZ2n
∆ (t) ≤ 22n−1C̃

{
E
( t∫

0

Y 2
∆(s)

(
X(1)

x+∆(s)X
(1)
x (t)

X(1)
x (s)

)2

ds

)n

+E
( t∫

0

Y∆(s)X(1)

x+∆(s)X
(1)
x (t)

X(1)
x (s)

ds

)2n}
≤ Cn

t∫
0

E
(
Y∆(s)X(1)

x+∆(s)X
(1)
x (t)

X(1)
x (s)

)2n

ds.

Applying Hölder’s inequality, we obtain

EZ2n
∆ (t) ≤ C

t∫
0

E1/4Y 8n
∆ (s)E1/4

(
X(1)

x+∆(s)
)8n

E1/4
(
X(1)
x (t)

)8n
E1/4

(
X(1)
x (s)

)−8n
ds.
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Now we can use estimates (9.21), (9.23), which leads to (9.29). The estimate (9.29)
guarantees (see Proposition 1.1 Ch. I) the uniform integrability of the family of
random variables

{
Z2

∆(t)
}

∆>0
for every t ∈ [0, T ].

By (9.9), Xx+∆(t) → Xx(t) as ∆ → 0 a.s. Therefore,

a′∆(t) → a′′zz(t,Xx(t)), b′∆(t) → b′′zz(t,Xx(t)) as ∆ → 0 a.s.

In turn, Y∆(t) converges as ∆ → 0 in probability and in mean square to the
derivative X(1)

x (t), and X(1)

x+∆(t) → X(1)
x (t). Consequently, in (9.28) we can pass

to the limit as ∆ → 0. Then we see that the processes Z∆(t) converge as ∆ → 0
in probability and in mean square to the limit Z0(t), which is called the second-

order derivative X(2)
x (t) = @2

@x2
Xx(t). The limit process X(2)

x (t) satisfies (9.25), and
hence it satisfies (9.24). By (9.25) and (9.29), X(2)

x (t) is stochastically continuous in
(t, x) ∈ [0, T ]×R, and it is continuous in the mean square, since the processes Xx(t)
and X(1)

x (t) are stochastically continuous with respect to x uniformly in t ∈ [0, T ].
�

Remark 9.6. Under the assumptions of Theorem 9.4,

sup
0≤t≤T

E
(
X(2)
x (t)

)2n
<∞ (9.30)

for any positive integer n.

Indeed, (9.30) is a consequence of (9.29) and Fatou’s lemma.

§ 10. Girsanov’s transformation

To clarify the subject of this section we start with a simple example.
Let (Ω,F ,P) be a probability space. Let ζ = ζ(ω) be a Gaussian random

variable with mean zero and variance 1. The characteristic function of this variable
is given by the formula

Eeizζ =
∫
Ω

eizζ(ω)P(dω) =

∞∫
−∞

eizx
1

√
2�
e−x

2/2 dx = e−z
2/2, z ∈ R. (10.1)

This equality holds also for a complex z.
Define a new probability measure by setting

P̃(A) :=
∫
A

exp
(
− µζ(ω)− �2

2

)
P(dω)

for sets A ∈ F . This relation has a brief expression in terms of the Radon–Nikodým
derivative

dP̃

dP
:= P̃(d!)

P(d!)
= exp

(
− µζ(ω)− �2

2

)
.

Note that P̃(Ω) = 1, since by (10.1), for z = iµ we have P̃(Ω) = e−µ
2/2Ee−µζ = 1.
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Proposition 10.1. The random variable ζ̃ = ζ+µ with respect to the measure

P̃ is the Gaussian random variable with mean zero and variance 1.

Proof. Denote by Ẽ the expectation with respect to the measure P̃. Then for
an arbitrary bounded random variable η,

Ẽη :=
∫
Ω

η(ω) P̃(dω) =
∫
Ω

η(ω) exp
(
− µζ(ω)− �2

2

)
P(dω) = E

{
η exp

(
− µζ − �2

2

)}
.

Using this, we have

Ẽeizζ̃ = Ẽeiz(ζ+µ) = E
{
eiz(ζ+µ) exp

(
− µζ − �2

2

)}
= e−µ

2/2

∞∫
−∞

eiz(x+µ)e−µx
1

√
2�
e−x

2/2 dx

=

∞∫
−∞

eiz(x+µ) 1
√
2�
e−(x+µ)2/2 dx =

∞∫
−∞

eizy
1

√
2�
e−y

2/2 dy = e−z
2/2.

This proves the statement. �

The main point of Proposition 10.1 can be formulated as follows: a special choice
of the probability measure can compensate the shift of a Gaussian random variable.

The distribution of a random variable is uniquely determined by the character-
istic function or by the family of expectations of a bounded measurable functions
of this variable. The statement that the random variable ζ̃ = ζ + µ with respect
to the measure P̃ is again distributed as ζ can be expressed as follows: for an
arbitrary bounded measurable function f we have Ẽf(ζ̃) = Ef(ζ), or, in view of
the definitions of Ẽ and ζ̃,

E
{
f(ζ + µ) exp

(
− µζ − �2

2

)}
= Ef(ζ). (10.2)

As we saw, if instead of the abstract expectation with respect to the probabil-
ity measure P we write (10.2) in terms of integrals with respect to the Gaussian
distribution function dG(x) = 1

√
2�
e−x

2/2 dx, then formula (10.2) turns to the inte-

gration by substitution formula. We can rewrite (10.2) in another way. We apply
(10.2) to the function f(x)eµx−µ

2/2 instead of f(x) and get

Ef(ζ + µ) = E
{
f(ζ) exp

(
µζ − �2

2

)}
.

For f(x) = 1IA(x), A ∈ F , this formula has the brief equivalent

dP�+�

dP�
= exp

(
µζ − �2

2

)
,

where Pζ+µ is the measure corresponding to the variable ζ + µ and Pζ is the
measure corresponding to the variable ζ.
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Results analogous to Proposition 10.1 hold also for some random variables taking
values in functional spaces, i.e., for stochastic processes. The next result concerns
the Brownian motion.

Let (Ω,F , {Ft},P) be a filtered probability space. Let W (t), t ∈ [0, T ], be a
Brownian motion adapted to the filtration {Ft}. Suppose that for all v > t the
increments W (v)−W (t) are independent of the σ-algebra Ft.

For an arbitrary b ∈ L2[0, T ], consider the stochastic exponent

ρ(t) := exp
(
−

t∫
0

b(s) dW (s)− 1

2

t∫
0

b2(s) ds
)
, t ∈ [0, T ].

Here compared with the exponent from § 6 we take the process −b(s) instead of
b(s). The stochastic differential of ρ is

dρ(t) = −ρ(t)b(t) dW (t). (10.3)

Therefore,

ρ(t) = 1−
t∫

0

ρ(v)b(v) dW (v).

Suppose that for some δ > 0

E exp
(

(1 + δ)

T∫
0

b2(s) ds
)
<∞,

or
sup

0≤s≤T
Eeδb

2(s) <∞.

Then the stochastic exponent ρ(t), t ∈ [0, T ], is (see Proposition 6.1) a nonnegative
martingale with the mean Eρ(t) = 1 for every t ∈ [0, T ].

Define the probability measure P̃ by setting

P̃(A) :=
∫
A

ρ(T, ω)P(dω)

for A ∈ F . Note that P̃(Ω) = Eρ(T ) = 1.
Denote by Ẽ the expectation with respect to the measure P̃. Then

Ẽη :=
∫
Ω

η(ω) P̃(dω) =
∫
Ω

η(ω)ρ(T, ω)P(dω) = E{ηρ(T )}.
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Proposition 10.2. For any bounded Ft-measurable random variable η the fol-
lowing equalities hold:

Ẽη = E{ηρ(t)}, (10.4)

and for s < t,

Ẽ{η|Fs} = 1

�(s)
E{ηρ(t)|Fs}. (10.5)

Proof. Indeed, using the martingale property of ρ(t), t ∈ [0, T ], we have

Ẽη = E{E{ηρ(T )|Ft}} = E{ηE{ρ(T )|Ft}} = E{ηρ(t)}.

To prove (10.5) we consider an arbitrary bounded Fs-measurable random variable
ξ. We compute the expectation Ẽ{ξη} in two different ways. Using the properties
of the conditional expectation and (10.4), we have

Ẽ{ξη} = Ẽ{Ẽ{ξη|Fs}} = Ẽ{ξẼ{η|Fs}} = E{ξρ(s)Ẽ{η|Fs}}. (10.6)

On the other hand, first applying (10.4) and then using the properties of the con-
ditional expectation, we obtain

Ẽ{ξη} = E{ξηρ(t)} = E{E{ξηρ(t)|Fs}} = E{ξE{ηρ(t)|Fs}}. (10.7)

Since ξ is an arbitrary bounded Fs-measurable random variable, the coincidence
of the right-hand sides of (10.6) and (10.7) implies (10.5). �

The following result is due to I. V. Girsanov (1960) (for nonrandom b see
Cameron and Martin (1945)).

Theorem 10.1. The process W̃ (t) = W (t) +
t∫

0

b(s) ds is a Brownian motion

with respect to the measure P̃.

Proof. By the characterization property (10.9) Ch. I, to prove that the process
W̃ is a Brownian motion it is sufficient to verify that for any s < t and z ∈ R,

Ẽ{exp(iz(W̃ (t)− W̃ (s)))|Fs} = e−z
2(t−s)/2 a.s. (10.8)

We prove (10.8). We first assume that sup
0≤s≤T

|b(s)| ≤ M for some nonrandom

constant M . For any fixed s and t ≥ s, we set

η(t) := exp
(
iz(W̃ (t)− W̃ (s))

)
= exp

(
iz(W (t)−W (s)) + iz

t∫
s

b(u) du
)
.

Note that η(s) = 1. According to (10.5),

g(t) := Ẽ{η(t)|Fs} = 1

�(s)
E{η(t)ρ(t)|Fs}.
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We fix s and for t > s apply Itô’s formula (4.24) for

f(t, x, y) = exy, X(t) = iz(W (t)−W (s)) + iz

t∫
s

b(u) du, Y (t) = ρ(t).

Then taking into account (10.3), we obtain

d(η(t)ρ(t)) = η(t)ρ(t){iz dW (t) + izb(t) dt}

− η(t)ρ(t)b(t) dW (t)− 1

2
z2η(t)ρ(t) dt− izη(t)ρ(t)b(t) dt.

In the integral form this is written as follows: for every t ≥ s,

η(t)ρ(t) = ρ(s) + iz

t∫
s

η(u)ρ(u) dW (u)−
t∫
s

η(u)ρ(u)b(u) dW (u)− z2

2

t∫
s

η(u)ρ(u) du.

Since |η(t)| ≤ 1 and, by (6.13), the estimate E(ρ(u)b(u))2 ≤ M2e2M
2u holds, we

can use (2.3) and get

E{η(t)ρ(t)|Fs} = ρ(s)− z2

2

t∫
s

E{η(u)ρ(u)|Fs} du a.s.

Using the definition of the function g, this can be written in the form

g(t) = 1− z2

2

t∫
s

g(u) du, t ≥ s.

The solution of this differential equation is g(t) = e−z
2(t−s)/2, which is the required

result (10.8).
We will prove (10.8) for an arbitrary process b ∈ L2[0, T ], satisfying the assump-

tions stated above. There exists a sequence of bounded processes bn ∈ L2[0, T ],
such that

lim
n→∞

T∫
0

(b(s)− bn(s))2 ds = 0 a.s.

Then the processes W̃n(t) = W (t) +
t∫

0

bn(s) ds converge to the process W̃ . We

denote ρn(t) the stochastic exponent corresponding to the process bn. Then, in
view of (3.6), ρn(t) → ρ(t) in probability for every t. Since Eρn(t) = Eρ(t) = 1,
we have

E|ρn(t)− ρ(t)| = E
(
|ρ(t)− ρn(t)|+ ρ(t)− ρn(t)

)
= 2E(ρ(t)− ρn(t))+.
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Since (ρ(t) − ρn(t))+ ≤ ρ(t), by the Lebesgue dominated convergence theorem,
ρn(t) → ρ(t) in mean. For the processes bn the equality (10.8) has been already
proved, i.e., in view of (10.5),

E{exp(iz(W̃n(t)− W̃n(s)))ρn(t)|Fs} = ρn(s)e−z
2/2(t−s).

By property 7′) of conditional expectations (see § 2 Ch. I), we can pass to the limit
in this equality and obtain (10.8) for the process b. �

Remark 10.1. For a nonrandom function b Theorem 10.1 was first proved by
Cameron and Martin (1945).

Girsanov’s theorem can be presented in another form. Let C([0, T ]) be the
space of continuous functions on [0, T ]. When equipped with the uniform norm
C([0, T ]) becomes a Banach space. Instead of an abstract probability measure P
we can consider the Wiener measure PW , which for cylinder sets is determined by
(10.1) Ch. I. Although the Wiener measure is concentrated on the sets of nowhere
differentiable paths, it can be extended to the σ-algebra B(C([0, T ])) of Borel sets
of the space C([0, T ]). This measure can be characterized by the expectations of a
bounded measurable functionals of Brownian motion.

Girsanov’s theorem can be recast as.

Theorem 10.2. Let ℘(X(s), 0 ≤ s ≤ t) be a bounded measurable functional
on C([0, t]). Then

E
{
℘

(
W (s) +

s∫
0

b(u) du, 0 ≤ s ≤ t

)
ρ(t)

}
= E℘(W (s), 0 ≤ s ≤ t). (10.9)

Proof. Indeed, the statement of Theorem 10.1 is equivalent to the following: for
any bounded measurable functional ℘(X(s), 0 ≤ s ≤ t),

Ẽ℘(W̃ (s), 0 ≤ s ≤ t) = E℘(W (s), 0 ≤ s ≤ t).

In view of (10.4), the left-hand side of this equality coincides with the left-hand
side of (10.9). �

Let us consider a very important application of Girsanov’s transformation.
Let X(t) and Y (t), t ∈ [0, T ], be solutions of the stochastic differential equations

dX(t) = σ(t,X(t)) dW (t) + µ1(t,X(t)) dt, (10.10)

dY (t) = σ(t, Y (t)) dW (t) + µ2(t, Y (t)) dt, (10.11)

with the same nonrandom initial values. Suppose that the coefficients σ, µ1, µ2

satisfy the conditions of Theorem 7.1. Assume also that σ(t, x) 6= 0 for all (t, x) ∈
[0, T ]×R.

Let Gt0 = σ(W (s), 0 ≤ s ≤ t) be the σ-algebra of events generated by the
Brownian motion up to the time t. It was proved in § 7 that the processes X and
Y are adapted to the natural filtration Gt0, i.e., for every t the variables X(t) and
Y (t) are measurable with respect to Gt0.
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Theorem 10.3. Let α(t, x) := �1(t; x)− �2(t; x)

�(t; x)
, be a continuous function of the

variables (t, x) ∈ [0, T ]×R. Denote

ρ(t) := exp
(
−

t∫
0

α(s,X(s)) dW (s)− 1

2

t∫
0

α2(s,X(s)) ds
)

and suppose that for some δ > 0

E exp
(

(1 + δ)

T∫
0

α2(t,X(t)) dt
)
<∞ or sup

0≤t≤T
Eeδα

2(t,X(t)) <∞.

Then for any bounded measurable functional ℘(Z(s), 0 ≤ s ≤ t) on C([0, t]),

E℘(Y (s), 0 ≤ s ≤ t) = E
{
℘
(
X(s), 0 ≤ s ≤ t

)
ρ(t)

}
(10.12)

for every t ∈ [0, T ].

Remark 10.2. Let PX and PY be the measures associated with the processes
X(t) and Y (t), t ∈ [0, T ], respectively. Then from (10.12) for the functional

℘(Z(s), 0 ≤ s ≤ t) = 1IA(Z(s), 0 ≤ s ≤ t), A ∈ B(C[0, t]),

it follows that the measure PY is absolutely continuous with respect to PX when
restricted to Gt0 and there exists the Radon–Nikodým derivative

dPY

dPX

∣∣∣
Gt

0

= ρ(t) a.s. (10.13)

Proof of Theorem 10.3. Since α is a continuous function, the process α(t,X(t)),
t ∈ [0, T ], is progressively measurable with respect to the filtration {Gt0}.

By Theorem 10.1, the process

W̃ (t) = W (t) +

t∫
0

α(s,X(s)) ds

is a Brownian motion with respect to the measure P̃. Since

dX(t) = σ(t,X(t)) dW̃ (t) + µ2(t,X(t)) dt

and this stochastic differential equation coincides with (10.11), the finite-dimensio-
nal distributions of the process X with respect to the measure P̃ coincide with
those of the process Y with respect to the measure P. This implies that

E℘(Y (s), 0 ≤ s ≤ t) = Ẽ℘(X(s), 0 ≤ s ≤ t).
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In view of (10.4), the right-hand side of this equality coincides with the right-hand
side of (10.12). �

The Radon–Nikodým derivative (10.13) can be rewritten as a functional of X.
Indeed, from (10.10) it follows that

dW (t) = 1

�(t;X(t))
(dX(t)− µ1(t,X(t)) dt).

Then

t∫
0

α(s,X(s)) dW (s) =

t∫
0

�(s;X(s))

�(t;X(t))
dX(s)−

t∫
0

�(s;X(s))�1(s;X(s))

�(t;X(t))
ds.

As a result, we have

ρ(t) = exp
( t∫

0

�2(s;X(s))− �1(s;X(s))

�2(s;X(s))
dX(s)− 1

2

t∫
0

�22(s;X(s))− �21(s;X(s))

�2(s;X(s))
ds

)
.

Consider the particular case when σ(t, x) ≡ 1, µ1(t, x) ≡ 0, µ2(t, x) ≡ µ(x).
Suppose that for some δ > 0

E exp
(

(1 + δ)

T∫
0

µ2(W (t)) dt
)
<∞ or sup

0≤t≤T
Eeδµ

2(W (t)) <∞.

Then for the process Y (t) = W (t) +
t∫

0

µ(Y (s)) ds, t ∈ [0, T ], we have

dPY

dPW

∣∣∣
Gt

0

= exp
( t∫

0

µ(W (s)) dW (s)− 1

2

t∫
0

µ2(W (s)) ds
)

= exp
( W (t)∫
W (0)

µ(y)dy − 1

2

t∫
0

µ2(W (s)) ds− 1

2

t∫
0

µ′(W (s))ds
)

a.s. (10.14)

Here the second equality follows from the Itô formula under the assumption that
the function µ is differentiable.

In particular, for the Brownian motion with linear drift µ(x) ≡ µ, i.e., for the
process W (µ)(t) = µt+W (t) with W (0) = x, formula (10.14) has the form

E℘
(
W (µ)(s), 0 ≤ s ≤ t

)
= e−µx−µ

2t/2E
{
eµW (t)℘(W (s), 0 ≤ s ≤ t)

}
. (10.15)
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Exercises.

10.1. Let X(t) be a solution of the stochastic differential equation

dX(t) = a(X(t)) dt+ dW (t), X(0) = x0.

Use the Girsanov theorem to prove that for all K, x0 ∈ R and t > 0

P(X(t) ≥ K) > 0.

10.2. Let Y (t) = W (t) + µt + ηt2 be the Brownian motion with the quadratic
drift, W (0) = x. Check that

dPY

dPW

∣∣∣
Gt

0

= exp
(
− µx− �2t

2
− µηt2 − 2�2t3

3
+ (µ+ 2ηt)W (t)− 2η

t∫
0

W (s) ds
)
.

10.3. Let Y (t) be a solution of the stochastic differential equation

dY (t) = −θY (t) dt+ dW (t), Y (0) = x, θ ∈ R.

Compute dPY

dPW

∣∣∣
Gt

0

.

§ 11. Probabilistic solution of the Cauchy problem

Let X(t), t ≥ 0, be a solution of the stochastic differential equation

dX(t) = σ(X(t)) dW (t) + µ(X(t)) dt, X(0) = x. (11.1)

Suppose that for every N > 0 there exists a constant KN such that

|σ(x)− σ(y)|+ |µ(x)− µ(y)| ≤ KN |x− y| (11.2)

for all x, y ∈ [−N,N ]. Introduce, in addition, the following restriction on the
growth of the coefficients σ and µ: there exists a constant K such that

|σ(x)|+ |µ(x)| ≤ K(1 + |x|) (11.3)

for all x ∈ R. Then, by Theorem 7.3, equation (11.1) has a unique continuous
solution defined for all t ≥ 0.

Denote by Px and Ex the probability and the expectation with respect to the
process X with the starting point X(0) = x.

Let Ha,b := min{s : X(s) 6∈ (a, b)} be the first exit time of the process X from
the interval (a, b).
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Theorem 11.1. Let Φ(x), f(x), x ∈ [a, b], be continuous functions, and let
f be nonnegative. Suppose that the coefficients σ, µ satisfy condition (11.2) for
N = max{|a|, |b|}, and σ(x) > 0 for x ∈ [a, b].

Let u(t, x), (t, x) ∈ [0,∞)× [a, b], be a solution of the Cauchy problem

@

@t
u(t, x) = 1

2
σ2(x) @

2

@x2
u(t, x) + µ(x) @

@x
u(t, x)− f(x)u(t, x), (11.4)

u(0, x) = Φ(x), (11.5)

u(t, a) = Φ(a), u(t, b) = Φ(b). (11.6)

Then

u(t, x) = Ex

{
Φ(X(t ∧Ha,b)) exp

(
−

t∧Ha,b∫
0

f(X(s)) ds
)}

. (11.7)

Proof. We extend the functions σ and µ outside the interval [a, b] such that
they satisfy (11.2), (11.3), and the condition σ(x) > 0 for x ∈ R. In this case,
by Theorem 7.2, the process X is not changed in the interval [0,Ha,b]. We also
extend f to be a nonnegative continuous function outside [a, b]. One can extend the
solution u of the problem (11.4)–(11.6) outside [a, b] such that it will be continuously
differentiable in (t, x) ∈ (0,∞) × R. Moreover, there exist the continuous second
derivative in x except in the points a− k(b− a) and b+ k(b− a), k ∈ N, and this
derivative has the left and right limits at its points of discontinuity. It is not stated
that u(t, x) satisfies the equation (11.4) for x 6∈ [a, b]. For example, we can set
u(t, x) := −u(t, 2a−x) for x ∈ [2a− b, a], u(t, x) := −u(t, 2b−x) for x ∈ [b, 2b−a],
u(t, x) := u(t, x+ 2b− 2a) for x ∈ [3a− 2b, 2a− b] and so on.

For a fixed t set

η(s) := u(t− s,X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
, s ∈ [0, t].

Applying Itô’s formula (4.22) for d = 1 in the integral form together with the
Remark 4.2, we have for every 0 ≤ q ≤ t that

η(q)− η(0) =

q∫
0

exp
(
−

s∫
0

f(X(v)) dv
)[(

@

@s
u(t− s,X(s))

+ 1

2
σ2(X(s)) @

2

@x2
u(t− s,X(s)) + µ(X(s)) @

@x
u(t− s,X(s))

− f(X(s))u(t− s,X(s))
)
ds+ σ(X(s)) @

@x
u(t− s,X(s)) dW (s)

]
.

Replacing q by the stopping time t ∧Ha,b, we get

η(t∧Ha,b)−η(0) =

t∧Ha,b∫
0

exp
(
−

s∫
0

f(X(v)) dv
)[(

− @

@t
u(t−s,X(s))
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+ 1

2
σ2(X(s)) @

2

@x2
u(t− s,X(s)) + µ(X(s)) @

@x
u(t− s,X(s))

− f(X(s))u(t− s,X(s))
)
ds+ σ(X(s)) @

@x
u(t− s,X(s)) dW (s)

]
.

Using the fact that u(t, x) satisfies equation (11.4) for x ∈ [a, b], we have

η(t ∧Ha,b)− η(0) =

t∧Ha,b∫
0

exp
(
−

s∫
0

f(X(v)) dv
)
σ(X(s)) @

@x
u(t− s,X(s)) dW (s)

=

t∫
0

1I[0,Ha,b)(s) exp
(
−

s∫
0

f(X(v)) dv
)
σ(X(s)) @

@x
u(t− s,X(s)) dW (s). (11.8)

It is important that Ha,b is a stopping time with respect to the filtration Gt0 =
σ(W (s), 0 ≤ s ≤ t). This ensures that the stochastic integral is well defined (see
(3.8)). Note also that all integrands are bounded, because the process X does not
leave the interval (a, b) up to the time Ha,b.

The expectation of the stochastic integral equals zero, and therefore

Exη(t ∧Ha,b) = Exη(0).

It is clear that
Exη(0) = E{u(t,X(0))|X(0) = x} = u(t, x).

By the boundary conditions (11.5) and (11.6), we have

u(t− (t ∧Ha,b), X(t ∧Ha,b)) = Φ(X(t ∧Ha,b)),

and so

Exη(t ∧Ha,b) = Ex

{
Φ(X(t ∧Ha,b)) exp

(
−

t∧Ha,b∫
0

f(X(v)) dv
)}

.

Thus (7.11) holds. �

Remark 11.1. It is very important that in Theorem 11.1 and in the following
results of this section we assume that the solution of the corresponding differential
problem exists.

The following generalization of Theorem 11.1 gives the probabilistic solution for
the nonhomogeneous Cauchy problem.

Theorem 11.2. Let Φ(x), f(x) and g(x), x ∈ [a, b], be continuous functions,
and f be nonnegative. Suppose that the coefficients σ, µ satisfy condition (11.2)
with N = max{|a|, |b|}, and σ(x) > 0 for x ∈ [a, b].



174 II STOCHASTIC CALCULUS

Let u(t, x), (t, x) ∈ [0,∞)× [a, b], be a solution of the nonhomogeneous Cauchy
problem

@

@t
u(t, x) = 1

2
σ2(x) @

2

@x2
u(t, x) + µ(x) @

@x
u(t, x)− f(x)u(t, x) + g(x), (11.9)

u(0, x) = Φ(x), (11.10)

u(t, a) = Φ(a), u(t, b) = Φ(b). (11.11)

Then

u(t, x) = Ex

{
Φ(X(t ∧Ha,b)) exp

(
−

t∧Ha,b∫
0

f(X(s)) ds
)

+

t∧Ha,b∫
0

g(X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds

}
. (11.12)

Proof. As in the proof of Theorem 11.1, we consider the extension of the solution
of the problem (11.9)–(11.11) outside the interval [a, b], assuming that the functions
f and g are continuously extended outside [a, b] so that g is bounded and f is
nonnegative. For a fixed t, set

η(s) := u(t−s,X(s)) exp
(
−

s∫
0

f(X(v)) dv
)

+

s∫
0

g(X(v)) exp
(
−

v∫
0

f(X(q)) dq
)
dv.

Applying Itô’s formula and then substituting in it the stopping time t ∧Ha,b,
we get

η(t∧Ha,b)−η(0) =

t∧Ha,b∫
0

exp
(
−

s∫
0

f(X(v)) dv
)[(

− @

@t
u(t−s,X(s))

+ 1

2
σ2(X(s)) @

2

@x2
u(t− s,X(s)) + µ(X(s)) @

@x
u(t− s,X(s))− f(X(s))u(t− s,X(s))

+ g(X(s))
)
ds+ σ(X(s)) @

@x
u(t− s,X(s)) dW (s)

]
.

We use the fact that for x ∈ [a, b] the function u(t, x) satisfies equation (11.9). As
a result, we have (11.8). Now the proof is completed analogous to the proof of
Theorem 11.1. �

Taking the Laplace transform with respect to t, we can reduce the problem
(11.9)–(11.11) to a problem for an ordinary differential equation.

For any λ > 0, set

U(x) := λ

∞∫
0

e−λtu(t, x) dt. (11.13)
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Then for every x the function u(t, x), t ≥ 0, is uniquely determined by the function
U , λ > 0, as the inverse Laplace transform.

Applying the integration by parts formula, taking into account the boundary
condition (11.10) and the fact that the function u(t, x), by virtue of the represen-
tation (11.12), obeys for some K the estimate |u(t, x)| ≤ K(1 + t), we get

λ

∞∫
0

e−λt
@

@t
u(t, x) dt = −λΦ(x) + λ2

∞∫
0

e−λtu(t, x) dt = −λΦ(x) + λU(x).

In addition, we have

U ′(x) = λ

∞∫
0

e−λt
@

@x
u(t, x) dt, U ′′(x) = λ

∞∫
0

e−λt
@2

@x2
u(t, x) dt.

Now integrating both sides of (11.9) with the weight function λ e−λt, we get

1

2
σ2(x)U ′′(x)+µ(x)U ′(x)−(λ+f(x))U(x) = −λΦ(x)−g(x), x ∈ (a, b). (11.14)

The boundary conditions (11.11) are transformed to the conditions

U(a) = Φ(a), U(b) = Φ(b). (11.15)

One can give a natural probabilistic interpretation to the Laplace transform
(formula (11.13)). Namely, let τ be an exponentially distributed random time
independent of the Brownian motion W and, consequently, of the process X. Let
the density of τ have the form λe−λt1I[0,∞)(t), t ∈ R, λ > 0. Then applying Fubini’s
theorem, we get

U(x) = Eu(τ, x) = Ex

{
Φ(X(τ ∧Ha,b)) exp

(
−

τ∧Ha,b∫
0

f(X(s)) ds
)

+

τ∧Ha,b∫
0

g(X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds

}
. (11.16)

Therefore the function U is equal to the expectation of the same random process
as in formula (11.12), with the random time τ instead of a fixed time t.

As a result, we can formulate the following analog of Theorem 11.2.

Theorem 11.3. Let Φ(x), f(x) and g(x), x ∈ [a, b], be continuous functions
and let f be nonnegative. Suppose that the coefficients σ and µ satisfy condition
(11.2) with N = max{|a|, |b|} and σ(x) > 0 for x ∈ [a, b].

Then the function U(x), x ∈ [a, b], defined by (11.16) is the unique continuous
solution of the problem (11.14), (11.15).
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§ 12. Ordinary differential equations, probabilistic approach

The proof of Theorem 11.2 is based on the result that the nonhomogeneous
Cauchy problem (11.9)–(11.11) has a solution. The proof of this result is very
complicated and requires additional conditions on the functions σ, µ, f and g.
As it was proved, by the Laplace transform with respect to t the problem (11.9)–
(11.11) is reduced to the ordinary differential equation (11.14) with the boundary
conditions (11.15). The ordinary differential problem has a unique solution, which
is not difficult to prove. The solution of (11.14), (11.15) has the probabilistic
expression (11.16). Our aim, in particular, is to give a direct probabilistic proof
for this expression, which is not based on the solution of the Cauchy problem.

We consider first the preliminary results concerning the solutions of ordinary
second-order differential equations.

Proposition 12.1. Let g(x), x ∈ (l, r), be a nonnegative continuous function
that does not vanish identically, l ≥ −∞, r ≤ ∞. Then the homogeneous equation

φ′′(x)− g(x)φ(x) = 0, x ∈ (l, r), (12.1)

has two nonnegative convex linearly independent solutions ψ and ϕ such that ψ(x),
x ∈ (l, r), is increasing, and ϕ(x), x ∈ (l, r), is decreasing.

Proof. Without loss of generality, we assume that 0 ∈ (l, r) and g(0) > 0.
Consider for x ∈ [0, r) the solution ψ+ of equation (12.1) with the initial values
ψ+(0) = 1, ψ′+(0) = 1. This solution is a convex function, therefore ψ+(x) ≥ 1+x.
Another linearly independent solution, as is easily seen, has the form

ϕ(x) = ψ+(x)

r∫
x

dv

 2+(v)
≤ ψ+(x)

r∫
x

dv

(1 + v)2
, x ∈ [0, r).

Since ψ′+(x) is nondecreasing, the following estimates hold for x ∈ [0, r):

ϕ′(x) = ψ′+(x)

r∫
x

dv

 2+(v)
− 1

 +(x)
<

r∫
x

 ′+(v)

 2+(v)
dv − 1

 +(x)
= − 1

 +(r)
≤ 0.

It follows that ϕ(x), x ∈ [0, r), is a nonnegative, convex, nonincreasing function,
and ϕ′(0) < 0. We continue the solution ϕ to the interval (l, 0] so that it satisfies
(12.1). Since the solution is convex, ϕ(x) ≥ ϕ(0) + ϕ′(0)x for x ∈ (l, 0]. Another
linearly independent solution in this interval is given by

ψ(x) = ϕ(x)

x∫
l

dv

'2(v)
≤ ϕ(x)

x∫
l

dv

('(0) + '′(0)v)2
.

Arguing similarly, we find that this solution obeys the estimates

ψ′(x) = 1

'(x)
+ ϕ′(x)

x∫
l

dv

'2(v)
>

1

'(x)
+

x∫
l

'′(v)

'2(v)
dv = 1

'(l)
≥ 0
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and ψ′(0) > 0. We continue the solution ψ to the interval [0, r) so that it satisfies
equation (12.1). Since the solution is convex, it is strictly increasing on the interval.
Proposition 12.1 is proved. �

Consider the homogeneous equation

φ′′(x) + q(x)φ′(x)− h(x)φ(x) = 0, x ∈ R. (12.2)

We set

p(x) := exp
( x∫

0

q(v) dv
)
, y(x) :=

x∫
0

dv

p(v)
, x ∈ R.

The function y(x), x ∈ R, is strictly increasing and y(0) = 0; hence, it has the
strictly increasing inverse function y(−1)(y), y ∈ (l, r), where

l := −
0∫

−∞

dv

p(v)
≥ −∞, r :=

∞∫
0

dv

p(v)
≤ ∞.

By a change of variables, equation (12.2) can be reduced to the form (12.1) with

g(y) = p2(y(−1)(y))h(y(−1)(y)), y ∈ (l, r). (12.3)

Indeed, we change x to y(x). For this choice φ(y) := φ(y(−1)(y)), y ∈ (l, r), i.e.,
we consider the function φ such that φ(x) = φ(y(x)), x ∈ R. Since (12.2) can be
written as

(p(x)φ′(x))′ − p(x)h(x)φ(x) = 0, x ∈ R,

and p(x)φ′(x) = φ
′
(y(x)), equation (12.2) is transformed to the following one

�
′′
(y(x))

p(x)
− p(x)h(x)φ(x) = 0, x ∈ R,

or, equivalently, to the equation

φ
′′
(y(x))− p2(y(−1)(y(x)))h(y(−1)(y(x)))φ(y(x)) = 0, x ∈ R.

This equation for the new variable y is in the form (12.1).

An important question is when does equation (12.2) have nonzero bounded so-
lutions on the whole real line? Since equation (12.1) considered on the whole real
line does not have nonzero bounded solutions, the same is true for (12.2) if l = −∞
and r = ∞.

Thus, we have proved the following statement.
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Proposition 12.2. Let q(x) and h(x), x ∈ R, be continuous functions, and let
h be a nonnegative function that does not vanish identically. Then equation (12.2)
has two nonnegative linearly independent solutions ψ and ϕ such that ψ(x), x ∈ R,
is an increasing and ϕ(x), x ∈ R, is a decreasing solution.

If l = −∞ and r = ∞, then equation (12.2) does not have nonzero bounded
solutions.

The functions ψ(x) and ϕ(x), x ∈ R, are called fundamental solutions of (12.2).
Their Wronskian w(x) := ψ′(x)ϕ(x)− ψ(x)ϕ′(x) has the form

w(x) = w(0) exp
(
−

x∫
0

q(y) dy
)

and it is a positive function.
Indeed, from (12.2) it follows that the Wronskian satisfies the equation

w′(x) = −q(x)w(x), w(0) > 0, x ∈ R,

which yields the desired formula.
If either l > −∞ or r < ∞, then the answer to our question depends on the

functions q(x) and h(x), x ∈ R. Thus, if l = −∞, r < ∞ and lim
y↑r

g(y) < ∞,

where g is defined by (12.3), equation (12.2) has a bounded solution on the whole
real line, because in this case g can be continued beyond the boundary r. Then
the solution ψ(x) of equation (12.1) is bounded for x ∈ (l, r) and ψ(x) = ψ(y(x)),
x ∈ R, is a bounded solution of (12.2). If in this case lim

y↑r
g(y) = ∞, the equation

may or may not have a nonzero bounded solution. The left boundary l is treated
analogously.

Let us give some examples. Consider for α ∈ R the equation

φ′′(x)− φ′(x)− eαxφ(x) = 0, x ∈ R.

By the change of variable x = ln(y+ 1), y ∈ (−1,∞), this equation is transformed
to

φ
′′
(y)− (y + 1)α−2φ(y) = 0, y ∈ (−1,∞).

If α = 2, there exists the limit lim
y↓−1

g(y) = 1. The fundamental solutions of the

transformed equation have the form ϕ(y) = e−y and ψ(y) = ey. The solutions of
the original equation then are ϕ(x) = exp

(
1−ex

)
and ψ(x) = exp

(
ex−1

)
, x ∈ R.

The solution ϕ is bounded.
If α = 0, the fundamental solutions are ϕ(y) = (y+1)

√
5/4+1/2 and ψ(y) = (y+

1)−
√

5/4+1/2, and the solutions of the original equation are ϕ(x) = ex(
√

5/4+1/2) and
ψ(x) = e−x(

√
5/4−1/2), x ∈ R. Hence, there are no nontrivial bounded solutions.

If α = 1, the fundamental solutions of the transformed equation have the
form ϕ(y) =

√
y + 1K1(2

√
y + 1) and ψ(y) =

√
y + 1 I1(2

√
y + 1) (see Appen-

dix 4, equation 6a for p = 1/2). The solutions of the original equation are
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ϕ(x) = ex/2K1(2ex/2) and ψ(x) = ex/2I1(2ex/2), x ∈ R. The solution ϕ is
bounded, according to the asymptotic behavior of the modified Bessel function
K1 (see Appendix 2).

The conditions l = −∞ and r = ∞, which guarantee unboundedness of nonzero
solutions, are not always easy to check. In addition, they do not cover all cases.
We prove the following useful result.

Proposition 12.3. Let q(x) and h(x), x ∈ R, be continuous functions and let
the function h be nonnegative. Suppose that for some C > 0

|q(x)| ≤ C(1 + |x|) for all x ∈ R, (12.4)

lim inf
y→∞

1

y

y∫
0

h(x) dx > 0, lim inf
y→∞

1

y

0∫
−y

h(x) dx > 0. (12.5)

Then the homogeneous equation (12.2) has no nonzero bounded solutions.

Proof. By Proposition 12.2, the homogeneous equation (12.2) has two linearly
independent nonnegative solutions ψ and ϕ such that ψ(x), x ∈ R, is increasing
and ϕ(x), x ∈ R, is decreasing. Assume that ψ+ := lim

x→∞
ψ(x) < ∞. The left

condition in (12.5) implies the existence of y0 > 1 and h0 > 0 such that

1

y

y∫
0

h(x) dx ≥ h0

for all y > y0. Set ε := h0 +

2h0 + 4C
, where the constant C is taken from condition

(12.4). Let y0 be so large that

ψ(x) ∈ (ψ+ − ε, ψ+)

for x ≥ y0. Set y1 := h0 + 4C

h0(h0 + 2C)

y0∫
0

h(x) dx. If y > max{y0, y1}, then

y∫
y0

ψ′′(x) dx =

y∫
y0

(h(x)ψ(x)− q(x)ψ′(x)) dx ≥
y∫

y0

(h(x)ψ(x)− 2Cxψ′(x)) dx

≥
y∫

y0

h(x)ψ(x) dx− 2Cy(ψ(y)− ψ(y0)) ≥ (ψ+ − ε)
(
yh0 −

y0∫
0

h(x) dx
)
− 2Cyε

= yψ+
h0

2
− ψ+

(
h0 + 4C

2h0 + 4C

) y0∫
0

h(x) dx = ψ+
h0

2
(y − y1) > 0.
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Consequently,

ψ′(y)− ψ′(y0) =

y∫
y0

ψ′′(x) dx ≥ ψ+
h0

2
(y − y1)

for y > max{y0, y1}, which contradicts the relation

∞∫
y0

ψ′(y) dy = ψ+ − ψ(y0) <∞.

Therefore, the limit of the function ψ+ cannot be finite and the solution ψ cannot
be bounded. A similar reasoning shows that the solution ϕ cannot be bounded if
the right condition in (12.5) holds. Hence, only the trivial solution can be bounded.

�

We return to the problem (11.14), (11.15). Let X be the solution of the sto-
chastic differential equation (11.1) with coefficients satisfying (11.2) and (11.3).
Suppose that σ2(x) > 0 for all x ∈ R. Let Ha,b := min{s : X(s) 6∈ (a, b)} be the
first exit time of the process X from the interval (a, b).

We start with a simpler problem than (11.14), (11.15).

Theorem 12.1. Let Φ(x) and f(x), x ∈ R, be continuous functions. Suppose
that Φ is bounded and f is nonnegative. Let U(x) be a bounded solution of the
equation

1

2
σ2(x)U ′′(x) + µ(x)U ′(x)− (λ+ f(x))U(x) = −λΦ(x), x ∈ R. (12.6)

Then

U(x) = Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

f(X(s)) ds
)}

. (12.7)

Remark 12.1. Under the conditions of Theorem 12.1 equation (12.6) has a
unique bounded solution in R, because it must have the probabilistic expression of
the form (12.7). Consequently, the corresponding homogeneous equation has only
the trivial bounded solution.

Proof of Theorem 12.1. Set

η(t) := U(X(t)) exp
(
− λt−

t∫
0

f(X(v)) dv
)
.

Applying Itô’s formula, we see that

η(r)− η(0) =

r∫
0

exp
(
− λt−

t∫
0

f(X(v)) dv
)[
U ′(X(t))σ(X(t)) dW (t)
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+
(
U ′(X(t))µ(X(t) + 1

2
U ′′(X(t))σ2(X(t))− (λ+ f(X(t)))U(X(t))

)
dt
]

for any 0 < r. Taking into account (12.6), we can write

η(r ∧Ha,b)− U(x) =

r∫
0

1I[0,Ha,b)(t)e
−λt exp

(
−

t∫
0

f(X(v)) dv
)

×
[
U ′(X(t))σ(X(t)) dW (t)− λΦ(X(t)) dt

]
. (12.8)

By reasons similar to those given for equation (11.8), one can take the expectation
to the stochastic integral. Now, computing the expectation of both sides of (12.8)
and taking into account that the expectation of the stochastic integral is equal to
zero, we obtain

U(x) = Exη(r∧Ha,b)+Ex

r∧Ha,b∫
0

λe−λtΦ(X(t)) exp
(
−

t∫
0

f(X(v)) dv
)
dt. (12.9)

Since the diffusion process X is continuous and defined for all time moments,
Ha,b → ∞ as a → −∞ and b → ∞. By the Lebesgue dominated convergence
theorem, one can pass to the limit in (12.9) as a→ −∞ and b→ ∞. Next, we let
r → ∞. By the definition of the process η, the term Exη(r) tends to zero. Hence,
it follows from (12.9) that

U(x) = Ex

∞∫
0

λe−λtΦ(X(t)) exp
(
−

t∫
0

f(X(v)) dv
)
dt.

Then, using the assumption that τ does not depend on the diffusion X and has the
density λe−λt1I[0,∞)(t), we conclude by Fubini’s theorem that the above equality is
identical to (12.7). �

We have the following version of Theorem 12.1.

Theorem 12.2. Let Φ(x), f(x) and F (x), x ∈ R, be continuous functions.
Suppose that Φ, F are bounded and f is nonnegative. Let U(x), x ∈ R, be a
bounded solution of the equation

1

2
σ2(x)U ′′(x)+µ(x)U ′(x)−(λ+f(x))U(x) = −λΦ(x)−F (x), x ∈ R. (12.10)

Then

U(x) = Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

f(X(s)) ds
)

+

τ∫
0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds

}
.

Proof. This result is a corollary of Theorem 12.1. Indeed, since τ is independent
of X, Fubini’s theorem shows that

Ex

{ τ∫
0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds

}



182 II STOCHASTIC CALCULUS

= λ

∞∫
0

e−λt
t∫

0

Ex

{
F (X(s)) exp

(
−

s∫
0

f(X(v)) dv
)}

ds dt

=

∞∫
0

e−λsEx

{
F (X(s)) exp

(
−

s∫
0

f(X(v)) dv
)}

ds

= 1

�
Ex

{
F (X(τ)) exp

(
−

τ∫
0

f(X(v)) dv
)}

.

Now we can apply Theorem 12.1 with the function Φ(x) + 1

�
F (x) instead of Φ(x).

�

In the following result we can assume initially that the functions µ and σ satisfy
condition (11.2) only on the interval (a, b), because one can continue µ and σ
outside (a, b) in such a way that conditions (11.2) and (11.3) hold. In this case, by
Theorem 7.2, the process X(t) is not changed for t ∈ [0,Ha,b].

Theorem 12.3. Let Φ(x), f(x) and F (x), x ∈ [a, b], be continuous functions,
and let f be nonnegative. Let U(x), x ∈ [a, b], be a solution of the problem

1

2
σ2(x)U ′′(x)+µ(x)U ′(x)−(λ+f(x))U(x) = −λΦ(x)−F (x), x ∈ (a, b), (12.11)

U(a) = Φ(a), U(b) = Φ(b). (12.12)

Then

U(x) = Ex

{
Φ(X(τ ∧Ha,b)) exp

(
−
τ∧Ha,b∫

0

f(X(s)) ds
)

+

τ∧Ha,b∫
0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds

}
. (12.13)

Proof. We continue the solution of the problem (12.11), (12.12) to the whole
real line. One can extend the functions Φ, f and F to the real line so that the
extensions are bounded and f is nonnegative.

Let ψ(x), x ∈ R, and ϕ(x), x ∈ R, be linearly independent solutions of the
homogeneous equation corresponding to (12.11), with ψ increasing and ϕ decreasing
and nonnegative. Then ψ(b)ϕ(a)− ψ(a)ϕ(b) > 0.

The extension of the solution of (12.11), (12.12) to the real line can be written
as

U(x) = Up(x) +Aa,bψ(x) +Ba,bϕ(x), (12.14)

where Up is a particular solution of equation (12.11) for x ∈ R, and the constants
Aa,b, Ba,b satisfy the system of algebraic equations

Φ(a) = Up(a) +Aa,bψ(a) +Ba,bϕ(a),

Φ(b) = Up(b) +Aa,bψ(b) +Ba,bϕ(b).
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This system has the following unique solution:

Aa,b = (�(b)− Up(b))'(a)− (�(a)− Up(a))'(b)

 (b)'(a)−  (a)'(b)
, (12.15)

Ba,b =  (b)(�(a)− Up(a))−  (a)(�(b)− Up(b))

 (b)'(a)−  (a)'(b)
. (12.16)

We set

η(t) := U(X(t)) exp
(
− λt−

t∫
0

f(X(v)) dv
)

+ e−λt
t∫

0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds.

Applying Itô’s formula, we see that

η(r)−η(0) =

r∫
0

exp
(
−λt−

t∫
0

f(X(v)) dv
)[
U ′(X(t))σ(X(t)) dW (t)

+
(
U ′(X(t))µ(X(t))+ 1

2
U ′′(X(t))σ2(X(t))− (λ+ f(X(t)))U(X(t))+F (X(t))

)
dt
]

−λ
r∫

0

e−λt
t∫

0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds dt

for every r > 0. Taking into account (12.11), we get the equality

η(Ha,b)− U(x) =

Ha,b∫
0

exp
(
− λt−

t∫
0

f(X(v)) dv
)[
U ′(X(t))σ(X(t)) dW (t)

−λΦ(X(t))
)
dt
]
− λ

Ha,b∫
0

e−λt
t∫

0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds dt.

It is important that the process 1I[0,Ha,b](t), t ≥ 0, is adapted to the filtration
Gt0 = σ(W (s), 0 ≤ s ≤ t) and for t ≤ Ha,b the functions U ′(X(t)) and σ(X(t)) are
bounded by a constant depending on a, b. Therefore, we can take the expectation
of the stochastic integral and this expectation is equal to zero.

Since sup
x∈[a,b]

|Φ(x)| < ∞ and sup
x∈[a,b]

|F (x)| < ∞, the expectations of the other

terms of the difference η(Ha,b) − U(x) are finite. Applying the expectation, we
derive the equality

U(x) = Exη(Ha,b) + λEx

Ha,b∫
0

exp
(
− λt−

t∫
0

f(X(v)) dv
)
Φ(X(t)) dt
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+λEx

Ha,b∫
0

e−λt
t∫

0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds dt.

Let us consider each of the terms on the right-hand side of this equality. We use the
equality U(X(Ha,b)) = Φ(X(Ha,b)), and the fact that τ is independent of X and
has exponential distribution. By Fubini’s theorem, these terms can be represented
as follows:

Exη(Ha,b) = Ex

{
Φ(X(Ha,b)) exp

(
−

Ha,b∫
0

f(X(s)) ds
)

1I{τ>Ha,b}

}

+Ex

{ Ha,b∫
0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds 1I{τ>Ha,b}

}
,

λEx

Ha,b∫
0

exp
(
− λt−

t∫
0

f(X(v)) dv
)
Φ(X(t)) dt

= Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

f(X(s)) ds
)

1I{τ≤Ha,b}

}
,

and

λEx

Ha,b∫
0

e−λt
t∫

0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds dt

= Ex

{ τ∫
0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds 1I{τ≤Ha,b}

}
.

Summing these equalities, we see that U takes the form (12.13). �

The analogs of Theorem 12.3 are of special interest in the cases when either
τ → ∞, or Ha,b → ∞, and when both limits take place. We begin with the
analysis of the results for the second case.

Theorem 12.4. Let Φ(x) and f(x), x ∈ R, be continuous functions, with Φ
bounded and f nonnegative.

Suppose that there exists the bounded on any finite interval derivative
(
�(x)

�2(x)

)′
,

x ∈ R. Then

U(x) = Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

f(X(s)) ds
)}

, x ∈ R, (12.17)
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is the unique bounded solution of the equation

1

2
σ2(x)U ′′(x) + µ(x)U ′(x)− (λ+ f(x))U(x) = −λΦ(x), x ∈ R. (12.18)

Remark 12.2. In contrast to Theorem 12.1, in this result it is not assumed
that equation (12.18) has a bounded solution; instead, we state that the function
(12.17) is such a solution.

Proof of Theorem 12.4. We set

Ua,b(x) := Ex

{
Φ(X(τ ∧Ha,b)) exp

(
−

τ∧Ha,b∫
0

f(X(s)) ds
)}

(12.19)

for a < x < b. By Theorem 12.3, the function Ua,b(x), x ∈ (a, b), is the solution of
(12.11), (12.12) with F ≡ 0. We extend Ua,b(x) to the whole real line by formula
(12.14).

As it was mentioned above, Ha,b →∞ as a→ −∞ and b→∞.
By the Lebesgue dominated convergence theorem,

lim
a→−∞,b→∞

Ua,b(x) = U(x), x ∈ R. (12.20)

We can assume that a < 0 < b. Integrating (12.11), we get the equation

1

2
(U ′

a,b(x)− U ′
a,b(0)) + �(x)

�2(x)
Ua,b(x)−

�(0)

�2(0)
Ua,b(0)−

x∫
0

(
�(y)

�2(y)

)′
Ua,b(y) dy

−
x∫

0

(
�+ f(y)

�2(y)

)
Ua,b(y) dy = −λ

x∫
0

�(y)

�2(y)
dy. (12.21)

Integrating this equation, we find that for x ∈ R

1

2
(Ua,b(x)−Ua,b(0))− 1

2
U ′
a,b(0)x+

x∫
0

�(z)

�2(z)
Ua,b(z) dz−

�(0)

�2(0)
Ua,b(0)x

−
x∫

0

z∫
0

((
�(y)

�2(y)

)′
+ �+ f(y)

�2(y)

)
Ua,b(y) dy dz = −λ

x∫
0

z∫
0

�(y)

�2(y)
dy dz. (12.22)

From (12.19) it follows that the functions Ua,b(x), x ∈ (a, b), are bounded by
the same constant as the function Φ. Using (12.20) and applying the Lebesgue
dominated convergence theorem, we deduce from (12.22) that there exists the limit
Ũ0 := lim

a→−∞,b→∞
U ′
a,b(0), and

1

2
(U(x)− U(0))− 1

2
Ũ0 x+

x∫
0

�(z)

�2(z)
U(z) dz − �(0)

�2(0)
U(0)x
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−
x∫

0

z∫
0

((
�(y)

�2(y)

)′
+ �+ f(y)

�2(y)

)
U(y) dy dz = −λ

x∫
0

z∫
0

�(y)

�2(y)
dy dz. (12.23)

From this equality it follows that U(x), x ∈ R, is a continuous function. In addition,
U is differentiable for all x including zero, and Ũ0 = U ′(0). Differentiating (12.23)
with respect to x and applying the integration by parts formula, we see that U
satisfies the equation

1

2
(U ′(x)− U ′(0)) +

x∫
0

�(y)

�2(y)
U ′(y) dy −

x∫
0

�+ f(y)

�2(y)
U(y) dy = −λ

x∫
0

�(y)

�2(y)
dy.

Differentiating this equation with respect to x, we get that U is the solution of
(12.18).

Now the fact that such bounded solution is unique follows from Remark 12.1.
�

Consider the transformation of Theorem 12.3 as τ → ∞ and Ha,b → ∞ simul-
taneously.

Theorem 12.5. Let f(x), x ∈ R, be a nonnegative continuous function. Sup-

pose that there exists the bounded on any finite interval derivative
(
�(x)

�2(x)

)′
, x ∈ R.

Then the function

L(x) := Ex exp
(
−

∞∫
0

f(X(s)) ds
)
, x ∈ R, (12.24)

is the solution of the homogeneous equation

1

2
σ2(x)φ′′(x) + µ(x)φ′(x)− f(x)φ(x) = 0, x ∈ R. (12.25)

To prove this result one can repeat the proof of Theorem 12.4 for Φ ≡ 1, adding
to it the passage to the limit as λ → 0. In this case, lim

λ→0
τ = ∞ in probability,

since P(τ > t) = e−λt for t ≥ 0.

This result has an important consequence.

Corollary 12.1. Let f(x), x ∈ R, be a nonnegative continuous function. Sup-

pose that there exists the bounded derivative
(
�(x)

�2(x)

)′
, x∈R, and

lim inf
y→∞

1

y

y∫
0

f(x)

�2(x)
dx > 0, lim inf

y→∞

1

y

0∫
−y

f(x)

�2(x)
dx > 0. (12.26)

Then
∞∫
0

f(X(s)) ds = ∞ a.s. (12.27)

Indeed, according to Proposition 12.3, under these assumptions equation (12.25)
has no nonzero bounded solutions. Therefore, L ≡ 0 and we have (12.27).

Propositions 12.2 and 12.3 imply the following result.
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Corollary 12.2. Let f(x), x ∈ R, be a nonnegative continuous function. Sup-
pose that conditions (12.26) hold and∣∣∣ �(x)

�2(x)

∣∣∣ ≤ C(1 + |x|) for all x ∈ R (12.28)

for some C > 0.
Then the homogeneous equation (12.25) has two nonnegative linearly indepen-

dent solutions ψ(x) and ϕ(x) such that ψ(x) is increasing and lim
x→∞

ψ(x) = ∞,

while ϕ(x) is decreasing and lim
x→−∞

ϕ(x) = ∞.

Another extreme version of Theorem 12.3 is the case when only τ →∞. As we
have seen, this happens if λ→ 0. We precede the consideration of this case by the
following important result.

Lemma 12.1. For every x ∈ [a, b],

ExHa,b <∞. (12.29)

Remark 12.3. From (12.29) it follows that Px(Ha,b <∞) = 1 for x ∈ [a, b].

Proof of Lemma 12.1. We consider the family {Uλ(x), x ∈ [a, b]}λ≥0 of solutions
of the problem

1

2
σ2(x)U ′′(x) + µ(x)U ′(x)− λU(x) = −1, x ∈ (a, b), (12.30)

U(a) = 0, U(b) = 0. (12.31)

From Theorem 12.3 with f ≡ 0, Φ ≡ 0 and F ≡ 1 it follows that Uλ(x) =
Ex{τ ∧Ha,b} for λ > 0.

We will prove that for all x ∈ [a, b]

sup
λ>0

Uλ(x) ≤ U0(x), (12.32)

where U0(x) is the solution of (12.30), (12.31) for λ = 0. This estimate is useful for
us due to the following reason. Since lim

λ→0
τ = ∞ in probability, lim

λ→0
{τ ∧Ha,b} =

Ha,b. Now from (12.32), by Fatou’s lemma, it follows that

ExHa,b ≤ sup
λ>0

Ex{τ ∧Ha,b} ≤ U0(x),

and this is what we want to prove.
To prove (12.32), we use the following result.

Proposition 12.4. The solution of the problem

1

2
σ2(x)Q′′(x) + µ(x)Q′(x) = −F (x), x ∈ (a, b), (12.33)

Q(a) = Φ(a), Q(b) = Φ(b), (12.34)
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has the form

Q(x) = S(b)− S(x)

S(b)− S(a)

(
Φ(a) +

x∫
a

(S(y)− S(a))F (y) dM(y)
)

+S(x)− S(a)

S(b)− S(a)

(
Φ(b) +

b∫
x

(S(b)− S(y))F (y) dM(y)
)
, (12.35)

where

S(x) :=

x∫
exp

(
−

y∫
2�(z)

�2(z)
dz
)
dy, dM(x) = 2

�2(x)
exp

( x∫
2�(z)

�2(z)
dz
)
dx.

In the definition of the functions S(x) and M(x), the lower limit of integration
can be arbitrary, but the same.

Formula (12.35) can be verified by direct differentiation since the function S
satisfies the equation

1

2
σ2(x)S′′(x) + µ(x)S′(x) = 0.

For the derivation of (12.35) see also the proof of formula (15.13) of Ch. IV.
The difference U0(x) − Uλ(x) is the solution of (12.33), (12.34) with F (x) =

λUλ(x), Φ(a) = 0 and Φ(b) = 0. Therefore, this difference is nonnegative. This
proves (12.32) and thus completes the proof of Lemma 12.1. �

It is possible to pass to the limit as λ→ 0 in the problem (12.11), (12.12) and
in (12.13) and get the following result.

Theorem 12.6. Let f(x) and F (x), x ∈ [a, b], be continuous functions and let
f be nonnegative. Let the function Φ be defined only at two points a and b.

Then the function

Q(x) := Ex

{
Φ(X(Ha,b)) exp

(
−

Ha,b∫
0

f(X(s)) ds
)

+

Ha,b∫
0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds

}
is the solution of the problem

1

2
σ2(x)Q′′(x) + µ(x)Q′(x)− f(x)Q(x) = −F (x), x ∈ (a, b), (12.36)

Q(a) = Φ(a), Q(b) = Φ(b), x ∈ [a, b]. (12.37)

The proof of this theorem repeats the proof of Theorem 12.3 for λ = 0 (τ = ∞)
with the function U(x) replaced by Q(x). Here an important point is the finiteness

of the integral
∞∫
0

Ex1I[0,Ha,b](t) dt = ExHa,b. This enables us to take the expectation

of the difference η(Ha,b) −Q(x), which is expressed as a stochastic integral. As a
result, this expectation is equal to zero, and we get the required equality Q(x) =
Exη(Ha,b).

Theorem 12.6 and Proposition 12.4 imply the following assertions.
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Proposition 12.5. The probabilities of the first exit from the interval [a, b]
have the form

Px(X(Ha,b) = a) = S(b)− S(x)

S(b)− S(a)
, Px(X(Ha,b) = b) = S(x)− S(a)

S(b)− S(a)
. (12.38)

This corollary is obtained from Theorem 12.6 with F ≡ 0, f ≡ 0. For Φ(a) = 1
and Φ(b) = 0 we have the left equality in (12.38), while for Φ(a) = 0 and Φ(b) = 1
we have the right one.

Proposition 12.6. The expectation ExHa,b is expressed by the formula

ExHa,b = S(b)− S(x)

S(b)− S(a)

x∫
a

(S(y)− S(a)) dM(y) + S(x)− S(a)

S(b)− S(a)

b∫
x

(S(b)− S(y)) dM(y).

(12.39)

To derive this result, we should use Theorem 12.6 with F ≡ 1, f ≡ 0, Φ(a) = 0
and Φ(b) = 0. Then Q(x) = ExHa,b is the solution of the problem (12.33), (12.34).

Now we consider another stopping time: the first hitting time of a level z by the
process X, i.e., Hz = min{s : X(s) = z}. This stopping time can be either finite
or infinite.

Theorem 12.7. Let f(x), x ∈ R, be a nonnegative continuous function. Then

Lz(x) := Ex

{
exp

(
−

Hz∫
0

f(X(s)) ds
)

1I{Hz<∞}

}
=
{
ψ(x), for x ≤ z,

ϕ(x), for z ≤ x,
(12.40)

where ϕ is a positive decreasing solution and ψ is a positive increasing solution of
the homogeneous equation (12.25) that satisfy the equalities ϕ(z) = ψ(z) = 1.

Proof. It is clear that a.s.

Hz =

{ lim
a→−∞

Ha,z, for x ≤ z,

lim
b→∞

Hz,b, for z ≤ x.
(12.41)

Denote

Q
(y)
a,b(x) := Ex

{
1Iy(W (Ha,b)) exp

(
−

Ha,b∫
0

f(X(s)) ds
)}

.

Here the presence of the indicator function of a one-point set reduces the expec-
tation to the set of sample paths leaving the interval through the upper boundary
(y = b) or the lower boundary (y = a).

Since a.s.

1I{Hz<∞} =

 lim
a→−∞

1I{z}(W (Ha,z)), for x ≤ z,

lim
b→∞

1I{z}(W (Hz,b)), for z ≤ x,
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the Lebesgue dominated convergence theorem shows that

Lz(x) =


lim

a→−∞
Q

(z)
a,z(x), for x ≤ z,

lim
b→∞

Q
(z)
z,b(x), for z ≤ x.

(12.42)

We apply Theorem 12.6 with F ≡ 0. The solution of the problem (12.36), (12.37)
has the form

Q
(a)
a,b(x) =  0(b)'0(x)−  (x)'0(b)

 0(b)'0(a)−  0(a)'0(b)
(12.43)

for Φ(a) = 1 and Φ(b) = 0, and

Q
(b)
a,b(x) =  0(x)'0(a)−  0(a)'0(x)

 0(b)'0(a)−  0(a)'0(b)
(12.44)

for Φ(a) = 0 and Φ(b) = 1, where ϕ0(x) and ψ0(x), x ∈ R, are fundamental
solutions of the homogeneous equation (12.25) such that ϕ0(z) = ψ0(z) = 1.

From (12.44) for b = z it follows that lim
a→−∞

Q
(z)
a,z(x) =  0(x)− �−'0(x)

1− �−
, where

ρ− = lim
a→−∞

 0(a)

'0(a)
. This limit exists and it is less than 1, because the ratio  0(a)

'0(a)

is an increasing function. We set ψ(x) :=  0(x)− �−'0(x)

1− �−
, x ∈ R. It is clear that

ψ(x) is an increasing function. By (12.42) for x ≤ z, we have that Lz(x) = ψ(x)
and this function is positive.

We use similar arguments for the domain x ≥ z. In this case from (12.43) for

a = z it follows that lim
b→∞

Q
(z)
z,b(x) = '0(x)− �+ 0(x)

1− �+
, where ρ+ = lim

b→∞

'0(b)

 0(b)
. This

limit exists and it is less than 1. We set ϕ(x) := '0(x)− �+ 0(x)

1− �+
, x ∈ R. Then

Lz(x) = ϕ(x) for x ≥ z and the function ϕ(x), x ∈ R is decreasing and positive.�

Corollary 12.3. The following equality

Px(Hz <∞) =


S(x)− S(−∞)

S(z)− S(−∞)
, for x ≤ z,

S(∞)− S(x)

S(∞)− S(z)
, for z ≤ x,

holds, where for S(−∞) = −∞ or S(∞) = ∞ the corresponding ratio equals to 1.

This follows from (12.40), (12.42) with f ≡ 0, and (12.35) with F ≡ 0.

§ 13. The Cauchy problem, existence of a solution

As mentioned above, the proof of existence of a solution of the Cauchy problem
is very complicated. In this section we give a probabilistic proof of this existence.

Let the process Xx(t), t ∈ [0, T ], be the solution of the homogeneous stochastic
differential equation

Xx(t) = x+

t∫
0

a(Xx(s)) ds+

t∫
0

b(Xx(s)) dW (s). (13.1)

We assume that the coefficients a(x) and b(x), x ∈ R, are continuous, bounded,
and have continuous bounded derivatives a′(x), b′(x), a′′(x), b′′(x).
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Theorem 13.1. Let Φ(x), x ∈ R, be a continuous bounded function with
continuous bounded derivatives Φ′(x), Φ′′(x). Then the function

u(t, x) := EΦ(Xx(t)) (13.2)

is differentiable with respect to t, twice continuously differentiable with respect to
x, and it is the solution of the problem

@

@t
u(t, x) = 1

2
b2(x) @

2

@x2
u(t, x) + a(x) @

@x
u(t, x), (13.3)

u(0, x) = Φ(x), (13.4)

(t, x) ∈ (0, T )×R.

Remark 1.13. Equation (13.3) is called the backward Kolmogorov equation.
For nonhomogeneous stochastic differential equations the analogue of Theorem 13.1
will be considered in § 2 Ch. IV. We also refer to Gihman and Skorohod (1969).

Proof of Theorem 13.1. Clearly, the function u is bounded by the same constant
as the function Φ.

The initial condition (13.4) is easily verified by passage to the limit under the
expectation sign in (13.2) as t ↓ 0.

Let us verify that for every fixed t the function u(t, x) is twice continuously
differentiable with respect to x. By Theorems 9.2 and 9.3, the process Xx(t),
t ∈ [0, T ], has stochastically continuous mean square derivatives of the first and
the second order with respect to x, which we denote by X(1)

x (t) and X(2)
x (t).

Denote u(1)
x (t, x) := E

{
Φ′(Xx(t))X(1)

x (t)
}

and prove that @

@x
u(t, x) = u(1)

x (t, x).

Set Y∆(t) := Xx+�(t)−Xx(t)

�
. We have∣∣∣u(t; x+�)− u(t; x)

�
− u(1)

x (t, x)
∣∣∣ ≤ E

∣∣∣�(Xx+�(t))− �(Xx(t))

�
− Φ′(Xx(t))X(1)

x (t)
∣∣∣

≤ E
∣∣∣�(Xx+�(t))− �(Xx(t))

Xx+�(t)−Xx(t)

(
Y∆(t)−X(1)

x (t)
)∣∣∣

+E
{∣∣∣�(Xx+�(t))− �(Xx(t))

Xx+�(t)−Xx(t)
− Φ′(Xx(t))

∣∣∣ ∣∣∣X(1)
x (t)

∣∣}→ 0 as ∆ → 0.

This relation is due to the fact that the ratio �(y)− �(x)

y − x
is bounded and converges

to Φ′(x) as y → x, while the function Xx(t) is continuous in x (Theorem 9.1), and
the fact that E

(
Y∆(t)−X(1)

x (t)
)2 → 0 (Theorem 9.3).

Thus we proved that the function u(t, x) has a derivative

@

@x
u(t, x) = E

{
Φ′(Xx(t))X(1)

x (t)
}
. (13.5)

This derivative is continuous in (t, x) thanks to the continuity ofXx(t) and the mean
square continuity of X(1)

x (t). Furthermore, according to Remark 9.4, EX(1)
x (t) ≤

eK(K+1)t, therefore the derivative @

@x
u(t, x), (t, x) ∈ (0, T ) × R, is a bounded

function.
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Similarly, we can prove that

@2

@x2
u(t, x) = E

{
Φ′′(Xx(t))

(
X(1)
x (t)

)2}+ E
{
Φ′(Xx(t)X(2)

x (t)
}
, (13.6)

(t, x) ∈ (0, T )×R. This derivative is a bounded continuous function.
For any 0 ≤ v ≤ t, the solution Xx(t) of equation (13.1) can be written in the

form

Xx(t) = Xx(v) +

t−v∫
0

a(Xx(v + s)) ds+

t−v∫
0

b(Xx(v + s)) dW̃v(s), (13.7)

where for a fixed v the process W̃v(s) = W (s + v) −W (v), s ≥ 0, is a Brownian
motion. Note that the process W̃v does not depend on the σ-algebra Gv0 of events
generated by the Brownian motion W (s) for 0 ≤ s ≤ v.

Consider the stochastic differential equation

X̃v,x(h) = x+

h∫
0

a(X̃v,x(s)) ds+

h∫
0

b(X̃v,x(s)) dW̃v(s), (13.8)

which is similar to equation (13.1). It is clear that the process X̃v,x is independent
of the σ-algebra Gv0 and has the same finite-dimensional distributions as the process
Xx(h).

In (13.7) we set t − v = h. Then by the uniqueness of the solution of the
stochastic differential equation, we have (see (9.4)) the equality

Xx(h+ v) = X̃v,Xx(v)(h). (13.9)

Let 0 < p < t < q and δ := q − p. Further for a fixed t we let δ → 0. Using
the fourth property of the conditional expectations and Lemma 2.1 of Ch. I, we
represent u(q, x) as

u(q, x) = E
{
E
{
Φ(Xx(q))

∣∣Gδ0}}
= E

{
E
{
Φ(X̃δ,Xx(δ)(p))

∣∣Gδ0}} = Eu(p,Xx(δ)). (13.10)

To obtain the last equality we used the fact that the random variable Xx(δ) is
measurable with respect to the σ-algebra Gδ0 and X̃δ,z(h), as a random function of
the argument z, is independent of Gδ0 . Therefore, we can use Lemma 2.1 of Ch. I
to compute the conditional expectation and to prove the last equality.

Since Xx(0) = x, Itô’s formula yields

u(p,Xx(δ))− u(p, x) =

δ∫
0

b(Xx(s))
@

@x
u(p,Xx(s)) dW (s)
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+

δ∫
0

(
a(Xx(s))

@

@x
u(p,Xx(s)) + 1

2
b2(Xx(s))

@2

@x2
u(p,Xx(s))

)
ds.

Taking the expectation of both sides of this equality, we get

Eu(p,Xx(δ))−u(p, x) = E

δ∫
0

(
a(Xx(s))

@

@x
u(p,Xx(s))+

b2(Xx(s))

2

@2

@x2
u(p,Xx(s))

)
ds.

(13.11)
By the mean value theorem for integrals, we have

Eu(p,Xx(δ))−u(p, x) = E
(
a(Xx(s̃))

@

@x
u(p,Xx(s̃))+

1

2
b2(Xx(s̃))

@2

@x2
u(p,Xx(s̃))

)
δ,

where s̃ is some, possibly random, point of the interval (0, δ).

Since the derivatives @

@x
u(t, x), @2

@x2
u(t, x), (t, x) ∈ [0, T ] × R, are continuous

and bounded, Xx(s̃) → x as p → t, q → t, applying the Lebesgue dominated
convergence theorem we obtain

Eu(p;Xx(�))− u(p; x)

q − p
→ 1

2
b2(x) @

2

@x2
u(t, x) + a(x) @

@x
u(t, x). (13.12)

Now, by (13.10),
u(q; x)− u(p; x)

q − p
= Eu(p;Xx(�))− u(p; x)

q − p
,

and, thus it is proved that the function u(t, x), (t, x) ∈ (0, t)×R, is the solution of
(13.3). �

Theorem 13.2. Let Φ(x), f(x), x ∈ R, be continuous bounded functions with
continuous bounded derivatives Φ′(x), Φ′′(x), f ′(x), and f ′′(x). Assume, in addi-
tion, that the function f is nonnegative.

Then the function

u(t, x) := E
{
Φ(Xx(t)) exp

(
−

t∫
0

f(Xx(s)) ds
)}

(13.13)

is differentiable with respect to t, twice continuously differentiable with respect to
x, and it is the solution of the problem

@

@t
u(t, x) = 1

2
b2(x) @

2

@x2
u(t, x) + a(x) @

@x
u(t, x)− f(x)u(t, x), (13.14)

u(0, x) = Φ(x), (13.15)

(t, x) ∈ (0, T )×R.

Proof. Obviously, the function u is bounded by the same constant as the function
Φ.
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The initial condition (13.15) is easily verified by passing to the limit under the
expectation sign in (13.13) as t ↓ 0.

The existence of continuous bounded derivatives is proved similarly to (13.5).
In particular, the function u(t, x) has the continuous bounded first-order partial
derivative

@

@x
u(t, x) = E

{
Φ′(Xx(t))X(1)

x (t) exp
(
−

t∫
0

f(Xx(s)) ds
)}

−E
{
Φ(Xx(t)) exp

(
−

t∫
0

f(Xx(s)) ds
) t∫

0

f ′(Xx(s))X(1)
x (s) ds

}
. (13.16)

In addition, the function u(t, x) has a continuous bounded second-order partial
derivative. We use for 0 < p < t < q, δ := q − p the relation

exp
(
−

q∫
δ

f(Xx(s)) ds
)
− exp

(
−

q∫
0

f(Xx(s)) ds
)

=

δ∫
0

f(Xx(v)) exp
(
−

q∫
v

f(Xx(s)) ds
)
dv. (13.17)

Multiplying this equality by Φ(Xx(q)) and taking into account (13.9), we have

Φ
(
X̃δ,Xx(δ)(p)

)
exp

(
−

p∫
0

f
(
X̃δ,Xx(δ)(s)

)
ds

)
− Φ(Xx(q)) exp

(
−

q∫
0

f(Xx(s)) ds
)

=

δ∫
0

f(Xx(v))Φ
(
X̃v,Xx(v)(q − v)

)
exp

(
−

q−v∫
0

f
(
X̃v,Xx(v)(s)

)
ds

)
dv.

We take the expectation of both sides of this equality and use the fourth property
of conditional expectations. Then we get

E
{
E
{
Φ
(
X̃δ,Xx(δ)(p)

)
exp

(
−

p∫
0

f
(
X̃δ,Xx(δ)(s)

)
ds

)∣∣∣∣Gδ0}}

−E
{
Φ(Xx(q)) exp

(
−

q∫
0

f(Xx(s)) ds
)}

=

δ∫
0

E
{
f(Xx(v))E

{
Φ
(
X̃v,Xx(v)(q − v)

)
exp

(
−

q−v∫
0

f
(
X̃v,Xx(v)(s)

)
ds

)∣∣∣∣Gv0}}dv.
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Using for the computation of these conditional expectations Lemma 2.1 Ch. I and
the notation (13.13), the above equality can be written in the form

Eu(p,Xx(δ))− u(q, x) =

δ∫
0

E
{
f(Xx(v))u(q − v,Xx(v))

}
dv. (13.18)

Since f(x) and u(v, x), (v, x) ∈ [0, T ] × R, are continuous bounded functions and
the process Xx(v) is continuous with respect to v, we have

lim
p↑t,q↓t

1

q − p

δ∫
0

E
{
f(Xx(v))u(q − v,Xx(v))

}
dv = f(x)u(t, x).

Therefore,
lim

p↑t,q↓t

Eu(p;Xx(�))− u(q; x)

q − p
= f(x)u(t, x). (13.19)

We now use the equality

u(q; x)− u(p; x)

q − p
= Eu(p;Xx(�))− u(p; x)

q − p
− Eu(p;Xx(�))− u(q; x)

q − p
. (13.20)

We can apply relation (13.12) to the first term in (13.20). Then from (13.20) and
(13.19) we derive that u(t, x), (t, x) ∈ (0, T )×R, is the solution of (13.14). �

Exercises.

In the following exercises all functions u(t, x), (t, x) ∈ [0,∞) × R, have the
corresponding probabilistic representation (13.13).

13.1. Verify that

u(t, x) = exp
(
−γxt+ 2t3

6

)
is the solution of (13.14), (13.15) with b(x) ≡ 1, a(x) ≡ 0, f(x) = γx, and Φ(x) ≡ 1.

13.2. Verify that

u(t, x) = 1√
ch(t)

exp
(
−x2 sh(t)

2 ch(t)

)
is the solution of (13.14), (13.15) with b(x) ≡ 1, a(x) ≡ 0, f(x) = 2

2
x2, and

Φ(x) ≡ 1.
13.3. Verify that

u(t, x) = 1√
ch(t) + 2�−1 sh(t)

exp
(
− x2( sh(t) + 2� ch(t))

2(ch(t) + 2�−1 sh(t))

)
is the solution of (13.14), (13.15) with b(x) ≡ 1, a(x) ≡ 0, f(x) = 2

2
x2, and

Φ(x) = e−βx
2
.
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13.4. Verify that

u(t, x) = exp
(
−γxt− γµ

t2

2
+ 2t3

6

)
is the solution of (13.14), (13.15) with b(x) ≡ 1, a(x) ≡ µ, f(x) = γx, and Φ(x) ≡ 1.

13.5. Verify that

u(t, x) = 1√
ch(t)

exp
(
−µx− �2t

2
− (x22 − �2) sh(t)− 2�x

2 ch(t)

)
is the solution of (13.14), (13.15) with b(x) ≡ 1, a(x) ≡ µ, f(x) = 2

2
x2, and

Φ(x) ≡ 1.
13.6. Verify that

u(t, x) = exp
(
−x

�

(
1− e−θt

)
+ 2�2

2�2

(
2θt+ 1−

(
2− e−θt

)2))
is the solution of (13.14), (13.15) with b(x) ≡ σ2θ, a(x) = −θx, θ > 0, f(x) = γx,
and Φ(x) ≡ 1.

13.7. Verify that

u(t, x) =
√
e�t=2√

sh(t�) +  ch(t�)
exp
(
− x2(2 − 1) sh(t�)

4�2(sh(t�) +  ch(t�))

)
is the solution of (13.14), (13.15) with b(x) ≡ σ2θ, a(x) = −θx, θ > 0, f(x) =
(2 − 1)�

4�2
x2 , γ ≥ 1, and Φ(x) ≡ 1.



CHAPTER III

DISTRIBUTIONS OF FUNCTIONALS

OF BROWNIAN MOTION

§1. Distributions of integral functionals of Brownian motion

We consider general methods for computing the joint distributions of integral
functionals of Brownian motion and functionals of its infimum and supremum.
We begin our study by considering an integral functional of a Brownian motion
W (s), s ≥ 0, since it serves as a starting point for the development of computation
methods for others functionals.

We consider first the question how to compute the distribution of the integral

functional
t∫

0

f(W (s)) ds, where f is a continuous nonnegative function.

To find the distribution function of a nonnegative random variable we can first
compute the Laplace transform of the distribution and then invert this Laplace
transform. Schematically, this is expressed by the formula

F (dy) = L−1
γ

( ∞∫
0

e−γyF (dy)
)
, γ ≥ 0,

where F is the distribution function of a nonnegative random variable and L−1
γ

denotes the operator of the inverse Laplace transform with respect to γ.
For example, if the distribution function of some nonnegative random variable

ξ has the form

F (y) = c01I(0,∞)(y) + cq1I(q,∞)(y) +

y∫
0

g(z) dz,

(there are two mass points 0 and q), then the corresponding distribution is

F (dy) = c0δ0(dy) + cqδq(dy) + g(y) dy,

where δx(A) is the Dirac measure,

δx(A) :=
{

1, if x ∈ A,
0, if x 6∈ A.

The Laplace transform of ξ with such a distribution function has the following
structure:

Ee−γξ =

∞∫
0

e−γyF (dy) = c0 + cqe
−γq +

∞∫
0

e−γyg(y) dy. (1.1)
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Since the density g is integrable, the last term tends to zero as γ → ∞. Inverting
the Laplace transform in (1.1) with respect to γ, we have

P(ξ = 0) = c0, P(ξ = q) = cq,
d

dy
P(ξ < y) = g(y), y 6= 0, q.

For nonnegative integral functionals of diffusion processes it is easier to compute
the Laplace transform of the distribution than the distribution itself. In fact, in
many cases distributions can be computed only by means of their Laplace trans-
forms, therefore the inverse transform must be applied. We present now a method
of computing distributions of integral functionals step by step.

For brevity, we denote by Px and Ex the probability and the expectation with
respect to the Brownian motion W (s), s ≥ 0, under the condition W (0) = x.

Set

ũ(t, x) := Ex exp
(
− γ

t∫
0

f(W (s)) ds
)
, γ ≥ 0. (1.2)

Under the assumption that f is a nonnegative, bounded, twice continuously differ-
entiable function with bounded derivatives, Theorem 13.2 Ch. II with Φ(x) ≡ 1,
b(x) ≡ 1, a(x) ≡ 0 shows that ũ is the unique solution of the Cauchy problem

@

@t
ũ(t, x) = 1

2

@2

@x2
ũ(t, x)− γf(x)ũ(t, x), (t, x) ∈ (0,∞)×R,

ũ(0, x) = 1.

Solving this problem and inverting the Laplace transform with respect to γ,
we compute the distribution function of the integral functional of the Brownian
motion:

Px

( t∫
0

f(W (s)) ds ∈ dy
)

= L−1
γ (ũ(t, x)). (1.3)

In §11 Ch. II it was shown that by means of the Laplace transform with respect
to t, the Cauchy problem for a nonnegative f can be reduced to a problem for
an ordinary differential equation. There we gave the natural probabilistic inter-
pretation for the Laplace transform with respect to t in terms of an exponentially
distributed with the parameter λ > 0 random time τ independent of the Brownian
motion W (s), s ≥ 0.

Theorem 12.4 Ch. II implies that the function

Ũ(x) := λ

∞∫
0

e−λtũ(t, x) dt = Ex exp
(
− γ

τ∫
0

f(W (s)) ds
)

is the unique bounded solution of the equation

1

2
Ũ ′′(x)− (λ+ γf(x))Ũ(x) = −λ, x ∈ R.
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Since ũ(t, x) = L−1
λ

(
1

�
Ũ(x)

)
, the distribution of the integral functional can be

computed as the double inverse Laplace transform of the function Ũ(x):

Px

( t∫
0

f(W (s)) ds ∈ dy
)

= L−1
γ L−1

λ

( 1
�
Ũ(x)

)
. (1.4)

The order of the inverse Laplace transforms can be changed to simplify the com-
putations. Note that the distribution of the integral functional at the random time
τ can be computed by the formula

Px

( τ∫
0

f(W (s)) ds ∈ dy
)

= L−1
γ

(
Ũ(x)

)
. (1.5)

This is a general approach for computing the distributions of integral functionals
of a Brownian motion. The same approach is applicable to a broad class of diffusion
processes, which will be considered in Ch. IV. When formulating theorems that
enable us to compute the Laplace transforms of distributions of integral functionals,
we for brevity exclude the parameter γ, because when needed we can take γf
instead of f .

We at once consider the more general function than ũ(t, x). Set

u(t, x) := Ex

{
Φ(W (t)) exp

(
−

t∫
0

f(W (s)) ds
)}

. (1.6)

Such a function is important for computing the joint distribution of an integral
functional of W and the position of the Brownian motion W at the point t. The
Laplace transform of u(t, x), (t, x) ∈ [0,∞)×R, with respect to t is

U(x) := λ

∞∫
0

e−λtu(t, x) dt = Ex

{
Φ(W (τ)) exp

(
−

τ∫
0

f(W (s)) ds
)}

. (1.7)

As mentioned above, we can give the Laplace transform with respect to t a
natural probabilistic interpretation. If we consider the functional at the random
time τ , then for computing the distribution of the integral functional, the function
U has the same form and the same meaning as the function u for a fixed time t.

We now formulate Theorem 12.4 Ch. II for particular case σ ≡ 1 and µ ≡ 0. As
we explained above, this result is of key importance for computing the distributions
of integral functionals of the Brownian motion W , or more exactly, for computing
the function U .

Theorem 1.1. Let Φ(x) and f(x), x ∈ R, be continuous functions. Assume
that Φ is bounded and f is nonnegative. Then the function U(x), x ∈ R, is the
unique bounded solution of the equation

1

2
U ′′(x)− (λ+ f(x))U(x) = −λΦ(x), x ∈ R. (1.8)
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Remark 1.1. For a continuous g(x) ≥ 0, x ∈ R, which does not vanish identi-
cally, the homogeneous equation

1

2
φ′′(x)− g(x)φ(x) = 0, x ∈ R, (1.9)

has (see Proposition 12.1 Ch. II) two nonnegative convex linearly independent
solutions ψ(x) and ϕ(x) such that ψ(x) is increasing, and ϕ(x) is decreasing. The
Wronskian of these solutions (w = ψ′(x)ϕ(x)− ψ(x)ϕ′(x)) is a positive constant.

The functions ψ and ϕ are called the fundamental solutions of (1.9). For a
positive solution φ the convexity is a consequence of the equality φ′′ ≥ 0. Being
convex, the functions ψ(x) and ϕ(x), x ∈ R, are unbounded.

It is clear that u(t, x) is bounded by the same constant as Φ, therefore the
function U is also bounded by the same constant. Let g(x) = λ+ f(x). Then the
general solution of (1.8) has the form

U(x) = Up(x) +Aψ(x) +Bϕ(x),

where Up(x) is a bounded particular solution of (1.8), and A and B are arbitrary
coefficients. Due to this fact there is a unique bounded solution of equation (1.8),
because ψ, ϕ can be included in the general solution of (1.8) only with zero coeffi-
cients.

Since continuous functions form a rather narrow class, Theorem 1.1 is applicable
only for a restricted class of integral functionals of Brownian motion. For example,
the occupation measure of a process (see definition in §5 Ch. II) does not belong to
this class. The occupation measure of the interval [a, b] is the integral functional
that describes the amount of time spent by a sample path of the Brownian motion
W in [a, b] up to the time t:

µt([a, b]) =

t∫
0

1I[a,b](W (s)) ds,

where we set f(x) = 1I[a,b](x) to define this integral functional.
However, the indicator function of an interval is a piecewise-continuous function

according to the following definition.

A piecewise-continuous function is a function f : R → R having at most finitely
many points of discontinuity and having left and right limits everywhere.

The following result extends the scope of application of Theorem 1.1.

Theorem 1.2. Let Φ(x) and f(x), x ∈ R, be piecewise-continuous functions.
Assume that Φ is bounded and f ≥ 0. Then the function

U(x) := Ex

{
Φ(W (τ)) exp

(
−

τ∫
0

f(W (s)) ds
)}

, x ∈ R,
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is the unique bounded solution of the equation

1

2
U ′′(x)− (λ+ f(x))U(x) = −λΦ(x), x ∈ R. (1.10)

Remark 1.2. For piecewise-continuous functions f and Φ equation (1.10) must
be interpreted as follows: it holds at all points of continuity of f , Φ and at points
of discontinuity of f , Φ its solution is continuous together with its first derivative.

Analogous remarks apply to all subsequent results concerning solutions of dif-
ferential equations, including piecewise-continuous functions, so we will not repeat
them.

Proof of Theorem 1.2. Our aim is to extend Theorem 1.1 to piecewise-continuous
functions Φ and f . We do this with the help of the following approach, which is
referred to as the limit approximation method.

A nonnegative piecewise-continuous function f can be approximated by a se-
quence of continuous functions {fn} such that

f(x) = lim
n→∞

fn(x), 0 ≤ fn(x) ≤ f(x), x ∈ R.

A bounded piecewise-continuous function Φ can be approximated by a sequence of
continuous uniformly bounded functions {Φn} such that sup

x∈R
|Φn(x)| ≤ K for all n

and Φ(x) = lim
n→∞

Φn(x), x ∈ R.
Set

Un(x) := Ex

{
Φn(W (τ)) exp

(
−

τ∫
0

fn(W (s)) ds
)}

. (1.11)

By the Lebesgue dominated convergence theorem,

Un(x) → U(x) as n→∞, for all x ∈ R. (1.12)

We assume without loss of generality that the functions f and Φ are continuous
at the point zero, otherwise we could choose another point at which they are
continuous.

By Theorem 1.1, the function Un(x), x ∈ R, satisfies the equation

1

2
(U ′

n(x)− U ′
n(0))−

x∫
0

(λ+ fn(y))Un(y) dy = −λ
x∫

0

Φn(y) dy, x ∈ R. (1.13)

Integrating this equation, we obtain

1

2

(
Un(x)− Un(0)

)
− 1

2
U ′
n(0)x−

x∫
0

z∫
0

(λ+ fn(y))Un(y) dydz
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= −λ
x∫

0

z∫
0

Φn(y) dydz. (1.14)

The sequence {Φn(x)} is uniformly bounded: |Φn(x)| ≤ K for all n and x ∈ R.
Then, taking into account (1.11), we have |Un(x)| ≤ K. Since f is a piecewise-
continuous function, the estimate 0 ≤ fn(x) ≤ f(x), x ∈ R, shows that the
functions fn are uniformly bounded in any finite interval [a, b]. Then using (1.12)
and the Lebesgue dominated convergence theorem, we deduce from (1.14) that the
limit Ũ0 := lim

n→∞
U ′
n(0) exists and

1

2

(
U(x)− U(0)

)
− 1

2
Ũ0x−

x∫
0

z∫
0

(λ+ f(y))U(y) dydz = −λ
x∫

0

z∫
0

Φ(y) dydz.

From this it follows that the function U(x) is continuous in x ∈ R. In addition, it
is differentiable for all x including zero, and U ′(0) = Ũ0.

Differentiating the equation above, we get

1

2
(U ′(x)− U ′(0))−

x∫
0

(λ+ f(y))U(y) dy = −λ
x∫

0

Φ(y) dy, x ∈ R. (1.15)

This relation is equivalent to the following statement: for the piecewise-continuous
functions f and Φ, the function U is the solution of equation (1.10). Indeed, at
any point x in which the functions f and Φ are continuous, equality (1.15) can be
differentiated with respect to x, which implies (1.10). At the points of discontinuity
of f and Φ from (1.15) one can infer only the continuity of the derivative U ′ and
therefore the continuity of U . By Remark 1.2, (1.10) is valid.

The uniqueness of the bounded solution of equation (1.10) on the whole real line
can be established in the following way. The real line is decomposed into finitely
many intervals in the interiors of which f and Φ are continuous. These intervals can
be enumerated by an index k = 0, 1, 2, . . . ,m. The extreme left and right of these
intervals have an infinite length. The general solution of (1.10) in every interval of
finite length depends on two arbitrary constants Ak, Bk and has the form

U(x) = Up,k(x) +Akψk(x) +Bkϕk(x), k = 0, 1, 2, . . . ,m,

where k is the index of the interval, Up,k is a particular bounded solution of (1.10)
in this interval, and ψk, ϕk are the fundamental solutions of the corresponding
homogeneous equation in the same interval. On the left and right intervals of
infinite length the general bounded solution of (1.10) depends only on one unknown
constant, because of the unboundedness of the linearly independent solutions ψ
and ϕ of equation (1.9) for g(x) = λ+ f(x) at plus or minus infinity, respectively.
Therefore B0 = 0 and Am = 0. Since there are m boundary points between
intervals, the number of unknown constants equals 2m. At any of these boundary
points the function U must be continuous together with its first derivative. Thus,
there are 2m conditions for the glued together solutions on adjacent intervals to
satisfy the condition of continuity of U and its derivative U ′. This leads to 2m
linear algebraic equations for the unknown constants and this system has a unique
solution. Theorem 1.2 is proved. �
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Proposition 1.1. Let f(x), x ∈ R, be a nonnegative piecewise-continuous
function which does not vanish identically. Then

∞∫
0

f(W (s)) ds = ∞ a.s. (1.16)

Proof. Set

Uλ(x) := Ex exp
(
−

τ∫
0

f(W (s)) ds
)
.

Then Uλ(x) is the unique bounded solution of the equation

1

2
U ′′(x)− (λ+ f(x))U(x) = −λ, x ∈ R. (1.17)

Since P(τ > t) = e−λt, we see that τ →∞ in probability as λ→ 0. Therefore,

lim
λ→0

Uλ(x) = Ex exp
(
−

∞∫
0

f(W (s)) ds
)

:= U∞(x)

for every x ∈ R. Applying for equation (1.17) the limit approximation method
described in the proof of Theorem 1.2, we get that U∞(x) is the unique bounded
solution of the equation

1

2
U ′′(x)− f(x)U(x) = 0, x ∈ R.

But this solution, in view of Remark 1.1, is zero (U∞(x) ≡ 0). This is also true
for piecewise-continuous f , because the gluing procedure described above implies
Up,k(x) ≡ 0, Ak = 0, Bk = 0, k = 0, 1, 2, . . . ,m. The proposition is proved. �

Example 1.1. We compute the distribution of the total amount of time spent
by the Brownian motion W in the interval [r,∞) up to the time t. That is, we are
interested in the distribution of the functional

A(t) :=

t∫
0

1I[r,∞)(W (s)) ds.

We first solve this problem for the random time τ instead of a fixed time t. Applying
Theorem 1.2 with Φ(x) ≡ 1, f(x) = γ1I[r,∞)(x), γ > 0, we see that the function

U(x) = Ex exp
(
− γ

τ∫
0

1I[r,∞)(W (s)) ds
)
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is the unique bounded continuous solution of the equation

1

2
U ′′(x)− (λ+ γ1I[r,∞)(x))U(x) = −λ, x ∈ (−∞,∞). (1.18)

A particular bounded solution of (1.18) in the interval (−∞, r) is equal to 1 and
the fundamental solutions of the corresponding homogeneous equation are e−x

√
2λ,

ex
√

2λ. The analogous solutions in the interval (r,∞) are λ/(λ + γ), e−x
√

2λ+2γ ,
and ex

√
2λ+2γ . Taking into account the boundedness and continuity of the solution

of (1.18), we can see that this solution has the following form:

U(x) =

 1 + (A− 1)e−(r−x)
√

2λ, x ≤ r,
�

�+ 
+
(
A− �

�+ 

)
e−(x−r)

√
2λ+2γ , r ≤ x.

The unknown constant A is computed from the condition that the derivative of
the function U at the point r must also be continuous. Thus,

√
2λ
(
A− 1

)
= −

√
2λ+ 2γ

(
A− �

�+ 

)
,

so A =
√
�

√
�+ 

. As a result, we obtain

Ex exp
(
− γ

τ∫
0

1I[r,∞)(W (s)) ds
)

=


1−

(
1−

√
�

√
�+ 

)
e−(r−x)

√
2λ, x ≤ r,

�

�+ 
+
( √

�
√
�+ 

− �

�+ 

)
e−(x−r)

√
2λ+2γ , r ≤ x.

(1.19)

The structure (see (1.1)) of this Laplace transform with respect to γ is such
that the corresponding distribution for x < r has the mass point at zero equal to
1− e−(r−x)

√
2λ. Thus,

Px

( τ∫
0

1I[r,∞)(W (s)) ds = 0
)

=

{
1− e−(r−x)

√
2λ, x ≤ r,

0, r ≤ x.
(1.20)

The other part of the Laplace transform (1.19) corresponds to the density of the
distribution function. Taking the inverse Laplace transform with respect to γ (see
formulas a, 5 and 6 of Appendix 3), we obtain

d

dy
Px

( τ∫
0

1I[r,∞)(W (s))ds < y

)

=


√
�

√
�y
e−λy−(r−x)

√
2λ, x ≤ r,

λe−λy
(
1− Erfc

(
x− r
√
2y

))
+

√
�

√
�y
e−λy−(x−r)2/2y, r ≤ x.

(1.21)
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The error function Erfc(x), x ∈ R, is defined in Appendix 2. To obtain the
analogous distributions for a fixed time t, it is necessary to divide the right-hand
sides of these formulas by λ and then take the inverse Laplace transform with
respect to λ. Inverting (1.20), we have

Px

( t∫
0

1I[r,∞)(W (s))ds = 0
)

=

{
1− Erfc

(
r − x
√
2t

)
, x ≤ r,

0, r ≤ x.
(1.22)

It is clear that A(t) ≤ t, or correspondingly A(τ) ≤ τ . For r < x there exists
the special case when sup

0≤s≤τ
W (s) ≥ r, or equivalently A(τ) = τ with positive

probability.
Therefore,

d

dy
Px

( τ∫
0

1I[r,∞)(W (s)) ds < y

)
= d

dy
Px

( τ∫
0

1I[r,∞)(W (s)) ds = τ, τ < y

)

+ d

dy
Px

( τ∫
0

1I[r,∞)(W (s)) ds < τ,

τ∫
0

1I[r,∞)(W (s)) ds < y

)
, r < x.

Since τ is independent of W , we get

d

dy
Px

( τ∫
0

1I[r,∞)(W (s)) ds = τ, τ < y

)

= λ
d

dy

y∫
0

e−λtPx

( t∫
0

1I[r,∞)(W (s)) ds = t

)
dt = λe−λyPx

( y∫
0

1I[r,∞)(W (s)) ds = y

)
.

Comparing this equality with (1.21) for r ≤ x, we obtain

Px

( t∫
0

1I[r,∞)(W (s))ds = t

)
= 1− Erfc

(
x− r
√
2t

)
, r ≤ x. (1.23)

The other part of the Laplace transform in (1.21) corresponds to the density. Di-
viding it by λ and inverting the Laplace transform with respect to λ (see formulas
b and 5 of Appendix 3), we get

d

dy
Px

( t∫
0

1I[r,∞)(W (s)) ds < t,

t∫
0

1I[r,∞)(W (s)) ds < y

)

= d

dy
Px

( t∫
0

1I[r,∞)(W (s))ds < y

)
=


1I(0;t)(y)

�
√
y(t− y)

e−(r−x)2/2(t−y), x ≤ r,

1I(0;t)(y)

�
√
y(t− y)

e−(x−r)2/2y, r ≤ x.

(1.24)



206 III DISTRIBUTIONS OF FUNCTIONALS

The first equality is obvious when considering the cases 0 < y < t and t < y.
Note that in the special case x = r we have

d

dy
Pr

( t∫
0

1I[r,∞)(W (s)) ds < y

)
=

1I(0;t)(y)

�
√
y(t− y)

. (1.25)

Integrating with respect to y, we obtain the well-known arcsine law of P. Lévy:

Pr

( t∫
0

1I[r,∞)(W (s)) ds < y

)
= 2

�
arcsin

√
y/t, 0 ≤ y ≤ t. (1.26)

Exercises.

1.1. Compute Ee−ατ+iβW (τ), α > 0. Derive from this expression the formula
for the density

d

dz
Px(W (τ) < z).

1.2. Compute

Ex

{
exp

(
− ατ − γ

τ∫
0

1I(−∞,r)(W (s))ds
)}

, α > 0, γ > 0.

1.3. Compute the occupation time distribution of the Brownian motion W in
the interval (−∞, r) up to the time t.

1.4. Compute

Ex exp
(
−

τ∫
0

(
p1I(−∞,r)(W (s)) + q1I[r,∞)(W (s))

)
ds

)
, p > 0, q > 0.

1.5. Compute Ex exp
(
− γ

�∫
0

1I[r,u](W (s))ds
)
, γ > 0.

§2. Distributions of integral functionals of Brownian
motion and of infimum and supremum functionals

Consider the problem of computation of the joint distribution of the integral
functional

A(t) =

t∫
0

f(W (s))ds,

and of the variables inf
0≤s≤t

W (s) and sup
0≤s≤t

W (s).
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In order to simplify formulas, we will use the notation E{ξ;A} := E{ξ1IA}.
The main idea, used for the computation of infimum or supremum type func-

tionals can be illustrated by the following example.
Let X(s), s ≥ 0, be an arbitrary continuous process. Then

P
(

sup
0≤s≤t

X(s) ≤ h
)

= lim
γ→∞

E exp
(
− γ

t∫
0

1I(h,∞)(X(s)) ds
)
.

Indeed,

E exp
(
− γ

t∫
0

1I(h,∞)(X(s)) ds
)

= P
(

sup
0≤s≤t

X(s) ≤ h
)

+E
{

exp
(
− γ

t∫
0

1I(h,∞)(X(s)) ds
)

; sup
0≤s≤t

X(s) > h

}
.

In the last expectation we have that
t∫

0

1I(h,∞)(X(s)) ds > 0. Therefore, the expo-

nential function under the expectation sign tends to zero as γ →∞, and hence the
expectation, reduced to the set sup

0≤s≤t
X(s) > h, also tends to zero.

The main result for computing the joint distributions of integral functionals of
a Brownian motion and its infimum and supremum is the following theorem.

Theorem 2.1. Let Φ(x) and f(x), x ∈ [a, b], be piecewise-continuous functions.
Assume that f ≥ 0 and Φ is bounded if either a = −∞ or b = ∞. Then the function

U(x) := Ex

{
Φ(W (τ)) exp

(
−

τ∫
0

f(W (s)) ds
)

; a ≤ inf
0≤s≤τ

W (s), sup
0≤s≤τ

W (s) ≤ b

}
,

x ∈ [a, b], is the unique solution of the problem

1

2
U ′′(x)− (λ+ f(x))U(x) = −λΦ(x), x ∈ (a, b), (2.1)

U(a) = 0, U(b) = 0. (2.2)

Remark 2.1. In the case a = −∞ or b = ∞ the corresponding boundary
condition in (2.2) must be replaced by the condition that the function U(x) is
bounded as x tends to −∞ or ∞.

Proof of Theorem 2.1. The general bounded solution of (2.1) on the intervals
of a finite length where the functions Φ and f are continuous depends on two
unknown constants. All such constants are uniquely determined by the conditions
of continuity of the solution U and its derivative U ′ at the boundaries of these
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intervals, as well as by the boundary conditions (2.2). This proves that the solution
of the problem (2.1), (2.2) is unique.

Set

Uγ(x) := Ex

{
Φ(W (τ)) exp

(
−

τ∫
0

(f(W (s)) + γ1IR\[a,b](W (s))) ds
)}

. (2.3)

The proof of Theorem 2.1 is based on the following almost obvious relation: for all
x ∈ (a, b),

U(x) = lim
γ→∞

Uγ(x). (2.4)

To see this we represent the expectation in (2.3) as the sum of two terms: the
expectation over the set

Q =
{
a ≤ inf

0≤s≤τ
W (s), sup

0≤s≤τ
W (s) ≤ b

}
,

and the expectation over its complement Qc. The first expectation is exactly

equal to U(x), and on the complement Qc we have that
�∫
0

1IR\[a,b](W (s)) ds > 0.

Therefore, on Qc the exponential function under the expectation sign tends to zero
as γ →∞, and hence the expectation over Qc also tends to zero.

We apply Theorem 1.2 with the function f(x) + γ1IR\[a,b](x) instead of f(x)
x ∈ R. By this result, the function Uγ is the unique bounded continuous solution
of the equation

1

2
U ′′(x)− (λ+ f(x) + γ1IR\[a,b](x))U(x) = −λΦ(x), x ∈ R. (2.5)

We will express the solution of equation (2.5) in terms of the fundamental solutions
ψ, ϕ of equation (1.9) with g(x) = λ+ f(x) and the fundamental solutions ψγ , ϕγ
of equation (1.9) with g(x) = λ+f(x)+γ. For the piecewise-continuous function f
these solutions must be treated according to Remark 1.2. Denote by w and wγ the
Wronskians of these solutions. The bounded solution of (2.5) can be represented
as follows:

Uγ(x) =


A1(γ)ψγ(x) + φγ(x), x ≤ a,

A2(γ)ψ(x) +B2(γ)ϕ(x) + φ(x), a ≤ x ≤ b,

B3(γ)ϕγ(x) + φγ(x), b ≤ x,

where

φγ(x) = 2�

w
ϕγ(x)

x∫
ψγ(z)Φ(z) dz − 2�

w
ψγ(x)

x∫
ϕγ(z)Φ(z) dz,

φ(x) = 2�

w
ϕ(x)

x∫
ψ(z)Φ(z) dz − 2�

w
ψ(x)

x∫
ϕ(z)Φ(z) dz. (2.6)
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The coefficients A1(γ), A2(γ), B2(γ) and B3(γ) are uniquely determined from the
continuity conditions of the function Uγ and its derivative at a and b.

For a Brownian motion the following fact holds: starting at the boundary of the
interval [a, b], the Brownian motion W spends a.s. a positive time outside [a, b] up
to the time τ . For the boundary b this is a consequence of (1.20) for x = r, because

Pb

( τ∫
0

1I[b,∞)(W (s)) ds > 0
)

= 1−Pb

( τ∫
0

1I[b,∞)(W (s)) ds = 0
)

= 1.

Moreover, the Brownian motion spends a nonzero time outside [a, b] if the initial
point of W lies outside this interval. Using this fact and the explicit form of the
function Uγ defined in (2.3), we easily get that Uγ(x) → 0 for x ≤ a and x ≥ b.
From (2.4) and the expression for Uγ(x), x ∈ [a, b], in terms of the solutions ψ(x),
ϕ(x) we can deduce that there exist the limits A2 := lim

γ→∞
A2(γ), B2 := lim

γ→∞
B2(γ).

Indeed, we can choose any two points p > q in the interval [a, b] and solve for the
unknown constants A2(γ) and B2(γ) the system of algebraic equations

Uγ(p) = A2(γ)ψ(p) +B2(γ)ϕ(p) + φ(p),

Uγ(q) = A2(γ)ψ(q) +B2(γ)ϕ(q) + φ(q).

By the monotonicity of the solutions ψ and ϕ, we have ψ(p)ϕ(q) − ψ(q)ϕ(p) > 0
and

A2(γ) = (U(p)− �(p))'(q)− (U(q)− �(q))'(p)

 (p)'(q)−  (q)'(p)
,

B2(γ) =  (p)(U(q)− �(q))−  (q)(U(p)− �(p))

 (p)'(q)−  (q)'(p)
.

By (2.4), the sequences Uγ(p), Uγ(q) converge to the values U(p), U(q). Conse-
quently, the sequences A2(γ), B2(γ) converge to the corresponding limits.

We can choose p = b and q = a. Since Uγ(a) → 0 and Uγ(b) → 0 as γ →∞, we
have

A2 = �(a)'(b)− �(b)'(a)

 (b)'(a)−  (a)'(b)
, B2 =  (a)�(b)−  (b)�(a)

 (b)'(a)−  (a)'(b)
. (2.7)

Therefore, the limiting function U(x), x ∈ R, has the form

U(x) =


0, x ≤ a,

A2ψ(x) +B2ϕ(x) + φ(x), a ≤ x ≤ b,

0, b ≤ x.

(2.8)

From (2.7) and (2.8) it follows that U is continuous in x ∈ R and satisfies the
problem (2.1), (2.2). Theorem 2.1 is proved. �

Note that formulas (2.6)–(2.8) give the solution of the problem (2.1), (2.2) in
terms of the fundamental solutions ψ and ϕ of the equation

1

2
φ′′(x)− (λ+ f(x))φ(x) = 0. (2.9)
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Example 2.1. We compute the distribution of the supremum of Brownian
motion, i.e., the variable sup

0≤s≤t
W (s), and then the joint distribution of inf

0≤s≤t
W (s)

and sup
0≤s≤t

W (s). Applying Theorem 2.1 with Φ ≡ 1, f = 0, we see that

U(x) = Px

(
a ≤ inf

0≤s≤τ
W (s), sup

0≤s≤τ
W (s) ≤ b

)
is the unique solution of the problem

1

2
U ′′(x)− λU(x) = −λ, x ∈ (a, b), (2.10)

U(a) = 0, U(b) = 0. (2.11)

The particular solution of equation (2.10) is the function identically equal to
1. We can choose sh((b− x)

√
2λ), sh((x− a)

√
2λ) as the two linearly independent

solutions of the corresponding homogeneous equation. These functions are the most
suitable for the solutions of the problem (2.10), (2.11), since the first one equals 0
at b and the second one equals 0 at a. Using the boundary conditions (2.11), it is
easy to compute the unknown constants figuring in the linear combination of these
functions (formula (2.8)). We thus obtain that the solution of the problem (2.10),
(2.11) has the form

U(x) = Px

(
a ≤ inf

0≤s≤τ
W (s), sup

0≤s≤τ
W (s) ≤ b

)
= 1− sh((b− x)

√
2�) + sh((x− a)

√
2�)

sh((b− a)
√
2�)

= 1− ch((b+ a− 2x)
√
�=2)

ch((b− a)
√
�=2)

. (2.12)

Letting a→ −∞, we can deduce that

Px

(
sup

0≤s≤τ
W (s) ≤ b

)
= 1− e−(b−x)

√
2λ, x ≤ b.

Dividing this equality by λ and inverting the Laplace transform with respect to λ
(see formula 6 of Appendix 2), we obtain

Px

(
sup

0≤s≤t
W (s) ≤ b

)
= 1− Erfc

(
b− x
√
2t

)
=

√
2

√
�

(b−x)/
√
t∫

0

e−v
2/2 dv. (2.13)

Hence, using the symmetry property and the spatial homogeneity of a Brownian
motion, it is easy to deduce from (2.13) that

Px

(
a ≤ inf

0≤s≤t
W (s)

)
= 1− Erfc

(
x− a
√
2t

)
=

√
2

√
�

(x−a)/
√
t∫

0

e−v
2/2 dv, x ≥ a.

(2.14)
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These formulas imply the following useful estimate: for any h > 0

P0

(
sup

0≤s≤t
|W (s)| > h

)
≤ 2

√
2

√
�

∞∫
h/

√
t

e−v
2/2 dv <

2
√
2t

h
√
�
e−h

2/2t. (2.15)

In the last inequality we apply estimate (10.7) of Ch. I.
Now consider the joint distribution of the supremum and infimum of a Brownian

motion. Dividing the right-hand side of (2.12) by λ and inverting the Laplace
transform with respect to λ (see Section 13 of Appendix 2), we get

Px

(
a ≤ inf

0≤s≤t
W (s), sup

0≤s≤t
W (s) ≤ b

)
= 1− s̃st(b− x, b− a)− s̃st(x− a, b− a)

= 1− c̃ct((b+ a− 2x)/2, (b− a)/2).

One can get another expression for this probability. It is essentially associated with
the similar formula for the Brownian bridge (see (4.44)). One can verify that

Px

(
a ≤ inf

0≤s≤τ
W (s), sup

0≤s≤τ
W (s) ≤ b

)

=

b∫
a

√
� (ch((b− a− |z − x|)

√
2�)− ch((b+ a− z − x)

√
2�)

√
2 sh((b− a)

√
2�)

dz.

Dividing the right-hand side by λ and inverting the Laplace transform with respect
to λ (see section 13 of Appendix 2), we obtain

Px

(
a ≤ inf

0≤s≤t
W (s), sup

0≤s≤t
W (s) ≤ b

)

=

b∫
a

(
cst(b− a− |z − x|, b− a)− cst(b+ a− z − x, b− a)

)
dz

= 1
√
2�t

∞∑
k=−∞

b∫
a

(
e−(z−x+2k(b−a))2/2t − e−(z+x−2a+2k(b−a))2/2t) dz. (2.16)

Exercises.

2.1. Compute

Ex
{
e−ατ ; a ≤ inf

0≤s≤τ
W (s)

}
, Ex

{
e−ατ ; sup

0≤s≤τ
W (s) ≤ b

}
, α > 0.

2.2. Compute

Ex
{
e−ατ+iβW (τ); a ≤ inf

0≤s≤τ
W (s)

}
, Ex

{
e−ατ+iβW (τ); sup

0≤s≤τ
W (s) ≤ b

}
,
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for α > 0 and β ∈ R.
2.3. Compute

Ex
{

cos(W (τ)); a ≤ inf
0≤s≤τ

W (s)
}
, Ex

{
sin(W (τ)); sup

0≤s≤τ
W (s) ≤ b

}
.

2.4. Compute

Ex
{

exp
(
− γ

�∫
0

1I(−∞,r)(W (s)) ds
)
; sup
0≤s≤τ

W (s) ≤ b
}
, γ > 0.

2.5. Compute

Ex
{

exp
(
− γ

�∫
0

1I(r,∞)(W (s)) ds
)
; a ≤ inf

0≤s≤τ
W (s)

}
, γ > 0.

§3. Distributions of functionals of Brownian motion and local times

We consider the problem of computing the joint distribution of integral func-
tional of Brownian motion, local time at different levels, and inf

0≤s≤t
W (s), sup

0≤s≤t
W (s).

We restrict ourselves to additive functionals of the Brownian motion W which
can be represented in the form

A~β(t) :=

t∫
0

f(W (s)) ds+
m∑
l=1

βl `(t, ql),

where f is a nonnegative piecewise-continuous function, ` is the Brownian local
time, βl ≥ 0, ql ∈ R, and m <∞.

Following the general approach for computing distributions of functionals, we
consider the Laplace transform

m̃(t, x) := Ex exp
(
− γ

t∫
0

f(W (s)) ds−
m∑
l=1

βl `(t, ql)
)
.

Having an explicit expression for this transform, the joint distribution of an integral
functional of the Brownian motion and the local time at different levels can be
computed as the multiple inverse Laplace transform of the function m̃(t, x):

Px

( t∫
0

f(W (s)) ds ∈ dy, `(t, q1) ∈ dy1, . . . , `(t, qm) ∈ dym
)

= L−1
γ L−1

β1
· · · L−1

βm

(
m̃(t, x)

)
.

Instead of a fixed time t one should take the exponentially distributed with the
parameter λ > 0 random time τ , which corresponds to the Laplace transform with
respect to t. For a fixed t the formula is obtained from the appropriate assertion
for τ by means of the inverse Laplace transform with respect to λ.

The main result of this section is the following.
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Theorem 3.1. Let Φ(x), f(x), x ∈ [a, b], be piecewise-continuous functions.
Assume that f ≥ 0. Then the function

M(x) := Ex
{
Φ(W (τ)) exp(−A~β(τ)); a ≤ inf

0≤s≤τ
W (s), sup

0≤s≤τ
W (s) ≤ b

}
,

x ∈ [a, b], is the unique continuous solution of the problem

1

2
M ′′(x)− (λ+ f(x))M(x) = −λΦ(x), x ∈ (a, b) \ {q1, . . . , qm}, (3.1)

M ′(qk + 0)−M ′(qk − 0) = 2βkM(qk), k = 1, . . . ,m, (3.2)

M(a) = 0, M(b) = 0. (3.3)

Remark 3.1. In the case a = −∞ or b = ∞ we in addition assume that Φ is
bounded. Then the corresponding boundary condition in (3.3) must be replaced
by the condition that the function M(x) is bounded as x tends to −∞ or ∞.

Proof of Theorem 3.1. Arguments similar to those given in the proof of the
uniqueness of the bounded solution of equation (1.10) are applicable to the proof
of the uniqueness of the solution of the problem (3.1)–(3.3), so the proof of the
uniqueness is omitted.

Without loss of generality we assume that only β1 6= 0. Set

χε(x) :=

x∫
−∞

1

"
1I[q1,q1+ε)(u) du, x ∈ R.

By the definition of the Brownian local time (see (5.9) of Ch. II),

`(t, q1) = lim
ε↓0

t∫
0

1

"
1I[q1,q1+ε)(W (s)) ds a.s. (3.4)

uniformly in t from any finite interval and therefore,

1

"

τ∫
0

1I[q1,q1+ε)(W (s)) ds −→
ε↓0

`(τ, q1)

in probability.
Set

Mε(x) := Ex

{
Φ(W (τ)) exp

(
−

τ∫
0

(
f(W (s)) + �1

"
1I[q1,q1+ε)(W (s))

)
ds

)
;

a ≤ inf
0≤s≤τ

W (s), sup
0≤s≤τ

W (s) ≤ b

}
.
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Then by the Lebesgue dominated convergence theorem

M(x) = lim
ε↓0

Mε(x) for every x ∈ [a, b]. (3.5)

For Mε we can apply Theorem 2.1. In this case equation (2.1) can be written in
the following form: for any y, x ∈ (a, b)

1

2
(M ′

ε(x)−M ′
ε(y))−

x∫
y

(λ+ f(r))Mε(r) dr

−β1

x∫
y

Mε(r) dχε(r) = −λ
x∫
y

Φ(r) dr. (3.6)

In addition, the boundary conditions

Mε(a) = 0, Mε(b) = 0 (3.7)

hold. Our aim is to pass to the limit as ε ↓ 0 in the problem (3.6), (3.7), applying
(3.5). For this we use the approach, which is the development of the limit approxi-
mation method, applied in the proof of Theorem 1.2. The main feature here is the
presence of the function χε, converging to the indicator function. Furthermore, we
must justify the convergence of the boundary conditions (3.7).

Integrating (3.6) with respect to x over the interval (y, v) for some v > y, we get

1

2

(
Mε(v)−Mε(y)

)
− 1

2
M ′
ε(y)(v − y)−

v∫
y

x∫
y

(λ+ f(r))Mε(r) drdx

− β1

v∫
y

x∫
y

Mε(r) dχε(r) dx = −λ
v∫
y

x∫
y

Φ(r) drdx. (3.8)

Integrating (3.6) with respect to y over the interval (u, x) for some u < x, we get

−1

2

(
Mε(x)−Mε(u)

)
+ 1

2
M ′
ε(x)(x− u)−

x∫
u

x∫
y

(λ+ f(r))Mε(r) dr dy

− β1

x∫
u

x∫
y

Mε(r) dχε(r) dy = −λ
x∫
u

x∫
y

Φ(r) drdy. (3.9)

Since Φ is bounded by a constant K(1)

a,b, we have the estimate sup
y∈[a,b]

|Mε(y)| ≤ K(1)

a,b.

Let ρ := b− a

4
. Then from (3.8) for v = b+ a

2
+ ρ we deduce that

sup
y∈(a,(b+a)/2]

|M ′
ε(y)| ≤

1

�
K(2)

a,b
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for some constant K(2)

a,b. Similarly, from (3.9) for u = b+ a

2
− ρ, we deduce that

sup
x∈[(b+a)/2,b)

|M ′
ε(x)| ≤

1

�
K(2)

a,b.

Thus the family of functions {M ′
ε(y)} is uniformly bounded on the interval (a, b).

Now it follows from (3.8) that the family of functions {Mε(y)}ε>0 is equicontinuous
on the interval [a+ρ, b], and it follows from (3.9) that the family is equicontinuous
on the interval [a, b − ρ]. Consequently, the family of functions {Mε(y)}ε>0 is
equicontinuous on [a, b]. Moreover, it is uniformly bounded.

By the Arzelà–Ascoli theorem, the family of functions {Mε(x)}ε>0, [a, b], is
relatively compact in the uniform norm. This and (3.5) imply that

sup
x∈[a,b]

∣∣Mε(x)−M(x)
∣∣→ 0 as ε ↓ 0.

A uniform limit of continuous functions is a continuous function, i.e., M(x) is
continuous on [a, b]. In addition, the boundary conditions for the functions Mε are
transformed to the boundary conditions (3.3).

Now, since χε(x) → χ(x) := 1I[q1,∞)(x), we deduce from (3.8), by passage to the
limit, that for y 6= q1 the limit M̃(y) = lim

ε↓0
M ′
ε(y) exists and

1

2

(
M(v)−M(y)

)
− 1

2
M̃(y)(v − y)−

v∫
y

x∫
y

(λ+ f(r))M(r) drdx

− β1

v∫
y

x∫
y

M(r) dχ(r)dx = −λ
v∫
y

x∫
y

Φ(r) drdx. (3.10)

From here and from the limiting analog of (3.9) it follows thatM(v) is differentiable
for v ∈ (a, b) \ {q1}. Differentiating (3.10) with respect to v, we obtain M̃(y) =
M ′(y) and

1

2
(M ′(v)−M ′(y))−

v∫
y

(λ+ f(r))M(r) dr − β1

v∫
y

M(r) dχ(r) = −λ
v∫
y

Φ(r) dr,

v, y ∈ (a, b)\{q1}. This equality, in turn, implies that M(x) satisfies (3.1), (3.2) for
β1 6= 0, βl = 0, l = 2, . . . ,m. Indeed, if q1 6∈ (y, v) then the integral with respect
to dχ equals zero and equation (3.1) holds. If q1 ∈ (y, v), then the integral with
respect to dχ equals M(q1). Letting y ↑ q1, v ↓ q1, we obtain

M ′(q1 + 0)−M ′(q1 − 0) = 2β1M(q1).

Therefore, (3.2) holds. Theorem 3.1 is proved. �

Let us provide an examples of application of Theorem 3.1 to computing distri-
butions.
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Example 3.1. We compute the one-dimensional distribution of the Brownian
local time `(t, q). Applying Theorem 3.1 with Φ ≡ 1, f ≡ 0, a = −∞, b = ∞,
β1 = β, q1 = q and βk = 0 for k 6= 1, we see that the function M(x) = Exe−β`(τ,q),
x ∈ R, is the unique bounded continuous solution of the problem

1

2
M ′′(x)− λM(x) = −λ, x ∈ R \ {q}, (3.11)

M ′(q + 0)−M ′(q − 0) = 2βM(q). (3.12)

The standard approach for solving this problem is the following. We look for a
general bounded solution of (3.11) on each of the intervals (−∞, q) and (q,∞).
Each of these solutions depends on one unknown constant. These constants can be
computed from the conditions of continuity of M at q and the condition (3.12) for
the jump of the first derivative. However, these computations can be simplified.
For example, the jump of the first derivative at q takes place for the function |x−q|
and its value equals 2. The fundamental solutions of the homogeneous equation
corresponding to (3.11) are e−x

√
2λ and ex

√
2λ. They are symmetric and a shift

of the argument leads to solutions of the same homogeneous equation, therefore
the function e−|x−q|

√
2λ is the bounded continuous solution of the homogeneous

equation for x 6= q and its derivative has at the point q a jump equal to −2
√

2λ.
Since the particular solution of (3.11) equals 1, the continuous bounded solution of
the problem (3.11), (3.12) can be represented in the form

M(x) = 1 +Ae−|x−q|
√

2λ, x ∈ R.

Condition (3.12) implies the equality −2A
√

2λ = 2β(1 +A), and so the solution of
the problem (3.11), (3.12) is

M(x) = 1−
(
1−

√
2�

� +
√
2�

)
e−|x−q|

√
2λ. (3.13)

Inverting the Laplace transform with respect to β, we get

Px(`(τ, q) = 0) = 1− e−|x−q|
√

2λ, (3.14)
d

dy
Px(`(τ, q) < y) =

√
2λe−(y+|x−q|)

√
2λ, y > 0. (3.15)

Dividing these equalities by λ and inverting the Laplace transform with respect to
λ (see formulas 6, 5 of Appendix 3), we have

Px(`(t, q) = 0) =
√
2

√
�t

|x−q|∫
0

e−v
2/2tdv, (3.16)

d

dy
Px(`(t, q) < y) =

√
2

√
�t
e−(|x−q|+y)2/2t, y > 0. (3.17)

Example 3.2. We compute the Laplace transform corresponding to the joint
distribution of the Brownian local times `(τ, r) and `(τ, q). Applying Theorem 3.1
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with Φ ≡ 1, f ≡ 0, a = −∞, b = ∞, β1 = µ, q1 = r, β2 = η, q2 = q and βl = 0 for
l 6= 1, 2, we see that the function

M(x) = Exe−µ`(τ,r)−η`(τ,q), x ∈ R,

is the unique continuous bounded solution of the problem

1

2
M ′′(x)− λM(x) = −λ, x ∈ R \ {r, q}, (3.18)

M ′(r + 0)−M ′(r − 0) = 2µM(r), (3.19)

M ′(u+ 0)−M ′(u− 0) = 2ηM(u). (3.20)

As in the previous example, the continuous bounded solution of (3.18)–(3.20) can
be written as

M(x) = 1−Ae−|x−r|
√

2λ −Be−|x−u|
√

2λ, x ∈ R.

Conditions (3.19) and (3.20) imply

2A
√

2λ = 2µ(1−A−Be−|u−r|
√

2λ), B2
√

2λ = 2η(1−Ae−|u−r|
√

2λ −B).

Solving this system of algebraic equations, we get

Exe−µ`(τ,r)−η`(τ,q) = 1

−�
(√

2�+ �
(
1− e−|u−r|

√
2�))

e−|r−x|
√
2� + �

(√
2�+ �

(
1− e−|u−r|

√
2�))

e−|u−x|
√
2�

(
√
2�+ �)(

√
2�+ �)− ��e−2|u−r|

√
2�

.

(3.21)

Exercises.

3.1. Compute the expression

Ex
{
e−γ`(τ,r); sup

0≤s≤τ
W (s) ≤ b

}
, γ > 0, x < b, r < b,

and compute the joint distribution of the Brownian local time and the supremum
of the Brownian motion up to the time τ .

3.2. Compute the expression

Ex
{
e−γ`(τ,r); a ≤ inf

0≤s≤τ
W (s)

}
, γ > 0, a < x, a < r,

and compute the joint distribution of the Brownian local time and the infimum of
the Brownian motion up to the time τ .

3.3. Compute the expression

Ex
{
e−γ`(τ,r); a ≤ inf

0≤s≤τ
W (s), sup

0≤s≤τ
W (s) ≤ b

}
, γ > 0,

a < x < b, a < r < b, and compute the joint distribution of the Brownian local
time, the infimum, and the supremum of the Brownian motion up to the time τ .
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§4. Distributions of functionals of Brownian bridge

By the definition of the Brownian bridge Wx,t,z(s), s ∈ [0, t] (see §11 Ch. I), for
any bounded continuous functional ℘ on C([0, t]),

E℘(Wx,t,z(s), 0 ≤ s ≤ t) = Ex{℘(W (s), 0 ≤ s ≤ t)|W (t) = z}
(4.1)

= lim
δ↓0

Ex{}(W (s); 0 ≤ s ≤ t);W (t) ∈ [z; z + �)}
Px(W (t) ∈ [z; z + �))

=

d

dz
Ex{}(W (s); 0 ≤ s ≤ t);W (t) < z}

d

dz
Px(W (t) < z)

.

In this section we consider a method for computing the distribution of an integral

functional
t∫

0

f(Wx,t,z(s)) ds of the Brownian bridge and the infimum and supremum

functionals. The approach for the case of the Brownian bridge is the same as for the
Brownian motion, namely, it is based on the computation of the Laplace transform
of the distribution of an integral functional, i.e., of the function

h(t, z) := E exp
(
−

t∫
0

f(Wx,t,z(s)) ds
)

= Ex

{
exp

(
−

t∫
0

f(W (s)) ds
)∣∣∣∣W (t) = z

}
, (4.2)

in which the parameter of the Laplace transform γ > 0 is included in the function
f . It turns out that instead of h(t, x) it is more convenient to compute the function

d

dz
Ex

{
exp

(
−

t∫
0

f(W (s)) ds
)

;W (t) < z

}
= h(t, z) 1

√
2�t

e−(z−x)2/2t. (4.3)

This equality is due to (4.1). To avoid equations with partial derivatives it is
necessary to consider the Laplace transform of this function with respect to t:

Gx(z) := λ

∞∫
0

e−λt
d

dz
Ex

{
exp

(
−

t∫
0

f(W (s)) ds
)

;W (t) < z

}
dt

= d

dz
Ex

{
exp

(
−

τ∫
0

f(W (s)) ds
)

; W (τ) < z

}
. (4.4)

Here, as before, one uses the probabilistic representation of the Laplace transform
with respect to the time parameter, in which τ is an exponentially distributed with
the parameter λ > 0 random variable independent of the Brownian motion.
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By the definition of the conditional expectation,

Gx(z) = Ex

{
exp

(
−

τ∫
0

f(W (s)) ds
)∣∣∣∣W (τ) = z

}
d

dz
Px(W (τ) < z), (4.5)

and therefore, in view of nonnegativity of f , the function Gx(z) is estimated by
the density of the variable W (τ), which is (see formula 5 of Appendix 3)

d

dz
Px(W (τ) < z) = λ

∞∫
0

e−λt
1

√
2�t

e−(z−x)2/2t dt =
√
�

√
2
e−|z−x|

√
2λ. (4.6)

The function U defined in Theorem 1.2 can be expressed in terms of the function
Gx:

U(x) = Ex

{
Φ(W (τ)) exp

(
−

τ∫
0

f(W (v))dv
)}

=

∞∫
−∞

Ex

{
Φ(W (τ)) exp

(
−

τ∫
0

f(W (v))dv
)

;W (τ) ∈ [z, z + dz)
}

=

∞∫
−∞

Φ(z) d
dz

Ex

{
exp

(
−

τ∫
0

f(W (v))dv
)

;W (τ) < z

}
dz

=

∞∫
−∞

Φ(z)Gx(z) dz. (4.7)

Like U(x), x ∈ R, the function Gx(z), z ∈ R, is the solution of a differential
problem. In view of (4.7), the function Gx(z), (z, x) ∈ R2, is called the Green
function of equation (1.10).

Theorems 1.2 and 2.1 provide a convenient method for computing the distribu-
tions of integral functionals and supremum-type functionals of Brownian motion.
This method is essentially based on the variation of the starting point of the Brown-
ian motion. In many problems we are given not only the starting point of a sample
path, but also its endpoint. In this case it is useful to have a statement based on
variation of the endpoint of a sample path for computing distributions of function-
als of a process. The results of this type that include variation of either the starting
point or the endpoint can easily be transformed into each other.

To compute the joint distributions of integral, infimum, and supremum func-
tionals of the Brownian bridge, it is necessary to include the variables inf

0≤s≤τ
W (s)

and sup
0≤s≤τ

W (s) in the definition of the function Gx(z). The following result is the

basic one for the computation of such joint distributions.
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Theorem 4.1. Let f(x), x ∈ [a, b], be a nonnegative piecewise-continuous func-
tion. Then for a ≤ x ≤ b the function

Gx(z) := d

dz
Ex

{
exp
(
−

τ∫
0

f(W (s)) ds
)

; a ≤ inf
0≤s≤τ

W (s), sup
0≤s≤τ

W (s)≤ b,W (τ)<z
}
,

z ∈ [a, b], is the unique continuous solution of the problem

1

2
G′′(z)− (λ+ f(z))G(z) = 0, z ∈ (a, b) \ {x}, (4.8)

G′(x+ 0)−G′(x− 0) = −2λ, (4.9)

G(a) = 0, G(b) = 0. (4.10)

Remark 4.1. The function Gx(z), (z, x) ∈ [a, b] × [a, b], is the Green function
for the problem (2.1), (2.2), since it follows from the definitions of the functions U
and Gx that

U(x) =

b∫
a

Φ(z)Gx(z) dz. (4.11)

This formula is derived similarly to (4.7).

Remark 4.2. In the case a = −∞ or b = ∞ the corresponding boundary
condition in (4.10) must be replaced by the condition that the function Gx(z) tends
to zero as z tends to −∞ or ∞. This is due to the fact that Gx(z) is estimated by
the density of the variable W (τ).

Proof of Theorem 4.1. We deduce Theorem 4.1 from Theorem 2.1. Set

U∆(x)

:= Ex

{
1I[z;z+�)(W (�))

�
exp

(
−

τ∫
0

f(W (s)) ds
)

; a ≤ inf
0≤s≤τ

W (s), sup
0≤s≤τ

W (s) ≤ b

}
.

We let 1I[y,y+∆)(x) := −1I[y+∆,y)(x) if ∆ < 0. By the definition of the function Gx,

Gx(z) = lim
∆→0

U∆(x) =: Uz(x), (z, x) ∈ (a, b)× (a, b). (4.12)

Here we rewrite Gx as a function of the variable x, because we derive first the
differential problem with respect to x.

By Theorem 2.1, the function U∆ is the unique solution of the problem

1

2
U ′′

∆(x)− (λ+ f(x))U∆(x) = −λ 1

�
1I[z,z+∆)(x), x ∈ (a, b), (4.13)

U∆(a) = 0, U∆(b) = 0. (4.14)
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We set χ∆(x) :=
x∫

−∞

1

�
1I[z,z+∆)(u) du for ∆ 6= 0. Then (4.13) can be written as

follows: for every y, x ∈ (a, b)

1

2
(U ′

∆(x)− U ′
∆(y))−

x∫
y

(λ+ f(r))U∆(r) dr = −λ
x∫
y

dχ∆(r). (4.15)

Our aim is to pass to the limit as ∆ → 0 in (4.15) and (4.14), with the help of
(4.12). Here the arguments almost word for word repeat those used to justify the
passage to the limit in the problem (3.6), (3.7) and we omit them. We only note
that an important role here is played the following uniform estimate, which can be
obtained by formula (4.6):

|U∆(x)| ≤ Ex
{
1I[z;z+�)(W (�))

�

}
= 1

�

z+∆∫
z

d

dy
Px(W (τ) < y) dy ≤

√
�

√
2
. (4.16)

By passing to the limit as ∆ → 0 in (4.15), (1.14), we can prove that the function
Uz(x), x ∈ [a, b], is the unique continuous solution of the problem

1

2
U ′′
z (x)− (λ+ f(x))Uz(x) = 0, x ∈ (a, b) \ {z} (4.17)

U ′
z(z + 0)− U ′

z(z − 0) = −2λ, (4.18)

Uz(a) = 0, Uz(b) = 0. (4.19)

Note that, in view of the equality Gx(z) = Uz(x), the problem (4.17)–(4.19),
in fact, solves the problem of computation of the function Gx(z). But this is a
problem with respect to the starting point x of the process. Now we explain how
it can be transformed to a problem with respect to the endpoint z.

We solve the problem (4.17)–(4.19) in terms of fundamental solutions ψ(x) and
ϕ(x) of equation (4.17) for x ∈ (a, b), satisfying the conditions ψ(a) = 0 and
ϕ(b) = 0. The Wronskian w = ψ′(x)ϕ(x) − ψ(x)ϕ′(x) > 0 of these solutions is a
constant. Taking into account the continuity of Uz(x), x ∈ [a, b], and condition
(4.18), we obtain

Uz(x) =


2�

w
ϕ(z)ψ(x), a ≤ x ≤ z,

2�

w
ψ(z)ϕ(x), z ≤ x ≤ b.

(4.20)

From this formula it follows that the function Gx(z) = Uz(x), z ∈ (a, b), can be
represented as

Gx(z) =


2�

w
ϕ(x)ψ(z), a ≤ z ≤ x,

2�

w
ψ(x)ϕ(z), x ≤ z ≤ b.

(4.21)

Hence, it is continuous, and satisfies equation (4.8) for z 6= x, because this equation
coincides with (4.17). Moreover, at x the derivative has the jump

G′
x(x+ 0)−G′

x(x− 0) = 2�

w
(ψ(x)ϕ′(x)− ψ′(x)ϕ(x)) = −2λ. (4.22)
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The boundary conditions (4.10) also hold. Theorem 4.1 is proved. �

Consider an analogue of Theorem 3.1 for the Brownian bridge. Let’s start with
an important remark concerning the distribution of the local time at different levels.

Remark 4.3. Based on the proof of Theorem 3.1 we can provide a general
rule of formulation of assertions, in which along with an integral functional there
is a linear combination of local times. A local time at a level q can be informally
considered as an integral functional whose integrand is the Dirac δ-function at the
point q, i.e., the function δq(x), x ∈ R. The function δq(x) can be interpreted as

the family of functions
{
1

"
1I[q,q+ε)(x)

}
ε>0

. The presence of the Dirac δ-function

under the integral sign is characterized by the following procedure: the δ-function
is replaced by an element of this family and then the limit is computed as ε ↓ 0.
With this treatment of the Dirac δ-function δq equality (3.4) takes the form

`(t, q1) = lim
ε↓0

t∫
0

1

"
1I[q1,q1+ε)(W (s)) ds =

t∫
0

δq1(W (s)) ds.

For integral functionals we derived Theorem 2.1 and its analogue for the Brownian
bridge (Theorem 4.1). Due to the presence of linear combinations of the functions
δqk

(x), k = 1, . . . r, the basic equations of the form (2.1) or (4.8) are not valid
at the points qk. However, at these points their solutions are continuous and the
first derivative has a jump. The values of the jumps are computed as follows. We
integrate the basic equation, in which along with the usual integrands the linear
combination of δqk

(x), k = 1, . . . , r, appears, over a small interval containing some
point ql. Then letting the boundaries of the interval tend to the point ql, we obtain
an expression for the jump of the first derivative at ql. This was done in detail in
the proof of Theorem 3.1.

Now we illustrate this rule by formulating an analogue of Theorem 3.1 for the
Brownian bridge.

The next assertion is stated without proof, because the latter is completely
similar to the proofs of Theorems 3.1 and 4.1. This result enables us to compute
the joint distribution of an integral functional of the Brownian bridge, its local times
at different levels, and the infimum and supremum functionals. Let the functional
A~β(t) be defined as at the beginning of § 3.

Theorem 4.2. Let f(x), x ∈ [a, b] be a piecewise-continuous nonnegative func-
tion. Then for a ≤ x ≤ b the function

Gx(z) = d

dz
Ex
{

exp(−A~β(τ)); a ≤ inf
0≤s≤τ

W (s), sup
0≤s≤τ

W (s) ≤ b, W (τ) < z
}
,

z ∈ [a, b], is the unique continuous solution of the problem

1

2
G′′(z)− (λ+ f(z))G(z) = 0, z ∈ (a, b) \ {x, q1, . . . , qm}, (4.23)

G′(x+ 0)−G′(x− 0) = −2λ, (4.24)

G′(qk + 0)−G′(qk − 0) = 2βkG(qk), qk 6= x, k = 1, . . . ,m, (4.25)

G(a) = 0, G(b) = 0. (4.26)
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Remark 4.4. If qk = x for some k, then condition (4.24) should be replaced
by the condition

G′(x+ 0)−G′(x− 0) = 2βkG(x)− 2λ.

In this case in (4.25) the condition with index k is removed.

Remark 4.5. Gx(z) is the Green function of the problem (3.1)–(3.3), because
by the definition of the functions M(x) and Gx(z),

M(x) =

b∫
a

Φ(z)Gx(z) dz. (4.27)

The function h(t, z), defined by (4.2), is of special interest. As a function of
two variables it satisfies an equation in partial derivatives. We will give an original
derivation of this equation based on the explicit expression for the Brownian bridge
(see (11.7) Ch. I).

Assume that f(x) = f+(x) + f0(x), x ∈ R, where f+ ≥ 0 and f0 is bounded.
Let f be twice continuously differentiable function, the derivatives of which obey
the estimates |f ′(x)| ≤ C(1+ |x|m) and |f ′′(x)| ≤ C(1+ |x|m) for x ∈ R, and some
C > 0, m ≥ 0.

Theorem 4.3. Under the above conditions, the function h(t, z), t > 0, z ∈ R,
is the solution of the problem

@

@t
h(t, z) = 1

2

@2

@z2
h(t, z)− z − x

t

@

@z
h(t, z)− f(z)h(t, z), (4.28)

h(+0, z) = 1. (4.29)

Proof. We use (11.7) Ch. I. According to that formula,

Wx,t,z(s) = W (s)− s

t
(W (t)− z), s ∈ [0, t],

where W (0) = x. Therefore,

h(t, z) = E exp
(
−

t∫
0

f(W (v)− v

t
(W (t)− z)) dv

)
. (4.30)

The initial condition (4.29) is easily verified by passage to the limit as t ↓ 0 under
the expectation sign in (4.30).

Set

V (t, y, z) := exp
(
−

t∫
0

f(W (v)− v

t
(y − z)) dv

)
.

It is clear that h(t, z) = EV (t,W (t), z). The derivative

@

@y
V (t, y, z) = exp

(
−

t∫
0

f(W (v)− v

t
(y−z)) dv

) t∫
0

v

t
f ′(W (v)− v

t
(y−z)) dv (4.31)
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obeys the estimate

E
(
@

@x
V (t,W (t), z)

)2

≤ C2eC1tE
( t∫

0

v

t

(
1 +

∣∣∣W (v)− v

t
(W (t)− z)

∣∣∣m)dv)2

≤ Cme
C1tt2

(
1 + tm + |z|2m

)
, (4.32)

where Cm and C1 are constants. An analogous estimate holds for the second
derivative.

Note that the variables y and z figuring in V with opposite sign, therefore
@

@y
V = − @

@z
V and @2

@y2
V = @2

@z2
V . Differentiating the right-hand side of (4.30)

with respect to z twice under the sign of expectation, we can easily verify that the

derivatives @

@z
h(t, z) and @2

@z2
h(t, z) exist, and

@

@z
h(t, z) = −E

@

@y
V (t,W (t), z), @2

@z2
h(t, z) = E

@2

@y2
V (t,W (t), z). (4.33)

Compute the stochastic differential dV (t,W (t), z) by Itô’s formula. Note that

@

@t
V (t, y, z) = −f(W (t)− y + z)V (t, y, z)− y − z

t

@

@y
V (t, y, z),

because the variable t is included to the definition of V as the upper limit of
integration and through the fraction y − z

t
under the integral sign. Then by Itô’s

formula,

dV (t,W (t), z) = −f(z)V (t,W (t), z) dt− W (t)− z

t

@

@y
V (t,W (t), z) dt

+ @

@y
V (t,W (t), z) dW (t) + 1

2

@2

@y2
V (t,W (t), z) dt.

The application of Itô’s formula is correct, because the process V (t, x, z), t ≥ 0, is
adapted to the natural filtration of the Brownian motion W . The integral version
of this equality has the form

V (t,W (t), z)− 1 = −f(z)

t∫
0

V (s,W (s), z) ds+

t∫
0

z −W (s)

s

@

@y
V (s,W (s), z) ds

+

t∫
0

@

@y
V (s,W (s), z) dW (s) +

t∫
0

1

2

@2

@y2
V (s,W (s), z) ds. (4.34)

Since for every fixed s the variable W (s) is independent of the process W (v) −
v

s
(W (s) − z), v ∈ [0, s] (see the reasoning after formula (11.13) Ch.I), we see that

W (s) is independent of the variable @

@y
V (s,W (s), z), which, according to (4.31),

is completely determined by the sample paths of the process W (v)− v

s
(W (s)− z),
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v ∈ [0, s]. In view of (4.32), the expectation of the stochastic integral in (4.34) is
zero. Therefore, computing the expectation of both sides of (4.34) and using the
obvious equality EW (s) = x, we get

EV (t,W (t), z)− 1 = −f(z)

t∫
0

EV (s,W (s), z) ds+

t∫
0

z − x

s
E
@

@y
V (s,W (s), z) ds

+

t∫
0

1

2
E
@2

@y2
V (s,W (s), z) ds.

This and (4.33) imply that the function h(t, z) is the solution of the problem (4.28),
(4.29). The theorem is proved. �

Remark 4.6. Under the above conditions on the function f , Theorem 4.3 im-
plies Theorem 4.1 for a = −∞, b = ∞.

Indeed, set
q(t, z) := (h(t, z)− 1) 1

√
2�t

e−(z−x)2/2t.

It is easy to verify that the function q is the solution of the equation

@

@t
q(t, z) = 1

2

@2

@z2
q(t, z)− f(z)q(t, z)− f(z) 1

√
2�t

e−(z−x)2/2t (4.35)

and satisfies the boundary condition q(+0, z) = 0. By (4.3), (4.4), and (4.6),

Q(z) := λ

∞∫
0

e−λtq(t, z) dt = Gx(z) +
√
�

√
2
e−|z−x|

√
2λ.

Computing the Laplace transform with respect to t of the left-hand and right-hand
sides of (4.35) and using the boundary condition, we deduce that Q is the unique
bounded solution of the equation

1

2
Q′′(z)− (λ+ f(z))Q(z) = f(z)

√
�

√
2
e−|z−x|

√
2λ, z ∈ R.

Now it is easy to see that the function Gx(z), z ∈ R, is the unique continuous
bounded solution of the problem

1

2
G′′(z)− (λ+ f(z))G(z) = 0, z 6= x, (4.36)

G′(x+ 0)−G′(x− 0) = −2λ. (4.37)

This is precisely the statement of Theorem 4.1 for a = −∞, b = ∞. �

Let us give examples of the application of Theorems 4.1 and 4.2.
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Example 4.1. According to Theorem 4.1 with f ≡ 0 and Remark 4.2 for
a = −∞, b = ∞, the function Gx(z) = d

dz
Px(W (τ) < z) is the unique bounded

continuous solution of the problem

1

2
G′′(z)− λG(z) = 0, z ∈ (−∞, x) ∪ (x,∞), (4.38)

G′(x+ 0)−G′(x− 0) = −2λ. (4.39)

It is easy to solve this problem, but we already know the solution: it is given by

(4.6). Thus the function Gx(z) =
√
�

√
2
e−|z−x|

√
2λ, z ∈ R, satisfies equation (4.38)

for z 6= x and its derivative has at the point x the jump −2λ.

Example 4.2. We compute the joint distribution of inf
0≤s≤t

W (s), sup
0≤s≤t

W (s),

given the condition W (t) = z.
Applying Theorem 4.1 with f ≡ 0, we see that

Gx(z) = d

dz
Px

(
a ≤ inf

0≤s≤τ
W (s), sup

0≤s≤τ
W (s) ≤ b, W (τ) < z

)
is the unique continuous solution of the problem

1

2
G′′(z)− λG(z) = 0, z ∈ (a, b) \ {x}, (4.40)

G′(x+ 0)−G′(x− 0) = −2λ, (4.41)

G(a) = 0, G(b) = 0. (4.42)

The standard way of solving this problem is the following. Find the general solu-
tions of equation (4.40) in the intervals (a, x) and (x, b). Each of these solutions
depends on two unknown constants. These four constants can be computed from
the continuity condition of the function Gx(z), z ∈ (a, b), at the point x, condition
(4.41) on the jump of the derivative at x, and the boundary conditions (4.42).

However, these computations can be simplified. The fundamental solutions of
equation (4.40) satisfying, respectively, the right-hand and the left-hand boundary
conditions are sh((b−z)

√
2λ) and sh((z−a)

√
2λ). As it was noticed in Example 4.1,

we can choose a function that satisfies (4.40) for z 6= x and whose derivative has at

the point x the jump −2λ. In our case it is suitable to take −
√
�

√
2

sh(|z−x|
√

2λ) as

such a function. Then the solution of the problem (4.40)–(4.42) can be represented
as

Gx(z) = A sh((b− z)
√

2λ) +B sh((z − a)
√

2λ)−
√
�

√
2

sh(|z − x|
√

2λ).

The constants A and B can be easily computed from the boundary conditions, and
we get

Gx(z)=
√
�

√
2

[
sh((b−z)

√
2�) sh((x−a)

√
2�)

sh((b− a)
√
2�)

+ sh((b−x)
√
2�) sh((z−a)

√
2�)

sh((b− a)
√
2�)

−sh(|z−x|
√

2λ)
]
.
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Using the formulas for products of hyperbolic functions, we have

Gx(z) =
√
�

√
2

[
ch((b+ x− z − a)

√
2�) + ch((b− x+ z − a)

√
2�)

2 sh((b− a)
√
2�)

− ch((b+ a− z − x)
√
2�)

sh((b− a)
√
2�)

− sh(|z − x|
√

2λ)
]

=
√
�

√
2

[
ch((b− a)

√
2�) ch((z − x)

√
2�)

sh((b− a)
√
2�)

− ch((b+ a− z − x)
√
2�)

sh((b− a)
√
2�)

− sh(|z − x|
√

2λ)
]
.

Finally, the solution of the problem (4.40)–(4.42) is

Gx(z) = d

dz
Px

(
a ≤ inf

0≤s≤τ
W (s), sup

0≤s≤τ
W (s) ≤ b, W (τ) < z

)
=

√
�
(
ch((b− a− |z − x|)

√
2�)− ch((b+ a− z − x)

√
2�)

)
√
2 sh((b− a)

√
2�)

. (4.43)

Dividing (4.43) by λ and inverting the Laplace transform with respect to λ (see
Section 13 of Appendix 2), we get

d

dz
Px

(
a ≤ inf

0≤s≤t
W (s), sup

0≤s≤t
W (s) ≤ b,W (t) < z

)
= cst(b− a− |z − x|, b− a)− cst(b+ a− z − x, b− a)

= 1
√
2�t

∞∑
k=−∞

(
e−(z−x+2k(b−a))2/2t − e−(z+x−2a+2k(b−a))2/2t). (4.44)

Dividing (4.44) by the density

d

dz
Px

(
W (t) < z

)
= 1

√
2�t

e−(z−x)2/2t,

we obtain the conditional joint distribution of the infimum and supremum of the
Brownian motion given the condition W (t) = z, i.e., the joint distribution of the
infimum and supremum of the Brownian bridge.

Note that (4.44) turns into (2.16) after integration with respect to z over the
interval (a, b). The same connection exists between formulas (4.43) and (2.12).

Example 4.3. We compute the distribution of the Brownian local time `(t, q)
given the conditionW (t) = z, i.e., the distribution of the local time of the Brownian
bridge Wx,t,z(s), s ∈ [0, t]. Applying Theorem 4.2 with a = −∞, b = ∞, f ≡ 0,
β1 = β, q1 = q, and βk = 0 for k 6= 1, we see that the function

Gx(z) = d

dz
Ex
{
e−β`(τ,q);W (τ) < z

}
, z ∈ R,

is the unique bounded continuous solution of the problem

1

2
G′′(z)− λG(z) = 0, z ∈ R \ {x, q}, (4.45)

G′(x+ 0)−G′(x− 0) = −2λ, (4.46)

G′(q + 0)−G′(q − 0) = 2βG(q). (4.47)
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To find the solution of this problem we use the approach proposed in Example 4.1.

The jump of the derivative (4.46) is provided by the term
√
�

√
2
e−|z−x|

√
2λ, which

for z 6= x satisfies the equation (4.45). Similarly, the jump of the derivative (4.47)
can be provided by the term e−|z−q|

√
2λ with some unknown factor. As a result,

the bounded continuous solution of the problem (4.45)–(4.47) can be represented
in the form

Gx(z) =
√
�

√
2
e−|z−x|

√
2λ +Ae−|z−q|

√
2λ.

From (4.47) it is easy to deduce that

A = − �
√
�

√
2
(√

2�+ �
) e−|q−x|√2λ.

To invert the Laplace transform with respect to β, it is necessary to decompose A
into a sum of two terms. Finally, for Gx we obtain the representation

Gx(z) =
√
�

√
2
e−|z−x|

√
2λ −

(√
�

√
2
− �

√
2�+ �

)
e−(|z−q|+|q−x|)

√
2λ.

Inverting the Laplace transform with respect to β, we have (see formula 1 of Ap-
pendix 3)

d

dz
Px(`(τ, q) = 0,W (s) < z) =

√
�

√
2

(
e−|z−x|

√
2λ − e−(|z−q|+|q−x|)

√
2λ
)
, (4.48)

and
@

@v

@

@z
Px(`(τ, q) < v, W (τ) < z) = λe−(v+|z−q|+|q−x|)

√
2λ (4.49)

for v > 0.
Dividing these equalities by λ, inverting the Laplace transform with respect to

λ, and then dividing the obtained expression by the density d

dz
Px(W (t) < z), we,

finally, get (see formulas 5 and 2 of Appendix 3)

Px(`(t, q) = 0|W (t) = z) = 1− exp
(
− (|z − q|+ |q − x|)2 − (z − x)2

2t

)
, (4.50)

d

dv
Px(`(t, q) < v|W (t) = z)

= v + |z − q|+ |q − x|
t

exp
(
− (v + |z − q|+ |q − x|)2 − (z − x)2

2t

)
, v > 0. (4.51)

Example 4.4. We compute the joint distribution of the Brownian local times
`(τ, r) and `(τ, u) given W (τ) = z. In § 2 Ch. V it will be proved that `(τ, y),
y ∈ R, given W (τ) = z is a Markov process, therefore this example is important
for the description of transition probabilities of this process.

Applying Theorem 4.2 with a = −∞, b = ∞, f ≡ 0, β1 = γ, β2 = η, q1 = r,
q2 = u and βk = 0 k ≥ 2, we see that the function

Gx(z) = d

dz
Ex
{
e−γ`(τ,r)−η`(τ,u);W (τ) < z

}
, z ∈ R,
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is the unique bounded continuous solution of the problem

1

2
G′′(z)− λG(z) = 0, z ∈ R \ {x, r, u}, (4.52)

G′(x+ 0)−G′(x− 0) = −2λ, (4.53)

G′(r + 0)−G′(r − 0) = 2γG(r), (4.54)

G′(u+ 0)−G′(u− 0) = 2ηG(u). (4.55)

To find the solution of this problem, we use the approach proposed in Example 4.3.
The bounded continuous solution of (4.52)–(4.55) can be written as

Gx(z) =
√
�

√
2
e−|z−x|

√
2λ +Ae−|z−r|

√
2λ +Be−|z−u|

√
2λ.

In this representation we take into account the continuity and boundedness re-
quirements for the solution, condition (4.53) and the conditions on the jumps of
the derivative at the points r and u. The coefficients A and B are computed ac-
cording to (4.54) and (4.55). Solving the system of two algebraic equations with
two unknowns A and B, we get

d

dz
Ex
{
e−γ`(τ,r)−η`(τ,u);W (τ) < z

}
=

√
�

√
2
e−|z−x|

√
2λ

−
√
�
(

√
2�+ �

(
e−|r−x|

√
2� − e−(|u−x|+|u−r|)

√
2�))

√
2
(
2�+

√
2�( + �) + �

(
1− e−2|u−r|

√
2�

)) e−|z−r|
√

2λ

−
√
�
(
�
√
2�+ �

(
e−|u−x|

√
2� − e−(|r−x|+|u−r|)

√
2�))

√
2
(
2�+

√
2�( + �) + �

(
1− e−2|u−r|

√
2�

)) e−|z−u|
√

2λ. (4.56)

Note that this formula is invariant under the substitution x to z and (γ, r) to
(η, u). This fact also follows from the properties of spatial homogeneity and time
reversibility of the Brownian bridge (see § 11 Ch. I).

For brevity set ∆ := |u − r|. In order to invert the double Laplace transform
with respect to γ and η, we can use formulas (34) and (35) of Appendix 3. For this
we transform the right-hand side of (4.56) to the following form:

d

dz
Ex
{
e−γ`(τ,r)−η`(τ,u);W (τ) < z

}
=

√
�

√
2
e−|z−x|

√
2λ −

√
�C

√
2
(
1− e−2�

√
2�

)
+ �D(

1− e−2�
√
2�

)2(
� +

√
2�

1−e−2∆
√

2λ

) + �F(
1− e−2�

√
2�

)2(
 +

√
2�

1−e−2∆
√

2λ

)

+ �
√
2�(

1− e−2�
√
2�

)3
(
C

(
1− e−2�

√
2�)

−D − F
)(

� +
√
2�(+�)

1−e−2∆
√

2λ
+ 2�

1−e−2∆
√

2λ

)

+ �D(
1− e−2�

√
2�

)2
{

 +
√
2�

1−e−2∆
√

2λ

� +
√
2�(+�)

1−e−2∆
√

2λ
+ 2�

1−e−2∆
√

2λ

− 1

� +
√
2�

1−e−2∆
√

2λ

}
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+ �F(
1− e−2�

√
2�

)2
{

� +
√
2�

1−e−2∆
√

2λ

� +
√
2�(+�)

1−e−2∆
√

2λ
+ 2�

1−e−2∆
√

2λ

− 1

 +
√
2�

1−e−2∆
√

2λ

}
, (4.57)

where
C := e−|z−r|

√
2λ
(
e−|r−x|

√
2λ − e−(|u−x|+∆)

√
2λ
)

+ e−|z−u|
√

2λ
(
e−|u−x|

√
2λ − e−(|r−x|+∆)

√
2λ
)
, (4.58)

D :=
(
e−|u−x|

√
2λ − e−(|r−x|+∆)

√
2λ
)(
e−|z−u|

√
2λ − e−(|z−r|+∆)

√
2λ
)
, (4.59)

F :=
(
e−|r−x|

√
2λ − e−(|u−x|+∆)

√
2λ
)(
e−|z−r|

√
2λ − e−(|z−u|+∆)

√
2λ
)
. (4.60)

We still need the constant H := C
(
1− e−2∆

√
2λ
)
−D−F . It is easy to verify that

H = e−∆
√

2λ
(
e−|r−x|

√
2λ − e−(|u−x|+∆)

√
2λ
)(
e−|z−u|

√
2λ − e−(|z−r|+∆)

√
2λ
)

+ e−∆
√

2λ
(
e−|u−x|

√
2λ − e−(|r−x|+∆)

√
2λ
)(
e−|z−r|

√
2λ − e−(|z−u|+∆)

√
2λ
)
. (4.61)

Inverting in (4.57) the Laplace transform with respect to γ and η and dividing the

result by the density d

dz
Px(W (τ) < z) =

√
�

√
2
e−|z−x|

√
2λ, we get (see formulas 1,

34, and 35 of Appendix 3)

Px(`(τ, r) = 0, `(τ, u) = 0|W (τ) = z) = 1− Ce|z−x|
√
2�(

1− e−2�
√
2�

) , (4.62)

@

@g
Px(`(τ, r) = 0, `(τ, u) < g|W (τ) = z) =

√
2�De|z−x|

√
2�(

1− e−2�
√
2�

)2 exp
(
− g

√
2�

1− e−2�
√
2�

)
,

(4.63)
@

@v
Px(`(τ, r) < v, `(τ, u) = 0|W (τ) = z) =

√
2�Fe|z−x|

√
2�(

1− e−2�
√
2�

)2 exp
(
− v

√
2�

1− e−2�
√
2�

)
,

(4.64)
@

@v

@

@g
Px(`(τ, r) < v, `(τ, u) < g|W (τ) = z)

= �De|z−x|
√
2�e−�

√
2�(

1− e−2�
√
2�

)3 exp
(
− (v + g)

√
2�

1− e−2�
√
2�

)√
g

√
v
I1

( √
2�gv

sh(�
√
2�)

)
+ 2�Fe|z−x|

√
2�e−�

√
2�(

1− e−2�
√
2�

)3 exp
(
− (v + g)

√
2�

1− e−2�
√
2�

)√
v

√
g
I1

( √
2�gv

sh(�
√
2�)

)
+ 2�He|z−x|

√
2�(

1− e−2�
√
2�

)3 exp
(
− (v + g)

√
2�

1− e−2�
√
2�

)
I0

( √
2�gv

sh(�
√
2�)

)
. (4.65)

Formula (4.65) is invariant under the substitution x to z and (v, r) to (g, u). This
fact also follows from the properties of spatial homogeneity and time reversibility
of the Brownian bridge.

We fix x < z and assume for definiteness that r < u. The coefficients D, F ,
and H have the simplest expressions if x < r < u < z, r < u < x and z < r < u.
The most complicated expressions arise when r < x < z < u. In § 2 Ch. V we
will describe the process `(τ, y), y ∈ R, given W (τ) = z. We will show that it is
a Markov process and at the end of the section for x < z we will give formulas for
the transition probabilities depending on the intervals (−∞, x), (x, z), (z,∞).
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Exercises.

4.1. Compute the probabilities

d

dz
Px

(
a ≤ inf

0≤s≤t
W (s), W (t) < z

)
,

d

dz
Px

(
sup

0≤s≤t
W (s) ≤ b, W (t) < z

)
.

4.2. Compute the expression

d

dz
Ex
{
e−γ`(τ,r); sup

0≤s≤τ
W (s) ≤ b,W (τ) < z

}
, γ > 0,

and the joint density

d

dy

d

dz
Px

(
`(τ, r) < y, sup

0≤s≤τ
W (s) ≤ b,W (τ) < z

)
.

4.3. Compute the expression

d

dz
Ex
{
e−γ`(τ,r); a ≤ inf

0≤s≤τ
W (s),W (τ) < z

}
, γ > 0,

and the joint density

d

dy

d

dz
Px

(
`(τ, r) < y, a ≤ inf

0≤s≤τ
W (s),W (τ) < z

)
.

4.4. Compute the expression

d

dz
Ex
{

exp
(
− γ

τ∫
0

1I[r,∞)(W (s)) ds
)
;W (τ) < z

}
, γ > 0.

4.5. Compute the expression

d

dz
Ex
{

exp
(
− 2

2

τ∫
0

W 2(s) ds
)
;W (τ) < z

}
.

Hint: Use the solution of equation 3 of Appendix 4.

§5. Distributions of functionals of Brownian
motion stopped at the first exit time

Besides the problem of computation of distributions of functionals of Brownian
motion, stopped at a fixed time t or exponential random time τ , of significant
interest is the solution of the same problem for the first exit time of the Brownian
motion W from the interval (a, b), i.e., for the moment

Ha,b := min{s : W (s) /∈ (a, b)}.
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It is easy to verify (see also Remark 12.3 Ch. II), that Ha,b < ∞ a.s. Indeed,
taking into account (2.12), we have

P(Ha,b = ∞) ≤ Px

(
a ≤ inf

0≤s≤∞
W (s), sup

0≤s≤∞
W (s) ≤ b

)

= lim
λ↓0

Px

(
a ≤ inf

0≤s≤τ
W (s), sup

0≤s≤τ
W (s) ≤ b

)
= lim

λ↓0

(
1− ch((b+ a− 2x)

√
�=2)

ch((b− a)
√
�=2)

)
= 0.

Here we used the fact that τ →∞ in probability as λ ↓ 0, since P(τ > t) = e−λt.
As previously, we begin the discussion of this problem with the consideration of

a nonnegative integral functional of the Brownian motion. As in the case with an
exponential moment, the Laplace transform

Q(x) = Ex exp
(
− γ

Ha,b∫
0

f(W (s)) ds
)

(5.1)

plays a key role. To compute the distribution function of the integral functional
at the moment Ha,b we must invert this Laplace transform with respect to γ.
Schematically this can be written as

Px

( Ha,b∫
0

f(W (s)) ds < y

)
= L−1

γ (Q(x)). (5.2)

The general approach to computing the distributions of functionals of the Brown-
ian motion stopped at the time Ha,b is based on the computation of the function Q
for all γ > 0 and on the subsequent inversion of the Laplace transform with respect
to γ.

For the problem of distributions of functionals at the time Ha,b, the exit across
the upper or lower boundary has an important meaning. Thus we must consider
the Laplace transform of the distribution of the integral functional reduced to the
set {W (Ha,b) = b} or the set {W (Ha,b) = a}, respectively. The function Q can be
expressed as the sum of these functions.

The following result is a consequence of Theorem 12.6 Ch. II, with σ(x) ≡ 1,
µ(x) ≡ 0 and F (x) ≡ 0. Nevertheless, we will prove it in a different way to illustrate
the variety of probabilistic methods for solving the problems of distribution of
functionals. As it was mentioned, the class of integral functionals of a process
with only continuous integrands is too narrow. It will be extended to the class
of piecewise-continuous functions. For brevity of notations the parameter γ is
included in the function f .

Theorem 5.1. Let f(x), x ∈ [a, b], be a piecewise-continuous nonnegative func-
tion. Then the function

Qa(x) = Ex

{
exp

(
−

Ha,b∫
0

f(W (s)) ds
)

;W (Ha,b) = a

}
, x ∈ [a, b], (5.3)
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is the unique solution of the problem

1

2
Q′′(x)− f(x)Q(x) = 0, x ∈ (a, b), (5.4)

Q(a) = 1, Q(b) = 0. (5.5)

Remark 5.1. If the function Qb is considered, where we set W (Ha,b) = b, then
Qb(x), x ∈ [a, b], satisfies (5.4) and

Q(a) = 0, Q(b) = 1. (5.6)

This is a consequence of the spatial homogeneity and symmetry properties of
the Brownian motion W .

Theorem 5.2. Let f(x), x ∈ [a, b], be a piecewise-continuous nonnegative func-
tion. Then the function

Q(x) = Ex exp
(
−

Ha,b∫
0

f(W (s)) ds
)
, x ∈ [a, b], (5.7)

is the unique solution of the problem

1

2
Q′′(x)− f(x)Q(x) = 0, x ∈ (a, b), (5.8)

Q(a) = 1, Q(b) = 1. (5.9)

Remark 5.2. The function Q defined by (5.7) is the sum of the functions Qa
and Qb, since the events {W (Ha,b) = a} and {W (Ha,b) = b} are complementary.
This follows also from the solutions of the differential problems: adding the so-
lutions of the problems (5.4), (5.5) and (5.4), (5.6) we obtain the solution of the
problem (5.8), (5.9).

Proof of Theorem 5.1. We first prove two auxiliary results. The first one is
the special case of Proposition 12.5 Ch. II, because S(x) = x for a Brownian
motion. The second result is a special case of Proposition 12.4 Ch. II for S(x) = x,
Φ(a) = Φ(b) = 0, and Theorem 12.6 Ch. II. We, however, give an original derivation
of these results for a Brownian motion.

Lemma 5.1. Let W (s), s ≥ 0, be a Brownian motion starting at x ∈ [a, b].
Then the probabilities of exit through the boundaries a or b equal

Px(W (Ha,b) = a) = b− x

b− a
, Px(W (Ha,b) = b) = x− a

b− a
, (5.10)

respectively

Proof. We prove, for example, the right-hand side relation in (5.10). Denote
Yb(x) := Px(W (Ha,b) = b). It is obvious that Yb(a) = 0 and Yb(b) = 1. In view of
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the strong Markov property and the symmetry of the Brownian motion (−W (s) is
also a Brownian motion), we have

Yb(x) = 1

2
Yb(x− δ) + 1

2
Yb(x+ δ) (5.11)

for any δ < min{b − x, x − a}. Indeed, by the symmetry property, the Brownian
motion, starting at x, reaches each of the levels x− δ, x+ δ with probabilities 1/2.
By the strong Markov property, the Brownian motion starts anew at the first exit
time, regardless of the behavior until the boundary. This implies (5.11). Equality
(5.11) can be recast as

Yb(x+ δ)− Yb(x) = Yb(x)− Yb(x− δ).

Thus the function Y has identical increments on the intervals (x−δ, x) and (x, x+δ).
In view of the boundary conditions, the equalities

Yb(xk) = k

n
= xk − a

b− a
(5.12)

hold on the lattice xk = a+ k

n
(b− a). Using the strong Markov property it is not

hard to get that Yb(x) = Yy(x)Yb(y) for x < y. This implies the monotonicity of
the function Yb(x), i.e., Yb(x) ≤ Yb(y). Since n is arbitrary, (5.12) is realized on a
dense lattice. In view of monotonicity of Yb(x), it is valid for all x in [a, b]. �

Lemma 5.2. Set

h(x, y) :=


2(b− y)(x− a)

b− a
, a ≤ x ≤ y ≤ b,

2(b− x)(y − a)

b− a
, a ≤ y ≤ x ≤ b.

Then for any bounded function g(y),

Ex

Ha,b∫
0

g(W (t)) dt =

b∫
a

g(y)h(x, y) dy. (5.13)

Proof. Since the event {t < Ha,b} is equivalent to the event that the Brownian
motion lies between the levels a and b up to the time t, we have

Ex

Ha,b∫
0

g(W (t)) dt = Ex

∞∫
0

1I{0≤t<Ha,b}g(W (t)) dt

=

∞∫
0

dt

b∫
a

g(y)Ex
{
1I{0≤t<Ha,b},W (t) ∈ [y, y + dy)

}
=

b∫
a

g(y)

∞∫
0

e−λt

×Px

(
a < inf

0≤s≤t
W (s), sup

0≤s≤t
W (s) < b,W (t) ∈ [y, y + dy)

)
dt
∣∣∣
λ=0

=

b∫
a

g(y) 1
�

d

dy
Px

(
a < inf

0≤s≤τ
W (s), sup

0≤s≤τ
W (s) < b,W (τ) < y

)∣∣∣
λ=0

dy.
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Using (4.43) and the asymptotic expansion shx = x+ x3/3! + · · · , we get

1

�

d

dy
Px

{
a < inf

0≤s≤τ
W (s), sup

0≤s≤τ
W (s) < b,W (τ) < y

}∣∣∣
λ=0

= lim
λ→0

1

�

√
�
(
ch((b− a− |y − x|)

√
2�)− ch((b+ a− y − x)

√
2�)

√
2 sh((b− a)

√
2�)

)
= lim
λ→0

√
2 sh((2b− y − x− |y − x|)

√
�=2) sh((y + x− |y − x| − 2a)

√
�=2)

√
� sh((b− a)

√
2�)

= (2b− y − x− |y − x|)(y + x− |y − x| − 2a)

2(b− a)
= h(x, y).

Thus the relation( 5.13) is proved. �

Now we can pass to the proof of Theorem 5.1. We use the equality

Qa(x) = Ex

{
exp

(
−

Ha,b∫
0

f(W (s)) ds
)

;W (Ha,b) = a

}

= Ex

{[
1−

Ha,b∫
0

f(W (t)) exp
(
−

Ha,b∫
t

f(W (s)) ds
)
dt

]
;W (Ha,b) = a

}
.

We set W̃ (v) := W (v + t) −W (t) + y, v ≥ 0, where y ∈ R is the starting point of
W̃ . Let W̃ (0) = W (t) and H̃a,b = min{v : W̃ (v) /∈ (a, b)}, then Ha,b = t+ H̃a,b for
the set {t ≤ Ha,b}. For a fixed y the Brownian motion W̃ is independent of W (t).
Now, using the 4th and 3rd properties of conditional expectations, and Lemma 2.1
Ch. I with Q = σ(w(s), 0 ≤ s ≤ t), we obtain

Qa(x) = Px(W (Ha,b) = a)−Ex

{
E
{ ∞∫

0

1I{t<Ha,b}f(W (t))

× exp
(
−

Ha,b−t∫
0

f(W (v + t)−W (t) +W (t)) dv
)
dt1I{W (Ha,b)=a}

∣∣∣∣Q}}
= Px(W (Ha,b) = a)

−Ex

∞∫
0

1I{t<Ha,b}f(W (t))EW (t)

{
exp

(
−

H̃a,b∫
0

f(W̃ (v)) dv
)

; W̃ (Ha,b) = a

}
dt

= Px(W (Ha,b) = a)−Ex

Ha,b∫
0

f(W (t))Qa(W (t)) dt.
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By (5.10) and (5.13), we have

Qa(x) = b− x

b− a
−

b∫
a

f(y)Qa(y)h(x, y) dy.

Using the definition of the function h(x, y), we can write

Qa(x) = b− x

b− a
− 2(x− a)

b− a

b∫
x

(b− y)f(y)Qa(y) dy

− 2(b− x)

b− a

x∫
a

(y − a)f(y)Qa(y) dy. (5.14)

From (5.14) it follows that Qa(x), x ∈ (a, b), is continuous and conditions (5.5)
hold. Therefore, Qa is differentiable at the points of continuity of f . Indeed, at
those points, we have

Q′
a(x) = 1

b− a
− 2

b− a

b∫
x

(b− y)f(y)Qa(y) dy + 2

b− a

x∫
a

(y − a)f(y)Qa(y) dy.

This relation implies that Q′
a(x) exists everywhere in (a, b) and it is continuous on

(a, b); moreover, at the points of continuity of f the function Q′
a(x), x ∈ (a, b), is

differentiable, and

Q′′
a(x) = 2(b− x)

b− a
f(x)Qa(x) + 2(x− a)

b− a
f(x)Qa(x) = 2f(x)Qa(x).

Thus, by Remark 1.2, the function Qa(x), x ∈ (a, b), satisfies equation (5.4). The-
orem 5.1 is proved. �

The following result enables us to compute the joint distribution of an integral
functional of the Brownian motion W and its local times on different levels at the
moment Ha,b. This result is derived from Theorem 5.1 similarly to how Theo-
rem 3.1 was derived from Theorem 2.1. The general idea of the proof was stated
in Remark 4.1.

Let the functional A~β(t) be defined as at the beginning of § 3.

Theorem 5.3. Let f(x), x ∈ [a, b] be a piecewise-continuous nonnegative func-
tion. Then the function

Qa,~β(x) := Ex{exp(−A~β(Ha,b);W (Ha,b) = a}, x ∈ [a, b],

is the unique continuous solution of the problem

1

2
Q′′(x)− f(x)Q(x) = 0, x ∈ (a, b) \ {q1, . . . , qm}, (5.15)

Q′(qk + 0)−Q′(qk − 0) = 2βkQ(qk), k = 1, . . . ,m, (5.16)

Q(a) = 1, Q(b) = 0. (5.17)
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Remark 5.3. A similar result holds when the expectation is reduced to the set
{W (Ha,b) = b}. One only needs to change the boundary conditions (5.17) to the
conditions (5.6). If there are no restrictions on the way out across the boundary,
conditions (5.17) must be replaced by (5.9).

Let Hz := min{s : W (s) = z} be the first hitting time of the level z by the
Brownian motion. It is clear that

Hz =

{ lim
a→−∞

Ha,z, for x ≤ z,

lim
b→∞

Hz,b, for z ≤ x.
(5.18)

From Theorem 12.7 Ch. II it follows that for a continuous function f(x), x ∈ R,
the function

Lz(x) := Ex

{
exp

(
−

Hz∫
0

f(W (s)) ds
)

1I{Hz<∞}

}
(5.19)

can be represented in the form

Lz(x) =


 (x)

 (z)
, for x ≤ z,

'(x)

'(z)
, for z ≤ x,

(5.20)

where ϕ is a convex positive decreasing solution and ψ is a convex positive increas-
ing solution of the equation

1

2
φ′′(x)− f(x)φ(x) = 0, x ∈ R. (5.21)

Since for f ≡ 0 the positive solution of (5.21) on the whole real line is a constant,
we see that Lz(x) ≡ 1, and hence, Px(Hz < ∞) = 1. Therefore, the indicator
function 1I{Hz<∞} in the definition of the function Lz can be removed.

It is clear that (5.20) holds also for piecewise-continuous functions f . This can
be proved by using the limit approximation method (see the proof of Theorem 1.2).

Example 5.1. We compute the distribution of the first exit timeHa,b. Applying
Theorem 5.3 with f ≡ α, we see that

Qa(x) = Ex
{
e−αHa,b ;W (Ha,b) = a

}
, x ∈ [a, b], (5.22)

is the unique solution of the problem

1

2
Q′′(x)− αQ(x) = 0, x ∈ (a, b), (5.23)

Q(a) = 1, Q(b) = 0. (5.24)

Among the linearly independent solutions of equation (5.23) we can choose
sh((b − x)

√
2α) and sh((x − a)

√
2α). The first solution vanishes at b and the

second vanishes at a. Using this property, it is easy to see that

Ma(x) = Ex
{
e−αHa,b ;W (Ha,b) = a

}
= sh((b− x)

√
2�)

sh((b− a)
√
2�)

, x ∈ [a, b], (5.25)
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is the solution of the problem (5.23), (5.24).
Inverting the Laplace transform with respect to α (see Section 13 of Appendix 2),

we get

Px(Ha,b ∈ dt, W (Ha,b) = a) = sst(b− x, b− a) dt

=
∞∑

k=−∞

x− a+ 2k(b− a)
√
2�t3=2

e−(x−a+2k(b−a))2/2t dt, x ∈ [a, b]. (5.26)

Similarly, one can show that

Ex
{
e−αHa,b ;W (Ha,b) = b

}
= sh((x− a)

√
2�)

sh((b− a)
√
2�)

, x ∈ [a, b], (5.27)

and

Px(Ha,b ∈ dt, W (Ha,b) = b) = sst(x− a, b− a) dt

=
∞∑

k=−∞

b− x+ 2k(b− a)
√
2�t3=2

e−(b−x+2k(b−a))2/2t dt, x ∈ [a, b]. (5.28)

Summing (5.25) and (5.27), we have

Exe−αHa,b = sh((b− x)
√
2�) + sh((x− a)

√
2�)

sh((b− a)
√
2�)

=
ch((b+ a− 2x)

√
�=2)

ch((ba)
√
�=2)

, x ∈ [a, b], (5.29)

and summing (5.26) and (5.28), we have

Px(Ha,b ∈ dt) = sst(b− x, b− a) dt+ sst(x− a, b− a) dt, x ∈ [a, b]. (5.30)

Example 5.2. We compute the distribution of the first hitting time Hz. Ap-
plying (5.20) and (5.21) with f ≡ α, we have

Lz(x) = Exe−αHz = e−|x−z|
√

2α, x ∈ R. (5.31)

Inverting the Laplace transform with respect to α (see formula 2 of Appendix 3),
we obtain

Px(Hz ∈ dt) = |x− z|
√
2�t3=2

exp
(
− (x− z)2

2t

)
dt, x ∈ R. (5.32)

Example 5.3. We compute the Laplace transform

Qa,β(x) := Ex
{
e−β`(Ha,b,q);W (Ha,b) = a

}
, β > 0,
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and find the joint distribution of the local time `(Ha,b, q) and the variable W (Ha,b).
By Theorem 5.3, the function Qa,β(x), x ∈ [a, b], is the unique continuous solution
of the problem

1

2
Q′′(x) = 0, x ∈ (a, b) \ {q},

Q′(q + 0)−Q′(q − 0) = 2βQ(q),

Q(a) = 1, Q(b) = 0.

It is easy to compute that the solution of this problem is

Ex
{
e−β`(Ha,b,q);W (Ha,b) = a

}
=


b− x

b− a+ 2�(b− q)(q − a)
, q ≤ x ≤ b,

b− x+ 2�(b− q)(q − x)

b− a+ 2�(b− q)(q − a)
, a ≤ x ≤ q.

(5.33)

If we change the boundary conditions, we obtain

Ex
{
e−β`(Ha,b,q);W (Ha,b) = b

}
=


x− a+ 2�(x− q)(q − a)

b− a+ 2�(b− q)(q − a)
, q ≤ x ≤ b,

x− a

b− a+ 2�(b− q)(q − a)
, a ≤ x ≤ q.

(5.34)

Inverting the Laplace transform in (5.33) with respect to β (see formula 1 of
Appendix 3), we get

Px

(
`(Ha,b, q) ∈ dy,W (Ha,b) = a

)

=


b− x

2(b− q)(q − a)
exp

(
− (b− a)y

2(b− q)(q − a)

)
dy, q ≤ x ≤ b,

x− a

2(q − a)2
exp

(
− (b− a)y

2(b− q)(q − a)

)
dy, a ≤ x ≤ q,

(5.35)

Px

(
`(Ha,b, q) = 0,W (Ha,b) = a

)
=

{
0, q ≤ x ≤ b,
q − x

q − a
, a ≤ x ≤ q.

(5.36)

Inverting the Laplace transform in (5.34) with respect to β, we obtain

Px

(
`(Ha,b, q) ∈ dy,W (Ha,b) = b

)

=


b− x

2(b− q)2
exp

(
− (b− a)y

2(b− q)(q − a)

)
dy, q ≤ x ≤ b,

x− a

2(b− q)(q − a)
exp

(
− (b− a)y

2(b− q)(q − a)

)
dy, a ≤ x ≤ q,

(5.37)

Px

(
`(Ha,b, q) = 0,W (Ha,b) = b

)
=

{ x− q

b− q
, q ≤ x ≤ b,

0, a ≤ x ≤ q.
(5.38)
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Exercises.

5.1. Compute the Laplace transform

Ex
{

ch(W (Ha,b))e−αHa,b
}
, α > 0.

5.2. Compute the expressions

Ex
{
e−αHa,b ;Ha,b > τ

}
, Ex

{
e−αHa,b ;Ha,b ≤ τ

}
, α > 0,

where τ is the exponentially distributed with the parameter λ > 0 random time
independent of Ha,b.

5.3. Compute the Laplace transforms

Ex

{
exp

(
− γ

Ha,b∫
0

1I[r,b](W (s)) ds
)

;W (Ha,b) = a

}
,

Ex

{
exp

(
− γ

Ha,b∫
0

1I[r,b](W (s)) ds
)

;W (Ha,b) = b

}
, γ > 0.

5.4. Compute the Laplace transform

Ex exp
(
− γ

Hz∫
0

1I[r,∞)(W (s)) ds
)
, γ > 0,

and find the distribution of the functional
Hz∫
0

1I[r,∞)(W (s)) ds.

5.5. Compute the Laplace transform

Ex exp
(
− αHz −

2

2

Hz∫
0

W 2(s) ds
)
, α > 0.

Hint: Use the solution of equation 3 of Appendix 4.

5.6. Compute the Laplace transform Exe−β`(Hz,q), β > 0, and find the distri-
bution of the local time `(Hz, q).
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§6. Distributions of functionals of Brownian motion
stopped at the moment inverse of integral functional

We consider the integral functional
t∫

0

g(W (s)) ds, t > 0, where g is a nonnegative

piecewise-continuous function, which is not identically equal to zero. For definite-
ness we assume that at points of discontinuity it takes the values of the right limits,
g(z) = g(z + 0).

According to Proposition 1.1,

∞∫
0

g(W (s)) ds = ∞, a.s. (6.1)

We consider the problem of computing distributions of functionals of Brownian
motion stopped at the moment inverse of integral functional. This moment is
defined by the formula

ν(t) := min
{
s :

s∫
0

g(W (v)) dv = t

}
, t ≥ 0.

By (6.1), this moment is a.s. finite. It is a stopping time with respect to the natural
filtration Gt0 = σ(W (v), 0 ≤ v ≤ t), t ≥ 0, generated by the Brownian motion. It is
possible that ν(0+) > 0.

The following result is of key importance for the problem of computing distri-
butions of functionals of Brownian motion stopped at the moment inverse of the
integral functional.

Theorem 6.1. Let Φ(x), f(x), x ∈ R, be piecewise-continuous functions. As-
sume that f ≥ 0 and Φ is bounded. Then the function

U(x) := Ex

{
Φ(W (ν(τ))) exp

(
−

ν(τ)∫
0

f(W (s)) ds
)}

, x ∈ R,

is the unique bounded solution of the equation

1

2
U ′′(x)− (λg(x) + f(x))U(x) = −λg(x)Φ(x), x ∈ R. (6.2)

Remark 6.1. For g ≡ 1 this statement turns into Theorem 1.2.

Remark 6.2. Equation (6.2) has only one bounded solution on R. This fol-
lows from the fact that the corresponding homogeneous equation has no bounded
nontrivial solutions on the whole real line.

Proof of Theorem 6.1. We assume first that f is a bounded continuous function
and Φ is a twice continuously differentiable function with bounded derivatives.
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For any % > 0 set

η%(s) := Φ(W (s)) exp
(
−

s∫
0

(
%+ f(W (v))

)
dv

)
. (6.3)

Applying Itô’s formula, we have

η%(t)− η%(0) =

t∫
0

exp
(
−

s∫
0

(
%+ f(W (v))

)
dv

)[
Φ′(W (s)) dW (s)

+ 1

2
Φ′′(W (s)) ds−

(
%+ f(W (s))

)
Φ(W (s)) ds

]
.

Since g is a nonnegative function,
s∫

0

g(W (v)) dv, s ≥ 0, is an increasing function.

This implies that for any s ≥ 0 and t ≥ 0

1I[0,ν(t))(s) = 1I[0,t)

( s∫
0

g(W (v)) dv
)
.

By (3.8) Ch II, we have

η%(ν(t))− Φ(x) =

∞∫
0

1I[0,t)

( s∫
0

g(W (v)) dv
)

exp
(
−

s∫
0

(
%+ f(W (v))

)
dv

)
×
[
Φ′(W (s)) dW (s) + 1

2
Φ′′(W (s)) ds−

(
%+ f(W (s))

)
Φ(W (s)) ds

]
.

Since the expectation of a stochastic integral equals zero,

Exη%(ν(t))− Φ(x) = Ex

∞∫
0

1I[0,t]

( s∫
0

g(W (v)) dv
)

exp
(
−

s∫
0

(
%+ f(W (v))

)
dv

)
×
[
1

2
Φ′′(W (s))−

(
%+ f(W (s))

)
Φ(W (s))

]
ds.

Taking the Laplace transform of this equality with respect to t, we obtain

λ

∞∫
0

e−λtExη%(ν(t)) dt− Φ(x) = Ex

∞∫
0

e−%s exp
(
−

s∫
0

(
λg(W (v)) + f(W (v))

)
dv

)

×
[
1

2
Φ′′(W (s))−

(
%+ f(W (s))

)
Φ(W (s))

]
ds.

Alongside with the moment τ we consider the independent of the Brownian motion
W exponentially distributed random time τ̃ , for which P(τ̃ > s) = e−%s. Then
applying Fubini’s theorem, we have

Exη%(ν(τ))− Φ(x) = 1

%
Ex

{[
1

2
Φ′′(W (τ̃))−

(
%+ f(W (τ̃))

)
Φ(W (τ̃))

]
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× exp
(
−

τ̃∫
0

(
λg(W (v)) + f(W (v))

)
dv

)}
.

For the expectation on the right-hand side of this equality we apply Theorem 1.2.
Then we see that the function

Ũ(x) := Exη%(ν(τ))− Φ(x)

is the unique bounded solution of the equation

1

2
Ũ ′′(x)− (%+ λg(x) + f(x))Ũ(x) = −1

2
Φ′′(x) + (%+ f(x))Φ(x).

Hence, the function V%(x) := Exη%(ν(τ)) = Ũ(x) + Φ(x) satisfies the equation

1

2
V ′′
% (x)− (%+ λg(x) + f(x))V%(x) = −λg(x)Φ(x), x ∈ R, (6.4)

Using (6.2), we have

U(x) = lim
%↓0

Exη%(ν(τ)) = lim
%↓0

V%(x).

Passing to the limit in (6.4) as % ↓ 0, we deduce that U satisfies equation (6.2).
Thus the theorem is proved for any bounded continuous function f and any twice
continuously differentiable function Φ with bounded derivatives.

Every nonnegative piecewise-continuous function f can be approximated by a
sequence of continuous bounded functions {fn} such that 0 ≤ fn(x) ≤ f(x), x ∈
R. Every bounded piecewise-continuous function Φ can be approximated by a
sequence {Φn} of uniformly bounded twice continuously differentiable functions
with bounded derivatives. Applying the limit approximation method (see the proof
of Theorem 1.2), we can prove that U is the unique bounded solution of (6.2) in
the general case. �

Example 6.1. We compute the distribution of the moment inverse of the
integral functional that is the time spent by the Brownian motion above the level
r, i.e., of the moment

ν(t) = min
{
s :

s∫
0

1I[r,∞)(W (v)) dv = t

}
. (6.5)

We apply Theorem 6.1 with Φ ≡ 1, f ≡ γ, g(x) = 1I[r,∞)(x), x ∈ R. In this case the
function U(x) = Exe−γν(τ), x ∈ R, is the unique bounded solution of the equation

1

2
U ′′(x)− (λ1I[r,∞)(x) + γ)U(x) = −λ1I[r,∞)(x), x ∈ R.

It is not hard to verify that the solution has the expression

U(x) =


�

√
�+ (

√
 +

√
�+ )

e−(r−x)
√

2γ , x ≤ r,

�

�+ 
−
(

�

�+ 
− �

√
�+ (

√
 +

√
�+ )

)
e−(x−r)

√
2λ+2γ , r ≤ x.
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Dividing this equality by λ and inverting the Laplace transform with respect to λ
(see formulas a, 6, 11 of Appendix 3), we get

Exe−γν(t) =

 e−(r−x)
√

2γ Erfc
(√
tγ
)
, x ≤ r,

e−tγ − e−tγ Erfc
(
x− r
√
2t

)
+ e(x−r)

√
2γ Erfc

(
x− r
√
2t

+
√
tγ
)
, r ≤ x.

The structure of this Laplace transform with respect to γ (see (1.1)) is such
that the corresponding distribution for r < x has the mass point at t of value
1− Erfc

(
x− r
√
2t

)
. Thus for r ≤ x

Px(ν(t) = t) = 1− Erfc
(
x− r
√
2t

)
.

The other part of the Laplace transform corresponds to the density. Taking the
inverse Laplace transform with respect to γ (see formulas a and 12 of Appendix 3),
we obtain that for x ≤ r

d

dy
Px(ν(t) < y) =

{ √
t

�y
√
y − t

exp
(
− (r − x)2

2(y − t)

)
+ r − x

√
2�y3=2

exp
(
− (r − x)2

2y

)
Erfc

(
(r − x)

√
t√

2y(y − t)

)}
1I(t,∞)(y),

and for r ≤ x

d

dy
Px(ν(t) < y) =

{ √
t

�y
√
y − t

exp
(
− (x− r)2

2t

)
− x− r

√
2�y3=2

exp
(
− (x− r)2

2y

)
Erfc

(
(x− r)

√
y − t

√
2yt

)}
1I(t,∞)(y).

Note that for x ≤ r

d

dy
Px(ν(0+) < y) = r − x

√
2�y3=2

exp
(
− (r − x)2

2y

)
, 0 < y.

It is easy to verify that ν(0+) = Hr (see (5.32)).

The following theorem enables us to compute the joint distributions of an integral
functional, infimum, and supremum of a Brownian motion stopped at the moment
inverse of the integral functional.

Theorem 6.2. Let Φ(x), f(x), x ∈ [a, b], be piecewise-continuous functions.
Assume that f ≥ 0. Then the function

U(x) := Ex

{
Φ(W (ν(τ))) exp

(
−

ν(τ)∫
0

f(W (s)) ds
)

;

a ≤ inf
0≤s≤ν(τ)

W (s), sup
0≤s≤ν(τ)

W (s) ≤ b

}
, x ∈ [a, b],



§6. MOMENT INVERSE OF INTEGRAL FUNCTIONAL 245

is the unique solution of the problem

1

2
U ′′(x)− (λg(x) + f(x))U(x) = −λg(x)Φ(x), x ∈ (a, b), (6.6)

U(a) = 0, U(b) = 0. (6.7)

Theorem 6.2 can be derived from Theorem 6.1 similarly to the proof of Theo-
rem 2.1.

Remark 6.3. For g ≡ 1 this statement turns into Theorem 2.1. Remark 2.1 is
also applicable to Theorem 6.2.

Example 6.2. Let us compute the distribution

Px

(
sup

0≤s≤ν(t)
W (s) ≤ b

)
,

where the moment ν is defined in (6.5). We apply Theorem 6.2 with Φ ≡ 1, f ≡ 0,
g(x) = 1I[r,∞)(x), x ∈ R and a = −∞. In this case the function

U(x) = Px

(
sup

0≤s≤ν(τ)
W (s) ≤ b

)
is the unique bounded solution of the problem

1

2
U ′′(x)− λ1I[r,∞)(x)U(x) = −λ1I[r,∞)(x), x ∈ (−∞, b),

U(b) = 0.

Such a solution can be represented as

U(x) =

 1−B, x ≤ r,

1− sh((x− r)
√
2�)

sh((b− r)
√
2�)

−B
sh((b− x)

√
2�)

sh((b− r)
√
2�)

, r ≤ x ≤ b.

Here in the interval (r, b) we choose linearly independent solutions sh((x− r)
√

2λ)
and sh((b − x)

√
2λ) instead of exponentials, because they vanish at the points r

and b, respectively. In the expression suggested for U the boundary and continuity
conditions were taken into account.

The constant B is computed from the continuity condition for the derivative of
U at the point r:

B = 1

ch((b− r)
√
2�)

.

We obtain

Px

(
sup

0≤s≤ν(τ)
W (s) ≤ b

)
=


1− 1

ch((b− r)
√
2�)

, x ≤ r,

1− ch((x− r)
√
2�)

ch((b− r)
√
2�)

, r ≤ x ≤ b.



246 III DISTRIBUTIONS OF FUNCTIONALS

Dividing this equality by λ and inverting the Laplace transform with respect to λ
(see Section 13 of Appendix 2), we obtain

Px

(
sup

0≤s≤ν(t)
W (s) ≤ b

)
=
{

1− c̃ct(0, b− r), x ≤ r,

1− c̃ct(x− r, b− r), r ≤ x ≤ b.

It is useful to have results which enable us to compute the joint distributions
of functionals of the Brownian motion stopped at some random moment and the
Brownian motion itself at that moment. Such a result for the moment τ was
considered in §4. We can compute such a joint distribution for the moment ν(τ)
with the help of the following theorem.

Theorem 6.3. Let f(x), x ∈ [a, b], be a nonnegative piecewise-continuous func-
tion. Then for every z ∈ (a, b) there exists the right derivative

Gν,z(x) := d

dz+
Ex

{
exp

(
−

ν(τ)∫
0

f(W (s)) ds
)

;

a ≤ inf
0≤s≤ν(τ)

W (s), sup
0≤s≤ν(τ)

W (s) ≤ b, W (ν(τ)) < z

}
,

and Gν,z(x), x ∈ [a, b], is the unique continuous solution of the problem

1

2
G′′(x)−

(
λg(x) + f(x)

)
G(x) = 0, x ∈ (a, b) \ {z}, (6.8)

G′(z + 0)−G′(z − 0) = −2λg(z), (6.9)

G(a) = 0, G(b) = 0. (6.10)

Remark 6.4. Gν,z(x), (z, x) ∈ [a, b]×[a, b], is the Green function of the problem
(6.6), (6.7), because by the definitions of the functions U(x) and Gν,z(x),

U(x) =

b∫
a

Φ(z)Gν,z(x) dz.

Remark 6.5. In contrast to the function Gx(z) from Theorem 4.1, the argu-
ment of the function Gν,z(x) is the starting point of W .

Proof of Theorem 6.3. This result can be proved with the help of Theorem 6.2.
Set

U∆(x) := Ex

{
1

�
1I[z,z+∆)(W (ν(τ))) exp

(
−

ν(τ)∫
0

f(W (s)) ds
)

;

a ≤ inf
0≤s≤ν(τ)

W (s), sup
0≤s≤ν(τ)

W (s) ≤ b

}
. (6.11)
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By Theorem 6.2, with Φ(x) = 1

�
1I[z,z+∆)(x), x ∈ (a, b), the function U∆(x) is the

unique solution of the problem
1

2
U ′′

∆(x)−
(
λg(x) + f(x)

)
U∆(x) = −λg(x) 1

�
1I[z,z+∆)(x), (6.12)

U∆(a) = 0, U∆(b) = 0. (6.13)

Set χ∆(x) :=
x∫

−∞

1

�
1I[z,z+∆)(r) dr for 0 < ∆ < 1. Then (6.12) can be written as

follows: for every y, x ∈ (a, b)

1

2
(U ′

∆(x)− U ′
∆(y))−

x∫
y

(λg(r) + f(r))U∆(r) dr = −λ
x∫
y

g(r)dχ∆(r). (6.14)

We must justify the passage to the limit in (6.14), (6.13) as ∆ ↓ 0. We carried
out such limit transformations for the problems (3.6), (3.7) and (4.15), (4.14).
However, there are some aspects that we need to discuss. We have no estimate
(4.16) here, because we have no the analogue of (4.6) for the variable W (ν(τ)).
Therefore, we start with the derivation of such an estimate.

We set U0,∆(x) := 1

�
Ex1I[z,z+∆)(W (ν(τ))), 0<∆<1, and prove that this family

is uniformly bounded on any finite interval. This is important, since U∆(x)≤U0,∆(x).
By Theorem 6.1, the function U0,∆(x), x ∈ R, is the unique bounded solution

of (6.12) on the whole real line for f ≡ 0. According to the theory of differential
equations (formula (4.7)), such a solution is expressed in terms of fundamental
solutions of the homogeneous equation. Let ψ0(x) and ϕ0(x) be the fundamental
solutions of the equation

1

2
φ′′(x)− λg(x)φ(x) = 0, (6.15)

and let ω0 = ψ′0(x)ϕ0(x)−ψ0(x)ϕ′0(x) > 0 be their Wronskian, which is a constant.
Then by (4.11) and (4.21) with a = −∞ and b = ∞,

U0,∆(x) = 2�'0(x)

�

x∫
−∞

1I[z,z+∆)(r)
g(r) 0(r)

!0
dr + 2� 0(x)

�

∞∫
x

1I[z,z+∆)(r)
g(r)'0(r)

!0
dr.

Since the function ϕ0 is decreasing and the function ψ0 is increasing, we have

sup
x∈R

U∆(x) ≤ sup
x∈R

U0,∆(x) ≤ 2�'0(z) 0(z + 1)

!0
sup

z≤r≤z+1
g(r).

Hence, the family of functions
{
U∆(x)

}
0<∆<1

is uniformly bounded.
Integrating (6.14) with respect to x over the interval (y, v), we obtain

1

2

(
U∆(v)− U∆(y)

)
− 1

2
U ′

∆(y)(v − y)−
v∫
y

x∫
y

(λg(r) + f(r))U∆(r) drdx

= −λ
v∫
y

x∫
y

g(r) dχ∆(r)dx. (6.16)
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Now integrating (6.14) with respect to y over the interval (u, x), we get

−1

2

(
U∆(x)− U∆(u)

)
+ 1

2
U ′

∆(x)(x− u)−
x∫
u

x∫
y

(λ+ f(r))U∆(r) drdy

= −λ
x∫
u

x∫
y

g(r) dχ∆(r)dy. (6.17)

As in the proof of Theorem 3.1, (6.16) and (6.17) imply that the family of functions
{U∆(y)}∆>0 is equicontinuous on the closed interval [a, b]. By the Arzelà–Ascoli
theorem, the family of functions {U∆(y)}∆>0 is relatively compact in [a, b] in the
uniform norm. This implies that from any sequence ∆n ↓ 0 one can extract a
subsequence ∆nm

such that

sup
x∈[a,b]

∣∣U∆nm
(x)− U(x)

∣∣→ 0, (6.18)

where U is a continuous function. In addition, the boundary conditions for the
functions U∆ are transformed to the boundary conditions U(a) = 0 and U(b) = 0.

Now, since χ∆(x) → χ(x) := 1I[z,∞)(x), from (6.16), by passage to the limit, we
deduce that for y 6= z there exists the limit Ũ(y) = lim

∆nm↓0
U ′

∆nm
(y) and

1

2

(
U(v)− U(y)

)
− 1

2
Ũ(y)(v − y)−

v∫
y

x∫
y

(λg(r) + f(r))U(r) drdx

= −λ
v∫
y

x∫
y

g(r) dχ(r)dx. (6.19)

From (6.19) and from the limiting analog of (6.17) it follows that the function
U(v) is differentiable for v ∈ (a, b) \ {z}. Differentiating (6.19) with respect to v,
we obtain that Ũ(y) = U ′(y) and, consequently,

1

2
(U ′(v)− U ′(y))−

v∫
y

(λg(r) + f(r))U(r) dr = −λ
v∫
y

g(r) dχ(r).

Since g is a right-continuous function, this equality implies that U(x) is the solution
of the problem (6.8)–(6.10). Thus the limit in (6.18) does not depend on the choice
of a subsequence ∆nm

. This just means that there exists the right derivative
Gν,z(x) := U(x). Theorem 6.3 is proved. �

Example 6.3. We compute the distribution of the Brownian motion W at the
moment ν(t) defined in (6.5). Applying Theorem 6.3 with f ≡ 0, g(x) = 1I[r,∞)(x),
x ∈ R, a = −∞ and b = ∞, we see that the function

Gν,z(x) = d

dz+
Px

(
W (ν(τ)) < z

)
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is the unique bounded continuous solution of the problem

1

2
G′′(x)− λ1I[r,∞)(x)G(x) = 0, x 6= z, (6.20)

G′(z + 0)−G′(z − 0) = −2λ1I[r,∞)(z). (6.21)

For z < r, by the definition of Gν,z, it follows that Gν,z(x) = 0, x ∈ R, because the
Brownian motion at the moment ν(τ) can stop only in the interval [r,∞). The fact
that Gν,z(x) = 0 for z < r follows also directly from the solution of the problem
(6.20), (6.21), because 1I[r,∞)(z) = 0. Therefore, the nontrivial case is r ≤ z. The
unique bounded solution of the problem (6.20), (6.21) for r ≤ z is the function

Gν,z(x) =


√

2λe−(z−r)
√

2λ, x ≤ r,
√
�

√
2
e−|x−z|

√
2λ +

√
�

√
2
e−(x+z−2r)

√
2λ, r ≤ x.

Dividing this equality by λ and inverting the Laplace transform with respect to λ
(see formula 5 of Appendix 3), for r ≤ z we obtain

d

dz+
Px

(
W (ν(t)) < z

)
=


√
2

√
�t
e−(z−r)2/2t, x ≤ r,

1
√
2�t

e−(x−z)2/2t + 1
√
2�t

e−(x+z−2r)2/2t, r ≤ x.

§7. Distributions of functionals of Brownian
motion stopped at the inverse local time

Our main goal of this section is to consider the problem of computing distribu-
tions of functionals of Brownian motion stopped at the inverse local time

%(t, z) = min{s : `(s, z) = t}.

We consider first the more general stopping time. This is the moment defined
by the formula

ν(~α, t) := min
{
s :

s∫
0

g(W (v)) dv +
m∑
k=1

αk`(s, qk) = t

}
,

where g is a nonnegative piecewise-continuous function, which at points of disconti-
nuity takes the right limit values, αk ≥ 0, k = 1, . . . ,m. We generalize the moment
ν from §6 by adding a linear combination of the Brownian local times at different
levels.

As in §3, set

A~β(t) :=

t∫
0

f(W (s)) ds+
m∑
k=1

βk`(t, qk),
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where f is a nonnegative piecewise-continuous function, βk ≥ 0 k = 1, . . . ,m.
Clearly, the points qk in the definition of the time ν(~α, t) and in the functional
A~β(t) can be chosen the same, because in the case when these points are different,
one can let the corresponding coefficients of αk, βk be equal to zero.

On the basis of the following proof of Theorem 7.1, some general remarks con-
cerning results that include linear combinations of local times can be made. We
have already done this in Remark 4.3. In view of the special importance of these
interesting facts, we return briefly to them.

Remark 7.1. A local time can be considered, informally, as the integral func-
tional of the Brownian motion for the Dirac δ-function. For computing the distribu-
tions of integral functionals of Brownian motion different assertions were obtained
in § 1–§ 6. Those results are based on the solutions of certain differential problems.
Adding to the integrands linear combinations of Dirac δ-functions δqk

(x), x ∈ R,
k = 1, . . . ,m, leads to that the basic equations of these problems (see equation
(3.1)) are not satisfied at the points qk, k = 1, . . . ,m, whenever at these points the
solution is continuous and the first derivative has a corresponding jump.

We illustrate this observation in detail for the proof of the following theorem,
which is a generalization of Theorem 6.1.

Theorem 7.1. Let Φ(x), f(x), g(x), x ∈ R, be piecewise-continuous functions.
Assume that f ≥ 0, g ≥ 0, and Φ is bounded. Then the function

Mν(x) := Ex
{
Φ(W (ν(~α, τ))) exp(−A~β(ν(~α, τ)))

}
, x ∈ R,

is the unique bounded continuous solution of the problem

1

2
M ′′(x)− (λg(x) + f(x))M(x) = −λg(x)Φ(x), x 6= qk, k = 1, . . . ,m, (7.1)

M ′(qk+0)−M ′(qk−0) = 2(λαk+βk)M(qk)−2λαkΦ(qk), k = 1, . . . ,m. (7.2)

Proof. We give a schematic proof of this theorem, illustrating Remark 7.1.
Treating the local time as the integral functional of the Brownian motion for the
Dirac δ-function, we apply Theorem 6.1, using instead of g the function g(x) +
m∑
k=1

αkδqk
(x), and instead of f the function f(x) +

m∑
k=1

βkδqk
(x). Then we see that

the function

Mν(x) = Ex

{
Φ(W (ν(~α, τ))) exp

(
−

ν(~α,τ)∫
0

(
f(W (s)) +

m∑
k=1

βkδqk
(W (s))

)
ds

)}

satisfies the equation

1

2
M ′′(x)−

(
λg(x) + λ

m∑
k=1

αkδqk
(x) + f(x) +

m∑
k=1

βkδqk
(x)
)
M(x)
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= −λΦ(x)
(
g(x) +

m∑
k=1

αkδqk
(x)
)
. (7.3)

We must prove that except at the points {q1, . . . , qm} this equation turns into (7.1).
The important fact is that the solution M is continuous at the points {q1, . . . , qm}.

To prove (7.2) we choose the points x1 and x2 such that the interval (x1, x2)
contains only one point qk for some k. Integrating (7.3) over this interval and using
the definition of the Dirac δ-function, we obtain

1

2
(M ′(x2)−M ′(x1))−

x2∫
x1

(λg(x) + f(x))M(x) dx− (λαk + βk)M(qk)

= −λ
x2∫
x1

Φ(x)g(x) dx− λαk Φ(qk). (7.4)

Passing in equation (7.4) to the limit as x1 ↑ qk and x2 ↓ qk, we see that the
condition (7.2) holds.

All the arguments given informally when using the δ-functions, can be replaced
by rigorous proof with the corresponding sequences of functions

{1
"
1I[qk,qk+ε)(x)

}
ε>0

,
k = 1, . . . ,m, realizing the limit approximation method (see the proof of Theo-
rem 3.1). �

We now turn to the problem of computing distributions of functionals of Brown-
ian motion stopped at the inverse local time. Consider the particular case of the
moment ν(~α, t). Set g ≡ 0, α1 = 1, q1 = z, αk = 0, k = 2, . . . ,m. Then
ν(~α, t) = %(t, z) and we formulate the result, which is a particular case of Theo-
rem 7.1 with Φ ≡ 1 if it is assumed that a = −∞ and b = ∞. For a finite a or b
Theorem 7.2 can be proved analogously to Theorem 2.1, with the help of the result
for infinite a and b.

Theorem 7.2. Let f(x), x ∈ [a, b], be a nonnegative piecewise-continuous func-
tion. Then for a < z < b and q1 = z the function

D(x) := Ex
{

exp(−A~β(%(τ, z))), a ≤ inf
0≤s≤%(τ,z)

W (s), sup
0≤s≤%(τ,z)

W (s) ≤ b
}
,

x ∈ [a, b], is the unique continuous solution of the problem

1

2
D′′(x)− f(x)D(x) = 0, x ∈ (a, b) \ {q1, . . . , qm}, (7.5)

D′(z + 0)−D′(z − 0) = 2(λ+ β1)D(z)− 2λ, (7.6)

D′(qk + 0)−D′(qk − 0) = 2βkD(qk), k = 2, . . . ,m, (7.7)

D(a) = 0, D(b) = 0. (7.8)

Remark 7.2. In the case when a = −∞ or b = ∞ the corresponding boundary
condition in (7.8) must be replaced by the condition that the function D(x) is
bounded as x tends to −∞ or ∞.
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Since the parameter λ is involved only in the condition (7.6) on the jump of
the derivative, it is possible to formulate the statement for the inverse Laplace
transform of the function 1

�
D(x) with respect to λ.

Let ϕ(x), x ≤ b, and ψ(x), x ≥ a, be nonnegative continuous linearly indepen-
dent solutions of the problem

1

2
φ′′(x)− f(x)φ(x) = 0, x ∈ (a, b) \ {q1, . . . , qm}, (7.9)

φ′(qk + 0)− φ′(qk − 0) = 2βkφ(qk), k = 1, . . . ,m, (7.10)

with ϕ(x) nonincreasing and ψ(x) nondecreasing, satisfying for a 6= −∞ or b 6= ∞
the conditions ψ(a) = 0 or ϕ(b) = 0. The Wronskian w = ψ′(x)ϕ(x) − ψ(x)ϕ′(x),
x 6= qk, k = 1, . . . ,m, is a constant.

Theorem 7.3. Let f(x), x ∈ [a, b], be a nonnegative piecewise-continuous func-
tion. Then for a < z < b and q1 = z the function

d(t, x) := Ex
{

exp(−A~β(%(t, z)), a ≤ inf
0≤s≤%(t,z)

W (s), sup
0≤s≤%(t,z)

W (s) ≤ b
}
,

t ≥ 0, x ∈ [a, b], has the form

d(t, x) =


 (x)

 (z)
exp

(
− wt

2'(z) (z)

)
, a ≤ x ≤ z,

'(x)

'(z)
exp

(
− wt

2'(z) (z)

)
, z ≤ x ≤ b,

(7.11)

where ϕ and ψ are the fundamental solutions of the problem (7.9), (7.10).

Proof. We take the Laplace transform with respect to the parameter t of the
function d, defined by (7.11), and check that this transform satisfies the problem
(7.5)–(7.8).

For a < z < b we have

D(x) = λ

∞∫
0

e−λtd(t, x) dt = �

�+ w
2'(z) (z)

(
 (x)

 (z)
1I[a,z)(x) + '(x)

'(z)
1I[z,b](x)

)
.

We see that (7.5), (7.7), and (7.8) are valid, because ϕ and ψ satisfy (7.9), (7.10)
and the boundary conditions. It is clear that

D(z) = �

�+ w
2'(z) (z)

,

and for z = q1

D′(z + 0)−D′(z − 0) = �

�+ w
2'(z) (z)

(
'′(z + 0)

'(z)
−  ′(z − 0)

 (z)

)
= �

�+ w
2'(z) (z)

(
'′(z − 0)

'(z)
−  ′(z − 0)

 (z)
+ 2β1

)
= �

�+ w
2'(z) (z)

(
− w

'(z) (z)
+ 2β1

)
= �

�+ w
2'(z) (z)

(
2(λ+ β1)− 2

(
λ+ w

2'(z) (z)

))
= 2(λ+ β1)D(z)− 2λ.
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Therefore, condition (7.6) holds and Theorem 7.3 is proved. �

Example 7.1. We compute the distribution of the supremum of the Brownian
motion over the time %(t, z). We apply Theorem 7.3 with f ≡ 0 and a = −∞,
βk = 0, k = 1, . . . ,m. The linearly independent nonnegative solutions ϕ and ψ of
the equation

1

2
φ′′(x) = 0, x ∈ (−∞, b), (7.12)

such that ϕ(b) = 0 and ψ(x) is nondecreasing, are

ϕ(x) = b− x, ψ(x) ≡ 1, x ∈ (−∞, b).

Then by (7.11),

Px

(
sup

0≤s≤%(t,z)
W (s) ≤ b

)
=


exp

(
− t

2(b− z)

)
, x ≤ z,

b− x

b− z
exp

(
− t

2(b− z)

)
, z ≤ x ≤ b.

(7.13)

Exercises.

7.1. Compute Exe−α%(t,z), α > 0, and the distribution of the inverse local time
%(t, z).

7.2. Compute Ex
{
e−α%(t,z); a ≤ inf

0≤s≤%(t,z)
W (s)

}
, α > 0.

7.3. Compute the Laplace transform Exe−γ`(%(t,z),r), γ > 0, and the distribution
of the local time `(%(t, z), r).

7.4. Compute Ex exp(−α%(t, z)− γ`(%(t, z), r)), α > 0, γ > 0.

7.5. Compute the Laplace transform

Ex exp
(
− γ

%(t,z)∫
0

1I[r,∞)

(
W (s)

)
ds

)
, γ > 0.

7.6. Compute the Laplace transform

Ex exp
(
− γ

%(t,z)∫
0

1I[r,u]

(
W (s)

)
ds

)
, γ > 0.
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§8. Distributions of functionals of Brownian
motion stopped at the inverse range time

The range of a process is the difference between its maximum and minimum
values on a finite time interval. This section deals with the method of computation
of distributions of functionals of a Brownian motion stopped at the moment inverse
of the range of a Brownian motion W (s), s ∈ [0,∞).

Let
θv = min

{
t : sup

0≤s≤t
W (s)− inf

0≤s≤t
W (s) = v

}
be the first moment at which the range of W reaches a given value v > 0. The
moment θv is called an inverse range time of the process W .

For results on inverse range time see Feller (1951), Imhof (1986), Vallois (1995),
Borodin (1999).

We will prove that the problem of computation of distributions of functionals
of the Brownian motion W stopped at the moment θv can be transformed into
the same problem for the Brownian motion W stopped at the first exit time from
some interval, i.e., at the moment Ha,b = min{s : W (s) 6∈ (a, b)}. This fact is very
important for the proof of many results concerning the distributions of functionals
stopped at the moment θv.

We consider the problem of computation of distribution of the integral functional

A(t) :=

t∫
0

f(W (s)) ds

stopped the moment θv.
The following result is of key importance for computing the conditional distri-

bution of the functional A(t) for the moment θv given the condition W (θv) = z.

Theorem 8.1. Let f(x), x ∈ R, be a piecewise-continuous nonnegative func-
tion. Then

@

@z
Ex
{
e−A(θv);W (θv) < z

}
=


@

@v
Ex
{
e−A(Hz,z+v);W (Hz,z+v) = z

}
, for x− v < z < x,

@

@v
Ex
{
e−A(Hz−v,z);W (Hz−v,z) = z

}
, for x < z < x+ v.

(8.1)

Proof. Set Hz := min{s : W (s) = z}. Consider the case x − v < z < x. The
result for the case x < z < x + v can be derived from the result for the previous
case, using the properties of spatial homogeneity and symmetry of a Brownian
motion. Let δ be a sufficiently small positive number. Denote by Dδ the set of
sample paths of the Brownian motion that start at x, reach the level z+ v earlier
than the level z, and then start at z+ v, and reach the level z+ δ earlier than the
level z+v+ δ. Denote by Cδ the set of sample paths of the Brownian motion that
start at x, reach the level z+v earlier than the level z+δ, and start at z+v, reach
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the level z+ δ earlier than the level z+ v+ δ, and, finally, start at z+ δ, reaching
the level z earlier than the level z+ v. It is not hard to see that

Cδ ⊂ {W (θv) ∈ [z, z+ δ)} ⊂ Dδ, (8.2)

Cδ ⊂
{

sup
0≤s≤Hz

W (s) ∈ [z+ v, z+ v+ δ)
}
⊂ Dδ. (8.3)

Applying the strong Markov property of a Brownian motion (see §11 Ch. I) and
formula (5.10), we have

Px(Dδ\Cδ) ≤ 2Pz+v(W (Hz+δ,z+v+δ) = z+δ)Pz+δ(W (Hz,z+v) = z+v) = 2�2

v2
. (8.4)

By O(x) denote any function that satisfies sup
x

∣∣O(x)
x

∣∣ <∞. By (8.2)–(8.4),

Ex
{
e−A(θv);W (θv) ∈ [z, z+ δ)

}
= Ex

{
e−A(θv); sup

0≤s≤Hz

W (s) ∈ [z+ v, z+ v+ δ)
}

+O
(
�2

v2

)
= Ex

{
e−A(Hz); sup

0≤s≤Hz

W (s) ∈ [z+ v, z+ v+ δ)
}

+ I1(δ) +O
(
�2

v2

)
, (8.5)

where

I1(δ) = Ex
{
e−A(θv) − e−A(Hz); sup

0≤s≤Hz

W (s) ∈ [z+ v, z+ v+ δ)
}

= Ex
{
e−A(θv) − e−A(Hz);Cδ

}
+O

(
�2

v2

)
.

Since f is a piecewise-continuous function, it is bounded on any finite interval.
Therefore,

|I1(δ)| ≤ Ex{|A(Hz)−A(θv)|;Cδ}+O
(
�2

v2

)
≤ max
y∈[z,z+v+δ]

f(y) Ex{|Hz − θv|;Cδ}+O
(
�2

v2

)
. (8.6)

Differentiating (5.25) with respect to α at the point zero, we obtain

Ex{Ha,b;W (Ha,b) = a} = (b− x)(x− a)

3(b− a)
(2b− x− a). (8.7)

Applying the strong Markov property of Brownian motion and taking into account
formulas (5.10) and (8.7), we get

Ex{|Hz − θv|;Cδ} ≤ Pz+v(W (Hz+δ,z+v+δ) = z+ δ)Ez+δ{Hz,z+v;W (Hz,z+v) = z}

= �

v

(v− �)�
3v

(2v− δ) ≤ 2

3
δ2.
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Consequently, I1(δ) = O(δ2). Since

Ex
{
e−A(Hz); sup

0≤s≤Hz

W (s) ∈ [z+ v, z+ v+ δ)
}

= Ex
{
e−A(Hz,z+v+δ);W (Hz,z+v+δ) = z

}
−Ex

{
e−A(Hz,z+v);W (Hz,z+v) = z

}
,

we can divide equality (8.5) by δ and pass to the limit as δ ↓ 0. This proves (8.1).
We have only to check that the derivative on the right-hand side of (8.1) exists.
Set

uv(x) := Ex
{
e−A(Hz,z+v);W (Hz,z+v) = z

}
. (8.8)

The function uv(x) is the solution of the problem (5.4), (5.5) for a = z, b = z + v.
Consequently, this function can be represented in the form

uv(x) =  (z+ v)'(x)−  (x)'(z+ v)

 (z+ v)'(z)−  (z)'(z+ v)
, x ∈ (z, z+ v), (8.9)

where ψ and ϕ are the fundamental solutions of the equation

1

2
φ′′(x)− f(x)φ(x) = 0, x ∈ R. (8.10)

From formula (8.9) it follows that the function uv(x) is differentiable with respect
to v. Theorem 8.1 is proved. �

We can express the right-hand side of (8.1) in terms of the fundamental solutions
ψ and ϕ of equation (8.10). Let w := ψ′(x)ϕ(x)− ψ(x)ϕ′(x) be the Wronskian. It
is a nonnegative constant. Denote

ρ(x, y) := ψ(x)ϕ(y)− ψ(y)ϕ(x).

It is easy to check that for any a, b and c the equality

ρ(b, c) @
@b
ρ(a, b)− ρ(a, b) @

@b
ρ(b, c) = −wρ(a, c)

holds. Using this equality, we can obtain that

@

@v
uv(x) = @

@v

�(z+ v; x)

�(z+ v; z)
= − @

@v

�(x; z+ v)

�(z+ v; z)
= w�(x; z)

�2(z+ v; z)
.

Similar computations for x < z < x+ v, yield

@

@z
Ex{exp(−A(θv));W (θv) < z} =


w�(x; z)

�2(z+ v; z)
, x− v < z ≤ x,

w�(z; x)

�2(z; z − v)
, x ≤ z < x+ v.

(8.11)

Hence, for an arbitrary piecewise-continuous function Φ(z), we have that

Ex
{
Φ(W (θv)) exp(−A(θv))

}
= w

x+v∫
x

�(z)�(z; x) + �(z − v)�(x; z − v)

�2(z; z − v)
dz. (8.12)
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Example 8.1. We compute the distribution of the Brownian motion at the
moment θv. We apply (8.1) for f ≡ 0. The function uv defined by (8.8) for f ≡ 0
takes the form uv(x) = z + v − x

v
, x ∈ (z, z+v) (see 5.10). Then @

@v

z + v − x

v
= x− z

v2
.

Similar computations for x < z < x+ v, yield

d

dz
Px(W (θv) < z) = |z − x|

v2
, |z − x| ≤ v. (8.13)

Example 8.2. We compute the distribution of the inverse range time θv. We
apply (8.1) for f ≡ α. In this case ψ(x) = ex

√
2α, ϕ(x) = e−x

√
2α, and

ρ(x, y) = 2 sh((x− y)
√

2α).

Then from (8.12), Φ ≡ 1, we have

Exe−αθv =
√

2α

x+v∫
x

sh((z − x)
√
2�) + sh((x− z + v)

√
2�)

sh2(v
√
2�)

dz

= 2(ch(v
√
2�)− 1)

sh2(v
√
2�)

= 1

ch2(v
√
�=2)

. (8.14)

Inverting the Laplace transform with respect to α and using the formula for the
binomial series (see Appendix 2), we obtain

d

dt
Px(θv < t) = 4v

t
√
2�t

∞∑
k=1

(−1)k−1k2e−k
2v2/2t. (8.15)

Exercises.

8.1. Compute ExeiβW (θv).

8.2. Compute d

dz
Ex
{
e−αθv ; W (θv) < z

}
, α > 0, and find the joint distribution

of θv and W (θv).

8.3. Compute

d

dz
Ex

{
exp

(
− γ

θv∫
0

1I[r,∞)

(
W (s)

)
ds

)
; W (θv) < z

}
, γ > 0.

8.4. Compute

d

dz
Ex

{
exp

(
−

θv∫
0

(
p1I(−∞,r]

(
W (s)

)
+ q1I[r,∞)

(
W (s)

))
ds

)
; W (θv) < z

}

for p > 0 and q > 0.
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§9. Distributions of functionals of Brownian motion with linear drift

Let W (µ)(t) := µt +W (t), t ∈ [0, T ] be a Brownian motion with linear drift µ.
Analogously to the proof of the existence of the Brownian local time (see §5 Ch. II)
one can prove the existence of the local time `(µ)(t, x) of the Brownian motion
with linear drift µ. The local time `(µ)(t, x) is a.s. a jointly continuous process in
(t, x) ∈ [0, T ]×R and

(W (µ)(t)− x)+ − (W (µ)(0)− x)+ =

t∫
0

1I[x,∞)(W (µ)(s)) dW (µ)(s) + 1

2
`(µ)(t, x),

where a+ = max{a, 0}.
We consider the functional of the Brownian motion with linear drift of the form

A(µ)

~β
(t) :=

t∫
0

f(W (µ)(s))ds+
m∑
l=1

βl `
(µ)(t, ql),

where f is a nonnegative piecewise-continuous function, βl ≥ 0, and qk ∈ R,
m <∞.

The next result enables us to compute the joint distributions of the integral
functional of the Brownian motion with linear drift, the local time at different
levels, and the infimum and supremum functionals.

Theorem 9.1. Let Φ(x) and f(x), x ∈ [a, b], be piecewise-continuous functions.
Assume that f ≥ 0. Then the function

Mµ(x):=eµxEx
{
Φ(W (µ)(τ)) exp(−A(µ)

~β
(τ)); a≤ inf

0≤s≤τ
W (µ)(s), sup

0≤s≤τ
W (µ)(s)≤b

}
,

x ∈ [a, b], is the unique continuous solution of the problem

1

2
M ′′(x)−

(
λ+ �2

2
+ f(x)

)
M(x) = −λeµxΦ(x), x ∈ (a, b) \ {q1, . . . , qm}, (9.1)

M ′(qk+0)−M ′(qk−0) = 2βkM(qk), k = 1, . . . ,m, (9.2)

M(a) = 0, M(b) = 0. (9.3)

Remark 9.1. In the case a = −∞ or b = ∞ we, in addition, assume that Φ is
bounded. Then the corresponding boundary condition in (9.3) must be replaced
by the condition that the function e−µxM(x) is bounded as x tends to −∞ or ∞.

Remark 9.2. If βk = 0, k = 1, . . . ,m, i.e.,

A(µ)
0 (t) =

t∫
0

f(W (µ)(s))ds,
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then the conditions (9.2) can be omitted and in (9.1) instead of (a, b)\{q1, . . . , qm}
we can take the interval (a, b).

Proof of Theorem 9.1. By (10.15) Ch. II, for any bounded measurable functional
℘(W (µ)(s), 0 ≤ s ≤ t), W (µ)(0) = x,

E℘
(
W (µ)(s), 0 ≤ s ≤ t

)
= e−µx−µ

2t/2E
{
eµW (t)℘(W (s), 0 ≤ s ≤ t)

}
. (9.4)

Taking the Laplace transform with respect to t, we have

E℘
(
W (µ)(s), 0 ≤ s ≤ τ

)
= e−µxE

{
eµW (τ)−µ2τ/2℘(W (s), 0 ≤ s ≤ τ)

}
, (9.5)

where τ is the exponentially distributed random time with the parameter λ > 0.
It is assumed also that τ is independent of the Brownian motion W . Using (9.5),
we can represent the function Mµ in the form

Mµ(x) =Ex
{
eµW (τ)Φ(W (τ)) exp

(
− �2�

2
−A~β(τ)

)
, a≤ inf

0≤s≤τ
W (s), sup

0≤s≤τ
W (s)≤ b

}
,

where A~β(t) is the corresponding functional of the Brownian motion W (see §3).
To the right-hand side of this equality we can apply Theorem 3.1 with the function

eµxΦ(x) instead of Φ(x) and the function �2

2
+f(x) instead of f(x), x ∈ [a, b]. Then

we see that the function Mµ(x), x ∈ [a, b], is the unique continuous solution of the
problem (9.1)–(9.3). �

It is easy to see that from Theorem 9.1 we can derive the analogue of Theo-
rem 4.2. It is necessary to replace the function Φ by the Dirac δ-function. What
this actually means is that one should take the limit as ∆ ↓ 0 for the family of
functions

{
1

�
1I[z,z+∆)(x)

}
∆>0

instead of the function Φ (see the proof of Theo-

rem 4.1). The function G(µ)
z (x), in contrast to the corresponding function Gx(z)

of Theorem 4.1, is a function of the starting point of the process W (µ); otherwise,
there appears the conjugate operator. In view of (4.21), the function Gx(z) satisfies
the equality Gx(z) = Gz(x).

Theorem 9.2. Let f(x), x ∈ [a, b] be a piecewise-continuous nonnegative func-
tion. Then for a < z < b the function

G(µ)
z (x) := eµx

d

dz
Ex
{

exp(−A(µ)

~β
(τ)); a ≤ inf

0≤s≤τ
W (µ)(s),

sup
0≤s≤τ

W (µ)(s) ≤ b,W (µ)(τ) < z
}
, x ∈ [a, b],

is the unique continuous solution of the problem

1

2
G′′(x)−

(
λ+ �2

2
+ f(x)

)
G(x) = 0, x ∈ (a, b) \ {z, q1, . . . , qm}, (9.6)

G′(z + 0)−G′(z − 0) = −2λeµz, (9.7)

G′(qk + 0)−G′(qk − 0) = 2βkG(qk), qk 6= z, k = 1, . . . ,m, (9.8)

G(a) = 0, G(b) = 0. (9.9)



260 III DISTRIBUTIONS OF FUNCTIONALS

Remark 9.3. The solutions of the problems (9.6)–(9.9) and (4.23)–(4.26) can
be expressed in terms of each other. If the solution of (4.23)–(4.26) is denoted by
Gλ,x(z), then

G(µ)
z (x) = �e�z

�+ �2=2
Gλ+µ2/2,x(z). (9.10)

It suffices to note that Gλ+µ2/2,x(z) = Gλ+µ2/2,z(x). With the help of this
equality, the problem (4.23)–(4.26) can be rewritten as a problem with respect to
the variable x.

Equality (9.10) can also be derived, by using the Laplace transform with respect
to t, from the equality

d

dz
Ex
{
℘
(
W (µ)(s), 0 ≤ s ≤ t

)
;W (µ)(t) < z

}
= eµ(z−x)−µ2t/2 d

dz
Ex
{
℘(W (s), 0 ≤ s ≤ t);W (t) < z

}
, (9.11)

which follows from the coincidence of the bridges of the Brownian motion and the
Brownian motion with linear drift (see (11.20) Ch. I).

Example 9.1. We compute the joint distribution of the infimum and supremum
of the Brownian motion with linear drift. We apply Theorem 9.1 with Φ ≡ 1, f ≡ 0,
βk = 0, k = 1, . . . ,m. According to this theorem, the function

Mµ(x) = eµxPx

(
a ≤ inf

0≤s≤τ
W (µ)(s), sup

0≤s≤τ
W (µ)(s) ≤ b

)
, x ∈ [a, b],

is the unique solution of the problem

1

2
M ′′(x)−

(
λ+ �2

2

)
M(x) = −λeµx, x ∈ (a, b), (9.12)

M(a) = 0, M(b) = 0. (9.13)

The particular solution of equation (9.12) is eµx. The two fundamental solutions
of the corresponding homogeneous equation are the following: sh((b−x)

√
2λ+ µ2),

sh((x − a)
√

2λ+ µ2). These solutions are suitable for our problem, because the
first one vanishes at b and the second one vanishes at a. Now it is easy to see that
the solution of the problem (9.12), (9.13) is

M(x) = eµx − e�a sh((b− x)
√
2�+ �2) + e�b sh((x− a)

√
2�+ �2)

sh((b− a)
√
2�+ �2)

.

Consequently,

Px

(
a ≤ inf

0≤s≤τ
W (µ)(s), sup

0≤s≤τ
W (µ)(s) ≤ b

)

= 1− e�(a−x) sh((b− x)
√
2�+ �2) + e�(b−x) sh((x− a)

√
2�+ �2)

sh((b− a)
√
2�+ �2)

. (9.14)
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Proceeding as in the derivation of (2.16), we find that

Px

(
a ≤ inf

0≤s≤t
W (µ)(s), sup

0≤s≤t
W (µ)(s) ≤ b

)

= 1− e−µ
2t/2
(
eµ(a−x)s̃st(b− x, b− a) + eµ(b−x)s̃st(x− a, b− a)

)
= e−�

2t=2
√
2�t

∞∑
k=−∞

b∫
a

eµ(z−x)(e−(z−x+2k(b−a))2/2t − e−(z+x−2a+2k(b−a))2/2t)dz.
Example 9.2. We compute the Laplace transform of the time spent by the

Brownian motion with linear drift W (µ)(s) in the interval [r,∞) up to the time τ .
We apply Theorem 9.1 with Φ(x) ≡ 1, f(x) = γ1I[r,∞)(x), γ > 0 and a = −∞,
b = ∞. According to this theorem and Remark 9.1, the function

Mµ(x) = eµxEx exp
(
− γ

τ∫
0

1I[r,∞)(W (µ)(s)) ds
)
, x ∈ R,

is the unique continuous solution of the equation

1

2
M ′′(x)−

(
λ+ �2

2
+ γ1I[r,∞)(x)

)
U(x) = −λeµx, x ∈ R, (9.15)

for which the function e−µxM(x), x ∈ R, is bounded.
As in Example 1.1, we get

Ex exp
(
− γ

τ∫
0

1I[r,∞)(W (µ)(s)) ds
)

= e−µxMµ(x)

(9.16)

=


1− (

√
2�+ 2 + �2 + �)

(�+ )(
√
2�+ 2 + �2 +

√
2�+ �2)

e(x−r)(
√

2λ+µ2−µ), x ≤ r,

�

�+ 
+ (

√
2�+ �2 − �)

(�+ )(
√
2�+ 2 + �2 +

√
2�+ �2)

e(r−x)(
√

2λ+µ2+2γ+µ), r ≤ x.

Since τ →∞ as λ→ 0, passing in (9.16) to the limit, we have

Ex exp
(
− γ

∞∫
0

1I[r,∞)

(
W (µ)(s)

)
ds

)

= 1I(−∞,0)(µ)


1−

√
2 + �2 + �√
2 + �2 − �

e−2µ(x−r), x ≤ r,

−2�e(r−x)(
√
2+�2+�)√

2 + �2 − �
, r ≤ x.

(9.17)
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Obviously,

Ex exp
(
− γ

∞∫
0

1I[r,∞)

(
W (µ)(s)

)
ds

)

= Ex

{
exp

(
− γ

∞∫
0

1I[r,∞)

(
W (µ)(s)

)
ds

)
;

∞∫
0

1I[r,∞)

(
W (µ)(s)

)
ds <∞

}
.

Now passing in (9.17) to the limit as γ → 0, we see that for µ < 0

∞∫
0

1I[r,∞)

(
W (µ)(s)

)
ds <∞, a.s., (9.18)

and for µ ≥ 0
∞∫
0

1I[r,∞)

(
W (µ)(s)

)
ds = ∞, a.s. (9.19)

Exercises.

9.1. Compute Exe−ατ+iβW
(µ)(τ), α > 0.

9.2. Compute the probabilities

Px

(
a ≤ inf

0≤s≤t
W (µ)(s)

)
, Px

(
sup

0≤s≤t
W (µ)(s) ≤ b

)
.

9.3. Compute

Ex exp
(
− γ

τ∫
0

1I(−∞,r)(W (µ)(s)) ds
)
, γ > 0.

9.4. Compute

Ex
{
eiβW

(µ)(τ); a ≤ inf
0≤s≤τ

W (µ)(s)
}
, Ex

{
eiβW

(µ)(τ); sup
0≤s≤τ

W (µ)(s) ≤ b
}
.

9.5. Compute

Ex
{
e−β|W

(µ)(τ)|; sup
0≤s≤τ

|W (µ)(s)| ≤ b
}
, β > 0.

9.6. Compute the Laplace transform Exe−γ`
(µ)(τ,r), γ > 0, and the distribution

of the local time `(µ)(τ, r).

9.7. Compute the Laplace transform Exe−γ`
(µ)(∞,r), γ > 0, and the distribution

of the local time `(µ)(∞, r).
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§10. Distributions of functionals of reflected Brownian motion

The reflected Brownian motion W+ is the modulus of the Brownian motion W ,
i.e., W+(s) := |W (s)|, s ≥ 0. The state space of this process is the nonnegative
real half-line.

The local time of the reflected Brownian motion W+ at a level y up to the time
t is defined to be the limit

`+(t, y) := lim
ε↓0

1

"

t∫
0

1I[y,y+ε)(|W (s)|)ds, (t, y) ∈ [0,∞)× [0,∞).

It is clear that

`+(t, y) = lim
ε↓0

1

"

t∫
0

1I[y,y+ε)(W (s))ds+ lim
ε↓0

1

"

t∫
0

1I(−y−ε,−y](W (s))ds

= `(t, y) + `(t,−y), (t, y) ∈ [0,∞)× [0,∞), (10.1)

where `(t, y) is the Brownian local time.
Therefore, the local time `+(t, y) exists a.s. and is a continuous process in

(t, y) ∈ [0,∞)× [0,∞).
We consider the functional of the reflected Brownian motion of the form

A+
~β
(t) :=

t∫
0

f(W+(s))ds+
m∑
k=1

βk`+(t, qk),

where f is a nonnegative piecewise-continuous function, βk ≥ 0 and qk ∈ (0,∞),
m < ∞, k = 1, . . . ,m. We prove first a basic result which enables us to compute
the joint distribution of the functional A+

~β
(τ) for the case βk = 0, k = 1, . . . ,m,

and the supremum of reflected Brownian motion for an exponentially distributed
with the parameter λ > 0 random time τ independent of W+.

Theorem 10.1. Let Φ(x) and f(x), x ∈ [0, b], be piecewise-continuous func-
tions. Assume that f ≥ 0. Then the function

M+(x) := Ex

{
Φ(W+(τ)) exp

(
−

τ∫
0

f(W+(s)) ds
)

; sup
0≤s≤τ

W+(s) ≤ b

}
,

x ∈ [0, b], is the unique solution of the problem

1

2
M ′′(x)− (λ+ f(x))M(x) = −λΦ(x), x ∈ (0, b), (10.2)

M ′(0+) = 0, M(b) = 0. (10.3)

Remark 10.1. In the case when b = ∞ we assume, in addition, that Φ is
bounded. Then the right boundary condition in (10.3) must be replaced by the
condition that the function M+(x) is bounded as x tends to ∞.
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Proof of Theorem 10.1. The reflected Brownian motion with starting point x ≥ 0
can be represented as W+(s) = |x+W̃ (s)|, s ≥ 0, where W̃ is the Brownian motion
with W̃ (0) = 0. Then using the symmetry property of W̃ (see §10 Ch. I), we have

M+(x) = E0

{
Φ(|x+ W̃ (τ)|) exp

(
−

τ∫
0

f(|x+ W̃ (s)|) ds
)

; sup
0≤s≤τ

|x+ W̃ (s)| ≤ b

}

= E0

{
Φ(|x− W̃ (τ)|) exp

(
−

τ∫
0

f(|x− W̃ (s)|) ds
)

; sup
0≤s≤τ

|x− W̃ (s)| ≤ b

}

= E0

{
Φ(| − x+ W̃ (τ)|) exp

(
−

τ∫
0

f(| − x+ W̃ (s)|) ds
)

; sup
0≤s≤τ

| − x+ W̃ (s)| ≤ b

}
.

Considering M+(x), x ∈ R, as a function defined on the whole real line, we see
that it is even function, i.e., M+(x) = M+(−x). Using the equality{

sup
0≤s≤τ

|x+ W̃ (s)| ≤ b
}

=
{
− b ≤ inf

0≤s≤τ
(x+ W̃ (s)), sup

0≤s≤τ
(x+ W̃ (s)) ≤ b

}
and interpreting M+ as the expectation of the functional of the Brownian motion
x + W̃ , we can apply Theorem 2.1. By this theorem, M+(x), x ∈ [−b, b], is the
unique solution of the problem

1

2
M ′′(x)− (λ+ f(|x|))M(x) = −λΦ(|x|), x ∈ (−b, b), (10.4)

M(−b) = 0, M(b) = 0. (10.5)

Since M+ is an even function, we have M ′
+(0) = 0 and the problem (10.4), (10.5)

transforms into the problem (10.2), (10.3). �

Analogously, using Theorem 3.1 and (10.1) one can prove the following general-
ization of Theorem 10.1.

Theorem 10.2. Let Φ(x) and f(x), x ∈ [0, b], be piecewise-continuous func-
tions. Assume that f ≥ 0. Then the function

M+(x) := Ex
{
Φ(W+(τ)) exp

(
−A+

~β
(τ)
)
; sup
0≤s≤τ

W+(s) ≤ b
}
, x ∈ [0, b],

is the unique continuous solution of the problem

1

2
M ′′(x)− (λ+ f(x))M(x) = −λΦ(x), x ∈ (0, b) \ {q1, . . . , qm}, (10.6)

M ′(qk + 0)−M ′(qk − 0) = 2βkM(qk), k = 1, . . . ,m, (10.7)

M ′(0+) = 0, M(b) = 0. (10.8)
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Example 10.1. We compute the distribution of the supremum of a reflected
Brownian motion. Applying Theorem 10.1 with Φ ≡ 1 and f ≡ 0, we see that the
function M(x) = Px

(
sup

0≤s≤τ
W+(s) ≤ b

)
is the unique solution of the problem

1

2
M ′′(x)− λM(x) = −λ, x ∈ (0, b), (10.9)

M ′(0+) = 0, M(b) = 0. (10.10)

We can choose ch(x
√

2λ), sh((b−x)
√

2λ) as the fundamental solutions of the corre-
sponding homogeneous equation. These solutions satisfy, respectively, the left and
the right boundary conditions in (10.10). Then the solution of the problem (10.9),
(10.10) can be represented in the form

M(x) = 1 +A ch(x
√

2λ).

The second fundamental solution is included with the zero factor, because the
derivative at x = 0 must be zero. The condition M(b) = 0 implies that A =
−1/ ch(b

√
2λ). Therefore,

Px

(
sup

0≤s≤τ
W+(s) ≤ b

)
= 1− ch(x

√
2�)

ch(b
√
2�)

, 0 ≤ x ≤ b. (10.11)

Dividing (10.11) by λ and inverting the Laplace transform with respect to λ (see
Section 13 of Appendix 2), we obtain

Px

(
sup

0≤s≤t
W+(s) ≤ b

)
= 1− c̃ct(x, b). (10.12)

As a consequence of (2.16) the following formula holds:

Px

(
sup

0≤s≤t
W+(s) ≤ b

)
= 1

√
2�t

∞∑
k=−∞

b∫
−b

(
e−(z−x+4kb)2/2t − e−(2b−z−x+4kb)2/2t

)
dz.

To compute the joint distributions of the integral functional of the reflected
Brownian motion and the position of W+ at the time t we can use the following
assertion.

Theorem 10.3. Let f(z), z ∈ [0, b], be a nonnegative piecewise-continuous
function. Then for 0 < x < b the function

Gx(z) := d

dz
Ex

{
exp

(
−

τ∫
0

f(W+(s)) ds
)

; sup
0≤s≤τ

W+(s) ≤ b,W+(τ) < z

}
,

z ∈ [0, b], is the unique continuous solution of the problem

1

2
G′′(z)− (λ+ f(z))G(z) = 0, z ∈ (0, b) \ {x}, (10.13)

G′(x+ 0)−G′(x− 0) = −2λ, (10.14)

G′(0+) = 0, G(b) = 0. (10.15)
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Example 10.2. We compute the joint distribution of sup
0≤s≤t

W+(s) and the

position of the reflected Brownian motion W+(t) at the time t. We refer to the
arguments used in Example 4.2. The solution of the problem (10.13)–(10.15) for
f ≡ 0 can be represented in the form

Gx(z) = A ch(z
√

2λ) +B sh((b− z)
√

2λ)−
√
�

√
2

sh(|z − x|
√

2λ).

The constants A and B can be easily computed from the boundary conditions and
we get

Gx(z)=
√
�

√
2

[
sh((b−x)

√
2�) ch(z

√
2�)

ch(b
√
2�)

+ sh((b−z)
√
2�) ch(x

√
2�)

ch(b
√
2�)

− sh(|z − x|
√

2λ)
]
.

Using the formulas for products of hyperbolic functions, analogously to (4.43) we
obtain

d

dz
Px

(
sup

0≤s≤τ
W+(s) ≤ b,W+(τ)< z

)
=

√
�
(
sh((b− |x− z|)

√
2�) + sh((b− x− z)

√
2�)

)
√
2 ch(b

√
2�)

,

Dividing this equality by λ and inverting the Laplace transform with respect to λ
(see section 13 of Appendix 2), we get

d

dz
Px

(
sup

0≤s≤t
W+(s) ≤ b, W+(t) < z

)
= sct(b− |x− z|, b) + sct(b− x− z, b)

= 1
√
2�t

∞∑
k=−∞

(−1)k
(
e−(z−x+2kb)2/2t + e−(z+x+2kb)2/2t

)
, x ∨ z < b.

Exercises.

10.1. Compute Exe−ατ−β|W (τ)|, α > 0, β > 0, and the distribution of the
variable |W (τ)|.

10.2. Compute Exe−β|W (t)|, β > 0, and the distribution of the variable |W (t)|.
10.3. Compute the distribution of the local time of the reflected Brownian

motion at the time τ , i.e., the distribution of the variable `+(τ, q).

10.4. Compute

Ex
{
|W (τ)|; sup

0≤s≤τ
|W (s)| ≤ b

}
and Ex

{
W 2(τ); sup

0≤s≤τ
|W (s)| ≤ b

}
.

10.5. Compute d

dz
Ex
{
e−ατ ; |W (τ)| < z

}
, α > 0.

10.6. Compute

d

dz
Ex
{
e−ατ ; sup

0≤s≤τ
|W (s)| ≤ b, |W (τ)| < z

}
, α > 0.

10.7. Compute d

dz
Ex
{
e−γ`+(τ,q); |W (τ)| < z

}
, γ > 0, and the joint distribution

of the variables `+(τ, q) and |W (τ)|.



CHAPTER IV

DIFFUSION PROCESSES

§1. Diffusion processes

Diffusion processes form a very important class of stochastic processes both
because of the rich variety of theoretical results concerned with them and their nu-
merous practical applications. They represent a large subclass of Markov processes
discussed in § 6 Ch. I.

A Markov process X(t), t ∈ [0, T ], is called a diffusion if its transition function
P (t, x, v,∆) has the following properties:

1) for any ε > 0, all 0 ≤ t ≤ T , and x ∈ R

lim
δ↓0

1

�

∫
|y−x|>ε

P (t, x, t+ δ, dy) = 0; (1.1)

2) there exist functions a(t, x), b(t, x), (t, x) ∈ [0, T ] × R, such that for some
ε > 0, all 0 ≤ t ≤ T , and x ∈ R

lim
δ↓0

1

�

∫
|y−x|≤ε

(y − x)P (t, x, t+ δ, dy) = a(t, x), (1.2)

lim
δ↓0

1

�

∫
|y−x|≤ε

(y − x)2P (t, x, t+ δ, dy) = b2(t, x). (1.3)

The functions a(t, x) and b2(t, x) are called the drift coefficient and the diffusion
coefficient of the process X, respectively.

Supposed that for any fixed s, t, ∆ the function P (s, ·, t,∆) is right continuous.
Then using (6.10) and (6.11) of Ch. I, we can give the probabilistic interpretation
of conditions 1), 2). They can be reformulated as follows:

1) for any ε > 0, all 0 ≤ t ≤ T , and x ∈ R

lim
δ↓0

1

�
P(|X(t+ δ)− x| > ε|X(t) = x) = 0; (1.4)

2) there exist functions a(t, x) and b(t, x), (t, x) ∈ [0, T ]×R, such that for some
ε > 0, all 0 ≤ t ≤ T , and x ∈ R

lim
δ↓0

1

�
E{(X(t+ δ)− x))1I[0,ε](|X(t+ δ)− x|)|X(t) = x} = a(t, x), (1.5)

lim
δ↓0

1

�
E{(X(t+ δ)− x))21I[0,ε](|X(t+ δ)− x|)|X(t) = x} = b2(t, x). (1.6)
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The first condition states that sample paths of a diffusion cannot undergo big
changes for infinitely small times, i.e., they have no jumps. A Markov process X
satisfying condition 1) uniformly in (t, x) is continuous (see Gihman and Skorohod
(1969)). Therefore, such a diffusion is a continuous process.

The second condition involves the truncation of the increments, because there is
no a priori information that the increments of a diffusion have finite first and second
moments. For diffusions that are solutions of stochastic differential equations (see
§ 7 Ch. II) there exist finite second moments of the increments. This is also true
for all well-known examples of diffusions.

The meaning of the second condition is the following. The conditional expecta-
tion of the truncated increments of a diffusion, starting at a time t from a point x,
for infinitely small time period [t, t+ dt] has the principal value equal to a(t, x) dt
and the conditional variance of these increments has the principal value equal to
b2(t, x) dt.

Let us list some convenient sufficient conditions for a Markov process X to be a
diffusion.

A Markov process X is a diffusion, if its transition function P (t, x, v,∆) satisfies
the following conditions:

1′) for some β > 0, for all 0 ≤ t ≤ T , and x ∈ R

lim
δ↓0

1

�

∞∫
−∞

|y − x|2+βP (t, x, t+ δ, dy) = 0; (1.7)

2′) there exist functions a(t, x) and b(t, x), (t, x) ∈ [0, T ] × R, such that for all
0 ≤ t ≤ T , and x ∈ R

lim
δ↓0

1

�

∞∫
−∞

(y − x)P (t, x, t+ δ, dy) = a(t, x), (1.8)

lim
δ↓0

1

�

∞∫
−∞

(y − x)2P (t, x, t+ δ, dy) = b2(t, x). (1.9)

By o(z) denote any function that satisfies lim
z↓0

o(z)

z
= 0.

Condition 1′) implies 1), because

∫
|y−x|>ε

P (t, x, t+ δ, dy) ≤ 1

"2+�

∞∫
−∞

|y − x|2+βP (t, x, t+ δ, dy) = 1

"2+�
o(δ).

Analogously, by the estimates∣∣∣∣ ∫
|y−x|>ε

(y − x)P (t, x, t+ δ, dy)
∣∣∣∣ ≤ 1

"1+�

∞∫
−∞

|y − x|2+βP (t, x, t+ δ, dy) = 1

"1+�
o(δ),
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∫
|y−x|>ε

(y − x)2P (t, x, t+ δ, dy) ≤ 1

"�

∞∫
−∞

|y − x|2+βP (t, x, t+ δ, dy) = 1

"�
o(δ),

conditions 1′) and 2′) imply 2).

Using (6.11) of Ch. I, we can give the probabilistic interpretation of conditions
1′) and 2′). We have

∞∫
−∞

|y − x|2+βP (t, x, t+ δ, dy)

= E{|X(t+ δ)− x|2+β |X(t) = x} = E{|X(t+ δ)−X(t)|2+β |X(t) = x}.

Therefore, condition 1′) can be recast as: for some β > 0, for all 0 ≤ t ≤ T , and
x ∈ R

E{|X(t+ δ)−X(t)|2+β |X(t) = x} = o(δ). (1.10)

Analogously, condition 2′) can be recast as: there exist functions a(t, x) and b(t, x),
(t, x) ∈ [0, T ]×R, such that for all 0 ≤ t ≤ T and x ∈ R

E{(X(t+ δ)−X(t))|X(t) = x} = δ a(t, x) + o(δ), (1.11)

E{(X(t+ δ)−X(t))2|X(t) = x} = δ b2(t, x) + o(δ). (1.12)

Condition (1.11) means that the principal value of the conditional expectation of
increment of the diffusion for a small time period (t, t+ δ) takes the form δ a(t, x).
Condition (1.12) means that the principal value of the conditional variance of the
increment of the diffusion for a small time interval (t, t+δ) takes the form δ b2(t, x).

§ 2. Backward and forward Kolmogorov equations

Let X(t), t ∈ [0, T ], be a diffusion with transition function P (s, x, t,∆). For any
bounded continuous function g(y), y ∈ R, and for any fixed t ∈ [0, T ], we set

u(s, x) :=

∞∫
−∞

g(y)P (s, x, t, dy), for s < t.

According to (6.11) Ch. I, if for any fixed s the function u(s, x), x ∈ R, is
continuous, then u(s, x) = E{g(X(t))|X(s) = x}. For some processes this function
was already considered in § 13 Ch. II.

The following assertion is due to A. N. Kolmogorov.
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Theorem 2.1. Suppose that u(s, x), (s, x) ∈ [0, t]×R, has bounded first- and
second-orders derivatives with respect to x. Assume that these derivatives and the
functions a(s, x), b(s, x) are continuous in (s, x). Then u(s, x) is differentiable with
respect to s and satisfies in (0, t)×R the equation

− @

@s
u(s, x) = 1

2
b2(s, x) @

2

@x2
u(s, x) + a(s, x) @

@x
u(s, x) (2.1)

with the boundary condition

lim
s↑t

u(s, x) = g(x). (2.2)

Equation (2.1) is called the backward Kolmogorov equation.

Remark 2.1. If the diffusion coefficient b2 and the drift coefficient a are such
that for every t ∈ [0, T ] the Cauchy problem (2.1), (2.2) in [0, t] × R has a
unique solution for all bounded continuous functions g, then the transition function
P (s, x, t,∆) is uniquely determined by the coefficients a and b.

Proof of Theorem 2.1. The boundary condition (2.2) follows from the estimates

|u(s, x)−g(x)| =
∣∣∣∣

∞∫
−∞

(g(y)−g(x))P (s, x, t, dy)
∣∣∣∣ ≤ ∫

|y−x|≤ε

|g(y)−g(x)|P (s, x, t, dy)

+ 2 sup
y∈R

|g(y)|
∫

|y−x|>ε

P (s, x, t, dy) ≤ max
|y−x|≤ε

|g(y)− g(x)|+ 2 sup
y∈R

|g(y)| o(|t− s|)

true for any ε > 0. In the last inequality we used the first property of the transition
function.

For any fixed t, for all 0 ≤ r < v < t, and x ∈ R the following integral relation
holds:

u(r, x) =

∞∫
−∞

u(v, z)P (r, x, v, dz). (2.3)

Indeed, by the Chapman–Kolmogorov equation (see § 6 Ch. I),

∞∫
−∞

u(v, z)P (r, x, v, dz) =

∞∫
−∞

∞∫
−∞

g(y)P (v, z, t, dy)P (r, x, v, dz)

=

∞∫
−∞

g(y)

∞∫
−∞

P (r, x, v, dz)P (v, z, t, dy) =

∞∫
−∞

g(y)P (r, x, t, dy) = u(r, x).

For a fixed time r, using (2.3) and the first property of the transition function (see
(1.1)), we have that

u(r, x)− u(v, x) =

∞∫
−∞

(u(v, z)− u(v, x))P (r, x, v, dz)
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=
∫

|z−x|≤ε

(u(v, z)− u(v, x))P (r, x, v, dz) + 2 sup
y∈R

|g(y)| o(|v − r|) (2.4)

for any small ε > 0, because

sup
(v,x)∈[0,t]×R

|u(v, x)| ≤ sup
y∈R

|g(y)|.

For a small ε > 0, we use the Taylor expansion of the function u(v, z) in the interval
(x− ε, x+ ε):

u(v, z)− u(v, x) = @

@x
u(v, x)(z − x) + 1

2

@2

@x2
u(v, x)(z − x)2(1 + γε(v, z, x)),

where
|γε(v, z, x)| ≤ sup

|z−x|≤ε

∣∣∣ @2
@x2

u(v, x)− @2

@z2
u(v, z)

∣∣∣ =: γ̃ε(v, x).

Then, using the second property of the transition function (see (1.2) and (1.3)), we
have∫
|z−x|≤ε

(u(v, z)− u(v, x))P (r, x, v, dz) = @

@x
u(v, x)

∫
|z−x|≤ε

(z − x)P (r, x, v, dz)

+ 1

2

@2

@x2
u(v, x)

( ∫
|z−x|≤ε

(z−x)2P (r, x, v, dz)+
∫

|z−x|≤ε

γε(v, z, x)(z−x)2P (r, x, v, dz)
)

=
(
@

@x
u(v, x)a(r, x)+1

2

@2

@x2
u(v, x)b2(r, x)

)
(v−r)+

(
@

@x
u(v, x)+1

2

@2

@x2
u(v, x)

)
o(|v−r|)

+O
(
γ̃ε(v, x)

)
(b2(r, x)(v − r) + o(|v − r|)).

Substituting this in (2.4), we get

u(r; x)−u(v; x)
v − r

=
(
@

@x
u(v, x)a(r, x)+ 1

2

@2

@x2
u(v, x)b2(r, x)

)
(1+O(γ̃ε(v, x)))+

o(|v−r|)
v − r

.

Letting first r ↑ s, v ↓ s, and then ε→ 0, we see that the function u(s, x), (0, t)×R,
satisfies equation (2.1). �

If there is a transition probability density, i.e., a nonnegative measurable function
p(s, x, t, y) such that for all 0 ≤ s < t ≤ T , x ∈ R, and every Borel set ∆

P (s, x, t,∆) =
∫
�

p(s, x, t, y) dy,

then the Chapman–Kolmogorov equation can be rewritten in the form

p(s, x, t, y) =

∞∫
−∞

p(s, x, v, z) p(v, z, t, y) dz, (2.5)

where s < v < t.
The following result (equation (2.6)) is called the forward Kolmogorov equation

or the Fokker–Planck equation.
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Theorem 2.2. Suppose the limits (1.1)–(1.3) exist uniformly in x ∈ R. Sup-
pose that the partial derivatives

@

@t
p(s, x, t, y), @

@y

(
a(t, y)p(s, x, t, y)

)
,

@2

@y2

(
b2(t, y)p(s, x, t, y)

)
exist and are continuous with respect to y ∈ R. Then the function p(s, x, t, y),
t ∈ (s, T ), y ∈ R, satisfies the equation

@

@t
p(s, x, t, y) = 1

2

@2

@y2

(
b2(t, y)p(s, x, t, y)

)
− @

@y

(
a(t, y)p(s, x, t, y)

)
. (2.6)

Proof. We choose an arbitrary twice continuously differentiable function g(y)
that vanishes outside a finite interval and we fix t. Arguing in much the same way
as in the proof of Theorem 2.1, we obtain that for h > 0

∞∫
−∞

g(y)p(t, x, t+ h, y) dy − g(x) =

∞∫
−∞

(g(y)− g(x))p(t, x, t+ h, y) dy

=
∫

|y−x|≤ε

[
(y − x)g′(x) + 1

2
(y − x)2g′′(x)(1 + γε(y, x))

]
p(t, x, t+ h, y) dy

+O(1)
∫

|y−x|>ε

p(t, x, t+h, y) dy = g′(x)a(t, x)h+ 1

2
g′′(x)b2(t, x)h+o(h)+hO(γ̃ε(x))),

where
|γε(y, x)| ≤ sup

|y−x|≤ε
|g′′(y)− g′′(x)| =: γ̃ε(x)

Letting first h ↓ 0 and then ε→ 0, we see that

lim
h↓0

1

h

( ∞∫
−∞

g(y)p(t, x, t+ h, y) dy − g(x)
)

= g′(x)a(t, x) + 1

2
g′′(x)b2(t, x), (2.7)

uniformly in x ∈ R. Now using (2.5) and (2.7), we get

∞∫
−∞

@

@t
p(s, x, t, z) g(z) dz = @

@t

∞∫
−∞

p(s, x, t, z) g(z) dz

= lim
h↓0

1

h

∞∫
−∞

(p(s, x, t+ h, z)− p(s, x, t, z)) g(z) dz

= lim
h↓0

1

h

( ∞∫
−∞

∞∫
−∞

p(s, x, t, z)p(t, z, t+ h, y)) dz g(y) dy −
∞∫

−∞

p(s, x, t, z) g(z) dz
)
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= lim
h↓0

1

h

∞∫
−∞

p(s, x, t, z)
( ∞∫
−∞

p(t, z, t+ h, y)) g(y) dy − g(z)
)
dz

=

∞∫
−∞

p(s, x, t, z)
(
g′(z)a(t, z) + 1

2
g′′(z)b2(t, z)

)
dz

=

∞∫
−∞

(
1

2

@2

@z2

(
b2(t, z)p(s, x, t, z)

)
− @

@z

(
a(t, z)p(s, x, t, z)

))
g(z) dz.

Since g is an arbitrary bounded twice continuously differentiable function and the
integrand is continuous with respect to z, (2.6) holds. �

§ 3. Diffusions as solutions of stochastic differential equations

In this section we verify that under some conditions on the drift and the diffu-
sion coefficients the diffusion defined in § 1 is a solution of a stochastic differential
equation. Let W (t), t ∈ [0, T ], be a Brownian motion.

Theorem 3.1. Suppose that X(t), t ∈ [0, T ], is a solution of the stochastic
differential equation

dX(t) = a(t,X(t)) dt+ b(t,X(t)) dW (t), X(0) = ξ, (3.1)

where the functions a(t, x), b(t, x), (t, x) ∈ [0, T ]×R, and the initial value ξ satisfy
the conditions of Theorem 7.1 Ch. II.

Then X is a Markov process with the transition function P (s, x, t,∆) expressed
by

P (s, x, t,∆) = P(Xs,x(t) ∈ ∆), (3.2)

where for a fixed s and x the process Xs,x(t), t ∈ [s, T ], is the solution of the
stochastic differential equation

Xs,x(t) = x+

t∫
s

a(u,Xs,x(u)) du+

t∫
s

b(u,Xs,x(u)) dW (u). (3.3)

Proof. Equation (3.1) is equivalent to the following one: for any s ≤ t ≤ T ,

X(t) = X(s) +

t∫
s

a(u,X(u)) du+

t∫
s

b(u,X(u)) dW (u). (3.4)

We fix s. Since the process Xs,x is continuous with respect to the initial value x
(see §Ch II), the transition function P (s, x, t,∆) is also continuous in x, because
the distribution of Xs,x(t) has no mass points (see Gihman and Skorohod (1972)).
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According to Theorem 9.2 Ch. II, a.s. for all s ∈ [0, T ]

X(t) = Xs,X(s)(t) s ≤ t ≤ T. (3.5)

Denote by Gba = σ{X(t), t ∈ [a, b]} the smallest σ-algebra of events generated
by the process X when the time varies from a to b. From Theorem 7.1 Ch. II it
follows that

Gba ⊆ σ{ξ,W (v), 0 ≤ v ≤ s} (3.6)

for 0 ≤ a ≤ b ≤ s. To prove that X is a Markov process we compute for all
0 ≤ s < t ≤ T and any Borel set ∆ the conditional probabilities

P(X(t) ∈ ∆|Gs0), P(X(t) ∈ ∆|Gss),

and verify that they are equal.
To compute these probabilities we apply Lemma 2.1 of Ch. I. From equation

(3.3) it follows that the process Xs,x(t) for t ≥ s is determined by the increments
W (u) −W (s), u ∈ [s, T ], and hence is independent of the σ-algebras Gs0 and Gss .
This is due to (3.6) and the independence of the Brownian motion increments of
the initial value ξ.

The random variable X(s) is measurable with respect to the σ-algebras Gs0 and
Gss , and the process H(x, ω) := 1I∆

(
Xs,x(t)

)
is independent of these σ-algebras,

because this is true for the process Xs,x(t), t ∈ [s, T ].
We have

EH(x, ω) = P
(
Xs,x(t) ∈ ∆

)
= P (s, x, t,∆).

Applying (3.5) and Lemma 2.1 of Ch. I with h(x) = P (s, x, t,∆), we get

P(X(t) ∈ ∆|Gs0) = E
{
1I∆
(
Xs,X(s)(t)

)∣∣Gs0} = P (s,X(s), t,∆) a.s., (3.7)

and, similarly,

P(X(t) ∈ ∆|Gss) = E
{
1I∆
(
Xs,X(s)(t)

)∣∣Gss} = P (s,X(s), t,∆) a.s. (3.8)

Therefore,

P(X(t) ∈ ∆|Gs0) = P(X(t) ∈ ∆|Gss) = P (s,X(s), t,∆) (3.9)

and X is a Markov process with the transition function P (s, x, t,∆) satisfying
the conditions 1)–4) of § 6 Ch. I. Condition 4) follows from (6.8) Ch. I and the
continuity of P (s, x, t,∆) with respect to x. �

Theorem 3.2. Let a(t, x), b(t, x), (t, x) ∈ [0, T ] ×R, be continuous functions.
Assume that a, b, and the initial value ξ satisfy the conditions of Theorem 7.1
Ch. II.

Then the solution of the stochastic differential equation (3.1) is a diffusion pro-
cess with the drift coefficient a(t, x) and the diffusion coefficient b2(t, x).

Proof. It is sufficient, for example, to verify conditions (1.7)–(1.9). In view of
(3.2), the sufficient condition for (1.7) is the inequality

E(Xs,x(t)− x)4 ≤ C(t− s)2. (3.10)
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Similarly, the conditions (1.8), (1.9) can be transformed to the following ones:

E(Xs,x(t)− x) = (t− s) a(s, x) + o(t− s), (3.11)

E(Xs,x(t)− x)2 = (t− s) b2(s, x) + o(t− s). (3.12)

The estimate (3.10) follows from (7.23) Ch. II for m = 2, applied for the process
Xs,x(t), t ∈ [s, T ].

To prove (3.11), we start with the equality

E(Xs,x(t)− x) =

t∫
s

Ea(u,Xs,x(u)) du

=

t∫
s

E(a(u,Xs,x(u))− a(u, x)) du+

t∫
s

a(u, x) du.

By the mean value theorem for integrals,

t∫
s

a(u, x) du = (t− s) a(s, x) + o(t− s). (3.13)

Using for the function a(u, x) the Lipschitz condition (7.4) Ch. II and applying the
estimate (3.10), we obtain

t∫
s

E|a(u,Xs,x(u))− a(u, x)| du ≤ CT

t∫
s

E|Xs,x(u)− x| du

≤ CT

t∫
s

E1/4|Xs,x(u)− x|4 du ≤ CTC
1/4

t∫
s

(u− s)1/2 du = 2

3
CTC

1/4(t− s)3/2.

This estimate together with (3.13) implies (3.11).
To prove (3.12) we use Itô’s formula. We have

d(Xs,x(t)− x)2 = 2(Xs,x(t)− x)
(
a(t,Xs,x(t)) dt

+ b(t,Xs,x(t)) dW (t)
)

+ b2(t,Xs,x(t)) dt. (3.14)

Writing this in the integral form and taking the expectation, we obtain

E(Xs,x(t)− x)2 = 2

t∫
s

E
(
(Xs,x(u)− x)a(u,Xs,x(u))

)
du

+

t∫
s

E
(
b2(u,Xs,x(u))− b2(u, x)

)
du+

t∫
s

b2(u, x) du. (3.15)
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By the mean value theorem for integrals,

t∫
s

b2(u, x) du = (t− s) b2(s, x) + o(t− s). (3.16)

Using the condition on the linear growth of the function a(u, x) (see (7.5) Ch. II)
and the estimates (7.22) Ch. II and (3.10), we obtain

t∫
s

E|(Xs,x(u)− x)a(u,Xs,x(u))|du ≤
t∫
s

E1/2|Xs,x(u)− x|2E1/2|a(u,Xs,x(u))|2du

≤ C2

t∫
s

E1/4|Xs,x(u)− x|4E1/2(1 + |Xs,x(u)|)2 du ≤ C3(t− s)3/2. (3.17)

Using the Lipschitz condition (see (7.4) Ch. II), the linear growth condition on the
function b(u, x) (see (7.5) Ch. II), and the estimate (3.10), we get

t∫
s

E|b2(u,Xs,x(u))− b2(u, x)|du

≤
t∫
s

E1/2|b(u,Xs,x(u))− b(u, x)|2E1/2|b(u,Xs,x(u)) + b(u, x)|2 du

≤ C4

t∫
s

E1/2|Xs,x(u)− x|2E1/2(2 + |x|+ |Xs,x(u)|)2du

≤ C5

t∫
s

E1/4|Xs,x(u)− x|4 du ≤ C6(t− s)3/2. (3.18)

This estimate together with (3.15)–(3.17) imply (3.12). �

Remark 3.1. From Theorem 3.2 it follows that the diffusion with a fixed initial
value is uniquely determined by its drift coefficient a(t, x) and diffusion coefficient
b2(t, x).

Remark 3.2. The diffusion X, being the solution of the stochastic differential
equation (3.1), is almost surely continuous.

Let the coefficients of a and b of the stochastic differential equation (3.1) be
independent of the time parameter. The next result states that in this case the
Markov process X is homogeneous, i.e., X is a homogeneous diffusion.
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Theorem 3.3. The transition function of a diffusion X(t), t∈ [0, T ], which is a
solution of the equation

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), X(0) = ξ, (3.19)

depends on the difference of the time moments, i.e.,

P (s, x, t,∆) = P (t− s, x,∆).

Proof. By (3.2),
P (s, x, t,∆) = P(Xs,x(t) ∈ ∆),

where Xs,x(t), t ∈ [s, T ], is the solution of the stochastic differential equation

Xs,x(t) = x+

t∫
s

a(Xs,x(u)) du+

t∫
s

b(Xs,x(u)) dW (u). (3.20)

For a fixed s set h := t− s, W̃ (v) := W (v + s)−W (s), v ≥ 0. The process W̃ is a
Brownian motion. Changing in equation (3.20) the variables by setting u := v+ s,
we have

Xs,x(h+ s) = x+

h∫
0

a(Xs,x(v + s)) dv +

h∫
0

b(Xs,x(v + s)) dW̃ (v). (3.21)

Consider the same equation in the different notations:

X̃x(h) = x+

h∫
0

a(X̃x(v)) dv +

h∫
0

b(X̃x(v)) dW̃ (v). (3.22)

It is clear that the finite-dimensional distributions of the process X̃x(h), h ≥ 0, are
independent of s, because this is true for the process W̃ . By the uniqueness of the
solution of the stochastic differential equation,

Xs,x(h+ s) = X̃x(h), h ∈ [0, T − s], a.s. (3.23)

Therefore,

P (s, x, t,∆) = P(Xs,x(h+ s) ∈ ∆) = P(X̃x(h) ∈ ∆) =: P (h, x,∆)

and the transition function depends on the difference h = t− s. �

Consider a family of homogeneous diffusions, which are solutions of (3.19) for
different nonrandom initial values X(0) = x ∈ R. Let T = ∞. The extension of
a solution of the stochastic differential equation (3.19) to the time interval [0,∞),
where the functions a(x), b(x), x ∈ R, satisfy the conditions of Theorem 7.3 Ch. II,
is realized by the standard way, because the solutions on intersecting intervals,
containing 0, always coincide. We will prove that this family is strong Markov.

Recall that by Px and Ex we denote the probability and the expectation with
respect to a process X with the initial value X(0) = x. Such a probability and an
expectation will be considered as a functions of the variable x ∈ R.
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Proposition 3.1. Let X(t), t ∈ [0,∞), be a solution of equation (3.19) for
ξ = x. Then the family of stochastic processes

{X(t), 0 ≤ t <∞, X(0) = x}x∈R

is a strong Markov.

Proof. The following arguments repeat in main features the proof of Proposi-
tion 7.3 Ch. I. The continuous diffusion X is progressively measurable with respect
to the family of σ-algebras Gt0. Let τ be a stopping time with respect to the family
of σ-algebras Gt0. It is obvious that {τ <∞} ∈ Gτ0 . Instead of equality (6.13) Ch. I,
which defines the strong Markov property, it is sufficient to prove that for any
0 ≤ t1 < t2 < · · · < tn, arbitrary A ∈ Gτ0 , and any bounded continuous function
g(~y), ~y ∈ Rm, one has

Ex{1IA1I{τ<∞}g(X(t1 + τ), . . . , X(tm + τ))}

= Ex{1IA1I{τ<∞}EX(τ)g(X(t1), . . . , X(tm))}. (3.24)

We now fix arbitrary s ≥ 0. Let the process Xs,x(t), t ∈ [s,∞), be the solution of
(3.20). This process is independent of σ-algebra Gs0 . For the process X̃x, satisfying
(3.22), we set

h(x) := Eg(X̃x(t1), X̃x(t2), . . . , X̃x(tm))

= Exg(X(t1), X(t2), . . . , X(tm)).

By Theorem 9.1 Ch. II, the process X̃x(t) is a.s. continuous with respect to (t, x) ∈
[0,∞)×R. Hence h is a continuous function. By (3.23),

h(x) = Eg(Xs,x(s+ t1), Xs,x(s+ t2), . . . , Xs,x(s+ tm)).

Applying Lemma 2.1 Ch. I, we get

Ex
{
g(X(s+ t1), X(s+ t2), . . . , X(s+ tm))

∣∣Gs0}
= Ex

{
g
(
Xs,X(s)(s+ t1), . . . , Xs,X(s)(s+ tm)

)∣∣Gs0} = h(X(s))

a.s. with respect to the measure Px.
Consider the stopping times

τn = 2−n1I{τ≤2−n} +
∞∑
k=1

k2−n1I{(k−1)2−n<τ≤k2−n}, n ∈ N, k = 1, 2, . . . .

It is obvious that τn ↓ τ as n→∞ for all ω ∈ {τ <∞}.
By the definition of the σ-algebra Gτ0 , we have A

⋂
{τn = k2−n} ∈ Gk2−n

0 . Since

{τ <∞} =
∞⋃
k=1

{τn = k2−n}, we get

Ex{1IA1I{τ<∞}g(X(t1 + τn), . . . , X(tm + τn))}
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=
∞∑
k=1

Ex{1IA1I{τn=k2−n} g(X(t1 + k2−n), . . . , X(tm + k2−n))}

=
∞∑
k=1

Ex
{
1IA∩{τn=k2−n}Ex

{
g(X(t1 + k2−n), . . . , X(tm + k2−n))

∣∣Gk2−n

0

}}
=

∞∑
k=1

Ex{1IA∩{τn=k2−n} h(X(k2−n)) = E{1IA1I{τ<∞}h(X(τn))}. (3.25)

The process X is continuous, therefore X(τn + t) → X(τ + t) a.s. for every t ≥ 0.
Since the function h(y) is continuous and bounded together with g(~y), the Lebesgue
dominated convergence theorem yields

E{1IA1I{τ<∞}g(X(t1 + τ), . . . , X(tm + τ))}
= lim

n
E{1IA1I{τ<∞}g(X(t1 + τn), . . . , X(tm + τn))}

and
E{1IA1I{τ<∞}h(X(τ))} = lim

n
E{1IA1I{τ<∞}h(X(τn))}.

Now, passing in (3.25) to the limit as τn ↓ τ , we obtain (3.24). �

Remark 3.3. The process X is continuous. Therefore, (3.24) implies that for
any x ∈ R, any stopping time τ with respect to the family of σ-algebras Gt0, and
any bounded measurable function ℘(X(t), 0 ≤ t < ∞), defined on C([0,∞)), we
have

Ex{℘(X(t+ τ), 0 ≤ t <∞)|Gτ0 }1I{τ<∞}

= EX(τ)℘(X(t), 0 ≤ t <∞)1I{τ<∞} (3.26)
a.s. with respect to Px.

§ 4. Distributions of integral functionals of a
diffusion and of infimum and supremum functionals

Let X be a solution of the stochastic differential equation

dX(t) = σ(X(t))dW (t) + µ(X(t)) dt, X(0) = x, (4.1)

where µ(x) and σ(x), x ∈ R, are continuously differentiable functions, satisfying
the linear growth condition:

|µ(x)|+ |σ(x)| ≤ C(1 + |x|), for all x ∈ R.

Then by Theorem 7.3 Ch. II, there exists a unique strong solution of equation

(4.1). Assume, in addition, that σ2(x) > 0 for x ∈ R and the derivative
(
�(x)

�2(x)

)′
is bounded.

Let τ be an exponentially distributed with the parameter λ > 0 random time
independent of the diffusion X(t), t ≥ 0. It is sufficient that τ is independent of
the Brownian motion W , since the Brownian motion determines the diffusion (see
the method of successive approximations in § 7 Ch. II).

As in the case of a Brownian motion (see § 1 Ch. III), the following result
is of key importance for computing the distributions of integral functionals of a
homogeneous diffusion.
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Theorem 4.1. Let Φ(x) and f(x), x ∈ R, be piecewise-continuous functions.
Assume that Φ is bounded and f is nonnegative. Then the function

U(x) := Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

f(X(s)) ds
)}

, x ∈ R,

is the unique bounded solution of the equation

1

2
σ2(x)U ′′(x) + µ(x)U ′(x)− (λ+ f(x))U(x) = −λΦ(x), x ∈ R. (4.2)

Remark 4.1. Under the above assumptions, according to this theorem and to
Proposition 12.2 of Ch. II, the homogeneous equation

1

2
σ2(x)φ′′(x) + µ(x)φ′(x)− (λ+ f(x))φ(x) = 0 (4.3)

for f(x) ≥ 0, x ∈ R, has two linearly independent nonnegative strictly monotone
solutions ψ(x) and ϕ(x) such that lim

x→−∞
ϕ(x) = ∞ and lim

x→∞
ψ(x) = ∞.

The monotonicity is strict. This follows from the fact that the derivative φ′(x)
cannot be equal to zero. Indeed, if φ′(x) = 0, then by (4.3), φ′′(x) > 0, and there
is a local minimum at x, which contradicts the monotonicity of the solution φ.

The functions ψ(x) and ϕ(x) are called fundamental solutions of the homoge-
neous equation (4.3).

Remark 4.2. For piecewise-continuous functions f and Φ equation (4.2) must
be interpreted as follows: it holds for all points of continuity of f and Φ, and at
points of discontinuity of f and Φ its solution is continuous together with the first
derivative.

Proof of Theorem 4.1. By Theorem 12.4 Ch. II, the function U is the unique
bounded solution of (4.2) for a continuous Φ and f . Our aim is to extend Theo-
rem 12.4 Ch. II up to piecewise-continuous functions Φ and f . We do this with the
help of the approach used in the proof of Theorem 1.2 of Ch. III. We refer to this
approach as the limit approximation method.

A nonnegative piecewise-continuous function f can be approximated by a se-
quence of continuous functions {fn} such that

f(x) = lim
n→∞

fn(x), 0 ≤ fn(x) ≤ f(x), x ∈ R.

A bounded piecewise-continuous function Φ can be approximated by a sequence of
continuous uniformly bounded functions {Φn} such that sup

x∈R
|Φn(x)| ≤ K for all n

and Φ(x) = lim
n→∞

Φn(x), x ∈ R.
Set

Un(x) := Ex

{
Φn(X(τ)) exp

(
−

τ∫
0

fn(X(s)) ds
)}

. (4.4)
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By the Lebesgue dominated convergence theorem,

Un(x) → U(x) as n→∞, for every x ∈ R. (4.5)

By Theorem 12.4 in Ch. II, the function Un satisfies equation (4.2), i.e.,

1

2
σ2(x)U ′′

n (x) + µ(x)U ′
n(x)− (λ+ fn(x))Un(x) = −λΦn(x), x ∈ R. (4.6)

We make in (4.6) a change of variable to transform it into an equation without the
first derivative. Set

p(x) := exp
(

2

x∫
0

�(v)

�2(v)
dv

)
, y(x) :=

x∫
0

exp
(
− 2

u∫
0

�(v)

�2(v)
dv

)
du, x ∈ R.

The function y(x), x ∈ R, is strictly increasing, y(0) = 0, and therefore it has the
inverse y(−1)(y), y ∈ (l, r), i.e., x = y(−1)(y(x)), where

l := −
0∫

−∞

exp
(

2

0∫
u

�(v)

�2(v)
dv

)
du ≥ −∞, r :=

∞∫
0

exp
(
−2

u∫
0

�(v)

�2(v)
dv

)
du ≤ ∞.

The change of the variable Vn(y) = Un(y(−1)(y)) reduces equation (4.6) (see the
proof of Proposition 12.2 Ch. II) to the equation

1

2
V ′′
n (y)− p2(y(−1)(y))

�2(y(−1)(y))
(λ+ fn(y(−1)(y)))Vn(y) = −λΦn(y(−1)(y)) p

2(y(−1)(y))

�2(y(−1)(y))
. (4.7)

By (4.5), Vn(y) → V (y) := U(y(−1)(y)). It was established in the proof of Theo-
rem 1.2 Ch. III (the limit approximation method) that we can pass to the limit in
equation (4.7), and that the function V (y), y ∈ (l, r), is the bounded solution of
the equation

1

2
V ′′(y)− p2(y(−1)(y))

�2(y(−1)(y))
(λ+ f(y(−1)(y)))V (y) = −λΦ(y(−1)(y)) p

2(y(−1)(y))

�2(y(−1)(y))
.

Returning in this equation to the original variable, we verify that the function
U(x) = V (y(x)), x ∈ R, is the bounded solution of (4.2).

The uniqueness of a bounded solution of (4.2) on the whole real line can be
established in the same way as it was done in the proof of Theorem 1.2 Ch. III.
Theorem 4.1 is proved. �

Consider the problem of computing the joint distribution of

t∫
0

f(X(s)) ds, inf
0≤s≤t

X(s), sup
0≤s≤t

X(s).

The main idea used for computing the infimum or supremum type functionals
was illustrated in §2 Ch. III and implemented in the proof of Theorem 2.1 Ch. III. It
is applicable to the investigation of homogeneous diffusions. In the same way as it
was done in the proof of Theorem 2.1 Ch. III, we can establish the following result,
which is of key importance for computing the joint distributions of an integral
functional of homogeneous diffusion and its infimum and supremum.
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Theorem 4.2. Let Φ(x) and f(x), x ∈ [a, b], be piecewise-continuous functions.
Assume that f ≥ 0. Then the function

U(x) := Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

f(X(s)) ds
)

; a ≤ inf
0≤s≤τ

X(s), sup
0≤s≤τ

X(s) ≤ b

}
,

x ∈ [a, b], is the unique solution of the problem

1

2
σ2(x)U ′′(x) + µ(x)U ′(x)− (λ+ f(x))U(x) = −λΦ(x), x ∈ (a, b), (4.8)

U(a) = 0, U(b) = 0. (4.9)

Remark 4.4. In the case a = −∞ or b = ∞ we assume, in addition, that Φ is
bounded. Then the corresponding boundary condition in (4.9) must be replaced
by the condition that the function U(x) is bounded as x tends to −∞ or ∞.

As in the case of Brownian motion, the proof exploits the fact that the function

Uγ(x) := Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

(f(X(s)) + γ1IR\[a,b](X(s))) ds
)}

converges to U(x) as γ → ∞. By Theorem 4.1, the function Uγ(x) satisfies the
equation (4.2) with f(x) + γ1IR\[a,b](x) instead of f(x).

It is important that starting at the boundary of the interval [a, b], a diffusion
spends a.s. positive time outside [a, b] up to a random moment. This is a conse-
quence of the corresponding fact for a Brownian motion (see § 2 Ch. III) and formula
(13.2) of this chapter, which expresses a homogeneous diffusion as the transforma-
tion of a Brownian motion. This implies that Uγ(a) → 0 and Uγ(b) → 0, because
the exponential function under the expectation sign tends to zero a.s., and implies
the boundary conditions (4.9). For the detailed proof we refer to §2 Ch. III.

Proposition 4.1. For any finite a and b

p[a,b](x) := Px

(
a ≤ inf

0≤s<∞
X(s), sup

0≤s<∞
X(s) ≤ b

)
= 0. (4.10)

Proof. By Theorem 4.2, the function

Uλ(x) := P
(
a ≤ inf

0≤s≤τ
X(s), sup

0≤s≤τ
X(s) ≤ b

)
is the solution of the problem

1

2
σ2(x)U ′′

λ (x) + µ(x)U ′
λ(x)− λUλ(x) = −λ, x ∈ (a, b), (4.11)

Uλ(a) = 0, Uλ(b) = 0. (4.12)

Since P(τ >t)=e−λt, we have τ →∞ in probability as λ→ 0 and, correspondingly,
Uλ(x) ↓ p[a,b](x) as λ → 0. In the problem (4.11), (4.12) we can pass to the limit
as λ→ 0. This can be done by the limit approximation method from the proof of
Theorem 4.1. Then the limit function p[a,b](x) is the unique solution of the problem

1

2
σ2(x)p′′(x) + µ(x)p′(x) = 0, x ∈ (a, b), p(a) = 0, p(b) = 0.

But the solution of this problem is p(x) ≡ 0. �
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Corollary 4.1. For any finite a and b

p(a,b)(x) := Px

(
a < inf

0≤s<∞
X(s), sup

0≤s<∞
X(s) < b

)
= 0. (4.13)

Proof. Let an ↓ a and bn ↑ b. Then p[an,bn](x) ↑ p(a,b)(x). Now (4.13) is the
consequence of (4.10) and the countable additivity of the probability measure. �

Note that (4.13) also follows from Remark 12.3 of Ch. II, because

Px

(
a < inf

0≤s<∞
X(s), sup

0≤s<∞
X(s) < b

)
= Px(Ha,b = ∞) = 0,

where Ha,b := min{s : X(s) 6∈ (a, b)} is the first exit time from the interval (a, b).

Example 4.1. We compute the distributions of inf
0≤s≤τ

X(s) or sup
0≤s≤τ

X(s) for

the Ornstein–Uhlenbeck process X(t), t ≥ 0, which is the solution of the stochastic
differential equation

dX(t) = σ dW (t)− θX(t) dt, X(0) = x, θ > 0. (4.14)

For a more detailed description of the Ornstein–Uhlenbeck process see § 16.
We compute the probability

U(x) := Px

(
sup

0≤s≤τ
X(s) ≤ b

)
.

Applying Theorem 4.2 with Φ ≡ 1, f = 0, and a = −∞ we have that the function
U(x), x ∈ (−∞, b], is the unique bounded continuous solution of the problem

1

2
σ2U ′′(x)− θxU ′(x)− λU(x) = −λ, x ∈ (−∞, b), (4.15)

U(b) = 0. (4.16)

The particular solution of equation (4.15) is the function, which is identically
equal to one. The fundamental solutions of the corresponding homogeneous equa-
tion

1

2
σ2φ′′(x)− θxφ′(x)− λφ(x) = 0, x ∈ R, (4.17)

are (see Appendix 4, equation 19, γ = 0)

ψ(x) = ex
2θ/2σ2

D−λ/θ

(
− x

√
2�

�

)
, ϕ(x) = ex

2θ/2σ2
D−λ/θ

(
x
√
2�

�

)
, (4.18)

where D−ν(x) is the parabolic cylinder function (see Appendix 2, Section 9). As
usual ψ(x), x ∈ R, denotes the convex increasing solution and ϕ(x), x ∈ R, denotes
the convex decreasing solution.

It is obvious that the bounded solution of the problem (4.15), (4.16) has the
form

Px

(
sup

0≤s≤τ
X(s) ≤ b

)
= U(x) = 1−

ex
2�=2�2

D−�=�

(
− x

√
2�=�

)
eb

2�=2�2
D−�=�

(
− b

√
2�=�

) .
Analogously

Px

(
a ≤ inf

0≤s≤τ
X(s)

)
= 1−

ex
2�=2�2

D−�=�

(
x
√
2�=�

)
ea

2�=2�2
D−�=�

(
a
√
2�=�

) .
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§ 5. Distributions of functionals of a diffusion
stopped at the moment inverse of integral functional

Let X be a diffusion satisfying conditions of § 4. We consider the integral func-

tional
t∫

0

g(X(s)) ds, t > 0, where g is a nonnegative piecewise-continuous function.

For definiteness we assume that at points of discontinuity g takes the values of the
right limits (g(z) = g(z+)).

Consider the problem of computing distributions of functionals of the diffusion
X stopped at the moment inverse of integral functional. This moment is defined
by the formula

ν(t) := min
{
s :

s∫
0

g(X(v)) dv = t

}
. (5.1)

For a Brownian motion this problem was solved in § 6 Ch. III.
Depending on the relations

∞∫
0

g(X(s)) ds = ∞ a.s., (5.2)

or

P
( ∞∫

0

g(X(s)) ds <∞
)
> 0,

the moment ν(t) is a.s. finite for all t ≥ 0, or with positive probability it is infinite
for all t exceeding some random value.

For example, for the Brownian motion with negative linear drift and for the
function g(x) = 1I[r,∞)(x) (see (9.18) and (9.19) Ch. III), the integral on the left-
hand side of (5.2) is a.s. finite. One can verify that for the function g, and for
the diffusion with σ(x) ≡ 1 and with a smooth drift µ(x), x ∈ R, satisfying the
conditions µ(x) = 1 for x ≥ r + 1, µ(x) = x for −r ≤ x ≤ r, and µ(x) = −1 for
x ≤ −r− 1, the integral on the left-hand side of (5.2) takes both finite and infinite
values with positive probabilities.

A sufficient condition for the validity of (5.2) is given by Corollary 12.1 of Ch. II:

lim inf
y→∞

1

y

y∫
0

g(x)

�2(x)
dx > 0, lim inf

y→∞

1

y

0∫
−y

g(x)

�2(x)
dx > 0. (5.3)

The fact that g is a piecewise-continuous function is not a problem, because g is
continuous for all sufficiently large arguments.

The following result is of key importance for the problem of computing of dis-
tributions of functionals for diffusions stopped at the moment ν(t). Let τ be an
exponentially distributed with the parameter λ > 0 random time independent of
the process {X(s), s ≥ 0}.
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Theorem 5.1. Let Φ(x) and f(x), x ∈ [a, b], be piecewise-continuous functions.
Assume that f ≥ 0. Then the function

Uν(x) := Ex

{
Φ(X(ν(τ))) exp

(
−

ν(τ)∫
0

f(X(s)) ds
)

;

a ≤ inf
0≤s≤ν(τ)

X(s), sup
0≤s≤ν(τ)

X(s) ≤ b

}
, x ∈ [a, b], (5.4)

is the unique continuous solution of the problem

1

2
σ2(x)U ′′(x) + µ(x)U ′(x)− (λg(x) + f(x))U(x) = −λg(x)Φ(x), (5.5)

U(a) = 0, U(b) = 0. (5.6)

Remark 5.1. For a = −∞ and b = ∞ we assume, in addition, that Φ is
bounded. Then in the definition of Uν(x) there appears the set ν(τ) < ∞ (see
(5.8)) and the corresponding boundary condition (5.6) must be replaced by the
condition that the function U(x) is bounded as x tends to −∞ or ∞.

Proof of Theorem 5.1. We first prove the result for the case a = −∞ and b = ∞.
Assume that Φ(x), f(x) and g(x), x ∈ R, are bounded continuous functions. Let
for some ρ > 0 the function Vρ(x), x ∈ R, be a bounded solution of the equation

1

2
σ2(x)V ′′

ρ (x) + µ(x)V ′
ρ(x)− (ρ+ λg(x) + f(x))Vρ(x) = −λg(x)Φ(x). (5.7)

Such a solution exists due to Theorem 12.4 Ch. II. Set

η(t) := Vρ(X(t)) exp
(
− ρt− λ

t∫
0

g(X(v)) dv −
t∫

0

f(X(v)) dv
)
.

Applying Itô’s formula, we obtain that for any r > 0

η(r)− η(0)=

r∫
0

exp
(
−

t∫
0

(
λg(X(v)) + ρ+ f(X(v))

)
dv

)[
V ′
ρ(X(t))σ(X(t)) dW (t)

+
(
V ′
ρ(X(t))µ(X(t))+ 1

2
V ′′
ρ (X(t))σ2(X(t))−λg(X(t))+ρ+f(X(t)))Vρ(X(t))

)
dt
]
.

Using equation (5.7) and substituting the time Hc,d := min{s : X(s) 6∈ (c, d)}, we
have

η(r ∧Hc,d)− Vρ(x) =

r∫
0

1I[0,Hc,d)(t) exp
(
−

t∫
0

(
λg(X(v)) + ρ+ f(X(v))

)
dv

)
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×
[
V ′
ρ(X(t))σ(X(t)) dW (t)− λg(X(t))Φ(X(t)) dt

]
.

Since for every t ≥ 0 the random variable 1I[0,Hc,d)(t) is Gt0-measurable and the
variables V ′

ρ(X(t)), σ(X(t)) are bounded for t < Hc,d, the expectation of the
stochastic integral is zero. Computing the expectation of both sides of the above
equation, we get
Vρ(x) = Exη(r ∧Hc,d)

+λEx

r∧Hc,d∫
0

g(X(t))Φ(X(t)) exp
(
− λ

t∫
0

g(X(v)) dv −
t∫

0

(ρ+ f(X(v))) dv
)
dt.

We set I(t) :=
t∫

0

g(X(v)) dv and make in the above integral the substitution

I(t) = s. Then

Vρ(x) = Exη(r∧Hc,d)+λEx

I(r∧Hc,d)∫
0

Φ(X(ν(s))) exp
(
−λs−

ν(s)∫
0

(ρ+f(X(v))) dv
)
ds.

Note that Hc,d →∞ as c→ −∞ and d→∞, and the variable Exη(r) tends to zero
as r →∞. Passing to the limit and using the assumption that τ is independent of
X and has the density λe−λs1I[0,∞)(s), we obtain, by Fubini’s theorem, that

Vρ(x) = Ex

{
1I[0,I(∞))(τ)Φ(W (ν(τ))) exp

(
−

ν(τ)∫
0

(ρ+ f(W (v))) dv
)}

= Ex

{
Φ(W (ν(τ))) exp

(
−

ν(τ)∫
0

(ρ+ f(W (v))) dv
)

; ν(τ) <∞
}
. (5.8)

It is obvious that lim
ρ↓0

Vρ(x) = Uν(x). In equation (5.7) we can pass to the limit as

ρ ↓ 0 and prove that the limiting function Uν(x), x ∈ R, satisfies equation (5.5).
A similar passage to the limit has already been used in the proof of Theorem 4.1.
Therefore, Theorem 5.1 is proved for bounded continuous functions Φ, f , g and
a = −∞, b = ∞.

For piecewise-continuous functions f , g and Φ the theorem is proved by the limit
approximation method (see the proof of Theorem 4.1).

For the case a 6= −∞ or b 6= ∞, analogously to the case of Brownian motion,
we exploit the fact that the function

Uν,γ(x) := Ex

{
Φ(X(ν(τ))) exp

(
−

ν(τ)∫
0

(f(X(s)) + γ1IR\[a,b](X(s))) ds
)}

converges to Uν(x) as γ → ∞. By the version of Theorem 5.1 proved above, the
function Uν,γ(x) satisfies equation (5.5) with f(x) + γ1IR\[a,b](x) instead of f(x).
We must justify the passage to the limit in such an equation as γ → ∞. This can
be done similarly to the proof of Theorem 2.1 Ch. III. �
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§ 6. Distributions of functionals of diffusion bridges

The bridge Xx,t,z(s), s ∈ [0, t], from x to z of a process X(s), s ≥ 0, with
X(0) = x was defined in § 11 Ch. I.

Let Xx,t,z(s), s ∈ [0, t], be the bridge of the diffusion X. We consider the method
for computing the joint distribution of the integral functional

A(t) :=

t∫
0

f(Xx,t,z(s)) ds, f ≥ 0,

and of the infimum and supremum functionals, inf
0≤s≤t

Xx,t,z(s) and sup
0≤s≤t

Xx,t,z(s).

The general approach to the problem of computing distributions of nonnegative
integral functionals of bridges of random processes was described in § 4 Ch. III for
the Brownian bridge. This approach is valid for other diffusions. As an example,

we consider the integral functional
t∫

0

f(Xx,t,z(s)) ds for a homogeneous diffusion X

with the initial value X(0) = x.
If the one-dimensional distribution of the diffusion X has a density (see below

(10.6)), then the equality

E℘(Xx,t,z(s), 0 ≤ s ≤ t) =

d

dz
Ex{}(X(s); 0 ≤ s ≤ t);X(t) < z}

d

dz
Px(X(t) < z)

(6.1)

holds for any bounded measurable functional ℘ defined on C([0, t]), the space of
continuous functions (see (11.13) Ch. I). Here the derivative in the numerator of
the fraction must be treated in the sense of the density.

The main object for computing the distributions of integral functionals of bridges
of X is the function

Gγz (x) : = λ

∞∫
0

e−λt
d

dz
Ex

{
exp

(
− γ

t∫
0

f(X(s)) ds
)

;X(t) < z

}
dt

= d

dz
Ex

{
exp

(
− γ

τ∫
0

f(X(s)) ds
)

; X(τ) < z

}
. (6.2)

In this formula τ is an exponentially distributed with the parameter λ > 0 random
time independent of the process {X(s), s ≥ 0}.

The function λ−1Gγz , as the function of the parameters λ > 0 and γ > 0, is the
double Laplace transform with respect to t ≥ 0 and y ≥ 0 of the function

d

dz
Px

( t∫
0

f(X(s)) ds < y, X(t) < z

)
.
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If we want to find for the bridge Xx,t,z the distribution of the integral functional
t∫

0

f(Xx,t,z(s)) ds at a fixed time t, we must compute the double inverse Laplace

transform of the function λ−1Gγ
z(x) with respect to the parameters λ and γ. Then,

following formula (6.1), we must divide the result by the density of the variable
X(t). Note that the density itself can be computed in the same way by means of
the function Gγ

z(x) with f(x) ≡ 0.

Under the conditions of § 5 we consider the moment inverse of integral functional:

ν(τ) := min
{
s :

s∫
0

g(X(v)) dv = τ

}
. (6.3)

Suppose that (5.3) holds and that the diffusion X satisfies the conditions of § 4.
Then this moment is a.s. finite. It is clear that ν(τ) = τ with g ≡ 1.

Our reasoning above shows that the following statement is of key importance
for computing the joint distributions of integral functionals and of the infimum
and supremum functionals of the diffusion bridge. This assertion, in contrast to
Theorem 5.1, contains a condition on the value of the diffusion at the moment ν(τ).

Theorem 6.1. Let f(x), x ∈ [a, b], be a nonnegative piecewise-continuous func-
tion. Then for every z ∈ (a, b) there exists the right derivative

Gν,z(x) := d

dz+
Ex

{
exp

(
−

ν(τ)∫
0

f(X(s)) ds
)

;

a ≤ inf
0≤s≤ν(τ)

X(s), sup
0≤s≤ν(τ)

X(s) ≤ b,X(ν(τ)) < z

}
(6.4)

and Gν,z(x), x ∈ [a, b], is the unique continuous solution of the problem

1

2
σ2(x)G′′(x) + µ(x)G′(x)− (λg(x) + f(x))G(x) = 0, x ∈ (a, b) \ {z}, (6.5)

G′(z + 0)−G′(z − 0) = −2λg(z)/σ2(z), (6.6)

G(a) = 0, G(b) = 0. (6.7)

Remark 6.1. If either a = −∞ or b = ∞, then the corresponding boundary
condition in (6.7) must be replaced by the condition that the function Gν,z(x) is
bounded as x tends to −∞ or ∞.

Remark 6.2. The function Gν,z(x), (z, x) ∈ [a, b]× [a, b], is the Green function
of the problem (5.5), (5.6), because by the definitions of Uν(x) and Gν,z(x),

Uν(x) =

b∫
a

Φ(z)Gν,z(x) dz. (6.8)
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Proof of Theorem 6.1. Our proof is based on Theorem 5.1. Set

U∆(x) := Ex

{
1I[z;z+�)(X(�(�)))

�
exp

(
−
ν(τ)∫
0

f(X(s)) ds
)

;

a ≤ inf
0≤s≤ν(τ)

X(s), sup
0≤s≤ν(τ)

X(s) ≤ b

}
.

Clearly, U∆(x) = 0 for x 6∈ (a, b).
By Theorem 5.1, the function U∆(x), x ∈ (a, b), is the unique bounded solution

of the problem

1

2
σ2(x)U ′′

∆(x) + µ(x)U ′
∆(x)− (λg(x) + f(x))U∆(x) = − �

�
g(x)1I[z,z+∆)(x), (6.9)

U∆(a) = 0, U∆(b) = 0. (6.10)

We want to prove that the passage to the limit as ∆ ↓ 0 in the problem (6.9), (6.10)
implies (6.5)–(6.7). In equation (6.9) we make a change of variables to transform
it into an equation without the first derivative. We already did this in the proof
of Theorem 4.1. Set V∆(y) := U∆(y(−1)(y)). Then (6.9) can be reduced (see the
proof of Proposition 12.2 Ch. II) to the form

1

2
V ′′

∆(y)− p2(y(−1)(y))

�2(y(−1)(y))
(λg(y(−1)(y)) + f(y(−1)(y)))V∆(y)

= − p2(y(−1)(y))

�2(y(−1)(y))

�

�
g(y(−1)(y))1I[y(z),y(z+∆))(y), y ∈ (l, r). (6.11)

For this case the boundary conditions transform to the following ones:

V∆(y(a)) = 0, V∆(y(b)) = 0. (6.12)

We set χ∆(x) :=
x∫

−∞

1

�
1I[y(z),y(z+∆))(h) dh for 0 < ∆ < 1 and remark that

χ∆(x) → 1

p(z)
1I[y(z),∞)(x) := χ(x) as ∆ ↓ 0,

because y(z +�))− y(z)

�
∼ y′(z) = 1

p(z)
. Then (6.11) can be written as follows: for

every y, v ∈ (a, b)

1

2
(V ′

∆(v)− V ′
∆(y))−

v∫
y

p2(y(−1)(h))

�2(y(−1)(h))
(λg(y(−1)(h)) + f(y(−1)(h)))V∆(h) dh

= −λ
v∫
y

p2(y(−1)(h))

�2(y(−1)(h))
g(y(−1)(h))dχ∆(h). (6.13)
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The passage to the limit as ∆ ↓ 0 in a problem analogous to (6.13) (6.12) was
carried out in the proof of Theorem 6.3 Ch. III. It was proved that the functions
V∆(v), v ∈ [y(a), y(b)], converge uniformly in the interval [y(a), y(b)] to a continuous
function V (v) that satisfies the equation

1

2
(V ′(v)− V ′(y))−

v∫
y

p2(y(−1)(h))

�2(y(−1)(h))
(λg(y(−1)(h)) + f(y(−1)(h)))V (h) dh

= −λ
v∫
y

p2(y(−1)(h))

�2(y(−1)(h))
g(y(−1)(h)) dχ(h).

This equation is equivalent to the problem

1

2
V ′′(v)− p2(y(−1)(v))

�2(y(−1)(v))
(λg(y(−1)(v))+f(y(−1)(v)))V (v) = 0, v ∈ (y(a), y(b))\{y(z)},

V ′(y(z)+)− V ′(y(z)−) = −2�p(z)

�2(z)
g(z).

By the uniform convergence, the boundary conditions (6.12) are transformed to
the conditions V (y(a)) = 0, V (y(b)) = 0.

Returning in this problem to the initial variable, i.e., to the function U(x) =
V (y(x)), we see first that the existence of the limit

U(x) = lim
∆↓0

V∆(y(x)) = lim
∆↓0

U∆(x) (6.14)

means the existence of the right derivative Gν,z(x) := U(x), and second that for
every z ∈ (a, b) the function Gν,z(x), x ∈ (a, b), is the unique continuous solution
of the problem (6.5)–(6.7). �

We formulate a very important consequence of Theorem 6.1 for g(x) ≡ 1.

Theorem 6.2. Let f(x), x ∈ [a, b], be a nonnegative piecewise-continuous func-
tion. Then for every z ∈ (a, b) there exists the derivative

Gz(x) := d

dz
Ex

{
exp

(
−

τ∫
0

f(X(s)) ds
)

; a ≤ inf
0≤s≤τ

X(s), sup
0≤s≤τ

X(s) ≤ b,X(τ)<z
}

(6.15)
and Gz(x), x ∈ [a, b], is the unique continuous solution of the problem

1

2
σ2(x)G′′(x) + µ(x)G′(x)− (λ+ f(x))G(x) = 0, x ∈ (a, b) \ {z}, (6.16)

G′(z + 0)−G′(z − 0) = −2λ/σ2(z), (6.17)

G(a) = 0, G(b) = 0. (6.18)

Remark 6.3. We can see from the proof of Theorem 6.1 adapted to the case
g(x) ≡ 1 that the derivative (6.15) exists. In this case, the parameter ∆ can be
negative, because the influence of piecewise-continuity of g is eliminated.
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Proposition 6.1. The solution of the problem (6.16)–(6.18) has the form

Gz(x) =


2�

w(z)�2(z)
ϕ(z)ψ(x), a ≤ x ≤ z,

2�

w(z)�2(z)
ψ(z)ϕ(x), z ≤ x ≤ b,

(6.19)

where ψ(x) and ϕ(x) are solutions of equation (6.16) for x ∈ (a, b), with ψ(x)
increasing, ϕ(x) decreasing and ψ(a) = 0, ϕ(b) = 0. The function w(z) =
ψ′(z)ϕ(z)− ψ(z)ϕ′(z) > 0 is the Wronskian of these solutions.

Proof. Indeed, Gz(x), x ∈ [a, b], is a continuous solution, satisfying for x 6= z
equation (6.16) and the boundary conditions (6.18). At the point z the derivative
has the jump

G′
z(z + 0)−G′

z(z − 0) = 2�

w(z)�2(z)
(ψ(z)ϕ′(z)− ψ′(z)ϕ(z)) = − 2�

�2(z)
.

�

§ 7. Distributions of integral functionals
of a diffusion at the first exit time

Let X be a diffusion satisfying the conditions of § 4, X(0) = x. The first exit
time Ha,b := min{s : X(s) /∈ (a, b)} is very important in various applications.
If the initial value x 6∈ (a, b), we set Ha,b := 0. According to Lemma 12.1 and
Remark 12.3 Ch. II, ExHa,b <∞ and Px(Ha,b <∞) = 1.

We consider the problem of computing distributions of integral functionals of
the diffusion X stopped at the moment Ha,b. As it was explained for a Brownian
motion in §5 Ch. III, the following result is very important for computing of such
distributions.

Theorem 7.1. Let f(x), F (x), x ∈ [a, b], be piecewise-continuous functions
and f be nonnegative. Let Φ be defined only at the points a and b. Then the
function

Q(x) := Ex

{
Φ(X(Ha,b)) exp

(
−

Ha,b∫
0

f(X(s)) ds
)

+

Ha,b∫
0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds

}
, x ∈ [a, b], (7.1)

is the unique solution of the problem

1

2
σ2(x)Q′′(x) + µ(x)Q′(x)− f(x)Q(x) = −F (x), (7.2)

Q(a) = Φ(a), Q(b) = Φ(b). (7.3)
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Proof. For continuous functions f and F this result is exactly Theorem 12.6
Ch. II. The nonnegative piecewise-continuous function f can be approximated from
below by a sequence of continuous functions {fn}, n = 1, 2, . . . , such that 0 ≤
fn(x) ≤ f(x), x ∈ R. On the finite interval [a, b] the piecewise-continuous function
F can be approximated by a sequence of uniformly bounded continuous functions
{Fn}.

Applying the limit approximation method described in the proof of Theorem 4.1,
we can prove that Q is the solution of (7.2), (7.3) for the piecewise-continuous
functions f and F . �

We now consider some particular cases of Theorems 7.1 with F (x) ≡ 0. For
the problem of distribution of functionals of diffusions at the time Ha,b the exit
across the upper or lower boundary has an important meaning. Thus we must
consider the Laplace transform of the distribution of a functional reduced to the
set W (Ha,b) = b or to the set W (Ha,b) = a.

The following result actually concerns the Laplace transform of the distribution
of a nonnegative integral functional of the diffusion, stopped at the first exit time
from an interval across the upper boundary b. To find the distribution it is necessary
to apply this result for the product γf(x), γ > 0, instead of f(x) and then invert
the Laplace transform with respect to γ. From Theorem 7.1 with Φ(y) = 1Ib(y),
F ≡ 0 we deduce the following assertion.

Theorem 7.2. Let f(x), x ∈ [a, b], be a nonnegative piecewise-continuous func-
tion. Then the function

Qb(x) := Ex

{
exp

(
−

Ha,b∫
0

f(X(s)) ds
)

;X(Ha,b) = b

}
, x ∈ [a, b], (7.4)

is the unique solution of the problem

1

2
σ2(x)Q′′(x) + µ(x)Q′(x)− f(x)Q(x) = 0, x ∈ (a, b), (7.5)

Q(a) = 0, Q(b) = 1, (7.6)

Remark 7.1. If we consider the functionQa (with the restrictionX(Ha,b) = a),
i.e., in (7.1) we set Φ(y) := 1Ia(y), then the function Qa(x), x ∈ [a, b], satisfies (7.5)
and the boundary conditions

Q(a) = 1, Q(b) = 0. (7.7)

From Theorem 7.1 with Φ ≡ 1, F ≡ 0 we deduce the following result.

Theorem 7.3. Let f(x), x ∈ [a, b], be a nonnegative piecewise-continuous func-
tion. Then the function

Q(x) := Ex exp
(
−

Ha,b∫
0

f(X(s)) ds
)
, x ∈ [a, b],
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is the unique solution of the problem

1

2
σ2(x)Q′′(x) + µ(x)Q′(x)− f(x)Q(x) = 0, x ∈ (a, b), (7.8)

Q(a) = 1, Q(b) = 1. (7.9)

Remark 7.2 The function Q is the sum of functions Qa and Qb.

Let Hz := min{s : X(s) = z} be the first hitting time of the level z by the
diffusion X. Using the limit approximation method described in the proof of The-
orem 4.1, we can extend Theorem 12.7 Ch. II to piecewise-continuous functions f .

Theorem 7.4. Let f(x), x ∈ R, be a nonnegative piecewise-continuous func-
tion. Then the function

Lz(x) := Ex

{
exp

(
−

Hz∫
0

f(X(s)) ds
)

;Hz <∞
}
, x ∈ R,

can be represented in the form

Lz(x) =


 (x)

 (z)
, x ≤ z,

'(x)

'(z)
, z ≤ x,

(7.10)

where ϕ is a positive decreasing solution and ψ is a positive increasing solution of
the equation

1

2
σ2(x)φ′′(x) + µ(x)φ′(x)− f(x)φ(x) = 0, x ∈ R. (7.11)

Example 7.1. We compute the Laplace transform of the distribution of the
first hitting time Hz for the Ornstein–Uhlenbeck process X(t), t ≥ 0, which is the
solution of the stochastic differential equation (4.14). By Theorem 7.4,

Exe−αHz = Ex
{
e−αHz ;Hz <∞

}
=


 (x)

 (z)
, x ≤ z,

'(x)

'(z)
, z ≤ x,

α > 0, (7.12)

where ϕ is a positive decreasing solution and ψ is a positive increasing solution of
equation (4.17) with λ = α. These solutions are of the form (4.18). Therefore,

Exe−αHz =


ex

2�=2�2
D−�=�

(
− x

√
2�=�

)
eb

2�=2�2
D−�=�

(
− b

√
2�=�

) , x ≤ z,

ex
2�=2�2

D−�=�
(
x
√
2�=�

)
ea

2�=2�2
D−�=�

(
a
√
2�=�

) , z ≤ x.

(7.13)

It is clear that Px(Hz <∞) = lim
α↓0

Exe−αHz . Since lim
β↓0

D−β(x) = e−x
2/4 (see the

definition of the function D−β(x) in Appendix 2), the moment of the first hitting
time Hz for the Ornstein–Uhlenbeck process is finite with probability one.
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§ 8. Distributions of functionals of a diffusion
connected with location of maximum or minimum

In this section we consider the problem of computing the distributions of integral
functionals of a diffusion at the moments in which the maximum or minimum values
of the diffusion are reached.

We consider a class of homogeneous diffusions X(t), t ≥ 0, that are the solutions
of the stochastic differential equation (4.1). Assume that the conditions on the
coefficients µ and σ given in § 4 are satisfied.

Let Hb := min{s : X(s) = b} be the first hitting time of the level b.
For a nonnegative piecewise-continuous function g we set

I(s) :=
s∫

0

g(X(v)) dv (8.1)

and assume that conditions (5.3) hold.
The variable ν(t) := min

{
s : I(s) = t

}
is the moment inverse of the integral

functional of the diffusion X. By (5.3), the moment ν(t) is finite a.s. for all t ≥ 0.
By the strong Markov property of the process X, we have that given the con-

dition X(Hb) = b, the process X̃(s) := X(s + Hb), s ≥ 0, is distributed as the
process X(s), s ≥ 0, with the initial value X(0) = b. It is clear that if the event
{Hb < ν(t)} is realized, then the following equalities hold:

ν(t) = min
{
s ≥ Hb : I(Hb) +

s∫
Hb

g(X(v)) dv = t

}

= Hb + min
{
s :

s∫
0

g(X̃(v)) dv = t− I(Hb)
}

= Hb + ν̃(t− I(Hb)), (8.2)

where ν̃(t) is defined as ν(t) but for the process X̃.
Let ℘(X(s), u ≤ s ≤ v), 0 ≤ u < v <∞, be a bounded measurable functional of

the process X(s), s ∈ [u, v].
If for all t ≥ 0 and h > 0 we have

℘(X(s), t ≤ s ≤ t+ h) = ℘(X(s+ t), 0 ≤ s ≤ h),

then the functional ℘(X(s), u ≤ s ≤ t) is called homogeneous. Strictly speaking, the
definition is given for a whole family of functionals depending on two parameters
that characterize the initial and terminal times of the sample paths.

We assume that ℘(X(s), 0 ≤ s ≤ t), t ≥ 0, is a.s. a piecewise-continuous process
with respect to t. Furthermore, we assume that at points of discontinuity it is right
continuous.

Let Gt0 := σ(X(s), 0 ≤ s ≤ t) be the σ-algebra of events generated by the process
X up to the time t, i.e., its natural filtration. The process ℘(X(s), 0 ≤ s ≤ t), t ≥ 0,
is adapted to this filtration. Since Hb is a stopping time with respect to the natural
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filtration, we have, according to Corollary 4.1 of Ch. I, that the random variable
℘(X(s), 0 ≤ s ≤ Hb) is GHb

0 -measurable.
Let τ be an exponentially distributed with the parameter λ > 0 random time

independent of the diffusion X.
The next result is, in fact, an expression of the strong Markov property of the

diffusion X applied to the stopping time Hb.

Lemma 8.1. For a homogeneous bounded a.s. piecewise-continuous functionals
℘l, l = 1, 2,

Ex
{
℘1(X(u), 0 ≤ u ≤ Hb)℘2(X(u),Hb ≤ u ≤ ν(τ));Hb < ν(τ)

}
= Ex

{
e−λI(Hb)℘1(X(u), 0 ≤ u ≤ Hb);Hb <∞

}
Eb℘2(X(u), 0 ≤ u ≤ ν(τ)). (8.3)

Proof. Using the independence of τ and the diffusion, and applying the equality

1I[I(Hb)<t) = 1I[Hb<ν(t)),

we transform the left-hand side of (8.3) as follows:

λ

∞∫
0

e−λtEx
{

1I[0,t)(I(Hb))℘1(X(u), 0 ≤ u ≤ Hb)℘2(X(u),Hb ≤ u ≤ ν(t))
}
dt

= Ex

{
℘1(X(u), 0 ≤ u ≤ Hb)1I{Hb<∞}λ

∞∫
I(Hb)

e−λt℘2(X(u),Hb ≤ u ≤ ν(t)) dt
}

= Ex

{
e−λI(Hb)℘1(X(u), 0 ≤ u ≤ Hb)1I{Hb<∞}λ

∞∫
0

e−λv℘2(X̃(s), 0 ≤ s ≤ ν̃(v)) dv
}

= Ex

{
e−λI(Hb)℘1(X(u), 0 ≤ u ≤ Hb)1I{Hb<∞}

×Ex

{
λ

∞∫
0

e−λv℘2(X̃(s), 0 ≤ s ≤ ν̃(v)) dv
∣∣∣∣GHb

0

}}
.

By the strong Markov property of a diffusion (see (3.26)), the right-hand side of
this equation equals

Ex
{
e−λI(Hb)℘1(X(u), 0≤u≤Hb);Hb<∞

}
Eb

{
λ

∞∫
0

e−λt℘2(X(u), 0≤u≤ν(t)) dt
}

= Ex
{
e−λI(Hb)℘1(X(u), 0 ≤ u ≤ Hb);Hb <∞

}
Eb℘2(X(u), 0 ≤ u ≤ ν(τ)).

The lemma is proved. �
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Let ψ(x), x ∈ R, be a strictly increasing positive solution, and ϕ(x), x ∈ R, be
a strictly decreasing positive solution, of the equation

1

2
σ2(x)φ′′(x) + µ(x)φ′(x)− λg(x)φ(x) = 0. (8.4)

Let ω(z) := ψ′(z)ϕ(z) − ψ(z)ϕ′(z) > 0 be their Wronskian. Set ρ(x, y) :=
ψ(x)ϕ(y) − ψ(y)ϕ(x) for y < x. The function ρ(x, y) strictly increases in x for
a fixed y and strictly decreases in y for a fixed x.

We derive some auxiliary results.
Let Ha,b := min{s : X(s) 6∈ (a, b)} be the first exit time from the interval (a, b).

Lemma 8.2. The following relation holds:

lim
δ↓0

1

�
Ea
{
e−λI(Ha−δ,b); X(Ha−δ,b) = b

}
= !(a)

�(b; a)
. (8.5)

Remark 8.1. Since −X(s), s ≥ 0, is also a diffusion, there is the analogous
relation

lim
δ↓0

1

�
Eb
{
e−λI(Ha,b+δ); X(Ha,b+δ) = a

}
= !(b)

�(b; a)
. (8.6)

Proof of Lemma 8.2. To compute the function

Qb(x) := Ex
{
e−λI(Ha−δ,b); X(Ha−δ,b) = b

}
,

we apply Theorem 7.2. Obviously, the problem (7.5), (7.6) with f(x) = λg(x) and
a− δ instead of a has the solution

Qb(x) = �(x; a− �)

�(b; a− �)
, x ∈ (a− δ, b).

Therefore,

lim
δ↓0

1

�
Qb(a) = lim

δ↓0

1

�

 (a)'(a− �)−  (a− �)'(a)

 (b)'(a− �)−  (a− �)'(b)
= !(a)

�(b; a)
.

�

Lemma 8.3. The equality

lim
δ↓0

1

�
Pb

(
sup

0≤s≤ν(τ)
X(s) ≤ b+ δ

)
= 2�!(b)

 (b)

b∫
−∞

g(z) (z)

�2(z)!(z)
dz (8.7)

holds, and for some constant Kb one has the estimate

sup
x≤b+δ

Px

(
sup

0≤s≤ν(τ)
X(s) ∈ [b, b+ δ)

)
≤ 2��(b+ �; b)

 (b)

b+δ∫
−∞

g(z) (z)

�2(z)!(z)
dz ≤ δKb. (8.8)



§ 8. LOCATION OF MAXIMUM OR MINIMUM 297

Proof. Set
Uν,b(x) := Px

(
sup

0≤s≤ν(τ)
X(s) ≤ b

)
.

To compute this probability we apply (6.8) with a = −∞ and Theorem 6.1 with
f(x) ≡ 0, a = −∞, taking into account Remark 6.1.

It is not hard to verify that the solution of (6.5)–(6.7) with f(x) ≡ 0 a = −∞,
has the form

Gb,z(x) =


2�g(z)

�2(z)

�(b; z) (x)

!(z) (b)
, x ≤ z,

2�g(z)

�2(z)

�(b; x) (z)

!(z) (b)
, z ≤ x ≤ b.

(8.9)

Then

Uν,b(x) =

b∫
−∞

Gb,z(x) dz. (8.10)

For z ≤ b,
lim
δ↓0

1

�
Gb+δ,z(b) = 2�g(z) (z)

�2(z)!(z)

!(b)

 (b)
,

while for b ≤ z ≤ b+ δ we have

Gb+δ,z(b) ≤ Lbδ

for some constant Lb. Now from (8.10) it follows that

lim
δ↓0

1

�
Uν,b+δ(b) = 2�!(b)

 (b)

b∫
−∞

g(z) (z)

�2(z)!(z)
dz. (8.11)

This proves (8.7).
We now prove (8.8). Using (8.10), we get

Px

(
sup

0≤s≤ν(τ)
X(s) ∈ [b, b+ δ)

)
= Uν,b+δ(x)− Uν,b(x)

=

b+δ∫
b

Gb+δ,z(x) dz +

b∫
−∞

(Gb+δ,z(x)−Gb,z(x)) dz. (8.12)

For z ≤ b, x ≤ b

Gb+δ,z(x)−Gb,z(x) = 2�g(z) (z) (x)

�2(z)!(z)

(
'(b)

 (b)
− '(b+ �)

 (b+ �)

)
,

sup
x≤b

(
Gb+δ,z(x)−Gb,z(x)

)
= 2�g(z) (z)

�2(z)!(z)

�(b+ �; b)

 (b+ �)
. (8.13)

In addition,

sup
x≤b+δ

Gb+δ,z(x) = Gb+δ,z(z) = 2�g(z) (z)

�2(z)

�(b+ �; z)

!(z) (b)
(8.14)
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for z ∈ (b, b+ δ), and

sup
x∈(b,b+δ)

Gb+δ,z(x) = 2�g(z)

�2(z)

�(b+ �; b) (z)

!(z) (b)
(8.15)

for z ≤ b. From (8.13)–(8.15) it follows that

sup
x≤b+δ

(
Gb+δ,z(x)−Gb,z(x)

)
≤ 2�g(z) (z)

�2(z)!(z)

�(b+ �; b)

 (b)

for z ≤ b+ δ. Substituting this estimate in (8.12), we obtain

sup
x≤b+δ

(
Uν,b+δ(x)− Uν,b(x)

)
≤ 2��(b+ �; b)

 (b)

b+δ∫
−∞

g(z) (z)

�2(z)!(z)
dz.

This is the estimate (8.8). �

We will need one more auxiliary estimate. For brevity, we set ν := ν(τ).

Lemma 8.4. The estimate

Pa

(
a− δ1 < inf

0≤s≤ν
X(s), sup

0≤s≤ν
X(s) ∈ [b, b+ δ2)

)
≤ δ1δ2Ka,b (8.16)

holds, where Ka,b is some constant.

Proof. We use the equality analogous to (8.3):

Pa

(
a− δ1 < inf

0≤s≤ν
X(s), sup

0≤s≤ν
X(s) ∈ [b, b+ δ2)

)
= Ea

{
e−λI(Ha−δ1,b);X(Ha−δ1,b) = b

}
Pb

(
a−δ1 < inf

0≤s≤ν
X(s), sup

0≤s≤ν
X(s) ≤ b+δ2

)
.

The right-hand side of this equality is estimated by the value

Ea
{
e−λI(Ha−δ1,b);X(Ha−δ1,b) = b

}
Pb

(
sup

0≤s≤ν
X(s) ≤ b+ δ2

)
,

which, by (8.5) and (8.7), does not exceed δ1δ2Ka,b. �

1. Functionals of diffusion at locations of maximum or minimum. The
moment

Ȟ(t) := inf
{
u ≤ t : X(u) = sup

0≤s≤t
X(s)

}
is the location of the maximum of the process X(s), 0 ≤ s ≤ t, and the moment

Ĥ(t) := inf
{
u ≤ t : X(u) = inf

0≤s≤t
X(s)

}
is the location of the minimum of the process X(s), 0 ≤ s ≤ t.
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Consider the event {Hb < ν(t)}. Then on this set the moments of location of
the maximum or minimum have a property analogous to (8.2): if X(0) < b, then

Ȟ(ν(t)) = Hb + Ȟ◦(ν̃(t− I(Hb))), (8.17)

and if X(0) > b, then

Ĥ(ν(t)) = Hb + Ĥ◦(ν̃(t− I(Hb))),

where Ȟ◦(t) and Ĥ◦(t) are defined similarly to Ȟ(t) and Ĥ(t) by the process X̃.

The next result enables us to reduce the problem of computing the joint distri-
butions of functionals of the diffusion X, considered on the intervals [0, Ȟ(ν)] and
[Ȟ(ν), ν], to the two previously solved problems, the first of which concerns the
distribution of the functional up to the first hitting time of a level and the second
one concerns the distribution of the functional up to the moment inverse of the
integral functional.

Consider the nonnegative integral functionals of the diffusion X:

Il(s, t) =

t∫
s

fl(X(u)) dv, l = 1, 2, 3.

It is assumed that fl, l = 1, 2, 3, are piecewise-continuous nonnegative functions.

Theorem 8.1. Let Φ(x), x ≤ b, be a piecewise-continuous bounded function.
Then

d

db
Ex
{
Φ(X(ν)) e−I1(0,Ȟ(ν))e−I2(Ȟ(ν),ν); sup

0≤s≤ν
X(s) < b

}
= Ex

{
e−λI(Hb)−I1(0,Hb);Hb <∞

}
× lim
δ↓0

1

�
Eb
{
Φ(X(ν)) e−I2(0,ν); sup

0≤s≤ν
X(s) < b+ δ

}
, x ≤ b. (8.18)

Remark 8.2. Let ψ(x), x ∈ R, be an increasing positive solution and ϕ(x),
x ∈ R, be a decreasing positive solution, of the equation

1

2
σ2(x)φ′′(x) + µ(x)φ′(x)− (λg(x) + f2(x))φ(x) = 0. (8.19)

Let ω(z) := ψ′(z)ϕ(z)− ψ(z)ϕ′(z) > 0 be the Wronskian of these solutions.
Then the limit on the right-hand side of (8.18) exists and has the form

lim
δ↓0

1

�
Eb
{
Φ(X(ν)) e−I2(0,ν); sup

0≤s≤ν
X(s) < b+ δ

}
= 2�!(b)

 (b)

b∫
−∞

Φ(z) g(z) (z)
�2(z)!(z)

dz.
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Indeed, we set

Uν,b(x) := Ex

{
Φ(X(ν)) exp

(
−

ν∫
0

f2(X(s)) ds
)

; sup
0≤s≤ν

X(s) < b

}
.

Then, applying Theorem 6.1 and (6.8), we can express the function Uν,b in terms of

the Green function Gb,z(x) by the formula Uν,b(x) =
b∫

−∞

Φ(z)Gb,z(x) dz. Now, anal-

ogously to (8.11), we compute lim
δ↓0

1

�
Uν,b+δ(b), and see that the required statement

is valid.

Proof of Theorem 8.1. Here we consider only the right derivative on the left-hand
side of (8.18), because the right derivative is a continuous function with respect to
b and the total derivative will also exist. The continuity is a consequence of (8.18)
and the fact that each factor in the right-hand side of (8.18) is continuous function
with respect to b.

The meaning of the arguments given below is to verify that, being restricted to
the event

{
sup

0≤s≤ν
X(s) ∈ [b, b + δ)

}
, the moments Hb and Ȟ(ν) coincide in the

limiting case as δ ↓ 0. We can write

Ex
{
Φ(X(ν))e−I1(0,Ȟ(ν))e−I2(Ȟ(ν),ν); sup

0≤s≤ν
X(s) ∈ [b, b+ δ)

}

= Ex
{
e−I1(0,Hb) Φ(X(ν)) e−I1(Hb,Ȟ(ν))

× e−I2(Ȟ(ν),ν); sup
Hb≤s≤ν

X(s) < b+ δ,Hb < ν
}

=: ∆δ.

By (8.2) and (8.17), on the event {Hb < ν(t)} the functional

℘(X(u),Hb ≤ u ≤ ν(t))

:= Φ(X(ν(t))) e−I1(Hb,Ȟ(ν(t)))e−I2(Ȟ(ν(t)),ν(t))1I{
sup

Hb≤s≤ν(t)
X(s)<b+δ

}
satisfies the equality

℘(X(u),Hb ≤ u ≤ ν(t)) = ℘(X̃(s), 0 ≤ s ≤ ν̃(t− I(Hb))).

Therefore, applying (8.3), we get

∆δ = Ex
{
e−λI(Hb)−I1(0,Hb);Hb <∞

}
Eb
{
Φ(X(ν)) e−I1(0,Ȟ(ν))e−I2(Ȟ(ν),ν); sup

0≤s≤ν
X(s) < b+ δ

}
.
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In order to prove (8.18) it suffices to verify that for l = 1, 2,

lim
δ↓0

1

�
Eb
{
Φ(X(ν))

(
1− e−Il(0,Ȟ(ν))

)
; sup
0≤s≤ν

X(s) < b+ δ
}

= 0. (8.20)

Set
℘l := 1− e−Il(0,Ȟ(ν)), l = 1, 2.

We choose a sufficiently large number λ̃ > 0. Let τ̃ be independent of X and τ the
random variable exponentially distributed with the parameter λ̃ > 0. This mean
that the value 1/λ̃ is small. Then for l = 1, 2,

Eb
{
℘l; sup

0≤s≤ν
X(s) < b+ δ

}
= Eb

{
℘l; sup

0≤s≤ν
X(s) < b+ δ, ν < τ̃

}
+Eb

{
℘l; sup

0≤s≤τ̃
X(s) < b+ δ, sup

τ̃≤s≤ν
X(s) < b, ν ≥ τ̃

}
+Eb

{
℘l; sup

0≤s≤τ̃
X(s) < b+ δ, sup

τ̃≤s≤ν
X(s) ∈ [b, b+ δ), ν ≥ τ̃

}
=: Λ1,l + Λ2,l + Λ3,l. (8.21)

For piecewise-continuous functions fl, it holds that sup
a≤x≤b

|fl(x)| ≤ La,b, where La,b

is some constant dependent on a and b. Then for k = 1, 2, and arbitrary a,

Λk,l ≤ Eb
{
℘l; sup

0≤s≤ν
X(s) ≤ b+ δ, Ȟ(ν) ≤ τ̃

}
≤ La,bEτ̃ Pb

(
sup

0≤s≤ν
X(s) ≤ b+ δ

)
+ Pb

(
X(Ha,b+δ) = a,Ha,b+δ < τ̃

)
≤ La;b

~�
Pb

(
sup

0≤s≤ν
X(s) ≤ b+ δ

)
+ Eb

{
e−λ̃Ha,b+δ ;X(Ha,b+δ) = a

}
≤ δCb

(
La;b
~�

+ !(b)

�(b; a)

)
. (8.22)

Here we used (8.6) with g(x) ≡ 1 and (8.7).
By the Markov property, for the third term in (8.21) (l = 1, 2) we obtain

Λ3,l ≤ Pb

(
sup

0≤s≤τ̃
X(s) < b+ δ

)
sup
y≤b+δ

Py

(
sup

0≤s≤ν
X(s) ∈ [b, b+ δ)

)
≤ δ2Cb.

Here we used (8.7) with τ̃ instead of ν(τ) and (8.8).

Letting first λ̃ to ∞ and then a → −∞, we can make lim sup
δ↓0

�k;l

�
, k, l = 1, 2,

smaller than any given positive number. Therefore, (8.20) holds, because lim
δ↓0

�3;l

�
=

0 and Φ is bounded. It follows that lim
δ↓0

1

�
∆δ coincides with the left-hand side of

(8.18) and equals the right-hand side of (8.18). �

For the moment of the location of the minimum a similar assertion is valid.
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Theorem 8.2. Let Φ(x), x ≥ a, be a piecewise-continuous bounded function.
Then

− d

da
Ex
{
Φ(X(ν)) e−I1(0,Ĥ(ν))e−I2(Ĥ(ν),ν); inf

0≤s≤ν
X(s) > a

}
= Ex

{
e−λI(Ha)−I1(0,Ha);Ha <∞

}
× lim
δ↓0

1

�
Ea
{
Φ(X(ν))e−I2(0,ν); inf

0≤s≤ν
X(s) > a− δ

}
, x ≥ a. (8.23)

2. Relative position of locations of maximum and minimum of a dif-
fusion. Suppose, for example, that the maximum of the diffusion X in the interval
[0, ν] is reached before the minimum, i.e., we consider the event {Ȟ(ν) < Ĥ(ν)}.
Analogously to the above results, the following statement enables us to reduce the
problem of the joint distribution of functionals of X considered on the intervals
[0, Ȟ(ν)], [Ȟ(ν), Ĥ(ν))] and [Ĥ(ν)), ν] to three previously solved problems. The
first one concerns the distribution of the functional up to the first exit time from an
interval through the upper boundary, the second concerns the distribution of the
functional up to the first exit time from an interval through the lower boundary,
and the third concerns the distribution of the functional up to the moment inverse
of integral functional.

Theorem 8.3. Let Φ(x), a ≤ x ≤ b, be a piecewise-continuous function. Then

− @

@a

@

@b
Ex
{
Φ(X(ν)) e−I1(0,Ȟ(ν))e−I2(Ȟ(ν),Ĥ(ν))e−I3(Ĥ(ν),ν);

Ȟ(ν) < Ĥ(ν), a < inf
0≤s≤ν

X(s), sup
0≤s≤ν

X(s) < b
}

= Ex
{
e−λI(Ha,b)−I1(0,Ha,b);X(Ha,b) = b

}
× lim
δ↓0

1

�
Eb
{
e−λI(Ha,b+δ)−I2(0,Ha,b+δ);X(Ha,b+δ) = a

}
× lim
δ↓0

1

�
Ea
{
Φ(X(ν))e−I3(0,ν); a− δ < inf

0≤s≤ν
X(s), sup

0≤s≤ν
X(s) < b

}
(8.24)

for a ≤ x ≤ b.

Proof. We first prove that the limits on the right-hand side of (8.24) exist. For
the first limit, it is sufficient to apply (8.6) in the case when the solutions of equation
(8.19) are considered instead of the solutions of equation (8.4).

Consider the second limit. Set

Uν,a,b(x) := Ex
{
Φ(X(ν)) e−I3(0,ν); a < inf

0≤s≤ν
X(s), sup

0≤s≤ν
X(s) < b

}
.

Then, by (6.8) and Theorem 6.1,

Uν,a,b(x) =

b∫
a

Φ(z)Ga,b,z(x) dz, (8.25)
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where the function Ga,b,z is the solution of the problem (6.5)–(6.7) with f = f3.
In terms of the solutions ψ and ϕ of equation (8.19) with f2 = f3 we can write

Ga,b,z(x) =


2�g(z)

�2(z)

�(b; z)�(x; a)

!(z)�(b; a)
, a ≤ x ≤ z,

2�g(z)

�2(z)

�(b; x)�(z; a)

!(z)�(b; a)
, z ≤ x ≤ b.

(8.26)

For a ≤ z

lim
δ↓0

1

�
Ga−δ,b,z(a) = 2�g(z)

�2(z)

�(b; z)!(a)

!(z)�(b; a)
,

while for a− δ < z < a
Ga−δ,b,z(a) ≤ Cδ.

Then, by (8.25),

lim
δ↓0

1

�
Uν,a−δ,b(a) = 2�!(a)

�(b; a)

b∫
a

Φ(z)g(z)�(b; z)
�2(z)!(z)

dz.

This proves the existence of the second limit on the right-hand side of (8.24).
The scheme of the proof of (8.24) is similar to that of (8.18). Using a slightly

modified version of (8.3), we find that

Ex
{
Φ(X(ν)) e−I1(0,Ȟ(ν))e−I2(Ȟ(ν),Ĥ(ν))e−I2(Ĥ(ν),ν);

Ȟ(ν) < Ĥ(ν), inf
0≤s≤ν

X(s) ∈ (a− δ1, a], sup
0≤s≤ν

X(s) ∈ [b, b+ δ2)
}

=
(
Ex
{
e−λI(Ha,b)−I1(0,Ha,b);X(Ha,b) = b

}
+O

(
Pa(X(Ha−δ1,b) = b)

))
×Eb

{
Φ(X(ν))e−I1(0,Ȟ(ν))e−I2(Ȟ(ν),Ĥ(ν))e−I3(Ĥ(ν),ν);

Ȟ(ν) < Ĥ(ν), inf
0≤s≤ν

X(s) ∈ (a− δ1, a], sup
0≤s≤ν

X(s) < b+ δ2

}
. (8.27)

The probability Pa(X(Ha−δ1,b) = b) is estimated analogously to (8.5) by the value
Kδ1. The last expectation in (8.27) can be represented in the form

Eb
{
Φ(X(ν)) e−I1(0,Ȟ(ν))e−I2(Ȟ(ν),Ĥ(ν))e−I3(Ĥ(ν),ν); Ȟ(ν) < Ĥ(ν),

inf
0≤s≤ν

X(s) ∈ (a− δ1, a], sup
0≤s≤ν

X(s) < b+ δ2

}
=: ∆1 + ∆2 −∆3 + ∆4,

where

∆1 := Eb
{
Φ(X(ν))

(
e−I1(0,Ȟ(ν)) − 1

)
e−I2(Ȟ(ν),Ĥ(ν))e−I3(Ĥ(ν),ν);



304 IV DIFFUSION PROCESSES

Ȟ(ν) < Ĥ(ν), inf
0≤s≤ν

X(s) ∈ (a− δ1, a], sup
0≤s≤ν

X(s) < b+ δ2

}
,

∆2 := Eb
{
Φ(X(ν))

(
e−I2(Ȟ(ν),Ĥ(ν)) − e−I2(0,Ĥ(ν))

)
e−I3(Ĥ(ν),ν);

Ȟ(ν) < Ĥ(ν), inf
0≤s≤ν

X(s) ∈ (a− δ1, a], sup
0≤s≤ν

X(s) < b+ δ2

}
,

∆3 := Eb
{
Φ(X(ν)) e−I2(0,Ĥ(ν))e−I3(Ĥ(ν),ν);

Ȟ(ν) ≥ Ĥ(ν), inf
0≤s≤ν

X(s) ∈ (a− δ1, a], sup
0≤s≤ν

X(s) < b+ δ2

}
,

∆4 := Eb
{
Φ(X(ν)) e−I2(0,Ĥ(ν))e−I3(Ĥ(ν),ν);

inf
0≤s≤ν

X(s) ∈ (a− δ1, a], sup
0≤s≤ν

X(s) < b+ δ2

}
.

For l = 1, 2 we have the obvious estimates

|∆l| ≤ LEb
{
℘l;X(Ha,b+δ2) = a, inf

Ha≤s≤ν
X(s) ∈ (a− δ1, a], sup

Ha≤s≤ν
X(s) < b+ δ2

}
.

The variables ℘l are defined right below the formula (8.20). Analogously to (8.21),
(8.22) we can prove that lim sup

δ1↓0,δ2↓0

�l

�1�2
, l = 1, 2, is less then any given small number.

Applying (8.3) and taking into account (8.6) and (8.16), we have

∆3 ≤ LPb

(
X(Ha,b+δ2) = a,Ha,b+δ2 ≤ ν, inf

Ha,b+δ2≤s≤ν
X(s) ∈ (a− δ1, a],

sup
Ha,b+δ2≤s≤ν

X(s) ∈ [b, b+ δ2)
)
≤ LEb

{
e−λI(Ha,b+δ2 );X(Ha,b+δ2) = a

}
×Pa

(
a− δ1 < inf

0≤s≤ν
X(s), sup

0≤s≤ν
X(s) ∈ [b, b+ δ2)

)
≤ La,bδ1δ

2
2 .

Again using the analog of (8.3), we obtain

∆4 = Eb
{
e−λI(Ha,b+δ2 )−I2(0,Ha,b+δ2 );X(Ha,b+δ2) = a

}
×Ea

{
Φ(X(ν)) e−I2(0,Ĥ(ν)) e−I3(Ĥ(ν),ν);

a− δ1 < inf
0≤s≤ν

X(s), sup
0≤s≤ν

X(s) ≤ b+ δ2

}
.

Now, using (8.27) and the analog of (8.20) with the boundary b replaced by the
boundary a, we see that (8.24) holds. �

The analog of Theorem 8.3 for the opposite order of the locations of the extreme
values is the following assertion.
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Theorem 8.4. Let Φ(x), a ≤ x ≤ b, be a piecewise-continuous function. Then

− @

@a

@

@b
Ex
{
Φ(X(ν)) e−I1(0,Ĥ(ν))e−I2(Ĥ(ν),Ȟ(ν))e−I3(Ȟ(ν),ν);

Ĥ(ν) < Ȟ(ν), a < inf
0≤s≤ν

X(s), sup
0≤s≤ν

X(s) < b
}

= Ex
{
e−λI(Ha,b)−I1(0,Ha,b);X(Ha,b) = a

}
× lim
δ↓0

1

�
Ea
{
e−λI(Ha−δ,b)−I2(0,Ha−δ,b);X(Ha−δ,b) = b

}
× lim
δ↓0

1

�
Eb
{
Φ(X(ν))e−I3(0,ν); a < inf

0≤s≤ν
X(s), sup

0≤s≤ν
X(s) < b+ δ

}
, (8.28)

for a ≤ x ≤ b.

Example 8.1. We compute the Laplace transform of the joint distribution of
the location of extreme points of a diffusion. Instead of ν(τ) we consider the time
τ , i.e., we set g(x) ≡ 1. We are interested in computing of the following expression:

Lµ,ηa,b := − @

@a

@

@b
Ex
{
e−µĤ(ν)−ηȞ(ν); Ȟ(ν) < Ĥ(ν), a < inf

0≤s≤τ
X(s), sup

0≤s≤τ
X(s) < b

}
for the diffusion X, defined in (4.1).

Obviously,

Lµ,ηa,b = − @

@a

@

@b
Ex
{

exp
(
− (µ+ η)Ȟ(ν)− µ(Ĥ(ν)− Ȟ(ν))

)
;

Ȟ(ν) < Ĥ(ν), a < inf
0≤s≤τ

X(s), sup
0≤s≤τ

X(s) < b
}
.

We apply (8.24) with Φ ≡ 1, I1(0, v) = (µ+ η)v, I2(u, v) = µ(v − u), I3(0, v) = 0.
According to this formula,

Lµ,ηa,b = Ex
{
e−(λ+µ+η)Ha,b ;X(Ha,b) = b

}
lim
δ↓0

1

�
Eb
{
e−(λ+µ)Ha,b+δ ;X(Ha,b+δ) = a

}
× lim
δ↓0

1

�
Pa

(
a− δ < inf

0≤s≤τ
X(s), sup

0≤s≤τ
X(s) < b

)
. (8.29)

Let ψγ(x), x ∈ R, be a strictly increasing positive solution and ϕγ(x), x ∈ R, be
a strictly decreasing positive solution of the equation

1

2
σ2(x)φ′′(x) + µ(x)φ′(x)− γφ(x) = 0,

and ωγ(z) = ψ′γ(z)ϕγ(z) − ψγ(z)ϕ′γ(z) > 0 be their Wronskian. Let ργ(x, y) :=
ψγ(x)ϕγ(y)− ψγ(y)ϕγ(x). For y < x we have ργ(x, y) > 0.
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According to Theorem 7.2,

Ex
{
e−γHa,b ;X(Ha,b) = b

}
= �(x; a)

�(b; a)
.

Analogously (see Remark 7.1),

Ex
{
e−γHa,b ;X(Ha,b) = a

}
= �(b; x)

�(b; a)
.

Consequently,

lim
δ↓0

1

�
Eb
{
e−(λ+µ)Ha,b+δ ;X(Ha,b+δ) = a

}
=lim
δ↓0

1

�

��+�(b+ �; b)

��+�(b+ �; a)
=

!�+�(b)

��+�(b; a)
.

By Theorem 4.2, the function

Ua,b(x) := Px

(
a < inf

0≤s≤τ
X(s), sup

0≤s≤τ
X(s) < b

)
, x ∈ (a, b),

is the solution of the problem

1

2
σ2(x)U ′′(x) + µ(x)U ′(x)− λU(x) = −λ,

Q(a) = 0, Q(b) = 0.

It is easy to see that
Ua,b(x) = 1− ��(b; x) + ��(x; a)

��(b; a)
.

Then
lim
δ↓0

1

�
Pa

(
a− δ < inf

0≤s≤τ
X(s), sup

0≤s≤τ
X(s) < b

)
= lim

δ↓0

1

�

(
1− ��(b; a) + ��(a; a− �)

��(b; a− �)

)
= −

@
@a��(b; a) + !�(a)

��(b; a)
.

Substituting the corresponding expressions into (8.29), we obtain

Lµ,ηa,b = −��+�+�(x; a)

��+�+�(b; a)

!�+�(b)

��+�(b; a)

( @
@a��(b; a) + !�(a)

)
��(b; a)

. (8.30)

The analogue of (8.30) for the opposite order of the location of extreme values
of the diffusion X is the following result. Set

Mµ,η
a,b := − @

@a

@

@b
Ex
{
e−µĤ(ν)−ηȞ(ν); Ĥ(ν)<Ȟ(ν), a< inf

0≤s≤τ
X(s), sup

0≤s≤τ
X(s)< b

}
.

Then

Mµ,η
a,b =

��+�+�(b; x)

��+�+�(b; a)

!�+�(a)

��+�(b; a)

( @
@b��(b; a)− !�(b)

)
��(b; a)

. (8.31)
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§ 9. Semigroup of operators related to diffusion

1. Homogeneous diffusions.
Let X(t), t ∈ [0,∞), be a homogeneous diffusion process with the state space

(E,B(E)) and with the transition function P (s, x, t,D) =: P (t−s, x,D), D ∈ B(E).
Usually, E is the interval (l, r) with the endpoints included or not (see § 15), and
B(E) is the Borel σ-algebra on E. If the drift and diffusion coefficients satisfy
(11.2) and (11.3) Ch. II, and σ(x) > 0 for x ∈ R, then E = R. This follows
from Corollary 12.3 of Ch. II, because every point of the real line is attained by
the diffusion with positive probability. Let B(E) be the space of bounded Borel
functions from E into R with the norm ‖f‖ = sup

E
|f(x)|.

A transition function P is jointly measurable if for all D ∈ B(E) the mapping
(t, x) 7→ P (t, x,D) is B([0,∞)) × B(E)-measurable. In this case we consider the
family of operators {Tt, t ≥ 0} connected with the homogeneous Markov process
X. These operators map from B(E) into B(E) and act by the formula

Ttf(x) :=
∫
E

f(y)P (t, x, dy) = Exf(X(t)), f ∈ B(E), (9.1)

where the subscript x denotes the condition X(0) = x. Then the norm of the
operator Tt obeys the estimate

‖Tt‖ := sup
‖f‖≤1

‖Ttf‖ ≤ sup
‖f‖≤1

‖f‖ sup
x∈E

P (t, x, E) = 1.

Let T0 := I be the identity operator. It is clear that

Tt1 = 1, Tt1ID(x) = P (t, x,D).

By the Chapman–Kolmogorov equation, for all s, t ∈ [0,∞), x ∈ E and any
D ∈ B(E)

P (s+ t, x,D) =
∫
E

P (t, x, dy)P (s, y,D).

This implies the semigroup property for the family of operators:

TtTsf(x) = Tt+sf(x). (9.2)

Hence {Tt, t ≥ 0} form a family of commutating operators

TtTs = TsTt.

The semigroup of operators is strongly right-continuous if ‖Ttf − f‖ → 0 as
t ↓ 0. By the semigroup property, this implies that lim

h↓0
Tt+hf(x) = Ttf(x).

Let Cb(E) be the space of bounded continuous functions on E. If for any t > 0

Tt(Cb(E)) ⊆ Cb(E),
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then the strongly right-continuous semigroup of operators {Tt, t ≥ 0} is called a
Feller semigroup. A Markov process whose transition function generates a Feller
semigroup is called a Feller process.

The resolvent of the semigroup of operators {Tt, t ≥ 0} is the family of operators
{Rλ : λ > 0} from B(E) to B(E) defined by the formula

Rλf(x) :=

∞∫
0

e−λtTtf(x) dt = 1

�
Exf(X(τ)), (9.3)

where τ is an exponentially distributed with the parameter λ > 0 random time
independent of the diffusion X. Since the Laplace transform uniquely determines
the transformed function, the resolvent uniquely determines the semigroup of op-
erators.

Properties of the resolvent.
1. Using the semigroup property we have

RλRµf(x) :=

∞∫
0

∞∫
0

e−λt−µsTt+sf(x) dt ds =

∞∫
0

dvTvf(x)

v∫
0

e−λ(v−s)−µs ds

=

∞∫
0

dvTvf(x)e−λv e
(�−�)v − 1

�− �
= 1

�− �
(Rµf(x)− Rλf(x)).

Therefore, for all positive λ and µ,

RλRµf = 1

�− �
(Rµf − Rλf). (9.4)

2. From (9.4) it follows that

d

d�
Rλf = −R2

λf. (9.5)

3. By induction with respect to m, we can prove that

d

d�
Rmλ f = mRm−1

λ

d

d�
Rλf.

This in turn implies that

dn

d�n
Rλf = (−1)nn! Rn+1

λ f. (9.6)

4. Since

|Rλf(x)| ≤
∞∫
0

e−λt|Ttf(x)| dt ≤ ‖f‖
∞∫
0

e−λt dt = ‖f‖
�
,

we have
‖Rλ‖ ≤ 1/λ. (9.7)
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5. Since

λRλf(x) =

∞∫
0

e−tTt/λf(x) dt,

we have
lim
λ→∞

λRλf(x) = f(x).

From (9.6) and (9.3) it follows that

λnRnλf(x) = 1

(n− 1)!

∞∫
0

tn−1e−tTt/λf(x) dt,

therefore,
lim
λ→∞

λnRnλf(x) = f(x).

The (strong) infinitesimal generator L of a homogeneous diffusion X (or its
transition function P ) is defined by

Lf := lim
t↓0

Ttf − f

t

for f ∈ B(E) such that the limit exists in the norm ‖ · ‖. The set of all such f is
called the domain of L and denoted by DL.

If f ∈ DL, then Ttf ∈ DL for every t, and

LTtf = TtLf = d

dt
Ttf. (9.8)

Let f ∈ B(E). Then

ThRλf − Rλf =

∞∫
0

e−λtTt+h f dt−
∞∫
0

e−λtTt f dt

= (eλh − 1)Rλf − eλh
h∫

0

e−λtTt f dt.

This shows that

‖ThRλf − Rλf‖ ≤ (eλh − 1)‖Rλf‖+ heλh‖f‖

and that Rλf ∈ DL.
Applying the Laplace transform to (9.8), we have the following equalities:

for f ∈ DL
RλLf = λRλf − f,

for f ∈ B(E)
LRλf = λRλf − f.
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Consequently, for f ∈ B(E)

Rλf = (λI − L)−1f,

where I is the identity operator. Therefore, the infinitesimal generator L uniquely
determines the semigroup of operators {Tt, t ≥ 0}.

Let X be a solution of the stochastic differential equation:

dX(t) = σ(X(t))dW (t) + µ(X(t)) dt, X(0) = x.

Assume that σ(x) > 0 for x ∈ E and that σ, µ satisfy the Lipschitz condition.
Let C2

b (E) be the space of twice continuously differentiable functions with bounded
first and second derivatives. According to Itô’s formula, the process X(t) has the
following infinitesimal generator: for f ∈ C2

b (E)

Lf := lim
h↓0

1

h
(Thf − f) = lim

h↓0

1

h
(Exf(X(h))− f(x))

= lim
h↓0

1

h

(
Ex

{ h∫
0

f ′(X(t))(σ(X(t))dW (t) + µ(X(t))dt)

+ 1

2

h∫
0

f ′′(X(t))σ2(X(t))dt
})

= 1

2
σ2(x)f ′′(x) + µ(x)f ′(x).

Thus,

L = 1

2
σ2(x) d

2

dx2
+ µ(x) d

dx
. (9.9)

The domain of L includes the space C2
b (E).

2. Nonhomogeneous diffusions.
The case of a nonhomogeneous diffusion X(t), t ∈ [0,∞), with the transition

function P (s, x, t,D), D ∈ B(R), can be reduced to the case of a homogeneous
process by extension of the state space.

Let B+ be the σ-algebra of Borel sets on [0,∞). For G = ∆×D, where ∆ ∈ B+,
D ∈ B(R), and for s ≥ 0, t ≥ 0, x ∈ R we define

Q(t, (s, x), G) := 1I∆(s+ t)P (s, x, s+ t,D).

The measure Q(t, (s, x), ·) can be extended by standard methods to the σ-algebra
B+ × B(R). It can be verified that Q is a homogeneous transition function in the
state space E = [0,∞)×R, corresponding to the homogeneous diffusion

Y (t) = (s+ t,X(s+ t)), Y (0) = (s,X(s)).

We can now apply the theory of homogeneous diffusions. The semigroup of opera-
tors {Tt, t ≥ 0} is defined by the formula

Ttf(s, x) =
∫

[0,∞)×R

f(u, y)Q(t, (s, x), du× dy)



§ 9. SEMIGROUP OF OPERATORS RELATED TO DIFFUSION 311

=
∫
R

f(s+ t, y)P (s, x, s+ t, dy) = Es,xf(s+ t,X(s+ t)),

for f belonging to the space of bounded measurable functions on [0,∞) ×R with
the norm ‖f‖ = sup

[0,∞)×R

|f(s, x)|. Here the subscript s, x at the expectation denotes

the condition X(s) = x.
The resolvent of the semigroup of operators {Tt, t ≥ 0} is defined by the formula

Rλf(s, x) :=

∞∫
0

e−λtTtf(s, x) dt = 1

�
Es,xf(s+ τ,X(s+ τ)), (9.10)

where τ is an exponentially distributed with the parameter λ > 0 random time
independent of the diffusion X.

The infinitesimal generator L of the nonhomogeneous diffusion X is defined by
the limit

Lf := lim
t↓0

Ttf − f

t
= lim

t↓0

1

t
(Es,xf(s+ t,X(s+ t))− f(s, x)). (9.11)

Let X be a solution of the stochastic differential equation

dX(t) = σ(t,X(t))dW (t) + µ(t,X(t)) dt, X(0) = x. (9.12)

Assume that |σ(t, x)| > 0 for (t, x) ∈ [0,∞)×R and that σ, µ satisfy the Lipschitz
condition and the linear growth condition (see (7.17), (7.18) Ch. II). For a certain
class of functions, according to Itô’s formula, the process X(t) has the infinitesimal
generator

Lf = lim
h↓0

1

h
Es,x

{ s+h∫
s

(
@

@t
f(t,X(t)) + µ(t,X(t)) @

@x
f(t,X(t))

)
dt

+ 1

2

s+h∫
s

σ2(t,X(t)) @
2

@x2
f(t,X(t)) dt

}
.

Therefore,

Lf(s, x) = @

@s
f(s, x) + 1

2
σ2(s, x) @

2

@x2
f(s, x) + µ(s, x) @

@x
f(s, x).

It is clear that the main part of this operator concerns the variable x. We use for
it the special notation

L◦f = 1

2
σ2(s, x) @

2

@x2
f + µ(s, x) @

@x
f. (9.13)

Consider the following question: how does the generating operator transform
with a smooth nonrandom time change and the multiplication of the process by
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a smooth function? Suppose that a(t) and b(t), t ≥ 0 are differentiable functions,
the function b is increasing, b(0) = 0, and the function a does not vanish. Set
Y (t) := a(t)X(b(t)), t ≥ 0, where the process X satisfies (9.12). According to the
result of the nonrandom time change (see (8.8) Ch. II), the process V (t) := X(b(t))
satisfies the stochastic differential equation

dV (t) = µ
(
b(t), V (t)

)
b′(t) dt+ σ

(
b(t), V (t)

)√
b′(t) dW̃ (t), V (0) = x,

for some new Brownian motion W̃ (t), t ≥ 0. Now, applying the formula of sto-
chastic differentiation, we get

dY (t) =
(
a′(t)

a(t)
Y (t) + a(t)b′(t)µ

(
b(t), Y (t)

a(t)

))
dt+ a(t)

√
b′(t)σ

(
b(t), Y (t)

a(t)

)
dW̃ (t).

Consequently,

L◦
Y f(s, x) = 1

2
a2(s)b′(s)σ2

(
b(s), x

a(s)

)
@2

@x2
f(s, x)

+
(
a′(s)

a(s)
x+ a(s)b′(s)µ

(
b(s), x

a(s)

))
@

@x
f(s, x). (9.14)

§ 10. Transition density of a homogeneous diffusion

LetX(t), t∈ [0, T ], be a homogeneous diffusion with transition function P (t,x,∆),
∆ ∈ B(R).

A nonnegative measurable with respect to (t, x) ∈ R2 function pX(t, x, z) is
called a transition density of the process X with respect to the Lebesgue measure
if for any Borel set ∆

P (t, x,∆) =
∫
�

pX(t, x, z) dz.

In this section we consider the question of the existence of the transition den-
sity of a homogeneous diffusion. We also describe how it can be computed. The
differential problem for the transition density (forward Kolmogorov equation) is
derived. To this end we exhibit a special representation for the transition density.
The representation for the transition density of a nonhomogeneous diffusion can
be found in Gihman and Skorohod (1972).

Let X be a solution of the stochastic differential equation

dX(t) = σ(X(t)) dW (t) + µ(X(t)) dt, X(0) = x, (10.1)

where µ(x) and σ(x), x ∈ R, are continuously differentiable functions with bounded
derivatives. Assume, in addition, that σ is twice differentiable, inf

x∈R
σ(x) > 0, and

the functions µ(x)�
′(x)

�(x)
, σ′′(x)σ(x), x ∈ R, are bounded.
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We first consider the process with the diffusion coefficient equal to 1. Let Y be
a solution of the stochastic differential equation

dY (t) = dW (t) + µ̃(Y (t)) dt, Y (0) = x, (10.2)

where µ̃(x) is a differentiable function with bounded derivative, i.e., |µ̃′| ≤ C. Let
W (0) = x.

Set

ρ(t) := exp
( t∫

0

µ̃(W (s)) dW (s)− 1

2

t∫
0

µ̃2(W (s)) ds
)

= exp
( W (t)∫
W (0)

µ̃(v) dv − 1

2

t∫
0

µ̃′(W (s)) ds− 1

2

t∫
0

µ̃2(W (s)) ds
)
.

Here the second equation is satisfied due to the Itô formula.
Since for some δ > 0

sup
0≤t≤T

Eeδµ̃
2(W (t)) ≤ e3δ(µ̃

2(x)+Cx2) sup
0≤t≤T

Ee3C
2δW 2(t) <∞

(the constant C is taken from the boundedness condition for |µ̃′|), we have, by
Proposition 6.1 Ch. II, that the stochastic exponent ρ(t), t ∈ [0, T ], is a nonnegative
martingale with Eρ(t) = 1 for every t ∈ [0, T ].

According to Girsanov’s transformation (10.14) Ch. II, for any Borel set ∆, the
equality

Px(Y (t) ∈ ∆) = Ex
{
1I∆(W (t))ρ(t)

}
holds. Here the subscript x indicates that W (0) = Y (0) = x. The left-hand side
of this equality defines the transition probability of the diffusion Y . In view of
this equality, it is absolutely continuous with respect to the transition probability
of the Brownian process W , and according to the Radon-Nikodým theorem there
exists the transition density

pY (t, x, y) = d

dy
Ex
{
ρ(t);W (t) < y

}
= Ex

{
ρ(t)

∣∣W (t) = y
} 1
√
2�t

e−(y−x)2/2t.

Here we used the definition of the conditional expectation (see (2.18) and (2.19) of
Ch. I). According to (11.7) and (11.12) of Ch. I, we have

pY (t, x, y) = 1
√
2�t

e−(y−x)2/2t exp
( y∫
x

µ̃(v) dv
)

(10.3)

×Ex exp
(
− 1

2

t∫
0

(
µ̃′
(
W (s)− s

t
(W (t)− y)

)
+ µ̃2

(
W (s)− s

t
(W (t)− y)

))
ds

)
.
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Note that

pY (t, x, y) ∼ 1
√
2�t

e−(y−x)2/2t exp
( y∫
x

µ̃(v) dv
)

as t ↓ 0. (10.4)

We now consider the process X(t), t ∈ [0, T ], which is the solution of the sto-
chastic differential equation (10.1).

Set f(x) :=
x∫
0

dv

�(v)
, x ∈ R. Then f ′(x) = 1

�(x)
and f ′′(x) = − �′(x)

�2(x)
. Let

f (−1)(x), x ∈ R, be the inverse function of f . According to (8.12)–(8.14) of Ch. II,
the process Y (t) := f(X(t)), t ∈ [0, T ], is the solution of the stochastic differential
equation (10.2) with

µ̃(x) = �(f (−1)(x))

�(f (−1)(x))
− 1

2
σ′(f (−1)(x)).

Since
(
f (−1)(x)

)′ = σ(f (−1)(x)), we have

µ̃′(x) = µ′(f (−1)(x))− µ(f (−1)(x))�
′(f (−1)(x))

�(f (−1)(x))
− 1

2
σ′′(f (−1)(x))σ(f (−1)(x)).

By assumption, the derivative µ̃′ is bounded. Therefore, the process Y has the
density given by (10.3). According to formula (1.2) of Ch. I, applied to the in-
verse function instead of the original one, the random variable X(t) = f (−1)(Y (t))
has a density of the form pX(y) = pY (f(y))/σ(y). Note that if X(0) = x, then
Y (0) = f(x). Therefore, the transition density of the process X is expressed via
the transition density of the process Y by the formula

pX(t, x, y) = pY (t, f(x), f(y))/σ(y). (10.5)

Changing the variable in the integral, we have

f(y)∫
f(x)

µ̃(v) dv =

y∫
x

(
�(u)

�(u)
− 1

2
σ′(u)

)
1

�(u)
du =

y∫
x

�(u)

�2(u)
du− ln

(
�1=2(y)

�1=2(x)

)
.

Set b(x) := µ̃′(x) + µ̃2(x). From (10.3) and (10.5) it follows that

pX(t, x, y) = �1=2(x)
√
2�t �3=2(y)

exp
( y∫
x

�(u)

�2(u)
du− 1

2t

( y∫
x

du

�(u)

)2)

×Ef(x) exp
(
− 1

2

t∫
0

b

(
W (s)− s

t
(W (t)− f(y))

)
ds

)
. (10.6)
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Note that

pX(t, x, y) ∼ �1=2(x)
√
2�t �3=2(y)

exp
( y∫
x

�(u)

�2(u)
du− 1

2t

( y∫
x

du

�(u)

)2)
as t ↓ 0. (10.7)

In the expression for the density pX(t, x, y) we can choose the symmetric part, i.e.,
the function, which does not change under the permutation of the variables x and
y. We set

m(y) := 2

�2(y)
exp

( y∫
0

2�(u)

�2(u)
du

)
, (10.8)

and

p◦X(t, x, y) =
√
�(x)�(y)

2
√
2�t

exp
(
−

x∫
0

�(u)

�2(u)
du−

y∫
0

�(u)

�2(u)
du− 1

2t

( y∫
x

du

�(u)

)2)

×Ef(x) exp
(
− 1

2

t∫
0

b

(
W (s)− s

t
(W (t)− f(y))

)
ds

)
. (10.9)

Then
pX(t, x, y) = p◦X(t, x, y)m(y). (10.10)

The function p◦X(t, x, y) is symmetric with respect to the variables x and y, because
the Brownian bridge Wx,t,y(s) = W (s) − s

t
(W (t) − y), s ∈ [0, t], is time-reversible

process, i.e., the finite-dimensional distributions of the processes Wx,t,y(s) and
Wy,t,x(t − s) are coincide (see § 11 Ch.I). The function p◦X(t, x, y) is called the
transition density with respect to the speed measure, because the function m(y),
y ∈ R, is called the density of the speed measure, which will be considered in the
next section.

Let us now derive an equation for the transition density. We start with an
equation for the transition density pY (t, x, y) of the process Y . Set

h(t, y) := Ex exp
(
− 1

2

t∫
0

(
µ̃′(W (s)− s

t
(W (t)−y))+ µ̃2(W (s)− s

t
(W (t)−y))

)
ds

)
.

Suppose that the function µ̃′(x) + µ̃2(x) satisfies the conditions of Theorem 4.3
Ch. III. For this it is sufficient that the drift coefficient µ(x), x ∈ R, has three
bounded derivatives, and the diffusion coefficient σ(x), x ∈ R, has four bounded
derivatives. We apply Theorem 4.3 Ch. III. According to this result, the function
h(t, y), (t, y) ∈ (0,∞)×R, is the solution of the problem

@

@t
h(t, y) = 1

2

@2

@y2
h(t, y)− y − x

t

@

@y
h(t, y)− 1

2

(
µ̃′(y) + µ̃2(y)

)
h(t, y), (10.11)

h(+0, y) = 1. (10.12)
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Then similarly to (4.35) Ch. III, the function

q(t, y) := h(t, y) 1
√
2�t

e−(y−x)2/2t

satisfies the equation

@

@t
q(t, y) = 1

2

@2

@y2
q(t, y)− 1

2

(
µ̃′(y) + µ̃2(y)

)
q(t, y). (10.13)

Finally, the substitution p(t, y) := exp
( y∫
x

µ̃(v) dv
)
q(t, y) leads to the equation

@

@t
p(t, y) = 1

2

@2

@y2
p(t, y)− µ̃(y) @

@y
p(t, y)− µ̃′(y)p(t, y). (10.14)

As a result, we see that the transition density pY (t, x, y), expressed by the formula
(10.3), is the solution of the equation

@

@t
pY (t, x, y) = 1

2

@2

@y2
pY (t, x, y)− @

@y

(
µ̃(y)pY (t, x, y)

)
(10.15)

with the boundary condition (10.4).
Consider the process X. The substitution (10.5) leads to the equation

@

@t
pX(t, x, y) = 1

2

@2

@y2

(
σ2(y)pX(t, x, y)

)
− @

@y

(
µ(y)pX(t, x, y)

)
(10.16)

with the boundary condition (10.7).
Equation (10.16) is called (see (2.6)) the forward Kolmogorov equation.
Since

p◦X(t, x, y) = �(y)

2
exp

(
−

y∫
0

2�(u)

�2(u)
du

)
pY (t, f(x), f(y)),

using the symmetry property of this function and (10.15), it is not hard to prove
that for any fixed y the function p◦X(t, x, y) is the solution of the differential problem

@

@t
p◦X(t, x, y) = 1

2
σ2(x) @2

@x2
p◦X(t, x, y)+µ(x) @

@x
p◦X(t, x, y), t > 0, x ∈ R, (10.17)

p◦X(t, x, y) ∼ 1√
2�t�(x)�(y)m(x)m(y)

exp
(
− 1

2t

( y∫
x

du

�(u)

)2)
as t ↓ 0. (10.18)

For the diffusionX, equation (10.17) is the so-called backward Kolmogorov equation,
obtained by Kolmogorov (1931), and subsequently studied by Feller (1936).
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§ 11. Main characteristics of a homogeneous diffusion

We consider a homogeneous diffusion X(t), t ∈ [0, T ], that is the solution of the
stochastic differential equation

dX(t) = σ(X(t)) dW (t) + µ(X(t)) dt, X(0) = x. (11.1)

where the coefficients µ(x) and σ(x), x ∈ R, satisfy the conditions of § 4. Let
P (t, x,∆), ∆ ∈ B(R), be the transition function of X.

Set B(x) :=
x∫
2�(z)

�2(z)
dz. The function S(x) :=

x∫
e−B(z) dz is called the scale

function of the diffusion X. The corresponding measure S[a, b] := S(b) − S(a) is
referred to as the scale measure, and the function s(x) := e−B(x) as the density of
the scale measure.

The lack of the lower integration limit in the integral means that one considers
the antiderivative.

The function m(x) := 2eB(x)

�2(x)
is called the speed density and the measure induced

by m(x), i.e., M [c, x] := M(x) −M(c) =
x∫
c

m(y) dy, is referred to as the speed

measure of the diffusion X.

The scale measure and the speed measure are not uniquely defined. They are
defined up to an arbitrary factor. However, in formulas this lack of uniqueness is
eliminated, because the factors are reduced.

In §9 we have shown that the infinitesimal generator of the diffusion X with
drift coefficient µ and diffusion coefficient σ2 has the form

L := 1

2
σ2(x) d2

dx2
+ µ(x) d

dx
, x ∈ R. (11.2)

This differential operator can be written in the form

L = �2(x)

2
e−B(x) d

dx

(
eB(x) d

dx

)
= d

dM(x)

d

dS(x)
, (11.3)

because
d

dx

(
eB(x) d

dx
f(x)

)
= 2�(x)

�2(x)
eB(x)f ′(x) + eB(x)f ′′(x).

This form is very convenient for the detailed investigations of the differential equa-
tions related to this operator.

The domain of L consists of all continuous bounded functions in Cb(R) such that
Lf ∈ Cb(R).

Sometimes the function σ2 is called the infinitesimal variance (diffusion coeffi-
cient), µ is called the infinitesimal mean (drift coefficient), and in view of (3.11),
(3.12)

lim
t→0

1

t
Ex(X(t)− x) = µ(x),
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lim
t→0

1

t
Ex(X(t)− x)2 = σ2(x).

Notice that the scale function S is a solution of the differential equation

1

2
σ2(x) d

2

dx2
S(x) + µ(x) d

dx
S(x) = 0, (11.4)

and the density of the speed measure is a solution of the adjoint differential equation

1

2

d2

dx2
(σ2(x)m(x))− d

dx
(µ(x)m(x)) = 0.

Let Hz := inf{t : X(t) = z} be the first hitting time of z ∈ R. Then by (7.12), for
λ > 0

Exe−λHz =


 �(x)

 �(z)
, x ≤ z,

'�(x)

'�(z)
, x ≥ z,

where ϕλ and ψλ are nonnegative linearly independent solutions of the differential
equation

Lφ(x)− λφ(x) = 0, (11.5)

with ϕλ decreasing and ψλ increasing. By Proposition 6.1 with f ≡ 0, a = −∞,
b = ∞, the function

Gz(x) = d

dz
Px(X(τ) < z) = λ

∞∫
0

e−λt
d

dz
Px(X(t) < z) dt

has the form

Gz(x) =


2�

w�(z)�2(z)
ψλ(x)ϕλ(z), x ≤ z,

2�

w�(z)�2(z)
ψλ(z)ϕλ(x), z ≤ x,

(11.6)

where wλ(z) = ψ′λ(z)ϕλ(z)− ψλ(z)ϕ′λ(z) is the Wronskian of these solutions.

The function p(t, x, z) := d

dz
Px(X(t) < z) is the transition density with respect

to the Lebesgue measure, because for any Borel set ∆ we have

P (t, x,∆) =
∫
∆

p(t, x, z) dz,

where P (t, x,∆) is the transition function of the diffusion X.
The function

w◦
λ := d �(x)

dS(x)
ϕλ(x)− ψλ(x)

d'�(x)

dS(x)

is a constant independent of x. Indeed, by (11.3),

d

dM(x)
w◦
λ = Lψλ(x)ϕλ(x) + d �(x)

dS(x)

d'�(x)

dM(x)
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− d �(x)

dM(x)

d'�(x)

dS(x)
− ψλ(x) Lϕλ(x) = 0.

It is clear that w◦
λ = eB(x)wλ(x). Therefore, 2

w�(z)�2(z)
= m(z)

w◦�
. We introduce the

Green function of the diffusion X as

G◦
λ(x, z) := 1

�m(z)
Gz(x) =


1

w◦�
ψλ(x)ϕλ(z), x ≤ z,

1

w◦�
ψλ(z)ϕλ(x), z ≤ z.

(11.7)

This function is symmetric with respect to x, z. If we consider p◦(t, x, z), the
transition density with respect to the speed measure, i.e., p(t, x, z) = p◦(t, x, z)m(z),
then

G◦
λ(x, z) :=

∞∫
0

e−λtp◦(t, x, z)dt.

This implies that p◦(t, x, z) is a symmetric function with respect to x, z.

The finite speed measure M is easily seen to be a stationary (or equilibrium or
invariant) measure, because it satisfies for all t and ∆ ∈ B(R) the equality∫

R

P (t, x,∆)M(dx) = M(∆).

Indeed, using the symmetry property of p◦, we have∫
R

P (t, x,∆)M(dx) =
∫
R

∫
∆

p◦(t, x, z)M(dz)M(dx)

=
∫
∆

∫
R

p◦(t, z, x)M(dx)M(dz) =
∫
∆

M(dz) = M(∆).

§ 12. Recurrence and explosion criteria for a homogeneous diffusion

1. Recurrence criterion.
Let X be a solution of the stochastic differential equation

dX(t) = σ(X(t))dW (t) + µ(X(t)) dt, X(0) = x, (12.1)

where µ(x) and σ(x), x ∈ R, satisfy the following conditions.
For each N > 0, there exists a constant KN such that for all x, y ∈ [−N,N ]

|σ(x)− σ(y)|+ |µ(x)− µ(y)| ≤ KN |x− y|, (12.2)
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and there exists a constant K, such that for all x ∈ R

|σ(x)|+ |µ(x)| ≤ K(1 + |x|). (12.3)

We also assume that σ(x) > 0 for x ∈ R.

Let Hz = min{s : X(s) = z} be the first hitting time of the level z. A diffusion
X is called regular if Px(Hz <∞) > 0 for every x, z ∈ R. A diffusion X is said to
be recurrent if Px(Hz <∞) = 1 for every x, z ∈ R. As already mentioned,

Px(Hz <∞) = lim
λ→0

Ex(e−λHz ).

A diffusion that is not recurrent is called transient.
A recurrent diffusion is called null recurrent if Ex(Hz) = ∞ for all x, z ∈ R, and

positively recurrent if Ex(Hz) <∞ for all x, z ∈ R.
Consider the scale function of the diffusion X,

S(x) =

x∫
0

exp
(
−

y∫
0

2�(v)

�2(v)
dv

)
dy, x ∈ R,

and the density of the speed measure

m(x) = 2

�2(x)
exp

( x∫
0

2�(v)

�2(v)
dv

)
.

Proposition 12.1. The condition

S(x) → ±∞ as x→ ±∞ (12.4)

is necessary and sufficient for the diffusion X to be recurrent.

Proof. Indeed, according to (12.38) Ch. II, the exit probabilities of the diffusion
X across the boundaries of the interval [a, b] have the form

Px(X(Ha,b) = a) = S(b)− S(x)

S(b)− S(a)
, Px(X(Ha,b) = b) = S(x)− S(a)

S(b)− S(a)
.

If x < z, then

Px(Hz <∞) = lim
a→−∞

Px(X(Ha,z) = z) = lim
a→−∞

S(x)− S(a)

S(z)− S(a)
= 1.

Analogously, if z < x, then

Px(Hz <∞) = lim
b→∞

Px(X(Hz,b) = z) = lim
b→∞

S(b)− S(x)

S(b)− S(z)
= 1.

�
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Proposition 12.2. Let m be the density of the speed measure of a diffusion.
If

∞∫
−∞

m(y) dy <∞, (12.5)

then the recurrent diffusion is positively recurrent.
If

0∫
−∞

m(y) dy = ∞ and

∞∫
0

m(y) dy = ∞, (12.6)

then the recurrent diffusion is null recurrent.

Proof. From (12.39) Ch. II and (12.4) it follows that for x ≤ z

ExHz =

z∫
x

(S(z)− S(y))m(y) dy + (S(z)− S(x)) lim
a→−∞

x∫
a

S(y)− S(a)

S(z)− S(a)
m(y) dy,

and for x ≥ z

ExHz =

x∫
z

(S(y)− S(z))m(y) dy + (S(x)− S(z)) lim
b→∞

b∫
x

S(b)− S(y)

S(b)− S(z)
m(y) dy.

If (12.5) holds, then for any given ε > 0 we can choose C > 0 such that

−C∫
−∞

m(y) dy < ε,

∞∫
C

m(y) dy < ε.

Representing the integrals under the limit signs as sums of the integrals over the
intervals (a,−C), [−C, x] and [x,C], (C, b), respectively, and taking into account
that the integrands are uniformly bounded and converge to 1, we obtain

ExHz =



z∫
x

(S(z)− S(y))m(y) dy + (S(z)− S(x))
x∫

−∞

m(y) dy, for x ≤ z,

x∫
z

(S(y)− S(z))m(y) dy + (S(x)− S(z))
∞∫
x

m(y) dy, for z ≤ x.

Let (12.6) holds. Then for a fixed x and an arbitrarily large B > 0 we can choose
C > 0 such that

x∫
−C

m(y) dy > B,

C∫
x

m(y) dy > B. (12.7)
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Therefore,

ExHz >



z∫
x

(S(z)− S(y))m(y) dy + (S(z)− S(x))B, for x ≤ z,

x∫
z

(S(y)− S(z))m(y) dy + (S(x)− S(z))B, for x ≤ z.

Consequently, Ex(Hz) = ∞ for all x, z ∈ R. �

For the Brownian motion W (t), t ≥ 0, we have S(x) = x, m(x) ≡ 2, x ∈ R.
Therefore, W is a null recurrent diffusion.

For the Ornstein-Uhlenbeck process U(t) := σe−γtW
(
e2t − 1

2

)
, t ≥ 0, γ > 0

(see Subsection 4 of § 16), we have S(x) =
x∫
0

eγy
2/σ2

dy, m(x) = 2

�2
e−γx

2/σ2
, x ∈ R.

Therefore, U is a positively recurrent diffusion.

2. Explosion criterion.
For a diffusion X(t), t ≥ 0, a random moment e is an explosion time if lim

t↑e
X(t) =

∞ or lim
t↑e

X(t) = −∞ and P(e <∞) > 0. In this case we say that explosion occurs.

Suppose the restrictions (12.3) on the linear growth of the coefficients of the
stochastic differential equation (12.1) hold. Then according to Theorem 7.3 Ch. II,
there is a unique solution of (12.1) defined for all time moments. Therefore there
is no explosion.

Now suppose that condition (12.3) is not satisfied, but nevertheless equation
(12.1) has a solution.

Example 12.1. Let W be a Brownian motion process, W (0) = x, and let
H−π/2,π/2 be the first exit time through the boundary of the interval [−π/2, π/2].
This moment is finite with probability one. Then the diffusion X(t) := tan(W (t)),
t ≥ 0, obviously explodes as t→ H−π/2,π/2. By Itô’s formula, the process X is the
solution of the equation
dX(t) = (1 +X2(t)) dW (t) +X(t)(1 +X2(t)) dt, X(0) = tanx. (12.8)

For this equation, condition (12.3) fails.

Consider the diffusion in natural scale, when the drift coefficient equals zero, i.e.,
the diffusion Y (t) = S(X(t)). The function S(x) is the solution of equation (11.4).
Assume it satisfies the boundary conditions

S(0) = 0, S′(0) = 1. (12.9)
Set

g(x) := σ(S(−1)(x))S′(S(−1)(x)), (12.10)
where S(−1) is the inverse function. Then according to Itô’s formula, the process
Y (t) = S(X(t)), t ≥ 0, has the stochastic differential

dY (t) = S′(X(t))
(
σ(X(t)) dW (t) + µ(X(t)) dt

)
+ 1

2
S′′(X(t))σ2(X(t)) dt

= S′(X(t))σ(X(t)) dW (t) = g(Y (t))dW (t). (12.11)
Therefore it is a diffusion with mean zero and diffusion coefficient g2(x).

The following result of W. Feller is a test for explosion.
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Theorem 12.1. Let X be a solution of (12.1) and let the function g be defined
by (12.10). Then explosion is impossible (P(e = ∞) = 1) if

lim
n→∞

S(n)∫
0

dy

y∫
0

dv

g2(v)
= ∞ (12.12)

and

lim
n→∞

0∫
S(−n)

dy

0∫
y

dv

g2(v)
= ∞ (12.13)

simultaneously.
If one of these limits is finite, then there is the explosion, i.e., P(e <∞) > 0.

Corollary 12.1. If S(x) → ±∞ as x → ±∞, i.e., the diffusion is recurrent,
then there is no explosion.

Proof of Theorem 12.1. Let φ(x), x ∈ R, be a positive even convex solution of
the differential equation

1

2
g2(x)φ′′(x)− φ(x) = 0, φ(0) = 1. (12.14)

For x ≥ 0 the function φ can be represented as

φ(x) =
∞∑
n=0

φn(x), φ0(x) ≡ 1,

where the functions φn satisfy the relations

φ′′n+1(x) = 2�n(x)

g2(x)
, φn+1(0) = 0, φ′n+1(0) = 0, n ≥ 0.

Then

φn+1(x) = 2

x∫
0

dy

y∫
0

�n(v)

g2(v)
dv = 2

x∫
0

x− v

g2(v)
φn(v) dv.

The inequalities
1 + φ1(x) ≤ φ(x) ≤ eφ1(x) (12.15)

hold, where

φ1(x) = 2
x∫
0

dy

y∫
0

dv

g2(v)
= 2

x∫
0

x− v

g2(v)
dv.

In (12.15) the left inequality is obvious. To verify the right one, we will prove the

estimate φn(x) ≤
(�1(x))n

n!
by induction on n. Indeed, assuming that this estimate

holds for n, we have

φn+1(x)≤
2n+1

n!

x∫
0

x− v

g2(v)

( v∫
0

v − u

g2(u)
du

)n
dv≤ 2n+1

n!

x∫
0

( v∫
0

x− u

g2(u)
du

)n
d

( v∫
0

x− u

g2(u)
du

)
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= 2n+1

(n+ 1)!

( x∫
0

x− u

g2(u)
du

)n+1

= 1

(n+ 1)!
φn+1

1 (x).

This implies (12.15).
The remaining part of the proof of Theorem 12.1 uses a special technique. Ap-

plying Itô’s formula and (12.11), we obtain

e−rφ(Y (r))− φ(S(x)) = −
r∫

0

e−tφ(Y (t)) dt+

r∫
0

e−tφ′(Y (t)) dY (t)

+

r∫
0

e−t

2
g2(Y (t))φ′′(Y (t)) dt =

r∫
0

e−tφ′(Y (t))g(Y (t)) dW (t). (12.16)

Let H−n,n := inf{t : |X(t)| = n}. Since for t ≤ H−n,n the random functions(
φ′(S(X(t)))

)2 and g2(S(X(t))) are bounded, we have

Ex

H−n,n∫
0

e−2t
(
φ′(S(X(t)))g(S(X(t)))

)2
dt <∞.

Therefore, we can compute the expectation of the stochastic integral in (12.16)
with r replaced by the stopping time H−n,n. This yields

Ex
{
e−H−n,nφ(S(X(H−n,n)))

}
− φ(S(x))

= Ex

∞∫
0

1I{t<H−n,n}e
−tφ′(S(X(t)))g(S(X(t))) dW (t) = 0,

and so
Ex
{
e−H−n,nφ(S(X(H−n,n)))

}
= φ(S(x)). (12.17)

Since P(X(H−n,n) = n) + P(X(H−n,n) = −n) = 1, equation (12.17) can be
rewritten in the form

φ(S(n))Ex
{
e−H−n,n ;X(H−n,n) = n

}
+φ(S(−n))Ex

{
e−H−n,n ;X(H−n,n) = −n

}
= φ(S(x)). (12.18)

Conditions (12.12), (12.13) mean that φ1(S(n)) → ∞, φ1(S(−n)) → ∞. Inequal-
ities (12.15) imply that φ(S(n)) → ∞, φ(S(−n)) → ∞. For every fixed x from
(12.18), it follows that Px( lim

n→∞
H−n,n = ∞) = 1 and, consequently, there is no

explosion.
Assume now that one of the limits (12.12), (12.13) is finite. Let, for example,

lim
n→∞

φ1(S(n)) < ∞. Then by (12.15), lim
n→∞

φ(S(n)) < ∞. Set H0,n = inf{t :

X(t) 6∈ [0, n]}. Similarly to (12.17), for 0 < x < n we have

Ex
{
e−H0,nφ(S(X(H0,n)))

}
= φ(S(x)).
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Set e := lim
n→∞

H0,n. Since φ(S(0)) = φ(0) = 1 and φ(x) > 1, we have

1 < φ(S(x)) = lim
n→∞

Ex
{
e−H0,nφ(S(X(H0,n)))

}
= lim
n→∞

(
φ(S(n))Ex

{
e−H0,n ;X(H0,n) = n

}
+ φ(S(0))Ex

{
e−H0,n ;X(H0,n) = 0

})
≤ lim
n→∞

φ(S(n))Ex
{
e−e; lim

n→∞
X(H0,n) = ∞

}
+ 1.

Therefore, Ex
{
e−e; lim

n→∞
X(H0,n) = ∞

}
> 0 or Px(e = ∞) < 1. Thus e is an

explosion time. �

Example 12.2. Consider the Brownian motion with linear drift, i.e., the process
W (µ)(t) = µt+W (t), µ 6= 0. It is a homogeneous diffusion with drift coefficient µ
and diffusion coefficient 1.

The scale function of this process is S(x) = 1− e−2�x

2�
. Consider, for example, the

positive drift µ > 0. Obviously, lim
x→∞

S(x) = 1

2�
. Therefore, W (µ) is nonrecurrent.

The Brownian motion with linear drift W (µ) is a diffusion without explosion.
Indeed, S(−1)(x) = − ln(1− 2�x)

2�
, S′(S(−1)(x)) = 1− 2µx for x < 1/2µ, and hence,

1

2
φ1(S(n)) =

(1−e−2µn)/2µ∫
0

dy

y∫
0

dv

(1− 2�v)2

=

(1−e−2µn)/2µ∫
0

1

2�

(
1

1− 2�v
− 1
)
dy = 1

2�

(
n− 1− e−2�n

2�

)
→∞.

Analogously,

1

2
φ1(S(−n)) =

0∫
(1−e2µn)/2µ

dy

0∫
y

dv

(1− 2�v)2
= 1

2�

(
e2�n − 1

2�
− n

)
→∞.

By Theorem 12.1, there is no explosion.

§ 13. Random time change

Let X(t), t ≥ 0, be a solution of the stochastic differential equation

dX(t) = µ(X(t)) dt+ σ(X(t)) dW (t), X(0) = x, (13.1)

with differentiable coefficients µ and σ. Suppose that σ(x) > 0, x ∈ R. Let g(x),
x ∈ R, be a twice continuously differentiable function with g′(x) 6= 0 for all x ∈ R.
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Then the function g has an inverse g(−1)(x), x ∈ g(R). We also assume that there

exists the bounded derivative
(
�(x)

�2(x)

)′
, x ∈ R, and

lim inf
y→∞

1

y

y∫
0

(g′(x))2 dx > 0, lim inf
y→∞

1

y

0∫
−y

(g′(x))2 dx > 0.

Under these conditions, according to Corollary 12.1 Ch. II,

∞∫
0

(
g′(X(s))σ(X(s))

)2
ds = ∞ a.s.

Consider the integral functional

A(t) :=

t∫
0

(
g′(X(s))σ(X(s))

)2
ds, t ∈ [0,∞),

and define the inverse process:

at := min
{
s : A(s) = t

}
, t ∈ [0,∞).

Under the above conditions, at is a.s. finite for any t ≥ 0. Since A(t), t ≥ 0, is a
strictly increasing function, α0+ = 0.

Theorem 13.1. The process

X̃(t) := g
(
X(at)

)
, t ∈ [0,∞), (13.2)

is a diffusion with σ(x) = 1 and µ̃(x) = D(g(−1)(x)), where

D(x) := g′′(x)

2(g′(x))2
+ �(x)

g′(x)�2(x)
. (13.3)

Remark 13.1. For g(x) = S(x), we obtain (see (11.4)) that D(x) ≡ 0 and that
X̃(t) is a Brownian motion.

Proof of Theorem 13.1. Indeed, by Itô’s formula, for any r > 0

g(X(r))− g(x) =

r∫
0

g′(X(s))σ(X(s)) dW (s) +

r∫
0

g′(X(s))µ(X(s)
)
ds

+ 1

2

r∫
0

g′′(X(s))σ2(X(s)) ds.
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Replacing r by at, we get

X̃(t)− X̃(0) =

at∫
0

g′(X(s))σ(X(s)) dW (s) +

at∫
0

(
g′(X(s))σ(X(s))

)2
D(X(s)) ds.

Since at is the inverse of A(t), t ≥ 0, and A′(t) =
(
g′(X(t))σ(X(t))

)2, we have

a′t = 1

A′(at)
= 1(

g′(X(at))�(X(at))
)2 .

By Lévy’s theorem (see Theorem 8.1 Ch. II), the process

W̃ (t) :=

at∫
0

g′(X(s))σ(X(s)) dW (s), t ∈ [0,∞),

is a Brownian motion. Consequently,

X̃(t)− X̃(0) = W̃ (t) +

t∫
0

(
g′(X(as))σ(X(as))

)2
D(X(as)) das

= W̃ (t) +

t∫
0

µ̃(X̃(s)) ds.

�

We can prove Theorem 13.1 in a different way, with the help of Theorem 5.1.
Let Φ(x) and f(x), x ∈ R, be continuous functions. Assume that Φ is bounded

and f is nonnegative. Then, by Theorem 5.1, the function

V (x) := Ex

{
Φ(X(aτ )) exp

(
−

aτ∫
0

f(X(s)) ds
)}

, x ∈ R,

is the unique bounded solution of the equation

1

2
V ′′(x) + �(x)

�2(x)
V ′(x)−

(
λ
(
g′(x)

)2 + f(x)

�2(x)

)
V (x) = −λ

(
g′(x)

)2
Φ(x). (13.4)

Changing the variable by
Q(x) := V (g(−1)(x)), (13.5)

we see that the function Q(x), x ∈ R, satisfies the equation

1

2
Q′′(x)+µ̃(x)Q′(x)−

(
λ+ f(g(−1)(x))(

g′(g(−1)(x))�(g(−1)(x))
)2)Q(x) = −λΦ(g(−1)(x)). (13.6)
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According to Theorem 4.1, the solution of (13.6) has the probabilistic expression

Q(x) = Ex

{
Φ(g(−1)(X̃(τ))) exp

(
−

τ∫
0

f(g(−1)(X̃(s)))(
g′(g(−1)(X̃(s))�(g(−1)(X̃(s))

)2 ds
)}

,

where the diffusion X̃(t) is determined by the coefficients µ̃(x) and σ(x) = 1.
To clarify the connection between the processes X(t) and X̃(t), we transform the
function V (g(−1)(x)) as follows:

V (g(−1)(x)) : = Eg(−1)(x)

{
Φ(X(aτ )) exp

(
−

τ∫
0

f(X(as)) das

)}

= Eg(−1)(x)

{
Φ(X(aτ )) exp

(
−

τ∫
0

f(X(as))(
g′(X(as)�(X(as))

)2 ds
)}

.

We compare the expressions obtained for the two sides of equality (13.5) in terms
of the expectations of the corresponding variables. Since the functions Φ and f are
arbitrary, we conclude that the processes X(at) and g(−1)(X̃(t)) are identical in law.
We note that in the proof of Theorem 13.1, the application of Lévy’s theorem gave
us the equality X(at) = g(−1)(X̃(t)), which does not follow from the arguments
given above. However, in the study of distributions of functionals, this equality
is not important, because the coincidence of the finite-dimensional distributions of
the processes is sufficient.

§ 14. Diffusion local time

Let X be a solution of the stochastic differential equation

dX(t) = σ(X(t))dW (t) + µ(X(t)) dt, X(0) = x, (14.1)

where µ(x) and σ(x), x ∈ R, are continuous functions satisfying the Lipschitz
condition, and |σ(x)| > 0.

Let Y (t) := S(X(t)) be the process in natural scale, where S(x), x ∈ R, is the
scale of the diffusion X. We use this name for the process Y , because its scale
is identically equal to x. Indeed, this process satisfies the stochastic differential
equation (12.11) and its drift coefficient is equal to zero.

The definition of the local time of a random process was given in § 5 Ch. II.
In order to identify the local time with the corresponding process, we append the
process as a subscript to the local time. If the process Y (t), t ≥ 0, has the local
time, i.e., a.s. for all (t, y) ∈ [0,∞)×R there exists the limit (see (5.3) Ch. II)

`Y (t, y) = lim
ε↓0

1

"

t∫
0

1I[y,y+ε)(Y (v)) dv,
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then the process X(t), t ≥ 0, also has a local time, namely

`X(t, y) = lim
ε↓0

1

"

t∫
0

1I[y,y+ε)(X(v)) dv = lim
ε↓0

1

"

t∫
0

1I[y,y+ε)(S(−1)(Y (v))) dv

= lim
ε↓0

1

"

t∫
0

1I[S(y),S(y)+S′(y)ε)(Y (v)) dv = S′(y) lim
δ↓0

1

�

t∫
0

1I[S(y),S(y)+δ)(Y (v)) dv

= S′(y)`Y (t, S(y)). (14.2)

If there exists the bounded derivative
(
�(x)

�2(x)

)′
, x ∈ R, and

lim inf
y→∞

1

y

y∫
0

exp
(
− 4

z∫
0

�(v)

�2(v)
dv

)
dz > 0, lim inf

y→∞

1

y

0∫
−y

exp
(

4

0∫
z

�(v)

�2(v)
dv

)
dz > 0,

then for the integral functional

A(t) :=

t∫
0

σ2(X(s))
(
S′(X(s))

)2
ds, t ∈ [0,∞),

we have (see (5.3)) the equality A(∞) = ∞ a.s. Under these assumptions, the
random moment

at := min
{
s : A(s) = t

}
, t ∈ [0,∞),

is a.s. finite and, according to Remark 13.1, the process W̃ (t) := S(X(αt)), t ≥ 0,
is a Brownian motion.

The process Y (in the natural scale) can now be written as Y (t) = W̃ (A(t)),
t ≥ 0, and hence

X(t) = S(−1)(W̃ (A(t))). (14.3)

Let the function g(x), x ∈ R, be defined by (12.10). Then A′(t) = g2(W̃ (A(t))).
Therefore,

`Y (t, y) = lim
ε↓0

1

"

t∫
0

1I[y,y+ε)(Y (v)) dv = lim
ε↓0

1

"

t∫
0

1I[y,y+ε)(W̃ (A(v))) dv

= lim
ε↓0

1

"

A(t)∫
0

1

A′(�u)
1I[y,y+ε)(W̃ (u)) du =

A(t)∫
0

1

A′(�u)
`
W̃

(du, y)

=

A(t)∫
0

1

g2(W̃ (u))
`
W̃

(du, y) = 1

g2(y)
`
W̃

(A(t), y).
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The Brownian local time exists (see § 5 Ch. II) and consequently the local time
`Y (t, y) also exists. In the last equality we used the fact that for any fixed y the
local time `

W̃
(u, y), u ≥ 0, increases only on the set {u : W̃ (u) = y}.

Now, taking into account (14.2), we finally get

`X(t, y) = S′(y)`Y (t, S(y)) = S′(y)

g2(S(y))
`
W̃

(A(t), S(y))

= m(y)

2
`
W̃

(A(t), S(y)), (14.4)

where m is the density of the speed measure of the diffusion X.
Consider the local time with respect to the speed measure M . To distinguish it

from the local time with respect to the Lebesgue measure, we denote it by L. Then

LX(t, y) := lim
ε↓0

1

M [y; y + ")

t∫
0

1I[y,y+ε)(X(s)) ds

= 1

m(y)
lim
ε↓0

1

"

t∫
0

1I[y,y+ε)(X(s)) ds = 1

m(y)
`X(t, y). (14.5)

Since the density of the speed measure for a Brownian motion equals 2, (14.4) and
(14.5) imply that

LX(t, y) = L
W̃

(A(t), S(y)). (14.6)

§ 15. Boundary classification for regular diffusion

In this section we consider a homogeneous diffusion X(t), t ≥ 0. Let the state
space of the process X be a finite or infinite interval I of the form [l, r], (l, r], [l, r)
or (l, r), where −∞ ≤ l < r ≤ ∞.

Let the drift coefficient µ(x) and the diffusion coefficient σ2(x), x ∈ I, be contin-
uous functions, and inf

x∈(l,r)
σ(x) > 0. Assume that for any subinterval [ln, rn] ∈ (l, r)

there exists a constant Kn such that

|µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ Kn|x− y|, x, y ∈ [ln, rn].

Let ln ↓ l and rn ↑ r. Consider two sequences of functions µn(x) and σn(x),
x ∈ R, satisfying Theorem 7.3 of Ch. II such that µn(x) = µ(x), σn(x) = σ(x) for
x ∈ [ln, rn]. By Theorem 7.3 of Ch. II, there exist a unique strong solution of the
stochastic differential equation

dXn(t) = µn(Xn(t)) dt+ σn(Xn(t)) dW (t), Xn(0) = X(0).

Let Hn = inf{s : Xn(s) 6∈ [ln, rn]} if the set {s : Xn(s) 6∈ [ln, rn]} is not empty, and
let Hn = ∞ otherwise. By Theorem 7.2 of Ch. II, for m > n the processes Xm(t)
and Xn(t) coincide for t ∈ [0,Hn] and Hm ≥ Hn. It is clear that for t < Hn,

µn(Xn(t)) = µ(Xn(t)), σn(Xn(t)) = σ(Xn(t)).
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Set H := sup
n
Hn. Since for m > n, the process Xm is the continuation of the

process Xn, we can set X(t) := Xn(t) for t ≤ Hn, n = 1, 2, . . . . It is clear that
X(t) for t < H is the solution of the stochastic differential equation

dX(t) = µ(X(t)) dt+ σ(X(t)) dW (t). (15.1)

We refer to the process X(t), t < H, as the solution of (15.1) in the interval (l, r).
The moment H is the first exit time of this process through the boundary of the
interval. If H = ∞, then X(t) is determined for all t > 0 and the boundaries do
not influence the behavior of the process. Otherwise, this behavior depends on the
infinitesimal parameters µ(x) and σ2(x) as functions of x ∈ (l, r). Our aim is to
describe the behavior of the diffusion X at the boundaries l and r.

Let Hz := inf{s : X(s) = z} be the first hitting time of the level z by the process
X. If the level z is not attained, we set Hz = ∞.

Similarly to processes whose state space is the whole real line, the diffusion X
is called regular if for all l < x < r, l < y < r

Px(Hy <∞) > 0.

In other words, every point from interior of the interval I can be attained with
some positive probability from an arbitrary different point from the interior of I.

For simplicity we can assume that l < 0 < r; otherwise, in place of 0 one can
take an arbitrary interior point of (l, r). Then we can set

S(x) :=

x∫
0

exp
(
−

y∫
0

2�(v)

�2(v)
dv

)
dy, x ∈ (l, r),

for the scale function and set

m(x) := 2

�2(x)
exp

( x∫
0

2�(v)

�2(v)
dv

)
, x ∈ (l, r),

for the density of the speed measure (dM(x) = m(x) dx).

A very important role is played (see § 11) by the differential operator

L := 1

2
σ2(x) d2

dx2
+ µ(x) d

dx
= d

dM(x)

d

dS(x)
.

This operator is called the infinitesimal generator of the diffusion X with drift
coefficient µ and diffusion coefficient σ2.

For a bounded function F , we consider the differential equation

1

2
σ2(x)U ′′(x) + µ(x)U ′(x) = −F (x),

(
d

dM(x)

d

dS(x)
U(x) = −F (x)

)
. (15.2)
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Using the right-hand side expression, we have

d

dS(x)
U(x) = c1 −

x∫
a

F (z) dM(z),

where c1 and a ∈ (l, r) are some constants. Integrating with respect to dS(x), we
obtain

U(x) = c1(S(x)− S(a))−
x∫
a

dS(y)

y∫
a

F (z) dM(z) + c2. (15.3)

For [a, b] ⊆ I denote

Ha,b := inf{s : X(s) 6∈ (a, b)} = min{Ha,Hb},

which is the first exit time from the interval (a, b). We compute the expectation
of the first exit time, i.e., ExHa,b. We have already discussed this formula without
proof (see (12.39) Ch. II). We next verify that ExHa,b is the solution of the corre-
sponding differential problem. To do this we apply Theorem 7.1 with the functions
f ≡ 0, F ≡ 1, and Φ ≡ 0. By this theorem, the function Q(x) := ExHa,b, x ∈ [a, b],
is the solution of the problem

1

2
σ2(x)Q′′(x) + µ(x)Q′(x) = −1, (15.4)

Q(a) = 0, Q(b) = 0. (15.5)

From (15.3) with F ≡ 1 it follows that

Q(x) = S(x)− S(a)

S(b)− S(a)

b∫
a

M [a, y] dS(y)−
x∫
a

M [a, y] dS(y). (15.6)

One can write (15.6) in a symmetric form. Splitting the first integral into two
integrals and using the integration by parts formula, we have

ExHa,b = S(x)− S(a)

S(b)− S(a)

b∫
x

M [a, y] dS(y)− S(b)− S(x)

S(b)− S(a)

x∫
a

M [a, y] dS(y)

= S(b)− S(x)

S(b)− S(a)

x∫
a

(S(y)− S(a)) dM(y) + S(x)− S(a)

S(b)− S(a)

b∫
x

(S(b)− S(y)) dM(y)

= S(b)− S(x)

S(b)− S(a)
Σ[a, x] + S(x)− S(a)

S(b)− S(a)
N [x, b], (15.7)

where we did set

Σ[a, x] :=

x∫
a

(S(y)− S(a)) dM(y), N [x, b] :=

b∫
x

(S(b)− S(y)) dM(y).
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We focus our attention on the lower boundary l, the treatment of the upper
boundary being completely similar.

Since S(a) is a monotone function of a, one can set S(l+) := lim
a↓l

S(a). Also,

we can set Hl+ := lim
a↓l

Ha, where the limit is less than or equal to infinity. Let

us check that Hl+ = Hl. Since Ha ≤ Hl for x ∈ (a, b), we have Hl+ ≤ Hl.
If Hl+ = ∞, then Hl = ∞. Assume that Hl+ < ∞. By the continuity of X,
X(Hl+) = lim

a↓l
X(Ha) = lim

a↓l
a= l > −∞. Hence, Hl+ ≥ Hl = inf{s ≥ 0 : X(s) = l}.

Note that Hl = ∞ if l is not a state point of X.
The following assertion is a direct consequence of the formula for the exit prob-

ability of the diffusion through the upper boundary of an interval (see (12.38)
Ch. II).

Proposition 15.1. Suppose that S(l+) > −∞. Then Px(Hl+ < Hb) > 0 for
all l < x < b < r.

Suppose that S(l+) = −∞. Then Px(Hl+ < Hb) = 0 for all l < x < b < r.

The boundary l is said to be attractive if S(l+) > −∞.

Consider an attractive boundary l, i.e., the case S(l+) > −∞. The follow-
ing question arises: when is the boundary attainable in a finite expected time?
According to (15.7), for arbitrary b ∈ (l, r) the inequality

lim
a↓l

ExHa,b <∞ (15.8)

holds if and only if
Σ(l) := lim

a↓l
Σ[a, x] <∞. (15.9)

In the notation for Σ(l) we omit the argument x, because this quantity is finite or
infinite for all x ∈ (l, r) simultaneously and for us only this fact will be important.

It is clear that

Σ(l) =

x∫
l

(S(y)− S(l+)) dM(y) =
∫

l<z<y<x

dS(z) dM(y). (15.10)

The boundary l is said to be attainable if Σ(l) <∞, and unattainable if Σ(l) = ∞.

Proposition 15.2. Let l be an attractive boundary. Then it is attainable iff
Px(Hl <∞) > 0.

Proof. We prove only the direct implication. We have

Ex min{Hl,Hb} = Ex min{Hl+,Hb} = ExHl+,b.

Since l is attainable, by (15.7), ExHl+,b <∞ and consequently min{Hl,Hb} <∞
a.s. Then Hl 6= Hb, because one of this moments is finite and the diffusion at this
moment takes the corresponding value. Since l is attractive, Px(Hl < Hb) > 0 and

Px(Hl <∞) ≥ Px(Hl < Hb) > 0.

�
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Next we introduce the quantities M(l, b] := lim
a↓l

M [a, b] and

N(l) :=

x∫
l

M(l, y] dS(y) =
∫

l<z<y<x

dM(z) dS(y).

The quantity M(l, b] measures the speed of the diffusion near the boundary l.

For the lower boundary l, the modern classification of boundary behavior of
the diffusion is based on four quantities S(l+), Σ(l), N(l) and M(l, b], specifically,
on whether they are finite or infinite. We give here a description of the boundary
classification without rigorous justification (see, for example, Itô (1963)).

For a complete characterization of the diffusion X, the behavior at the boundary
must be specified and this can be done by assigning a meaning to the speed measure
M{l} at the boundary itself. The behavior can be range from absorbtion (M{l} =
∞) to reflection (M{l} = 0).

If the diffusion can both enter and leave the boundary, then the boundary is
called regular. The boundary l is regular iff Σ(l) <∞ and N(l) <∞.

To establish that the boundary l is regular, it suffices to check that S(l+) > −∞
and M(l, b] <∞ for some b ∈ (l, r).

The boundary l is an exit boundary if for all t > 0

lim
b↓l

lim
x↓l

Px(Hb < t) = 0.

This means that starting at l, or starting at an initial point that approaches l,
the diffusion cannot attains any interior state b no matter how near b is to l. The
boundary l is exit iff Σ(l) <∞ and N(l) = ∞.

To establish that l is an exit boundary, it suffices to check that Σ(l) < ∞ and
M(l, b] = ∞.

The entrance boundary cannot be attained from a point of the interior of the
state space. At the same time, one can consider the diffusion starting from this
boundary. Such a diffusion moves to the interior and never returns to the entrance
boundary. The boundary l is an entrance boundary iff Σ(l) = ∞ and N(l) <∞.

To establish that l is an entrance boundary, it suffices to check that S(l+) = −∞
and N(l) <∞.

A boundary which is neither an entrance one, nor an exit one is called natural.
A natural boundary cannot be attained in finite time and the diffusion does not
start from this boundary. Therefore, this boundary does not belong to the state
space of the diffusion. The boundary l is natural iff Σ(l) = ∞ and N(l) = ∞.

To establish that the boundary l is natural, it suffices to check that S(l+) = −∞
and M(l, b] = ∞.

The analogous criteria for the upper boundary r are based on the quantities

S(r−) := lim
b↑r

S(b), M [a, r) := lim
b↑r

M [a, b],
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Σ(r) :=

r∫
x

(S(r−)− S(y)) dM(y) =
∫

x<y<z<r

dS(z) dM(y),

and

N(r) :=

r∫
x

M [y, r) dS(y) =
∫

x<y<z<r

dM(z) dS(y).

Exercises.

15.1. Consider a diffusion X(t), t ≥ 0, with the state space (0,∞), the drift
coefficient µ(x) = αxp−1, and the diffusion coefficient σ2(x) = βxp, where 1 ≤ p,
β > 0, −∞ < α <∞.

Classify the boundaries 0 and ∞ in terms of p, α, β.

15.2. A diffusion X(t), t ≥ 0, with the state space (0,∞) used in a population
growth model is characterized by the drift µ(x) = αx and the diffusion coefficient
σ2(x) = βx + γx2. Classify the boundary 0 under the various assumptions on
β ≥ 0, γ ≥ 0 with β + γ > 0 and −∞ < α <∞.

§ 16. Special diffusions

1. Brownian motion with linear drift.
A Brownian motion with linear drift W (µ)(t) = µt +W (t), t ≥ 0, is a homoge-

neous diffusion with the drift coefficient µ and the diffusion coefficient 1.
The generator of this diffusion is

L = 1

2

d2

dx2
+ µ

d

dx
, x ∈ R.

The domain D, where this operator is defined, consists of bounded twice continu-
ously differentiable functions on R such that Lf is a bounded continuous function
(D = {f : f,Lf ∈ Cb(R)}).

The scale function is S(x) = 1− e−2�x

2�
, x ∈ R, if µ 6= 0, and S(x) = x, if µ = 0.

The speed density is m(x) = 2e2µx, x ∈ R.
For the negative drift µ < 0, since S(−∞) = 1/2µ > −∞ and

Σ(−∞) =

x∫
−∞

−e−2�y

2�
2 e2µy dy = ∞,

the boundary −∞ is attractive, but is not attainable.
If µ = 0 (the case of Brownian motion), the boundary l = −∞ is not attractive.

Since Σ(l) = ∞, N(l) = ∞, the boundary l = −∞ is natural.
The transition density with respect to the Lebesgue measure has (see (11.17)

Ch. I) the form

p(t, x, y) = d

dy
P(W (µ)(t) < y|W (µ)(0) = x) = 1

√
2�t

eµ(y−x)−µ2t/2−(y−x)2/2t.
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2. Reflected Brownian motion.

Let W be a Brownian motion. Then W+(t) := |W (t)|, t ≥ 0, is the Brownian
motion on [0,∞) reflected at 0, or a reflected Brownian motion.

Proposition 16.1. For a symmetric Markov process X(t), t ≥ 0, ( −X(t) has
the same finite-dimensional distributions) and for an even function f , the compo-
sition f(X(t)), t ≥ 0, is a Markov process.

Proof. It is sufficient to prove this statement for f(x) = |x|. We can consider
a Brownian motion W , because only the symmetry and the Markov property are
used. For s < t and arbitrary sets ∆ ∈ B[0,∞), B ∈ σ(|W (v)|, 0 ≤ v < s), it is
sufficient to check that

P
(
|W (t)| ∈ ∆

∣∣B⋂{|W (s)| = y}
)

= P
(
|W (t)| ∈ ∆

∣∣|W (s)| = y
)
. (16.1)

By the definition of the conditional probability,

P
(
|W (t)| ∈ ∆

∣∣B⋂{|W (s)| = y}
)

= P(|W (t)| ∈ �; B; |W (s)| ∈ dy)
P(B; |W (s)| ∈ dy)

= P(|W (t)| ∈ �; B;W (s) ∈ dy) +P(|W (t)| ∈ �; B;W (s) ∈ −dy)
P(B;W (s) ∈ dy) +P(B;W (s) ∈ −dy)

.

Using the symmetry, we have

P(|W (t)| ∈ ∆, B,W (s) ∈ dy) = P(|W (t)| ∈ ∆, B,W (s) ∈ −dy).

Therefore,

P
(
|W (t)| ∈ ∆

∣∣B⋂{|W (s)| = y}
)

= P(|W (t)| ∈ �; B;W (s) ∈ dy)
P(B;W (s) ∈ dy)

= P
(
|W (t)| ∈ ∆

∣∣B⋂{W (s) = y}
)

= P
(
|W (t)| ∈ ∆

∣∣W (s) = y
)
.

In the last equality we apply the Markov property of the Brownian motion. This
equality holds also for B = Ω. Since the right-hand side is independent of B, the
equality (16.1) holds. �

The reflected Brownian motion W+ is a diffusion with the state space [0,∞).
The point 0 is the reflecting boundary.

The generator has the form

L = 1

2

d2

dx2
, x > 0,

with domain D = {f : f,Lf ∈ Cb([0,∞)), f ′(0+) = 0}.
The transition density with respect to the Lebesgue measure is

p(t, x, y) = d

dy
P(|W (t)| < y|W (0) = x) = d

dy
P(−y < W (t) < y|W (0) = x)

= d

dy

y∫
−y

1
√
2�t

e−(z−x)2/2t dz = 1
√
2�t

(
e−(y−x)2/2t + e−(y+x)2/2t

)
, x, y ∈ [0,∞).



§ 16. SPECIAL DIFFUSIONS 337

3. Geometric (or exponential) Brownian motion.

Let W (t), t ≥ 0, be a Brownian motion with W (0) = 0. For x > 0 the process

V (t) := x exp((µ− σ2/2)t+ σW (t)), t ≥ 0.

is the geometric or (exponential) Brownian motion starting at x and depending on
the parameters µ ∈ R and σ > 0. It is a nonnegative process often used to describe
interest rates in financial mathematics.

The stochastic differential of the process V is

dV (t) =
(
µ− �2

2

)
V (t) dt+ σV (t) dW (t) + �2

2
V (t) dt = µV (t) dt+ σV (t) dW (t).

Therefore, the process V satisfies in (0,∞) the linear stochastic differential equation

dV (t) = µV (t) dt+ σV (t) dW (t), V (0) = x.

Then the generator has the form

L = 1

2
σ2x2 d2

dx2
+ µx

d

dx
, x > 0,

with domain D = {f : f,Lf ∈ Cb((0,∞))}.

Since B(x) =
x∫
2�z

�2z2
dz = 2�

�2
lnx, the scale function is

S(x) =

x∫
z−2µ/σ2

dz =


x1−2�=�2

1− 2�=�2
, if 2µ/σ2 6= 1,

lnx, if 2µ/σ2 = 1,

and the speed density is m(x) = 2

�2
x2µ/σ2−2, x ∈ (0,∞).

Both boundaries 0 and ∞ are natural.
The transition density of the geometric Brownian motion with respect to the

Lebesgue measure is computed as follows

p(t, x, y) = d

dy
P(V (t) < y|V (0) = x) = d

dy
P
(
(µ− σ2/2)t+ σW (t) < ln(y/x)

)
= 1

y|�|
1

√
2�t

exp
(
− (ln(y=x)− (�− �2=2)t)2

2�2t

)
.

4. Ornstein–Uhlenbeck process.

Let W (t), t ≥ 0, be a Brownian motion with W (0) = x/σ, x ∈ R, σ > 0. Set
for γ > 0

U(t) := σe−γtW
(
e2t − 1

2

)
, t ≥ 0. (16.2)

The process U is called an Ornstein–Uhlenbeck process with the initial value x.
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One often considers the analogous process with a random initial value that is
independent of the process U and having a Gaussian distribution with mean zero
and variance σ2. This is a strictly stationary process Us(t) := σe−γtW (e2γt), t ≥ 0,
W (0) = 0.

The process U is a Gaussian process with the mean EU(t) = xe−γt, t ≥ 0, and
the covariance

Cov(U(s), U(t)) = σ2e−γt
sh(s)


, for s ≤ t.

Using the nonrandom time change (see § 8 Ch. II), we have

U(t) = xe−γt + σe−γt
(
W

( t∫
0

e2γs ds

)
−W (0)

)
= xe−γt + σe−γt

t∫
0

eγs dW̃ (s),

where W̃ is another Brownian motion.
The stochastic differential of the process U is

dU(t) = −γxe−γt dt− γσe−γt
t∫

0

eγs dW̃ (s) dt+ σdW̃ (t) = −γU(t) dt+ σdW̃ (t).

Therefore, the process U satisfies in R the linear stochastic differential equation

dU(t) = −γU(t) dt+ σdW̃ (t), U(0) = x. (16.3)

Equation (16.3) has a physical interpretation. Let U(t), t ≥ 0, be the velocity
of a particle of mass 1/σ suspended in a liquid. Then σ−1dU(t) is the change
of momentum of the particle during the time dt. Let −γσ−1U(t) be the viscous
resistance force proportional to the velocity and, accordingly, −γσ−1U(t) dt be the
loss of momentum during dt due to the viscous force. Let dW̃ (t) be the momentum
transferred to the particle by molecular collisions during the time dt. Then the
following equality holds:

σ−1dU(t) = −γσ−1U(t) dt+ dW̃ (t),

which is exactly (16.3).
From (16.3) it follows that the generator of the Ornstein–Uhlenbeck process has

the form
L = 1

2
σ2 d2

dx2
− γx

d

dx
, x ∈ R,

with domain D = {f : f,Lf ∈ Cb(R)}.
The fundamental solutions of equation (11.5) have (see Appendix 4, equation

19, γ = 0) the form

ψλ(x) = eγx
2/2σ2

D−λ/γ

(
− x

√
2

�

)
, ϕλ(x) = eγx

2/2σ2
D−λ/γ

(
x
√
2

�

)
.
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The corresponding Green function has the form

G◦
λ(x, z) = 1

w◦�
eγx

2/2σ2
D−λ/γ

(
− x

√
2

�

)
eγz

2/2σ2
D−λ/γ

(
z
√
2

�

)
, x ≤ z,

where the Wronskian is w◦
λ =

2�
√
�

�(�=)
.

Since B(x) =
x∫ −2z
�2

dz = −x2

�2
, the scale function is S(x) =

x∫
0

eγy
2/σ2

dy.

The density of the speed measure is m(x) = 2

�2
e−γx

2/σ2
, x ∈ R.

One can show that Σ(∞) = ∞, N(∞) = ∞. Therefore, both boundaries −∞
and ∞ are natural like for the Brownian motion.

The transition density of the process U with respect to the Lebesgue measure
is expressed by the formula

p(t, x, y) = d

dy
P
(
σe−γtW

(
e2t − 1

2

)
< y
∣∣∣W (0) = x

�

)
= d

dy
P
(
W
(
e2t − 1

2

)
−W (0) < ety − x

�

)
=

√
et

�
√
�(e2t − 1)

exp
(
− (ety − x)2

�2(e2t − 1)

)
.

The bridge of the Ornstein–Uhlenbeck process (see Proposition 11.5 Ch. I) is rep-
resented in the form

Ux,t,z(s) = U(s)− Cov(U(s); U(t))

VarU(t)
(U(t)−z) = U(s)− sh(s)

sh(t)
(U(t)−z), s ∈ [0, t].

5. Bessel processes.

Let {Wl(s), s ≥ 0}, l = 1, 2, . . . , n, be a family of independent Brownian motions,
n ≥ 2. The process R(n) defined by the formula

R(n)(t) :=
√
W 2

1 (t) +W 2
2 (t) + · · ·+W 2

n(t), t ≥ 0,

is called an n-dimensional Bessel process or a Bessel process of order n/2 − 1. It
is clear that R(n) is the radial part of the n-dimensional Brownian motion

→
W (t) =

(W1(t),W2(t), . . . ,Wn(t)).

Proposition 16.2. Let Gkt = σ(Wk(s), 0 ≤ s ≤ t) be the σ-algebra of events
generated by the Brownian motion Wk, k = 1, 2, . . . , n. Let fk(t), t ≥ 0, be a
progressively measurable process with respect to the filtration Gkt , k = 1, 2, . . . , n.

Then there exists a Brownian motion W (t), t ≥ 0, such that for any t > 0 the

variable W (t) is measurable with respect to Gt := σ
( n⋃
k=1

Gkt
)
, and

n∑
k=1

t∫
0

fk(s) dWk(s) =

t∫
0

( n∑
k=1

f2
k (s)

)1/2

dW (s). (16.4)



340 IV DIFFUSION PROCESSES

Proof. Set

W (t) :=
n∑
k=1

t∫
0

fk(v)( n∑
l=1

f2l (v)
)1=2 dWk(v).

Since every Brownian motion Wk is adapted to the filtration Gt and for v > t
the increments Wk(v) −Wk(t) are independent of the σ-algebra Gt, we have, by
property (2.3) Ch. II, that for s < t

E{W (t)−W (s)|Gs} = 0 a.s.

Using the joint independence of Wk, k = 1, 2, . . . , n, and the property (2.4) Ch. II,
we have

E{(W (t)−W (s))2|Gs} =
n∑
k=1

E
{( t∫

s

fk(v)( n∑
l=1

f2l (v)
)1=2 dWk(v)

)2∣∣∣∣Gs}

=
n∑
k=1

t∫
s

E
{

f2k (v)
n∑
l=1

f2l (v)

∣∣∣∣Gs} dv = t− s a.s.

Being a sum of stochastic integrals, W is a continuous process. By Lévy’s charac-
terization theorem (see § 10 Ch. I), the process W is a Brownian motion with
respect to the filtration Gt. The equality (16.4) becomes obvious upon substituting
W . �

Consider the squared Bessel process Yn(t) := (R(n)(t))2, t ≥ 0. Using Itô’s
formula and (16.4) with fk(s) = 2Wk(s), we have

dYn(t) =
n∑
k=1

2Wk(t) dWk(t) + ndt

= ndt+ 2
( n∑
k=1

W 2
k (t)

)1/2

dW (t) = ndt+ 2
√
Yn(t) dW (t).

Therefore, the process Yn satisfies the stochastic differential equation

dYn(t) = ndt+ 2
√
Yn(t) dW (t). (16.5)

The generator of the n-dimensional squared Bessel process has the form

L(n)
2 = 2x d2

dx2
+ n

d

dx
, x > 0. (16.6)

Applying Itô’s formula, we have

d
√
Yn(t) =

(
n

2
√
Yn(t)

− 1

2

Yn(t)

Y
3/2
n (t)

)
dt+ dW (t) =

n− 1
2
√
Yn(t)

dt+ dW (t).
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Consequently, R(n)(t) =
√
Yn(t), t ≥ 0, satisfies the stochastic differential equation

dR(n)(t) = n− 1

2R(n)(t)
dt+ dW (t).

This implies that for n ≥ 2 the generator of the n-dimensional Bessel process has
the form

L(n) = 1

2

d2

dx2
+ n− 1

2x

d

dx
, x > 0,

with domain D =
{
f : f,Lf ∈ Cb([0,∞)), d

dS(x)
f(0+) = 0

}
, where S is the scale

function of the process R(n)(t), t ≥ 0. The fundamental solutions of equation (11.5)
are (see Appendix 4, equation 12, ν = n/2− 1)

ψλ(x) = x−n/2+1In/2−1(x
√

2λ), ϕλ(x) = x−n/2+1Kn/2−1(x
√

2λ).

The Green function has (see (11.7)) the form

G◦
λ(x, z) = x−n/2+1z−n/2+1In/2−1(x

√
2λ)Kn/2−1(z

√
2λ), x ≤ z.

Since B(x) =
x∫
n− 1

z
dz = (n− 1) lnx, for the scale function S we have

S(x) =

x∫
e−(n−1) ln y dy =

x∫
y1−n dy =

{
x2−n

2− n
, if n 6= 2,

lnx, if n = 2.

The density of the speed measure is m(x) = 2xn−1, x ≥ 0.
Since for n > 2

Σ(0) =

1∫
0

1∫
z

m(y) dy dS(z) = 2

n

1∫
0

(1− zn)z1−n dz = 2

n

( 1∫
0

z1−n dz − 1

2

)
= ∞,

N(0) =

1∫
0

1∫
z

dS(y)m(z) dz =

1∫
0

(S(1)− S(z))m(z) dz = 2

2− n

1∫
0

(1− z2−n)zn−1 dz

= 2

2− n

1∫
0

zn−1 dz − 1

2− n
<∞,

we have that 0 is an entrance boundary. For n = 2 we have the same situation.

Applying the inverse Laplace transform with respect to λ to the Green function,
we get (see formula 28 of Appendix 3) that the transition density of the Bessel
process R(n) with respect to the Lebesgue measure has the expression

p(n)(t, x, y) = x

t

yn=2

xn=2
exp

(
− x2 + y2

2t

)
In/2−1

(xy
t

)
,

where Iν(z) :=
∞∑
k=0

(x=2)�+2k

k! �(� + k + 1)
is the modified Bessel function of order ν.
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6. Radial Ornstein–Uhlenbeck processes.

Let {Ul(s), s≥0}, l=1, 2, . . . , n, be a family of independent Ornstein–Uhlenbeck
processes. The process Q(n) defined by the formula

Q(n)(t) :=
√
U2

1 (t) + U2
2 (t) + · · ·+ U2

n(t), t ≥ 0,

is called a radial Ornstein–Uhlenbeck process of order n/2− 1.
It is clear that Q(n) is the radial part of n-dimensional Ornstein–Uhlenbeck

process
→
U (t) = (U1(t), U2(t), . . . , Un(t)).

Using the expression (16.2) for the Ornstein–Uhlenbeck process and the defini-
tion of the n-dimensional Bessel process R(n), we have

Q(n)(t) = σe−γtR(n)
(
e2t − 1

2

)
, t ≥ 0, γ > 0, σ > 0. (16.7)

Note that for σ = 1 and γ → 0 the process Q(n)(t), t ≥ 0, is transformed to the
Bessel process R(n)(t).

Consider the squared radial Ornstein–Uhlenbeck process Zn(t) :=
(
Q(n)(t)

)2,
t ≥ 0. Using (16.3) and applying Itô’s formula, we have

dU2
k (t) =

(
σ2 − 2γU2

k (t)
)
dt+ 2σUk(t) dWk(t), k = 1, 2, . . . , n,

for some independent Brownian motions Wk, and, consequently,

dZn(t) =
(
nσ2 − 2γ

n∑
k=1

U2
k (t)

)
dt+ 2σ

n∑
k=1

Uk(t) dWk(t).

Applying Proposition 16.2 for fk(s) = 2Uk(s), s ≥ 0, we obtain that the process
Zn satisfies the stochastic differential equation

dZn(t) =
(
nσ2 − 2γZn(t)

)
dt+ 2σ

√
Zn(t) dW (t).

Thus the generator of the squared radial Ornstein–Uhlenbeck process is

L(n)
2 = 2xσ2 d2

dx2
+ (nσ2 − 2γx) d

dx
. (16.8)

Applying Itô’s formula, we have

dQ(n)(t) = d
√
Zn(t) =

(
n�2 − 2Zn(t)− �2

2
√
Zn(t)

)
dt+ σdW (t).

Consequently, the process Q(n)(t) =
√
Zn(t), t ≥ 0, satisfies the stochastic differ-

ential equation

dQ(n)(t) =
(
�2(n− 1)

2Q(n)(t)
− γQ(n)(t)

)
dt+ σdW (t).
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This implies that the generator of the radial Ornstein–Uhlenbeck process for n ≥ 2
has the form

L(n) = �2

2

d2

dx2
+
(�2(n− 1)

2x
− γx

) d
dx
, (16.9)

with domain D =
{
f : f,Lf ∈ Cb([0,∞)), d

dS(x)
f(0+) = 0

}
, where S is the scale

function of the process Q(n)(t), t ≥ 0.
We can consider the generator L with an arbitrary parameter ν ≥ 0 instead of

ν = n/2− 1, n ∈ N, n ≥ 2.
The fundamental solutions of equation (11.5) have (see Appendix 4, equation

22, ν = n/2− 1) the form

ψλ(x) = M
(
�

2
, ν + 1, x

2

�2

)
, ϕλ(x) = U

(
�

2
, ν + 1, x

2

�2

)
.

The Wronskian of these solutions is

w(ψλ(z), ϕλ(z)) = 2�(� + 1) ez
2

�(�=2) z2�+1�
.

According to (11.6), the Laplace transform of the transition density of the radial
Ornstein–Uhlenbeck process Q(n) with respect to the Lebesgue measure is given by
the formula

∞∫
0

e−λt
d

dz
Px(Q(n)(t) < z) dt (16.10)

=


�(�=2) z2�+1�

�(� + 1)�2�+2 ez
2=�2M

( �
2
, ν + 1, x

2

�2

)
U
( �
2
, ν + 1, z

2

�2

)
, 0 ≤ x ≤ z,

�(�=2) z2�+1�

�(� + 1)�2�+2 ez
2=�2 U

( �
2
, ν + 1, x

2

�2

)
M
( �
2
, ν + 1, z

2

�2

)
, z ≤ x.

One can compute (see formula 33 of Appendix 3) the inverse Laplace transform
with respect to λ, and thus obtain the following expression for the transition density
of the process Q(n) with respect to the Lebesgue measure:

p(n)(t, x, z) = z�+1et(�+1)

�2x� sh(t)
exp
(
(x2−z2)

2�2
− (x2+z2) ch(t)

2�2 sh(t)

)
Iν

(
xz

�2 sh(t)

)
.

Since B(x) =
x∫ (2� + 1

z
− 2z

�2

)
dz = (2ν + 1) lnx− γx2/σ2, the scale function S

equals

S(x) =

x∫
y−2ν−1 exp(γy2/σ2) dy.

The density of the speed measure is m(x) = 2

�2
x2ν+1e−γx

2/σ2
, x ≥ 0.
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7. Hyperbolic Bessel process.

The hyperbolic Bessel process (we denote it by H (ν)

θ (t), t ≥ 0) is the special case
(γ = 0) of the hypergeometric diffusion, defined in Subsection 9. The state space
of this process is the nonnegative half-line. Let ν > −1 and θ > 0. The generator
of the hyperbolic Bessel process has the form

Lf(x) = 1

2

d2

dx2
f(x) +

(
ν + 1

2

)
θ cth(θx) d

dx
f(x), x > 0. (16.11)

Let µ :=
√

(ν + 1
2 )2 + 2λ

θ2 . Then, according to equation (23) of Appendix 4, the
fundamental solutions of equation (11.5) are

ψλ(x) =
P−�
�−1=2(ch(�x))

sh�(�x)
, ϕλ(x) =

Q̃��−1=2(ch(�x))

sh�(�x)
.

The Wronskian of these solutions has the form

w
(P−�

�−1=2(ch(�x))

sh�(�x)
,
Q̃��−1=2(ch(�x))

sh�(�x)

)
= �

sh2�+1(�x)
.

The Legendre functions P−ν
µ−1/2 and Q̃νµ−1/2 are defined in Appendix 2, section 12.

Let us examine these fundamental solutions in details. Since (µ− ν − 1/2)(µ+
ν + 1/2) = 2λ/θ2, using the formula (see Appendix 2 section 12)

d

dx

(
(x2 − 1)q/2P qp (x)

)
= (p+ q)(p− q + 1)(x2 − 1)(q−1)/2P q−1

p (x),

we get
d

dx

(P−�
�−1=2(ch(�x))

sh�(�x)

)
= 2�

�
sh(θx)

P
−(�+1)
�−1=2 (ch(�x))

sh�+1(�x)
. (16.12)

Therefore, ψλ is an increasing solution. Moreover, for ν > −1

lim
x↓0

ψλ(x) = lim
x↓0

P−�
�−1=2(ch(�x))

sh�(�x)
= lim

y↓1
(y2 − 1)−ν/2P−ν

µ−1/2(y) = 2−�

�(1 + �)
(16.13)

(see Bateman and Erdélyi (1954), formulas 3.4 (3) and 3.4 (4)).
According to the formula (see Appendix 2 Section 12)

d

dx

(
Q̃qp(x)

(x2 − 1)q=2

)
= − Q̃q+1p (x)

(x2 − 1)(q+1)=2
,

we have
d

dz

( Q̃��−1=2(ch(�z))

sh�(�z)

)
= −θ sh(θz)

Q̃�+1�−1=2(ch(�z))

sh�+1(�z)
. (16.14)

Therefore, ϕλ is a decreasing solution. Using the definition of the function Q̃νµ−1/2,
we have that for −1 < ν < 0 there exists the limit

lim
x↓0

ϕλ(x) →
√
��(�+�+1=2)

2�+1=2�(�+1)
F
(�+�+1=2

2
,
�+�+3=2

2
, µ+1, 1

)
= �(�+�+1=2)�(−�)

2�+1�(�− �+1=2)
.
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For ν ≥ 0 there is no finite limit: lim
x↓0

ϕλ(x) → ∞; and being bounded, the Green

function is defined by (11.6) for 0 < x < z uniquely. On the contrary, for −1 <
ν < 0 both fundamental solutions are bounded at the point zero and to define the
Green function uniquely we must impose some boundary condition at this point.

For the Green function Gνµ(x, z), 0 < x < z, −1 < ν < 0, we impose the

reflecting condition d

dS(x)
Gνµ(0+, z) = 0, where S(x), x > 0, is the scale function:

S(x) = θ2ν+1

x∫
sh−2ν−1(θy) dy.

Note that the density of the speed measure has the form m(z) = 2 sh2�+1(�z)

�2�+1
.

Using (16.12), we have

d

dS(x)
ψλ(x) = sh2�+1(�x)

�2�+1
d

dx

(P−�
�−1=2(ch(�x))

sh�(�x)

)
= 2� sh2�+2(�x)

�2�+2

P
−(�+1)
�−1=2 (ch(�x))

sh�+1(�x)
.

In view of (16.13), we have d

dS(x)
ψλ(0+) = 0 if −1 < ν < 0, and the solution ψλ

satisfies the reflecting boundary condition.
Finally for −1 < ν, by (11.6), we have

Gνµ(x, z)
2 sh2�+1(�z)

�2�+1
:=

∞∫
0

e−λt
d

dz
Px(H

(ν)

θ (t) < z) dt

=


2 sh�+1(�z) Q̃��−1=2(ch(�z))P

−�
�−1=2(ch(�x))

� sh�(�x)
, if 0 ≤ x ≤ z,

2 sh�+1(�z) Q̃��−1=2(ch(�x))P
−�
�−1=2(ch(�z))

� sh�(�x)
, if 0 < z ≤ x.

(16.15)

Here Gνµ(x, z) is (see (11.7)) the Green function of the transition density of the hy-
perbolic Bessel process with respect to the speed measure. We denote by p◦ν(t, x, z)
the corresponding transition density with respect to the speed measure. A nice
property here is that the Green function and the transition density are symmetric
in the variables x and z.

The following integral representations hold (see Bateman and Erdélyi (1954),
formulas 3.7(8) and 3.7(4)):

P−�
�−1=2(ch(�x))

sh�(�x)
=

√
2

√
��(� + 1=2) sh2�(�x)

θx∫
0

ch(�y)

(ch(�x)− ch y)1=2−�
dy, ν > −1

2
,

and

Q̃��−1=2(ch(�x))

sh�(�x)
=

√
�

√
2�(1=2− �)

∞∫
θx

e−�y

(ch y − ch(�x))�+1=2
dy, µ+ν+ 1

2
> 0, ν < 1/2.
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In view of (16.13), from (16.15) and the integral representation for Q̃νµ−1/2(ch(θx))
we obtain

∞∫
0

e−λt
d

dz
P0(H

(ν)

θ (t)<z) dt = 21−�
√
� sh2�+1(�z)

�
√
2�(� + 1)�(1=2− �)

∞∫
θz

e−�y

(ch y − ch(�z))�+1=2
dy.

Computing the inverse Laplace transform with respect to λ of the function

e−µy = exp
(
− y
√

(ν + 1
2 )2 + 2λ

θ2

)
(see Appendix 3, formulas a and 2), we conclude that for −1 < ν < 1/2

p◦ν(t, 0, z)
2 sh2�+1(�z)

�2�+1
= d

dz
P0(H

(ν)

θ (t) < z)

= sh2�+1(�z) e−(�+1=2)2�2t=2

2��(� + 1)�(1=2− �)t3=2

∞∫
z

y e−y
2=2t

(ch(�y)− ch(�z))�+1=2
dy. (16.16)

About this formula see also Gruet (1997).
Similarly, using the integral representations, we deduce from (16.15) that for

−1/2 < ν < 1/2 and x ≤ z

p◦ν(t, x, z)
2 sh2�+1(�z)

�2�+1
= d

dz
Px(H

(ν)

θ (t) < z)

=
√
2� sh2�+1(�z) e−(�+1=2)2�2t=2

√
� sh2�(�x)�(� + 1=2)�(1=2− �)t3=2

(16.17)

×
x∫

0

dy1

∞∫
z

dy2
e−(y21+y

2
2)=2t(ch(�x)−ch(�y1))�−1=2

(
y2 ch

( y1y2
t

)
−y1 sh

( y1y2
t

))
(ch(�y2)− ch(�z))�+1=2

.

The values ν = −1/2 and ν = 1/2 are critical parameters. The value ν = −1/2
corresponds to the reflected Brownian motion, and ν = 1/2 corresponds to the
hyperbolic Bessel process of dimension 3, for which

d

dz
Px(H

(1/2)

θ (t) < z) = sh(�z) e−�
2t=2

sh(�x)
√
2�t

(
e−(z−x)2/2t − e−(z+x)2/2t

)
. (16.18)

For ν ∈ (k + 1/2, k + 3/2], k = 0, 1, . . . , an expression for the transition density
can be derived as follows. From (16.15) and (16.13) it follows that

Gνµν
(0, z) = �2�

2�

Q̃��ν−1=2(ch(�z))

�(1 + �) sh�(�z)
.

The index ν in the notation µν indicates that the parameter ν is included in the
expression for µ. From (16.14) one can deduce that

d

dz
Gνµν

(0, z) = −2(1 + �) sh(�z)

�
Gν+1
µν

(0, z). (16.19)
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Since µν+1 =
√

(ν + 1
2 )2 + 2

θ2 (λ+ (ν + 1)θ2), the inverse Laplace transform of the
function Gν+1

µν+1
(0, z) with respect to λ differs from that of the function Gν+1

µν
(0, z)

by the factor e−(ν+1)θ2t. Inverting in (16.19) the Laplace transform with respect
to λ, we derive (see Appendix 3, formula a) that

p◦ν+1(t, 0, z) = − �e−(�+1)�2t

2(1 + �) sh(�z)

d

dz
p◦ν(t, 0, z). (16.20)

From (16.15) it follows that

Gνµν
(x, z) = θ2ν

P−�
�ν−1=2(ch(�x))

sh�(�x)

Q̃��ν−1=2(ch(�z))

sh�(�z)
.

Further, (16.12) and (16.14) yield

d

dx

d

dz
Gνµν

(x, z) = −2�

�2
sh(θx) sh(θz)Gν+1

µν
(x, z). (16.21)

Inverting in this equality the Laplace transform with respect to λ, we have

p◦ν+1(t, x, z) = − �2e−(�+1)�2t

2 sh(�x) sh(�z)

d

dx

d

dz

t∫
0

p◦ν(s, x, z) ds. (16.22)

The recurrence formulas (16.20) and (16.22) enable us to compute expressions
for the transition density of the hyperbolic Bessel process for ν from the interval
(k + 1/2, k + 3/2], k = 0, 1, . . . , using (16.16)–(16.18) for the interval (−1/2, 1/2].

8. Hyperbolic Ornstein–Uhlenbeck process.

The hyperbolic Ornstein–Uhlenbeck process U (ρ)

θ (t), t ≥ 0, ρ > −1, and θ > 0,
has the generator

Lf(x) = 1

2

d2

dx2
f(x)− ρθ th(θx) d

dx
f(x), x ∈ R. (16.23)

The state space of this process is the whole real line. For ρ = γ/θ2 in the limiting
case as θ ↓ 0 this process becomes the Ornstein–Uhlenbeck process (see Subsec-
tion 4, σ ≡ 1).

Let µ := −
√
ρ2 + 2λ/θ2. Then −µ+ρ > 0, µ+ρ < 0, and according to equation

(24) of Appendix 4, and the properties of the Legendre functions (see Appendix 2),
the fundamental solutions of equation (11.5) are

ψρ(x) = chρ(θx)P̃µρ (− th(θx)), ϕρ(x) = chρ(θx)P̃µρ (th(θx)).

The Wronskian of these solutions is

w
(
ψρ(x), ϕρ(x)

)
= 2� ch2�(�x)

�(−�− �)�(1− �+ �)
.
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By (11.6), we have

Gµρ (x, z) :=

∞∫
0

e−λt
d

dz
Px(U

(ρ)

θ (t) < z) dt

= �(1− �+ �)�(−�− �)

� ch�(�z) ch−�(�x)

{
P̃µρ (th(θz)) P̃µρ (− th(θx)), if x ≤ z,

P̃µρ (th(θx)) P̃µρ (− th(θz)), if z ≤ x.
(16.24)

Here Gµρ (x, z) is the Green function of the hyperbolic Ornstein–Uhlenbeck process

with respect to the Lebesgue measure. Let pθρ(t, x, z) := d

dz
Px(U

(ρ)

θ (t) < z) be the
corresponding transition density with respect to the Lebesgue measure. It is easy to
compute that mρ(z) = 2

ch2�(�z)
is the speed measure of this process. The function

1

2
pθρ(t, x, z) ch2ρ(θz) is the transition density with respect to the speed measure; it

is a symmetric function with respect to x, z (see (11.7)).
For the critical parameters ρ = 0 and ρ = −1, the Green function has the

expressions Gµ0 (x, z) = 1
√
2�
e−|x−z|

√
2λ and

Gµ−1(x, z) = ch(�z)

ch(�x)
√
�2 + 2�

e−|x−z|
√
θ2+2λ.

The parameter value ρ = 0 corresponds to the Brownian motion, while ρ = −1 cor-
responds to the hyperbolic Ornstein–Uhlenbeck process with the transition density

d

dz
Px(U

(−1)

θ (t) < z) = ch(�z)

ch(�x)
√
2�t

e−θ
2t/2−(z−x)2/2t. (16.25)

To compute the transition density for −1 < ρ < 0 we can use the following ap-
proach. From the integral representation for the Legendre functions (see Appen-
dix 2) it follows with the help of integration by substitution that for −1 < x < 1,
µ+ ρ < 0, and ρ > −1

Γ(−ρ− µ)P̃µρ (thx) = 1

�(1 + �) ch� x

∞∫
x

euµ(shu− shx)ρdu. (16.26)

Then using (16.24) and the equality P̃µρ (x) = P̃µ−ρ−1(x), we derive that for x ≤ z

∞∫
0

e−λt
d

dz
Px(U

(ρ)

θ (t)<z) dt=
�(−�− �)P̃�� (− th(�x))

� ch−�(�x)

�(1− �+ �)P̃�−�−1(th(�z))

ch�(�z)
.

(16.27)
Computing the inverse Laplace transform with respect to λ of the function

eµθr = exp
(
− r
√
ρ2θ2 + 2λ

)
(see Appendix 3, formulas a and 2), we get

L−1
λ

(
eµθr

)
= 1

√
2�t3=2

r e−ρ
2θ2t/2 e−r

2/2t.
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Using (16.27), the integral representation (16.26), and the relation

Γ(1 + ρ)Γ(−ρ) = �

sin(−��)
,

we conclude that for −1 < ρ < 0 and x ≤ z

pθρ(t, x, z) := d

dz
Px(U

(ρ)

θ (t) < z) (16.28)

= � sin(−��) ch(�z) e−�2�2t=2
√
2(�t)3=2

∞∫
−x

du

∞∫
z

dv(u+ v) e−(u+v)2)/2t (sh(�u) + sh(�x))�

(sh(�v)− sh(�z))�+1
.

For ρ ∈ (k, k + 1], k = 0, 1, . . . , an expression for the transition density can be
computed in the following way. From (16.24) it follows that

d

dz

d

dx

G�� (x; z)

ch(�z) ch2�+1(�x)
= �(1−�+�)�(−�−�)

�

d

dz

P̃�� (th(�z))

ch�+1(�z)

d

dx

P̃�� (− th(�x))

ch�+1(�x)
.

From the corresponding property of the Legendre functions (see Appendix 2) we
derive that

d

dx

P̃�� (thx)

ch�+1 x
= (µ− ρ− 1)

P̃��+1(thx)

ch�+1 x
.

Applying this formula, we have

d

dz

d

dx

G
�ρ
� (x; z)

ch(�z) ch2�+1(�x)
= −

�2(�2� − (�+ 1)2)

ch2�+2(�x)
G
µρ

ρ+1(x, z). (16.29)

The index ρ in the notation µρ indicates that the parameter ρ is included in the
expression for µ. Since ρ2 = (ρ+ 1)2 − 2ρ− 1, the inverse Laplace transform with
respect to λ of an arbitrary function of the argument µρ+1 differs from that of
the same function of the argument µρ by the factor e(2ρ+1)θ2t/2 (see Appendix 3,
formula a). Thus, inverting in (16.29) the Laplace transform, we obtain

d

dz

d

dx

(
p��(t; x; z)

ch(�z) ch2�+1(�x)

)
= d

dz

d

dx

(
1

ch(�z) ch2�+1(�x)
L−1
λ

(
Gµρ
ρ (x, z)

))
= − �2

ch2�+2(�x)
L−1
λ

(
(µ2
ρ − (ρ+ 1)2)Gµρ

ρ+1(x, z)
)

= − �2e(2�+1)�
2t=2

ch2�+2(�x)
L−1
λ

(
(µ2
ρ+1 − (ρ+ 1)2)Gµρ+1

ρ+1 (x, z)
)

= − e(2�+1)�
2t=2

ch2�+2(�x)
L−1
λ

(
2λGµρ+1

ρ+1 (x, z)
)

= −2e(2�+1)�
2t=2

ch2�+2(�x)

(
d

dt
pθρ+1(t, x, z) + pθρ+1(0+, x, z)δ0(t)

)
,
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where δ0(t) is the Dirac δ-function. Integrating the left-hand and the right-hand
sides of this relation with respect to t, we finally get

p��+1(t; x; z)

ch2�+2(�x)
= −1

2

t∫
0

e−(2ρ+1)θ2s/2 d

dz

d

dx

p��(s; x; z)

ch(�z) ch2�+1(�x)
ds. (16.30)

This recurrence formula enables us to compute expressions for the transition density
of the hyperbolic Ornstein–Uhlenbeck process for ρ from the interval (k, k + 1],
k = 0, 1, . . . , using expression (16.28) for the interval (−1, 0) and the Brownian
density for ρ = 0.

The reflected hyperbolic Ornstein–Uhlenbeck process |U (ρ)

θ (t)|, t ≥ 0, is the special
case (ν = −1/2, ρ = γ/θ2) of the hypergeometric diffusion defined in Subsection 9.
The state space of this process is the nonnegative half-line.

9. Hypergeometric diffusion.

The hypergeometric diffusion X(ν)

γ,θ, whose state space is the nonnegative real
half-line, is determined by the generating operator

Lf(x) = 1

2

d2

dx2
f(x) +

(
(ν + 1

2 )θ cth(θx)− 

�
th(θx)

) d
dx
f(x), x > 0. (16.31)

Equation (11.5) for this operator has the form

1

2
φ′′(x) +

((
ν + 1

2

)
θ cth(θx)− 

�
th(θx)

)
φ′(x)− λφ(x) = 0, x > 0. (16.32)

For ν > −1, γ ≥ 0, θ > 0, λ > 0 we consider the fundamental solutions of this
equation (see Appendix 4, equation 26),

ψλ(x) = 1

ch2�(�x)
F
(
α, β, ν + 1, th2(θx)

)
(16.33)

and
ϕλ(x) = �(� − �)

ch2�(�x)
G
(
α, β, ν + 1, th2(θx)

)
, (16.34)

where

α := 1

2

√(


�2
− ν − 1

2

)2

+ 2�

�2
− 1

2

(


�2
− ν − 1

2

)
and β := α+ 1

2
+ 

�2
.

It is easy to check that α > 0, β > ν + 1.
The Wronskian of these solutions is

w(ψλ(x), ϕλ(x)) = 2��(� − �)�(� + 1) ch2=�
2
(�x)

�(�)�(�) sh2�+1(�x)
. (16.35)

The hypergeometric functions F (α, β, ν + 1, x) and G(α, β, ν + 1, x), 0 < x < 1 are
defined in Appendix 2, Section 11.
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For β > ν + 1 the formula (see Appendix 2, Section 11)

d

dx

(
(1− x)αF (α, β, ν + 1, x)

)
= �(� − � − 1)

� + 1
(1− x)α−1F (α+ 1, β, ν + 2, x)

implies that

ψ′λ(x) = 2��(� − � − 1) th(�x)

(� + 1) ch2�(�x)
F
(
α+ 1, β, ν + 2, th2(θx)

)
> 0. (16.36)

Therefore, ψλ is a strictly increasing solution of (16.32). Moreover, lim
x↓0

ψλ(x) = 1

and for ν > −1

d

dS(x)
ψλ(x) = 2 sh2�+2(�x)

�2� ch2�+1+2=�
2
(�x)

F
(
α+ 1, β, ν + 2, th2(θx)

)
−→
x↓0

0, (16.37)

where S(x), x > 0, is the scale function:

S(x) = θ2ν+1

x∫
ch2=�

2
(�y)

sh2�+1(�y)
dy.

This expression follows from the equality

2

x∫ (
(ν + 1

2 )θ cth(θy)− 

�
th(θy)

)
dy = ln

(
sh2�+1(�x)

ch2=�
2
(�x)

)
+ const, x > 0.

The factor θ2ν+1 is introduced to guarantee the existence of the limit as θ ↓ 0.

Note that the density of the speed measure has the formm(x) = 2 sh2�+1(�x)

�2�+1 ch2=�
2
(�x)

.

From the formula (see Appendix 2, Section 11)

d

dx

(
(1− x)αG(α, β, ν + 1, x)

)
= −α(1− x)α−1G(α+ 1, β, ν + 2, x)

it follows that

ϕ′λ(x) = −2���(� − �) th(�x)

ch2�(�x)
G
(
α+ 1, β, ν + 2, th2(θx)

)
< 0.

Therefore, ϕλ is a strictly decreasing solution of equation (16.32). Moreover,
from the definition of the function G (see Appendix 2, Section 11) it follows that
for −1 < ν < 0

lim
x↓0

ϕλ(x) = Γ(β − ν)G(α, β, ν + 1, 0) = �(−�)
�(�− �)

.

It is clear that lim
x↓0

ϕλ(x) = ∞ for ν ≥ 0.

Hence, for −1 < ν < 0 both fundamental solutions are bounded at the point
zero and to define the Green function uniquely we should impose some boundary
condition at this point. For the Green function Gνµ(x, z), 0 ≤ x < z, we impose the
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reflecting condition d

dS(x)
Gνµ(0+, z) = 0. Since, by (16.37), the solution ψλ satisfies

this condition, from (11.6) we have

Gνµ(x, z)m(z) :=

∞∫
0

e−λt
d

dz
Px(X

(ν)

γ,θ(t) < z) dt (16.38)

=


�(�)�(�) sh2�+1(�z)F

(
�; �; � + 1; th2(�x)

)
G

(
�; �; � + 1; th2(�z)

)
��(� + 1) ch2�+2=�

2
(�z) ch2�(�x)

, if 0 ≤ x,
x ≤ z,

�(�)�(�) sh2�+1(�z)F
(
�; �; � + 1; th2(�z)

)
G

(
�; �; � + 1; th2(�x)

)
��(� + 1) ch2�+2=�

2
(�z) ch2�(�x)

, if z ≤ x.

Let Hz := inf{t : X(ν)

γ,θ(t) = z}. According to (12.38) Ch. II,

Px(Ha < Hb) =

b∫
x

ch2γ/θ2
(θy)

sh2ν+1(θy)
dy

b∫
a

ch2γ/θ2
(θy)

sh2ν+1(θy)
dy

, a ≤ x ≤ b. (16.39)

Let us dwell on some particular cases. For γ = 0 we have α = �+ �

2
+ 1

4
,

β = �+ �

2
+ 3

4
, where µ is defined in Subsection 7. In this case we have the funda-

mental solutions, corresponding to the hyperbolic Bessel process (see Appendix 2,
Section 12):

ψλ(x) = 1

ch�+�+1=2(�x)
F
(
�+ �

2
+ 1

4
,
�+ �

2
+ 3

4
, ν + 1, 1− 1

ch2(�x)

)

=
2��(� + 1)P−�

�−1=2(ch(�x))

sh�(�x)
,

ϕλ(x) =
�(�−�2 + 3

4 )

ch�+�+1=2(�x)�(�+ 1)
F
(
�+ �

2
+ 1

4
,
�+ �

2
+ 3

4
, µ+ 1, 1

ch2(�x)

)
=

21−��(�−�2 + 3
4 )

�(�+�2 + 1
4 )�(

�+�
2 + 3

4 )

Q̃��−1=2(ch(�x))

sh�(�x)
.

As the next case we consider the limiting behavior of the hypergeometric diffu-
sion as θ ↓ 0. In this case, the operator (16.31) is transformed to the operator of
the radial Ornstein–Uhlenbeck process determined by (16.9) with σ ≡ 1, ν = n

2
−1.

We verify that the transition density (16.38) is transformed to that given by for-
mula (16.10) with σ ≡ 1. It is easily seen that the following relations hold as θ ↓ 0:
α ∼ �

2
, β ∼ 

�2
,

ch2β(θz) ∼
(
1 + �2z2

2

)2γ/θ2 ∼ eγz
2
, and �(�)

�(� − �)
∼
( 
�2

)ν
.
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Due to the asymptotic behavior of the hypergeometric functions (see Appendix 2,
Section 11), we have

ψλ(x) = 1

ch2�(�x)
F
(
α, β, ν + 1, th2(θx)

)
→M

( �
2
, ν + 1, γx2

)
and

ϕλ(x) = �(� − �)

ch2�(�x)
G
(
α, β, ν + 1, th2(θx)

)
→ U

( �
2
, ν + 1, γx2

)
as θ ↓ 0.

Using these formulas, it is easy to check that the limit as θ ↓ 0 on the right-
hand side of (16.38) coincides with (16.10) for σ ≡ 1. Therefore, the transition
density of the hypergeometric diffusion converges as θ ↓ 0 to the transition density
of the radial Ornstein–Uhlenbeck process. The densities of the speed measure and
the scale function of the hypergeometric diffusion also converge as θ ↓ 0 to the
corresponding characteristics of the radial Ornstein–Uhlenbeck process.

Exercises.

16.1. Let X(t), t ∈ [0,∞), be a diffusion in the natural scale S(x) = x with a
given density of the speed measure m(x), which is continuous and positive. Com-
pute the diffusion coefficients µ(x) and σ2(x).

16.2. Let X be a regular diffusion with the state space [0, 1] and the diffusion
coefficient σ2(x) = x2(1− x)2. Prove that the process

Y (t) := ln X(t)

1−X(t)

has a constant diffusion coefficient.

16.3. Let X(t), t ∈ [0,∞), be a diffusion with the state space (0,∞), with the
drift coefficient µ(x) = αx+ r, r > 0, and with the diffusion coefficient σ2(x) = 4x.
What is the form of the drift and the diffusion coefficients for the process

√
X(t)?

16.4. Let X(t), t ∈ [0,∞), be a diffusion with the state space (−∞,∞), with
the drift coefficient µ(x) = signx, and with the diffusion coefficient σ2(x) = 1.
Compute the scale function S(x) and the density of the speed measure m(x),
x ∈ R.

16.5. Let V (t), t ∈ [0,∞), be a geometric Brownian motion, i.e.,

dV (t) = µV (t) dt+ σV (t) dW (t), V (0) = x0.

Compute the generator of the diffusion V γ(t), γ ∈ R.

16.6. Let V (t), t ∈ [0,∞), be a geometric Brownian motion with µ < σ2/2.
Since V (t) = x exp((µ− σ2/2) t+ σW (t)), we have V (t) → 0 as t→ ∞. What is
the probability that the process V with V (0) = x < b ever attains b?
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Hint:
Px(Hb <∞) = lim

a↓0
Px(Hb < Ha).

16.7. Let U(t), t ∈ [0,∞), be the Ornstein–Uhlenbeck process with the in-
finitesimal parameters µ(x) = −γx and σ2(x) = σ2. Compute the infinitesimal
parameters of the process Z(t) = exp(U(t)).

16.8. Derive the expression of the transition density of the process Q(n) from the
expression of the transition density of the Bessel process R(n) and the representation
(16.7).

§ 17. Homogeneous diffusions with identical bridges

In this section we consider sufficient conditions for two homogeneous diffusions to
have the same bridges if they have identical diffusion coefficients, but different drift
coefficients. The definition of the bridge of a process was given at the beginning of
§ 11 Ch. I.

We use the notations of § 15. Consider the processes X(t) and Y (t), t ≥ 0,
whose state space is the interval (l, r), where −∞ ≤ l < r ≤ ∞. Assume that the
boundaries cannot be attained by each of these processes in a finite time. So for
the process X that is a solution of the stochastic differential equation (15.1), this
means that Hn →∞ a.s. or, equivalently, for every x ∈ (l, r)

Qn(x) := Exe−αHn → 0 for any α > 0. (17.1)

Formally, this means that the boundaries can be entrance boundaries for the pro-
cesses, but not exit ones. In this case we do not consider the process starting from
the boundary.

Let us determine when (17.1) holds. We apply Theorem 7.3. According to
Remark 4.1 of this chapter, for σ(x) > 0, x ∈ (l, r) and α > 0 the homogeneous
equation

1

2
σ2(x)φ′′(x) + µ(x)φ′(x)− αφ(x) = 0, x ∈ (l, r), (17.2)

has two linearly independent nonnegative strictly monotone solutions ψ and ϕ such
that ψ increases and ϕ decreases. Suppose that

lim
ln↓l

ϕ(ln) = ∞ and lim
rn↑r

ψ(rn) = ∞. (17.3)

By Theorem 7.3, the function Qn is the solution of (7.8), (7.9) with f ≡ α, a = ln
and b = rn. This solution has the form

Qn(x) =  (rn)'(x)−  (x)'(rn)

 (rn)'(ln)−  (ln)'(rn)
+  (x)'(ln)−  (ln)'(x)

 (rn)'(ln)−  (ln)'(rn)
. (17.4)

Under the assumption (17.3)

lim
n→∞

Qn(x) = lim
n→∞

(
'(x)−  (x)'(rn)= (rn)

'(ln)−  (ln)'(rn)= (rn)
+  (x)− '(x) (ln)='(ln)

 (rn)− '(rn) (ln)='(ln)

)
= 0.
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Thus the condition (17.3) is sufficient for the diffusion X to fail reaching the bound-
ary of the interval (l, r) in a finite time.

Let φ(x), x ∈ (l, r), be a nonnegative solution of equation (17.2). For example,
φ is a linear combination of solutions ψ and ϕ with nonnegative coefficients.

For our purposes the following condition is essential: for all t ≥ 0 and x ∈ (l, r)

Exφ(X(t)) <∞. (17.5)

Under certain assumptions it may happen that

Exφ(X(t)) = eαtφ(x). (17.6)

The function φ satisfying this equality is called α-invariant for the process X.
Equality (17.6) holds, for example, under the assumptions of Theorem 13.1 Ch. II
(the backward Kolmogorov equation). Indeed, in view of (13.3), (13.4) Ch. II, the
function u(t, x) := Exφ(X(t)) is the unique solution of the problem

@

@t
u(t, x) = 1

2
σ2(x) @

2

@x2
u(t, x) + µ(x) @

@x
u(t, x), (17.7)

u(0, x) = φ(x). (17.8)

Now, taking into account equation (17.2), it is easy to verify that u(t, x) = eαtφ(x)
satisfies the problem (17.7), (17.8). This proves (17.6).

In the proof of Theorem 17.1, we will verify that (17.5) implies (17.6), whenever
φ is a solution of (17.2).

Let X(t) and Y (t), t ≥ 0, be the solutions of the following homogeneous sto-
chastic differential equations

dX(t) = σ(X(t)) dW (t) + µ(X(t)) dt, (17.9)

dY (t) = σ(Y (t)) dW (t) + η(Y (t)) dt (17.10)

with the same initial values X(0) = Y (0) = x. Suppose that the coefficients σ,
µ, η satisfy the conditions of § 15. Assume also that the processes X and Y have
continuous transition densities. For the homogeneous diffusion the existence of the
transition density was proved in § 10.

Theorem 17.1. Suppose that φ is a nonnegative solution of the homogeneous
equation (17.2) for some α > 0. Assume also that for this solution (17.5) holds.
Let

�(x)− �(x)

�2(x)
= �′(x)

�(x)
= (ln(φ(x)))′, x ∈ (l, r). (17.11)

Then for any x, t, and z the processes X and Y have the same bridges Xx,t,z(s)
and Yx,t,z(s), s ∈ [0, t], i.e., the finite-dimensional distributions of these bridges
coincide.

Proof. We use Girsanov’s transformation (Theorem 10.3 Ch. II). According
to this theorem, for every t ≥ 0 and for any bounded measurable functional
℘(Z(s), 0 ≤ s ≤ t) on C([0, t]) we have

Ex℘(Y (s), 0 ≤ s ≤ t) = Ex
{
℘
(
X(s), 0 ≤ s ≤ t

)
ρ(t)

}
, (17.12)
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where

ρ(t) := exp
( t∫

0

(ln(φ(X(s))))′σ(X(s)) dW (s)− 1

2

t∫
0

(
�′(X(s))

�(X(s))

)2

σ2(X(s)) ds
)
.

We transform this stochastic exponent. By Itô’s formula,

ln(φ(X(t)))− ln(φ(x)) =

t∫
0

(ln(φ(X(s))))′σ(X(s)) dW (s)

+

t∫
0

�′(X(s))

�(X(s))
µ(X(s)) ds+ 1

2

t∫
0

(
�′(X(s))

�(X(s))

)′
σ2(X(s)) ds.

Expressing the stochastic integral from this equality and substituting it into ρ(t),
we get

ρ(t) := �(X(t))

�(x)
exp

(
−

t∫
0

(
�′(X(s))

�(X(s))
µ(X(s)) + 1

2

�′′(X(s))

�(X(s))
σ2(X(s))

)
ds

)
.

Now, taking into account equation (17.2), we have

ρ(t) = e−αt
�(X(t))

�(x)
. (17.13)

Since Eφ(X(t)) < ∞ for all t > 0, then the stochastic exponent ρ(t), t ≥ 0, is a
martingale, and application of the Girsanov transformation is correct without any
additional assumptions of Theorem 10.3 Ch. II.

Since ρ(t), t ≥ 0, is a martingale, Exρ(t) = Exρ(0) = 1. This and (17.13) imply
(17.6).

We choose arbitrary bounded piecewise-continuous function Φ(x), x ∈ (l, r).
Taking in (17.12) instead of the functional ℘(Z(s), 0 ≤ s ≤ t) the functional
Φ(Z(t))℘(Z(s), 0 ≤ s ≤ t), we have

Ex
{
Φ(Y (t))℘(Y (s), 0≤s≤ t)

}
= e−�t

�(x)
Ex
{
φ(X(t))Φ(X(t))℘

(
X(s), 0≤s≤ t

)}
.

(17.14)
From this equality it is easy to deduce that for every z ∈ (l, r)

d

dz
Ex
{
℘(Y (s), 0≤s≤ t);Y (t) < z

}
= e−�t�(z)

�(x)

d

dz
Ex
{
℘
(
X(s), 0≤s≤ t

)
;X(t) < z

}
.

(17.15)
Indeed, choosing in (17.14) the family of functions Φ∆(x) := 1

�
1I[z,z+∆)(x),

0 < ∆ < 1, and using the fact that the processes X and Y have continuous
transition densities, we can pass in (17.14) to the limit as ∆ ↓ 0 and prove (17.15).
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Letting in (17.15) ℘ ≡ 1, we obtain for the transition densities the equality

d

dz
Px

(
Y (t) < z

)
= e−�t�(z)

�(x)

d

dz
Px

(
X(t) < z

)
. (17.16)

Dividing equation (17.15) by (17.16), we get

Ex
{
℘(Y (s), 0≤s≤ t)

∣∣Y (t) = z
}

= Ex
{
℘
(
X(s), 0≤s≤ t

)∣∣X(t) = z
}
. (17.17)

Thus the processes X and Y have the same bridges, i.e., their bridges are identical
in law. �

We consider some examples of processes that have the same bridges.
1. Processes with bridges identical to the Brownian bridge. For l =

−∞, r = ∞, µ(x) ≡ 0 and σ(x) ≡ 1 the process X(t), defined by (17.9), is the
Brownian motion W with the initial value W (0) = x. We describe the class of
processes whose bridges coincide with the bridge of the Brownian motion. For
different c > 0 and δ ∈ R, a nonnegative solution of equation (17.2) is φ(x) =
c ch((x − δ)

√
2α), x ∈ R. This formula includes the solutions e±x

√
2α if we take

into account the limiting case c = e±δ
√

2α as δ →∞.
Obviously, �

′(x)

�(x)
=
√

2α th((x− δ)
√

2α). It is natural to extend the definition of

this function for δ = ±∞ by the equality �′(x)

�(x)
= ∓

√
2α.

Let Yδ,α be a solution of the stochastic differential equation

dY (t) = dW (t) +
√

2α th
(
(Y (t)− δ)

√
2α
)
dt, Y (0) = x, (17.18)

From Theorem 17.1 it follows that for δ ∈ R
⋃
{±∞} and α > 0 the bridges of

the homogeneous diffusions Yδ,α coincide with the Brownian bridge. The Brownian
motion with linear drift ∓

√
2α corresponds to the values δ = ±∞.

Formula (17.16) in this example has the form

d

dz
Px(Y (t) < z) = ch((z − �)

√
2�)

√
2�t ch((x− �)

√
2�)

e−αte−(z−x)2/2t. (17.19)

The corresponding Green function is

d

dz
Px(Y (τ) < z) = � ch((z − �)

√
2�)

√
2�+ 2� ch((x− �)

√
2�)

e−|z−x|
√

2λ+2αdz. (17.20)

2. Processes with bridges identical to the bridge of an n-dimensional
Bessel process. The Bessel process R(n)(t), t ≥ 0, n ≥ 2, satisfies (see Subsec-
tion 5 § 16) the stochastic differential equation

dR(n)(t) = dW (t) + n− 1

2R(n)(t)
dt.

The drift coefficient µ(x) = n− 1

2x
, x > 0, has a singularity at the origin. For n ≥ 2

the Bessel process, starting from a nonnegative point, never hits zero.
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Equation (17.2) with µ(x) = n− 1

2x
, has (see Appendix 4, equation 12) the two

linearly independent solutions

ψ(x) = x1−n/2In/2−1(x
√

2α) and ϕ(x) = x1−n/2Kn/2−1(x
√

2α),

where Iν and Kν are modified Bessel functions. Since it is necessary that the
singularity of the function η(x) in (17.10) be the same as for the function µ(x),
x > 0, only the first fundamental solution is suitable. Therefore, the drift coefficient

η(x) = n− 1

2x
+

√
2�In=2(x

√
2�)

In=2−1(x
√
2�)

, x > 0, α > 0, (17.21)

determines the class of processes Y , whose bridges coincide with the bridges of an
n-dimensional Bessel process, n ≥ 2.

Remark 17.1. In the important special case n = 3 the drift coefficient is given
by η(x) =

√
2α cth(x

√
2α), x > 0.

For a three-dimensional Bessel process the relation (17.16) transforms into

d

dz
Px

(
Y (t) < z

)
= x sh(z

√
2�)

z sh(x
√
2�)

e−αt
d

dz
Ex
(
R(3)(t) < z

)
= sh(z

√
2�)e−�t

√
2�t sh(x

√
2�)

(
e−(z−x)2/2t − e−(z+x)2/2t

)
. (17.22)



CHAPTER V

BROWNIAN LOCAL TIME

§ 1. Brownian local time

The local time of a Brownian motion occupies a special place in the theory of lo-
cal times of stochastic processes. Among the reasons for this are, first, the fact that
it allows the construction of a theory very rich in content and, second, that in its
example we can see features of the behavior of local times of more general processes,
in particular, stable processes and diffusions. The study of different properties of
local time is often based on knowledge of distributions of various functionals of its
sample paths. Therefore, the development of methods for computing distributions
of functionals forms the main part of the investigation.

The definition of the local time of a measurable stochastic process X(s), s ≥ 0,
with values in the Euclidean space R was given in § 5 Ch. II. Using Itô’s stochastic
differentiation formula we proved that for a Brownian motion W there exists the
local time `(t, x), (t, x) ∈ [0,∞) ×R. Moreover, we derived Tanaka’s formula (see
(5.6) Ch. II).

The process `(t, x), (t, x) ∈ [0,∞) ×R, is called the local time (in other words,
the time at a point), because for each x it characterizes the amount of time the
process W (s), s ≥ 0, spends at x up to the time t. For many stochastic processes
the Lebesgue measure of the time the process spends at an individual point up to
some moment is equal to zero, and the most natural nonzero scale for such a time
turned out to be the derivative of the sojourn measure of the process with respect
to the Lebesgue measure. For an individual sample path of the process W and for
a specific moment of time t, the local time `(t, x) is not uniquely determined, since
it can be assigned different values on sets of the Lebesgue measure zero. In this
connection it is natural to choose a version of the local time `(t, x) that has the
nicest properties, for example, `(t, x) is a continuous process of two parameters t
and x.

In § 5 Ch. II we used the theory of stochastic integration to prove the existence
of the Brownian local time. This is a rather special technique. Here we consider a
more natural approach to the problem of existence of the local time of the Brownian
motion W (s), s ≥ 0, W (0) = 0.

Theorem 1.1. The process W has an a.s. continuous local time `(t, x), (t, x) ∈
[0,∞)×R.

Proof. It is obvious that the support of the random measure

µt(A) :=

t∫
0

1IA(W (s))ds, A ∈ B(R), 0 ≤ t ≤ T,

is contained in the set {
x : inf

0≤s≤t
W (s) ≤ x ≤ sup

0≤s≤t
W (s)

}
.
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Here 1IA(·) is the indicator function of the Borel set A.
Applying the theorem of integration by substitution we obtain that for any

bounded measurable function f there holds (see (5.4) Ch. II) the equality

t∫
0

f(W (s)) ds =

∞∫
−∞

f(x)µt(dx). (1.1)

In particular, if there exists a local time `(t, x), then

t∫
0

f(W (s)) ds =

∞∫
−∞

f(x)`(t, x) dx. (1.2)

Taking for f the function eiλx, x ∈ R, we have

∞∫
−∞

eiλx`(t, x) dx =

t∫
0

eiλW (s) ds.

The left-hand side of this equality is the Fourier transform of the density `(t, x).
Inverting this transform, we get

`(t, x) = 1

2�

∞∫
−∞

e−iλx
t∫

0

eiλW (s) dsdλ.

This inversion formula can be given a rigorous mathematical meaning in the setting
of the L2-theory and we essentially do this below. Thus as an approximate value
for `(t, x) we can take

`(n)(t, x) := 1

2�

n∫
−n

e−iλx
t∫

0

eiλW (s) ds dλ = 1

�

t∫
0

n∫
0

cos(λ(W (s)− x)) dλ ds,

where n = 1, 2, . . . . We remark that `n(t, x) is a real-valued process.

Lemma 1.1. There exists a stochastic process `(t, x), (t, x) ∈ [0, T ] ×R, such
that for any T > 0

lim
n→∞

sup
(t,x)∈[0,T ]×R

E|`(n)(t, x)− `(t, x)|2 = 0. (1.3)
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Proof. We verify that `(n)(t, x), n = 1, 2, . . . , is a Cauchy sequence in the norm
‖ · ‖ := sup

(t,x)∈[0,T ]×R

E1/2| · |2. Indeed, if m > n, then

E|`(m)(t, x)− `(n)(t, x)|2 ≤ 1

�2

m∫
n

m∫
n

dλdζ

t∫
0

t∫
0

dudv
∣∣EeiλW (u)eiζW (v)

∣∣

≤ 2

�2

m∫
n

m∫
n

dλdζ

t∫
0

du

u∫
0

dv
∣∣Eei(λ+ζ)W (v)Eeiλ(W (u)−W (v))

∣∣

= 2

�2

m∫
n

m∫
n

dλdζ

t∫
0

du

u∫
0

dv e−v(λ+ζ)2/2e−(u−v)λ2/2

≤ 8

�2

m∫
n

dλ

m∫
n

dζ
(1− e−t�

2=2)

�2
(1− e−t(�+�)

2=2)

(�+ �)2

≤ 8t

�2

∞∫
−∞

(1− e−�
2=2)

�2
dζ

m
√
t∫

n
√
t

(1− e−�
2=2)

�2
dλ ≤ 32t

�2

∞∫
−∞

d�

1 + �2

m
√
t∫

n
√
t

d�

1 + �2
. (1.4)

Thus `(n)(t, x) is a Cauchy sequence in the norm ‖ · ‖, and hence Lemma 1.1 is
proved. �

Remark 1.1. The process `(t, x), (t, x) ∈ [0,∞) ×R, has the following scaling
property: for any fixed c > 0 the finite-dimensional distributions of the process√
c`(t/c, x/

√
c) coincide with those of `(t, x).

Indeed, using the scaling property of the process W (the finite-dimensional dis-
tributions of the processes

√
cW (s/c) and W (s), s ∈ [0, T ], coincide), it is not hard

to see that the finite-dimensional distributions of the processes
√
c`(n

√
c)(t/c, x/

√
c)

and `(n)(t, x), (t, x) ∈ [0, T ] × R, coincide, and, in view of Lemma 1.1, this yields
the required statement.

Lemma 1.2. For any 0 ≤ s ≤ t, x, y ∈ R, and for any integer k,

E|`(t, x)− `(s, x)|2k ≤ 22k(2k)! |t− s|k, (1.5)

E|`(t, x)− `(t, y)|2k ≤ (2k)! 26k+1|x− y|ktk/2. (1.6)

Remark 1.2. The estimates (1.5) and (1.6) can be combined into a single
estimate: for s, t ∈ [0, T ],

E|`(t, x)− `(s, y)|2k ≤ (2k)!24k
(
|t− s|k + 24k+1|x− y|ksk/2

)
. (1.7)
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Choosing k = 3 and applying Theorem 3.3 Ch. I for a two-parameter process, we
get that the process `(t, x) has an a.s. continuous in [0,∞)×R modification, which
can be also denoted by `(t, x). The relations (1.3), (1.5), and (1.6) are obviously
valid for this modification. Moreover, the sample paths of the process `(t, x) satisfy
a.s. the Hölder condition of any order γ < 1/2:

sup
t,s∈[0,T ]
|t−s|≤h

sup
x,y∈[−N,N]
|x−y|≤h

|`(t, x)− `(s, y)| ≤ CT,N,γh
γ , (1.8)

where CT,N,γ is a random constant depending on T , N , and γ. This follows from
Theorem 3.3 Ch. I, because k in (1.7) can be chosen large enough to ensure that
(k − 2)/2k > γ.

Proof of Lemma 1.2. Set ~λ := (λ1, . . . , λ2k). Using Fatou’s lemma, putting
u2k+1 = 0, and carrying out computations analogous to (1.4), we get

E|`(t, x)− `(s, x)|2k ≤ lim inf
n→∞

E|`(n)(t, x)− `(n)(s, x)|2k

≤ 1

(2�)2k

∫
R2k

d~λ

t∫
s

dv1· · ·
t∫
s

dv2k

∣∣∣E exp
(
i

2k∑
l=1

λlW (vl)
)∣∣∣

≤ (2k)!

(2�)2k

∫
R2k

d~λ

t∫
s

du1· · ·
u2k−1∫
s

du2k

∣∣∣E 2k∏
l=1

exp
(
i
( l∑
j=1

λj

)
(W (ul)−W (ul+1)

)∣∣∣
≤ (2k)!

(2�)2k

∫
R2k

d~λ

t∫
s

du1· · ·
u2k−1∫
s

du2k E
2k∏
l=1

exp
(
− 1

2

( l∑
j=1

λj

)2

(ul − ul+1)
)

≤ (2k)!

�2k

∫
R2k

d~λ
2k∏
l=1

1− exp
(
− (t− s)

∣∣∣ l∑
j=1

�j

∣∣∣2=2)
∣∣∣ l∑
j=1

�j

∣∣∣2

≤ (2k)!22k|t− s|k

�2k

( ∞∫
−∞

d�

1 + �2

)2k

= 22k(2k)! |t− s|k.

We now prove (1.6). It suffices to prove (1.6) for |x − y|/
√
t ≤ 1/16. Indeed, by

(1.5), s = 0, for |x− y|/
√
t > 1/16 the following inequality holds:

E|`(t, x)− `(t, y)|2k ≤ 22k+1(2k)! tk ≤ 22k+1(2k)! 16k|x− y|ktk/2.

By Remark 1.1, it suffice to prove (1.6) for t = 1. We set ∆ := |x− y| and

Dn(s) := 1

2�

n∫
−n

(e−iλx − e−iλy)eiλW (s) dλ.
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By Fatou’s lemma,
E|`(1, x)− `(1, y)|2k ≤ lim inf

n→∞
E|`(n)(1, x)− `(n)(1, y)|2k

= lim inf
n→∞

E
( 1∫

0

Dn(s) ds
)2k

. (1.9)

Set ~s := (s1, . . . , s2k) and s0 := 0. Then

E
( 1∫

0

Dn(s) ds
)2k

= (2k)!
∫

· · ·
∫

0≤s1<···<s2k≤1

2k∏
l=1

Dn(sl) d~s

= (2k)!

(2�)2k

∫
[−n,n]2k

d~λ
2k∏
l=1

(e−iλlx − e−iλly)

×
∫

· · ·
∫

0≤s1<···<s2k≤1

2k∏
l=1

E exp
(
i
( 2k∑
m=l

λm

)
(W (sl)−W (sl−1))

)
d~s

≤ (2k)!

�2k

∫
R2k

d~λ
2k∏
l=1

|eiλl∆ − 1|
2k∏
l=1

1− exp
(
−

∣∣∣ l∑
j=1

�j

∣∣∣2=2)
∣∣∣ l∑
j=1

�j

∣∣∣2

≤ 22k(2k)!

�2k

∫
R2k

d~λ
2k∏
l=1

1 ∧ |�l|�

1 +
∣∣∣ l∑
j=1

�j

∣∣∣2 . (1.10)

Denote I0(ζ) ≡ 1,

Ip(ζ) :=
∫
Rp

d~λ

p∏
l=1

1 ∧ |�l|�

1 +
∣∣∣� + l∑

j=1
�j

∣∣∣2 .
This yields the recurrence relation:

Ip(ζ) =

∞∫
−∞

dλ
1 ∧ |�|�

1 + |� + �|2
Ip−1(ζ + λ). (1.11)

Using induction on k = 0, 1, 2, . . . , we prove that for all ζ and k
I2k(ζ) ≤ (4π)2k∆k

(
1 + (1 ∧ |ζ|∆) ln(1 + 1/∆2)

)
. (1.12)

For k = 0 this estimate is obvious. Assume that (1.12) holds for k = p− 1 and let
us prove that it holds for k = p. We deduce two auxiliary estimates. We have

∞∫
−∞

1 ∧ |�|�
1 + (� + �)2

dλ =

∞∫
−∞

1 ∧ |� − �|�
1 + �2

dη ≤
∞∫

−∞

(1 ∧ |�|�) + (1 ∧ |�|�)
1 + �2

dη

= (1 ∧ |ζ|∆)

∞∫
−∞

d�

1 + �2
+ ∆

1/∆∫
0

d(1 + �2)

1 + �2
+ 2

∞∫
1/∆

d�

1 + �2

≤ π(1 ∧ |ζ|∆) + ∆(2 + ln(1 + 1/∆2))
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and

∞∫
−∞

(1 ∧ |�|�)(1 ∧ |� + �|�)
1 + (� + �)2

dλ =

∞∫
−∞

(1 ∧ |� − �|�)(1 ∧ |�|�)
1 + �2

dη

≤
∞∫

−∞

(1 ∧ |�|�)2

1 + �2
dη + (1 ∧ |ζ|∆)

∞∫
−∞

1 ∧ |�|�
1 + �2

dη

≤ ∆(6 + (1 ∧ |ζ|∆) ln(1 + 1/∆2)).

Using the induction hypothesis, these estimates, and the double inequality

4 ≤ ln(1 + 1/∆2) ≤
√

2/∆ for 0 < ∆ ≤ 1/16,

we deduce from (1.11) and (1.12) for k = p− 1 that

|I2p−1(ζ)| ≤ (4π)2(p−1)∆p−1

∞∫
−∞

dλ
1 ∧ |�|�

1 + (� + �)2

(
1 + (1 ∧ |ζ + λ|∆) ln(1 + 1/∆2)

)
≤ (4π)2(p−1)∆p−1

[
π(1 ∧ |ζ|∆) + ∆(2 + ln(1 + 1/∆2)) + ln(1 + 1/∆2)

×
∞∫

−∞

(1 ∧ |�|�)(1 ∧ |� + �|�)
1 + (� + �)2

dλ

]
≤ (4π)2p−1∆p−1

[
(1 ∧ |ζ|∆) + ∆ ln(1 + 1/∆2)

]
.

Again using (1.11) and the estimates obtained above, we find that

|I2p(ζ)| ≤ (4π)2p−1∆p−1

∞∫
−∞

dλ
(1 ∧ |�|�)
1 + (� + �)2

(
(1 ∧ |ζ + λ|∆) + ∆ ln(1 + 1/∆2)

)
≤ (4π)2p−1∆p−1

[
∆
(
6 + (1 ∧ |ζ|∆) ln(1 + 1/∆2)

)
+ ∆ ln(1 + 1/∆2)

(
π(1 ∧ |ζ|∆)

+ ∆(2 + ln(1 + 1/∆2))
)]

≤ (4π)2p∆p
[
1 + (1 ∧ |ζ|∆) ln(1 + 1/∆2)

]
.

We derived the estimate (1.12) for k = p; this concludes the induction proof of the
estimate.

The right-hand side of (1.10) is equal to 22k(2k)!

�2k
I2k(0), and by (1.12), it does

not exceed (2k)!26k∆k, In view of (1.9), this proves (1.6) for t = 1. As already
mentioned, for arbitrary t (1.6) follows from (1.6) for t = 1 by the scaling property
of the process `(t, x). �

Lemma 1.3. A.s. for any a < b and t > 0

µt([a, b)) =

b∫
a

`(t, x) dx. (1.13)
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Proof. Associating the increasing function Ft(x) := µt((−∞, x)), x ∈ R, with
the sojourn measure µt(A), we can rewrite (1.1) as

t∫
0

f(W (s)) ds =

∞∫
−∞

f(x) dFt(x).

Using this formula for f(x) = eiλx, x ∈ R, and the definition of `(n)(t, x), we find
that

b∫
a

`(n)(t, x) dx = 1

2�

n∫
−n

e−i�b − e−i�a

−i�

∞∫
−∞

eiλxdFt(x) dλ.

By the inversion formula for characteristic functions (see (1.9) Ch. I),

b∫
a

`(n)(t, x) dx −→
n→∞

Ft(b)− Ft(a) (1.14)

at all points of continuity of Ft. For any y ∈ R, the set Ωy of the sample paths of
the process W such that Ft(x) is continuous at y has probability 1. Indeed,

{
ω :

t∫
0

1I{y}(W (s)) ds = 0
}
⊂ Ωy

and

E

t∫
0

1I{y}(W (s)) ds =

t∫
0

P(W (s) = y) ds = 0.

This proves the required statement.
Let us verify that for any pair a < b of points of continuity of the function Ft

and any t > 0 the relation (1.13) holds a.s. We have

∣∣∣∣µt([a, b))−
b∫
a

`(t, x) dx
∣∣∣∣ ≤ ∣∣∣∣Ft(b)−Ft(a)−

b∫
a

`(n)(t, x) dx
∣∣∣∣+

b∫
a

|`(n)(t, x)−`(t, x)|dx.

The first term on the right-hand side of this inequality tends to zero a.s. in view
of (1.14) and the second one tends to zero in probability by (1.3) and the estimate

E

b∫
a

|`(n)(t, x)− `(t, x)|dx ≤ (b− a)

b∫
a

E|`(n)(t, x)− `(t, x)|2dx.

Consequently, for some sequence nk the second term also tends to zero a.s. (see
Proposition 1.1 Ch. I). Thus the set of the sample paths of the process W for which
(1.13) holds has probability 1, but it can depend on t, a, and b. It now remains to
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verify that this set can be chosen to be independent of t, a and b. By the countable
additivity of the probability measure this set can be chosen to be independent of
rational values of t, a, b with probability 1. Since Ft(x) is left continuous for a
fixed t, this set does not depend on a, b. Further, since `(t, x) is an a.s. uniformly
continuous increasing process with respect to t, while µt([a, b)) is equicontinuous
with respect to t for all a < b, this set does not depend on t. �

Lemma 1.3 concludes the proof of the existence of a continuous local time for
the Brownian motion W . �

The next relation, which follows from the existence of a continuous local time
(see (1.2)), often proves useful: a.s. for any t ≥ 0 and x ∈ R

`(t, x) = lim
ε↓0

1

"

t∫
0

1I[x,x+ε)(W (s)) ds, (1.15)

where 1IA(·) is the indicator function of a Borel set A ⊆ R. For example, (1.15)
implies that `(0, x) = 0.

According to Theorem 1.1 there exists an a.s. continuous two-parameter process
`(t, x), (t, x) ∈ [0,∞)×R, such that for all t > 0 and for any Borel set A ∈ R,

t∫
0

1IA(W (s)) ds =
∫
A

`(t, x) dx. (1.16)

The process `(t, x) is referred to as the Brownian local time.

We now summarize the properties of the Brownian local time that follow directly
from its definition.

Relation (1.15) implies that for every x, the process `(t, x) is nondecreasing as
a process with respect to t and increases only on the set Zx = {s : W (s) = x}. It
is also obvious that

{(t, x) : `(t, x) > 0} ⊆
{

(t, x) : inf
0≤s≤t

W (s) < x < sup
0≤s<t

W (s)
}
. (1.17)

For any function f(x), x ∈ R, that is integrable on any finite interval the equality
(1.2) holds a.s. for any t ≥ 0.

The Brownian local time possesses the scaling property (see Remark 1.1). By
(1.15), this property can be expressed as follows: for any fixed c > 0, the process√
c`(t/c, x/

√
c) is the local time of the Brownian motion

√
cW (t/c).

§ 2. Markov property of Brownian local time
stopped at an exponential moment

In this section we describe the Brownian local time `(t, y) as a process with
respect to the parameter y. It turns out that this is a Markov process if some
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random time is taken instead of t. As examples of such random times one can take
τ , which is exponentially distributed and independent of the Brownian motion W ,
the first exit time Ha,b, the moment θv inverse of the range of the process, and some
others. This phenomenon has the following explanation. Consider first a simple
random walk with independent steps, taking the values ±1 with probability 1/2.
An excursion of the random walk is a part of the trajectory between subsequent
visits to some selected level. The random walk local time is the number of times
the random walk hits a selected level up to a certain moment of time. By the
strong Markov property for random walks, under the condition that the random
walk hits a selected level a given number of times, the corresponding excursions
are independent. Due to this fact, for a fixed number of visits to the selected
level, the numbers of hits of different levels above and below the selected one are
independent. This exactly means that the random walk local time with respect to
the parameter that characterizes the level is a Markov process. Properly normalized
random walk converges to the Brownian motion and normalized random walk local
time converges (see § 6 Ch. VII) to the Brownian local time. The Markov property
is usually preserved during the passage to the limit. As a result, the Markov
property is valid for the Brownian local time as a process of the space variable, if
at the end of the path of Brownian motion certain conditions are imposed. The
rigorous justification of the Markov property for the Brownian local time when the
Brownian motion is stopped at the first hitting moment of a level, was given by
F. Knight (1963). D. Ray (1963) proposed a purely analytic proof of this property
without using the limiting approximation. We also follow the analytic approach
based on the solutions of differential problems instead of that based on integral
equations used by Ray. In using such an approach we are forced to give different
proofs for different stopping times. Nevertheless the scheme of these proofs is the
same.

An exponentially distributed with parameter λ > 0 stopping time τ that is
independent of the Brownian motion W has a special significance and has been
already discussed repeatedly. If we know the distributions of the process `(τ, y), y ∈
R, or the distribution of a functional of this process, then by inverting the Laplace
transform with respect to λ we can compute the corresponding distributions of the
process `(t, y), y ∈ R, or the distribution of the corresponding functional for any
fixed t.

We assume that W (0) = x. The probability measure and the expectation corre-
sponding to the Brownian motion W with this starting point are usually denoted
by Px and Ex.

Theorem 2.1. Given W (τ) = z, the process `(τ, y), y ∈ R, is a Markov process
that can be represented for z ≥ x in the form

`(τ, y) =


V1(y − z), for z ≤ y,

V2(z − y), for x ≤ y ≤ z,

V3(x− y), for y ≤ x,

where Vk(h), h ≥ 0, k = 1, 2, 3, are independent homogeneous diffusions under
fixed starting points. The generating operators of the processes Vk, k = 1, 2, 3,
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have the form

L1 = 2v
(
d2

dv2
−
√

2λ d

dv

)
, L2 = 2v

(
d2

dv2
−
√

2λ d

dv

)
+2 d

dv
, L3 = 2v

(
d2

dv2
−
√

2λ d

dv

)
,

respectively. The initial values satisfy the equalities V1(0) = V2(0), V3(0) = V2(z),
and their distributions are determined by the formula

Px{`(τ, y) ≥ v|W (τ) = z} = exp(−(|y − x|+ |y − z| − |z − x|+ v)
√

2λ). (2.1)

Remark 2.1. For z ≤ x an analogous description holds in view of the spatial
homogeneity and the time reversal property of the Brownian bridge.

Remark 2.2. It follows from (2.1) that the processes V1, V2, and V3 have the
same initial exponential distribution, with the density

√
2λ e−v

√
2λ 1I[0,∞)(v).

Remark 2.3. In Theorem 2.1, a special description of the process `(τ, y), y ∈ R,
is given. In this specification the time y of the process V1 varies in the natural
direction, while for the processes V2 and V3 it varies in the opposite direction, i.e.,
for the processes of V2 and V3 the time parameter y is taken with the minus sign.
There is a certain convenience in such a description. The process V1 degenerates
to zero, because `(τ, y) = 0 for y ≥ sup

0≤s≤τ
W (s), and the same happens with the

process V3, because `(τ, y) = 0 for y ≤ inf
0≤s≤τ

W (s). If we define the process V3 in

the direct time, it would start from zero at the random moment y0 = inf
0≤s≤τ

W (s),

which is not convenient. By the reversibility in time property of the Brownian
bridge (see § 11 Ch. I), the process V2 is the same in either direction of time.
By the same reason, the infinitesimal characteristics of the processes V1 and V3

coincide.

Proof of Theorem 2.1. The distribution (2.1) follows from formula (4.49) of
Ch. III. Since the Brownian motion is spatially homogeneous (see § 10 Ch. I),
one can assume that W (0) = 0, i.e., x = 0. We consider the new probability space
generated by the conditional measure Pz

0(B) = P0{B|W (τ) = z}, B ∈ F . The
symbols for the probability and expectation relative to this space will have the
superscript z and subscript 0.

Let f(x), x ∈ R, be an arbitrary bounded continuous function and q be an
arbitrary real number. Set

f+(x) := f(x)1I(q,∞)(x), f−(x) := f(x)1I(−∞,q](x).

Let Gvu := σ(`(τ, y), u ≤ y ≤ v) be the σ-algebra of events generated by the
Brownian local time `(τ, y) on the interval [u, v]. To prove that `(τ, y), y ∈ R,
is a Markov process given W (τ) = z, it suffices to verify (see Proposition 6.3 of
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Ch. I and (2.17)–(2.19) Ch. I) that for any q ∈ R and v ∈ [0,∞),

Ez0
{

exp
(
−

∞∫
−∞

f(y)`(τ, y) dy
)∣∣∣`(τ, q) = v

}

= Ez0
{

exp
(
−

∞∫
−∞

f+(y)`(τ, y) dy
)∣∣∣`(τ, q) = v

}

×Ez0
{

exp
(
−

∞∫
−∞

f−(y)`(τ, y) dy
)∣∣∣`(τ, q) = v

}
.

(2.2)

Indeed, since f(y) = f(y)− + f+(y), y ∈ R, and the exponent on the left-hand
side of this equality equals the product of exponents on the right-hand side, the
equality (2.2) means that in the conditional probability space (with the condition
W (τ) = z), the future of the process `(τ, y) (the σ-algebra G∞q ) for a fixed present
state (`(τ, q) = v) does not depend on the past (the σ-algebra Gq−∞).

We remark that, according to (1.2),

∞∫
−∞

f(y)`(τ, y) dy =

τ∫
0

f(W (s)) ds,

and hence (2.2) can be rewritten as

Ez0

{
exp

(
−

τ∫
0

f(W (s)) ds
)∣∣∣∣`(τ, q) = v

}

= Ez0

{
exp

(
−

τ∫
0

f+(W (s)) ds
)∣∣∣∣`(τ, q) = v

}

×Ez0

{
exp

(
−

τ∫
0

f−(W (s)) ds
)∣∣∣∣`(τ, q) = v

}
. (2.3)

We prove (2.3) by computing for the expectations figuring in it explicit formulas
in terms of fundamental solutions of the equation

1

2
φ′′(y)− (λ+ f(y))φ(y) = 0, y ∈ R. (2.4)

For piecewise-continuous functions f the solutions of (2.4) must be understood
according to Remark 1.2 Ch. III.

For definiteness we take q > 0. Let γ > 0. Set

G(z) := d

dz
E0

{
exp

(
−

τ∫
0

f(W (s)) ds− γ`(τ, q)
)

;W (τ) < z

}
, z ∈ R.
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We compute G, using Theorem 4.2 Ch. III, with a = −∞, b = ∞, β1 = γ, q1 = q
and βl = 0, l 6= 1. Let ψ(y) and ϕ(y), y ∈ R, be two fundamental solutions (see
Remark 1.1 Ch. III) of equation (2.4), satisfying the condition ψ(q) = ϕ(q) = 1
and w be their Wronskian. By Theorem 4.2 Ch. III, the function G is the unique
bounded continuous solution of the problem

1

2
G′′(z)− (λ+ f(z))G(z) = 0, z ∈ R \ {0, q}, (2.5)

G′(+0)−G′(−0) = −2λ, (2.6)

G′(q + 0)−G′(q − 0) = 2γG(q). (2.7)

The solution can be represented in the form

G(z) =


C1ψ(z), for z ≤ 0,
B1ψ(z) +B2ϕ(z), for 0 ≤ z ≤ q,

C2ϕ(z), for q ≤ z.

The continuity conditions and (2.6), (2.7) give the following values for the constants
Ck, Bk, k = 1, 2:

C1 = 2� (0)

w + 2
+ 2�

w
(ϕ(0)− ψ(0)), C2 = 2� (0)

w + 2
,

B1 = 2� (0)

w + 2
− 2�

w
ψ(0), B2 = 2�

w
ψ(0),

where w = ψ′(x)ϕ(x)− ϕ′(x)ψ(x) > 0 is a constant quantity. Consequently,

G(z) =



2� (0) (z)

w + 2
+ 2�

w
(ϕ(0)− ψ(0))ψ(z), for z ≤ 0,

2� (0) (z)

w + 2
+ 2�

w
ψ(0)(ϕ(z)− ψ(z)), for 0 ≤ z ≤ q,

2� (0)'(z)

w + 2
, for q ≤ z.

Inverting the Laplace transform with respect to γ, we get

@

@z

@

@v
E0

{
exp

(
−

τ∫
0

f(W (s)) ds
)

; `(τ, q) ≤ v,W (τ) < z

}

=
{
λψ(0)ψ(z)e−vw/2, for z ≤ q,

λψ(0)ϕ(z)e−vw/2, for q ≤ z,
v > 0, (2.8)

and

@

@z
E0

{
exp

(
−

τ∫
0

f(W (s)) ds
)

; `(τ, q) = 0,W (τ) < z

}

=


2�

w
(ϕ(0)− ψ(0))ψ(z), for z ≤ 0,

2�

w
ψ(0)(ϕ(z)− ψ(z)), for 0 ≤ z ≤ q.

(2.9)
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For f ≡ 0 the fundamental solutions of (2.4) with the property ψ0(q) = ϕ0(q) = 1
have the form

ψ0(y) = e(y−q)
√

2λ, ϕ0(y) = e(q−y)
√

2λ,

and have the Wronskian w0 = 2
√

2λ. Then from (2.8), (2.9) it follows that for
v > 0, q > 0

@

@z

@

@v
P0(`(τ, q) ≤ v,W (τ) < z) =

{
λe−(2q+v−z)

√
2λ, for z ≤ q,

λe−(v+z)
√

2λ, for q ≤ z,
(2.10)

@

@z
P0(`(τ, q) = 0,W (τ) < z) =


√
�

√
2
(ez

√
2λ − e(z−2q)

√
2λ), for z ≤ 0,

√
�

√
2
(e−z

√
2λ − e(z−2q)

√
2λ), for 0 ≤ z ≤ q.

(2.11)

Since for q = ∞ the left-hand side of (2.11) becomes d

dz
P0(W (τ) < z), we can

easily establish (2.1) for y ≥ 0, x = 0, by dividing (2.10) and (2.11) by (2.10) and
(2.11) with q = ∞, respectively. For y ≤ 0 the equality (2.1) can be verified with
the help of the symmetry property of Brownian motion.

Further, dividing (2.8) and (2.9) by (2.10) and (2.11), respectively, we get

Ez0

{
exp

(
−

τ∫
0

f(W (s)) ds
)∣∣∣∣`(τ, q) = v

}

=

{
e(2q−z+v)

√
2λψ(0)ψ(z)e−tw/2, for z ≤ q,

e(z+v)
√

2λψ(0)ϕ(z)e−tw/2, for q ≤ z,
v > 0, (2.12)

and

Ez0
{

exp
(
−

τ∫
0

f(W (s)) ds
)∣∣`(τ, q) = 0

}

=


2
√
2�('(0)−  (0)) (z)

w(ez
√
2� − e(z−2q)

√
2�)

, for z ≤ 0,

2
√
2� (0)('(z)−  (z))

w(e−z
√
2� − e(z−2q)

√
2�)

, for 0 ≤ z ≤ q.

(2.13)

Let us compute the analogous expressions for the function f+(x), x ∈ R, in
terms of functions ϕ and ψ. Since formulas (2.12) and (2.13) were obtained for
an arbitrary nonnegative piecewise continuous function f in terms of fundamental
solutions of equation (2.4), one can use this formulas for the function f+. To do
this we express ψ+(y), ϕ+(y), the fundamental solutions of equation (2.4) with the
function f+(y) instead of f(y), in terms of the fundamental solutions ψ(y), ϕ(y).
We get

ψ+(y) =

{
e(y−q)

√
2λ, for y ≤ q,

Aψ(y) + (1−A)ϕ(y), for q ≤ y,
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ϕ+(y) =

{
Be(y−q)

√
2λ + (1−B)e(q−y)

√
2λ, for y ≤ q,

ϕ(y), for q ≤ y.

In this representation we have taken into account that ψ+ is an increasing function,
ϕ+ is a decreasing one, and ψ+(q) = ϕ+(q) = 1. The continuity of the derivative
at q enables us to compute the constants A and B, obtaining that

ψ+(y) =

 e(y−q)
√

2λ, for y ≤ q,
√
2�− '′(q)

w
ψ(y) +  ′(q)−

√
2�

w
ϕ(y), for q ≤ y,

ϕ+(y) =

{ (1
2

+ '′(q)

2
√
2�

)
e(y−q)

√
2λ +

(
1

2
− '′(q)

2
√
2�

)
e(q−y)

√
2λ, for y ≤ q,

ϕ(y), for q ≤ y.

The Wronskian of ψ+ and ϕ+ is

w+ = ψ′+(q)− ϕ′+(q) =
√

2λ− ϕ′(q).

Substituting ψ+ and ϕ+ in place of ψ and ϕ in (2.12) and (2.13), we get

Ez0

{
exp

(
−

τ∫
0

f+(W (s)) ds
)∣∣∣∣`(τ, q) = v

}

=

{
ev(

√
2λ+ϕ′(q))/2, for z ≤ q,

ϕ(z) e(z−q)
√

2λ ev(
√

2λ+ϕ′(q))/2, for q ≤ z,
v > 0, (2.14)

and

Ez0

{
exp

(
−

τ∫
0

f+(W (s)) ds
)∣∣∣∣`(τ, q) = 0

}
= 1 for z ≤ q. (2.15)

We carry out the computations for f−(x), x ∈ R. We represent the fundamental
solutions of equation (2.4) with f− instead of f in the form

ψ−(y) =

{
ψ(y), for y ≤ q,

Ce(y−q)
√

2λ + (1− C)e(q−y)
√

2λ, for q ≤ y,

ϕ−(y) =

{
Dψ(y) + (1−D)ϕ(y), for y ≤ q,

e(q−y)
√

2λ, for q ≤ y.

By the continuity of the derivative at q,

ψ−(y) =

{
ψ(y), for y ≤ q,(
1

2
+  ′(q)

2
√
2�

)
e(y−q)

√
2λ +

(
1

2
−  ′(q)

2
√
2�

)
e(q−y)

√
2λ, for q ≤ y,
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ϕ−(y) =


√
2�+  ′(q)

w
ϕ(y)−

√
2�+ '′(q)

w
ψ(y), for y ≤ q,

e(q−y)
√

2λ, for q ≤ y.

The Wronskian of these solutions is

w− = ψ′−(q)− ϕ′−(q) = ψ′(q) +
√

2λ.

Substituting ψ− and ϕ− in place of ψ and ϕ in (2.12) and (2.13), we have

Ez0

{
exp

(
−

τ∫
0

f−(W (s)) ds
)∣∣∣∣`(τ, q) = v

}

=

{
ψ(0)ψ(z) e(2q−z)

√
2λ ev(

√
2λ−ψ′(q))/2, for z ≤ q,

ψ(0) eq
√

2λ ev(
√

2λ−ψ′(q))/2, for q ≤ z,
v > 0, (2.16)

and

Ez0

{
exp

(
−

τ∫
0

f−(W (s)) ds
)∣∣∣∣`(τ, q) = 0

}

=


2
√
2�('(0)−  (0)) (z)

w(ez
√
2� − e(z−2q)

√
2�)

, for z ≤ 0,

2
√
2� (0)('(z)−  (z))

w(e−z
√
2� − e(z−2q)

√
2�)

, for 0 ≤ z ≤ q.

(2.17)

Since (2.12) is equal to the product of (2.14) and (2.16), while (2.13) is equal to
the product of (2.15) and (2.17), this proves (2.3).

We have assumed that q > 0. The cases q = 0 and q < 0 can be dealt with
similarly. But this is not necessary, since the case q < 0 can be reduced to the
case q > 0 with the help of the symmetry property of a Brownian motion, and
the case q = 0 can be reduced to the case q = z due to the fact that a Brownian
bridge is spatially homogeneous and time reversible (see § 11 Ch. I). Thus we have
established that `(τ, y), y ∈ R, is a Markov process given W (τ) = z.

Next derive a number of characteristics of this Markov process. We compute
the generating operators of the processes V1, V2, and V3. It is not hard to see that
thanks to the time reversibility property of the Brownian bridge the generating
operator of V3 coincides with the generating operator of V1. To compute the gen-
erating operators of V1 and V2 we first compute for h ≥ 0, v > 0 and η > 0 the
expressions

u1(h, v) := Ez0
{
e−η`(τ,q+h)

∣∣`(τ, q) = v
}
, for 0 ≤ z ≤ q,

u2(h, v) := Ez0
{
e−η`(τ,q−h)

∣∣`(τ, q) = v
}
, for 0 ≤ q − h ≤ q ≤ z.

These functions are the Laplace transform with respect to η of the transition func-
tions of the processes V1 and V2, therefore they uniquely determine the generating
operators of the processes.
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To compute the function u1(h, v) we can use Theorem 4.2 of Ch. III with f = 0,
a = −∞, b = ∞, q1 = q, q2 = q + h, ql = 0 for l 6= 1, 2. However the computations
can be simplified by using formula (2.14). We should take in (2.14) instead of the
function f+ the Dirac δ-function at point q + h, multiplied by η. Actually, this
means that in place of f+(y) we must consider the family

{
�

"
1I[q+h,q+h+ε)(y)

}
ε>0

,

y ∈ R, of functions and pass to the limit as ε ↓ 0 in the problem of computing
(2.14). This procedure is analogous to that used in the proof of Theorem 3.1
Ch. III. It is not hard to see that in the domain y ≥ q the fundamental solution
ϕδ(y) of (2.4) with the condition ϕδ(q) = 1 corresponding to the δ-function at q+h
(f(y) = ηδq+h(y)) is the continuous bounded solution of the following problem:

1

2
ϕ′′(y)− λϕ(y) = 0, y ∈ (q,∞) \ {q + h},

ϕ′(q + h+ 0)− ϕ′(q + h− 0) = 2ηϕ(q + h), ϕ(q) = 1.

This solution can be represented in the form

ϕδ(y) = (1−B) e(q−y)
√

2λ +Beh
√

2λ e−|y−q−h|
√

2λ.

Here we have already taken into account the condition ϕδ(q) = 1 and some ar-
guments of Example 3.1 Ch. III. The modulus in the exponential guarantees the
continuity of the function and the jump of its derivative at q + h. The presence
of the term e(q−y)

√
2λ guarantees the boundedness at +∞. The condition on the

jump of the derivative gives

B = − � e−2h
√
2�

√
2�

(
1 + �√

2�
(1− e−2h

√
2�)

) . (2.18)

Since √
2λ+ ϕ′δ(q) =

√
2λ−

√
2λ(1−B) +

√
2λB = 2

√
2λB,

we find by substituting the values obtained above in (2.14), z ≤ q, that

u1(h, v) = exp
(
− v�e−2

√
2�h

1 + �√
2�

(
1− e2h

√
2�

)). (2.19)

Since u1(h, v) does not depend on q, the process V1(h), h ≥ 0, is homogeneous.
Note that for the computation of u1(h, v) one can use also formula (2.12). In

this case, ψδ(z) = e(z−q)
√

2λ for z ≤ q and w = ψ′δ(q)−ϕ′δ(q) = 2
√

2λ (1−B). The
answer, according to (2.12) for z ≤ q, is the same: u1(h, v) = evB .

We proceed similarly to compute u2(h, v). We use formula (2.16). In place of f−
we take the Dirac δ-function at q − h, multiplied by η (f−(y) = ηδq−h(y)). In this
case we consider the fundamental solution ψδ(y) of equation (2.4) in the domain
y ≤ q with the condition ψδ(q) = 1. Then the function ψδ(y) is the continuous
bounded solution of the problem

1

2
ψ(y)− λψ(y) = 0, y ∈ (−∞, q) \ {q − h},

ψ′(q − h+ 0)− ψ′(q − h− 0) = 2ηψ(q − h), ψ(q) = 1.
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This solution can be represented in the form

ψδ(y) = (1−B)e(y−q)
√

2λ +Beh
√

2λ e−|y−q+h|
√

2λ.

Here, as in the previous case, the condition ψδ(q) = 1, the condition of boundedness
at −∞, and the continuity condition at q−h are taken into account. The condition
on the jump of the derivative leads to the expression (2.18) for B. Since

√
2λ− ψ′δ(q) =

√
2λ+B

√
2λ− (1−B)

√
2λ = 2

√
2λB,

ψδ(0) = e−q
√

2λ
(
1 +B

(
e2h

√
2λ − 1

))
,

substitution of these values in (2.16), q ≤ z, gives

u2(h, v) = 1

1 +
�

√
2�

(
1− e−2

√
2�h

) exp
(
− v�e−2

√
2�h

1 + �√
2�

(
1− e2h

√
2�

)). (2.20)

Since this expression is independent of q, the process V2(h), h ≥ 0, is homogeneous.
By the definition of the generating operator of a homogeneous Markov process

(see § 9 Ch. IV) and the arbitrariness of η, the operators L1 and L2, corresponding
to the processes V1 and V2, can be determined from the respective equations

@u1

@h
= L1u1,

@u2

@h
= L2u2.

In view of (2.19),

@

@h
u1(h, v) =

(
2v�2e−4

√
2�h

(1 + �√
2�
(1− e−2

√
2�h))2

+ 2v�
√
2�e−2

√
2�h

1 + �√
2�
(1− e−2

√
2�h)

)
u1(h, v).

On the other hand,

@

@v
u1(h, v) = − �e−2

√
2�h

1 +
�

√
2�

(1− e−2
√
2�h)

u1(h, v),

@2

@v2
u1(h, v) = �2e−4

√
2�h

(1 +
�

√
2�

(1− e−2
√
2�h))2

u1(h, v).

This implies that

L1 = 2v
(
d2

dv2
−
√

2λ d

dv

)
. (2.21)

Similarly, it can be established that

L2 = 2v
(
d2

dv2
−
√

2λ d

dv

)
+ 2 d

dv
. (2.22)

The theorem is proved. �
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The processes Vk, k = 1, 2, 3, can be described in a more convenient form. Set

p(n)(t, v, g) := t−1gn/2v1−n/2e−(v2+g2)/2tIn/2−1(vg/t), (2.23)

where v > 0, g > 0. Here and in what follows, Il(x) are modified Bessel functions
(see Appendix 2). Let R(n)(t), t ≥ 0, for n = 0, 1, 2, . . . be an n-dimensional
Bessel process, that is, a positive continuous homogeneous Markov process with the
transition density p(n)(t, v, g). For n = 1, 2, . . . the n-dimensional Bessel process
R(n)(t) describes (see Subsection 5 § 16 Ch. IV) the distance from zero of the n-
dimensional standard Brownian motion with independent coordinates.

The process R(0)(t), t ≥ 0, is the 0-dimensional Bessel process, i.e., a continuous
Markov process with the transition density p(0)(t, v, g) and with the probability

P
{
R(0)(t) = 0

∣∣R(0)(0) = v
}

= e−v
2/2t

of hitting zero. Beginning at a nonnegative starting point, this process a.s. reaches
zero and then remains equal to zero.

The process Q(n)(t) := e−γtR(n)
(
e2t − 1

2

)
is (see Subsection 6 § 16 Ch. IV) the

radial Ornstein–Uhlenbeck process of order n/2−1 with the parameters γ > 0 and
σ = 1. The special interest to us is the square of this process: Zn(t) :=

(
Q(n)(t)

)2,
t ≥ 0. According to (16.8) Ch. IV, the generator of the quadratic radial Ornstein–
Uhlenbeck process has the form

L(n)
2 = 2v d2

dv2
+ (n− 2γv) d

dv
. (2.24)

This formula holds also for n = 0.
Note that just the time change e2t − 1

2
and the scale factor e−γt guarantee the

transformation of the homogeneous diffusion process (the Bessel process) into the
homogeneous one (the radial Ornstein–Uhlenbeck process).

Now, comparing the generating operators (2.21) and (2.22) with the form of the
operator (2.24), we get the following assertion.

Proposition 2.1. The processes Vk(h), h ≥ 0, k = 1, 2, 3, are representable in
the form

V1(h) = e−2
√

2λh
(
R(0)

(
e2
√
2�h − 1

2
√
2�

))2

, V3(h) = e−2
√

2λh
(
R̂(0)

(
e2
√
2�h − 1

2
√
2�

))2

,

V2(h) = e−2
√

2λh
(
R(2)

(
e2
√
2�h − 1

2
√
2�

))2

,

where R(0)(t), R̂(0)(t) and R(2)(t), t ≥ 0, are independent Bessel processes of di-
mensions 0, 0, and 2 under fixed starting points. The initial values of the processes
Vk(h), h ≥ 0, satisfy the equalities V1(0) = V2(0), V3(0) = V2(z) and have the
density

d

dv
P(Vk(0) < v) =

√
2λ e−v

√
2λ 1I[0,∞)(v).
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The process `(τ, y), y ∈ R, given W (τ) = z, can be described in terms of finite-
dimensional distributions. Since ` is a Markov process, it is sufficient to specify the
initial distribution (see (2.1)) and the transition probabilities. The latter can be
derived from (4.62)–(4.65) of Ch. III. Since this process is invariant with respect
to the replacement x to z, we can assume that x < z.

We denote the probability measure corresponding to the starting pointW (0) = x
and the condition W (τ) = z by Pz

x(·) := Px(·|W (τ) = z). Consider the transition
probabilities

Pz
x(`(τ, u) ∈ dg|`(τ, r) = v), r < u.

For brevity set ∆ := u− r > 0 and

Ll(∆, v, g) :=
√
�

√
2 sh(�

√
2�)

exp
(
−
√
�
(
ve−�

√
2� +Ge�

√
2�)

√
2 sh(�

√
2�)

)
Il

( √
2�vg

sh(�
√
2�)

)
, l = 0, 1.

The points x and z divide the real line into three intervals. As a result, for the
transition probability we can distinguish six different cases depending on which
intervals the points r and u belong to.

1) For x ≤ r < u ≤ z and v > 0, we have

Pz
x(`(τ, u) ∈ dg|`(τ, r) = v) = e∆

√
2λL0(∆, v, g) dg.

2) For x < z ≤ r < u we have

Pz
x(`(τ, u) = 0|`(τ, r) = v) = exp

(
− v

√
�

e�
√
2� − 1

)
,

Pz
x(`(τ, u) ∈ dg|`(τ, r) = v) =

√
v

√
g
L1(∆, v, g) dg, v > 0.

These expressions for the transition probabilities can be obtained from the repre-
sentation of the processes V1 and V2 in terms of the squared Bessel processes of
dimension 0 and 2 respectively, if we take into account the transition density (2.23).

3) For r < u ≤ x < z we have

Pz
x(`(τ, u) = 0|`(τ, r) = 0) = 1− e−2(x−u)

√
2�

1− e−2(x−r)
√
2�
,

Pz
x(`(τ, u) ∈ dg|`(τ, r) = 0) =

√
2� e−2(x−u)

√
2�

1− e−2(x−r)
√
2�

exp
(
− g

√
2�

1− e−2�
√
2�

)
dg,

Pz
x(`(τ, u) ∈ dg|`(τ, r) = v) =

√
g

√
v
e∆

√
2λL1(∆, v, g) dg, v > 0. (2.25)

Note that these transition densities correspond to the process V3, considered in the
natural time direction (see Remark 2.3). One can verify that the transition density
(2.25) corresponds to the process

V4(h) = e−2
√

2λh
(
R(4)

(
e2
√
2�h − 1

2
√
2�

))2

.
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4) For r < x < u < z we have

Pz
x(`(τ, u) ∈ dg|`(τ, r) = 0) =

√
2�

1− e−2�
√
2�

exp
(
− g

√
2�

1− e−2�
√
2�

)
,

Pz
x(`(τ, u) ∈ dg|`(τ, r) = v) e(2r−x−u)

√
2λ

=
√
g sh((x− r)

√
2�)

√
v sh((u− r)

√
2�)

L1(∆, v, g) dg + sh((u− x)
√
2�)

sh((u− r)
√
2�)

L0(∆, v, g) dg, v > 0.

5) For x < r < z < u and v > 0 we have

Pz
x(`(τ, u) = 0|`(τ, r) = v) =

√
2�

(
1− e−2(u−z)

√
2�)(

1− e−2�
√
2�

) exp
(
− g

√
2�

e2�
√
2� − 1

)
,

Pz
x(`(τ, u) ∈ dg|`(τ, r) = v) e(rz)

√
2λ

=
√
v sh((uz)

√
2�)

√
g sh((ur)

√
2�)

L1(∆, v, g) dg + sh((zr)
√
2�)

sh((ur)
√
2�)

L0(∆, v, g) dg.

6) For r < x < z < u and v > 0 we have

Pz
x(`(τ, u) = 0|`(τ, r) = 0) = 1− e−2(u−z)

√
2�

1− e−2(u−r)
√
2�
,

Pz
x(`(τ, u) = 0|`(τ, r) = v) =

(
1− e−2(u−x)

√
2�)(

1− e−2(u−z)
√
2�)(

1− e−2�
√
2�

)2 exp
(
− g

√
2�

e2�
√
2� − 1

)
,

Pz
x(`(τ, u) ∈ dg|`(τ, r) = 0) =

√
2�

(
e−2(u−z)

√
2� − e−2�

√
2�)(

1− e−2(u−r)
√
2�

)2 exp
(
− g

√
2�

1− e−2�
√
2�

)
dg,

Pz
x(`(τ, u) ∈ dg|`(τ, r) = v) e(2r−x−z)

√
2λ

=
(√

v sh((u− x)
√
2�) sh((u− z)

√
2�)

√
g sh2((u− r)

√
2�)

+
√
g sh((x− r)

√
2�) sh((z − r)

√
2�)

√
v sh2((u− r)

√
2�)

)
L1(∆, v, g) dg

+
(
sh((x− r)

√
2�) sh((u− z)

√
2�)

sh2((u− r)
√
2�)

+ sh((z − r)
√
2�) sh((u− x)

√
2�)

sh2((u− r)
√
2�)

)
L0(∆, v, g) dg.

§ 3. Markov property of Brownian local time
stopped at the first exit time

Let Ha,b = min{s : W (s) 6∈ (a, b)} be the first exit time of the Brownian motion
W from the interval (a, b). We set W (0) = x ∈ (a, b). In this section we continue
the description of the Brownian local time `(t, y) as a process with respect to y.
Instead of a fixed time t, here we consider the stopping time Ha,b.
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Theorem 3.1. Given W (Ha,b) = a, the process {`(Ha,b, y), y ∈ [a, b]}, is a
Markov process that can be represented in the form

`(Ha,b, y) =
{
Va4(x− y), for a ≤ y ≤ x,

Va5(y − x), for x ≤ y ≤ b,

where {Va4(h), 0 ≤ h ≤ x − a} and {Va5(h), 0 ≤ h ≤ b − x} are nonnegative
independent diffusions under fixed starting points. The generating operators of
the processes Va4 and Va5 have the form

L◦
a4 = 2v d2

dv2
+ 2
(
1− v

x− a− h

)
d

dv
, L◦

a5 = 2v d2

dv2
− 2v

b− x− h

d

dv
, (3.1)

respectively. The initial values coincide (Va4(0) = Va5(0)) and their distribution is
determined by the formula

Px{`(Ha,b, x) ≥ v|W (Ha,b) = a} = exp
(
− (b− a)v

2(b− x)(x− a)

)
. (3.2)

Remark 3.1. Given W (Ha,b) = b, the analogous description holds:

`(Ha,b, y) =
{
Vb4(x− y), for a ≤ y ≤ x,

Vb5(y − x), for x ≤ y ≤ b,

where {Vb4(h), 0 ≤ h ≤ x − a} and {Vb5(h), 0 ≤ h ≤ b − x} are nonnegative inde-
pendent diffusions under fixed starting points. They have the generating operators

L◦
b4 = 2v d2

dv2
− 2v

x− a− h

d

dv
, L◦

b5 = 2v d2

dv2
+ 2
(
1− v

b− x− h

)
d

dv
, (3.3)

respectively, and the same initial values Vb4(0) = Vb5(0) distributed by (3.2).

Remark 3.2. The processes {Vak(h), h ≥ 0}, {Vbk(h), h ≥ 0}, k = 4, 5, are
nonhomogeneous diffusions and L◦ is determined by the formula (9.13) of Ch. IV.

Remark 3.3. From the behavior of the Brownian motion W on the interval
(a, b) and the fact that the local time `(Ha,b, y), y ∈ [a, b], is strictly positive in any
interior states of the Brownian motion except the extreme ones, it follows that the
processes Va4(h) and Vb5(h) equal zero only at the points h = x− a and h = b− x,
respectively, and the processes Va5(h) and Vb4(h) degenerate to zero when h does
not reach the boundary values b− x and x− a, respectively.

Remark 3.4. The processes Vak, Vbk, k = 4, 5, can be expressed in terms of
independent Bessel processes {R(n)(t), t ≥ 0}, n = 0, 2, whose initial values are
assigned the random variables with the appropriate initial distributions:

Va4(h) = (x− a− h)2
(
R(2)

(
1

x− a− h
− 1

x− a

))2

, for 0 ≤ h ≤ x− a,

Va5(h) = (b− x− h)2
(
R(0)

(
1

b− x− h
− 1

b− x

))2

, for 0 ≤ h ≤ b− x,

Vb4(h) = (x− a− h)2
(
R(0)

(
1

x− a− h
− 1

x− a

))2

, for 0 ≤ h ≤ x− a,

Vb5(h) = (b− x− h)2
(
R(2)

(
1

b− x− h
− 1

b− x

))2

, for 0 ≤ h ≤ b− x.



380 V BROWNIAN LOCAL TIME

To verify this, it is sufficient to use (9.14) Ch. IV. Since the squared Bessel
process Yn(t) := (R(n)(t))2, by (16.5) Ch. IV, satisfies the stochastic differential
equation

dYn(t) = ndt+ 2
√
Yn(t) dW (t),

choosing in (9.14) Ch. IV the parameter h instead of s, and a(h) = (x − a − h)2,
b(h) = 1

x− a− h
− 1

x− a
, we see that the processes Va4(h) and Vb4(h), represented

in such form, have the respective generating operators (3.1) and (3.3). In order
to compute the generating operators of Va5(h) and Vb5(h), expressed in terms of
Bessel processes by formula (9.14) Ch. IV, we should take a(h) = (b− x− h)2 and
b(h) = 1

b− x− h
− 1

b− x
.

Remark 3.5. Without conditions on the end value W (Ha,b) of a sample paths,
the process `(Ha,b, y), y ∈ [a, b], is the mixture of two Markov processes, namely,

`(Ha,b, y) =


(y − a)2

(
R(χ)

(
1

y − a
− 1

x− a

))2

, for a ≤ y ≤ x,

(b− y)2
(
R(2−χ)

(
1

b− y
− 1

b− x

))2

, for x ≤ y ≤ b,

where χ is a random variable independent of the Bessel processes R(n), n = 0, 2,
and having the distribution

P(χ = 0) = x− a

b− a
, P(χ = 2) = b− x

b− a
.

Remark 3.6. To describe the Brownian local time stopped at the first hitting
time Hz of a level z we can choose for z ≤ x in Theorem 3.1 a = z, b = ∞, and
choose for x ≤ z in Remark 3.1 b = z, a = −∞.

Proof of Theorem 3.1. As usual, we append to the expectation and probability
symbols the subscript x to indicate the condition W (0) = x. The proof of The-
orem 3.1 coincides in the main aspects with that for Theorem 2.1. We use the
same notations. To prove the Markov property (see the beginning of the proof of
Theorem 2.1 and the equality (2.3)), we verify that for any q ∈ (a, b) and v ≥ 0

Ex

{
exp
(
−

Ha,b∫
0

f(W (s)) ds
)∣∣∣∣`(Ha,b, q) = v, W (Ha,b) = a

}

= Ex

{
exp
(
−

Ha,b∫
0

f+(W (s)) ds
)∣∣∣∣`(Ha,b, q) = v, W (Ha,b) = a

}

×Ex

{
exp
(
−

Ha,b∫
0

f−(W (s)) ds
)∣∣∣∣`(Ha,b, q) = v, W (Ha,b) = a

}
,
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which if v > 0 is equivalent to

@

@v
Ex

{
exp
(
−

Ha,b∫
0

f(W (s)) ds
)

; `(Ha,b, q) < v, W (Ha,b) = a

}

= Ex

{
exp
(
−

Ha,b∫
0

f+(W (s)) ds
)∣∣∣∣`(Ha,b, q) = v, W (Ha,b) = a

}

× @

@v
Ex

{
exp
(
−

Ha,b∫
0

f−(W (s)) ds
)

; `(Ha,b, q) < v, W (Ha,b) = a

}
. (3.4)

To compute the expectations included in (3.4) we first compute the function

Q(x) = Ex

{
exp
(
−

Ha,b∫
0

f(W (s)) ds− γ`(Ha,b, y)
)

;W (Ha,b) = a

}
, x ∈ (a, b),

and the analogous functions Q−(x) and Q+(x), x ∈ (a, b), for f− and f+, respec-
tively. Then we compute the inverse Laplace transforms with respect to γ.

Let ϕ and ψ be linearly independent solutions of equation (2.4) with λ = 0,
with ϕ decreasing and ψ increasing, and let ω = ψ′(y)ϕ(y) − ϕ′(y)ψ(y) be their
Wronskian, which is a constant. Let, in addition, the boundary conditions ψ(a) =
0, ψ(b) = 1, ϕ(a) = 1 and ϕ(b) = 0 hold. We can always construct the solutions
with such boundary conditions in terms of ϕ̄(y) and ψ̄(y), y ∈ R, the fundamental
solutions of equation (2.4) with λ = 0:

ϕ(y) =
� (b) �'(y)− � (y) �'(b)
� (b) �'(a)− � (a) �'(b)

, ψ(y) =
� (y) �'(a)− � (a) �'(y)
� (b) �'(a)− � (a) �'(b)

.

By Theorem 5.3 Ch. III, the function Q is the unique continuous solution of the
problem

1

2
Q′′(x)− f(x)Q(x) = 0, x ∈ (a, b) \ {q}, (3.5)

Q′(q + 0)−Q′(q − 0) = 2γQ(q), (3.6)

Q(a) = 1, Q(b) = 0. (3.7)

A solution of the problem (3.5)–(3.7) can be represented in the form

Q(x) =


ϕ(x) + (A− ϕ(q)) (x)

 (q)
, for a ≤ x ≤ q,

A
'(x)

'(q)
, for q ≤ x ≤ b.

In this representation we have taken into account the boundary conditions (3.7)
and the continuity condition at q. From (3.6) we compute A and, consequently,

Q(x) =


ϕ(x)− '(q) (x)

 (q)
+ !'(q) (x)

 (q)(! + 2'(q) (q))
, for a ≤ x ≤ q,

!'(x)

! + 2'(q) (q)
, for q ≤ x ≤ b.
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Inverting the Laplace transform with respect to γ, we get

@

@v
Ex

{
exp
(
−

Ha,b∫
0

f(W (s)) ds
)

; `(Ha,b, q) < v, W (Ha,b) = a

}

=


! (x)

2 2(q)
exp

(
− v!

2 (q)'(q)

)
, for a ≤ x ≤ q,

!'(x)

2'(q) (q)
exp

(
− v!

2 (q)'(q)

)
, for q ≤ x ≤ b,

v > 0, (3.8)

and

Ex

{
exp
(
−

Ha,b∫
0

f(W (s)) ds
)

; `(Ha,b, q) = 0, W (Ha,b) = a

}

=
(
ϕ(x)− '(q) (x)

 (q)

)
1I[a,q](x). (3.9)

For f ≡ 0 we have ψ(x) = x− a

b− a
and ϕ(x) = b− x

b− a
, and w = 1

b− a
. Then from

(3.8) and (3.9) it follows that

@

@v
Px

(
`(Ha,b, q) < v, W (Ha,b) = a

)

=


x− a

2(q − a)2
exp

(
− (b− a)v

2(b− q)(q − a)

)
, for a ≤ x ≤ q,

b− x

2(b− q)(q − a)
exp

(
− (b− a)v

2(b− q)(q − a)

)
, for q ≤ x ≤ b,

v > 0, (3.10)

and
Px

(
`(Ha,b, q) = 0, W (Ha,b) = a

)
= q − x

q − a
1I[a,q](x). (3.11)

For q = x (3.10) implies (3.2).
To obtain the expressions analogous to (3.8) and (3.9) for the function f−, we

proceed as follows. The solution of the problem (3.5)–(3.7) for f− in place of f can
be found in the form

Q−(x) =


ϕ(x) + (A− − ϕ(q)) (x)

 (q)
, for a ≤ x ≤ q,

A−
(b− x)

(b− q)
, for q ≤ x ≤ b.

By (3.6), we have

Q−(x) =


ϕ(x)− '(q) (x)

 (q)
+ ! (x)

2 2(q)
(  ′(q)
2 (q)

+
1

2(b− q)
+ 

) , for a ≤ x ≤ q,

!(b− x)

2(b− q) (q)
(  ′(q)
2 (q)

+
1

2(b− q)
+ 

) , for q ≤ x ≤ b.
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Inverting the Laplace transform with respect to γ, we obtain

@

@v
Ex

{
exp
(
−

Ha,b∫
0

f−(W (s)) ds
)

; `(Ha,b, q) < v, W (Ha,b) = a

}

=


! (x)

2 2(q)
exp
(
−v ′(q)

2 (q)
− v

2(b− q)

)
, for a ≤ x ≤ q,

!(b− x)

2(b− q) (q)
exp
(
−v ′(q)

2 (q)
− v

2(b− q)

)
, for q ≤ x ≤ b,

v > 0, (3.12)

and

Ex

{
exp
(
−

Ha,b∫
0

f−(W (s)) ds
)

; `(Ha,b, q) = 0, W (Ha,b) = a

}

=
(
ϕ(x)− '(q) (x)

 (q)

)
1I[a,q](x). (3.13)

To obtain expressions analogous to (3.8), (3.9) for the function f+ we represent
the solution of the problem (3.5)–(3.7) with the function f+ in place of f in the
form

Q+(x) =


q − x

q − a
+A+

x− a

q − a
, for a ≤ x ≤ q,

A+
'(x)

'(q)
, for q ≤ x ≤ b.

By (3.6), we have

Q+(x) =



q − x

q − a
+ x− a

2(q − a)2
( 1

2(q − a)
−
'′(q)

2'(q)
+ 

) , for a ≤ x ≤ q,

'(x)

2(q − a)'(q)
( 1

2(q − a)
−
'′(q)

2'(q)
+ 

) , for q ≤ x ≤ b.

Inverting the Laplace transform with respect to γ, we obtain

@

@v
Ex

{
exp
(
−

Ha,b∫
0

f+(W (s)) ds
)

; `(Ha,b, q) < v, W (Ha,b) = a

}

=


x− a

2(q − a)2
exp
(
− v

2(q − a)
+ v'′(q)

2'(q)

)
, for a ≤ x ≤ q,

'(x)

2(q − a)'(q)
exp
(
− v

2(q − a)
+ v'′(q)

2'(q)

)
, for q ≤ x ≤ b,

v > 0, (3.14)

and

Ex

{
exp
(
−

Ha,b∫
0

f+(W (s)) ds
)

; `(Ha,b, q) = 0, W (Ha,b) = a

}
= q − x

q − a
1I[a,q](x).

(3.15)
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Dividing (3.14) by (3.10), we have

Ex

{
exp
(
−

Ha,b∫
0

f+(W (s)) ds
)∣∣∣∣`(Ha,b, q) = v, W (Ha,b) = a

}

=


exp
(

v

2(b− q)
+ v'′(q)

2'(q)

)
, for a ≤ x ≤ q,

'(x)(b− q)

2(b− x)'(q)
exp
(

v

2(b− q)
+ v'′(q)

2'(q)

)
, for q ≤ x ≤ b.

(3.16)

For a ≤ x < q, this formula holds also for v = 0.
Now, since (3.8) is equal to the product of (3.12) and (3.16), the relation (3.4)

holds. The set {`(Ha,b, q) = 0, W (Ha,b) = a} is empty if q ≤ x ≤ b. If a ≤
x < q the equality preceding (3.4) is also easily verified for v = 0, because of
the coincidence of the right-hand sides in (3.9) and (3.13). Thus we prove that
`(Ha,b, y), y ∈ [a, b], is a Markov process given W (Ha,b) = a.

Using the same approach as in the proof of Theorem 2.1, we compute the gen-
erating operators of Va4(h) and Va5(h). The difference is that the processes Va4(h)
and Va5(h) are not homogeneous. The main part of generating operators for non-
homogeneous diffusions is defined by (9.13) Ch. IV.

For q, g ∈ (a, b) and v > 0 we set

u(q, v) := Ex{e−η`(Ha,b,g)|`(Ha,b, q) = v, W (Ha,b) = a}, η > 0.

Let q = x + h, g = x + h1 and h1 > h. Then the function u is the Laplace
transform with respect to η of the transition function P (h, v, h1, dy) of the process
Va5(h) = `(Ha,b, x+ h), W (0) = x, i. e.,

u(q, v) =

∞∫
0

e−ηy P (h, v, h1, dy).

Thus, the function u uniquely determines the process Va5, in particular, his gen-
erator by equation (2.1) of Ch. IV. In order to compute u we use (3.8). The
justification of the method of computing of the function u is exactly the same as in
the proof of Theorem 2.1. In place of the function f we take the Dirac δ-function
at g, multiplied by η (f(y) = ηδg(y)). In this case the corresponding functions
ϕδ(y) and ψδ(y) are continuous solutions of the problem

1

2
φ′′(y) = 0, y ∈ (a, b) \ {g},

φ′(g + 0)− φ′(g − 0) = 2ηφ(g),

with the boundary conditions φ(a) = 1, φ(b) = 0 and φ(a) = 0, φ(b) = 1, respec-
tively.

Such solutions have the form

ϕδ(y) =


b− y + 2�(b− g)(g − y)

b− a+ 2�(b− g)(g − a)
, for a ≤ y ≤ g,

b− y

b− a+ 2�(b− g)(g − a)
, for g ≤ y ≤ b,



§ 3. MARKOV PROPERTY AT THE FIRST EXIT TIME 385

ψδ(y) =


y − a

b− a+ 2�(b− g)(g − a)
, for a ≤ y ≤ g,

y − a+ 2�(y − g)(g − a)

b− a+ 2�(b− g)(g − a)
, for g ≤ y ≤ b.

Their Wronskian is w = (b− a+ 2η(b− g)(g − a))−1.
Substituting these solutions into (3.8), we find that for v > 0

@

@v
Ex{e−η`(Ha,b,g); `(Ha,b, q) < v, W (Ha,b) = a}

=



x− a

2(q − a)2
exp

(
− v

2(q − a)
− v(1 + 2�(b− g))

2(b− q + 2�(b− g)(g − q))

)
, for x ≤ q ≤ g,

b− x

2(b− q)(q − a+ 2�(q − g)(g − a))

× exp
(
− v

2(b− q)
− v(1 + 2�(g − a))

2(q − a+ 2�(q − g)(g − a))

)
, for g ≤ q ≤ x.

Dividing the right-hand side of this expression by (3.10), we obtain

u(q, v) =


exp

(
− v�(b− g)2

(b− q)(b− q + 2�(b− g)(g − q))

)
, q ≤ g,

q − a

q − a+ 2�(q − g)(g − a)
exp

(
− v�(g − a)2

(q − a)(q − a+ 2�(q − g)(g − a))

)
, g ≤ q.

By equation (2.1) Ch. IV, the infinitesimal generator L◦
a5 of the nonhomogeneous

process Va5(h) = `(Ha,b, x+ h) can be computed from the equality

− @

@q
u(q, v)

∣∣∣
q=x+h

= L◦
a5 u(x+ h, v), q < g.

For q < g we have

− @

@q
u =

(
v�(b− g)2

(b− q)2(b− q + 2�(b− g)(g − q))
+ v�(b− g)2(1 + 2�(b− g))

(b− q)(b− q + 2�(b− g)(g − q))2

)
u

=
(

2v�(b− g)2

(b− q)2(b− q + 2�(b− g)(g − q))
+ 2v�2(b− g)4

(b− q)2(b− q + 2�(b− g)(g − q))2

)
u

= − 2v

b− q

@

@v
u+ 2v @2

@v2
u.

This implies that L◦
a5 = 2v d2

dv2
− 2v

b− x− h

d

dv
.

To write out the infinitesimal generator L◦
a4 of the process Va4(h) = `(Ha,b, x−h),

which time moves in the opposite direction, we must use the equality

@

@q
u(q, v)

∣∣∣
q=x−h

= L◦
a4 u(x− h, v), q > g.

For g < q we have

@

@q
u =

(
2

q − a
− 1 + 2�(g − a)

q − a+ 2�(q − g)(g − a)
+ v�(g − a)2

(q − a)2(q − a+ 2�(q − g)(g − a))
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+ v�(g − a)2(1 + 2�(g − a))

(q − a)(q − a+ 2�(q − g)(g − a))2

)
u =

(
− 2�(g − a)2

(q − a)(q − a+ 2�(q − g)(g − a))

+ 2v�(g − a)2

(q − a)2(q − a+ 2�(q − g)(g − a))
− 2v�2(g − a)4

(q − a)2(q − a+ 2�(q − g)(g − a))2

)
u

= 2 @

@v
u− 2v

q − a

@

@v
u+ 2v @2

@v2
u.

Hence L◦
a4 = 2v d2

dv2
+ 2
(
1− v

x− a− h

)
d

dv
.

Theorem 3.1 is proved. �

§ 4. Markov property of Brownian local time
stopped at the inverse local time

We consider %(u, z) = min{s : `(s, z) = u}, the moment inverse of the local
time at a level z, where (u, z) ∈ [0,∞) × R. This section provides a description
of the Brownian local time `(t, y) as a process with respect to y at the moment
t = %(u, z). It is clear that the path of the Brownian motion W at this moment
stops at the level z, i.e., W (%(u, z)) = z, because %(u, z) is a point of growth of the
Brownian local time `(t, z). We assume that W (0) = x.

Theorem 4.1. The process {`(%(u, z), y), y ∈ R} is a Markov process that can
be represented in the form

`(%(u, z), y) =


V6(|x− y|), for y ≤ x ≤ z or z ≤ x ≤ y,

V7(|z − y|), for x ∧ z ≤ y ≤ x ∨ z,
V8(|y − z|), for y ≤ z ≤ x or x ≤ z ≤ y,

where {Vk(h), h ≥ 0}, k = 6, 7, 8, are independent homogeneous diffusions under
fixed starting points. The initial values of the processes Vk, k = 6, 7, 8, satisfy the
equalities V7(0) = V8(0) = u, V6(0) = V7(|z − x|), and the generating operators
have the form

L6 = 2v d2

dv2
, L7 = 2v d2

dv2
+ 2 d

dv
, L8 = 2v d2

dv2
,

respectively.

Remark 4.1. It is useful to consider the formulation of Theorem 4.1 separately
for x<z and x>z. Thus, for x<z the stopped local time is described by the process
V8(y− z), y ≥ z, in the direct time, and by the processes V7(z− y), x ≤ y ≤ z, and
V6(x − y), y ≤ x, in the reverse time. If z < x, then the stopped local time is
described by the processes V7(y− z), z ≤ y ≤ x, and V6(y−x), y ≥ x, in the direct
time, and by the process V8(z−y), y ≤ z, in the reverse time. The point z is chosen
as starting value, because, by the definition of the stopping time %(u, z), the local
time `(%(u, z), z) is equal to u. By the homogeneity and symmetry properties of
a Brownian motion it is sufficient to prove the theorem only for one of the cases
x < z or x > z. From these properties it follows also that the processes V6 and V8
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with fixed identical starting points coincide, while the process V7 is reversible in
time on any finite interval.

Remark 4.2. The processes {Vk(h), h ≥ 0}, k = 6, 7, 8, can be expressed in
terms of the independent Bessel processes {R(l)(s), s ≥ 0}, l = 0, 2, with the
appropriate initial distributions as follows:

Vk(h) = (R(0)(h))2 for k = 6, 8, (4.1)

V7(h) = (R(2)(h))2. (4.2)

This statement is a consequence of the fact that the infinitesimal generators of
squared Bessel processes have the appropriate form (see (16.6) Ch. IV).

Proof of Theorem 4.1. The method of the proof of Theorem 4.1 coincides with
that for Theorem 2.1. We keep some notations. To establish the Markov property,
it is sufficient to prove that for any q ∈ R and v ≥ 0

Ex

{
exp

(
−

∞∫
−∞

f(y)`(%(u, z), y) dy
)∣∣∣∣`(%(u, z), q) = v

}

= Ex

{
exp

(
−

∞∫
−∞

f+(y)`(%(u, z), y) dy
)∣∣∣∣`(%(u, z), q) = v

}

×Ez

{
exp

(
−

∞∫
−∞

f−(y)`(%(u, z), y) dy
)∣∣∣∣`(%(u, z), q) = v

}
.

By (1.2), this is equivalent to the following two equalities: for v > 0

@

@v
Ex

{
exp

(
−

%(u,z)∫
0

f(W (s)) ds
)

; `(%(u, z), q) < v

}

= Ex

{
exp

(
−

%(u,z)∫
0

f+(W (s)) ds
)∣∣∣∣`(%(u, z), q) = v

}

× @

@v
Ez

{
exp

(
−

%(u,z)∫
0

f−(W (s)) ds
)

; `(%(u, z), q) < v

}
, (4.3)

and

Ex

{
exp

(
−

%(u,z)∫
0

f(W (s)) ds
)

; `(%(u, z), q) = 0
}

= Ex

{
exp

(
−

%(u,z)∫
0

f+(W (s)) ds
)∣∣∣∣`(%(u, z), q) = 0

}

×Ez

{
exp

(
−

%(u,z)∫
0

f−(W (s)) ds
)

; `(%(u, z), q) = 0
}
.



388 V BROWNIAN LOCAL TIME

We prove this equalities by providing explicit formulas for the expectations. We
express them in terms of fundamental solutions of the equation

1

2
φ′′(y)− f(y)φ(y) = 0, y ∈ R. (4.4)

Let ψ be an increasing and ϕ be a decreasing nonnegative solutions of (4.4), satis-
fying the conditions ψ(q) = ϕ(q) = 1, and let w = ψ′(x)ϕ(x) − ψ(x)ϕ′(x) be their
Wronskian. It is clear that w = ψ′(q)− ϕ′(q).

Let γ ≥ 0. Assume for definiteness that z < q. We use Theorem 7.3 Ch. III to
compute the function

d(u, x) := Ex exp
(
−

%(u,z)∫
0

f(W (s))ds− γ`(%(u, z), q)
)
.

According to this theorem with a = −∞, b = ∞, q1 = z, q2 = q, β2 = γ, and
βl = 0, l 6= 2, the function d(u, x) has the form

d(u, x) =


 ̃(x)

 ̃(z)
exp

(
− wu

2'̃(z) ̃(z)

)
, for x ≤ z,

'̃(x)

'̃(z)
exp

(
− wu

2'̃(z) ̃(z)

)
, for z ≤ x,

(4.5)

where ϕ̃(x), x ∈ R, is a nonnegative continuous decreasing solution and ψ̃(x),
x ∈ R, is a nonnegative continuous increasing solution of the problem

1

2
φ̃′′(x)− f(x)φ̃(x) = 0, x 6= q, (4.6)

φ̃′(q + 0)− φ̃′(q − 0) = 2γφ̃(q). (4.7)

Denote for brevity ∆ := ϕ(z)−ψ(z). By the monotonicity properties of ψ and ϕ and
the condition ψ(q) = ϕ(q) = 1, we have that ∆ > 0 for z < q. We let ψ̃(x) = ψ(x)
for x < q, because in this domain (4.7) does not influence the behavior of ψ̃. The
solution ϕ̃ can be represented in the form

ϕ̃(x) =
{

(1 +A)ϕ(x)−Aψ(x), for x ≤ q,

ϕ(x), for q ≤ x.

In this representation we have taken into account the continuity of the function ϕ̃
at the point q. Using (4.7), we compute that A = 2γ/ω. Consequently,

ϕ̃(x) = ϕ(x) + 2γ(ϕ(x)− ψ(x))/ω, ϕ̃(z) = ϕ(z) + 2γ∆/ω,

ω̃(z) := ψ̃′(z)ϕ̃(z)− ϕ̃′(z)ψ̃(z) = ω + 2γ,

and for x ≤ q

'̃(x)

'̃(z)
= '(x) + 2('(x)−  (x))=!

'(z) + 2�=!
= '(x)−  (x)

�
+ w( (x)'(z)− '(x) (z))

�(w'(z) + 2�)
.
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Now from (4.5) we get

Ex exp
(
−

%(u,z)∫
0

f(W (s)) ds− γ`(%(u, z), q)
)

=



 (x)

 (z)
exp

(
− w(w + 2)u

2 (z)(w'(z) + 2�)

)
, for x ≤ z,(

'(x)−  (x)

�
+ w( (x)'(z)− '(x) (z))

�(w'(z) + 2�)

)
× exp

(
− w(w + 2)u

2 (z)(w'(z) + 2�)

)
, for z ≤ x ≤ q,

w'(x)

w'(z) + 2�
exp

(
− w(w + 2)u

2 (z)(w'(z) + 2�)

)
, for q ≤ x.

Inverting the Laplace transform with respect to γ (see formulas a, 15, 16 of Ap-
pendix 3), we have

@

@v
Ex

{
exp

(
−

%(u,z)∫
0

f(W (s)) ds
)

; `(%(u, z), q) < v

}
(4.8)

=



w (x)

2 (z)�

√
u

√
v
I1

(
w

�

√
uv
)

exp
(
− uw

2 (z)�
− vw'(z)

2�

)
, for x ≤ z,

w

2�

(
'(x)−  (x)

�

√
u

√
v
I1

(
w

�

√
uv
)

+  (x)'(z)− '(x) (z)

�
I0

(
w

�

√
uv
))

× exp
(
− uw

2 (z)�
− vw'(z)

2�

)
, for z ≤ x ≤ q,

w'(x)

2�
I0

(
w

�

√
uv
)

exp
(
− uw

2 (z)�
− vw'(z)

2�

)
, for q ≤ x,

where Il are the modified Bessel functions (see Appendix 2). Moreover,

Ex

{
exp

(
−

%(u,z)∫
0

f(W (s))ds
)

; `(%(u, z), q) = 0
}

=


 (x)

 (z)
exp

(
− uw

2 (z)�

)
, for x ≤ z,

'(x)−  (x)

�
exp

(
− uw

2 (z)�

)
, for z ≤ x ≤ q,

0, for q ≤ x.

(4.9)

Let us compute the analogous expressions for the function f+. Since formu-
las (4.8) and (4.9) were obtained for arbitrary nonnegative piecewise continuous
functions f in terms of fundamental solutions of (4.4), one can use them for the
function f+. For this we represent ψ+, ϕ+, the fundamental solutions of (4.4) with
the function f+ in place of f , in terms of the solutions ψ, ϕ. We have

ψ+(y) =
{

1, for y ≤ q,

Aψ(y) + (1−A)ϕ(y), for q ≤ y,
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ϕ+(y) =
{

1 +B(q − y), for y ≤ q,

ϕ(y), for q ≤ y.

In this representation we have taken into account the equality ψ+(q) = ϕ+(q) = 1
and the fact that the functions ψ+(y) and ϕ+(y), y ∈ R, are monotone and con-
tinuous. The continuity of the derivative at q enables us to compute the constants
A and B. As a result, we have

ψ+(y) =

{
1, for y ≤ q,(
1 + '′(q)

w

)
ϕ(y)− '′(q)

w
ψ(y), for q ≤ y,

ϕ+(y) =
{

1− ϕ′(q)(q − y), for y ≤ q,

ϕ(y), for q ≤ y.

The Wronskian of ψ+, ϕ+ is equal to w+ = ψ′+(q) − ϕ′+(q) = −ϕ′(q). Moreover,
∆+ = ϕ+(z)− ψ+(z) = −(q − z)ϕ′(q).

Substituting ψ+, ϕ+ in place of ψ, ϕ in (4.8) and (4.9), we obtain

@

@v
Ex

{
exp

(
−

%(u,z)∫
0

f+(W (s))ds
)

; `(%(u, z), q) < v

}
(4.10)

=



1

2(q − z)

√
u

√
v
I1

( √
uv

q − z

)
exp

(
− u+ v

2(q − z)
+ v'′(q)

2

)
, for x ≤ z,(

q − x

2(q − z)2

√
u

√
v
I1

( √
uv

q − z

)
+ x− z

2(q − z)2
I0

( √
uv

q − z

))
× exp

(
− u+ v

2(q − z)
+ v'′(q)

2

)
, for z ≤ x ≤ q,

'(y)

2(q − z)
I0

( √
uv

q − z

)
exp

(
− u+ v

2(q − z)
+ v'′(q)

2

)
, for q ≤ x,

for v > 0, and

Ex

{
exp

(
−

%(u,z)∫
0

f+(W (s))ds
)

; `(%(u, z), q) = 0
}

=


e−u/2(q−z), for x ≤ z,
q − x

q − z
e−u/2(q−z), for z ≤ x ≤ q,

0, for q ≤ x.

(4.11)

For f+ ≡ 0 we have ϕ(y) ≡ 1 and these formulas imply

@

@v
Px

(
`(%(u, z), q)< v

)
=



1

2(q − z)

√
u

√
v
I1

( √
uv

q − z

)
e−(u+v)/2(q−z), for x ≤ z,(

q − x

2(q − z)2

√
u

√
v
I1

( √
uv

q − z

)
+ x− z

2(q − z)2
I0

( √
uv

q − z

))
e−(u+v)/2(q−z), for z ≤ x ≤ q,

1

2(q − z)
I0

( √
uv

q − z

)
e−(u+v)/2(q−z), for q ≤ x,

(4.12)
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for v > 0, and

Px

(
`(%(u, z), q) = 0

)
=


e−u/2(q−z), for x ≤ z,
q − x

q − z
e−u/2(q−z), for z ≤ x ≤ q,

0, for q ≤ x.

(4.13)

Dividing (4.10) by (4.12), we see that

Ex

{
exp

(
−
%(u,z)∫
0

f+(W (s)) ds
)∣∣∣∣`(%(u, z), q) = v

}
=
{
evϕ

′(q)/2, for x ≤ q,

ϕ(x)evϕ
′(q)/2, for q ≤ x,

(4.14)
for v > 0, and

Ex

{
exp

(
−

%(u,z)∫
0

f+(W (s)) ds
)∣∣∣∣`(%(u, z), q) = 0

}
= 1. (4.15)

We now compute the corresponding expressions for the function f−. For this
purpose we express ψ− and ϕ−, the fundamental solutions of (4.4) with the function
f− in place of f , in terms of the fundamental solutions ψ and ϕ. They have the
form

ψ−(y) =
{
ψ(y), for y ≤ q,

1 + ψ′(q)(y − q), for q ≤ y,

ϕ−(y) =

{
 ′(q)

w
ϕ(y)− '′(q)

w
ψ(y), for y ≤ q,

1, for q ≤ y.

The Wronskian of ψ−, ϕ− is equal to w− = ψ′−(q) − ϕ′−(q) = ψ′(q). In addition,
for y ≤ q

ϕ−(y)− ψ−(y) =  ′(q)

w
(ϕ(y)− ψ(y))

and
ψ−(y)ϕ−(z)− ϕ−(y)ψ−(z) =  ′(q)

w
(ψ(y)ϕ(z)− ϕ(y)ψ(z)),

∆− = ϕ−(z) − ψ−(z) =  ′(q)

w
∆. Using the functions ψ− and ϕ− in formulas (4.8)

and (4.9), we have

@

@v
Ex

{
exp

(
−

%(u,z)∫
0

f−(W (s))ds
)

; `(%(u, z), q) < v

}
(4.16)

=



w (x)

2 (z)�

√
u

√
v
I1

(
w

�

√
uv
)

exp
(
− uw

2 (z)�
− v( ′(q)'(z)− '′(q) (z))

2�

)
, x ≤ z,

w

2�

(
'(x)−  (x)

�

√
u

√
v
I1

(
w

�

√
uv
)

+  (x)'(z)− '(x) (z)

�
I0

(
w

�

√
uv
))

× exp
(
− uw

2 (z)�
− v( ′(q)'(z)− '′(q) (z))

2�

)
, z ≤ x ≤ q,

w

2�
I0

(
w

�

√
uv
)

exp
(
− uw

2 (z)�
− v( ′(q)'(z)− '′(q) (z))

2�

)
, q ≤ x,
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for v > 0, and

Ex

{
exp

(
−

%(u,z)∫
0

f−(W (s))ds
)

; `(%(u, z), q) = 0
}

=


 (x)

 (z)
exp

(
− uw

2 (z)�

)
, for x ≤ z,

'(x)−  (x)

�
exp

(
− uw

2 (z)�

)
, for z ≤ x ≤ q,

0, q ≤ x.

(4.17)

With the help of these expressions it is easy to verify (4.3). Indeed, expression
(4.8) is equal to the product of (4.14) and (4.16), because

v'′(q)

2
− v( ′(q)'(z)− '′(q) (z))

2�
= −vw'(z)

2�
.

The equality below (4.3) is also satisfied, because the right-hand sides of (4.9) and
(4.17) are equal, and the right-hand side of (4.15) is 1.

We have assumed that z < q. The case q < z is verified similarly. But this is
not necessary, because the case q < z can be reduced to the case z < q with the
help of the spatial homogeneity and symmetry properties of Brownian motion.

The case z = q is degenerate, because `(%(u, z), z) = u. In this case we have
ϕ(z) = ψ(z) = 1, ψ′(z)− ϕ′(z) = ω and, consequently, ω = ω− + ω+. The formula
before (4.8) in the limiting case q − z ↓ 0 is transformed to

Ex exp
(
−

%(u,z)∫
0

f(W (s)) ds
)

=


 (x)

 (z)
e−ωu/2, for x ≤ z,

'(x)

'(z)
e−ωu/2, for z ≤ x.

Since ψ(x) = ψ+(x)ψ−(x) for x ≤ z and ϕ(x) = ϕ+(x)ϕ−(x) for z ≤ x,

Ex exp
(
−

%(u,z)∫
0

f(W (s)) ds
)

= Ex exp
(
−

%(u,z)∫
0

f−(W (s)) ds
)
Ex exp

(
−

%(u,z)∫
0

f+(W (s)) ds
)
.

Therefore, we have established that `(%(u, z), y), y ∈ R, is a Markov process.

We now compute the generating operators of the processes V6, V7, V8. In view
of Remark 4.1, it suffices to consider the description of the local time only for the
direct time.

We first compute the expression for the function

u(h, v) := Ex
{
e−η`(%(u,z),q+h)

∣∣`(%(u, z), q) = v
}
, η > 0, v > 0,
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when h > 0, x < z < q or z < q < q + h < x. In these areas the function u is the
Laplace transform with respect to η of the transition function of the processes V8

and V7, respectively, therefore it uniquely determines the generating operators.
To compute the function u(h, v) we can use Theorem 7.3 of Ch. III with f ≡ 0,

a = −∞, b = ∞, q2 = q, q3 = q + h, ql = 0 for l 6= 2, 3. However, we can simplify
the computations by using the equality (4.14). The justification of the computation
method for u is exactly the same as in the proof of Theorem 2.1. In (4.14) in place
of f+(y) we substitute the Dirac δ-function at q + h, multiplied by η. It is readily
seen that in the domain y ≥ q the fundamental solution ϕδ(y) of equation (4.4)
with the condition ϕδ(q) = 1, corresponding to the Dirac δ-function at q + h, is a
unique continuous bounded solution of the problem

1

2
ϕ′′(y) = 0, y ∈ (q,∞) \ {q + h},

ϕ′(q + h+ 0)− ϕ′(q + h− 0) = 2ηϕ(q + h), ϕ(q) = 1.

Solving this problem, we obtain

ϕδ(y) =

 1− 2�(y − q)

1 + 2�h
, for y ≤ q + h,

1

1 + 2�h
, for q + h ≤ y.

Substituting the values for ϕ′δ(q) and ϕδ(x), q + h < x, in (4.14), we get

u(h, v) =

 exp
(
− �v

1 + 2�h

)
, for x ≤ z ≤ q,

1

1 + 2�h
exp

(
− �v

1 + 2�h

)
, for z ≤ q < q + h ≤ x.

The fact that this expression does not depend on q implies that the processes
V7(h) and V8(h), h ≥ 0, are homogeneous.

By the definition of the generating operator of a homogeneous Markov process
(see § 9 Ch. IV) and in view of the arbitrariness of η, the operators L7, L8, corre-
sponding to the processes V7, V8, can be determined from the respective equations

@

@h
u = L8u for x < z ≤ q,

and
@

@h
u = L7u for z ≤ q < q + h < x.

Hence,

L8 = 2v d2

dv2
, L7 = 2v d2

dv2
+ 2 d

dv
.

The theorem is proved. �
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§ 5. Distributions of functionals of Brownian
local time stopped at an exponential moment

We consider the following question: how to find the distributions of functionals
of the Brownian local time? An integral functional of the Brownian local time with
respect to the space parameter has the form

B(t) :=

∞∫
−∞

f(`(t, y)) dy, (5.1)

where f(v), v ∈ [0,∞), is some nonnegative piecewise-continuous function. For
the Laplace transform of this functional we will obtain explicit formulas in terms
of solutions of second-order differential equations satisfying certain boundary con-
ditions. Having expressions for the Laplace transforms of nonnegative integral
functionals of a process, we can compute the distributions of various supremum
type functionals of this process. For example, to compute the supremum of an
arbitrary continuous process X we can use (see § 2 Ch. III) the relation

P
(

sup
a≤y≤b

X(y) ≤ h
)

= lim
γ→∞

E exp
(
− γ

b∫
a

1I(h,∞)(X(y)) dy
)
. (5.2)

In many cases where E exp
(
− γ

b∫
a

1I(h,∞)(X(y)) dy
)

is expressed with the help

of solutions of certain differential equations, we do not have to compute the expec-
tation explicitly, nor to find the limit, but only to prove that the limit value for
this expectation can also be expressed by means of solutions of analogous equations
with certain boundary conditions. Such an approach simplifies the computations
considerably. We already used this approach in the proof of Theorem 2.1 Ch. III.
In this section we obtain results enabling us to compute the joint distribution of
functionals B(t) and sup

y∈R
`(t, y).

The computation of the distributions of these functionals at a fixed time t reduces
to the computation of the distributions of the functionals stopped at the random
time τ independent of the Brownian motion W and having the exponential density

d

dt
P(τ < t) = λe−λt1I[0,∞)(t), λ > 0. (5.3)

The distributions of functionals at a fixed time t can be obtained from formulas
for the distributions of the corresponding functionals stopped at the time τ with
the help of the inverse Laplace transform with respect to λ.

The next result is due to Borodin (1982).

Theorem 5.1. Let f(v), v ∈ [0, h], be a nonnegative piecewise-continuous func-
tion, f(0) = 0. Then

Ex

{
exp

(
−

∞∫
−∞

f(`(τ, y)) dy
)

; sup
y∈R

`(τ, y) ≤ h

}
= 2λ

h∫
0

R(v)Q(v) dv, (5.4)
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where for v ∈ [0, h] the functions R, Q are the unique bounded continuous solutions
of the problem

2vR′′(v)− (λv + f(v))R(v) = 0, R(0) = 1, (5.5)

2vQ′′(v) + 2Q′(v)− (λv + f(v))Q(v) = −R(v), (5.6)

R(h) = 0, Q(h) = 0. (5.7)

Remark 5.1. In the case h = ∞ the boundary conditions (5.7) must be re-
placed by the conditions

lim sup
v→∞

ev
√
λ/2R(v) <∞, lim sup

v→∞
ev
√
λ/2Q(v) <∞. (5.8)

Remark 5.2. For a piecewise-continuous function f equations (5.5) and (5.6)
must be interpreted precisely like equation (1.10) Ch. III (see Remark 1.2 Ch. III).

Proof of Theorem 5.1. Since a Brownian motion is spatially homogeneous, ex-
pression (5.4) does not depend on x. So we let x = 0. Assume first that h = ∞ and
f is a bounded twice continuously differentiable function with bounded first and
second derivatives. Using (2.1) for y = z and the Markov property of the process
`(τ, y), i.e., (2.2) for q = z, we find that

E0

{
exp

(
−

∞∫
−∞

f(`(τ, y)) dy
)∣∣∣∣W (τ) = z

}

=
√

2λ

∞∫
0

e−v
√

2λEz0

{
exp

(
−

∞∫
−∞

f(`(τ, y)) dy
)∣∣∣∣`(τ, z) = v

}
dv

=
√

2λ

∞∫
0

e−v
√

2λ r̄(z, v)q̄(z, v) dv, (5.9)

where

r̄(z, v) : = Ez0

{
exp

(
−

∞∫
z

f(`(τ, y)) dy
)∣∣∣∣`(τ, z) = v

}
,

q̄(z, v) : = Ez0

{
exp

(
−

z∫
−∞

f(`(τ, y)) dy
)∣∣∣∣`(τ, z) = v

}
.

Let z > 0. Then, applying Theorem 2.1, we get

r̄(z, v) = E
{

exp
(
−

∞∫
0

f(V1(h)) dh
)∣∣∣∣V1(0) = v

}
.
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It is clear that r̄(z, v) is independent of z. Denote R̄(v) := r̄(z, v).
Again applying Theorem 2.1, we get

q̄(z, v) = E
{

exp
(
−

∞∫
0

f(V3(h)) dh−
z∫

0

f(V2(h)) dh
)∣∣∣∣V2(0) = v

}

=

∞∫
0

Ev

{
exp
(
−

∞∫
0

f(V3(h)) dh−
z∫

0

f(V2(h)) dh
)∣∣∣∣V2(z) = g

}
Pv

(
V2(z) ∈ dg

)
,

where the subscript v indicates that the expectation and the probability are com-
puted with respect to the process V2 with the initial value V2(0) = v. Using the
independence of the processes V2 and V3 under fixed starting points and the con-
dition V3(0) = V2(z), we have

q̄(z, v) =

∞∫
0

E
{

exp
(
−

∞∫
0

f(V3(h)) dh
)∣∣∣∣V3(0) = g

}

×Ev

{
exp

(
−

z∫
0

f(V2(h)) dh
)∣∣∣∣V2(z) = g

}
Pv

(
V2(z) ∈ dg

)
.

Since for a fixed starting point the infinitesimal characteristics of the processes V1

and V3 coincide, we obtain

q̄(z, v) =

∞∫
0

R̄(g)Ev

{
exp

(
−

z∫
0

f(V2(h)) dh
)∣∣∣∣V2(z) = g

}
Pv

(
V2(z) ∈ dg

)

= E
{
R̄(V2(z)) exp

(
−

z∫
0

f(V2(h)) dh
)∣∣∣∣V2(0) = v

}
.

We apply Theorem 12.5 Ch. II. Then we have that the function R̄(v), v ∈ (0,∞),
is a bounded solution of the homogeneous equation

2v
(
R̄′′(v)−

√
2λ R̄′(v)

)
− f(v)R̄(v) = 0. (5.10)

As it was mentioned above, once the 0-dimensional Bessel process hits zero it never
leaves zero, consequently, if the process begins at zero it stays at zero. In view of
the description of V1 (see Proposition 2.1), the same is true for it. Since f(0) = 0,
this implies that R̄(0) = 1.

Further, we apply Theorem 13.1 Ch. II. Then q̄(z, v), (z, v) ∈ [0,∞)× [0,∞), is
the solution of the problem

@

@z
q̄(z, v) = 2v

( @2
@v2

q̄(z, v)−
√

2λ @

@v
q̄(z, v)

)
+ 2 @

@v
q̄(z, v)− f(v)q̄(z, v), (5.11)

q̄(0, v) = R̄(v). (5.12)
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The specifics of the application of Theorems 12.5 and 13.1 of Ch. II are that
the processes V1 and V2 are nonnegative and their diffusion coefficient σ2(v) = v
degenerates at zero.

The substitution R(v) = e−v
√
λ/2R̄(v) leads to the differential problem

2vR′′(v)− (λv + f(v))R(v) = 0, R(0) = 1, (5.13)

and the substitution q(z, v) = e−v
√
λ/2q̄(z, v) leads to the differential problem

@

@z
q(z, v) = 2v @2

@v2
q(z, v)+2 @

@v
q(z, v)−(λv−

√
2λ+f(v))q(z, v), q(0, v) = R(v).

(5.14)
Using the new notations we can rewrite (5.9) in the form

E0

{
exp

(
−

∞∫
−∞

f(`(τ, y)) dy
)∣∣∣∣W (τ) = z

}
=
√

2λ

∞∫
0

R(v)q(z, v) dv, (5.15)

We set

Q(v) :=

∞∫
0

e−z
√

2λq(z, v) dz.

Since q̄(z, v) is bounded, Q(v), v ≥ 0, is also bounded. From (5.14) it follows that
Q(v), v ∈ [0,∞), satisfies (5.6). Using the symmetry property of Brownian motion,
the density

d

dz
P0(W (τ) < z) =

√
�

√
2
e−|z|

√
2λ,

and (5.15), we finally get

E0

{
exp

(
−

∞∫
−∞

f(`(τ, y)) dy
)}

=
√

2λ

∞∫
0

e−z
√

2λE0

{
exp

(
−

∞∫
−∞

f(`(τ, y)) dy
)∣∣∣∣W (τ)=z

}
dz=2λ

∞∫
0

R(v)Q(v) dv.

This coincides with (5.4) for the case when h = ∞ and f is a bounded twice
continuously differentiable function with bounded first and second derivatives.

Remark 5.1 is valid, because |r̄(z, v)| ≤ 1, |q̄(z, v)| ≤ 1, (z, v) ∈ [0,∞)× [0,∞).
As in the proof of Theorem 4.1 Ch. IV, the assertion for piecewise-continuous

functions f is proved by means of approximating f by continuously differentiable
functions.

The uniqueness of a bounded solution of (5.5), (5.6), and (5.8) for v ∈ [0,∞)
follows from the following facts. Since the solution of equation (5.5) is strictly
convex, this equation has only one bounded solution with the initial value equal to
1 (see Proposition 12.1 Ch. II).
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The homogeneous equation corresponding to (5.6) can be written in the integral
form

2vφ′(v)−
v∫

0

(λs+ f(s))φ(s) ds = c,

where c is a constant. Choosing c = 0, we see that this equation has a solution
ψ with the following properties: ψ(+0) = 1, ψ′(+0) = 0, ψ′(v) ≥ λv/4, and
ψ(v) ≥ 1 + λv2/8. If this solution is known, another linearly independent solution
can be written. For the equation under consideration, the linearly independent
solution ϕ can be represented as

ϕ(v) = ψ(v)

∞∫
v

ds

s 2(s)
, v > 0.

Therefore, ϕ(v) ∼ − ln v as v ↓ 0. Thus the nonhomogeneous equation (5.6) has
only one bounded solution on the positive real half-line. Moreover, equation (5.6)
for v ∈ [0, h] has a unique bounded solution for the boundary condition Q(h) = 0.

The proof of Theorem 5.1 for h < ∞ is based on the obvious generalization of
the relation (5.2):

E := E
{

exp
(
−

∞∫
−∞

f(`(τ, y)) dy
)

; sup
y∈R

`(τ, y) ≤ h

}
= lim
γ→∞

Eγ , (5.16)

where

Eγ := E
{

exp
(
−

∞∫
−∞

(f(`(τ, y)) + γ1I(h,∞)(`(τ, y))) dy
)}

.

The equality (5.16) can be justified as follows. If the process `(τ, y) exceeds the
level h, then it spends a nonzero amount of time in the interval (h,∞), i.e.,
∞∫

−∞

1I(h,∞)(`(τ, y)) dy is greater than zero in this case. Consequently, for such sample

paths the expression under the expectation sign in Eγ tends to zero as γ →∞. It
remains to note that for those sample paths that do not exceed h, the expectation
coincides with E.

For Eγ we can use the variant of Theorem 5.1 already proved. According to this
statement,

Eγ = 2λ

∞∫
0

Rγ(v)Qγ(v) dv,

where Rγ , Qγ are bounded solutions of the problem

2vR′′
γ(v)− (λv + f(v) + γ1I(h,∞)(v))Rγ(v) = 0, Rγ(0+) = 1, (5.17)

2vQ′′
γ(v) + 2Q′

γ(v)− (λv + f(v) + γ1I(h,∞)(v))Qγ(v) = −Rγ(v). (5.18)



§ 5. DISTRIBUTIONS OF FUNCTIONALS OF BROWNIAN LOCAL TIME 399

In the first part of the proof of Theorem 5.1 we have shown that

Rγ(v) = e−v
√
λ/2 Ez0

{
exp

(
−

∞∫
z

(f+γ1I(h,∞))(`(τ, y)) dy
)∣∣∣∣`(τ, z) = v

}
, (5.19)

Qγ(v) = e−v
√
λ/2

×
∞∫
0

e−z
√

2λEz0

{
exp

(
−

z∫
−∞

(f + γ1I(h,∞))(`(τ, y)) dy
)∣∣∣∣`(τ, z) = v

}
dz.

Analogously to (5.16) we have

Rγ(v) → R(v), Qγ(v) → Q(v), (5.20)

where

R(v) = e−v
√
λ/2Ez0

{
exp

(
−

∞∫
z

f(`(τ, y)) dy
)

1I[0,h]

(
sup

y∈(z,∞)

`(τ, y)
)∣∣∣∣`(τ, z) = v

}
,

Q(v) = e−v
√
λ/2

×
∞∫
0

e−z
√

2λEz0

{
exp

(
−

z∫
−∞

f(`(τ, y)) dy
)

1I[0,h]

(
sup

y∈(−∞,z)

`(τ, y)
)∣∣∣∣`(τ, z) = v

}
dz.

The passage to the limit in (5.17), (5.18) is realized just as it was done in the
proof of Theorem 2.1 Ch. III. An important role here is played by the relations
(5.20), the relations arising from the explicit form of the functions Rγ , Qγ , and the
equalities lim

γ→∞
Rγ(v) = 0, lim

γ→∞
Qγ(v) = 0 for v ≥ h. This completes the proof of

Theorem 5.1. �

Let us consider one example of application of Theorem 5.1, namely, an explicit
formula for the distribution of the supremum of the Brownian local time `(t, y)
with respect to y ∈ R.

We use the following standard notations (see Appendix 2): Jl(x) is the Bessel
function and Il(x), Kl(x), x ∈ R, are the modified Bessel functions of the order l,
0 < j1 < j2 < · · · are the positive zeros of the Bessel function J0(x).

Theorem 5.2. For h ≥ 0

P
(

sup
y∈R

`(τ, y) > h
)

=
h
√
2� I1(h

√
�=2)

sh2(h
√
�=2)I0(h

√
�=2)

(5.21)

and

P
(

sup
y∈R

`(t, y) ≤ h
)

= 4
∞∑
k=1

1

sin2 jk
e−2j2kt/h

2
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+4
∞∑
k=1

[
4t�kJ1(�k)

h2J0(�k)
− 1 + J1(�k)

�kJ0(�k)
− J21 (�k)

J20 (�k)

]
e−2π2k2t/h2

. (5.22)

Remark 5.3. In view of the spatial homogeneity of a Brownian motion, the
probabilities (5.21) and (5.22) do not depend on the initial value of the Brownian
motion W .

Formula (5.21) was derived in Borodin (1982). The inversion formula (5.22) is
due to Csáki and Földes (1986).

Proof of Theorems 5.2. We start with an auxiliary result that in certain cases
gives a simple method for computing the integrals on the right-hand side of (5.4).

Lemma 5.1. Let X(x), Y (x), x > 0, be solutions of the equations

xX ′′ − (σ + θx)X = F (x), (5.23)

xY ′′ + Y ′ − (δ + θx)Y = G(x). (5.24)

Then

(θ − (δ − σ)2)
∫
XY dx = (σ + θx)XY + (δ − σ)x(X ′Y −XY ′)− xX ′Y ′

+(δ − σ)
(∫

XGdx−
∫
Y Fdx

)
+
∫
X ′Gdx+

∫
Y ′Fdx. (5.25)

Formula (5.25) can easily be verified by differentiation.
We apply Theorem 5.1 with f = 0. The solutions of (5.5)–(5.7) in this case have

the form
R(v) =

sh((h− v)
√
�=2)

sh(h
√
�=2)

, 0 ≤ v ≤ h,

Q(v) =
ch((h− v)

√
�=2)

√
2� sh(h

√
�=2)

− I0(v
√
�=2)

√
2� sh(h

√
�=2) I0(h

√
�=2)

, 0 ≤ v ≤ h.

Using (5.4) and Lemma 5.1 with X = R, Y = Q, F = 0, G = −R/2, θ = λ/2,
σ = δ = 0, and taking into account the boundary conditions (5.7), we find that

P
(

sup
y∈R

`(τ, y) ≤ h
)

= 2λ

h∫
0

R(v)Q(v) dv = −4hR′(h)Q′(h)− 2

h∫
0

R′(s)R(s) ds

= 1− 4hR′(h)Q′(h).

Substituting the values for the derivatives of the functions R and Q in the right-
hand side of this equality, we get (5.21).

We now prove (5.22) with the help of the well-known formula for inverting
the Laplace transform (see formula 1 of Appendix 3), which is based on residue
theory. To invert the Laplace transform let h = 1. For arbitrary h we obtain the
distribution by means of the scaling property of the Brownian local time.
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Formula (5.21) in this case can be recast as

∞∫
0

e−λtP
(

sup
y∈R

`(t, y) > 1
)
dt =

√
2 I1(

√
�=2)

√
� sh2(

√
�=2) I0(

√
�=2)

.

Then, using the formula for the inverse Laplace transform, we have

P
(

sup
y∈R

`(t, y) > 1
)

= 1

2�i
lim
β→∞

γ+iβ∫
γ−iβ

eλt
√
2 I1(

√
�=2)

√
� sh2(

√
�=2) I0(

√
�=2)

dλ,

where γ is some small positive constant. To compute this integral one resorts to
residue theory. We first note that

lim
λ→0

√
2

√
�
I1(
√
λ/2) = 1

2
.

Since 0 < j1 < j2 < · · · are the positive zeros of the function J0(x), the values
−2j2k, k = 1, 2, . . . , are the zeros of the function I0(

√
λ/2). The residues r1,k(t) of

the function
g(λ) := eλt

√
2 I1(

√
�=2)

√
� sh2(

√
�=2) I0(

√
�=2)

at the points −2j2k are

r1,k(t) = e−2j2kt
4I1(ijk)

sh2(ijk) I
′
0(ijk)

= − 4

sin2 jk
e−2j2kt.

Since λ = 0 is a simple root of the function sh2(
√
λ/2), the residue of g(λ) at this

point is

r0(t) = lim
λ→0

�e�t

2 sh2(
√
�=2)

= 1.

The points λk = −2π2k2, k = 1, 2, . . . , are the double roots of the denominator of
the function g(λ), therefore the residues at these points are

r2,k(t) = lim
λ→λk

d

d�
{(λ− λk)2g(λ)}

= lim
λ→λk

d

d�

{
e�t I1(

√
�=2)√

�=2 I0(
√
�=2)

[
(sh(

√
�k=2))′ + (sh(

√
�k=2))′′(�− �k)=2 + · · ·

]2
}

= 1

((sh(
√
�k=2))′)2

(
e�kt I1(

√
�k=2)√

�k=2 I0(
√
�k=2)

)′
− (sh(

√
�k=2))

′′

((sh(
√
�k=2))′)3

e�kt I1(
√
�k=2)√

�k=2 I0(
√
�k=2)

= −4
{
4t�kJ1(�k)

J0(�k)
−
(
1− J1(�k)

�kJ0(�k)
+

J21 (�k)

J20 (�k)

)}
e−2π2k2t.
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Applying the inversion formula based on residues, we have

P
(

sup
y∈R

`(t, y) > 1
)

= r0(t) +
∞∑
k=1

(r1,k(t) + r2,k(t)).

Considering the probability of the opposite event and substituting the expressions
for the residues, we get

P
(

sup
y∈R

`(t, y) ≤ 1
)

= 4
∞∑
k=1

1

sin2 jk
e−2j2kt

+4
∞∑
k=1

{
4t�kJ1(�k)

J0(�k)
− 1 + J1(�k)

�kJ0(�k)
− J21 (�k)

J20 (�k)

}
e−2π2k2t. (5.26)

According to the scaling property of the Brownian local time (see § 1),

P
(

sup
y∈R

`(t, y) ≤ h
)

= P
(

sup
y∈R

`(t/h2, y) < 1
)
.

Now substituting in (5.26) in place of t the value t/h2, we get the formula (5.22)
for the distribution of sup

y∈R
`(t, y). �

From (5.21) it is not hard to get the useful estimate

P
(

sup
x∈R

`(t, x) > h
)
≤ L

h2

t
exp

(
− h2

2t

)
, (5.27)

where t ≥ 0, h ≥
√
t, and L is a constant. Indeed, since `(t, x) is increasing in t,

by (5.21) with h
√

2λ ≥ 1 we have

P
(

sup
x∈R

`(t, x) > h
)
≤ λeλt

∞∫
t

e−λsP
(

sup
x∈R

`(s, x) > h
)
ds

≤ eλtP
(

sup
x∈R

`(τ, x) > h
)
≤ Leλt−h

√
2λh

√
2λ.

For λ = 2−1h2/t2 this estimate becomes (5.27).
From (3.17) Ch. III with x = q = 0 and (10.8) Ch. I it follows that

P0(`(t, 0) > h) =
√
2

√
�t

∞∫
h

e−v
2/2tdv ∼

√
2t

h
√
�
e−h

2/2t, (5.28)

where the second relation assumes the condition h/
√
t→∞. Thus the exponential

function in (5.27) is the best possible. The estimate (5.27) is important for proving
the law of the iterated logarithm (see § 9) and for deriving a formula for the exact
modulus of continuity of the local time `(t, x) with respect to the variable t (see
§ 10).
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§ 6. Distribution of functionals of Brownian local time
stopped at the first exit time and at the inverse local time

Using the Markov property of the Brownian local time stopped at the first exit
time from an interval or the inverse local time (see § 3 and § 4), one can prove
assertions analogous to Theorem 5.1. Below we only formulate them, since they
can be deduced by the already familiar approach. In view of the evidence of the
treatments, we omit the proofs.

The following assertion concerns the moment Ha,b = min{s : W (s) 6∈ (a, b)}.
Theorem 6.1. Let f(v), v ∈ [0, h], be a nonnegative piecewise-continuous func-

tion. Then for any µ > 0 and η > 0
∞∫
0

e−ηb
0∫

−∞

eµaE0

{
exp
(
−

b∫
a

f(`(Ha,b, y))dy
)

; sup
y∈(a,b)

`(Ha,b, y)≤h,W (Ha,b)=b
}
dadb

= 1

2

h∫
0

R(v)Q(v) dv, (6.1)

where the functions R(v) and Q(v), v ∈ [0, h], are the unique continuous solutions
of the problem

2vR′′(v)− (µ+ f(v))R(v) = 0, R(0) = 1

�+ f(0)
, (6.2)

2vQ′′(v) + 2Q′(v)− (η + f(v))Q(v) = 0, lim
v↓0

Q(v)/ ln v = −1, (6.3)

R(h) = Q(h) = 0. (6.4)

Remark 6.1. In the case h = ∞ the boundary conditions (6.4) must be re-
placed by the conditions

lim sup
v→∞

v−1/4 e
√

2µvR(v) <∞, lim sup
v→∞

v1/4 e
√

2ηvQ(v) <∞.

Remark 6.2. If we choose the condition W (Ha,b) = a on the left-hand side of
(6.1), then we must interchange the parameters µ and η in (6.2) and (6.3).

Remark 6.3. Let τµ, τη be independent of each other and of the Brownian
motion W exponentially distributed random variables with the parameters µ and
η, respectively. Then, by Fubini’s theorem, formula (6.1) can be rewritten in the
form

E0

{
exp
(
−

τη∫
−τµ

f(`(H−τµ,τη , y)) dy
)

; sup
y∈(−τµ,τη)

`(H−τµ,τη , y) ≤ h,W (H−τµ,τη ) = τη

}

= ��

2

h∫
0

R(v)Q(v) dv, (6.5)

For Hz = min{s : W (s) = z}, which is the first hitting time of the level z, the
following assertion holds.
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Theorem 6.2. Let f(v), v ∈ [0, h], be a nonnegative piecewise-continuous func-
tion, f(0) = 0. Then

∞∫
0

e−ηzE0

{
exp
(
−

z∫
−∞

f(`(Hz, y)) dy
)

; sup
y∈(−∞,z)

`(Hz, y) ≤ h

}
dz

= 1

2

h∫
0

R(v)Q(v) dv, (6.6)

where the functions R(v) and Q(v), v ∈ [0, h], are the unique continuous solutions
of the problem

2vR′′(v)− f(v)R(v) = 0, R(0) = 1, (6.7)

2vQ′′(v) + 2Q′(v)− (η + f(v))Q(v) = 0, lim
v↓0

Q(v)/ ln v = −1, (6.8)

R(h) = Q(h) = 0. (6.9)

Remark 6.4. Theorem 6.2 is a consequence of Theorem 6.1 as µ ↓ 0, because
in this case −τµ → −∞ and H−τµ,τη

→ Hτη
. (The limit is realized in (6.5)).

Let %(u, z) = min{s : `(s, z) = u} be the moment inverse to the Brownian local
time at the level z, where (u, z) ∈ [0,∞)×R. For the random moment %(u, z) the
following assertion holds.

Theorem 6.3. Let f(u), u ∈ [0, h], be a nonnegative piecewise-continuous
function, f(0) = 0. Then

∞∫
0

e−βzE0

{
exp
(
−

∞∫
−∞

f(`(%(u, z), y)) dy
)
, sup
y∈(−∞,∞)

`(%(u, z), y) ≤ h

}
dz

= R(u)Q(u)1I[0,h](u), (6.10)

where the functions R(u) and Q(u), u ∈ [0, h], are the unique bounded continuous
solutions of the problem

2uR′′(u)− f(u)R(u) = 0, R(0) = 1, (6.11)

2uQ′′(u) + 2Q′(u)− (β + f(u))Q(u) = −R(u), (6.12)

R(h− 0) = Q(h− 0) = 0. (6.13)

Remark 6.5. In the case h = ∞ the boundary conditions (6.13) must be
replaced by the requirement that the functions R and Q be bounded.

If the level at which the inverse local time is considered coincides with the
starting point of the Brownian motion, then a more convenient result is available.
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Theorem 6.4. Let f(v), v ∈ [0, h], be a nonnegative piecewise-continuous func-
tion, f(0) = 0. Then

E0

{
exp
(
−

∞∫
−∞

f(`(%(u, 0), y)) dy
)

; sup
y∈(−∞,∞)

`(%(u, 0), y) ≤ h

}

= R2(u)1I[0,h](u), (6.14)

where the function R(u), u ∈ [0, h], is the unique continuous solution of the problem

2uR′′(u)− f(u)R(u) = 0, (6.15)

R(0) = 1, R(h) = 0. (6.16)

Remark 6.6. In the case h = ∞ the right-hand side condition in (6.16) must
be replaced by the requirement that R be bounded.

A consequence of Theorem 6.1 is the following assertion.

Theorem 6.5. For h ≥ 0, µ > 0, η > 0

∞∫
0

∞∫
0

e−ηb−µaP0

(
sup

y∈(−a,b)
`(H−a,b, y) > h,W (H−a,b) = b

)
da db

= 2

(� − �)2

(
K0(

√
2�h)

I0(
√
2�h)

+ K1(
√
2�h)

I1(
√
2�h)

− 1
√
2�hI1(

√
2�h)I0(

√
2�h)

)
. (6.17)

Remark 6.7. If we take the event W (H−a,b) = −a on the left-hand side of
(6.17), then one has to interchange the parameters µ and η on the right-hand side
of (6.17).

Remark 6.8. Without conditions on the exit across a certain boundary the
following formula holds:

∞∫
0

∞∫
0

e−ηb−µaP0

(
sup

y∈(−a,b)
`(H−a,b, y) > h

)
da db

= 2

(� − �)2

(
1

I0(
√
2�h)

− 1

I0(
√
2�h)

)(
1

√
2�hI1(

√
2�h)

− 1
√
2�hI1(

√
2�h)

)
. (6.18)

Proof of Theorem 6.5. We apply Theorem 6.1 with f ≡ 0. The solutions of the
problem (6.2)–(6.4) in this case are (see Appendix 4, equation 16a with p = 0,
ν = −1/2, or ν = 0)

R(t) =
√
2t

√
�

(
K1(

√
2µt)− K1(

√
2�h)

I1(
√
2�h)

I1(
√

2µt)
)
,

Q(t) = 2
(
K0(

√
2ηt)− K0(

√
2�h)

I0(
√
2�h)

I0(
√

2ηt)
)
.
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To verify the boundary conditions at zero we used the asymptotic behavior at zero
point of the Bessel functions K1, K0 (see Appendix 2, Section 4). Using Lemma 5.1
with θ = 0, δ = η/2, σ = µ/2, F ≡ 0, G ≡ 0, we get

(� − �)2

4

h∫
0

R(t)Q(t) dt = hR′(h)Q′(h)

+ lim
t↓0

(
�

2
R(t)Q(t) + t

2
(η − µ)

(
R′(t)Q(t)−R(t)Q′(t)

)
− tR′(t)Q′(t)

)
. (6.19)

When solving a problem with two boundaries (the problem (6.2)–(6.4) is of
this kind), it is useful to apply two-parameter functions associated with the Bessel
functions (see Appendix 2, Section 14). Using the definition and the properties of
these functions, we have

R(t) = S−1(
√
2�h;

√
2�t)

�
√
2�hI1(

√
2�h)

, Q(t) = 2S0(
√
2�h;

√
2�t)

I0(
√
2�h)

,

R′(t) = −C−1(
√
2�t;

√
2�h)

2�
√
thI1(

√
2�h)

, Q′(t) = −
√
2�C0(

√
2�t;

√
2�h)

√
tI0(

√
2�h)

.

Therefore,

R′(h)Q′(h) =
√
2�h

2�hI1(
√
2�h)

√
2� (

√
2�h)−1

√
hI0(

√
2�h)

= 1

h
√
�hI1(

√
2�h)I0(

√
2�h)

.

Using formulas from Appendix 2, Section 4, we conclude that as t ↓ 0

R(t) ∼ 1

�
, R′(t) ∼ −K1(

√
2�h)

I1(
√
2�h)

+ ln(
√
µt/2) + γ,

Q(t) ∼ −2
(

ln(
√
ηt/2) + γ + K0(

√
2�h)

I0(
√
2�h)

)
, Q′(t) ∼ −ηK0(

√
2�h)

I0(
√
2�h)

− 1

t
,

where γ is the Euler constant. Consequently, for t ↓ 0

�

2
R(t)Q(t)− tR′(t)Q′(t) ∼ − ln(

√
ηt/2)− K0(

√
2�h)

I0(
√
2�h)

− K1(
√
2�h)

I1(
√
2�h)

+ ln(
√
µt/2)

= −K0(
√
2�h)

I0(
√
2�h)

− K1(
√
2�h)

I1(
√
2�h)

+ 1

2
ln(µ/η).

Similarly,
t
(
R′(t)Q(t)−R(t)Q′(t)

)
→ 1

�
.

Now from (6.1) and (6.19) it follows that

∞∫
0

∞∫
0

e−ηb−µaP0

(
sup

y∈(−a,b)
`(H−a,b, y) ≤ h,W (H−a,b) = b

)
da db
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= 1

�(� − �)
+ 2

(� − �)2

(
1

√
2�hI1(

√
2�h)I0(

√
2�h)

− K0(
√
2�h)

I0(
√
2�h)

− K1(
√
2�h)

I1(
√
2�h)

+ ln(�=�)

2

)
.

(6.20)
Since

∞∫
0

∞∫
0

e−ηb−µaP0

(
W (H−a,b) = b

)
da db =

∞∫
0

∞∫
0

e−ηb−µa
a

b+ a
da db

=

∞∫
0

ae(η−µ)a

∞∫
a

e−�y

y
dy da =

∞∫
0

e−�y

y

y∫
0

ae(η−µ)a da dy

=

∞∫
0

e−�y

y

(
ye(�−�)y

� − �
+ 1− e(�−�)y

(� − �)2

)
dy = 1

�(� − �)
+ 1

(� − �)2

∞∫
0

e−�y − e−�y

y
dy

= 1

�(� − �)
+ 1

(� − �)2
lim
ρ↓0

(η−ρ − µ−ρ)Γ(ρ) = 1

�(� − �)
+ ln(�=�)

(� − �)2
,

formula (6.20) is transformed into (6.17). �

Formula (6.17) can be recast as

∞∫
0

∞∫
0

e−ηb−µaP0

(
sup

y∈(−a,b)
`(H−a,b, y) > h,W (H−a,b) = b

)
da db

= 2

(� − �)2
(C0(

√
2�h;

√
2�h)− 1=

√
2�h)

I1(
√
2�h)I0(

√
2�h)

. (6.21)

Let us derive the expression for (6.21) in the case η = µ. For this we compute the
limit on the right-hand side of (6.21) as η → µ. We use the following properties of
the function C0(x, y) from Appendix 2, Section 14:

C0(x, x) = 1

x
,

@

@y
C0(x, y) = −xyS1(x, y),

@

@y
S1(x, y) = −C1(y, x).

Since S1(x, x) = 0, we have

@

@�
C0(
√

2µh,
√

2ηh) = −h3/2
√

2µS1(
√

2µh,
√

2ηh)
∣∣∣
η=µ

= 0,

@2

@�2
C0(
√

2µh,
√

2ηh) = h2
√
�

√
�
C1(
√

2ηh,
√

2µh)
∣∣∣
η=µ

=
√
h

2�
√
2�
.

Now Taylor’s formula yields

∞∫
0

∞∫
0

e−µ(b+a)P0

(
sup

y∈(−a,b)
`(H−a,b, y) > h,W (H−a,b) = b

)
da db
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=
√
h

2�
√
2�I1(

√
2�h)I0(

√
2�h)

. (6.22)

It is simpler to explain what happens with (6.18) for η = µ. Twice using Taylor’s
formula and the equalities (I0(x))′ = I1(x), (xI1(x))′ = xI0(x), we obtain

∞∫
0

∞∫
0

e−µ(b+a)P0

(
sup

y∈(−a,b)
`(H−a,b, y) > h

)
da db =

√
h

�
√
2�I1(

√
2�h)I0(

√
2�h)

. (6.23)

The right-hand side of this equality is two times larger than the right-hand side
of (6.22). According to the symmetry property of Brownian motion, this to be
expected.

Using the fact that `(H−a,b, y) is an increasing function with respect to a and
b, from (6.23) we deduce the estimate

P0

(
sup
y
`(H−α,β , y)>h

)
≤µ2eµ(β+α)

∞∫
β

∞∫
α

e−µ(b+a)P0

(
sup
y
`(H−a,b, y) > h

)
da db

≤
√
2�h e�(�+�)

2I1(
√
2�h)I0(

√
2�h)

≤ L(1 + µh)eµ(β+α)−2
√

2µh, α > 0, β > 0,

where L is a constant. Choosing µ = 2h

(� + �)2
, we finally get

P0

(
sup
y
`(H−α,β , y) > h

)
≤ L

(
1 + 2h2

(� + �)2

)
exp

(
− 2h

�+ �

)
. (6.24)

As to this estimate, we note that
(
1 + x2

2

)
e−x, x ∈ R, is a decreasing convex

function. It is also interesting to compare the estimate (6.24) with the expression
resulting from (5.35) and (5.37) of Ch. III:

P0

(
`(H−α,β , y) > h

)
=


�

(y + �)
exp

(
− (� + �)h

2(� − y)(y + �)

)
, for 0 ≤ y ≤ β,

�

(� − y)
exp

(
− (� + �)h

2(� − y)(y + �)

)
, for − α ≤ y ≤ 0.

For y = � − �

2
the arguments of the exponentials in this formula and in (6.24)

coincide. Thus the exponential function in (6.24) is unimprovable.

Finally, we give an example of application of Theorem 6.4.
Example 6.1. We consider the problem of distribution of the time spend by a

Brownian motion in rarely visited points. We say that y is a rarely visited point by
the Brownian motion W up to the time t, if 0 < `(t, y) < 1 for its local time.

We consider the functional

T (u) =

∞∫
−∞

`(%(u, 0), y)1I(0,1)(`(%(u, 0), y)) dy =

%(u,0)∫
0

1I(0,1)(`(%(u, 0),W (s))) ds,
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which is equal to the time spent by the Brownian motion in the set of rarely visited
points up to the inverse local time moment %(u, 0).

It is not hard to compute that for f(v) = γv1I(0,1)(v), v ≥ 0, the square of the
bounded continuous solution of equation (6.15) with initial value equal to one has
the form

E0 exp(−γT (u)) =


ch2((1− u)

√
=2)

ch2(
√
=2)

, for 0 ≤ u ≤ 1,

1

ch2(
√
=2)

, for 1 ≤ u.
(6.25)

For u ≥ 1, inverting the Laplace transform with respect to γ (see the corresponding
formula of Section 13 of Appendix 2), we obtain

P0 (T (u) ∈ dy) = L−1
γ

(
1

ch2(
√
=2)

)
= d

dv
L−1
γ

(
sh(v

√
2)

√
2 ch(v

√
2)

)∣∣∣
v=1/2

dy

= d

dv
scy(v, v)|v=1/2dy = 2

√
2√

�y3

∞∑
k=1

(−1)k−1k2 exp
(
−k2

2y

)
dy. (6.26)

Exercises.

6.1. Compute the probabilities

λ

∞∫
0

e−λzP0

(
sup
y∈R

`
(
Hz, y

)
< h

)
dz and P0

(
sup
y∈R

`
(
Hz, y

)
< h

)
.

6.2. Compute the probabilities

λ

∞∫
0

e−λzP0

(
sup
y∈R

`
(
%(u, z), y

)
< h

)
dz

and
P0

(
sup
y∈R

`
(
%(u, z), y

)
< h

)
, z ≥ 0.

6.3. Using Theorem 6.4, compute the probability

P0

(
sup
y∈R

`
(
%(u, 0), y

)
< h

)
.

6.4. Using Theorem 6.4, compute for β ≥ 1 and b > 0 the expectation

E0 exp
(
− γ

∞∫
−∞

`β−1(%(u, 0), y)1I(0,b)(`(%(u, 0), y)) dy
)
.



410 V BROWNIAN LOCAL TIME

6.5. Using Theorem 6.4, compute for β ≥ 1 and b > 0 the expectation

E0 exp
(
− γ

∞∫
−∞

`β−1(%(u, 0), y)1I(b,∞)(`(%(u, 0), y)) dy
)
.

6.6. Using Theorem 6.4, compute for β ≥ 1 and 0 ≤ a < b the expectation

E0 exp
(
− γ

∞∫
−∞

`β−1(%(u, 0), y)1I(a,b)(`(%(u, 0), y)) dy
)
.

§ 7. Distributions of functionals of sojourn time type

Let W (s), s ≥ 0, be a Brownian motion and let `(s, x), (s, x) ∈ [0,∞) × R,
be the Brownian local time. This section is devoted to a method enabling us to
compute the distributions of functionals C(t), t ≥ 0, of the form

C(t) =

t∫
0

f(W (s), `(s, r1), . . . , `(s, rk)) ds, ri ∈ R,

where f(x, ~y), (x, ~y) ∈ Rk+1, is a nonnegative measurable function and k is an
arbitrary positive integer.

Set
~ξk(s) := (x+W (s), y1 + `(s, r1 − x), . . . , yk + `(s, rk − x)),

where s ≥ 0, x ∈ R, yl, rl ∈ R, l = 1, . . . , k, and W (0) = 0. By the definition
of the process ~ξk, the vector (x, ~y) is its initial value ~ξk(0). If f is the indicator
function of some set in Rk+1, then C(t), t ≥ 0, is the sojourn time of the process
~ξk in this set up to the moment t. This is why we call C(t) a functional of sojourn
time type.

Before we embark upon the investigation of the process ~ξk we consider the pro-
cess

~ηk(s) =
(
x+W (s), y1 +

s∫
0

g1(x+W (u)) du, . . . , yk +

s∫
0

gk(x+W (u)) du
)
, s ≥ 0.

It is a multidimensional diffusion process, whose first component is the Brownian
motion and others are integral functionals of the Brownian motion. Obviously,
~ηk(0) = (x, ~y). For this process we prove an analog of Theorem 13.1 of Ch. II.

Theorem 7.1. Let gl(x), l = 1, . . . , k, Φ(x, ~y) and f(x, ~y), x ∈ R, ~y ∈ Rk, be
bounded twice continuously differentiable functions with bounded first and second
derivatives, f ≥ 0. Then the function

u(t, x, ~y) := E
{
Φ(~ηk(t)) exp

(
−

t∫
0

f(~ηk(s)) ds
)}
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satisfies in (0,∞)×Rk+1 the differential equation

@

@t
u(t, x, ~y) = 1

2

@2

@x2
u(t, x, ~y) +

k∑
l=1

gl(x)
@

@yl
u(t, x, ~yl)− f(x, ~y)u(t, x, ~y) (7.1)

and the initial condition
u(0, x, ~y) = Φ(x, ~y). (7.2)

Proof. One can verify the initial condition (7.2) by passing to the limit under the
expectation sign in the definition of the function u(t, x, ~y). By differentiation under
the expectation sign we can also easily check that u(t, x, ~y) has continuous second
derivative with respect to x and first derivative with respect to yl, l = 1, . . . , k. Let
0 ≤ s ≤ t, δ := t− s. Set Wδ(v) := W (v+ δ)−W (δ), v ≥ 0, and denote by Fδ the
σ-algebra of events generated by the process W (u) for u ≤ δ. Set

~ηk(δ, s) :=
(
Wδ(s),

s∫
0

g1(x+W (δ) +Wδ(v)) dv, . . . ,

s∫
0

gk(x+W (δ) +Wδ(v)) dv
)
.

Then ~ηk(t) = ~ηk(δ) + ~ηk(δ, s). Using the independence of the Brownian motion
Wδ(v), v ≥ 0, and the σ-algebra Fδ, and applying Lemma 2.1 Ch. I, we get

u(t, x, ~y) = E
{

exp
(
−

δ∫
0

f(~ηk(v)) dv
)
E
{
Φ(~ηk(δ) + ~ηk(δ, s))

× exp
(
−

s∫
0

f(~ηk(δ) + ~ηk(δ, v)) dv
)∣∣∣∣Fδ}}

= E
{

exp
(
−

δ∫
0

f(~ηk(v))dv
)
u(s, ~ηk(δ))

}

= E
{
u(s, ~ηk(δ))

(
1−

δ∫
0

f(~ηk(v)) dv + o(δ)
)}

. (7.3)

Since the function u(s, x, ~y) is bounded and continuous with respect to (s, x, ~y),
while f(x, ~y) is also bounded and continuous, we have

Eu(s, ~ηk(δ))

δ∫
0

f(~ηk(v)) dv = δf(x, ~y)u(s, x, ~y) + o(δ). (7.4)

By the Itô formula,

u(s, ~ηk(δ))− u(s, x, ~y) =

δ∫
0

@

@x
u(s, ~ηk(v)) dW (v)
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+ 1

2

δ∫
0

@2

@x2
u(s, ~ηk(v)) dv +

k∑
l=1

δ∫
0

@

@yl
u(s, ~ηk(v))gl(x+W (v)) dv.

Taking the expectation of both sides of this equality and using the continuity of
the derivatives of u(t, x, ~y) in x and yl, we obtain

Eu(s, ~ηk(δ))− u(s, x, ~y) = �

2

@2

@x2
u(s, x, ~y) + δ

k∑
l=1

gl(x)
@

@yl
u(s, x, ~y) + o(δ).

We now deduce from (7.3) and (7.4) that

u(t, x, ~y)− u(s, x, ~y) = �

2

@2

@x2
u(s, x, ~y)

+ δ
k∑
l=1

gl(x)
@

@yl
u(s, x, ~y)− δf(x, ~y)u(s, x, ~y) + o(δ).

From this it follows that for any s > 0 the right derivative of u(s, x, ~y) at s satisfies
(7.1). Taking into account the definition of u(s, x, ~y) and using double differentia-
tion with respect to x and differentiation with respect to yl under the expectation

sign, we easily get that the functions @2

@x2
u(s, x, ~y), @

@yl
u(s, x, ~y), l = 1, 2, . . . , k, are

continuous in s. This in turn implies the existence of the partial derivative of the
function u(t, x, ~y) with respect to t, which satisfies (7.1). �

We apply the Laplace transform with respect to t to the problem (7.1), (7.2).
As before, let τ be the exponentially distributed with the parameter λ > 0 random
time independent of the Brownian motion W .

Proposition 7.1. The function

U(x, ~y) := λ

∞∫
0

e−λtu(t, x, ~y) dt = E
{
Φ(~ηk(τ)) exp

(
−

τ∫
0

f(~ηk(s)) ds
)}

for (x, ~y) ∈ Rk+1 satisfies the equation

1

2

@2

@x2
U(x, ~y) +

k∑
l=1

gl(x)
@

@yl
U(x, ~y)− (λ+ f(x, ~y))U(x, ~y) = −λΦ(x, ~y). (7.5)

Indeed, we use the following equality, consequence of the integration by parts
formula,

λ

∞∫
0

e−λt
@

@t
u(t, x, ~y) dt = −λΦ(x, ~y) + λU(x, ~y).

Then we deduce from (7.1) by integration that the function U(x, ~y), (x, ~y) ∈ Rk+1,
satisfies (7.5).

Now we are ready to return to the investigation of the process ~ξk(s), s ≥ 0. The
following theorem is the main result of the section. It can be considered as the
analog of Proposition 7.1 for the case, when gl(x) = δrl

(x), l = 1, . . . , k, (Dirac
δ-functions) i.e., when the local times at the points rl are taken in place of the
integral functionals.
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Theorem 7.2. Let f(x, ~y), (x, ~y) ∈ Rk+1, be a nonnegative measurable func-
tion that is bounded on any compact subset of Rk+1, and let Φ(x, ~y), (x, ~y) ∈ Rk+1,
be a bounded measurable function. Then the function

Q(x, ~y) = E
{
Φ(~ξk(τ)) exp

(
−

τ∫
0

f(~ξk(s)) ds
)}

, (x, ~y) ∈ Rk+1, (7.6)

is continuous in x ∈ R and satisfies for any ~y ∈ Rk the following equations:
1) for any a < b such that (a, b) ⊂ R \ {r1, . . . , rk},

1

2

(
@

@x
Q(b, ~y)− @

@x
Q(a, ~y)

)
−

b∫
a

(λ+ f(x, ~y))Q(x, ~y) dx = −λ
b∫
a

Φ(x, ~y) dx; (7.7)

2) for any α < β and l = 1, . . . , k,

1

2

β∫
α

(
@

@x
Q(rl − 0, ~y)− @

@x
Q(rl + 0, ~y)

)
dyl = Q(rl, ~y)

∣∣∣
yl=β

−Q(rl, ~y)
∣∣∣
yl=α

. (7.8)

Proof. Assume first that Φ(x, ~y) and f(x, ~y) are bounded twice continuously
differentiable functions with bounded first and second derivatives. Let g be a twice
continuously differentiable function such that 0≤g(x)≤1, g(x) = 0 for |x| ≥ 1 and
∞∫

−∞

g(x) dx = 1, g(0) = 1. For ε > 0 we set

gεl (x) := 1

"
g
(
x− rl

"

)
, Gεl (x) :=

x∫
−∞

gεl (u) du, l = 1, . . . , k,

~ξεk(s) :=
(
x+W (s), y1 +

s∫
0

gε1(x+W (u)) du, . . . , yk +

s∫
0

gεk(x+W (u)) du
)
.

Obviously,
Gεl (x) → Gl(x) = 1I[rl,∞)(x), x 6= rl (7.9)

as ε→ 0. Set

uε(t, x, ~y) := E
{
Φ(~ξεk(t)) exp

(
−

t∫
0

f(~ξεk(s)) ds
)}

.

We apply Proposition 7.1. By (7.5), the function

Uε(x, ~y) := λ

∞∫
0

e−λtuε(t, x, ~y) dt = E
{
Φ(~ξεk(τ)) exp

(
−

τ∫
0

f(~ξεk(s)) ds
)}
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satisfies for (x, ~y) ∈ Rk+1 the equation

1

2

@2

@x2
Uε(x, ~y) +

k∑
l=1

gεl (x)
@

@yl
Uε(x, ~y)− (λ+ f(x, ~y))Uε(x, ~y) = −λΦ(x, ~y). (7.10)

We prove that for any ~y ∈ Rk

lim
ε→0

sup
x∈R

|Uε(x, ~y)−Q(x, ~y)| = 0. (7.11)

From (1.6) for k = 1 it follows that

sup
x∈R

E(`(t,∆ + x)− `(t, x))2 ≤ 28∆
√
t, ∆ ≥ 0.

For any l = 1, . . . , k

sup
x∈R

E
∣∣∣∣
s∫

0

gεl (x+W (u)) du− `(s, rl − x)
∣∣∣∣ = sup

x∈R
E
∣∣∣∣

1∫
−1

g(v)(`(s, εv+ x)− `(s, x)) dv
∣∣∣∣

≤ sup
x∈R

1∫
−1

E|`(s, εv + x)− `(s, x)|dv ≤ Cs1/4
√
ε. (7.12)

Then, using the restrictions imposed on the functions Φ and f , we get

|Uε(x, ~y)−Q(x, ~y)| ≤ CkE
(
τ1/4

√
ε+

√
ε

τ∫
0

s1/4ds
)
≤ 2Ck

(
1

�1=4
+ 1

�5=4

)√
ε,

and hence (7.11) holds.
Integrating (7.10), we deduce that

1

2

(
@

@x
Uε(b, ~y)−

@

@x
Uε(a, ~y)

)
+

k∑
l=1

b∫
a

@

@yl
Uε(x, ~y) dGεl (x)

−
b∫
a

(λ+ f(x, ~y))Uε(x, ~y) dx = −λ
b∫
a

Φ(x, ~y) dx. (7.13)

Since Gεl (x) increases only in the ε-neighborhoods of the points rl, for each compact
set K ⊂ R \ {r1, . . . , rk} there is an ε such that

K ⊂ R \
{ k⋃
l=1

(rl − ε, rl + ε)
}
.
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Suppose that (a, b) ⊂ K and (a, c) ⊂ K. Then

1

2

(
@

@x
Uε(b, ~y)−

@

@x
Uε(a, ~y)

)
−

b∫
a

(λ+f(x, ~y))Uε(x, ~y) dx = −λ
b∫
a

Φ(x, ~y) dx, (7.14)

1

2

(
Uε(c, ~y)− Uε(a, ~y)− (c− a) @

@x
Uε(a, ~y)

)

−
c∫
a

b∫
a

(λ+ f(x, ~y))Uε(x, ~y) dxdb = −λ
c∫
a

b∫
a

Φ(x, ~y) dxdb. (7.15)

Since |Uε| ≤ C, it follows from (7.14), (7.15) that @

@x
Uε(x, ~y) as functions of x are

equicontinuous on the compact set K and uniformly bounded for (x, ~y) ∈ K ×Rk.
By the Arzelá-Ascoli theorem, the family

{
@

@x
Uε(x, ~y)

}
ε>0

as functions of x is a

relatively compact in such a set. From this and (7.11) we get that @
@x
Q(x, ~y) exists

for x ∈ K and

sup
x∈K

∣∣∣ @
@x
Uε(x, ~y)−

@

@x
Q(x, ~y)

∣∣∣→ 0 as ε ↓ 0. (7.16)

Passing to the limit in (7.14), we get that Q(x, ~y) satisfies (7.7). The continuity
of Q(x, ~y) in x follows from (7.11).

For any l we choose points a and b in (7.15) such that rl−1 < a < rl < b < rl+1.
We integrate (7.13) with respect to yl from α to β. Then for all sufficiently small
ε we have

1

2

β∫
α

(
@

@x
Uε(b, ~y)−

@

@x
Uε(a, ~y)

)
dyl +

b∫
a

(
Uε(x, ~y)

∣∣
yl=β

− Uε(x, ~y)
∣∣
yl=α

)
dGεl (x)

−
b∫
a

β∫
α

(λ+ f(x, ~y))Uε(x, ~y) dyldx = −λ
b∫
a

β∫
α

Φ(x, ~y) dyldx.

Since Gεl (x) → Gl(x) = 1I[rl,∞)(x), we can pass to the limit as ε → 0 in this
relation, taking into account (7.11), (7.16), and the uniform boundedness of the
functions @

@x
Uε(b, ~y),

@

@x
Uε(a, ~y), ~y ∈ Rk. Therefore,

1

2

β∫
α

(
@

@x
Q(b, ~y)− @

@x
Q(a, ~y)

)
dyl + Q(rl, ~y)|yl=β

− Q(rl, ~y)|yl=α

−
b∫
a

β∫
α

(λ+ f(x, ~y))Q(x, ~y) dyldx = −λ
b∫
a

β∫
α

Φ(x, ~y) dyl dx.
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Since Q(x, ~y) satisfies (7.7), the one-sided derivatives @

@x
Q(rl±0, ~y), l = 1, 2, . . . , k,

exist, and we can pass to the limit as b ↓ rl, a ↑ rl in the above relation, which
gives us (7.8), and hence proves the theorem for the class of functions Φ, f under
consideration.

We extend this class of functions by the limit approximation method. Let
fn(x, ~y), (x, ~y) ∈ Rk+1, be a sequence of nonnegative measurable functions that
are uniformly bounded on an arbitrary compact subset of Rk+1, and let Φn(x, ~y),
(x, ~y) ∈ Rk+1 be a sequence of measurable uniformly bounded functions. Suppose
that the statement of Theorem 7.2 holds for the functions Φn, fn, and let

Φ(x, ~y) = lim
n→∞

Φn(x, ~y), f(x, ~y) = lim
n→∞

fn(x, ~y), for (x, ~y) ∈ Rk+1.

We prove that the statement of Theorem 7.2 then holds also for Φ and f . Let
Qn(x, ~y) denote the function (7.6) with Φn and fn in place of Φ and f .

We prove that for any d > 0 and arbitrary fixed ~y ∈ Rk,

lim
n→∞

sup
x∈[−d,d]

|Qn(x, ~y)−Q(x, ~y)| = 0. (7.17)

For any ε > 0 we choose A such that

P
(

sup
0≤s≤τ

|W (s)| > A− d
)
< ε, P

(
sup
z∈R

`(τ, z) > A− |~y|
)
< ε.

Let
∆A := {(x,~v) : −A ≤ x ≤ A,−A ≤ vl ≤ A, l = 1, . . . , k},

fAn (x,~v) = fn(x,~v)1I∆A
(x,~v). Denote by QAn (x,~v) the function (7.6) with Φn and

fAn in place of Φ and f . The functions fA(x,~v) and QA(x,~v) are defined similarly.
Since ε is arbitrary, instead of (7.17) we need only to prove that for arbitrary fixed
~y ∈ Rk

lim
n→∞

sup
x∈[−d,d]

|QAn (x, ~y)−QA(x, ~y)| = 0. (7.18)

Set Ψn := |Φn − Φ| + |fAn − fA|. For simplicity we consider the case k = 2. The
general case is not essentially different, because one can use the Markov property
of the process `(τ, y), y ∈ R, given W (τ) = z (see Theorem 2.1). We have

|QAn (x, ~y)−QA(x, ~y)| ≤ E|Φn(~ξ2(τ))−Φ(~ξ2(τ))|+K1E

τ∫
0

|fAn (~ξ2(s))−fA(~ξ2(s))| ds

≤ E|Φn(~ξ2(τ))− Φ(~ξ2(τ))|+
K1

�
E|fAn (~ξ2(τ))− fA(~ξ2(τ))|

≤
(
K + K

�

)
EΨn(x+W (τ), y1 + `(τ, r1 − x), y2 + `(τ, r2 − x))

= K(1 + �)

�

∞∫
−∞

∫
[0,∞)

∫
[0,∞)

Px(W (τ)∈dz, `(τ, r1)∈dv, `(τ, r2)∈dg)Ψn(z, y1 +v, y2 +g).

(7.19)
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To estimate the supremum with respect to x ∈ [−d, d] of the right-hand side
of this inequality we use the result of Example 4.4 Ch. III. From this example it
follows that the joint distribution of W (τ) and the process `(τ, y), y ∈ R, has an
atom only at the point zero (formulas (4.62)–(4.64) Ch. III), and has a joint density
(formula (4.65) Ch. III). We need also the following estimates for the supremum of
the coefficients in formulas (4.62)–(4.65) Ch. III: ∆ = |u− r|,

sup
x∈R

C ≤
(
1− e−2∆

√
2λ
)(
e−|z−r|

√
2λ + e−|z−u|

√
2λ
)
,

sup
x∈R

D =
(
1− e−2∆

√
2λ
)(
e−|z−u|

√
2λ − e−(|z−r|+∆)

√
2λ
)
,

sup
x∈R

F =
(
1− e−2∆

√
2λ
)(
e−|z−r|

√
2λ − e−(|z−u|+∆)

√
2λ
)
,

sup
x∈R

H ≤
(
1− e−2∆

√
2λ
)(
e−∆

√
2λ − e−2∆

√
2λ
)(
e−|z−u|

√
2λ + e−|z−r|

√
2λ
)
.

Upon using these estimates with u = r2, r = r1, (7.19) yields (7.18).
Since for any fixed ~y ∈ Rk the functions Qn(x, ~y) are continuous with respect to

x, it follows from (7.17) that Q(x, ~y) is continuous with respect to x. Further, since
the functions Qn(x, ~y) are uniformly bounded and satisfy (7.7), it is not hard to
see by integrating (7.7) with respect to b ∈ [a, c] (c is an arbitrary point satisfying
[a, c] ⊂ R \ {r1, . . . , rk}) that the functions @

@x
Qn(x, ~y) are uniformly bounded on

K × [α, β]k for any α < β and any compact subset K ⊂ R \ {r1, . . . , rk}. The
functions @

@x
Qn(x, ~y) are equicontinuous on K as functions of x. From this and

(7.17) it follows that @

@x
Q(x, ~y), x ∈ R \ {r1, . . . , rk}, exists for any ~y ∈ Rk, and

lim
n→∞

sup
x∈K

∣∣∣ @
@x
Qn(x, ~y)−

@

@x
Q(x, ~y)

∣∣∣ = 0.

Then the function Q(x, ~y) satisfies (7.7) and hence the derivatives @

@x
Q(rl ± 0, ~y)

exist for l = 1, . . . , k, and

@

@x
Qn(rl ± 0, ~y) → @

@x
Q(rl ± 0, ~y).

Since the functions @

@x
Qn(x, ~y) are uniformly bounded in K× [α, β]k, the functions

@

@x
Qn(rl ± 0, ~y), ~y ∈ [α, β]k, are also uniformly bounded. The functions Qn(x, ~y)

satisfy (7.8), therefore passing to the limit in (7.8), we get that (7.8) holds also for
the function Q(x, ~y).

Thus the theorem is valid for functions Φ, f that are limits of sequences of func-
tions Φn, fn, for which the theorem holds. Moreover, Φn are uniformly bounded,
while fn are uniformly bounded on any compact subset in Rk+1. Since the theorem
is valid for bounded twice continuously differentiable functions, it is valid also for
bounded continuous functions Φ and continuous functions f bounded on any com-
pact subset of Rk+1. The smallest class of bounded functions closed under taking
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limits and containing all continuous bounded functions coincides (see Gihman and
Skorohod (1969) Ch. 2 § 2 Theorem 4) with the class of all bounded measurable
functions. An analogous assertion holds for classes of functions bounded on any
compact subset of Rk+1. �

The next theorem enables us to find distributions of the functional

C(∞) :=

∞∫
0

f(W (s), `(s, r1), . . . , `(s, rk)) ds, ri ∈ R.

This functional is certainly finite, if the function f(x, ~y), (x, ~y) ∈ Rk+1, degenerates
to zero when at least one of the variables yl, l = 1, . . . , k, exceeds some value. This
is due to the fact that for any r the Brownian local time `(s, r), s ≥ 0, increases
infinitely as s→∞ (see § 9).

Theorem 7.3. Let f(x, ~y), x ∈ R, ~y ∈ Rk, be a nonnegative measurable
function bounded on any compact subset of Rk+1. Assume that f(x, ~y) = 0 if
yl ≥ z for some l and z > 0. Then the function

q(x, ~y) := E exp
(
−

∞∫
0

f(~ξk(s)) ds
)
, (x, ~y) ∈ Rk+1,

is continuous in x for any fixed ~y ∈ Rk and satisfies the following equations:
1) for any a < b such that (a, b) ⊂ R \ {r1, . . . , rk},

1

2

(
@

@x
q(b, ~y)− @

@x
q(a, ~y)

)
−

b∫
a

f(x, ~y)q(x, ~y) dx = 0; (7.20)

2) for any α < β and l = 1, . . . , k

1

2

β∫
α

(
@

@x
q(rl − 0, ~y)− @

@x
q(rl + 0, ~y)

)
dyl = q(rl, ~y)

∣∣
yl=β

− q(rl, ~y)
∣∣
yl=α

. (7.21)

Remark 7.1. Theorem 7.3 can be interpreted as the limit case of Theorem 7.2
as λ ↓ 0 and τ →∞.

Proof of Theorem 7.3. We keep the notations introduced in the proofs of Theo-
rems 7.1 and 7.2. Assume first that f is a bounded twice continuously differentiable
function with bounded first and second derivatives such that there exists l and z > 0
for which f(x, ~y) = 0 for yl > z.

Set

qε(x, ~y) := E exp
(
−

∞∫
0

f(~ξεk(s)) ds
)
.
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Let Gts := σ{~ξεk(v), v ∈ [s, t]} be the σ-algebra of events generated by the process
~ξεk when the time varies from s to t.

Since ~ξεk(s) is a homogeneous Markov process, we see that for any t > 0

E
{

exp
(
−

∞∫
t

f(~ξεk(s)) ds
)∣∣∣∣Gt0} = E

{
exp

(
−

∞∫
t

f(~ξεk(s)) ds
)∣∣∣∣Gtt} = qε(~ξεk(t)).

By the third property of conditional expectations,

qε(x, ~y) = E
{
qε(~ξεk(t)) exp

(
−

t∫
0

f(~ξεk(s)) ds
)}

.

In the proof of Theorem 7.1 it was established that qε satisfies equation (7.1). In
our case qε is independent of t, hence for (x, ~y) ∈ Rk+1

1

2

@2

@x2
qε(x, ~y) +

k∑
l=1

gεl (x)
@

@yl
qε(x, ~y)− f(x, ~y)qε(x, ~y) = 0. (7.22)

We now prove that for any ~y ∈ Rk

lim
ε→0

sup
x∈R

|qε(x, ~y)− q(x, ~y)| = 0. (7.23)

By (7.12), for any l = 1, . . . , k

sup
x∈R

P
(∣∣∣∣

s∫
0

gεl (x+W (u)) du− `(s, rl − x)
∣∣∣∣ > 1

)
≤ Cs1/4

√
ε. (7.24)

By the scaling property of the Brownian local time and by (3.17) Ch. III, for any l

P(yl + `(t, rl − x) ≤ z) = P(`(1, (rl − x)/
√
t) ≤ (z − yl)/

√
t)

=
√
2

√
�

(z−yl)
+/

√
t∫

0

e−(|rl−x|/
√
t+v)2/2 dv ≤

√
2

√
�

(z−yl)
+/

√
t∫

0

e−v
2/2dv. (7.25)

Choosing t sufficiently large, we can make this probability as small as desired. From
(7.24) we obtain

P
(
yl +

t∫
0

gεl (x+W (u)) du ≤ z

)
≤ Ct1/4

√
ε+

√
2

√
�

(z+1−yl)
+/

√
t∫

0

e−v
2/2dv. (7.26)
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In view of the condition f(x, ~y) = 0 for yl ≥ z, the estimates (7.25), (7.26), and

the monotonicity of the local times `(t, x) and the function
t∫

0

gεl (x+W (u)) du with

respect to t, it suffices to prove instead of (7.23) that for any ~y ∈ Rk and any t > 0

lim
ε↓0

sup
x∈R

∣∣∣∣E{ exp
(
−

t∫
0

f(~ξεk(s)) ds
)
− exp

(
−

t∫
0

f(~ξk(s)) ds
)}∣∣∣∣ = 0.

This relation is easily established with the help of (7.12) and the boundedness of
the derivatives of f . Since (7.22) and (7.10) are identical equations, the argu-
ments establishing Theorem 7.3 for the class of functions f under consideration are
analogous to the corresponding arguments in the proof of Theorem 7.2. �

Example 7.1. Let W (0) = x. We will prove that the inverse local time process
(`(−1)(u) := min{s : `(s, 0) > u}, u ≥ 0) is the stable subordinator with exponent
1/2, i.e., it is the right continuous process with positive independent increments,
having the α-stable distribution with α = 1/2. We also verify that `(−1)(0) has a
nondegenerate initial distribution for x 6= 0. In the notation of the fourth section,
`(−1)(u) = %(u+ 0, 0).

We apply Theorem 7.3 for the case k = 1, r1 = 0,

f(x, y) =
m∑
j=0

γj1I(uj−1,uj ](y),

where −∞ = u−1 < 0 = u0 < uj−1 < uj and γj > 0, j = 0, 1, . . . ,m, are arbitrary
numbers. According to the definition,

q(x, y) = Ex exp
(
−

∞∫
0

m∑
j=0

γj1I(uj−1,uj ](y + `(s, 0)) ds
)
, (x, y) ∈ R2,

where the subscript in the expectation indicates that it is computed for the Brown-
ian motion W with the initial value W (0) = x.

By the equality 1I(uj−1,uj ](y) = 1I(−∞,uj ](y)−1I(−∞,uj−1](y) and the monotonicity
of `(s, 0), s ≥ 0, we have

Ex exp
(
− γ0`

(−1)(u0)−
m∑
j=1

γj
(
`(−1)(uj)− `(−1)(uj−1)

))
= q(x, 0). (7.27)

We solve equation (7.20), x 6= 0, taking into account the boundedness of the func-
tion q(x, y) and its continuity with respect to x. As a result, we find that

q(x, y) = c(y) exp
(
− |x|

(
2
m∑
j=0

γj1I(uj−1,uj ](y)
)1/2)

,
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where c(y), y ∈ R, is some function. It follows from (7.21) that c(y), y ∈ R, is
continuous and for y ∈ (uk−1, uk)√

2γk c(y) = c′(y).

Therefore, c(y) = cke
y
√

2γk for y ∈ (uk−1, uk), and by the definition of q(x, y), we
have that q(x, y) = 1 for y > um, or c(um) = 1. From the continuity of c(y) we
determine the coefficients ck uniquely. Thus cm = e−um

√
2γm . By the continuity of

c(y) in uk−1, we have

ck−1 e
uk−1

√
2γk−1 = ck e

uk−1
√

2γk for all 1 ≤ k ≤ m.

This implies that

ck−1 = exp
(
−

m∑
j=k

(uj − uj−1)
√

2γj − uk−1

√
2γk−1

)
.

Since u0 = 0, we finally have

q(x, 0) = c0 exp
(
− |x|

√
2γ0

)
= exp

(
−

m∑
j=1

(uj − uj−1)
√

2γj − |x|
√

2γ0

)
.

Thus for the Laplace transform (7.27) of the finite-dimensional distributions of the
process inverse of the local time we have the following formula:

Ex exp
(
− γ0`

(−1)(0)−
m∑
j=1

γj
(
`(−1)(uj)− `(−1)(uj−1)

))

= exp
(
− |x|

√
2γ0 −

m∑
j=1

(uj − uj−1)
√

2γj
)
,

where 0 = u0 < uj−1 < uj , γj > 0, j = 0, 1, . . . ,m. This proves the required
assertion. �

§ 8. Distribution of supremum of Brownian local time increments

In this section we consider the problem of computing the joint distribution of
the variables `(τ, r), `(τ, q), and sup

0≤s≤τ
(`(s, q)−`(s, r)), where r and q are arbitrary

points and τ is the exponentially distributed with the parameter λ > 0 random
time independent of the Brownian motion W .

This distribution is uniquely determined by the Laplace transform

L(x, λ, µ, η) := Ex
{
e−µ`(τ,r)−η`(τ,q); sup

0≤s≤τ
(`(s, q)− `(s, r)) ≤ h

}
,

where µ > 0, η > 0, and subscript x indicates that W (0) = x.

Set ∆ := q − r > 0, α :=
√
2�

1− e−2�
√
2�

, β := α e−∆
√

2λ,

ρ := 2�

2�+ �+ � +
√
(2�+ �+ �)2 − 4�2

= 2�+ �+ � −
√
(2�+ �+ �)2 − 4�2

2�
.
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Theorem 8.1. For any x ∈ R and h ≥ 0,

L(x, λ, µ, η) = 1−A(x)−B(x) (�− �)(�+ �+ �)

(�+ �)(�+ �)− �2

× exp
((
µ− η −

√
(2α+ µ+ η)2 − 4β2

)h
2

)
, (8.1)

where

A(x) =



�(�+ �) + ��

(�+ �)(�+ �)− �2
e−(r−x)

√
2λ, for x ≤ r,

(�− �)
√
2�((�+ �)(�+ �)− �2)

[
µ(α+ β + η)e−(x−r)

√
2λ

+η(α+ β + µ)e−(q−x)
√

2λ
]
, for r ≤ x ≤ q,

�(�+ �) + ��

(�+ �)(�+ �)− �2
e−(x−q)

√
2λ, for q ≤ x.

B(x) =


ρ e−(r−x)

√
2λ, for x ≤ r,

1
√
2�

[
(ρα− β)e−(x−r)

√
2λ + (α− ρβ)e−(q−x)

√
2λ
]
, for r ≤ x ≤ q,

e−(x−q)
√

2λ, for q ≤ x.

Remark 8.1. For h = ∞ we have that

L(x, λ, µ, η) = Exe−µ`(τ,r)−η`(τ,q) = 1−A(x)

and this formula coincides with (3.11) Ch. III.

Corollary 8.1. In the case µ = η we have ρ = �

�+ � +
√
(�+ �)2 − �2

,

Ex
{
e−η(`(τ,r)+`(τ,q)); sup

0≤s≤τ
(`(s, q)− `(s, r)) > h

}
= B(x) �− �

� + �− �
e−h

√
(α+η)2−β2

. (8.2)

Corollary 8.2. For h ≥ 0

Px

(
sup

0≤s≤τ
(`(s, q)− `(s, r)) > h

)
= D(x) exp

(
− h

√
2�√

1− e−2�
√
2�

)
, (8.3)

where

D(x) =



e−�
√
2�

1 +

√
1− e−2�

√
2�
e−(r−x)

√
2λ, for x ≤ r,

e−(q−x)
√
2�√

1− e−2�
√
2�

−
e−(x−r)

√
2�(

e�
√
2� −

√
e2�

√
2� − 1

)√
1− e−2�

√
2�

, for r ≤ x ≤ q,

e−(x−q)
√

2λ, for q ≤ x.

Remark 8.2. For q < r analogous formulas can easily be derived from the
formulas for q > r by using the symmetry property of a Brownian motion.

Using the properties of spatial homogeneity and symmetry of a Brownian mo-
tion, it is easy to deduce from (8.3) the following statement for the modulus of the
increments of the Brownian local time.
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Corollary 8.3. If ∆
√

2λ ≤ 1, then

Px

(
sup

0≤s≤τ
|`(s, q)−`(s, r)| > h

)
≤4 exp

(
− h

√
2�√

1− e−2�
√
2�
−min(|x−r|, |q−x|)

√
2λ
)
.

Indeed, for x ∈ [r, q] the function D(x) is increasing, because D′(x) > 0. Then
one has the estimates

D(x) ≤ D(q) = 1 ≤ e∆
√

2λ/2 exp
(
−min(|x− r|, |q − x|)

√
2λ
)
.

Sometimes it is important to have a similar estimate for a fixed time t instead
of the random time τ .

Corollary 8.4. For h∆/t ≤ 1,

Px

(
sup

0≤s≤t
|`(s, q)− `(s, r)| > h

)

≤ 4 exp
(
− 3

8t1=3

(
h
√
�

)4/3

−min(|x− r|, |q − x|)1
2

(
h

t
√
�

)2/3)
. (8.4)

Indeed, since the probability on the left-hand side of (8.4) is increasing with
respect to t, we have

Px

(
sup

0≤s≤t
|`(s, q)− `(s, r)| > h

)
≤ λeλt

∞∫
t

e−λvPx

(
sup

0≤s≤v
|`(s, q)− `(s, r)| > h

)
dv

≤ eλtPx

(
sup

0≤s≤τ
|`(s, q)− `(s, r)| > h

)
≤ 4 exp

(
λt− h

√
2�√

1− e−2�
√
2�

−min(|x− r|, |q − x|)
√

2λ
)
,

for any λ > 0 and t > 0. For ∆
√

2λ ≤ 1/2 the estimate 1 − e−2∆
√

2λ ≤ 2∆
√

2λ
holds, therefore,

Px

(
sup

0≤s≤t
|`(s, q)− `(s, r)| > h

)
≤ 4 exp

(
λt− h(2�)1=4

√
2�

−min(|x− r|, |q−x|)
√

2λ
)
.

If we choose the optimal value
√

2λ = 1

2

(
h

t
√
�

)2/3

, then for h�

t
≤ 1 we get (8.4).

Proof of Theorem 8.1. Let θ(y, z) := 1I(−∞,0)(y − z) and

F (x, y, z) := E0

{
exp(−µ(y + `(τ, r − x))− η(z + `(τ, q − x)))

× exp
(
− γ

τ∫
0

θ(y + `(s, r − x), z + `(s, q − x)) ds
)}

.
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Then

E0

{
e−µ`(τ,r−x)−η`(τ,q−x); sup

0≤s≤τ
(`(s, q − x)− `(s, r − x)) ≤ y − z

}
= lim
γ→∞

eµy+ηzF (x, y, z). (8.5)

This equality holds in view of the following circumstances. If for some value s from
(0, τ) the variable `(s, q − x) − `(s, r − x) is greater than y − z, then the variable
y+`(s, r−x)−z−`(s, q−x) is less than zero a.s. for all s in some random interval.
Therefore, the integral of the function θ(y + `(s, r − x), z + `(s, y − x)) from 0 to
τ is positive and the exponential function of −γ, multiplied by this integral, tends
to zero as γ →∞.

To compute the function F (x, y, z) we use Theorem 7.2. The unboundedness of
Φ(y, z) = e−µy−ηz, (y, z) ∈ R2, is not essential in this case, because the function is
multiplicative in each argument.

We first remark that the distribution function F(u) of the variable `(τ, b)−`(τ, a)
has a density at u 6= 0, also at all u when W (0) = 0 and either b = 0 or a = 0.
This is not hard to establish with the help of the formulas (4.63)–(4.65) of Ch. III.
Therefore, for all x the function F (x, y, z) is continuous with respect to (y, z)
for y 6= z, and the functions F (q, y, z), F (r, y, z) are continuous with respect to
(y, z) ∈ R2. This is the consequence of the estimate

E0

∣∣∣∣ exp
(
−

τ∫
0

1I(−∞,z2](`(s, b)−`(s, a)) ds
)
−exp

(
−

τ∫
0

1I(−∞,z1](`(s, b)−`(s, a)) ds
)∣∣∣∣

≤ E0

τ∫
0

1I(z1,z2](`(s, b)− `(s, a)) ds = 1

�
P0(`(τ, b)− `(τ, a) ∈ (z1, z2]), z1 ≤ z2.

It follows from (7.7) that for c > q

1

2

(
F (c, y, z)− F (q, y, z)− (c− q) @

@x
F (q + 0, y, z)

)

− (λ+ γθ(y, z))

c∫
q

b∫
q

F (x, y, z) dxdb = −�(c− q)2

2
e−µy−ηz.

In view of the stated above, this relation implies that @

@x
F (q+0, y, z) is continuous

with respect to (y, z) for y 6= z. It can be seen similarly that @

@x
F (q − 0, y, z) and

@

@x
F (r ± 0, y, z) are also continuous with respect to (y, z) for y 6= z.
Thus in this case the problem (7.7), (7.8) is transformed to the following one:
1) for x 6= r, q,

1

2

@2

@x2
F (x, y, z)− (λ+ γθ(y, z))F (x, y, z) = −λe−µy−ηz; (8.6)
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2) for y 6= z,

1

2

(
@

@x
F (r − 0, y, z)− @

@x
F (r + 0, y, z)

)
= @

@y
F (r, y, z), (8.7)

1

2

(
@

@x
F (q − 0, y, z)− @

@x
F (q + 0, y, z)

)
= @

@z
F (q, y, z). (8.8)

We set

α(y, z) :=
√
2(�+ �(y; z))

1− e−2�
√
2(�+�(y;z))

, β(y, z) := α(y, z)e−∆
√

2(λ+γθ(y,z)).

To keep the notation simple, we sometimes omit the arguments (y, z) in notations
of the functions θ(y, z), α(y, z) and β(y, z).

Solving (8.6) with the restriction that F is bounded with respect to x, we get

F (x, y, z) =



G(y, z)e−(r−x)
√

2(λ+γθ) + �e−�y−�z

�+ �
, for x ≤ r,

C(y, z)e−(x−r)
√

2(λ+γθ)

+D(y, z)e−(q−x)
√

2(λ+γθ) + �e−�y−�z

�+ �
, for r ≤ x ≤ q,

H(y, z)e−(x−q)
√

2(λ+γθ) + �e−�y−�z

�+ �
, for x ≥ q,

where G, C, D, and H are certain functions. It follows from the continuity of F
with respect to x that

C(y, z) = 1√
2(�+ �(y; z))

(G(y, z)α(y, z)−H(y, z)β(y, z)), (8.9)

D(y, z) = 1√
2(�+ �(y; z))

(H(y, z)α(y, z)−G(y, z)β(y, z)). (8.10)

Then we deduce from (8.7), (8.8) that in the domains R1 = {y ≥ z}, R2 = {y < z},
where α(y, z) and β(y, z) take constant values, G and H satisfy the system of
equations

@

@y
G(y, z) = αG(y, z)− βH(y, z) + ��e−�y−�z

�+ 1I(−∞;0)(y − z)
, (8.11)

@

@z
H(y, z) = αH(y, z)− βG(y, z) + ��e−�y−�z

�+ 1I(−∞;0)(y − z)
. (8.12)

By definition, the function eµy+ηzF (x, y, z) is bounded by 1 and, as a function of
(y, z), it depends only on the difference y − z. Set Q(y − z) := eµy+ηzG(y, z) and
R(y−z) := eµy+ηzH(y, z). The functions Q(h) and R(h) are bounded, and in view
of (8.11) and (8.12), they satisfy the equations

Q′(h) = (α+ µ)Q(h)− βR(h) + ��

�+ 1I(−∞;0)(h)
, (8.13)
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R′(h) = βQ(h)− (α+ η)R(h)− ��

�+ 1I(−∞;0)(h)
. (8.14)

It is possible to solve this system with constant coefficients in various ways.
One of them is the following. We first express from equations (8.13) and (8.14) the
function R. Doing so we see that the function R(h) for h 6= 0 is a bounded solution
of the equation

R′′(h) + (η − µ)R′(h)− ((α+ µ)(α+ η)− β2)R(h) = �(�(�+ �) + ��)

�+ 1I(−∞;0)(h)
.

The particular solution of this equation is

κγ(h) := − �(�(�+ �) + ��)

(�+ 1I(−∞;0)(h))((�+ �)(�+ �)− �2)
.

The jump of this solution at zero is equal to

δγ := κγ(+0)− κγ(−0) = − (�(�+ �) + ��)

(�+ )((�+ �)(�+ �)− �2)
.

Note that the functions F (q, y, z) and F (r, y, z) are continuous in (y, z) ∈ R2,
therefore the functions

R(h) + �

�+ 1I(−∞;0)(h)
and Q(h) + �

�+ 1I(−∞;0)(h)

are continuous in h ∈ R. Then, in view of continuity of R, the bounded solution
R can be represented as

R(h) = κγ(h)−
(
kγ + (δγ + 1)1I[0,∞)(h) + �

�+ 
1I(−∞,0)(h)

)
× exp

((
µ− η −

√
(2α+ µ+ η)2 − 4β2

) |h|
2

)
. (8.15)

where kγ depend on γ and is independent of h.
According to this formula, R(0) = κγ(0)− kγ − δγ − 1. Note also that, if z = y

and x = q, then from (8.5) and from the representation for the function F (x, y, z),
it follows that

lim
γ→∞

e(µ+η)yF (q, y, y) = lim
γ→∞

(R(0) + 1)

= E0

{
exp(−µ`(τ, r − q)− η`(τ, 0)); sup

0≤s≤τ
(`(s, 0)− `(s, r − q)) = 0

}
= 0.

Since W (0) = 0, the right-hand side equality is valid, because `(s, r − q) = 0 for s
in some neighborhood of zero, while `(s, 0) > 0.

Therefore, we have kγ → 0, because κγ(0)− δγ → 0.
Now from (8.14) we express the function Q(h) for h ≥ 0. It can be checked that

Q(h) = − �(�+ �) + ��

(�+ �)(�+ �)− �2
−(kγ+δγ+1)ρ exp

((
µ−η−

√
(2α+ µ+ η)2 − 4β2

)h
2

)
.

(8.16)
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Here we have used the constant ρ introduced at the beginning of the section.
Thus for h ≥ 0

lim
γ→∞

R(h) = − �(�+ �) + ��

(�+ �)(�+ �)− �2

− (�− �)(�+ � + �)

(�+ �)(�+ �)− �2
exp

((
µ− η −

√
(2α+ µ+ η)2 − 4β2

)h
2

)
, (8.17)

lim
γ→∞

Q(h) = − �(�+ �) + ��

(�+ �)(�+ �)− �2

− (�− �)(�+ � + �)�

(�+ �)(�+ �)− �2
exp

((
µ− η −

√
(2α+ µ+ η)2 − 4β2

)h
2

)
. (8.18)

Now it is easy to complete the proof of the theorem. For x > q using the
representation for the function F (x, y, z), we get by (8.5) and (8.17) that

E0

{
e−µ`(τ,r−x)−η`(τ,q−x); sup

0≤s≤τ
(`(s, q − x)− `(s, r − x)) ≤ h

}

= 1− �(�+ �) + ��

(�+ �)(�+ �)− �2
e−(x−q)

√
2λ − (�− �)(�+ � + �)

(�+ �)(�+ �)− �2

× exp
((
µ− η −

√
(2α+ µ+ η)2 − 4β2)h

2

)
e−(x−q)

√
2λ, h ≥ 0.

Similarly, using the expression for lim
γ→∞

Q(h), we obtain (8.1) for x ≤ r. To prove

the formula in the case r < x < q one uses (8.9) and (8.10). �

§ 9. The law of the iterated logarithm for Brownian local time

We consider the asymptotic behavior of the Brownian local time `(t, x) for large
values of t. The statement below can be formulated non-rigorously as follows: the
main component of the rate of growth as t → ∞ of the extremal values of almost
all sample paths of the Brownian local time is the nonrandom function

√
2t ln ln t,

t > e. Assertions of this type can be grouped under the general heading the law of
the iterated logarithm. Assume for definiteness that W (0) = 0, although, as it will
be seen from the proof, the initial value of the Brownian motion does not matter.

Theorem 9.1. The following relations hold:

lim sup
t→∞

`(t; 0)
√
2t ln ln t

= lim sup
t→∞

supx∈R `(t; x)√
2t ln ln t

= 1 a.s. (9.1)

Proof. Let tk be an arbitrary increasing sequence of numbers. Since the local
time is monotone in t,

lim sup
t→∞

supx∈R `(t; x)√
2t ln ln t

≥ lim sup
t→∞

`(t; 0)
√
2t ln ln t

≥ lim sup
k→∞

`(tk+1; 0)− `(tk; 0)√
2tk+1 ln ln tk+1

. (9.2)
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Our first step is to choose for any 0 < ε < 1 a sequence of numbers tk such that the
limit on the right-hand side of (9.2) is greater or equal to 1 − ε a.s. Let tk := θk,

where θ > 1 is such that (1− ")2�

� − 1
= 1. Using the Markov property of the process

W and (3.17) Ch. III, we get that

P
(
`(tk+1; 0)− `(tk; 0)√

2tk+1 ln ln tk+1
>1− ε

∣∣∣W (t), t ≤ tk,W (tk) = x
)

=P
(
`(tk+1 − tk;−x)√
2tk+1 ln ln tk+1

≥1− ε
)

=
√
2√

�(tk+1 − tk)

∞∫
(1−ε)

√
2tk+1 ln ln tk+1

exp
(
− (|x|+ y)2

2(tk+1 − tk)

)
dy.

Since (see (10.8) Ch. I)

√
2

√
�t

∞∫
h

e−v
2/2t dv ∼

√
2t

h
√
�
e−h

2/2t as h
√
2t

→∞,

we conclude that for k →∞

P
(
`(tk + 1; 0)− `(tk; 0)√

2tk+1 ln ln tk+1
> 1− ε

∣∣∣W (t), t ≤ tk,W (tk) = x
)

∼ �k=2
√
2(� − 1)

√
�
(
|x|+ (1− ")�k=2

√
2� ln ln �k+1

) exp
(
−

(
|x|+ (1− ")�k=2

√
2� ln ln �k+1

)2
2�k(� − 1)

)
∼

√
� − 1√

�� ln(k + 1)(1− ")
exp

(
− (1− ")2� ln(k + 1)

� − 1

)
∼

√
� − 1

√
��(1− ")(k + 1)

√
ln(k + 1)

.

Thus the series from these conditional probabilities diverges for any x. Therefore,
taking x to be the value W (tk), we get

∞∑
k=1

P
(
`(tk+1; 0)− `(tk; 0)√

2tk+1 ln ln tk+1
> 1− ε

∣∣∣W (t), t ≤ tk

)
= ∞ a.s.

By the Borel–Cantelli–Lévy lemma (see Remark 5.5 Ch. I) this implies

lim sup
k→∞

`(tk+1; 0)− `(tk; 0)√
2tk+1 ln ln tk+1

≥ 1− ε a.s.

Since ε is arbitrary, (9.2) yields that

lim sup
t→∞

supx∈R `(t; x)√
2t ln ln t

≥ lim sup
t→∞

`(t; 0)
√
2t ln ln t

≥ 1.

It now remains to prove that for any ε > 0

lim sup
t→∞

supx∈R `(t; x)√
2t ln ln t

≤ 1 + ε. (9.3)
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We again choose tk := θk, where θ > 1. Using the monotonicity of `(t, x) with
respect to t, we get that

lim sup
t→∞

supx∈R `(t; x)√
2t ln ln t

≤ lim sup
k→∞

supx∈R `(tk; x)√
2tk−1 ln ln tk−1

=
√
θ lim sup

k→∞

supx∈R `(tk; x)√
2tk ln ln tk

.

By the estimate (5.27),

P
(√

θ
supx∈R `(tk; x)√

2tk ln ln tk
≥ 1 + ε

)
≤ L

2(1 + ")2 ln ln tk

�
exp

(
− (1 + ")2

�
ln ln tk

)
= L

2(1 + ")2

�
ln(k ln θ) exp

(
− (1 + ")2

�
(ln k + ln ln θ)

)
� k−(1+ε)2/θ ln k.

Choosing θ such that (1 + ε)2/θ > 1, we get that this series of probabilities con-
verges, and hence, by the first part of the Borel–Cantelli lemma (see Remark 1.1
Ch. I)

√
θ lim sup

k→∞

supx∈R `(tk; x)

2tk ln ln tk
≤ 1 + ε a.s.

This proves (9.3). Since ε can be chosen arbitrarily close to zero, Theorem 9.1 is
proved. �

§ 10. The exact modulus of continuity of the
Brownian local time `(t, x) with respect to t

The local time is a two-parameter process. For two-parameter processes there are
various statements of problems involving moduli of continuity, contrary to the case
of one-parameter processes. We are interested in the moduli of continuity separately
with respect to each of the parameters. For various applications associated with
two-parameter processes it is important to have estimates for moduli of continuity
with respect to each of the parameters that are uniform with respect to the other
parameter. The next theorem asserts that the function h(t) :=

√
2t ln(1/t), 0 <

t < e−1, is the exact modulus of continuity of the Brownian local time `(t, x) with
respect to t uniform in x.

Theorem 10.1. For any T > 0

lim sup
∆↓0

1√
2� ln(1=�)

sup
(t,x)∈[0,T ]×R

(`(t+ ∆, x)− `(t, x)) = 1 a.s. (10.1)

Proof. It can be assumed without loss of generality that T = 1 and W (0) = 0.
To establish (10.1) it suffices to prove that for any 0 < ε < 1

lim sup
∆↓0

1

h(�)
sup

(t,x)∈[0,1]×R

(`(t+ ∆, x)− `(t, x)) ≥ 1− ε a.s., (10.2)

lim sup
∆↓0

1

h(�)
sup

(t,x)∈[0,1]×R

(`(t+ ∆, x)− `(t, x)) ≤ 1 + 3ε+ 2ε2 a.s. (10.3)
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We first prove (10.2). By (3.17) Ch. III and (10.7) Ch. I, we have the obvious
estimate

P(`(2−n, 0) ≥ (1− ε)h(2−n)) = 2
√
�

∞∫
(1−ε)

√
ln 2n

e−v
2
dv

≥ C

(1− ")
√
n ln 2

exp(−(1− ε)2n ln 2) ≥ 2(ε−1)n, (10.4)

which is true for some C > 0, and all sufficiently large n. Using the Markov
property of the Brownian motion W , we get that

P
(

max
1≤k≤2n

sup
x∈R

(`(k2−n, x)− `((k − 1)2−n, x)) ≤ (1− ε)h(2−n)
)

=
2n∏
k=1

P
(

sup
x∈R

(`(k2−n, x)− `((k − 1)2−n, x)) ≤ (1− ε)h(2−n)
)

=
(
1−P

(
sup
x∈R

`(2−n, x) > (1− ε)h(2−n)
))2n

≤
(
1−P(`(2−n, 0) > (1− ε)h(2−n))

)2n

≤ (1− 2(ε−1)n)2
n

≤ e−2εn

.

Since the series of variables e−2εn

converges, by the first part of Borel–Cantelli
lemma, we obtain that

lim sup
n→∞

1

h(2−n)
max

1≤k≤2n
sup
x∈R

(`(k2−n, x)− `((k − 1)2−n, x)) > 1− ε a.s.

This obviously implies (10.2).

We pass to the proof of (10.3). Choose δ so that 0 < δ < 1 and 1 + �

1− �
< (1+ ε)2.

For brevity set ‖ · ‖ := sup
x∈R

| · |. By (5.27),

P
(

max
0≤k≤2nδ

0≤i≤2n

‖`((i+ k)2−n, x)− `(i2−n, x)‖ > (1 + ε)h(k2−n)
)

≤
∑

0≤k≤2nδ

0≤i≤2n

P
(
‖`((i+ k)2−n, x)− `(i2−n, x)‖ > (1 + ε)h(k2−n)

)

≤ L2n
2nδ∑
k=1

(1 + ")2h2(k2−n)

k2−n
exp
(
− (1 + ")2h2(k2−n)

2k2−n

)

= L2n+1
2nδ∑
k=1

(1 + ε)2 ln
(
2n

k

)
2−n(1+ε)2k(1+ε)2

≤ L1n2n(1−(1+ε)2+δ((1+ε)2+1)) = L1n2−n(1−δ)((1+ε)2−(1+δ)/(1−δ)).
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We have estimated the probabilities by quantities forming a convergent series.
Consequently, by the first part of the Borel–Cantelli lemma, there exists a.s. a
number m = m(ω) such that

‖`((i+ k)2−n, x)− `(i2−n, x)‖ ≤ (1 + ε)h(k2−n). (10.5)

for all n ≥ m, 1 ≤ k ≤ 2nδ, 0 ≤ i ≤ 2n.
Set ∆ := t− s. Since 2−l(1−δ) tends monotonically to zero as l→∞, no matter

how small ∆ is, it will always be between two successive terms of this sequence.
Let 2−(n+1)(1−δ) ≤ ∆ < 2−n(1−δ) and since we are interested only in arbitrarily
small values of ∆, we can assume that n ≥ m. We represent s and t in the form

s = i2−n −
∞∑
v=1

2−pv , t = (i+ k)2−n +
∞∑
v=1

2−qv , (10.6)

where n < p1 < p2 < · · · and n < q1 < q2 < · · · . Let s0 := i2−n, sl :=

i2−n −
l∑

v=1
2−pv and t0 := (i+ k)2−n, tl := (i+ k)2−n +

l∑
v=1

2−qv , l = 1, 2, . . . .

The process `(t, x) is continuous a.s. in t for all x, therefore,

`(s, x) = `(s0, x) +
∞∑
l=1

(`(sl, x)− `(sl−1, x)),

`(t, x) = `(t0, x) +
∞∑
l=1

(`(tl, x)− `(tl−1, x)).

By the triangle inequality,

‖`(t, x)− `(s, x)‖ ≤ ‖`(t0, x)− `(s0, x)‖+
∞∑
l=1

‖(`(sl, x)− `(sl−1, x)‖

+
∞∑
l=1

‖`(tl, x)− `(tl−1, x)‖ ≤ (1 + ε)h(k2−n)

+ (1 + ε)
∑
p>n

h(2−p) + (1 + ε)
∑
q>n

h(2−q).

To estimate the differences `(t0, x) − `(s0, x), `(sl, x) − `(sl−1, x), and `(tl, x) −
`(tl−1, x) for l ≥ 1, we used (10.5). This can be done, because the points sl, tl
satisfy conditions under which (10.5) holds. Since (n+1)(1−δ) < n for sufficiently
large n and the function h(t), 0 < t < e−1, is strictly increasing, we conclude that
for some constant C > 0∑

p>n

h(2−p) ≤ Ch(2−n) ≤ εh(2−(n+1)(1−δ)) ≤ εh(∆).

Finally, we have that

‖`(t, x)− `(s, x)‖ ≤ (1 + 3ε+ 2ε2)h(∆).

This implies (10.3). The theorem is proved. �



432 V BROWNIAN LOCAL TIME

§ 11. The exact modulus of continuity of the
Brownian local time `(t, x) with respect to x

The formula for the exact modulus of continuity of the Brownian local time
`(t, x) with respect to the variable t was obtained in § 10. The main result of this
section gives a formula for the exact modulus of continuity of the Brownian local
time `(s, x) with respect to x uniform in s ∈ [0, t]. The fundamental difference
between the modulus of continuity with respect to x and that with respect to t is
that the former is a random variable. However, these moduli are the same with
regard to order.

Theorem 11.1. For any t > 0

lim sup
∆↓0

sup
x∈R

sup0≤s≤t |`(s; x+�)− `(s; x)|
2
√
(`(t; x) + `(t; x+�))� ln 1=�

= 1 a.s. (11.1)

Remark 11.1. In (11.1) under the root sign there is the sum `(t, x)+`(t, x+∆)
instead of 2`(t, x), because it is necessary to guarantee that the numerator and the
denominator vanish simultaneously. The local time `(t, x) may be equal to zero,
while `(t, x+ ∆) is not equal to zero and conversely.

Proof of Theorem 11.1. Using (8.2), we prove an auxiliary statement. As before,
the subscript x of the probability means that W (0) = x.

Let τ be the independent of the Brownian motion W (and therefore of the local
time `(t, x)) random moment with the density d

dt
P(τ < t) = λe−λt1I[0,∞)(t), λ > 0.

Lemma 11.1. Let ∆ := q − r > 0. Then for u > 0 and 2∆
√

2λ < 1,

Px

(
sup

0≤s<τ
|`(s, q)− `(s, r)| > u

√
`(τ, r) + `(τ, q)

)

≤ 4 exp
(
− u2

4�
−min{|x− r|, |q − x|}

√
2λ
)
, x ∈ R. (11.2)

Proof. Inverting the Laplace transform in (8.2) with respect to η, we get for the
function

p(t, h) := @

@t
Px

(
`(τ, r) + `(τ, q) < t, sup

0≤s≤τ
(`(s, q)− `(s, r)) > h

)
the following expression:
for x ≥ q (see Appendix 3, formulas f , 14, and 17 with µ = 0)

p(t, h) = (α− β)e−(x−q)
√

2λ−αt1I(h,∞)(t)
(
I0
(
β
√
t2 − h2

)

+β

t−h∫
0

I0
(
β
√

(t− s)2 − h2
)
(I0(βs) + I1(βs)) ds

)
, (11.3)
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and for x ≤ r (see Appendix 3, formulas f , 14, and 17 with µ = 1)

p(t, h) = (α− β)e−(r−x)
√

2λ−αt1I(h,∞)(t)
(√

t− h
√
t+ h

I1
(
β
√
t2 − h2

)
+β

t−h∫
0

√
t− s− h

√
t− s+ h

I1
(
β
√

(t− s)2 − h2
)
(I0(βs) + I1(βs)) ds

)
. (11.4)

The expression for p(t, h), r < x < q, is obtained from (11.3), (11.4) by linear com-
bination according to the definition of the function B(x), x ∈ R, in Theorem 8.1.
Let x ≥ q. Applying (11.3), we get

Px

(
sup

0≤s<τ
(`(s, q)− `(s, r)) > u

√
`(τ, r) + `(τ, q)

)

=

∞∫
0

Px

(
sup

0≤s<τ
|`(s, q)− `(s, r)| > u

√
t, `(τ, r) + `(τ, q) ∈ dt

)

= (α− β)e(q−x)
√

2λ

[ ∞∫
u2

e−αtI0
(
β
√
t2 − u2t

)
dt

+β

∞∫
u2

e−αt
t−u

√
t∫

0

I0
(
β
√

(t− s)2 − u2t
)
(I0(βs) + I1(βs)) dsdt

]

= (α− β)e−(x−q)
√

2λ

[
1√

�2 − �2
e−(α+

√
α2−β2)u2/2

+ �√
�2 − �2

∞∫
0

exp
(
− α(s+ u2/2)− u

√
α2 − β2

√
s+ u2/4)(I0(βs) + I1(βs)

)
ds

]

= (�− �)e−(x−q)
√
2�√

�2 − �2

∞∫
0

exp
(
− α(s+ u2/2)− u

√
(α2 − β2)(s+ u2/4)

)
×
(
α+ β + u

√
α2 − β2/

√
4s+ u2

)
I0(βs) ds

≤
(√

α2 − β2 + α− β
)
e−αu

2/2−(x−q)
√

2λ

∞∫
0

e−αsI0(βs) ds

=
(√

�2 − �2 + �− �
)√

�2 − �2
e−αu

2/2−(x−q)
√

2λ ≤ 2e−u
2/4∆−(x−q)

√
2λ.

This implies (11.2) in the case when the difference itself is considered instead of
the modulus of the difference. The estimate for x ≤ r is derived similarly from
(11.4). By the definition of B(x), the estimate for r < x < q is obtained by linear
combination of the estimates for x ≥ q and x ≤ r. To get an estimate for the
modulus of the difference of the local times one uses the symmetry and spatial
homogeneity properties of the Brownian motion W . �

As an intermediate result we prove the following lemma.
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Lemma 11.2. For any λ > 0

lim sup
∆↓0

sup
x∈R

sup0≤s≤� |`(s; x+�)− `(s; x)|√
(`(�; x) + `(�; x+�))� ln(1=�)

= 2 a.s. (11.5)

Proof. We first establish that this limit is not less than 2 a.s. The following
estimate is obvious:

P0

(
lim sup

∆↓0
sup
x∈R

sup0≤s≤� |`(s; x+�)− `(s; x)|√
(`(�; x) + `(�; x+�))� ln(1=�)

≥ 2
)

≥
√

2λ

∞∫
0

e−z
√

2λP0

(
lim sup

∆↓0
sup
x∈[0,z]

|`(�; x+�)− `(�; x)|
(`(�; x)� ln(1=�))1=2

≥ 2
√

2,

inf
x∈[0,z]

`(τ, x) > 0
∣∣∣W (τ) = z

)
dz. (11.6)

Here we have used the symmetry property of the Brownian motion, which enabled
us to reduce the integration over all real z to the integration only over positive z.

According to Proposition 2.1, the process `(τ, y), y ∈ [0, z], given W (τ) = z can
be represented in the form

`(τ, y) = e−2
√

2λy
(
R(2)

(
e2
√
2�y − 1

2
√
2�

))2

=
(
Q(2)(y)

)2
, (11.7)

where R(2)(y), y ≥ 0, is a 2-dimensional Bessel process andQ(2)(y), y ≥ 0, is a radial
Ornstein–Uhlenbeck process of order 0 with an exponentially distributed starting
point. We know that Q(2) is a continuous strictly positive process, satisfying (see,
Subsection 6 § 16 Ch. IV) the equation

Q(2)(y2)−Q(2)(y1) = W̃ (y2)−W̃ (y1)+

y2∫
y1

(
1

2Q(2)(y)
−
√

2λQ(2)(y)
)
dy, 0 ≤ y1 ≤ y2,

where W̃ is a Brownian motion. From this and the formula for the exact modulus
of continuity of a Brownian motion (see (10.18) Ch. I) it follows that, for any L > 0,

lim sup
∆↓0

sup
y∈[0,L]

|Q(2)(y +�)−Q(2)(y)|√
2� ln(1=�)

= 1 a.s.

This implies that

lim sup
∆↓0

sup
y∈[0,L]

|
(
Q(2)(y +�)

)2 − (
Q(2)(y)

)2|
2Q(2)(y)

√
2� ln(1=�)

= lim sup
∆↓0

sup
y∈[0,L]

|Q(2)(y +�) +Q(2)(y)||Q(2)(y +�)−Q(2)(y)|
2Q(2)(y)

√
2� ln(1=�)

= 1 a.s.
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In view of (11.7), given the condition W (τ) = z > 0

lim sup
∆↓0

sup
x∈[0,z]

|`(�; x+�)− `(�; x)|
2
√
2`(�; x)� ln(1=�)

= 1 a.s.

Consequently, the right-hand side of (11.6) is equal to

√
2λ

∞∫
0

e−z
√

2λP0

(
inf

x∈[0,z]
`(τ, x) > 0

∣∣W (τ) = z
)
dz.

By the representation (11.7), the process `(τ, x) for x ∈ [0, z] given the condition
W (τ) = z is strictly positive, therefore the above integral is equal to 1. Thus we
have obtained that the limit (11.5) is at least 2 a.s.

We now prove the opposite inequality, that is

lim sup
∆↓0

sup
x∈R

sup0≤s≤� |`(s; x+�)− `(s; x)|√
(`(�; x) + `(�; x+�))� ln(1=�)

≤ 2 a.s. (11.8)

For any ε > 0 we choose δ > 0 such that 0 < (1 + δ)/(1 − δ) < (1 + ε)2. Set
‖f(·)‖ := sup

0≤s≤τ
|f(s)|, ∆ := y−x > 0, and h(t) := 2

√
t ln(1/t), 0 < t < e−1. Using

(11.2), we get

P0

(
max

1≤k≤2nδ

−∞<i<∞

‖`(·; (i+ k)2−n)− `(·; i2−n)‖√
`(�; (i+ k)2−n) + `(�; i2−n)h(k2−n)

> 1 + ε

)

≤
∑

1≤k≤2nδ

−∞<i<∞

P0

( ‖`(·; (i+ k)2−n)− `(·; i2−n)‖√
`(�; (i+ k)2−n) + `(�; i2−n)

> (1 + ε)h(k2−n)
)

≤ 4
∑

1≤k≤2nδ

exp
(
− (1 + ")2h2(k2−n)

4k2−n

) ∑
−∞<i<∞

e−(|i|∧|i+k|)2−n
√

2λ

≤ Cλ2n(1+δ) exp(−(1 + ε)2 ln 2n(1−δ)) = Cλ2−(1−δ)((1+ε)2−(1+δ)/(1−δ))n.

By the choice of δ, the series with these terms converges, and by the first part of the
Borel–Cantelli lemma (see Remark 1.1 Ch. I), there exist a.s. a number m = m(ω)
such that for all n > m and all 1 ≤ k ≤ 2nδ, i ∈ Z

‖`(·, (i+ k)2−n)− `(·, i2−n)‖

≤ (1 + ε)h(k2−n)
√
`(τ, i2−n) + `(τ, (i+ k)2−n). (11.9)

Since 2−l(1−δ) tends monotonically to zero as l → ∞, the value ∆ will always be
between two successive terms of this sequence, no matter how small it is. Let
2−(n+1)(1−δ) ≤ ∆ < 2−n(1−δ). Since we are interested only in arbitrarily small ∆,
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we can assume that n > m. As in the previous section (see (10.6)) we represent x
and y in the form

x = i2−n −
∞∑
v=1

2−pv , y = (i+ k)2−n +
∞∑
v=1

2−qv ,

where n < p1 < p2 < · · · and n < q1 < q2 < · · · . Let x0 := i2−n, xl :=

i2−n −
l∑

v=1
2−pv , y0 := (i + k)2−n, yl := (i + k)2−n +

l∑
v=1

2−qv . Due to this

representation we have the estimate ∆ ≥ k2−n. We also set p0 = q0 = n.
Since xl → x and the sample paths of `(s, x) are a.s. continuous with respect to

x, we have

`(s, x)− `(s, xv) =
∞∑

l=v+1

(
`(s, xl)− `(s, xl−1)

)
.

Using (11.9), the inequality
√
|a|+ |b|+ |c| ≤

√
|a|+

√
|b|+

√
|c|, and the inequal-

ities h(2−pl) ≤ h(2−pl−1), we get for v = 0, 1, . . .

‖`(s, x)− `(s, xv)‖ ≤ (1 + ε)
∞∑

l=v+1

h(2−pl)
√
`(τ, xl) + `(τ, xl−1)

≤ (1 + ε)
∞∑

l=v+1

h(2−pl)
(√

2`(τ, x) +
√
|`(τ, x)− `(τ, xl)|+

√
|`(τ, x)− `(τ, xl−1)|

)

≤ (1 + ε)
(
hn
√

2`(τ, x) + 2
∞∑
l=0

h(2−pl)
√
|`(τ, x)− `(τ, xl)|

)
, (11.10)

where hn :=
∞∑
l=n

h(2−l). The estimate (11.10) does not depend on v.

Since |`(τ, x)− `(τ, xv)| ≤ ‖`(s, x)− `(s, xv)‖, we have

∞∑
l=0

h(2−pl)
√
|`(τ, x)− `(τ, xl)|

≤
√

1 + εhn

[
(2`(τ, x))1/4h1/2

n +
√

2
( ∞∑
l=0

h(2−pl)
√
|`(τ, x)− `(τ, xl)|

)1/2]
.

Solving this quadratic inequality, we get

∞∑
l=0

h(2−pl)
√
|`(τ, x)− `(τ, xl)| ≤ 2

√
1 + ε(2`(τ, x))1/4h3/2

n + 2(1 + ε)h2
n

≤ 4(1 + ε)hn
[(
hn
√
`(τ, x) + `(τ, y)

)1/2 + hn

]
. (11.11)
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From (11.10) and (11.11) it follows that√
|`(τ, x)− `(τ, xv)| ≤ 2

√
1 + ε

√
hn
(√

`(τ, x) + `(τ, y)
)1/2

+4(1 + ε)
(
h3/4
n

(√
`(τ, x) + `(τ, y)

)1/4 + h3/2
n

)
. (11.12)

Note that in (11.11), (11.12) one can replace x by y, xl by yl, and the estimates
will be the same.

Using the representation

`(s, y)− `(s, x) = `(s, y0)− `(s, x0) +
∞∑
l=1

(
`(s, yl)− `(s, yl−1)− `(s, xl) + `(s, xl−1)

)
and (11.9), we get analogously to (11.10) the estimate

‖`(s, y)− `(s, x)‖ ≤ (1 + ε)
{
h(k2−n)

√
`(τ, x0) + `(τ, y0)

+
∞∑
l=1

(
h(2−pl)

√
`(τ, xl) + `(τ, xl−1)+h(2−ql)

√
`(τ, yl) + `(τ, yl−1)

)}
≤ (1+ε)

{
h(k2−n)

(√
`(τ, x) + `(τ, y)+

√
|`(τ, x)− `(τ, x0)|+

√
|`(τ, y)− `(τ, y0)|

)
+2hn

√
`(τ, x) + `(τ, y) + 2

∞∑
l=0

h(2−pl)
√
|`(τ, x)− `(τ, xl)|

+2
∞∑
l=0

h(2−ql)
√
|`(τ, y)− `(τ, yl)|

}
. (11.13)

In the case
√
`(τ, x) + `(τ, y) ≤ h(∆) the monotonicity of `(s, z) with respect to

s yields

‖`(s, y)− `(s, x)‖ ≤ `(τ, x) + `(τ, y) ≤ h(∆)
√
`(τ, x) + `(τ, y),

and thus (11.8) holds when the supremum is taken over the set{
x :
√
`(τ, x) + `(τ, x+ ∆) ≤ h(∆)

}
.

Therefore, we need only to consider those x for which√
`(τ, x) + `(τ, y) > h(∆), y = x+ ∆.

Substituting the estimates (11.11), (11.12) and the analogous estimates for the
increments |`(τ, y)− `(τ, yl)|, l = 0, 1, . . . , into (11.13), we obtain

‖`(s; y)− `(s; x)‖√
`(�; x) + `(�; y)

≤ (1+ ε)
{
h(k2−n)

[
1+ 4

√
1 + "

√
hn√

h(�)
+8(1+ ε)

((
hn

h(�)

)3/4

+ hn

h(�)

)]
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+2hn
[
1 + 4

√
1 + "

√
hn√

h(�)
+ 8(1 + ε)

((
hn

h(�)

)3/4

+ hn

h(�)

)]}
≤ (1 + 4ε)h(∆).

The last inequality is valid for sufficiently large n and small ε. Indeed, since h(t),
0 < t < e−1, is an increasing function, we conclude that for some constant K

hn ≤ Kh(2−n) ≤ εh
(
2−(n+1)(1−δ)) ≤ εh(∆),

and, in addition, h(k2−n) ≤ h(∆), because ∆ ≥ k2−n.
Since ε can be chosen arbitrarily small, this proves (11.8). Thus (11.5) is proved.

�

Now we are ready to complete the proof of the theorem. The relation (11.5) can
be written as

λ

∞∫
0

e−λtP
(

lim sup
∆↓0

sup
x∈R

sup0≤s≤t |`(s; x+�)− `(s; x)|
2
√
(`(t; x) + `(t; x+�))� ln(1=�)

= 1
)
dt = 1.

Inverting the Laplace transform with respect to λ, we get that for almost all t the
probability under the integral is equal to 1 i.e., (11.1) holds. We prove that it is
equal to 1 for all t. Set

V∆(t) := sup
x∈R

sup0≤s≤t |`(s; x+�)− `(s; x)|
2
√
(`(t; x) + `(t; x+�))� ln(1=�)

, V (t) := lim
δ↓0

sup
0≤∆≤δ

V∆(t).

Using the scaling property of the Brownian local time (for any fixed c > 0, the
distributions of the processes

√
c`(t/c, x/

√
c) and `(t, x) coincide), we easily deduce

that
sup

0≤∆≤δ
V∆(t) and sup

0≤∆≤δ/
√
c

{
V∆(t/c)

√
ln∆/ ln(∆/

√
c)
}

have the same distribution. Therefore, the distributions of the variables V (t) and
V (t/c) are the same. This means that (11.1) holds for all t. Theorem 11.1 is
proved. �



CHAPTER VI

DIFFUSIONS WITH JUMPS

§ 1. Diffusions with jumps

In this chapter we study a class of diffusions with jumps. The extreme ele-
ments of this class are, on the one hand, homogeneous diffusion processes and,
on the other hand, Poisson processes with a variable intensity. It will be proved
that diffusions with jumps have many good properties inherited both from clas-
sical diffusion processes and from Poisson ones. This class is closed with respect
to composition with invertible twice continuously differentiable functions. A spe-
cial random time transformation of a diffusion with jumps gives again a diffusion
with jumps (an analog of Lévy’s theorem § 8 Ch. II). A statement analogous to
Girsanov’s transformation of the measure of a classical diffusion (see, § 10 Ch. II)
is valid for a class of diffusions with jumps. An important feature of this class
also is the availability of effective methods for computing of distributions of some
functionals of diffusions with jumps.

The Poisson process was defined in § 7 Ch. I. According to Proposition 7.1 Ch. I,
the Poisson process N(t), t ≥ 0, with the intensity 1 can be represented as follows:

N(t) := max
{
l :

l∑
k=1

τk ≤ t
}

1I[0,t](τ1),

where τk, k = 1, 2, . . . , are independent exponentially distributed with parameter 1
random variables, d

dt
P(τk < t) = e−t1I[0,∞)(t).

Let Yk, k = 1, 2, . . . , be independent identically distributed random variables,
which are independent of the process N . The process

Nc(t) :=
N(λ1t)∑
k=1

Yk

is called a compound Poisson process with intensity of jumps λ1 > 0. Sums with
the upper index 0 and the lower index 1 are treated as zero.

This process can be interpreted as a degenerate diffusion with jumps, for which
the diffusion component is identically equal to zero.

It is not difficult to verify that the compound Poisson process has independent
increments and its characteristic function is given by the formula (7.2) Ch. I

EeiαNc(t) = exp
(
λ1t
(
EeiαY1 − 1

))
.

The most interesting diffusion with jumps is the process

J (µ)(t) := µt+ σW (t) +
N(λ1t)∑
k=1

Yk, W (0) = x,
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where W (t), t ≥ 0, W (0) = x, is a Brownian motion independent of the process N
and the variables Yk, k = 1, 2, . . . . The process J (µ) is called a Brownian motion
with linear drift with jumps. It is a homogeneous right continuous process with
independent increments.

The Lévy–Khintchine formula for the characteristic function of this process has
the form

E exp
(
iαJ (µ)(t)

)
= exp

(
iασx+ iαµt− 1

2
α2σ2t+ λ1t

(
EeiαY1 − 1

))
. (1.1)

A broad class of diffusions with jumps is considered. One of the main differences
of the processes of this class from the process J (µ) is the following: the values of
jumps may depend not only on variables Yk, k = 1, 2, . . . , but also on the position
of the diffusion before a jump. The value of a jump is determined by a measurable
function ρ(x, y), (x, y) ∈ R2, where the first argument is reserved for values of the
diffusion before a jump and the second one corresponds to the variables Yk.

The next generalization is connected with the moments of jumps. Usually these
moments are the moments of jumps of the Poisson process N , i.e., the moments
follow each other over the intervals τk, k = 1, 2, . . . . It is possible to consider rather
general moments of jumps depending on the behavior of a diffusion between jumps.
Such moments are the first hitting times of the levels τk by some integral functional
of a diffusion.

We consider a homogeneous diffusion X, which is a solution of the following
stochastic differential equation: a.s. for every t ≥ 0

X(t) = x+

t∫
0

µ(X(u)) du+

t∫
0

σ(X(u)) dW (u). (1.2)

Let µ(x) and σ(x), x ∈ R, be continuously differentiable functions satisfying the
linear growth condition

|µ(x)|+ |σ(x)| ≤ C(1 + |x|) for all x ∈ R.

Then, by Theorem 7.3 Ch. II, (1.2) admits a unique strong solution. We also

assume that inf
x∈R

σ(x) > 0 and that the derivative
(
�(x)

�2(x)

)′
, x ∈ R, is bounded.

Let h(x), x ∈ R, be a nonnegative bounded piecewise continuous function. We
assume that it is right continuous (h(x) = h(x+), x ∈ R). The variable

κ1 := min
{
s :

s∫
0

h(X(v)) dv = τ1

}

is the moment inverse of the integral functional of the diffusion X. The moment

κ1 can be infinite on sets of positive probability, since the integral
∞∫
0

h(X(v)) dv

can be finite. We further assume that κ1 is a.s. finite (see the sufficient conditions
(3.2)).
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A diffusion with jumps (denoted by J) is defined recurrently as follows. Let
ρ(x, y), (x, y) ∈ R2, be a measurable function. For κ0 := 0 ≤ t ≤ κ1, set J(t) :=
X(t), where X is the solution of (1.2). For the time interval κl ≤ t < κl+1,
l = 1, 2, . . . , the process J is the solution of the following stochastic differential
equation:

J(t) = ρ
(
J(κl−), Yl

)
+

t∫
κl

µ(J(u)) du+

t∫
κl

σ(J(u)) dW (u), (1.3)

where we set q− := lim
s↑q

s and

κl+1 := min
{
s ≥ κl :

s∫
κl

h(J(v)) dv = τl+1

}
. (1.4)

The stochastic differential equation (1.3) is unusual, because it is considered on
a random interval. A rigorous interpretation of the existence and uniqueness of
solution of such equation runs as follows. Consider a family Xs,x(t), t ∈ [s,∞), of
solutions of the stochastic differential equations

Xs,x(t) = x+

t∫
s

µ(Xs,x(u)) du+

t∫
s

σ(Xs,x(u)) dW (u), s ≥ 0 x ∈ R.

The process Xs,x(t), t ≥ s, is adapted to the filtration Gt0 = σ(W (u), 0 ≤ u ≤ t),
generated by Brownian motion W up to the time t. By Theorem 9.2 Ch. II, the
process Xs,x(t) is a.s. continuous with respect to 0 ≤ s ≤ t < ∞, x ∈ R, and for
all s ≤ v ≤ t the equality Xs,x(t) = Xv,Xs,x(v)(t) holds.

By Remark 9.1 Ch. II, one can consider for κ1 ≤ t the equation

Xκ1,x(t) = x+

t∫
κ1

µ(Xκ1,x(u)) du+

t∫
κ1

σ(Xκ1,x(u)) dW (u).

Setting X̃(1)
x (s) := Xκ1,x(s+ κ1) and making the change of variables u = v+ κ1 in

the integrals, we get

X̃(1)
x (s) = x+

s∫
0

µ(X̃(1)
x (v)) dv +

s∫
0

σ(X̃(1)
x (v)) dW̃ (v), (1.5)

where W̃ (s) := W (s + κ1) −W (κ1), s ≥ 0, is a Brownian motion independent of
the σ-algebra σ

(
σ(Y1)

⋃
Gκ1

0

)
of events generated by the random variable Y1 and

the process W up to the time κ1 (see Remark 7.2 Ch. I). Therefore, instead of a
fixed initial value x in (1.5) one can take the random variable ρ

(
X(κ1), Y1

)
.
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As a result, the process J that satisfies (1.3) can be defined as follows. For
κ1 ≤ t < κ2 we set

J(t) := X̃(1)

ρ(X(κ1),Y1)
(t− κ1) = Xκ1,ρ(X(κ1),Y1)(t),

where κ2 is determined by (1.4), l = 1.
For l = 1, 2, . . . , set X̃(l)

x (s) := Xκl,x(s+ κl), s ≥ 0,

J(t) := X̃(l)

κl,ρ(J(κl−),Yl)
(t− κl) = Xκl,ρ(J(κl−),Yl)(t), κl ≤ t < κl+1. (1.6)

It should be taken into account that X̃(l)
x (s) is the solution of the equation

X̃(l)
x (s) = x+

s∫
0

µ(X̃(l)
x (v)) dv +

s∫
0

σ(X̃(l)
x (v)) dW̃l(v), (1.7)

where W̃l(s) := W (s + κl) − W (κl), s ≥ 0. For each l = 1, 2, . . . the process
W̃l(s) is a Brownian motion independent of the σ-algebra of events generated by
the process J up to the time κl.

Since equations (1.2) and (1.7) coincide for any l, the diffusion X̃(l)
x (s) has the

same finite-dimensional distributions as the initial diffusion X. It is independent
of the σ-algebra of events generated by the process J up to the time κl. Therefore,
by (1.6), the diffusion J(s+ κl) restarts at any moment κl as a usual diffusion X
with the starting point ρ

(
J
(
κl −

)
, Yl
)
, and then continues as the diffusion with

jumps.

The probabilistic interpretation of the appearance of the moments of jumps is
the following. Since a diffusion with jumps restarts at moments of jumps, it is
sufficient to consider it from the initial point 0. We consider a sample path of the
diffusion X. By the definition of the moment κ1, for any fixed t the event {κ1 > t}

holds iff
{ t∫
0

h(X(v)) dv < τ1

}
holds. In this case the conditional probability of the

event {κ1 > t} relative to the σ-algebra σ(X(·)) generated by the process X is
given by

P(κ1 > t|σ(X(·))) = P
( t∫

0

h(X(v)) dv < τ1

∣∣∣∣σ(X(·))
)

= exp
(
−

t∫
0

h(X(v)) dv
)
.

We divide the time interval [0, t] into small subintervals of length ∆ and then
let ∆ ↓ 0. Assume that on each interval [k∆, (k + 1)∆) a jump can occur with
probability h(X(k∆))∆ independently of the jumps on other intervals. For the
moment of the first jump (denoted by κ∆) one has the relations

P(κ∆ > t|σ(X(·))) =
[t/∆]∏
k=1

(
1− h(X(k∆))∆

)
≈ exp

(
−

[t/∆]∑
k=1

h(X(k∆))∆
)
≈ exp

(
−

t∫
0

h(X(v)) dv
)
.
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Consequently, for a fixed sample path of the diffusion X the limit of the moments
κ∆ as ∆ ↓ 0 is distributed as the moment κ1 and this justify the probabilistic
interpretation of appearance of the moments of jumps. Therefore, if the position of
the diffusion J is determined at the moment t, then in the subsequent infinitesimal
time interval [t, t + dt) the jump occurs with probability h(J(t)) dt independently
of the moments of the previous jumps. This fact guarantees the Markov property
for diffusions with jumps.

The diffusion with jumps J is characterized by the following parameters: the
drift coefficient µ(x), x ∈ R, the diffusion coefficient σ2(x), x ∈ R, the function of
jumps ρ(x, y), (x, y) ∈ R2, the random variables Yk, k = 1, 2, . . . , which determine
the values of jumps, and the function h(x), x ∈ R, which is responsible for the
intensity of the jumps (intensity function).

We note that κl =
l∑

k=1

τk if h ≡ 1. Choosing h(x) ≡ λ1 > 0, we obtain

the diffusion that has jumps over the time intervals τ̃k, k = 1, 2, . . . , which are
independent exponentially distributed with parameter λ1 random variables.

Analogously to N(t), t ≥ 0, the process C(t) := max
{
l : κl ≤ t

}
, t ≥ 0, counts

the number of jumps performed by the diffusion J up to the time t, and dC(t)
equals one if κl belongs to the interval [t, t+ dt) for some l = 1, 2, . . . , and equals
zero otherwise.

It is easy to see that the counting process C(t), t ≥ 0, can be represented as

C(t) = N(I(t)), (1.8)

where I(t) :=
t∫

0

h(J(v)) dv. Indeed, it follows from the definition of the moments

κl that
κl+1∫
κl

h(J(v)) dv = τl+1 or
κl∫
0

h(J(v)) dv =
l∑

k=1

τk. Therefore,

C(t) = max
{
l : I(κl) ≤ I(t)

}
= max

{
l :

l∑
k=1

τk ≤ I(t)
}

= N(I(t)).

The differential form of equation (1.3) is the following:

dJ(t) = µ(J(t)) dt+σ(J(t)) dW (t)+
(
ρ
(
J(t−), YC(t)

)
−J(t−)

)
dC(t), J(0) = x.

(1.9)
Let b(x), x ∈ R, be a twice continuously differentiable function. The following

generalization of Itô’s formula holds:

db(J(t)) = b′(J(t))(µ(J(t)) dt+ σ(J(t)) dW (t)) + 1

2
σ2(J(t))b′′(J(t)) dt

+
(
b(ρ(J(t−), YC(t)))− b(J(t−))

)
dC(t). (1.10)

Indeed, (1.10) can be written in the integral form

b(J(t))− b(J(0)) =

t∫
0

b′(J(u))σ(J(u)) dW (u) +

t∫
0

b′(J(u))µ(J(u)) du
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+ 1

2

t∫
0

σ2(J(u))b′′(J(u)) du+
∫

(0,t]

(
b
(
ρ
(
J(u−), YC(u)

))
− b(J(u−))

)
dC(u). (1.11)

Let us show that this formula follows from the definition of the process J and the
classical Itô formula. We have

b(J(t))−b(J(0)) = b(J(t))−b(J(κC(t)))+
C(t)∑
l=1

(
b(J(κl−))−b(J(κl−1))

)

+
C(t)∑
l=1

(
b(J(κl))− b(J(κl−))

)
.

It is clear that

C(t)∑
l=1

(b(J(κl))− b(J(κl−))) =
C(t)∑
l=1

(
b(ρ
(
J
(
κl −

)
, Yl
)
)− b(J(κl−))

)

=
∫

(0,t]

(
b(ρ
(
J(u−), YC(u)

)
)− b(J(u−))

)
dC(u).

On the other hand,

b(J(κl−))− b(J(κl−1))

=b
(
ρ
(
J
(
κl−1−

)
, Yl−1

)
+

κl∫
κl−1

µ(J(u))du+

κl∫
κl−1

σ(J(u))dW (u)
)
−b(ρ

(
J
(
κl−1−

)
, Yl−1

))
.

We can apply the classical Itô formula to the right-hand side of this equality and
to the difference b(J(t))− b(J(κC(t))). Subsequent summation gives the first three
terms in (1.11).

The application of the expectation to the Itô formula is of key importance. It
is well known that the expectation of a stochastic integral is equal to zero. Later
(see (4.1)), we will derive a formula for the expectation of the last term in (1.10),
which correspond to jumps. As a result, we will deduce that

dExb(J(t)) = Ex{b′(J(t))µ(J(t))} dt+ 1

2
Ex{σ2(J(t))b′′(J(t))} dt

+ Ex
{
h(J(t))

(
b(ρ(J(t), Y ))− b(J(t))

)}
dt, (1.12)

where Y is a random variable independent of the process J and distributed as Y1.

Let b(x), x ∈ X ⊆ R, be a twice continuously differentiable function having the
inverse function b(−1)(y), y ∈ b(X ), i.e., b(−1)(b(x)) = x. Assume that the diffusion
with jumps J takes the values in X . We prove that J̃(t) := b(J(t)) is a diffusion
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with jumps as well. Therefore, the class of diffusions with jumps is closed with
respect to compositions with invertible twice continuously differentiable functions.

To prove this fact, we derive a stochastic differential equation for the process
J̃(t). Setting in Itô’s formula (1.10) ρ̃(x, y) := b(ρ(b(−1)(x), y)),

µ̃(x) := b′(b(−1)(x))µ(b(−1)(x)) + 1

2
b′′(b(−1)(x))σ2(b(−1)(x)), (1.13)

σ̃(x) := b′(b(−1)(x))σ(b(−1)(x)) (1.14)

and, using the equality J(t) = b(−1)(J̃(t)), we get

dJ̃(t) = µ̃(J̃(t)) dt+ σ̃(J̃(t)) dW (t)

+
(
ρ̃
(
J̃(t−), YC(t)

)
− J̃(t−)

)
dC(t), J̃(0) = b(x). (1.15)

Consequently, for the process J̃(t) = b(J(t)) an equation of the form (1.9) is valid
and the process J̃(t) = b(J(t)), t ≥ 0, is a diffusion with jumps. It is clear that the
counting processes for the diffusions J̃ and J coincide, and h̃(x) = h(b(−1)(x)).

§ 2. Examples of diffusions with jumps

Suppose that the Brownian motion W , the Poisson process N , and the variables
{Yk}∞k=1 are independent. Set ν := µ − σ2/2 and consider the Brownian motion
with linear drift with jumps

J (ν)(t) := (µ− σ2/2)t+ σW (t) +
N(λ1t)∑
k=1

Yk, W (0) = 0. (2.1)

Let b(x) = ex. Then, according to (1.13)–(1.15) with

ρ(x, y) = x+ y, ρ̃(x, y) = exp(lnx+ y) = xey,

the process Z(t) := eJ
(ν)(t) is the solution of the linear equation

dZ(t) = µZ(t) dt+σZ(t) dW (t)+Z(t−)
(
eYN(λ1t)−1

)
dN(λ1t), Z̃(0) = 1. (2.2)

It is natural to call the process Z a geometric (exponential) Brownian motion with
jumps by analogy with a diffusion without jumps (see 3 § 16 Chap. IV), when
Yk ≡ 0, k = 1, 2, . . . . This process is often used in different models connected with
financial mathematics.

The next example arises by analogy with a Bessel process, which is the radial
part of a multidimensional Brownian motion with independent coordinates (see
Subsection 5 § 16 Ch. IV).

Let {Wl(s), s ≥ 0}, l = 1, 2, . . . , n, be a family of independent Brownian motions
n ≥ 2. The process R(n) defined by the formula

R(n)(t) :=
√
W 2

1 (t) +W 2
2 (t) + · · ·+W 2

n(t), t ≥ 0,
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is called an n-dimensional Bessel process or a Bessel process of order n/2− 1.
Let the diffusions with jumps {Jl(s), s ≥ 0}, l = 1, 2, . . . , n, be defined by the

equations

dJl(t) = dWl(t) +
(√

βJ2
l (t−) + Y (l)

N(t) − Jl(t−)
)
dN(t), (2.3)

where
→
Y k :=

(
Y (1)

k , Y (2)

k , . . . , Y (n)

k

)
, k = 1, 2, . . . , are independent identically dis-

tributed random vectors with nonnegative coordinates and β is an arbitrary non-
negative constant. Suppose that the family {Wl(s), s ≥ 0}, l = 1, 2, . . . , n, the
Poisson process N , and the variables {

→
Y k}∞k=1 are independent. The choice of the

function of jumps ρβ(x, y) =
√
βx2 + y, x ∈ R, y ≥ 0, is predetermined by our

desire to obtain the following statement.

Proposition 2.1. For n ≥ 2 the radial part of the multidimensional diffusion

with jumps
→
J (t) = (J1(t), J2(t), . . . , Jn(t)) is a diffusion with jumps. It is charac-

terized by the following parameters: the drift coefficient µ(x) = n− 1

2x
, the diffusion

coefficient 1, the function of jumps ρβ(x, y), the random variables S(n)

k :=
n∑
l=1

Y (l)

k ,

k = 1, 2, . . . , determining the values of jumps, and the intensity function 1.

Proof. Set

Zn(t) :=
√
J2

1 (t) + J2
2 (t) + · · ·+ J2

n(t), t ≥ 0.

We verify that Zn is the diffusion with jumps determined by the equation

dZn(t) = n− 1

2Zn(t)
dt+ dW (t) +

(√
βZ2

n(t−) + S(n)

N(t) − Zn(t−)
)
dN(t). (2.4)

To prove this, we apply Itô’s formula (1.10) (with b(x) = x2) to each term of
the process Yn(t) := Z2

n(t) i.e., to the processes J2
l (t), l = 1, . . . , n. Summing the

differentials, we obtain

dYn(t) = 2
n∑
l=1

Jl(t) dWl(t) + ndt+
n∑
l=1

(
(β − 1)J2

l (t−) + Y (l)

N(t)

)
dN(t). (2.5)

We can now apply the following variant of Proposition 16.2 Ch. IV.

Lemma 2.1. Let Glt = σ
(
Wl(s), 0 ≤ s ≤ t, Y (l)

k , τk, k ≤ N(t)
)
, be the σ-algebra

of events generated by the Brownian motion Wl, l = 1, . . . , n, up to the time t and
by the variables Y (l)

k , τk for k ≤ N(t). Let fl(t), t ≥ 0, be a process progressively

measurable with respect to the family of σ-algebras Glt, l = 1, 2, . . . , n.
Then there exists a Brownian motion W such that for every t > 0 the variable

W (t) is Gt := σ
( n⋃
l=1

Glt
)
-measurable and

n∑
l=1

t∫
0

fl(s) dWl(s) =

t∫
0

( n∑
l=1

f2
l (s)

)1/2

dW (s). (2.6)
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The process Jl(t), t ≥ 0, is progressively measurable with respect to Glt. There-
fore,

n∑
l=1

t∫
0

Jl(s) dWl(s) =

t∫
0

√
Yn(s) dW (s).

Then equation (2.5) can be rewritten in the form

dYn(t) = 2
√
Yn(t) dW (t) + ndt+

(
(β − 1)Yn(t−) + S(n)

N(t)

)
dN(t). (2.7)

This equation takes the form (1.9) (ρ(x, y) = βx+ y) for the process Yn(t), t ≥ 0.
Since Zn(t) =

√
Yn(t), we get (2.4), applying Itô’s formula (1.15) with b(x) =

√
x.

�

§ 3. Distributions of integral functionals of a diffusion
with jumps and of infimum and supremum functionals

Consider a method for computing the joint distribution of the functional

A(t) :=

t∫
0

f(J(s)) ds, f ≥ 0,

and of the infimum and supremum functionals inf
0≤s≤t

J(s), sup
0≤s≤t

J(s).

The general approach for computing the distributions of integral functionals
of a Brownian motion was described in § 1 Ch. III. This approach is applicable
to a broad class of processes, in particular, to diffusions with jumps. Therefore,
we will consider only the main results that enable us to compute the above joint
distribution within this general approach.

Let τ be a random moment that is independent of the process {J(s), s ≥ 0}
and exponentially distributed with parameter λ > 0.

We recall that the use of the random time τ in place of t corresponds to the
Laplace transform with respect to t of the distribution of a functional of the process
J , considered up to the time t. In order to obtain the distribution of the functional
for a fixed t one needs to invert the Laplace transform with respect to λ in the
expression for the corresponding distribution for the random time τ .

We denote by Px and Ex the probability and the expectation with respect to
the process J with the starting point J(0) = x. For brevity, in what follows, we
use the notation E{ξ;A} := E{ξ1IA}.

Let the function h(x), x ∈ R, be such that κ1 <∞ a.s. This is equivalent to

∞∫
0

h(X(s)) ds = ∞ a.s. (3.1)
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Sufficient conditions for this, according to Corollary 12.1 Ch. II, are

lim inf
y→∞

1

y

y∫
0

h(x)

�2(x)
dx > 0, lim inf

y→∞

1

y

0∫
−y

h(x)

�2(x)
dx > 0. (3.2)

Let C(t), t ≥ 0, be the counting process of J , which similarly to the Poisson
process counts the number of jumps made by the diffusion J up to the time t.

Theorem 3.1. Let Φ(x) and f(x), x ∈ [a, b], be piecewise-continuous functions.
Assume that f ≥ 0 and Φ is bounded when either a = −∞ or b = ∞. Let q(x, y),
x ∈ [a, b], y ∈ R, be a nonnegative measurable function. Then the function

Q(x) :=Ex

{
Φ(J(τ)) exp

(
−

τ∫
0

f(J(s)) ds−
∫

(0,τ ]

q
(
J(s−), YC(s)

)
dC(s)

)
;

a ≤ inf
0≤s≤τ

J(s), sup
0≤s≤τ

J(s) ≤ b

}
, x ∈ R,

is the unique bounded solution of the equation

Q(x) = M(x) +

∞∫
−∞

Gz(x)E{e−q(z,Y1)Q(ρ(z, Y1))} dz, (3.3)

where M(x), x ∈ (a, b), is the unique solution of the problem

1

2
σ2(x)M ′′(x) + µ(x)M ′(x)− (λ+ h(x) + f(x))M(x) = −λΦ(x), (3.4)

M(a) = 0, M(b) = 0, (3.5)

and Gz(x), x ∈ (a, b), is the unique continuous solution of the problem

1

2
σ2(x)G′′(x) + µ(x)G′(x)− (λ+ h(x) + f(x))G(x) = 0, x 6= z, (3.6)

G′(z + 0)−G′(z − 0) = −2h(z)/σ2(z), (3.7)

G(a) = 0, G(b) = 0. (3.8)

Here one sets M(x) = 0, Gx(z) = 0 if x, z 6∈ (a, b).

Remark 3.1. If a = −∞ and b = ∞, then the corresponding boundary con-
ditions (3.5) and (3.8) should be replaced by the conditions that the functions M ,
Gx are bounded as x tends to −∞ or ∞.

This remark is applicable also to other problems with the boundary conditions
of this type.

Remark 3.2. The function Q(x), x ∈ (a, b), is the unique solution of the
integro-differential equation

1

2
σ2(x)Q′′(x) + µ(x)Q′(x)− (λ+ h(x) + f(x))Q(x)
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= −λΦ(x)− h(x)

∞∫
−∞

e−q(x,y)Q(ρ(x, y))1I[a,b](ρ(x, y)) dF (y) (3.9)

with the boundary conditions

Q(x) = 0, x ≤ a, x ≥ b. (3.10)

Here F (y), y ∈ R, is the distribution function of the variables Yk, k = 1, 2, . . . .
If either a = −∞ or b = ∞, then the corresponding boundary condition must be
replaced by the requirement that Q is a bounded solution at this point.

Indeed, Gx is the Green function, hence for an arbitrary function R(x), x ∈ [a, b],
the function

U(x) :=

b∫
a

Gz(x)R(z) dz, x ∈ (a, b), (3.11)

is (see (6.8) Ch. IV) the unique solution of the problem

1

2
σ2(x)U ′′(x) + µ(x)U ′(x)− (λ+ h(x) + f(x))U(x) = −h(x)R(x),

U(a) = 0, U(b) = 0.

From (3.3) it follows that Q(x) = 0 for x /∈ [a, b] and

Q(x) = M(x) + U(x), x ∈ (a, b), (3.12)

where
R(x) = E

{
e−q(x,Y1)Q(ρ(x, Y1))1I[a,b](ρ(x, Y1))

}
.

The sum of the functions M and U satisfies the problem (3.9), (3.10).

Remark 3.3. If ρ(z, y) = z, the diffusion J has no jumps, i.e., it coincides with
the initial diffusion X, defined by (1.2). Then, for q ≡ 0 Theorem 3.1 becomes
Theorem 4.2 Ch. IV.

Indeed, in this case, (3.9) is transformed into the equation

1

2
σ2(x)Q′′(x) + µ(x)Q′(x)− (λ+ h(x) + f(x))Q(x) = −λΦ(x)− h(x)Q(x),

which coincides with (4.8) Ch. IV.

Remark 3.4. If ρ(z, y) = z, the Poisson process N is independent of the diffu-
sion J ≡ X. Provided that the sample path X(·) is fixed, the process C(t), t ≥ 0
is a Poisson process with the variable intensity h(X(t)), and the equality

E
{

exp
(
−
∫

(0,t]

q
(
J(s−), YC(s)

)
dC(s)

)∣∣∣∣σ(X(·))
}

= exp
(
−

t∫
0

h(X(s))
(
1−r(X(s))

)
ds

)
,
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holds, where r(x) := Ee−q(x,Y1) and σ(X(·)) is the σ-algebra of events generated
by the process X(s), s ≥ 0. In this case (3.9) is transformed into the equation

1

2
σ2(x)Q′′(x) + µ(x)Q′(x)− (λ+ h(x)(1− r(x)) + f(x))Q(x) = −λΦ(x).

This statement also coincides with Theorem 4.2 Ch. IV.

Proof of Theorem 3.1. Set

M(x) := Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

(h(X(s)) + f(X(s))) ds
)

;

a ≤ inf
0≤s≤τ

X(s), sup
0≤s≤τ

X(s) ≤ b

}
, x ∈ (a, b). (3.13)

Then M is the solution of the problem (3.4), (3.5) (see Ch. IV Theorem 4.2).
Set

Gz(x) := d

dz+
Ex

{
exp

(
−

κ1∫
0

(λ+ f(X(s))) ds
)

;

a ≤ inf
0≤s≤κ1

X(s), sup
0≤s≤κ1

X(s) ≤ b,X(κ1) < z

}
, (3.14)

where d

dz+
denotes the right derivative. It is clear that Gz(x) = 0 if x /∈ (a, b)

or z /∈ (a, b). This function is the solution of the problem (3.6)–(3.8) (see Ch. IV
Theorem 6.1).

Since sup
x∈R

h(x) ≤ K for some K, we have that κ1 ≥ τ1/K and

∞∫
−∞

Gz(x) dz ≤ Ex exp
(
−

κ1∫
0

(λ+ f(X(s))) ds
)
≤ Ee−λτ1/K = K

K + �
=: θ < 1

(3.15)
for all x.

Let us prove that equation (3.3) has a unique bounded solution. We apply the
method of successive approximations. Set Q0(x) := M(x) and

Qn(x) :=

∞∫
−∞

Gz(x)E{e−q(z,Y1)Qn−1(ρ(z, Y1))} dz.

Then

sup
x∈R

|Qn(x)| ≤ sup
x∈R

|Qn−1(x)| sup
x∈R

∞∫
−∞

Gz(x) dz ≤ θ sup
x∈R

|Qn−1(x)| ≤ θn sup
x∈R

|M(x)|.
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Therefore the series Q(x) =
∞∑
n=0

Qn(x) converges uniformly in x and

sup
x∈R

|Q(x)| ≤ 1

1− �
sup
x∈R

|M(x)|. (3.16)

It is clear that

n∑
k=0

Qk(x) = M(x) +

∞∫
−∞

Gz(x)E
{
e−q(z,Y1)

n−1∑
k=0

Qk(ρ(z, Y1))
}
dz.

The passage to the limit in the above equality implies that the function Q is the
solution of equation (3.3). If M ≡ 0, then

sup
x∈R

|Q(x)| ≤ sup
x∈R

|Q(x)| θ.

Since θ < 1, the last relation implies that Q ≡ 0 if Q is bounded. Hence, equa-
tion (3.3) has a unique bounded solution. This proof also shows that for nonnega-
tive M and Gz, the solution of equation (3.3) is nonnegative.

To simplify the formulas in the below argument, we assume that a = −∞,
b = ∞. We have

Q(x) = Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

f(X(s)) ds
)

; τ < κ1

}

+Ex

{
Φ(J(τ)) exp

(
−

κ1∫
0

f(X(s)) ds−
τ∫

κ1

f(J(s)) ds+
∫

(κ1,τ ]

q
(
J(s−), YC(s)

)
dC(s)

)

×e−q(X(κ1),Y1); κ1 ≤ τ

}
=: V1(x) + V2(x), x ∈ R, (3.17)

where V1(x) and V2(x) are the first and the second term, respectively. The event{
τ < κ1

}
is equivalent to the event

{ �∫
0

h(X(s)) ds < τ1

}
, the moment τ1 is inde-

pendent of τ and of the process X. Therefore,

P
(
τ < κ1

∣∣σ(X(·), τ)
)

= P
( τ∫

0

h(X(s)) ds < τ1

∣∣∣∣σ(X(·), τ)
)

= exp
(
−

τ∫
0

h(X(s)) ds
)
, (3.18)
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where σ(X(·), τ) is the σ-algebra of events generated by the process X and the mo-
ment τ . Applying Fubini’s theorem, first computing the expectation with respect
to τ1, and then the one with respect to the process X and the time τ , we get

V1(x) = Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

(h(X(s)) + f(X(s))) ds
)}

= M(x).

Hence, V1 takes the form (3.13) with a = −∞, b = ∞.
In order to transform the second term V2, we use the fact that the moment τ

is independent of the process J , the variables
{
Yk
}∞
k=1

, and the moment κ1. By
Fubini’s theorem,

V2(x) = λEx

∞∫
κ1

e−λt
{

exp
(
−

κ1∫
0

f(X(s)) ds
)
Φ(J(t))e−q(X(κ1),Y1)

× exp
(
−

t∫
κ1

f(J(s)) ds
)

exp
(
−
∫

(κ1,t]

q(J(s−), YC(s)) dC(s)
)}

dt.

By (1.6),
J(s+ κ1) = J̃ρ(X(κ1),Y1)(s), s ≥ 0, (3.19)

where J̃x is constructed as the original diffusion J from W̃ (s) := W (s+κ1)−W (κ1),
s ≥ 0, τ̃k := τk+1, and Ỹk := Yk+1. For 0 ≤ t < κ̃1, we set J̃x(s) := X̃(1)

x (s), where

X̃(1)
x is the solution of (1.5), and κ̃1 := min

{
s :

s∫
0

h(X̃(1)
x (v)) dv = τ̃1

}
. For

l = 1, 2, . . . , we set

J̃x(t) := Xκ̃l,ρ(J̃x(κ̃l−),Ỹl)
(t), κ̃l ≤ t < κ̃l+1.

where

κ̃l+1 := min
{
s ≥ κ̃l :

s∫
κ̃l

h(J̃x(v)) dv = τ̃l+1

}
.

The diffusion with jumps J̃x(s), s ≥ 0, has the same finite-dimensional distribution
as the original diffusion J with J(0) = x. The process J̃x(s) is independent of
the σ-algebra of events G̃ = σ

(
Gκ1

0

⋃
σ
(
Y1

))
, where Gκ1

0 is the σ-algebra of events
generated by the process W up to the moment κ1 (see the definition in § 4 Ch. I),
and σ

(
Y1

)
is the σ-algebra of events generated by the random variable Y1.

Let C̃ be the counting process for the diffusion J̃ρ(X(κ1),Y1)(s). It is clear that
C̃(s) = C(s+ κ1)− 1.

The above remarks enable us to make the change of the variable t = u + κ1 in
the expression for V2. Then

V2(x) = λ

∞∫
0

e−λuEx

{
exp

(
−

κ1∫
0

(λ+ f(X(s))) ds
)
Φ(J̃ρ(X(κ1),Y1)(u))e

−q(X(κ1),Y1)
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× exp
(
−

u∫
0

f(J̃ρ(X(κ1),Y1)(v)) dv
)

exp
(
−
∫

(0,u]

q(J̃ρ(X(κ1)Y1)(v−), YC̃(v)+1) dC̃(v)
)}
du.

By Fubini’s theorem, the integral with respect to u with the weight function λ e−λu

can be replaced by the integrand with τ̃ instead of u, where τ̃ is the exponentially
distributed with the parameter λ > 0 random variable that is independent of other
processes and variables. Thus for V2 we obtain the following expression:

V2(x) = Ex

{
exp

(
−

κ1∫
0

(λ+f(X(s))) ds
)
e−q(X(κ1),Y1)E

{
Φ(J̃ρ(X(κ1),Y1)(τ̃))

× exp
(
−

τ̃∫
0

f(J̃ρ(X(κ1),Y1)(s))ds−
∫

(0,τ̃ ]

q(J̃ρ(X(κ1),Y1)(s−), ỸC̃(s))dC̃(s)
)∣∣∣∣G̃}}.

Applying Lemma 2.1 Ch. I, we have

V2(x) = Ex

{
exp

(
−

κ1∫
0

(λ+ f(X(s))) ds
)
e−q(X(κ1),Y1)Q(ρ(X(κ1), Y1))

}
.

Using the independence of the σ-algebra Gκ1
0 and the variable Y1, we finally get

V2(x) =

∞∫
−∞

Ex

{
exp

(
−

κ1∫
0

(λ+ f(X(s))) ds
)
e−q(z,Y1)Q(ρ(z, Y1));X(κ1) ∈ dz

}

=

∞∫
−∞

Gz(x)E{e−q(z,Y1)Q(ρ(z, Y1))} dz.

Now (3.17) implies (3.3). Theorem 3.1 is proved. �

§ 4. Expectation of integral with respect to a counting process

We prove the following formula: for any bounded measurable function q(x, y),

Ex

∫
(0,t]

q(J(s−), YC(s)) dC(s) =

t∫
0

Ex
{
h(J(s))m(J(s))

}
ds (4.1)

where m(x) = Eq(x, Y1). From this it follows, in particular, that

Ex

∫
{t}

q(J(s−), YC(s)) dC(s) = 0.
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We can assume that q(x, y) is a nonnegative function, otherwise the function
can be decomposed into a sum of nonnegative and negative parts.

Set

Qγ(x) := Ex exp
(
− γ

∫
(0,τ ]

q(J(s−), YC(s)) dC(s)
)
.

By Theorem 3.1 with Φ(x) ≡ 1, f(x) ≡ 0, a = −∞, and b = ∞, the function
Qγ(x), x ∈ R, is the unique bounded solution of the equation

Qγ(x) = M(x) +

∞∫
−∞

Gz(x)E{e−γq(z,Y1)Qγ(ρ(z, Y1))} dz, (4.2)

where M(x), x ∈ R, is the unique bounded solution of the equation

1

2
σ2(x)M ′′(x) + µ(x)M ′(x)− (λ+ h(x))M(x) = −λ, (4.3)

and Gz(x), x ∈ R, is the unique bounded solution of the problem

1

2
σ2(x)G′′(x) + µ(x)G′(x)− (λ+ h(x))G(x) = 0, x 6= z, (4.4)

G′(z + 0)−G′(z − 0) = −2h(z)/σ2(z). (4.5)

Since the function h is bounded by a constantK, from (1.8) we have C(t) ≤ N(Kt).
Therefore,

Ex

∫
(0,τ ]

q(J(s−), YC(s)) dC(s) = − d

d
Qγ(x)

∣∣∣
γ=0

.

Since Q0(x) = 1, differentiating (4.2) with respect to γ and setting γ = 0 we
see that the function L(x) := d

d
Qγ(x)

∣∣∣
γ=0

is the unique bounded solution of the

equation

L(x) = M̃(x) +

∞∫
−∞

Gz(x)E{L(ρ(z, Y1))} dz, (4.6)

where M̃(x) := −
∞∫

−∞

Gz(x)Eq(z, Y1) dz = −
∞∫

−∞

Gz(x)m(z) dz, x ∈ R, is the unique

bounded solution of the equation

1

2
σ2(x)M̃ ′′(x) + µ(x)M̃ ′(x)− (λ+ h(x))M̃(x) = h(x)m(x). (4.7)

Here we used (3.11) with f(x) ≡ 0, a = −∞, b = ∞ and with R(x) is replaced by
−m(x).

Now we can use Theorem 3.1 once more with Φ(x) = − 1

�
h(x)m(x), f(x) ≡ 0,

q(x, y) ≡ 0, a = −∞, and b = ∞. According to this assertion, the function

L̃(x) := − 1

�
Ex{h(J(τ))m(J(τ))}
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is the unique bounded solution of equation (4.6). Thus we proved that L(x) = L̃(x),
i.e.,

Ex

∫
(0,τ ]

q(J(s−), YC(s)) dC(s) = 1

�
Ex{h(J(τ))m(J(τ))}.

Inverting the Laplace transform with respect to λ of both sides of this equality, we
get the formula (4.1).

§ 5. Distributions of functionals of diffusion with jumps bridges

The bridge Yx,t,z(s), s ∈ [0, t], from x to z on the interval [0, t] for a stochastic
process Y (s), s ≥ 0, with Y (0) = x, was defined in § 11 Ch. I.

Let Jx,t,z(s), s ∈ [0, t], be the bridge of the process J . We consider a method
for computing the joint distribution of the integral functional

A(t) :=

t∫
0

f(Jx,t,z(s)) ds, f ≥ 0, (5.1)

and of the infimum and supremum functionals inf
0≤s≤t

Jx,t,z(s), sup
0≤s≤t

Jx,t,z(s).

The general approach to the problem of computing of distributions of nonnega-
tive functionals of bridges of random processes was described in § 4 Ch. III for the
Brownian bridge Wx,t,z. This approach is valid also for other diffusions.

Under the assumption that the one-dimensional distribution of the process J
has a density, the following equality holds

E℘(Jx,t,z(s), 0 ≤ s ≤ t) =

d

dz
E{}(J(s); 0 ≤ s ≤ t); J(t) < z}

d

dz
P(J(t) < z)

(5.2)

for any bounded measurable functional ℘ on the space of functions without discon-
tinuities of the second kind.

The main object for computing the distributions of integral functionals of the
bridges of J is the function

Gγz (x) : = λ

∞∫
0

e−λt
d

dz
Ex

{
exp

(
− γ

t∫
0

f(J(s)) ds
)

; J(t) < z

}
dt

= d

dz
Ex

{
exp

(
− γ

τ∫
0

f(J(s)) ds
)

; J(τ) < z

}
.

In this formula τ is the random time independent of the process {J(s), s ≥ 0} and
exponentially distributed with parameter λ > 0.
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To find the distribution of the integral functional
t∫

0

f(Jx,t,z(s)) ds at a fixed time

t, we must compute the double inverse Laplace transform of the function Gγ
z(x)

with respect to parameters λ and γ, and then, applying formula (5.2), to divide
the result by the density of J(t). Note that the density itself is computed in the
same way using the function Gγ

z(x) with f(x) ≡ 0.

The reasoning given above shows that the following statement is of key impor-
tance for computing the joint distributions of integral functionals and functionals
of infimum and supremum of the bridge of the diffusion process with jumps.

Theorem 5.1. Let f(x), x ∈ [a, b], be a nonnegative piecewise-continuous func-
tion. Then for a < y < b the derivative

G̃y(x) := d

dy
Ex

{
exp

(
−

τ∫
0

f(J(s)) ds
)

; a ≤ inf
0≤s≤τ

J(s), sup
0≤s≤τ

J(s) ≤ b, J(τ) < y

}
(5.3)

exists and it is the unique bounded solution of the equation

G̃y(x) = Gλ

y(x) +

∞∫
−∞

Gz(x)EG̃y(ρ(z, Y1)) dz, x ∈ R, (5.4)

where Gλ
y(x), x ∈ [a, b], is the unique continuous solution of the problem

�2(x)

2
G′′(x) + µ(x)G′(x)− (λ+ h(x) + f(x))G(x) = 0, x ∈ (a, b) \ {y}, (5.5)

G′(y + 0)−G′(y − 0) = −2λ/σ2(y), (5.6)

G(a) = 0, G(b) = 0. (5.7)

and Gz(x), x ∈ [a, b], is the unique continuous solution of the problem (3.6)–(3.8).
Here we set Gλ

y(x) = 0 and Gy(x) = 0 if either x 6∈ (a, b) or y 6∈ (a, b).

Remark 5.1. Gλ
y(x), x ∈ (a, b), is the Green function of the problem (3.4),

(3.5). This function has (see Theorem 6.2 Ch. IV) the following probabilistic rep-
resentation

Gλ

y(x) = d

dy
Ex

{
exp

(
−

τ∫
0

(h(X(s)) + f(X(s))) ds
)

;

a ≤ inf
0≤s≤τ

X(s), sup
0≤s≤τ

X(s) ≤ b,X(τ) < y

}
.

The function Gy(x), x ∈ (a, b), takes the form (3.14). The problems (3.6)–(3.8) and
(5.5)–(5.7) differ only in the conditions (3.7) and (5.6) on the jumps of derivatives.
Therefore, Gλ

y(x) = �

h(y)
Gy(x).
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Remark 5.2. It is clear that G̃y(x) = 0 for x 6∈ (a, b) or y 6∈ (a, b). The function
G̃y(x), x ∈ (a, b), is the unique continuous solution of the problem

1

2
σ2(x)G̃′′

y(x) + µ(x)G̃′
y(x)− (λ+ h(x) + f(x))G̃y(x)

= −h(x)EG̃y(ρ(x, Y1)), x 6= y, (5.8)

G̃′
y(y + 0)− G̃′

y(y − 0) = −2λ/σ2(y), (5.9)

G̃y(a) = 0, G̃y(b) = 0. (5.10)

Indeed, Gy(x) is the Green function of the corresponding problem, hence, the
function

U(x) :=

b∫
a

Gz(x)E{G̃y(ρ(z, Y1))} dz, x ∈ [a, b],

is (see (6.8) Ch. IV) the unique solution of the problem

1

2
σ2(x)U ′′(x) + µ(x)U ′(x)− (λ+ h(x) + f(x))U(x) = −h(x)EG̃y(ρ(x, Y1)),

U(a) = 0, U(b) = 0.

By (5.4), we have
G̃y(x) = Gλ

y(x) + U(x),

and the sum of the functions Gλ
y and U satisfies the problem (5.8)–(5.10).

Proof of Theorem 5.1. Our proof is based on Theorem 3.1 with q(x, y) ≡ 0. Set

Q∆(x) := Ex

{
1I[y;y+�)(J(�))

�
exp

(
−

τ∫
0

f(J(s)) ds
)

; a ≤ inf
0≤s≤τ

J(s), sup
0≤s≤τ

J(s) ≤ b

}
.

We let 1I[y,y+∆)(x) := −1I[y+∆,y)(x) if ∆ < 0. It is clear that Q∆(x) = 0 for
x 6∈ (a, b).

By Theorem 3.1, the function Q∆(x), x ∈ (a, b), is the unique bounded solution
of the equation

Q∆(x) = M∆(x) +

∞∫
−∞

Gz(x)EQ∆(ρ(z, Y1)) dz, (5.11)

where according to (3.13)

M∆(x) := Ex

{
1I[y;y+�)(X(�))

�
exp

(
−

τ∫
0

(h(X(s)) + f(X(s))) ds
)

;

a ≤ inf
0≤s≤τ

X(s), sup
0≤s≤τ

X(s) ≤ b

}
.
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From (6.19) of Ch. IV with a = −∞, b = ∞ it follows that

sup
x∈R

d

dz
Px

(
X(τ) < z

)
= 2�

w(z)�2(z)
ϕ(z)ψ(z),

where ψ(x) is an increasing solution and ϕ(x) is a decreasing solution of equation
(6.16) of Ch. IV for x ∈ R, f ≡ 0. The function w(z) = ψ′(z)ϕ(z)−ψ(z)ϕ′(z) > 0
is the Wronskian of these solutions.

Therefore, if |x| ≤ 1

sup
x∈R

|M∆(x)| ≤ 1

�

y+∆∫
y

sup
x∈R

d

dz
Px

(
X(τ) < z

)
dz ≤ Ky

for 0 < |∆| < 1 and some constant Ky.
By (3.15) and (3.16), we have

|Q∆(x)| ≤ 1

1− q
sup
x∈R

|M∆(x)| ≤ K + �

�
Ky. (5.12)

Due to the specific structure of the kernel Gz, the integral equation (5.11) is
equivalent (see (3.9)) to the integro-differential equation

1

2
σ2(x)Q′′

∆(x) + µ(x)Q′
∆(x)− (λ+ h(x) + f(x))Q∆(x)

= − �

�
1I[y,y+∆)(x)− h(x)EQ∆((ρ(x, Y1)) (5.13)

with the boundary conditions

Q∆(a) = 0, Q∆(b) = 0. (5.14)

We now prove that, the passage to the limit as ∆ → 0 in the problem (5.13),
(5.14) yields the problem (5.8)–(5.10). Here one can proceed as in the proof of The-
orem 6.1 Ch. IV. There the change of variable x = y(−1)(y(x)) was used to transform
the corresponding equation to the equation without the first derivative. However,
we can take another path and make a change of unknown function that figures in

the equation. Considering the new variable V∆(x) = exp
( x∫
0

�(u)

�2(u)
du
)
Q∆(x), we

deduce from (5.13) that

V ′′
∆(x) =

{
2(�+ h(x) + f(x))

�2(x)
+
(
�(x)

�2(x)

)2

+
(
�(x)

�2(x)

)′}
V∆(x)

− 2

�2(x)
exp

( x∫
0

�(u)

�2(u)
du
)(

�

�
1I[y,y+∆)(x) + h(x)EQ∆(ρ(x, Y1))

)
.
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Denote by R∆(x) the right-hand side of this equation. Integrating this equation
with respect to x over the interval (a, b), we have

V ′
∆(x2)− V ′

∆(x1) =

x2∫
x1

R∆(x) dx. (5.15)

Integrating equality (5.15) with respect to x2 over the interval (x1, x3) ⊆ (a, b), we
get

V∆(x3)− V∆(x1)− V ′
∆(x1)(x3 − x1) =

x3∫
x1

dx2

x2∫
x1

R∆(x) dx. (5.16)

The following arguments partially repeat the arguments in the proof of Theorem 6.3
Ch. III, so some of the details are omitted. The estimate (5.12) and the relation
(5.15) imply that the family {V ′

∆(x)}∆ 6=0 is equicontinuous on any closed subin-
terval [α, β] ⊂ (a, b) \ {y}. Taking the value x3 in (5.16) outside [α, β], it is easy
to see that the family {V ′

∆(x)}∆ 6=0 is uniformly bounded on [α, β]. In addition, we
can deduce from (5.15) that

sup
∆ 6=0

sup
a<x<b

|V ′
∆(x)| <∞. (5.17)

By the Arzelá–Ascoli theorem, the family {V ′
∆(x)}∆ 6=0, x ∈ [α, β], is relatively

compact. Hence, any sequence ∆n that tends to zero contains a subsequence ∆nk

such that the functions V ′
∆nk

(x), x ∈ [α, β], converge uniformly to some limit

Ṽ (x). In addition, relations (5.16) and (5.17) imply that the family {V∆(x)}∆ 6=0,
x ∈ [a, b], is equicontinuous. Consequently, V∆nk

(x) converges uniformly in [a, b]
to some limit V (x). In general, the limit function may depend on the choice of the
subsequence ∆nk

, however, we will see that the function V satisfies the differential
problem, which has a unique solution. Thus,

sup
x∈[a,b]

|V∆(x)− V (x)| → 0 as ∆ → 0, (5.18)

and Ṽ (x) = V ′(x) for x 6= y.
Since the convergence (5.18) is uniform, the function V (x), x ∈ [a, b], is continu-

ous. By (5.14), this function satisfies the boundary conditions V (a) = 0, V (b) = 0.
We set V (x) = 0 for x 6∈ (a, b).

Denote χ(x) := 1I[y,∞)(x). Letting ∆nk
→ 0 in (5.15) we obtain

V ′(x2)− V ′(x1)−
x2∫
x1

{
2(�+ h(x) + f(x))

�2(x)
+
(
�(x)

�2(x)

)2

+
(
�(x)

�2(x)

)′}
V (x) dx

= −
x2∫
x1

2�

�2(x)
exp

( x∫
0

�(u)

�2(u)
du

)(
dχ(x) + h(x)EG̃y(ρ(x, Y1))dx

)
,
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where G̃y(x) := exp
(
−

x∫
0

�(u)

�2(u)
du
)
V (x). This equation is equivalent to the problem

(5.8), (5.9). Indeed, if y 6∈ (x1, x2), then χ(x2)− χ(x1) = 0, and the function G̃(x)
satisfies equation (5.8). If y ∈ (x1, x2), then χ(x2)−χ(x1) = 1. Letting x1 ↑ y and
x2 ↓ y, we see that

V ′(y + 0)− V ′(y − 0) = − 2�

�2(y)
exp

( y∫
0

�(u)

�2(u)
du

)
.

Therefore the function G̃y(x) satisfies the condition (5.9).
Thus, we proved that the family of functions Q∆(x) has a limit as ∆ → 0 and

since 1I[y,y+∆)(x) = 1I(−∞,y+∆)(x)− 1I(−∞,y)(x), this limit takes the form (5.3). At
the same time we verified that the limit function satisfies the problem (5.8)–(5.10),
which is equivalent to (5.4)–(5.7). �

§ 6. Distributions of integral functionals of a
diffusion with jumps stopped at the first exit time

For the diffusion with jumps J , the moment Ha,b := min{s : J(s) /∈ (a, b)}, the
first exit time from an interval, is very important for various applications. If the
initial value x 6∈ (a, b), we set Ha,b = 0.

It is important that Px(Ha,b <∞) = 1, or equivalently

Px

(
a ≤ inf

0≤s<∞
J(s), sup

0≤s<∞
J(s) ≤ b

)
= 0.

To justify this we set in Theorem 3.1 Φ ≡ 1, f ≡ 0, q ≡ 0. Letting λ ↓ 0 we have
from (3.4), (3.5) that M(x) ↓ 0 and, in view of (3.3) and (6.7) (below), Q(x) ↓ 0,
x ∈ (a, b). But in this case τ →∞ and, consequently,

Q(x) ↓ Px

(
a ≤ inf

0≤s<∞
J(s), sup

0≤s<∞
J(s) ≤ b

)
.

Consider the problem of computing distributions of integral functionals of diffu-
sion with jumps, stopped at the moment Ha,b. For a process with jumps the first
exit from an interval can occur either by crossing the boundary or by a jump over
the boundary.

6.1. We begin with the case, in which we do not distinguish the way the first exit
from (a, b) occurs, i.e., the exit occurs by a jump over the boundary or by crossing
the boundary. The following result concerns actually the Laplace transform of
the distribution of nonnegative integral functional of the diffusion with jumps J
stopped at the first exit time from the interval (a, b) over the boundary b. The
expectation is reduced to those paths of the diffusion that exit the interval just
over b.

To find the distribution of
Ha,b∫
0

f(J(s)) ds, one applies the next theorem with

Φ ≡ 1 for the product γf(x), γ > 0, instead of f(x), compute the function Rb(x),
and then invert the Laplace transform with respect to the parameter γ.
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Theorem 6.1. Let Φ(x), x ∈ R, and f(x), x ∈ [a, b], be piecewise-continuous
functions. Assume that f ≥ 0 and Φ is bounded. Then the function

Rb(x) := Ex

{
Φ(J(Ha,b)) exp

(
−

Ha,b∫
0

f(J(s)) ds
)

; J(Ha,b) ≥ b

}
, x ∈ R,

is the unique bounded solution of the equation

Rb(x) = Φ(b)Mb(x)1I[a,b](x) + Φ(x)1I(b,∞)(x) +

∞∫
−∞

Gz(x)ERb(ρ(z, Y1)) dz, (6.1)

where Mb(x) is the unique solution of the problem

1

2
σ2(x)M ′′(x) + µ(x)M ′(x)− (h(x) + f(x))M(x) = 0, x ∈ (a, b), (6.2)

M(a) = 0, M(b) = 1, (6.3)

and Gz(x) is the unique continuous solution of the problem

1

2
σ2(x)G′′(x)+µ(x)G′(x)−(h(x)+f(x))G(x)=0, x ∈ (a, b)\{z}, (6.4)

G′(z + 0)−G′(z − 0) = −2h(z)/σ2(z), (6.5)

G(a) = 0, G(b) = 0, (6.6)

and Gz(x) = 0 for x, z 6∈ (a, b).

Proof. Set

Mb(x) := Ex

{
exp

(
−

Ha,b∫
0

(h(X(s)) + f(X(s))) ds
)

;X(Ha,b) = b

}
.

Then Mb(x) for x ∈ (a, b) is the solution of the problem (6.2), (6.3) (see Ch. IV
Theorem 7.2).

Set

Gz(x) := d

dz+
Ex

{
exp

(
−

κ1∫
0

f(X(s)) ds
)

;

a ≤ inf
0≤s≤κ1

X(s), sup
0≤s≤κ1

X(s) ≤ b,X(κ1) < z

}
,

where d

dz+
denotes the right derivative. Then Gz is the solution of (6.4)–(6.6) (see

Ch. IV Theorem 6.1, λ = 1).
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It is important that

sup
x∈R

∞∫
−∞

Gz(x) dz ≤ sup
x∈(a,b)

Px

(
a ≤ inf

0≤s≤κ1
X(s), sup

0≤s≤κ1

X(s) ≤ b
)
< 1. (6.7)

From here it follows that equation (6.1) has (see § 3) a unique bounded solution.
This estimate can be derived as follows. Since κ1 ≥ τ1/K,

Px

(
a ≤ inf

0≤s≤κ1
X(s), sup

0≤s≤κ1

X(s) ≤ b
)

≤ Px

(
a ≤ inf

0≤s≤τK

X(s), sup
0≤s≤τK

X(s) ≤ b
)

=: UK(x),

where τK is an independent of the process J exponentially distributed with pa-
rameter K > 0 random moment. The function UK(x), x ∈ (a, b), is the solution of
(4.11), (4.12) Ch. IV, λ = K, and it is expressed by the formula

UK(x) = 1− ( (b)−  (a))'(x) + ('(a)− '(b)) (x)

 (b)'(a)−  (a)'(b)
, x ∈ (a, b),

where ψ is an increasing solution and ϕ is a decreasing solution of the equation

1

2
σ2(x)φ′′(x) + µ(x)φ′(x)−Kφ(x) = 0, x ∈ R.

In view of the monotonicity of the solutions, the quantity sup
x∈(a,b)

UK(x) is estimated

by the value

1− ( (b)−  (a))'(b) + ('(a)− '(b)) (a)

 (b)'(a)−  (a)'(b)
= ( (b)−  (a))('(a)− '(b))

 (b)'(a)−  (a)'(b)
∈ (0, 1).

Thus the required estimate is proved.
The expectation in the definition of the function Rb(x) can be decomposed into

the sum of two expectations: over the set {Ha,b < κ1} and over its complement
{Ha,b ≥ κ1}, which is equivalent to the event{

a ≤ inf
0≤s≤κ1

X(s), sup
0≤s≤κ1

X(s) ≤ b
}
.

We have

Rb(x) = Ex

{
Φ(X(Ha,b)) exp

(
−
Ha,b∫
0

f(X(s)) ds
)

;X(Ha,b) = b,Ha,b < κ1

}

+ Ex

{
Φ(J(Ha,b)) exp

(
−

κ1∫
0

f(X(s)) ds−
Ha,b∫
κ1

f(J(s)) ds
)

;

a ≤ inf
0≤s≤κ1

X(s), sup
0≤s≤κ1

X(s) ≤ b, J(Ha,b) ≥ b

}
=: V1(x) + V2(x),
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where V1 and V2 are the first and the second term, respectively. The event

{Ha,b < κ1} is equivalent to the event
{ Ha,b∫

0

h(X(v)) dv < τ1

}
and the moment

τ1 is independent of the process X, and has an exponential distribution. Then,
using the equation analogous to (3.18) with the moment Ha,b instead of τ , we get
that V1(x) = Φ(b)Mb(x).

We consider the process J̃ρ(X(κ1),Y1)(s) = J(s + κ1), s ≥ 0, and the σ-algebra
G̃, which are defined in the proof of Theorem 3.1.

For the event {κ1 ≤ Ha,b} the following equality holds:

Ha,b − κ1 = H̃a,b := min{s : J̃ρ(X(κ1),Y1)(s) /∈ (a, b)}.

Then for V2 we get

V2(x) = Ex

{
exp

(
−

κ1∫
0

f(X(s)) ds
)

1I{
a≤ inf

0≤s≤κ1
X(s), sup

0≤s≤κ1

X(s)≤b
}

×E
{
Φ(J̃ρ(X(κ1),Y1)(H̃a,b)) exp

(
−
H̃a,b∫
0

f(J̃ρ(X(κ1),Y1)(s))ds
)
1I{J̃ρ(X(κ1),Y1)(H̃a,b)≥b}

∣∣∣∣G̃}}.
The process J̃x is distributed as J with J(0) = x, and is independent of the σ-
algebra Gκ1

0 generated by the process X up to the moment κ1, and of the variable
Y1, i.e., it is independent of the σ-algebra G̃. Applying Lemma 2.1 of Ch. I, we get

V2(x)=Ex

{
exp

(
−

κ1∫
0

f(X(s)) ds
)
1I{

a≤ inf
0≤s≤κ1

X(s), sup
0≤s≤κ1

X(s)≤b
}Rb(ρ(X(κ1), Y1))

}
.

Now, using the probabilistic representation of the function Gz(x) and the indepen-
dence of the σ-algebra Gκ1

0 from the variable Y1, we finally get

V2(x) =

∞∫
−∞

Gz(x)ERb(ρ(z, Y1)) dz.

Thus, we have the equality

Rb(x) = Φ(b)Mb(x) +

∞∫
−∞

Gz(x)ERb(ρ(z, Y1)) dz, x ∈ (a, b).

For x > b it is obvious that Rb(x) = Φ(x), because Ha,b = 0. For x < a it is clear
that Rb(x) = 0. This completes the proof of (6.1). �

For the exit over the boundary a there is an assertion analogous to Theorem 6.1,
which can be derived from the latter. Indeed, we reflect the diffusion J symmet-
rically with respect to zero. Then −J is the diffusion with jumps, whose drift
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coefficient is equal to −µ(−x), the diffusion coefficient is equal to σ2(−x), and
the function of jumps is given by −ρ(−x, y). This diffusion starts from the point
−x and the point −a is the upper exit boundary, the point −b is the lower exit
boundary. Applying Theorem 6.1 for the diffusion −J with the upper exit bound-
ary −a and rewriting this assertion in terms the original diffusion J , we obtain the
following assertion.

Theorem 6.2. Let Φ(x), x ∈ R, and f(x), x ∈ [a, b], be piecewise-continuous
functions. Assume that f ≥ 0 and Φ is bounded. Then the function

Ra(x) := Ex

{
Φ(J(Ha,b)) exp

(
−

Ha,b∫
0

f(J(s)) ds
)

; J(Ha,b) ≤ a

}
, x ∈ R,

is the unique bounded solution of the problem

Ra(x) = Φ(a)Ma(x)1I[a,b](x)+Φ(x)1I(−∞,a)(x)+

∞∫
−∞

Gz(x)ERa(ρ(z, Y1)) dz, (6.8)

where Ma(x) is the unique solution of (6.2) with the boundary conditions

M(a) = 1, M(b) = 0, (6.9)

andGz(x) is the unique continuous solution of the problem (6.4)–(6.6), andGz(x) =
0 for x, z 6∈ (a, b).

If there are no restrictions on the form of exit of the diffusion with jumps from
the interval (a, b), then the following assertion holds.

Theorem 6.3. Let Φ(x), x ∈ R, and f(x), x ∈ [a, b], be piecewise-continuous
functions. Assume that f ≥ 0 and Φ is bounded. Then the function

R(x) := Ex

{
Φ(J(Ha,b)) exp

(
−

Ha,b∫
0

f(J(s)) ds
)}

, x ∈ R,

is the unique bounded solution of the problem

R(x) = (Φ(a)Ma(x) + Φ(b)Mb(x))1I[a,b](x) + Φ(x)1IR\[a,b](x)

+

∞∫
−∞

Gz(x)ER(ρ(z, Y1)) dz, (6.10)

where the functions Ma(x) and Mb(x) are the solutions of (6.2) with the boundary
conditions (6.3) and (6.9), respectively, Gz(x) is the unique continuous solution of
the problem (6.4)–(6.6), and Gz(x) = 0 for x, z 6∈ (a, b).

This assertion follows from Theorems 6.1 and 6.2, because R(x) = Ra(x)+Rb(x).

6.2. Consider the case when the process J leaves the interval by crossing the
boundary. In this case, if the exit boundary is the point b, the following result
holds.
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Theorem 6.4. Let f(x), x ∈ [a, b], be a nonnegative piecewise-continuous func-
tion. Then the function

R◦
b(x) := Ex

{
exp

(
−

Ha,b∫
0

f(J(s)) ds
)

; J(Ha,b) = b

}
, x ∈ R,

is the unique bounded solution of the equation

R◦
b(x) = Mb(x)1I[a,b](x) +

∞∫
−∞

Gz(x)ER◦
b(ρ(z, Y1)) dz, (6.11)

where Mb(x), x ∈ (a, b), is the unique solution of the problem (6.2), (6.3). The
function Gz(x), x ∈ (a, b), is the unique continuous solution of the problem (6.4)–
(6.6), and Gz(x) = 0 for x, z 6∈ (a, b).

Remark 6.1. For the exit across the boundary a the analogous statement holds:
it is only necessary to replace the boundary condition (6.3) by the boundary con-
dition (6.9).

Proof of Theorem 6.4. The proof of this result is similar to that of Theorem 6.1,
therefore we will only indicate the essential details. We represent R◦

b(x) as a sum
of two terms:

R◦
b(x) = Ex

{
exp

(
−
Ha,b∫
0

f(X(s)) ds
)

;X(Ha,b) = b,Ha,b < κ1

}

+Ex

{
exp

(
−

κ1∫
0

f(X(s)) ds−
Ha,b∫
κ1

f(J(s)) ds
)

; a ≤ inf
0≤s≤κ1

X(s),

sup
0≤s≤κ1

X(s) ≤ b, J(Ha,b) = b

}
.

By the definition of the moment Ha,b,

R◦
b(x) = Ex

{
exp

(
−

Ha,b∫
0

f(J(s)) ds
)

; J(Ha,b) = b

}
1I[a,b](x).

Using this and the properties of the process J̃ρ(X(κ1),Y1)(s) = J(s+ κ1), s ≥ 0,
and of the moment H̃a,b, we obtain

R◦
b(x) = Mb(x)1I[a,b](x)+Ex

{
exp

(
−

κ1∫
0

f(X(s)) ds
)

1I{
a≤ inf

0≤s≤κ1
X(s), sup

0≤s≤κ1

X(s)≤b
}
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×1I[a,b](ρ(X(κ1), Y1))E
{

exp
(
−
H̃a,b∫
0

f(J̃ρ(X(κ1),Y1)(s))ds
)
1I{

J̃ρ(X(κ1),Y1)(H̃a,b)=b
}∣∣∣∣ G̃}}

= Mb(x)1I[a,b](x)

+Ex

{
exp

(
−

κ1∫
0

f(X(s)) ds
)

1I{
a≤ inf

0≤s≤κ1
X(s), sup

0≤s≤κ1

X(s)≤b
}R◦

b(ρ(X(κ1), Y1))
}
.

Now, using the probabilistic representation of the function Gz(x) and the indepen-
dence of the σ-algebra Gκ1

0 from the variable Y1, we finally get (6.11). �

6.3. Consider the case, in which the exit from an interval occurs by a jump
over the boundary. In this case, if the exit boundary is the point b, we have the
following result.

Theorem 6.5. Let Φ(x), x ∈ R, and f(x), x ∈ [a, b], be piecewise-continuous
functions. Assume that f ≥ 0 and Φ is bounded. Then the function

R(1)

b (x) := Ex

{
Φ(J(Ha,b)) exp

(
−

Ha,b∫
0

f(J(s)) ds
)

; J(Ha,b) > b

}
, x ∈ R,

is the unique bounded solution of the equation

R1
b(x) = Φ(x)1I(b,∞)(x) +

∞∫
−∞

Gz(x)ER1
b(ρ(z, Y1)) dz, (6.12)

where Gz(x), x ∈ (a, b), is the unique continuous solution of the problem (6.4)–
(6.6), and Gz(x) = 0 for x, z 6∈ (a, b).

Remark 6.2. For the exit over the boundary a an analogous result is valid, it is
only necessary to replace in (6.12) the indicator function 1I(b,∞)(x) by 1I(−∞,a)(x).

Remark 6.3. Note that Theorem 6.1 follows from Theorems 6.4 and 6.5. In-
deed, Rb(x) = Φ(b)R◦

b(x) + R1
b(x) and the sum of equations (6.12) and (6.11),

multiplied by Φ(b), gives equation (6.1).

Proof of Theorem 6.5. The proof is carried out in the same way as the proofs of
Theorems 6.1 and 6.4. Using the fact that the event {J(Ha,b) > b,Ha,b < κ1} is
realized only if Ha,b = 0 and x > b, we get

R1
b(x) = Φ(x)1I(b,∞)(x) + Ex

{
Φ(J(Ha,b)) exp

(
−

κ1∫
0

f(X(s)) ds−
Ha,b∫
κ1

f(J(s)) ds
)

;

a ≤ inf
0≤s≤κ1

X(s), sup
0≤s≤κ1

X(s) ≤ b, J(Ha,b) > b

}
= Φ(x)1I(b,∞)(x)
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+Ex

{
exp

(
−

κ1∫
0

f(X(s)) ds
)
1I{

a≤ inf
0≤s≤κ1

X(s), sup
0≤s≤κ1

X(s)≤b
}E{Φ(J̃ρ(X(κ1),Y1)(H̃a,b))

× exp
(
−

H̃a,b∫
0

f(J̃ρ(X(κ1),Y1)(s))ds
)

1I{
J̃ρ(X(κ1),Y1)(H̃a,b)>b

}∣∣∣∣ G̃}}

= Φ(x)1I(b,∞)(x)

+Ex

{
exp

(
−

κ1∫
0

f(X(s)) ds
)

1I{
a≤ inf

0≤s≤κ1
X(s), sup

0≤s≤κ1

X(s)≤b
}R1

b(ρ(X(κ1), Y1))
}

= Φ(x)1I(b,∞)(x) +

∞∫
−∞

Gz(x)ER1
b(ρ(z, Y1)) dz.

The theorem is proved. �

§ 7. Distributions of functionals of a diffusion with jumps
stopped at the moment inverse of integral functional

Consider the problem of computing distributions of functionals of a diffusion
with jumps stopped at the moment inverse of integral functional. This moment is
defined as follows

ν(t) := min
{
s :

s∫
0

g(J(v)) dv = t

}
,

where g is a nonnegative piecewise continuous function. We assume that g is right
continuous (g(z) = g(z+), z ∈ R).

In addition, we assume that the diffusion coefficient σ2(x), x ∈ R, and the drift
coefficient µ(x), x ∈ R, are bounded.

The following result is of key importance for the problem of computing the dis-
tributions of functionals for diffusions with jumps stopped at the moment inverse
of an integral functional. Set for brevity ν := ν(τ), where τ is the random mo-
ment independent of the process {J(s), s ≥ 0} and exponentially distributed with
parameter λ > 0.

Theorem 7.1. Let Φ(x) and f(x), x ∈ [a, b], be piecewise-continuous functions.
Assume that f ≥ 0 and that Φ is bounded when either a = −∞ or b = ∞. Let
q(x, y) be nonnegative measurable function. Then the function

V (x) := Ex

{
Φ(J(ν)) exp

(
−

ν∫
0

f(J(s)) ds−
∫

(0,ν]

q
(
J(s−), YC(s)

)
dC(s)

)
;
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a ≤ inf
0≤s≤ν

J(s), sup
0≤s≤ν

J(s) ≤ b, ν <∞
}

is the unique bounded solution of the equation

V (x) = M(x) +

∞∫
−∞

Gz(x)E
{
e−q(z,Y1)V (ρ(z, Y1))

}
dz, (7.1)

where M(x), x ∈ (a, b), is the unique solution of the problem

1

2
σ2(x)M ′′(x) + µ(x)M ′(x)− (λg(x) + h(x) + f(x))M(x) = −λg(x)Φ(x), (7.2)

M(a) = 0, M(b) = 0, (7.3)

and Gz(x), x ∈ (a, b) is the unique solution of the problem

1

2
σ2(x)G′′(x) + µ(x)G′(x)− (λg(x) + h(x) + f(x))G(x) = 0, x 6= z, (7.4)

G′(z + 0)−G′(z − 0) = −2h(z)/σ2(z), (7.5)

G(a) = 0, G(b) = 0. (7.6)

Here we set M(x) = 0 and Gz(x) = 0 for x, z 6∈ (a, b).

Remark 7.1. For g ≡ 1 this result recovers Theorem 3.1.

Remark 7.2. It is clear that V (x) = 0 for x 6∈ (a, b). The function V (x),
x ∈ (a, b), is the unique solution of the equation

1

2
σ2(x)V ′′(x) + µ(x)V ′(x)− (λg(x) + h(x) + f(x))V (x)

= −λg(x)Φ(x)− h(x)E
{
e−q(z,Y1)V (ρ(x, Y1))

}
(7.7)

with the boundary conditions

V (a) = 0, V (b) = 0. (7.8)

If either a = −∞ or b = ∞, then the corresponding boundary condition must be
replaced by the requirement that V is bounded solution at this point.

Proof of Theorem 7.1. To simplify the formulas, we prove the result for the
case when a = −∞ and b = ∞. The case of arbitrary values of a an b is proved
analogously. We first assume that f is a bounded continuous function and Φ is a
twice continuously differentiable function with bounded derivatives.

For arbitrary λ̃ > 0 we set

ηλ̃(s) := Φ(J(s)) exp
(
−

s∫
0

(
λ̃+ f(J(v))

)
dv −

∫
(0,s]

q
(
J(v−), YC(v)

)
dC(v)

)
. (7.9)
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Using an analog of (1.11), we have

ηλ̃(t)− ηλ̃(0) =
∫

[0,t]

exp
(
−

s∫
0

(
λ̃+ f(J(v))

)
dv −

∫
(0,s]

q
(
J(v−), YC(v)

)
dC(v)

)

×
[
Φ′(J(s))σ(J(s)) dW (s)+Φ′(J(s))µ(J(s)) ds+ 1

2
σ2(J(s))Φ′′(J(s)) ds

−
(
λ̃+f(J(s))

)
Φ(J(s)) ds+

(
Φ
(
ρ
(
J(s−), YC(s)

))
e−q(J(s−),YC(s))−Φ(J(s−))

)
dC(s)

]
.

Here we use the following assertion: if dC(s) = 1, then the function

Φ(J(s)) exp
(
−
∫

(0,s]

q
(
J(v−), YC(v)

)
dC(v)

)

has at s a jump of the form

exp
(
−
∫

(0,s)

q
(
J(v−), YC(v)

)
dC(v)

)(
Φ
(
ρ
(
J(s−), YC(s)

))
e−q(J(s−),YC(s))−Φ(J(s−))

)
.

Since g is a nonnegative function, we see that
s∫

0

g(J(v)) dv, s ≥ 0, is an increasing

function. From here it follows that for any s ≥ 0 and t ≥ 0,

1I[0,ν(t))(s) = 1I[0,t)

( s∫
0

g(J(v)) dv
)
.

Since the expectation of the stochastic integral is zero, and the expectation of
the integral with respect to dC(s) gives the factor h(J(s)) (see formula (4.1)), we
get

Exηλ̃(ν(t))−Φ(x) = Ex

∞∫
0

1I[0,t)

( s∫
0

g(J(v)) dv
)

exp
(
−

s∫
0

(
λ̃+f(J(v))

)
dv

)

× exp
(
−
∫

(0,s)

q
(
J(v−), YC(v)

)
dC(v)

)[
1

2
σ2(J(s))Φ′′(J(s)) + µ(J(s))Φ′(J(s))

−
(
λ̃+ f(J(s))

)
Φ(J(s)) + h(J(s))

(
EY
{
Φ(ρ(J(s), Y ))e−q(J(s),Y )

}
− Φ(J(s))

)]
ds,

where EY denotes the expectation only with respect to the random variable Y
distributed as Y1 and independent of the process J .

The computation of the expectation of the stochastic integral was correct, be-
cause all the integrands are bounded.



470 VI DIFFUSIONS WITH JUMPS

Taking the Laplace transform with respect to t with the parameter λ > 0 of
both sides of the above equality, we obtain

λ

∞∫
0

e−λtExηλ̃(ν(t)) dt−Φ(x) = Ex

∞∫
0

e−λ̃s exp
(
−

s∫
0

(
λg(J(v)) + f(J(v))

)
dv

)

× exp
(
−
∫

(0,s]

q
(
J(v−), YC(v)

)
dC(v)

)[
1

2
σ2(J(s))Φ′′(J(s)) + µ(J(s))Φ′(J(s))

−
(
λ̃+ f(J(s))

)
Φ(J(s)) + h(J(s))

(
EY
{
Φ(ρ(J(s), Y ))e−q(J(s),Y )

}
− Φ(J(s))

)]
ds.

Alongside with the moment τ , we consider an exponentially distributed random
moment τ̃ that is independent of J with the tail distribution P(τ̃ > s) = e−λ̃s.
Applying Fubini’s theorem, we can rewrite the above equality as

Exηλ̃(ν(τ))− Φ(x) = 1

�̃
Ex

{[
1

2
σ2(J(τ̃))Φ′′(J(τ̃)) + µ(J(τ̃))Φ′(J(s))

−
(
λ̃+ f(J(τ̃))

)
Φ(J(τ̃)) + h(J(τ̃))

(
EY
{
Φ(ρ(J(τ̃), Y ))e−q(J(τ̃),Y )

}
− Φ(J(τ̃))

)]
× exp

(
−
∫

(0,τ̃ ]

[(
λg(J(v)) + f(J(v))

)
dv + q

(
J(v−), YC(v)

)
dC(v)

])}
.

For the expectation on the right-hand side of this equality, we apply Theorem 3.1
in the variant given by formula (3.9), with τ replaced by τ̃ and λ replaced by λ̃.
As a result, we see that the function

Q̃(x) := Exηλ̃(ν(τ))− Φ(x)

is the unique bounded solution of the integro-differential equation

1

2
σ2(x)Q̃′′(x) + µ(x)Q̃′(x)− (λ̃+ h(x) + λg(x) + f(x))Q̃(x) = −1

2
σ2(x)Φ′′(x)

−µ(x)Φ′(x) + (λ̃+ f(x))Φ(x)− h(x)
(
E
{
Φ(ρ(x, Y1))e−q(x,Y1)

}
− Φ(x)

)
−h(x)E

{
e−q(x,Y1)Q̃(ρ(x, Y1))

}
.

Thus the function Vλ̃(x) := Exηλ̃(ν(τ)) = Q̃(x) + Φ(x) satisfies the equation

1

2
σ2(x)V ′′

λ̃
(x) + µ(x)V ′

λ̃
(x)− (λ̃+ h(x) + λg(x) + f(x))Vλ̃(x)

= −λg(x)Φ(x)− h(x)E
{
e−q(x,Y1)Vλ̃(ρ(x, Y1))

}
, x ∈ R. (7.10)

From (7.9) it follows that

V (x) = lim
λ̃↓0

Exηλ̃(ν(τ)) = lim
λ̃↓0

Vλ̃(x).
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It should be noted that the expectation in the definition of V is reduced to the
event {ν <∞}, because e−λ̃ν = 0 for ν = ∞ and e−λ̃ν →̃

λ↓0
1I{ν<∞}.

Passing to the limit in (7.10) as λ̃ ↓ 0, we deduce that V satisfies equation (7.7),
or equation (7.1). Thus the theorem is proved for a bounded continuous function
f and twice continuously differentiable function Φ with bounded derivatives.

Any nonnegative piecewise-continuous function f can be approximated by a
sequence of continuous functions {fn} such that 0 ≤ fn(x) ≤ f(x), x ∈ R. Any
bounded piecewise-continuous function Φ can be approximated by a sequence {Φn}
of uniformly bounded twice continuously differentiable functions with bounded
derivatives. Applying the limit approximation method described in the proofs of
Theorem 1.2 and 3.1 Ch. III, one can prove that V is the unique bounded solution
of (7.1) under the assumptions of Theorem 7.1. �

§ 8. Random time change

Let the diffusion with jumps J(t), t ≥ 0, be determined by the parameters(
µ(x), σ(x), ρ(x, y),

{
Yk
}
, h(x)

)
, i.e., this diffusion is a solution of the stochastic

differential equation

dJ(t) = µ(J(t)) dt+ σ(J(t)) dW (t) +
(
ρ
(
J(t−), YC(t)

)
− J(t−)

)
dC(t), J(0) = x.

(8.1)
Let g(x), x ∈ R, be a twice continuously differentiable function with g′(x) 6= 0,
x ∈ R, thus, the inverse function g(−1)(x), x ∈ g(R), is well defined. Consider the
integral functional

At :=

t∫
0

(
g′(J(s))σ(J(s))

)2
ds, t ∈ [0,∞),

as a function of the upper limit of integration. Assume that A∞ = ∞ a.s., and
define the inverse process:

at := min
{
s : As = t

}
, t ∈ [0,∞).

Since At is a strictly increasing function, α0+ = 0.

Theorem 8.1. The process

J̃(t) =: g
(
J(at)

)
, t ∈ [0,∞), (8.2)

is a diffusion with jumps determined by the parameters
(
µ̃(x), 1, ρ̃(x, y),

{
Yk
}
, h̃(x)

)
,

where µ̃(x) = D(g(−1)(x)),

D(x) = g′′(x)

2(g′(x))2
+ �(x)

g′(x)�2(x)
, (8.3)
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ρ̃(x, y) = g(ρ(g(−1)(x), y)), h̃(x) = h(g(−1)(x))

(g′(g(−1)(x))�(g(−1)(x)))2
, (8.4)

i.e., J̃(t) is the solution of the stochastic differential equation

dJ̃(t) = dW̃ (t)+µ̃(J̃(t)) dt+
(
ρ̃
(
J̃(t−), YC̃(t)

)
−J̃(t−)

)
dC̃(t), J̃(0) = g(x), (8.5)

where W̃ (t) is a Brownian motion, and C̃(t) = max{l : κ̃l ≤ t},

κ̃l := min
{
s ≥ 0 :

s∫
0

h̃(J̃(v)) dv =
l∑

k=1

τk

}
.

Proof. By Itô’s formula (1.11),

g(J(u))− g(x) =

u∫
0

g′(J(s))σ(J(s)) dW (s) +

u∫
0

g′(J(s))µ(J(s)
)
ds

+ 1

2

u∫
0

g′′(J(s))σ2(J(s)) ds+
∫

(0,u]

(
g(ρ(J(s−), YC(s)))− g(J(s−))

)
dC(s).

Replacing u by at, we get

J̃(t)− J̃(0) =

at∫
0

g′(J(s))σ(J(s)) dW (s) +

at∫
0

(
g′(J(s))σ(J(s))

)2
D(J(s)) ds

+
∫

(0,at]

(
g(ρ(J(s−), YC(s)))− g(J(s−))

)
dC(s).

Since at is the inverse function to At and A′
t =

(
g′(J(t)σ(J(t)

)2, we have

a′t = 1

A′at

= 1(
g′(J(at)�(J(at)

)2 . (8.6)

By Lévy’s theorem (see § 8 Ch. II), the process

W̃ (t) :=

at∫
0

g′(J(s))σ(J(s)) dW (s), t ∈ [0,∞),

is a Brownian motion. Consequently,

J̃(t)− J̃(0) = W̃ (t) +

t∫
0

(
g′(J(as))σ(J(as))

)2
D(J(as)) das

+
∫

(0,t]

(
g(ρ(J(αs−), YC(αs)))− g(J(αs−))

)
dC(αs)

= W̃ (t) +

t∫
0

µ̃(J̃(s)) ds+
∫

(0,t]

(
ρ̃(J̃(s−), YC̃(s)))− J̃(s−)

)
dC̃(s),
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where we set C̃(s) := C(αs).
In order to make sure that h̃ is the function determining the intensity of jumps

of the process J̃ , it suffices to verify (see (1.8)) that C̃(t) = N(Ĩ(t)), where Ĩ(t) :=
t∫

0

h̃(J̃(v)) dv. Set I(t) :=
t∫

0

h(J(v)) dv. Since the equality C(t) = N(I(t)) holds,

C̃(t) = N(I(αt)). Therefore, it is sufficient to verify that Ĩ(t) = I(αt). This follows
from the equalities

I(αt) =

at∫
0

h(J(v)) dv =

t∫
0

h(J(as)) das

=

t∫
0

h(J(as))(
g′(J(as))�(J(as))

)2 ds =

t∫
0

h̃(J̃(s)) ds = Ĩ(t). �

One can prove Theorem 8.1 in a different way with the help of Theorem 7.1 or,
more exactly, with the help of Remark 7.2.

By this remark, the following statement holds. Let Φ(x) and f(x), x ∈ R, be
continuous functions, Φ be bounded, and f be nonnegative. Since aτ <∞ a.s., the
function

V (x) := Ex

{
Φ(J(aτ )) exp

(
−

aτ∫
0

f(J(s) ds
)}

(8.7)

is (see (7.7)) the unique bounded solution of the equation

1

2
σ2(x)V ′′(x) + µ(x)V ′(x)−

(
λ
(
g′(x)σ(x)

)2 + h(x) + f(x)
)
V (x)

= −λ
(
g′(x)σ(x)

)2
Φ(x)− h(x)EV (ρ(x, Y1)).

Changing the variable to

Q(x) := V (g(−1)(x)), x ∈ R, (8.8)

we see that the function Q satisfies the equation

1

2
Q′′(x) +D(g(−1)(x))Q′(x)−

(
λ+ h(g(−1)(x)) + f(g(−1)(x))(

g′(g(−1)(x))�(g(−1)(x))
)2)Q(x)

= −λΦ(g(−1)(x))− h(g(−1)(x))(
g′(g(−1)(x))�(g(−1)(x))

)2EQ(g(ρ(g(−1)(x), Y1))),

or, by (8.3) and (8.4), Q is the solution of the equation

1

2
Q′′(x) + µ̃(x)Q′(x)−

(
λ+ h̃(x) + f(g(−1)(x))(

g′(g(−1)(x))�(g(−1)(x))
)2)Q(x)
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= −λΦ(g(−1)(x))− h̃(x)EQ(ρ̃(x, Y1)), x ∈ R. (8.9)

By Remark 7.2, the solution of (8.9) has the probabilistic representation

Q(x) = Ex

{
Φ(g(−1)(J̃(τ))) exp

(
−

τ∫
0

f(g(−1)(J̃(s)))(
g′(g(−1)(J̃(s)))�(g(−1)(J̃(s)))

)2 ds
)}

,

where the diffusion J̃ is determined by the parameters
(
µ̃(x), 1, ρ̃(x, y),

{
Yk
}
,

h̃(x)
)
. To understand the connection between the processes J(t) and J̃(t), t ≥ 0,

we transform the function V (x) as follows:

V (g(−1)(x)) := Eg(−1)(x)

{
Φ(J(aτ )) exp

(
−

τ∫
0

f(J(as))(
g′(J(as))�(J(as))

)2 ds
)}

.

Let us compare the expressions obtained for the two sides of equality (8.8) in
terms of expectations of the corresponding variables. Taking into account that
the functions Φ and f are arbitrary, we conclude that the processes J(at) and
g(−1)(J̃(t)) are identical in law, i.e., their finite-dimensional distributions coincide,
where the diffusion J̃ is defined by formula (8.5) for some Brownian motion W̃ . We
note that in the proof of Theorem 8.1, the application of Lévy’s theorem gave us
additional information, namely, the equality J(at) = g(−1)(J̃(t)). However, in the
study of distributions of functionals such an equality is not so important, because
for the investigation of distributions of functionals suffices the coincidence of the
finite-dimensional distributions of the processes.

§ 9. Transformation of measure

Consider two homogeneous diffusions,

dXl(t) = σ(Xl(t))dW (t) + µl(Xl(t))dt, Xl(0) = x, l = 1, 2,

and two sequences of independent identically distributed random variables Y (l)

k with

absolutely continuous distributions dF2(y)

dF1(y)
= p(y), y ∈ R. Let Jl, l = 1, 2, be two

diffusions with jumps defined by Xl, Y
(l)

k , l = 1, 2, and by the same function ρ(x, y),
(x, y) ∈ R2, and the functions hl(x), x ∈ R, determining the intensity of jumps
for each diffusion. Denote by Cl the process which counts the number of jumps
performed by the diffusion Jl up to the time t. By (1.8), we have Cl(t) = N(Il(t)),

where Il(t) :=
t∫

0

hl(Jl(v)) dv.

The main result of this section is the following.
Let D([0, t]) be the Skorohod space of functions without discontinuities of the

second type (see § 6 Ch. I). Then for any bounded measurable functional ℘(Z(s),
0 ≤ s ≤ t) on D([0, t]),

E℘(J2(s), 0 ≤ s ≤ t) = E
{
℘(J1(s), 0 ≤ s ≤ t)Θ(t)}, (9.1)
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where

Θ(t) :=
C1(t)∏
k=1

p(Y (1)

k ) exp
(
−

t∫
0

(
h2(J1(s))− h1(J1(s))

)
ds+

∫
(0,t]

ln h2(J1(s−))
h1(J1(s−))

dC1(s)
)

× exp
( t∫

0

�2(J1(s))− �1(J1(s))

�(J1(s))
dW (s)−

t∫
0

(�2(J1(s))− �1(J1(s)))2

2�2(J1(s))
ds

)
. (9.2)

Remark 9.1. If ρ(x, y) = x, then the processes Jl, l = 1, 2, have no jumps,
they are homogeneous diffusion processes. In this case, (9.1) turns into the formula
(10.12) Ch. II.

Indeed, since in this case the Poisson process N is independent of the diffusion
J1 and the process C1(t) = N(I1(t)) has the variable intensity h1(J1(t)),

EN exp
( ∫

(0,t]

ln h2(J1(s−))
h1(J1(s−))

dC1(s)
)

= exp
( t∫

0

(
exp

(
ln h2(J1(s))

h1(J1(s))

)
−1
)
h1(J1(s)) ds

)

= exp
( t∫

0

(
h2(J1(s))− h1(J1(s))

)
ds

)
,

where the subscript N in the expectation means that the expectation is taken only
with respect to the Poisson process N . In addition, Ep(Y (1)

k ) = 1. Now, using
the independence of the processes J1, N and the variables Y (1)

k , k = 1, 2, . . . , and
applying Fubini’s theorem, it is easy to check that (9.1) is transformed into (10.12)
Ch. II.

Using the stochastic differentiation formula (1.11), one can rewrite the derivative
Θ(t) without the stochastic integral.

Set

β(x) := 1

�2(x)
(µ2(x)− µ1(x)) and b(x) :=

x∫
0

β(y) dy.

Assume that β is a continuously differentiable function. Then a.s.

Θ(t) =
C1(t)∏
k=1

p(Y (1)

k ) exp
(
b(J1(t))− b(x)−

t∫
0

(
h2(J1(s))− h1(J1(s))

)
ds

)

× exp
(
−

t∫
0

�22(J1(s))− �21(J1(s))

2�2(J1(s))
ds− 1

2

t∫
0

σ2(J1(s))β′(J1(s)) ds

−
∫

(0,t]

(
b
(
ρ
(
J1(s−), Y (1)

C1(s)

))
− b(J1(s−))− ln h2(J1(s−))

h1(J1(s−))

)
dC1(s)

)
. (9.3)
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Since the Laplace transform uniquely determines the function under transforma-
tion, the statement given by formula (9.1) is equivalent to the following one: for
a random moment τ independent of the processes Jl, l = 1, 2, and exponentially
distributed with an arbitrary parameter λ > 0,

Ex℘(J2(s), 0 ≤ s ≤ τ) = Ex
{
℘(J1(s), 0 ≤ s ≤ τ)Θ(τ)

}
. (9.4)

We prove (9.4) for functionals of integral type and for functionals that deter-
mine the position of the diffusion at the moment τ . We do this with the help of
Theorem 3.1. Let

℘(J1(s), 0 ≤ s ≤ τ) := Ψ(J1(τ)) exp
(
−

τ∫
0

g(J1(s)) ds
)
,

where Ψ is bounded and g is nonnegative. By the Markov property of a diffu-
sion with jumps, the functionals that describe the position of a diffusion, uniquely
determine the measure associated with the process.

We argue as follows. For the chosen functional ℘ we consider the function

Q(x) := eb(x)Ex
{
℘(J1(s), 0 ≤ s ≤ τ)Θ(τ)

}
, x ∈ R.

By Theorem 3.1, we derive an equation for Q(x), x ∈ R. Then we transform this
equation in such a way that the solution, expressed in probabilistic form, is written
only in terms of the process J2. This transformation will lead to (9.4).

The lack of rigor of the further considerations concerns the correctness of the
conditions that are needed to apply Theorem 3.1. Recall that this theorem is proved
for nonnegative functions f and q. This imposes poorly foreseeable conditions on
the parameters of diffusions with jumps, i.e., on

(
µl(x), σl(x), hl(x)

)
, l = 1, 2, and

the density p(y), y ∈ R.
We start with the formula

C1(τ)∏
k=1

p(Y (1)

k ) = exp
( ∫

(0,τ ]

ln p
(
Y (1)

C1(s)

)
dC1(s)

)
.

Then Q(x), x ∈ R, is expressed in the form

Q(x) = Ex

{
Ψ(J1(τ))eb(J1(τ)) exp

(
−

τ∫
0

g(J1(s)) ds

−
τ∫

0

(
h2(J1(s))− h1(J1(s)) +

�22(J1(s))− �21(J1(s))

2�2(J1(s))
+ 1

2
σ2(J1(s))β′(J1(s))

)
ds

−
∫

(0,τ ]

(
b
(
ρ
(
J1(s−), Y (1)

C1(s)

))
−b(J1(s−))− ln p

(
Y (1)

C1(s)

)
−ln h2(J1(s−))

h1(J1(s−))

)
dC1(s)

)}
.
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By Theorem 3.1 with Φ(x) = Ψ(x)eb(x), h(x) = h1(x),

f(x) = g(x) + h2(x)− h1(x) +
�22(x)− �21(x)

2�2(x)
+ 1

2
σ2(x)β′(x),

q(z, y) = b(ρ(z, y))− b(z)− ln p(y)− ln h2(z)

h1(z)
,

and a = −∞, b = ∞, the function Q(x), x ∈ R, is the unique bounded solution of
the equation

Q(x) = M(x)+

∞∫
−∞

Gz(x)eb(z)
h2(z)

h1(z)
E{p(Y (1)

1 )e−b(ρ(z,Y
(1)
1 ))Q(ρ(z, Y (1)

1 ))} dz, (9.5)

where M(x), x ∈ R, is the unique bounded solution of the equation

1

2
σ2(x)M ′′(x)+µ1(x)M ′(x)−

(
λ+g(x)+h2(x)+

�22(x)− �21(x)

2�2(x)
+ 1

2
σ2(x)β′(x)

)
M(x)

= −λΨ(x)eb(x), (9.6)

and Gz(x), x ∈ R, is the unique bounded continuous solution of the problem

1

2
σ2(x)G′′(x) + µ1(x)G′(x)−

(
λ+ g(x) + h2(x) +

�22(x)− �22(x)

2�2(x)

+ 1

2
σ2(x)β′(x)

)
G(x) = 0, x 6= z, (9.7)

G′(z + 0)−G′(z − 0) = −2h1(z)/σ2(z). (9.8)

Making the change M̃(x) := e−b(x)M(x) and G̃z(x) := e−b(x)Gz(x)eb(z)
h2(z)

h1(z)
,

we see that these functions are the solutions of the following problems:

1

2
σ2(x)M̃ ′′(x) + µ2(x)M̃ ′(x)− (λ+ h2(x) + g(x))M̃(x) = −λΨ(x), (9.9)

1

2
σ2(x)G̃′′(x) + µ2(x)G̃′(x)− (λ+ h2(x) + g(x))G̃(x) = 0, x 6= z, (9.10)

G̃′(z + 0)− G̃′(z − 0) = −2h2(z)/σ2(z). (9.11)

From (9.5) it follows that Q̃(x) := e−b(x)Q(x) is the solution of the equation

Q̃(x) = M̃(x) +

∞∫
−∞

G̃z(x)E{Q̃(ρ(z, Y (2)
1 ))} dz. (9.12)

Applying again Theorem 3.1, with Φ(x) = Ψ(x), f(x) = g(x), h(x) = h2(x),
q(z, y) = 0 and a = −∞, b = ∞, we have

Q̃(x) := Ex

{
Ψ(J2(τ)) exp

(
−

τ∫
0

g(J2(s)) ds
)}

. (9.13)
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Taking into account the equality Q̃(x) = e−b(x)Q(x), x ∈ R, and the definition of
the function Q, we finally get

Ex

{
Ψ(J2(τ)) exp

(
−

τ∫
0

g(J2(s)) ds
)}

= Ex

{
Ψ(J1(τ)) exp

(
−

τ∫
0

g(J1(s)) ds
)

Θ(τ)
}
.

This proves (9.4) and, consequently, (9.1).

§ 10. Transition density of Brownian motion with jumps

Consider the Brownian motion with jumps

J (0)(t) := σW (t) +
N(λ1t)∑
k=1

Yk, t ≥ 0,

where W is a Brownian motion, σ > 0, λ1 > 0, N(t), t ≥ 0, is a Poisson process
with intensity 1, and Yk, k = 1, 2, . . . , are independent identically distributed
random variables. It is assumed that the Brownian motion, the Poisson process
and the variables {Yk}∞k=1 are independent. The process J (0) is the sum of the
Brownian motion and the compound Poisson process with intensity λ1 > 0 and it
has independent increments.

We assume that the density of the variables Yk, k = 1, 2, . . . , takes the form

d

dy
P(Y1 < y) = 1

2
ηe−η|y|, η > 0.

If J (0)(0) = 0, then J (0)(t), t ≥ 0, is a symmetric random process (the process
−J (0)(t), t ≥ 0, has the same finite-dimensional distributions as J (0)(t), t ≥ 0).

The form of the density of the variables Yk is dictated by the fact that for the
Brownian motion, in view of Theorems 3.1, 5.1, the functions M(x), Gz(x), and
Gλy (x), x ∈ R, are expressed in terms of exponential functions and this enables us
to solve the integral equations (3.3), (5.4).

Let τ be the random time exponentially distributed with parameter λ > 0 and
independent of the process {J (0)(s), s ≥ 0} and the variables Yk, k = 1, 2, . . . .

This section deals with the computation of the density of the variable J (0)(τ),
i.e.,

d

dy
Px

(
J (0)(τ) < y

)
,

and the transition density of the process J (0), i.e.,

d

dy
Px

(
J (0)(t) < y

)
, t > 0.

In many examples presented at the end of this chapter the algebraic equation

�2

(�2 − �2)

2�1

(2�+ 2�1 − �2�2)
= 1 (10.1)
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plays an important role. This equation is equivalent to the following one

�2�2

2
+ �1�2

�2 − �2
= λ, (10.2)

whose positive roots are

ρ1 =

√
�+ �1

�2
+ �2

2
−
((

�+ �1

�2
+ �2

2

)2

− 2��2

�2

)1/2

(10.3)

and

ρ2 =

√
�+ �1

�2
+ �2

2
+
((

�+ �1

�2
+ �2

2

)2

− 2��2

�2

)1/2

. (10.4)

It is not hard to verify that 0 < ρ1 < η < ρ2 and ρ2
1ρ

2
2 = 2λη2/σ2.

Proposition 10.1. The density of the variable J (0)(τ) has the form

d

dy
Px

(
J (0)(τ) < y

)
=

�(�2 − �21)

�2(�22 − �21)�1
e−|x−y|ρ1 +

�(�22 − �2)

�2(�22 − �21)�2
e−|x−y|ρ2 . (10.5)

Proof. To compute the density (10.5), we apply Theorem 5.1 for the process
J(t) = J (0)(t) with σ(x) ≡ σ, µ(x) ≡ 0, f(x) ≡ 0, h(x) = λ1, a = −∞, b = ∞,
and ρ(x, y) = x + y. In this case the density (10.5) is the function G̃y(x). When
a = −∞ and b = ∞, we apply Remark 3.1.

The solutions of problems (3.6), (3.7) and (5.5), (5.6) are

Gy(x) = �1

�2�
e−|x−y|Υ and Gλ

y(x) = �

�2�
e−|x−y|Υ , (10.6)

respectively, where Υ :=
√

2λ+ 2λ1/σ.
Since these functions are exponential, we find a solution of equation (5.4) in the

form
G̃y(x) = Ae−|x−y|q1 +Be−|x−y|q2 , (10.7)

where A and B are some constants, and ql, l = 1, 2, are nonnegative numbers.
We refer to the following equality: for µ > 0 and ρ > 0

∞∫
−∞

e−|x−z|µe−|z−y|ρ dz = 2

�2 − �2

(
µe−|x−y|ρ − ρe−|x−y|µ

)
, (10.8)

which is easy to verify. Using (10.8), it is not hard to show that

EG̃y(z+ Y1) = A�

�2 − q21

(
ηe−|z−y|q1 − q1e

−|z−y|η)+ B�

�2 − q22

(
ηe−|z−y|q2 − q2e

−|z−y|η).
We apply (10.8) once more to obtain that

∞∫
−∞

Gz(x)EG̃y(z + Y1) dz = A�2

(�2 − q21)

2�1

(2�+ 2�1 − �2q21)

(
e−|x−y|q1 − q1

�
e−|x−y|Υ

)
+ B�2

(�2 − q22)

2�1

(2�+ 2�1 − �2q22)

(
e−|x−y|q2 − q2

�
e−|x−y|Υ

)
−
(

A�q1

(�2 − q21)
+ B�q2

(�2 − q22)

)
2�1

(2�+ 2�1 − �2�2)

(
e−|x−y|η − �

�
e−|x−y|Υ

)
.
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We substitute this expression, (10.7), and the right-hand side equality in (10.6) into
equation (5.4). The coefficients of the same exponential functions in (5.4) must be
equal to each other. Therefore, equating the coefficients at e−|x−y|q1 , e−|x−y|q2 , we
get that the values q1 and q2 must satisfy equation (10.1), i.e., q1 = ρ1 and q2 = ρ2.

The coefficient at e−|x−y|η must be equal to zero, hence,

A�1

(�2 − �21)
+ B�2

(�2 − �22)
= 0. (10.9)

In addition, we take into account (10.1) for ρ = ρ1, ρ = ρ2 and equate the coeffi-
cients at e−|x−y|Υ to deduce that

λ = Aρ1σ
2 +Bρ2σ

2. (10.10)

Solving the algebraic system (10.9), (10.10), we finally get

A =
�(�2 − �21)

�2(�22 − �21)�1
, B =

�(�22 − �2)

�2(�22 − �21)�2
.

Substituting these coefficients to (10.7), we obtain (10.5).
Relation (10.5) can be derived directly. Indeed, we use formula (1.1) with µ = 0.

The Laplace transform with respect to t of the characteristic function ExeiαJ
(0)(t)

has the expression

ExeiαJ
(0)(τ) =E exp

(
iαx− 1

2
α2σ2τ−λ1τ

(
1−EeiαY1

))
= �ei�x

�+ �2�2=2 + �1
(
1−Eei�Y1

) .
In our case,

EeiαY1 =

∞∫
−∞

eiαy
1

2
ηe−η|y| dy = �

2

(
1

� + i�
+ 1

� − i�

)
= �2

�2 + �2
. (10.11)

Therefore,

ExeiαJ
(0)(τ) = 2�ei�x(�2 + �2)

(2�+ �2�2)(�2 + �2) + 2�1�2
= 2�ei�x(�2 + �2)

�2(�2 + �21)(�
2 + �22)

=
2�(�2 − �21)

�2(�22 − �21)

ei�x

(�2 + �21)
+

2�(�22 − �2)

�2(�22 − �21)

ei�x

(�2 + �22)
. (10.12)

Inverting in this formula the Fourier transform with respect to α (see (10.11)), we
get (10.5). �

Proposition 10.2. For the transition density of the Brownian motion with
jumps we have the expressions

d

dy
Px

(
J (0)(t) < y

)
= e−λ1t

∞∫
0

e−η
2ue−(x−y)2/2(2u+σ2t)

(
�2√

2�(2u+ �2t)
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+ 2u+ �2t− (x− y)2
√
2�(2u+ �2t)5=2

)
I0
(
2η
√
λ1tu

)
du (10.13)

and

d

dy
Px

(
J (0)(t) < y

)
= e−λ1t

(
1

√
2�t �

e−(y−x)2/2σ2t

+

∞∫
0

e−η
2ue−(y−x)2/2(2u+σ2t) �

√
�1t√

2�u(2u+ �2t)
I1
(
2η
√
λ1tu

)
du

)
. (10.14)

Remark 10.1. Formula (10.13) coincides with (10.14) which is easily verified
by integration by parts if one uses the equality

(
I0(x)

)′ = I1(x). The fact that the
integral on the right-hand side of (10.14) with respect to y is equal to one, follows
from (10.18).

Proof of Proposition 10.2. To illustrate the possible approaches for the com-
putation of the transition density, we prove the formulas (10.13) and (10.14) by
different ways.

We first prove (10.13). In (10.5) we invert the Laplace transform with respect

to λ. Consider the new parameter λ̃ := �+ �1

�2
− �2

2
. For brevity we denote

δ :=
√
2�1�

�
. In terms of these notations we have ρ1 =

√
λ̃+ η2 − (λ̃2 + δ2)1/2 and

ρ2 =
√
λ̃+ η2 + (λ̃2 + δ2)1/2. Then, using formula a of Appendix 3, we obtain

d

dy
Px

(
J (0)(t) < y

)
= L−1

λ

(
1

�

d

dy
Px

(
J (0)(τ) < y

))∣∣∣
t

= 1

2
e−(λ1−η2σ2/2)tL−1

λ̃

((
�2

�1
− ρ1

)
e−|x−y|�1√
�̃2 + �2

−
(
�2

�2
− ρ2

)
e−|x−y|�2√
�̃2 + �2

)∣∣∣
σ2t
, (10.15)

where L−1
λ is the operator of the inverse Laplace transform with respect to the

parameter λ.
We use (see formulas 3 and 5 of Appendix 3) the equality

(
�2
√

−√

γ
)
e−|x−y|

√
γ =

∞∫
0

e−γv
1

√
�v

(
η2 + 1

2v
− (x− y)2

4v2

)
e−(x−y)2/4v dv.

Using this formula in (10.15) under the sign of the inverse Laplace transform,
we get

d

dy
Px

(
J (0)(t) < y

)
= e−(λ1−η2σ2/2)t

∞∫
0

1

2
√
�v

(
η2 + 1

2v
− (x− y)2

4v2

)
e−(x−y)2/4v

× e−vη
2
L−1

λ̃

(
e−v

(
�̃−

√
�̃2+�2

)
√
�̃2 + �2

− e−v
(
�̃+

√
�̃2+�2

)
√
�̃2 + �2

)∣∣∣∣
σ2t

dv. (10.16)
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We apply formula (34) § 5.6 from Bateman and Erdélyi (1954):

L−1
λ

(
ev

(
�−

√
�2+�2

)
√
�2 + �2

)∣∣∣∣
t

= J0

(
δ
√
t(t+ 2v)

)
. (10.17)

To invert the Laplace transform of the first term in (10.16) we apply this formula,
substituting −v instead of v. To compute the inverse Laplace transform of the
second term we first use formula b of Appendix 3. Then we get

L−1
λ

(
e−v

(
�+

√
�2+�2

)
√
�2 + �2

)∣∣∣∣
t

= L−1
λ

(
ev

(
�−

√
�2+�2

)
√
�2 + �2

)∣∣∣∣
t−2v

1I[2v,∞)(t).

Now, again, we can apply (10.17), and obtain

d

dy
Px

(
J (0)(t) < y

)
= e−(λ1−η2σ2/2)t

∞∫
0

1

2
√
�v

(
η2 + 1

2v
− (x− y)2

4v2

)
e−(x−y)2/4v

×e−vη
2
(
J0

(
δ
√
σ2t(σ2t− 2v)

)
− J0

(
δ
√
σ2t(σ2t− 2v)

)
1I[2v,∞)(σ2t)

)
dv

= e−(λ1−η2σ2/2)t

∞∫
σ2t/2

1

2
√
�v

(
η2+ 2v − (x− y)2

4v2

)
e−vη

2−(x−y)2/4vJ0

(
δσ
√
t(σ2t−2v)

)
dv.

Making the change of variable u = v−σ2t/2, we get (10.13), because I0(x) = J0(ix).
We now prove (10.14). To compute the transition density at a fixed time t, we

use (1.1) with µ = 0 and (10.11):

ExeiαJ
(0)(t) = exp

(
iαx− �2�2t

2
− λ1t

(
1−EeiαY1

))
= exp

(
iαx− λ1t−

�2�2t

2
+ �1t�2

�2 + �2

)
.

We apply formula 15 of Appendix 3:

eρ/γ − 1 =

∞∫
0

e−γu
√
�

√
u
I1(2

√
ρu) du, ρ > 0. (10.18)

Then for γ = η2 + α2 the previous equality has the form

ExeiαJ
(0)(t) = eiαx−λ1t

(
e−α

2σ2t/2+

∞∫
0

e−η
2ue−α

2(2u+σ2t)/2 �
√
�1t√
u
I1
(
2η
√
λ1tu

)
du

)
.

To invert the Fourier transform with respect to α, one can use the expression
for the characteristic function of the Gaussian distribution (see formulas (8.1) and
(8.2) Ch. I). This yields (10.14). �
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We consider the particular case of formula (10.5) as σ → 0. In this case ρ1 ∼
�
√
�

√
�+ �1

and ρ2 ∼
√

2λ+ 2λ1/σ. We deduce from (10.5) with x = 0 that

d

dy
P
(N(λ1τ)∑

k=1

Yk < y

)
= ��1

√
�

2(�+ �1)3=2
exp

(
− |y|�

√
�

√
�+ �1

)
.

The distribution with such density has a mass point at zero, i.e.,

P
(N(λ1τ)∑

k=1

Yk = 0
)

= P(τ < τ1) = �

�+ �1
.

§ 11. Distributions of infimum or supremum of
Brownian motion with linear drift with jumps

Consider the process of J (µ)(t), t ≥ 0, defined in § 1. This process is the special
case of the process J , defined in (1.2), (1.3), for σ(x) ≡ σ, µ(x) ≡ µ, h(x) = λ1

and ρ(x, y) = x+ y.
Consider as examples the calculation of the probabilities

Px

(
a ≤ inf

0≤s≤τ
J (µ)(s)

)
and Px

(
sup

0≤s≤τ
J (µ)(s) ≤ b

)
,

where τ is the exponentially distributed with parameter λ > 0 random time in-
dependent of the process J (µ). These probabilities play an important role in ruin
theory. Let Hb = min{s : J (µ)(s) > b} be the first exceedance moment of the level
b. Then

Px

(
sup

0≤s≤τ
J (µ)(s) > b

)
= Px(Hb ≤ τ) = Exe−λHb .

The moment Hb can be interpreted as the ruin moment if the expenses J (µ) exceed
the available capital b.

Consider the problem of computing the distribution of the supremum. The case
of the infimum is dealt with similarly. To compute the probability

Q(x) = Px

(
sup

0≤s≤τ
J (µ)(s) ≤ b

)
we apply Theorem 3.1 with Φ(x) ≡ 1, f(x) ≡ 0, h(x) ≡ λ1, q(x, y) ≡ 0 and
a = −∞.

By (3.3), the function Q(x) is the unique bounded solution of the equation

Q(x) = M(x) +

b∫
−∞

Gz(x)EQ(z + Y1) dz. (11.1)
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In this case the function M is the unique bounded solution of the problem

1

2
σ2M ′′(x) + µM ′(x)− (λ+ λ1)M(x) = −λ, x ∈ (−∞, b), (11.2)

M(b) = 0. (11.3)

In addition, M(x) = 0 for x ≥ b. The solution of the problem (11.2), (11.3) has
the form

M(x) =
(

�

�+ �1
− �

�+ �1
exp

(
�(b− x)

�2
− (b− x)�

�2

))
1I(−∞,b](x),

where Υ :=
√

(2λ+ 2λ1)σ2 + µ2.
Under the above assumptions the function Gz(x) is the unique bounded solution

of the problem

1

2
σ2G′′(x) + µG′(x)− (λ+ λ1)G(x) = 0, x ∈ (−∞, b) \ {z}, (11.4)

G′(z + 0)−G′(z − 0) = −2λ1/σ
2, (11.5)

G(b) = 0. (11.6)

We also set Gz(x) = 0 for z ≥ b or x ≥ b.
It is not hard to compute that

Gz(x) = �1

�

(
exp

(
�(z − x)

�2
− |z − x|�

�2

)
− exp

(
�(z − x)

�2
− (2b− z − x)�

�2

))
1I(−∞,b](x)1I(−∞,b](z). (11.7)

Since the functionM and the kernel Gz of the integral equation (11.1) are expressed
in terms of exponential functions, we can find the solution of (11.1), under some
additional assumptions on the distribution function of Yk, in the form of a linear
combination of exponential functions.

For this we need the following formula: for x ≤ b

∞∫
−∞

Gz(x)eρz dz = 2�1

2�+ 2�1 − �2�2 − 2��

(
eρx−eρb exp

(
�(b− x)

�2
− (b− x)�

�2

))
. (11.8)

The validity of (11.8) can be justified as follows. Since Gz is the Green function cor-
responding to the problem (11.2), (11.3), the function (11.8) is the unique bounded
solution of the equation (11.2) with −λ1e

ρx in place of −λ on the right-hand side
of (11.2), and with the boundary condition (11.3).

Example 11.1. Let the random variables Yk, k = 1, 2, . . . , take only non-
positive values. This means that the time of the first exceedance of the level b by
the process J (µ) is transformed into the first hitting time moment. The process
J (µ) is a process with independent increments and with the negative jumps.
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The cumulant K(·) of the process J (µ) is determined from the Lévy-Khintchine
representation

E0e
iαJ(µ)(t) = etK(α), α ∈ R,

and in this case, for Re v ≥ 0 the cumulant is (see (1.1))

K(−iv) = �2

2
v2 + µv + λ1

(
EevY1 − 1

)
. (11.9)

We find the probability Q(x) = Px

(
sup

0≤s≤τ
J (µ)(s) ≤ b

)
as the solution of equation

(11.1) in the form

Q(x) =
(
C −Ae−β(b−x))1I(−∞,b](x), β > 0, (11.10)

where C, A, and β are some constants. The condition β > 0 is necessary for the
solution (11.10) to be bounded at −∞.

In order to substitute the solution (11.10) in equation (11.1), we compute the
function EQ(z + Y1). By the negativity of Y1, we derive that

EQ(z + Y1) = CE1I(−∞,b−z](Y1)−Ae−β(b−z)E
{
eβY11I(−∞,b−z](Y1)

}
= C −Ae−β(b−z)EeβY1 , z ≤ b.

Using the explicit form of M(x), x ≤ b, and the formula (11.8) for ρ = 0, we have

M(x) + C

∞∫
−∞

Gx(z) dz = �+ C�1

�+ �1
− �+ C�1

�+ �1
exp

(
�(b− x)

�2
− (b− x)�

�2

)
.

Substituting this expression and the expression for EQ(x+Y1) in (11.1), and taking
into account (11.8), we get

C −Ae−β(b−x) = �+ C�1

�+ �1
− �+ C�1

�+ �1
exp

(
�(b− x)

�2
− (b− x)�

�2

)
− 2�1AEe�Y1

2�+ 2�1 − �2�2 − 2��

(
e−β(b−x) − exp

(
�(b− x)

�2
− (b− x)�

�2

))
.

Equating the coefficients at the constant terms, we have C = 1. Proceeding simi-
larly with the coefficients at e−β(b−x), we see that β is the solution of the equation

2�1Ee�Y1

2�+ 2�1 − �2�2 − 2��
= 1,

or, equivalently, the equation
K(−iβ) = λ, (11.11)

where the cumulant K(−iβ) is given by (11.9). Since the function EeβY1 , β ∈ R,
is decreasing and takes values in the interval (0, 1], equation (11.11) has only one
nonnegative root, thus β is unique.
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Choosing in (11.10) the parameter β equal to this root and equating the coeffi-

cients at exp
(
�(b− x)

�2
− (b− x)�

�2

)
, we get A = 1.

Thus,
Px

(
sup

0≤s≤τ
J (µ)(s) ≤ b

)
= (1− e−β(b−x))1I(−∞,b](x), (11.12)

where β is the unique nonnegative root of equation (11.11).
Another approach to the computation of this probability is given in the mono-

graph of Gihman and Skorohod (1975) § 2 Ch. IV.

Example 11.2. Let the distribution function of the random variables Yk, k =
1, 2, . . . , be arbitrary on the negative real half-line including zero, while on the
positive half-line it has the density d

dy
P(Y1 < y) = P(Y1 > 0)ηe−ηy, y > 0, for

some η > 0.
In this case we find the probability Q(x) = Px

(
sup

0≤s≤τ
J (µ)(s) ≤ b

)
as the

solution of equation (11.1) in the following form

Q(x) =
(
1−A1e

−β1(b−x) −A2e
−β2(b−x)

)
1I(−∞,b](x), β1 > 0, β2 > 0.

Contrary to the representation (11.10) we choose C = 1 at the beginning.
For x ≤ b, we have

EQ(x+ Y1) = E1I(−∞,b−x](Y1)−
2∑
k=1

Ake
−βk(b−x)E

{
eβkY11I(−∞,b−x](Y1)

}
= 1−P(Y1 > 0)

(
1−

2∑
k=1

Ak�

� − �k

)
e−η(b−x)

−
2∑
k=1

Ak

(
P(Y1 > 0)�

� − �k
+ E

{
eβkY11I{Y1≤0}

})
e−βk(b−x).

Substituting this expression in (11.1) and using (11.8), we obtain first that

1− A1�

� − �1
− A2�

� − �2
= 0, (11.13)

and second that

1−
2∑
k=1

Ake
−βk(b−x) = 1− exp

(
�(b− x)

�2
− (b− x)�

�2

)
−

2∑
k=1

2�1Ak

2�+ 2�1 − �2k�
2 − 2�k�

×
(
P(Y1 > 0)�

� − �k
+ E

{
eβkY11I{Y1≤0}

})(
e−βk(b−x) − exp

(
�(b− x)

�2
− (b− x)�

�2

))
.

Equating the coefficients at eβkx, we find that βk, k = 1, 2, are the solutions of the
equation

2�1

2�+ 2�1 − �2�2 − 2��

(
P(Y1 > 0)�

� − �
+ E

{
eβY11I{Y1≤0}

})
= 1, (11.14)
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or, equivalently, the equation
�2

2
β2 + µβ + λ1E

{(
eβY1 − 1

)
1I{Y1≤0}

}
+ �1P(Y1 > 0)�

� − �
= λ. (11.15)

Analyzing graphs of the functions figuring in this equation, we can see that for
η > 0 it has exactly two positive roots β1, β2 such that 0 < β1 < η < β2.

Equating the coefficients at exp
(
�(b− x)

�2
− (b− x)�

�2

)
, we find that A1 +A2 = 1.

Solving this equation together with (11.13), we get

A1 = �1(�2 − �)

�(�2 − �1)
, A2 = �2(� − �1)

�(�2 − �1)
.

The final answer is: for x ≤ b

Px

(
sup

0≤s≤τ
J (µ)(s) ≤ b

)
= 1− �1(�2 − �)

�(�2 − �1)
e−β2(b−x) − �2(� − �1)

�(�2 − �1)
e−β1(b−x). (11.16)

For another approach to computing this probability see Mordecki (2003), Kou
and Wang (2003).

Note that for η = 0 or for the limiting case as η → ∞, the variables Yk, k =
1, 2, . . . , take only negative values. In these cases equation (11.15) is transformed
to equation (11.11) and (11.16) turns into (11.12).

We consider the special case when µ = 0 and the density of Yk, k = 1, 2, . . . , has
the form

d

dy
P(Y1 < y) = 1

2
ηe−η|y|, η > 0.

Equation (11.14) is transformed into (10.1), and β1 = ρ1, β2 = ρ2, where ρ1 and
ρ2 are defined by (10.3) and (10.4). As a result, (11.16) takes the following form:
for x ≤ b

Px

(
sup

0≤s≤τ
J (0)(s) ≤ b

)
= 1− �1(�2 − �)

�(�2 − �1)
e−ρ2(b−x) − �2(� − �1)

�(�2 − �1)
e−ρ1(b−x). (11.17)

Using the symmetry property of the process J (0), we conclude that for x ≥ a

Px

(
a ≤ inf

0≤s≤τ
J (0)(s)

)
= 1− �1(�2 − �)

�(�2 − �1)
e−ρ2(x−a) − �2(� − �1)

�(�2 − �1)
e−ρ1(x−a). (11.18)

§ 12. Examples for the first exit time

Let Ha,b := min{s : J (0)(s) /∈ (a, b)} be the first exit time from the interval (a, b)
by the process J (0) defined in § 10. We consider the expression

Ex
{
e−γ(J

(0)(Ha,b)−b)e−λHa,b ; J (0)(Ha,b) ≥ b
}
, γ > 0, λ > 0, (12.1)

which determines the joint distribution of the first exit time over the boundary b
and the value of the jump over the boundary.

The roots ρ1 and ρ2 of the equivalent equations (10.1), (10.2) are also of key
importance for an explicit formula for (12.1).

12.1. As it was mentioned, the first exit time from an interval over the bound-
ary b can occur either by crossing the boundary or by jumping over it. To compute
(12.1) for the process J (0) without restrictions on the exit procedure over the bound-
ary b we can apply Theorem 6.1 with σ(x) ≡ σ, µ(x) ≡ 0, h(x) ≡ λ1, f(x) ≡ λ,
ρ(z, y) = z + y and Φ(x) = e−γ(x−b)1I[b,∞)(x).
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Proposition 12.1. Let

D+ :=

�2 th((b− a)�2=2) + �

�22 − �2
+

1

 + �

�1 th((b− a)�1=2) + �

�2 − �21
+
�2 th((b− a)�2=2) + �

�22 − �2

, (12.2)

D− :=

�2 cth((b− a)�2=2) + �

�22 − �2
+

1

 + �

�1 cth((b− a)�1=2) + �

�2 − �21
+
�2 cth((b− a)�2=2) + �

�22 − �2

. (12.3)

Then

Ex
{
e−γ(J

(0)(Ha,b)−b)e−λHa,b ; J (0)(Ha,b) ≥ b
}

= e−γ(x−b)1I(b,∞)(x)

+
{
sh((x− a)�2)

sh((b− a)�2)
+ D+

2

(
ch((b+ a− 2x)�1=2)

ch((b− a)�1=2)
− ch((b+ a− 2x)�2=2)

ch((b− a)�2=2)

)
− D−

2

(
sh((b+ a− 2x)�1=2)

sh((b− a)�1=2)
− sh((b+ a− 2x)�2=2)

sh((b− a)�2=2)

)}
1I[a,b](x). (12.4)

We do not prove this formula, because it can be obtained by summation of the
expressions from Propositions 12.2 and 12.3, for which detailed proofs will be given.

Using the property of symmetry of the process J (0), we have

Ex
{
e−γ(a−J

(0)(Ha,b))e−λHa,b ; J (0)(Ha,b) ≤ a
}

= e−γ(a−x)1I(−∞,a)(x)

+
{
sh((b− x)�2)

sh((b− a)�2)
+ D+

2

(
ch((b+ a− 2x)�1=2)

ch((b− a)�1=2)
− ch((b+ a− 2x)�2=2)

ch((b− a)�2=2)

)
+ D−

2

(
sh((b+ a− 2x)�1=2)

sh((b− a)�1=2)
− sh((b+ a− 2x)�2=2)

sh((b− a)�2=2)

)}
1I[a,b](x). (12.5)

We set

∆(x) :=
{
x− b, for x ≥ b,

a− x, for x ≤ a.

Then, summing (12.4) and (12.5), we see that

Exe−γ∆(J(0)(Ha,b))−λHa,b = D+
ch((b+ a− 2x)�1=2)

ch((b− a)�1=2)
+ (1−D+) ch((b+ a− 2x)�2=2)

ch((b− a)�2=2)

for x ∈ (a, b). In these formulas the inverse Laplace transform with respect to γ
is easily computed. On the other hand, it is not clear how to compute the inverse
Laplace transform with respect to λ.

From the previous formula for γ = 0 it follows that

Exe−λHa,b = D̃+ ch((b+ a− 2x)�1=2)

ch((b− a)�1=2)
+ (1− D̃+) ch((b+ a− 2x)�2=2)

ch((b− a)�2=2)
, x ∈ [a, b],

(12.6)
where D̃+ := D+

∣∣
γ=0

.
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Let τ be the exponentially distributed with parameter λ > 0 random time
independent of the process J (0). Then the equality

Px

(
a ≤ inf

0≤s≤τ
J (0)(s), sup

0≤s≤τ
J (0)(s) ≤ b

)
= Px

(
τ ≤ Ha,b

)
= 1−Exe−λHa,b

holds. Thus, from (12.6) it follows that

Px

(
a ≤ inf

0≤s≤τ
J (0)(s), sup

0≤s≤τ
J (0)(s) ≤ b

)
(12.7)

= 1− ch((b+ a− 2x)�2=2)

ch((b− a)�2=2)
+ D̃+

(
ch((b+ a− 2x)�2=2)

ch((b− a)�2=2)
− ch((b+ a− 2x)�1=2)

ch((b− a)�1=2)

)
.

If in (12.4) a tends to −∞, then the first exit time is transformed into the first
exceedance moment of the level b. We denote it by Hb := min{s : J (0)(s) ≥ b}.
Therefore, for x < b we have

Exe−γ(J
(0)(Hb)−b)−λHb = (� − �1)( + �2)

(�2 − �1)( + �)
e−(b−x)ρ1 + (�2 − �)( + �1)

(�2 − �1)( + �)
e−(b−x)ρ2 .

For γ = 0 this formula is directly connected with formula (11.17) (see the beginning
of § 11).

Let us also compute the probabilities

Px

(
J (0)(Ha,b) = b

)
, Px

(
J (0)(Ha,b) ∈ dz, J (0)(Ha,b) > b

)
, z > b.

For this we let λ→ 0 in (12.4). Then ρ1 → 0, ρ2 → ρ :=
√

2λ1/σ2 + η2. It is easy
to verify that

D+ → 1

�+

(
1− �

 + �

)
, D− → 1

�−

(
1 + 2

�(b− a)
− �

 + �

)
,

where
∆+ := 1 + �2�

2�1
(ρ th((b− a)ρ/2) + η),

∆− := 1 + 2

�(b− a)
+ �2�

2�1
(ρ cth((b− a)ρ/2) + η).

Therefore,

Ex
{
e−γ(J

(0)(Ha,b)−b); J (0)(Ha,b) ≥ b
}

= x− a

b− a
+ 1

2�+



 + �

(
ch((b+ a− 2x)�=2)

ch((b− a)�=2)
− 1
)

+ 1

2�−

(
1 + 2

�(b− a)
− �

 + �

)(
b+ a− 2x

b− a
− sh((b+ a− 2x)�=2)

sh((b− a)�=2)

)
.

Inverting the Laplace transform with respect to γ, we have

Px

(
J (0)(Ha,b) = b

)
= x− a

b− a

(
1− 1

�−

(
1 + 2

�(b− a)

))
− sh((b− x)�=2) sh((x− a)�=2)

�+ ch((b− a)�=2)
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+
(
1 + 2

�(b− a)

)
ch((b− x)�=2) sh((x− a)�=2)

�− sh((b− a)�=2)
, (12.8)

and

d

dz
Px

(
b < J (0)(Ha,b) < z

)
= ηe−η(z−b)

[
x− a

(b− a)�−

+ sh((b− x)�=2) sh((x− a)�=2)

�+ ch((b− a)�=2)
− ch((b− x)�=2) sh((x− a)�=2)

�− sh((b− a)�=2)

]
, b < z. (12.9)

By the symmetry property of the process J (0), the corresponding formula for the
exit over the boundary a can be obtained from (12.8) and (12.9) upon replacing
a 7→ −b, b 7→ −a, x 7→ −x.

We point out a simple particular case of (12.9) as σ → 0. In this case ρ → ∞,
∆+ → 1, ∆− → 1 + 2

�(b− a)
and Ha,b := min{s : Nc(s) /∈ (a, b)}. Then we have

d

dz
P
(
x+

N(λ1Ha,b)∑
k=1

Yk < z

)
= 1 + �(x− a)

2 + �(b− a)
ηe−η(z−b), b < z.

It is clear that this formula does not depend on λ1.

12.2. We apply Theorem 6.4 to compute expression (12.1) under the restriction
that J (0) leaves the interval without jump, i.e., it simply crosses the boundary.

For further computations we need the auxiliary formulas:

b∫
a

e−p|z−v|−q|y−v| dv = 2(pe−q|y−z| − qe−p|y−z|)

p2 − q2
− e−p(z−a)−q(y−a) + e−p(b−z)−q(b−y)

p+ q
,

(12.10)
b∫
a

e−p|z−v|+q|y−v| dv = 2(peq|y−z| + qe−p|y−z|)

p2 − q2
− e−p(z−a)+q(y−a) + e−p(b−z)+q(b−y)

p− q
,

(12.11)
b∫
a

e−p|z−v|
sh((v − a)q)

sh((b− a)q)
dv = 2p sh((z − a)q) + qe−p(z−a)

(p2 − q2) sh((b− a)q)
− e−p(b−z)(q cth((b− a)q) + p)

p2 − q2
,

(12.12)
b∫
a

e−p|z−v|
sh((b− v)q)

sh((b− a)q)
dv = 2p sh((b− z)q) + qe−p(b−z)

(p2 − q2) sh((b− a)q)
− e−p(z−a)(p+ q cth((b− a)q))

p2 − q2
.

(12.13)
Denote

Dq
x(y) = Dq

y(x) := ch((b− a− |y − x|)q)− ch((b+ a− y − x)q)

q sh((b− a)q)
, x, y ∈ (a, b).

(12.14)
If x 6∈ (a, b) or if y 6∈ (a, b), we set Dq

x(y) = Dq
y(x) = 0.
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The function Dq
y(x), x ∈ [a, b], is the unique continuous solution of the problem

D′′(x)− q2D(x) = 0, x ∈ (a, b) \ {y}, (12.15)

D′(y + 0)−D′(y − 0) = −2, (12.16)

D(a) = 0, D(b) = 0. (12.17)

Note that the function αDq
y(x), x ∈ [a, b], is the solution of the same problem, but

with the jump of the derivative in (12.16) equal to −2α.
From (12.10)–(12.13) we can derive the equality

b∫
a

e−p|z−v|Dq
y(v) dv = 2

p2 − q2

{
pDq

y(z)− e−p|z−y|

+ e−p(z−a)
sh((b− y)q)

sh((b− a)q)
+ e−p(b−z)

sh((y − a)q))

sh((b− a)q)

}
, a ≤ y ≤ b. (12.18)

From (12.18) with z = a and z = b it follows that

b∫
a

epvDq
y(v) dv = − 2

p2 − q2

(
epy − epa sh((b− y)q) + epb sh((y − a)q)

sh((b− a)q)

)
. (12.19)

Therefore,

b∫
a

sh((v − δ)p)Dq
y(v) dv

= − 2

p2 − q2

(
sh((y − δ)p)− sh((a− �)p) sh((b− y)q) + sh((b− �)p) sh((y − a)q)

sh((b− a)q)

)
. (12.20)

The validity of formulas (12.18)–(12.20) can also be verified in the following way.
Obviously, Dq

y(x), x ∈ [a, b], is the Green function of the corresponding differential
problem, i.e., for any Φ(x), x ∈ [a, b], the function

U(x) :=

b∫
a

Dq
x(v)Φ(v) dv, x ∈ [a, b],

is the unique solution of the problem

U ′′(x)− q2U(x) = −2Φ(x), x ∈ (a, b),

U(a) = 0, U(b) = 0.

Solving this problem for the function Φ(x) = epx, we get (12.19), solving it for
Φ(x) = sh((x − δ)p), we get (12.20). A little more complicated task is to find the
solution for Φ(x) = e−p|x−z|, which implies (12.18).
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Proposition 12.2. Let

D◦
+ :=

�2 th((b− a)�2=2) + �

�22 − �2

�1 th((b− a)�1=2) + �

�2 − �21
+
�2 th((b− a)�2=2) + �

�22 − �2

, (12.21)

D◦
− :=

�2 cth((b− a)�2=2) + �

�22 − �2

�1 cth((b− a)�1=2) + �

�2 − �21
+
�2 cth((b− a)�2=2) + �

�22 − �2

. (12.22)

Then for x ∈ (a, b)

Ex
{
e−λHa,b ; J (0)(Ha,b) = b

}
=
{
sh((x− a)�2)

sh((b− a)�2)
+

D◦
+

2

(
ch((b+ a− 2x)�1=2)

ch((b− a)�1=2)
− ch((b+ a− 2x)�2=2)

ch((b− a)�2=2)

)
−

D◦
−
2

(
sh((b+ a− 2x)�1=2)

sh((b− a)�1=2)
− sh((b+ a− 2x)�2=2)

sh((b− a)�2=2)

)}
1I[a,b](x). (12.23)

Remark 12.1. Relation (12.23) follows from (12.4) as γ →∞ (although (12.4)
is not proved).

Indeed, {J (0)(Ha,b) ≥ b} = {J (0)(Ha,b) = b}
⋃
{J (0)(Ha,b) > b}, and for the

outcomes of the event {J (0)(Ha,b) > b} there is the limit e−γ(J
(0)(Ha,b)−b) → 0 as

γ →∞.

Proof of Proposition 12.2. Set

R◦
b(x) := Ex

{
e−λHa,b ; J (0)(Ha,b) = b

}
.

We apply Theorem 6.4 with σ(x) ≡ σ, µ(x) ≡ 0, h(x) ≡ λ1, f(x) ≡ λ and
ρ(x, y) = x+ y. Then the function R◦

b is the unique bounded solution of (6.11).
The solution of equation (6.11) can be found in the form

R◦
b(x) =

4∑
k=1

Ak
sh((x− �k)qk)

sh((b− a)qk)
1I[a,b](x), (12.24)

where δ1 = δ3 = b, δ2 = δ4 = a, and Ak and qk > 0 are some constants.
The function Mb is a unique solution of the problem

�2

2
M ′′(x)− (λ+ λ1)M(x) = 0, x ∈ (a, b), (12.25)

M(a) = 0, M(b) = 1. (12.26)

This solution has the form

Mb(x) = sh((x− a)� )

sh((b− a)� )
, x ∈ (a, b),
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where Υ :=
√

2λ+ 2λ1/σ.
In this case Gz(x) is the unique solution of the problem

�2

2
G′′(x)− (λ+ λ1)G(x) = 0, x ∈ (a, b) \ {z}, (12.27)

G′(z + 0)−G′(z − 0) = −2λ1/σ
2, (12.28)

G(a) = 0, G(b) = 0. (12.29)

It is easy to verify (see (12.14)–(12.17)) that

Gz(x) =
�1

(
ch((b− a− |z − x|)� )− ch((b+ a− z − x)� )

)
�2� sh((b− a)� )

= �1

�2
DΥ
z (x)

for x ∈ (a, b), z ∈ (a, b). For x 6∈ (a, b) or z 6∈ (a, b) we set Gz(x) = 0.
For a ≤ x ≤ b, using (12.12) and (12.13), we obtain

ER◦
b(x+ Y1) =

4∑
k=1

AkE
{
sh((x+ Y1 − �k)qk)1I[a−x;b−x](Y1)

sh((b− a)qk)

}

=
4∑
k=1

Ak�

2 sh((b− a)qk)

b∫
a

sh((v − δk)qk)e−η|v−x| dv

=
4∑
k=1

Ak�
2

(�2 − q2k)

sh((x− �k)qk)

sh((b− a)qk)
− e−η(x−a)

4∑
k=1

Ak�(� sh((a− �k)qk)− qk ch((a− �k)qk))

2(�2 − q2k) sh((b− a)qk)

− e−η(b−x)
4∑
k=1

Ak�(� sh((b− �k)qk) + qk ch((b− �k)qk))

2(�2 − q2k) sh((b− a)qk)
. (12.30)

Substituting into equation (6.11) the expressions for R◦
b(x), Mb(x), ER◦

b(x + Y1)
and applying formulas (12.19), (12.20), we get

4∑
k=1

Ak
sh((x− �k)qk)

sh((b− a)qk)
= sh((x− a)� )

sh((b− a)� )

+
4∑
k=1

Ak�
2

(�2 − q2k) sh((b− a)qk)

2�1

(2�+ 2�1 − q2k�
2)

×
(

sh((x− δk)qk)−
sh((a− �k)qk) sh((b− x)� ) + sh((b− �k)qk) sh((x− a)� )

sh((b− a)� )

)
− �

2

4∑
k=1

Ak
(� sh((a− �k)qk)− qk ch((a− �k)qk))

(�2 − q2k) sh((b− a)qk)

2�1e�a

(2�+ 2�1 − �2�2)

×
(
e−ηx − e−�a sh((b− x)� ) + e−�b sh((x− a)� )

sh((b− a)� )

)
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− �

2

4∑
k=1

Ak
(� sh((b− �k)qk) + qk ch((b− �k)qk))

(�2 − q2k) sh((b− a)qk)

2�1e−�b

(2�+ 2�1 − �2�2)

×
(
eηx − e�a sh((b− x)� ) + e�b sh((x− a)� )

sh((b− a)� )

)
. (12.31)

Equating the coefficients at sh((x− δk)qk), we obtain

Ak = Ak
�2

(�2 − q2k)

2�1

(2�+ 2�1 − q2k�
2)
.

This implies that q1 = q2 = ρ1 and q3 = q4 = ρ2, i.e., they are the positive roots of
equation (10.1).

Equating the coefficients at e−ηx and at eηx, we have

4∑
k=1

Ak
(� sh((a− �k)qk)− qk ch((a− �k)qk))

(�2 − q2k) sh((b− a)qk)
= 0, (12.32)

4∑
k=1

Ak
(� sh((b− �k)qk) + qk ch((b− �k)qk))

(�2 − q2k) sh((b− a)qk)
= 0. (12.33)

Equating the coefficients at sh((x − a)Υ ) and at sh((b − x)Υ ) respectively, we
have

1−
4∑
k=1

Ak
sh((b− �k)qk)

sh((b− a)qk)
= 0,

4∑
k=1

Ak
sh((a− �k)qk)

sh((b− a)qk)
= 0. (12.34)

Since δ1 = δ3 = b, δ2 = δ4 = a, from (12.34) we derive that 1 − A2 − A4 = 0,
A1 + A3 = 0. We set B◦ := A3 = −A1, A◦ := A2 = 1 − A4. Then for x ∈ (a, b)
from (12.24) it follows that

R◦
b(x) = sh((x− a)�2)

sh((b− a)�2)
+B◦

(
sh((b− x)�1)

sh((b− a)�1)
− sh((b− x)�2)

sh((b− a)�2)

)
+A◦

(
sh((x− a)�1)

sh((b− a)�1)
− sh((x− a)�2)

sh((b− a)�2)

)
. (12.35)

In this representation the conditions R◦
b(a) = 0 and R◦

b(b) = 1 hold, which corre-
sponds to the definition of the function R◦

b(x).
The equalities (12.32) and (12.33) can be transformed into the following ones:

B◦(� sh((b− a)�1) + �1 ch((b− a)�1))

(�2 − �21) sh((b− a)�1)
− A◦�1

(�2 − �21) sh((b− a)�1)

+ B◦(� sh((b− a)�2) + �2 ch((b− a)�1))

(�22 − �2) sh((b− a)�2)
+ (1−A◦)�2

(�22 − �2) sh((b− a)�2)
= 0, (12.36)

− B◦�1

(�2 − �21) sh((b− a)�1)
+ A◦(� sh((b− a)�1) + �1 ch((b− a)�1))

(�2 − �21) sh((b− a)�1)

− B◦�2

(�22 − �2) sh((b− a)�2)
− (1−A◦)(� sh((b− a)�2) + �2 ch((b− a)�1))

(�22 − �2) sh((b− a)�2)
= 0. (12.37)
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Summing (12.36) and (12.37), we have A◦ +B◦ = D◦
+, where D◦

+ is defined by
(12.21). Subtracting (12.36) from (12.37), we get A◦ − B◦ = D◦

−, where D◦
− is

defined by (12.22). By (12.35), the expression for R◦
b(x) has the form

Ex
{
e−λHa,b ; J (0)(Ha,b) = b

}
=
{
sh((x− a)�2)

sh((b− a)�2)
+

D◦
+ −D◦

−
2

(
sh((b− x)�1)

sh((b− a)�1)
− sh((b− x)�2)

sh((b− a)�2)

)
+

D◦
− +D◦

+

2

(
sh((x− a)�1)

sh((b− a)�1)
− sh((x− a)�2)

sh((b− a)�2)

)}
1I[a,b](x). (12.38)

This expression is easily transformed into (12.23). �

12.3. We apply Theorem 6.5 to compute the expression (12.1) under the con-
dition that J (0) leaves the interval by a jump over the boundary.

Proposition 12.3. Let

D1
+ := 1=( + �)

�1 th((b− a)�1=2) + �

�2 − �21
+
�2 th((b− a)�2=2) + �

�22 − �2

, (12.39)

D1
− := 1=( + �)

�1 cth((b− a)�1=2) + �

�2 − �21
+
�2 cth((b− a)�2=2) + �

�22 − �2

. (12.40)

Then

Ex
{
e−γ(J

(0)(Ha,b)−b)e−λHa,b ; J (0)(Ha,b) > b
}

= e−γ(x−b)1I(b,∞)(x) +
{
D1
+

2

(
ch((b+ a− 2x)�1=2)

ch((b− a)�1=2)
− ch((b+ a− 2x)�2=2)

ch((b− a)�2=2)

)
−

D1
−
2

(
sh((b+ a− 2x)�1=2)

sh((b− a)�1=2)
− sh((b+ a− 2x)�2=2)

sh((b− a)�2=2)

)}
1I[a,b](x). (12.41)

Proof. Denote the left-hand side of (12.41) by R1
b(x). By Theorem 6.5, the

function R1
b(x) is the unique bounded solution of equation (6.12) with Φ(x) =

e−γ(x−b)1I(b,∞)(x). This solution can be found in the form

R1
b(x) = e−γ(x−b)1I(b,∞)(x) +

4∑
k=1

Ak
sh((x− �k)qk)

sh((b− a)qk)
1I[a,b](x), (12.42)

where the additional term e−γ(x−b)1I(b,∞)(x) appears, in contrast to the represen-
tation (12.24).

As a result, the additional term

E
{
e−γ(x+Y1−b)1I(b,∞)(x+ Y1)

}
= �

2( + �)
e−η(b−x)

appears in the expression for ER1
b(x+ Y1), in contrast to formula (12.30).
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Hence, in view of (12.19), in the expression for

∞∫
−∞

Gz(x)ER1
b(z + Y1) dz,

which is the basic component of equation (6.12), the additional term

�e−�b

2( + �)

2�1

(2�+ 2�1 − �2�2)

(
eηx − e�a sh((b− x)� ) + e�b sh((x− a)� )

sh((b− a)� )

)
(12.43)

appeares, in contrast to the same expression for R◦
b . Then substituting the solution

(12.42) into equation (6.12), we get for x ∈ [a, b] the analogue of (12.31) with the

term (12.43) in place of the first term sh((x− a)� )

sh((b− a)� )
.

Equating the coefficients at sh((x − δk)qk), we obtain the same values for the
variables qk, as in the previous case, i.e., they are the solutions of equation (10.1).

Equating the coefficients at e−ηx, we derive equation (12.32), and equating the
coefficients at eηx, we obtain that on the right-hand side of the analogue for (12.33)
there is the ratio 1

 + �
instead of zero.

Equating the coefficients at sh((x − a)Υ ) and at sh((b − x)Υ ), we see that 1 no
longer appeares in the left-hand side of (12.34). As a result, we have A3 = −A1 =:
B1, A2 = A4 =: A1. Then from (12.42) it follows that

R1
b(x) = e−γ(x−b)1I(b,∞)(x) +

{
B1
(
sh((b− x)�1)

sh((b− a)�1)
− sh((b− x)�2)

sh((b− a)�2)

)
+A1

(
sh((x− a)�1)

sh((b− a)�1)
− sh((x− a)�2)

sh((b− a)�2)

)}
1I[a,b](x). (12.44)

Proceeding as in the previous example, we get A1+B1 = D1
+ and A1−B1 = D1

−.
Then the expression for R1

b(x) has the form

Ex
{
e−γ(J

(0)(Ha,b)−b)e−λHa,b ; J (0)(Ha,b) > b
}

= e−γ(x−b)1I(b,∞)(x) +
{
D1
+ −D1

−
2

(
sh((b− x)�1)

sh((b− a)�1)
− sh((b− x)�2)

sh((b− a)�2)

)
+

D1
− +D1

+

2

(
sh((x− a)�1)

sh((b− a)�1)
− sh((x− a)�2)

sh((b− a)�2)

)}
1I[a,b](x).

This expression is easily transformed into (12.41). �

§ 13. Distribution of local time of Brownian motion with jumps

Let J (0)(s), s ≥ 0 be the Brownian motion with jumps defined in § 10. For the
process J (0) there exists a local time, i.e., a.s. for all y ∈ R and t ≥ 0 there exists
the limit

`(0)(t, y) := lim
ε↓0

1

"

t∫
0

1I[y,y+ε)(J (0)(s)) ds.
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This is a consequence of the fact that the same limit exists for the Brownian motion

σW (s), s ≥ 0. Indeed, we set Sm :=
m∑
k=1

Yk, S0 = 0 and κm := 1

�1

m∑
k=1

τk, κ0 = 0.

Then

`(0)(t, y) =
N(λ1t)∑
m=1

(
`(κm, y − Sm−1)− `(κm−1, y − Sm−1)

)
+ `(t, y − SN(λ1t))− `(κN(λ1t), y − SN(λ1t)),

where `(t, y) is the local time of the Brownian motion σW .
The following statement enables us to compute the joint distributions of an inte-

gral functional and the local time of the process J (0) at the exponentially distributed
with parameter λ > 0 random time τ independent of J (0).

Theorem 13.1. Let Φ(x), f(x), x ∈ R, be piecewise-continuous functions.
Assume that Φ is bounded and f is nonnegative. Then for γ ≥ 0 the function

Q(x) := Ex

{
Φ(J (0)(τ)) exp

(
−

τ∫
0

f(J (0)(s)) ds− γ`(0)(τ, r)
)}

, x ∈ R,

is the unique bounded continuous solution of the equation

Q(x) = M(x) +

∞∫
−∞

Gz(x)EQ(z + Y1) dz, (13.1)

where M(x) is the unique bounded continuous solution of the problem

1

2
σ2M ′′(x)− (λ+ λ1 + f(x))M(x) = −λΦ(x), x 6= r, (13.2)

M ′(r + 0)−M ′(r − 0) = 2γM(r)/σ2, (13.3)

and Gz(x) is the unique bounded continuous solution of the problem

1

2
σ2G′′(x)− (λ+ λ1 + f(x))G(x) = 0, x 6= z, r, (13.4)

G′(z + 0)−G′(z − 0) = −2λ1/σ
2, (13.5)

G′(r + 0)−G′(r − 0) = 2γG(r)/σ2. (13.6)

Remark 13.1. In the case z = r the conditions (13.5), (13.6) must be replaced
by the condition

G′(r + 0)−G′(r − 0) = 2γG(r)/σ2 − 2λ1/σ
2.

Remark 13.2. The function Q(x), x ∈ R, is the unique bounded continuous
solution of the problem

1

2
σ2Q′′(x)− (λ+ λ1 + f(x))Q(x) = −λΦ(x)− λ1EQ(x+ Y1), x 6= r, (13.7)
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Q′(r + 0)−Q′(r − 0) = 2γQ(r)/σ2. (13.8)

Indeed, for the Brownian motion we have Gz(x) = Gx(z). Since Gz(x) is the
Green function of the corresponding problem (see Ch. III, problems (4.23)–(4.27)
and (3.1)–(3.3) with a = −∞, b = ∞), the function

U(x) :=

∞∫
−∞

Gx(z)R(z) dz (13.9)

is the unique bounded continuous solution of the problem

1

2
σ2U ′′(x)− (λ+ λ1 + f(x))U(x) = −λ1R(x), x 6= r, (13.10)

U ′(r + 0)− U ′(r − 0) = 2γU(r)/σ2. (13.11)

Here R is an arbitrary bounded piecewise-continuous function.
Now it remains to observe that Q(x) = M(x) + U(x) for R(x) := EQ(x + Y1),

x ∈ R, and hence Q(x) is the solution of (13.7), (13.8).

Proof of Theorem 13.1. We apply Theorem 3.1 with σ(x) ≡ σ, µ ≡ 0, q ≡ 0,
h(x) ≡ λ1, ρ(x, y) = x + y, a = −∞ and b = ∞. Then, by (3.9), we see that for
ε > 0 the function

Qε(x) := Ex

{
Φ(J (0)(τ)) exp

(
−

τ∫
0

(
f(J (0)(s))+ 

"
1I[r,r+ε)(J (0)(s))

)
ds

)}
, x ∈ R,

is the unique bounded solution of the integro-differential equation

1

2
σ2Q′′

ε (x)−
(
λ+ λ1 + f(x) + 

"
1I[r,r+ε)(x)

)
Qε(x)

= −λΦ(x)− λ1EQε(x+ Y1). (13.12)

Analogously to the proof of Theorem 3.1 of Ch. III, in equation (13.12) we can
pass to the limit as ε ↓ 0, and conclude that Q(x), x ∈ R, is the unique bounded
continuous solution of (13.7), (13.8). �

Example 13.1. Let us compute the distribution of the local time `(0)(τ, r) for
the case when the density of Yk, k = 1, 2, . . . , is d

dy
P(Y1 < y) = 1

2
ηe−η|y|, η > 0.

We first consider the computation of the Laplace transform of the distribution of
the local time, i.e., the function Q(x) = Exe−γ`

(0)(τ,r). We apply Theorem 13.1
with Φ ≡ 1 and f ≡ 0.

In this case M is the unique bounded continuous solution of the problem

1

2
σ2M ′′(x)− (λ+ λ1)M(x) = −λ, x 6= r, (13.13)

M ′(r + 0)−M ′(r − 0) = 2γM(r)/σ2. (13.14)
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The solution of (13.13), (13.14) has the form

M(x) = �

�+ �1
− �

(�+ �1)( + �
√
2�+ 2�1)

e−|x−r|
√

2λ+2λ1/σ. (13.15)

Here it is not necessary to compute the function Gz(x), since we at once use
the formulas (13.9)–(13.11) and compute (see (13.9)) the function U(x) for R(x) =
e−|x−r|ρ. The function U is the unique bounded continuous solution of the problem

1

2
σ2U ′′(x)− (λ+ λ1)U(x) = −λ1e

−|x−r|ρ, x 6= r, (13.16)

U ′(r + 0)− U ′(r − 0) = 2γU(r)/σ2. (13.17)

The solution of (13.16), (13.17) has the form

U(x) =

∞∫
−∞

Gx(z)e−|z−r|ρ dz

= 2�1

2�+ 2�1 − �2�2

(
e−|x−r|ρ −  + ��2

 + �
√
2�+ 2�1

e−|x−r|
√

2λ+2λ1/σ
)
. (13.18)

The solution of equation (13.1), i.e., the function Q(x) = Exe−γ`
(0)(τ,r), can be

represented in the form

Q(x) = 1−A1e
−ρ1|x−r| −A2e

−ρ2|x−r|, (13.19)

where ρ1 and ρ2 defined by (10.3) and (10.4). As in the previous sections, one
could take in (13.19) any positive exponent constants q1 and q2 in place of ρ1 and
ρ2, but the following treatment show that they are equal to the roots of (10.1).

Taking into account the form of the density of the variables Y1 and the formula
(12.10) with a = −∞, b = ∞, we have

Ee−ρ|x+Y1−r| = �2

�2 − �2
e−ρ|x−r| − ��

�2 − �2
e−η|x−r|

and, therefore,

EQ(x+ Y1) = 1− A1�2

�2 − �21
e−ρ1|x−r| + A1�1�

�2 − �21
e−η|x−r|

− A2�2

�2 − �22
e−ρ2|x−r| + A2�2�

�2 − �22
e−η|x−r|. (13.20)

The coefficient at e−η|x−r| is set to be equal to zero, i.e.,

A1�1

�2 − �21
− A2�2

�22 − �2
= 0. (13.21)

Substituting (13.15) and (13.20) into (13.1), and using (13.18) with ρ = 0, ρ = ρ1,
and ρ = ρ2, we get

1−A1e
−ρ1|x−r|−A2e

−ρ2|x−r| = 1− 

 + �
√
2�+ 2�1

e−|x−r|
√

2λ+2λ1/σ
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−
2∑
k=1

2�1�2Ak

(�2 − �2k)(2�+ 2�1 − �2�2k)

(
e−|x−r|ρk −  + �k�

2

 + �
√
2�+ 2�1

e−|x−r|
√

2λ+2λ1/σ
)
.

Since
2�1�2

(�2 − �2k)(2�+ 2�1 − �2�2k)
= 1, k = 1, 2,

equating the coefficients at e−|x−r|
√

2λ+2λ1/σ, we find that

A1(γ + ρ1σ
2) +A2(γ + ρ2σ

2) = γ. (13.22)

The algebraic system of equations (13.21), (13.22) has the solution

A2 =
�1(�22 − �2)

(�2 − �1)((�2 + �1�2) + �1�2�2(�1 + �2))
,

A1 =
�2(�2 − �21)

(�2 − �1)((�2 + �1�2) + �1�2�2(�1 + �2))
.

By (13.19),

Exe−γ`
(0)(τ,r) = 1− �2(�2 − �21)

(�2 − �1)((�2 + �1�2) + �1�2�2(�1 + �2))
e−ρ1|x−r|

− �1(�22 − �2)

(�2 − �1)((�2 + �1�2) + �1�2�2(�1 + �2))
e−ρ2|x−r|. (13.23)

Inverting the Laplace transform with respect to γ (see formula 1 of Appendix 3),
we obtain

d

dy
Px

(
`(0)(τ, r) < y

)
=

�2(�2 − �21)e
−�1|x−r| + �1(�22 − �2)e−�2|x−r|

(�2 − �1)(�2 + �1�2)2(�1�2�2(�1 + �2))−1 exp
(
− y�1�2�2(�1 + �2)

�2 + �1�2

)
, (13.24)

Px

(
`(0)(τ, r) = 0

)
= 1− �2(�2 − �21)e

−�1|x−r| + �1(�22 − �2)e−�2|x−r|

(�2 − �1)(�2 + �1�2)
. (13.25)

Subtracting from (13.25) the probability (11.17) for b = r, x ≤ r, and the proba-
bility (11.18) for a = r, x ≥ r, we get

Px

(
`(0)(τ, r) = 0, and there are some jumps over the level r up to the time τ

)
= Px

(
up to τ there are only jumps over r while there are no crossings

)
= �1�2(�2 − �)(� − �1)

�(�2 − �1)(�2 + �1�2)

(
e−ρ1|x−r| − e−ρ2|x−r|

)
, x ∈ R. (13.26)



CHAPTER VII

INVARIANCE PRINCIPLE FOR

RANDOM WALKS AND LOCAL TIMES

§ 1. Formulation of problems

The classical invariance principle asserts that the distributions of a broad class
of continuous functionals of processes constructed from a normalized random walk
with finite variance converge to the distributions of these functionals of a Brownian
motion. However, nontrivial limit distributions exist also for various discontinu-
ous functionals of random walks, which does not follow directly from the classical
invariance principle. Many such functionals of random walks with finite variance
have limit distributions expressed in terms of the distributions of functionals of
Brownian local time. It turns out that such convergence is a consequence of the
weak convergence to Brownian local time of certain processes generated by recur-
rent random walks with finite variance.

By an invariance principle in the wide sense we will mean an assertion that a se-
quence of random processes constructed from partial sums of independent random
variables converges weakly to some random process, whose distributions depend
on the original random variables only in terms of finitely many real parameters.
Typical parameters are the mean and the variance. Weak convergence of random
processes is understood to be weak convergence of the measures generated by these
processes in the appropriate function space. The latter is usually a complete sep-
arable metric space of functions whose σ-algebra of Borel sets coincide with the
minimal σ-algebra containing all the cylindrical sets. For convergence of the pro-
cesses considered in this chapter we use the following variant of the definition of
weak convergence, which is equivalent to the classical one.

The processes Xn(t), t ∈ Σ ⊆ Rk, n = 1, 2, . . . , converge weakly to the process
X∞(t), if on some probability space there are processes X ′

n(t) and X ′
∞(t), t ∈ Σ,

such that the finite-dimensional distributions of the processes X ′
n(t) and Xn(t) are

the same for each n ∈ N
⋃
{∞}, and for any ε > 0

lim
n→∞

P
(

sup
t∈Σ

|X ′
n(t)−X ′

∞(t)| > ε
)

= 0. (1.1)

In each concrete case there exists a complete separable function space, equipped
with the uniform metric, such that weak convergence of the processes, defined
by (1.1), implies convergence of the measures generated by the processes in the
function space, and conversely.

Let νk, k=0, 1, 2, . . . , be a recurrent random walk with unit variance, i.e., ν0 =0,

νk =
k∑
l=1

ξl, where ξl, l = 1, 2, . . . , are independent identically distributed random

variables with Eξ1 = 0, Eξ21 = 1. In this chapter, we will prove, in particular,
that the process W̃n(t) := 1

√
n
ν[nt], t ∈ [0, T ], converges weakly to a Brownian
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502 VII INVARIANCE PRINCIPLE

motion W (t), t ∈ [0, T ], W (0) = 0 (the classical invariance principle). Following
the definition of weak convergence stated above, the classical (weak) invariance
principle for random walk νk can be formulated as follows.

Given a Brownian motion W (t), t ≥ 0, we can construct a recurrent random
walk νnk , k = 0, 1, . . . , such that for each fixed n its finite-dimensional distributions
coincide with those of the random walk νk, k = 0, 1, . . . , and the processes Wn(t) :=
1
√
n
νn[nt], t ∈ [0, T ], n = 1, 2, . . . , satisfy for any ε > 0 the relation

lim
n→∞

P
(

sup
t∈[0,T ]

|Wn(t)−W (t)| > ε
)

= 0. (1.2)

We define the space of functions that contains the sample paths of the processes
Wn, W and on which the measures generated by the processes Wn will converge to
the measure generated by the Brownian motion W . This is the space Br[0, T ] of
right continuous functions on [0, T ], having left limits and admitting discontinuities
only at rational points of the interval [0, T ]. Equipped with the metric

ρ(x, y) := sup
t∈[0,T ]

|x(t)− y(t)|,

Br[0, T ] becomes a complete separable metric space.
Since the uniform convergence in probability is equivalent (see Proposition 1.1

of Ch. I) to the fact that from every sequence of natural numbers one can extract
a subsequence such that there is uniform convergence a.s., (1.2) implies that for
any continuous functional ℘ on Br[0, T ] the distribution of ℘(Wn(t), 0 ≤ t ≤ T )
converges weakly to the distribution of ℘(W (t), 0 ≤ t ≤ T ).

Now we state the invariance principle for local times of random walks. The term
local time of a random walk is used for the functionals describing the behavior of a
random walk near some particular level.

Let f(y, z) be an arbitrary function. In the case of random walks on the integer

lattice we assume that f is defined on Z × Z and
∞∑

l=−∞
|h(l)| < ∞, where h(v) :=

Ef(v, v + ξ1). In the case of continuous random walks (the distribution of steps
of the walk has a density), we assume that f(y, z), (y, z) ∈ R2, is a measurable

function on the plane and
∞∫

−∞

|h(v)| dv <∞. Let h :=
∞∑

l=−∞
h(l) for integer random

walks and h :=
∞∫

−∞

h(v) dv for continuous ones. Consider the process

qn(t, x) := 1
√
n

[nt]∑
k=1

f(νnk−1 − xn, ν
n
k − xn), (t, x) ∈ [0, T ]×R,

where xn = [x
√
n] for the integer random walks and xn = x

√
n for continuous ones.

Such functionals of the random walk were considered in Skorohod and Slobodenyuk
(1970).
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We now give examples of functionals of the random walk νnk that are described
by the process qn(t, x). In the list of examples, we give in parentheses the function
f for which

√
n qn(t, x) is the indicated functional. The examples are

1) the number of times νnk hits the point [x
√
n] up to the time [nt]

(
f(y, z) =

1I{0}(y)
)
;

2) the number of times νnk hits the interval (xn − α, xn + β) up to the time [nt](
f(y, z) = 1I(−α,β)(y), α, β > 0

)
;

3) the number of times νnk crosses the level xn in [nt] steps
(
f(y, z)=1I(−∞,0)(yz)

)
;

4) the total length of the steps of the random walk νnk that cross the level xn up
to the time [nt]

(
f(y, z) = |z − y|1I(−∞,0)(yz)

)
.

The limit process for qn(t, x) is the process h`(t, x), (t, x) ∈ [0, T ]×R, where ` is
the Brownian local time (see § 5 Ch. II and § 1 Ch. V). Under certain assumptions
on the function f and under the assumption that the random walk just has a second
moment, we prove in § 6 and § 7 that for any T > 0

sup
(t,x)∈[0,T ]×R

|qn(t, x)− h`(t, x)| → 0, n→∞, (1.3)

in probability. This is the so-called weak invariance principle for local times. To-
gether with the classical invariance principle (1.2) this result enables us to prove
convergence of distributions of functionals of random walks when the classical prin-
ciple cannot be applied. This significantly extends the class of functionals of ran-
dom walks for which we can prove convergence of distributions.

Under more restrictive assumptions we establish in § 8 a strong invariance princi-
ple, which gives an estimate of the rate of convergence in (1.3). Various applications
of the invariance principle for local times are considered in § 9.

We use the Skorohod embedding scheme (see Skorohod (1965)) described in § 2
to construct the random walks νnk from the Brownian motion W .

The assertions of this chapter can be extended for the processes qn(t, x) defined
as the normalized partial sums of f(νk−1 − xn, νk − xn, . . . , νk+l − xn) with any
integer l ≥ 1.

§ 2. The Skorohod embedding scheme

The Skorohod embedding scheme describes how using a Brownian motion one
can construct a sequence of stopping times such that the Brownian motion stopped
at these moments forms a given random walk with zero mean and finite variance.
Without loss of generality, we can assume that the variance of a step of the random
walk is equal to 1, because a Brownian motion has the scaling property (see § 1 Ch.
V). This scheme will be used to construct from a Brownian motionW (t), t ∈ [0,∞),
W (0) = 0, a sequences of random walks νnk , n = 1, 2, . . . , distributed like the

original random walk νk =
k∑
l=1

ξl, k = 1, 2, . . . , ν0 = 0, for every fixed n.

Before describing this scheme in detail, we mention some properties of a Brown-
ian motion W with zero initial value. Let H := min{s : W (s) ∈ (−a, b)}, a > 0,
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b > 0, be the first exit time. We rewrite formula (5.29) of Ch. III as

Ee−αH =
ch((b− a)

√
�=2)

ch((a+ b)
√
�=2)

. (2.1)

Formulas (5.10) of Ch. III are transformed to the equalities

P(W (H) = −a) = b

a+ b
, P(W (H) = b) = a

a+ b
. (2.2)

We need the formulas for the series expansion of the hyperbolic cosine and hyper-
bolic secant:

chx =
∞∑
k=0

x2k

(2k)!
,

1

chx
= sechx =

∞∑
k=0

(−1)kEkx2k

(2k)!
,

where

El := 22l+2(2l)!

�2l+1

∞∑
k=0

(−1)k

(2k + 1)2l+1

are Euler’s numbers, E0 = E1 = 1, E2 = 5, . . . . Expanding the left-hand side and
the right-hand side of (2.1) in powers of α, we get for any integer q ≥ 0

EHq = q!

2q

q∑
l=0

(−1)q−lEl
(2l)!(2q − 2l)!

(a+ b)2l(b− a)2q−2l. (2.3)

For q = 1 (2.3) becomes EH = ab and for q = 2 it becomes EH2 = ab

3
(a2+3ab+b2).

Lemma 2.1. For q = 1, 2, . . .

EHq ≤ (q + 1)!

2q−4 ab(a+ b)2q−2. (2.4)

Proof. For a fixed q we set Cl := (−1)lEl
(2l)!(2q − 2l)!

. Formula (2.3) with a = 0 implies

that
q∑
l=0

Cl = 0, because in this case H = 0. Then (2.3) can be rewritten as

EHq = q!(−1)q

2q

q−1∑
l=0

( l∑
j=0

Cj

)(
(a+ b)2l(b− a)2q−2l − (a+ b)2l+2(b− a)2q−2l−2

)
.

It is obvious that∣∣(a+ b)2l(b− a)2q−2l − (a+ b)2l+2(b− a)2q−2l−2
∣∣ ≤ 4ab (a+ b)2q−2,

q∑
l=0

|Cl| ≤
∞∑
l=0

22l+2

�2l+1
= 4

�(1− 4=�2)
≤ 4.
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Substituting these estimates in the above equality, we get (2.4). �

Using example 5.3 of Ch. III for x = q = 0, we find that

Ee−β`(H,0) = E{e−β`(H,0)|W (H) = −a} = E{e−β`(H,0)|W (H) = b} = b+ a

b+ a+ 2�ab

for β ≥ 0. Expanding both sides of this equality in powers of β, we get

E`q(H, 0) = E{`q(H, 0)|W (H) = −a}

= E{`q(H, 0)|W (H) = b} = 2qq!aqbq

(a+ b)q
(2.5)

for any integer q ≥ 0.
We now proceed to the description of the Skorohod embedding scheme. Let

F (x), x ∈ R, be an arbitrary distribution function with zero mean and unit vari-
ance:

∞∫
−∞

x dF (x) = 0,

∞∫
−∞

x2 dF (x) = 1.

We consider two positive random variables a and b with the joint distribution

P
(
−a ∈ [x, x+dx), b ∈ [y, y+dy)

)
= 2(y − x) dF (x) dF (y)

p0

∞∫
−∞

|z| dF (z)

1I(−∞,0)(x)1I(0,∞)(y), (2.6)

where p0 = 1 − F (+0) + F (0) is the probability that a random variable with the
distribution function F does not equal to zero. It is easy to see that (2.6) determines
the joint distribution function by considering the equalities

−
∫

(−∞,0)

xdF (x) =
∫

(0,∞)

x dF (x) = 1

2

∞∫
−∞

|x| dF (x). (2.7)

Let F (x) := P(ξ1 < x), x ∈ R, be the distribution function of the step of the
random walk νk. To simplify notations, we consider two independent random
variables µ and η with distributions

P(µ < x) = P(−ξ1 < x), P(η < x) = P(ξ1 < x).

Then (2.7) can be written as follows:

E
{
µ1I{µ>0}

}
= E

{
η1I{η>0}

}
= 1

2
E|ξ1|. (2.8)

Moreover, (2.6) implies that for an arbitrary bounded measurable function f(x, y),
(x, y) ∈ (0,∞)× (0,∞),

Ef(a, b) = 2

p0E|�1|
E
{
(µ+ η)f(µ, η)1I{µ>0,η>0}

}
. (2.9)



506 VII INVARIANCE PRINCIPLE

Let the two-dimensional random variable (a, b) be independent of the Brownian
motion W . Let Hn be the first time the process W hits the set

{
−a/

√
n, 0, b/

√
n
}

after the first exit time from the interval
(
− p0a/

√
n, p0b/

√
n
)
, i.e., Hn := H1,n +

H2,n, where

H1,n := min
{
s ≥ 0 : W (s) /∈

(
− p0a√

n
,
p0b√
n

)}
,

H2,n := min
{
s ≥ 0 : W (s+H1,n) ∈

{
− a

√
n
, 0, b

√
n

}}
.

We remark that for p0 = 1 the time Hn is just the first exit time from the
interval

(
− a/

√
n, b/

√
n
)
.

Lemma 2.2. The distribution function ofW (H1) coincides with F and EH1 =1.

Proof. Let x > 0. Using the independence of the two-dimensional variable (a, b)
of the Brownian motion W , Fubini’s theorem, and the strong Markov property of
the process W together with (2.2) and (2.9), we get

P
(
W (H1) ∈ [x, x+ dx)

)
= E

(
1I[x,x+dx)(b)1I(0,∞)(a)

p0a

p0a+ p0b

p0b

b

)
= 2

E|�1|
E
{
(µ+ η)1I[x,x+dx)(η)

�

�+ �
1I(0,∞)(µ)

}
= P

(
ξ1 ∈ [x, x+ dx)

)
.

The case x < 0 is handled similarly. The case x = 0 need not be treated separately,
but we dwell on it in order to gain experience in such computations. We have

P
(
W (H1) = 0

)
= E

{
p0b

p0a+ p0b

(1− p0)a

a
+ p0a

p0a+ p0b

(1− p0)b

b

}
= 1− p0.

The proof of the second assertion of the lemma is based on the strong Markov
property of the process W and on the formulas (2.3) with q = 1 and (2.9). We
have

EH1 = EH1,1 +EH2,1 = E
(
p2
0ab
)
+E

(
b

a+ b
p0(1−p0)a2 + a

a+ b
p0(1−p0)b2

)
= p0E(ab) = 2

E|�1|
E
{
(µ+ η)µη1I{µ>0,η>0}

}
= E

{
µ21I{µ>0}

}
+ E

{
η21I{η>0}

}
= Eξ21 = 1. (2.10)

�

Remark 2.1. For any integer n ≥ 1 the distribution function of the variable√
nW (Hn) coincides with F and EHn = 1/n.

This follows from Lemma 2.2 and the scaling property of the Brownian motion
(see § 10 Ch. I).

Given a Brownian motion W we can now construct random walks νnk distributed
like the original random walk νk for each n = 1, 2, . . . . We consider a sequence
{(ak, bk)}∞k=1 of independent two-dimensional random variables identically dis-
tributed with (a, b). Assume that the sequence of random variables {(ak, bk)}∞k=1
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is independent of the process W . Let νnk :=
√
nW

( k∑
l=1

H (l)
n

)
, where for each

l = 1, 2, . . . the stopping time H (l)
n is determined recurrently from the Brownian

motion

W (l)(s) := W
(
s+

l−1∑
j=1

H (j)
n

)
−W

( l−1∑
j=1

H (j)
n

)
, s ≥ 0,

and the random variable (al, bl) as follows: H (l)
n := H (l)

1,n +H (l)
2,n, where

H (l)
1,n := min

{
s ≥ 0 : W (l)(s) /∈

(
− p0al√

n
,
p0bl√
n

)}
,

H (l)
2,n := min

{
s ≥ 0 : W (l)(s+H (l)

1,n) ∈
{
− al√

n
, 0, bl√

n

}}
.

Using the strong Markov property of the Brownian motion W and Remark 2.1,

it is not hard to see that the variables νnk can be represented as the sum νnk =
k∑
l=1

ξnl

of independent identically distributed random variables

ξnl :=
√
n
(
W
( l∑
j=1

H (j)
n

)
−W

( l−1∑
j=1

H (j)
n

))
, l = 1, 2, . . . , (2.11)

whose distribution function coincides with F .
We sum up the essence of the Skorohod embedding scheme. This scheme de-

scribes the construction of the copies νnk of the original random walk νk such that

1
√
n
νnk = W

( k∑
l=1

H (l)
n

)
, E

k∑
l=1

H (l)
n = k

n
, k = 1, 2, . . . , (2.12)

where H (l)
n are the increments of successive random stopping times of the Brownian

motion W .

§ 3. Invariance principle for random walks

The weak invariance principle for random walks is characterized by the formula
(1.2). In what follows we deals with the random walks νnk constructed according to
the Skorohod embedding scheme. For every n these random walks are identically
distributed like the initial random walk νk. Therefore, considering the random
walk νnk under the expectation sign or probability, we omit sometimes the index n
to simplify the notations. The same is true for the variables ξnk = νnk − νnk−1. They
will be denoted by ξk under the expectation sign or probability. Also to simplify
the notation we often omit the index 1 on H (1)

n .
We first derive a number of auxiliary results that will be often used for proving

theorems on convergence to the Brownian motion and to its local time.
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We define the truncated two-dimensional random variable (a, b) as

a :=
{
a, for a ≤ θ

√
n,

θ
√
n, for a > θ

√
n,

b :=
{
b, for b ≤ θ

√
n,

θ
√
n, for b > θ

√
n,

where θ = θ(n) will be chosen in dependence on the assertions to be proved, but
such that θ → 0 and θ

√
n→∞.

We consider the truncated random walk νnk , constructed from the Brownian mo-
tion W in the same way as the original random walk νnk , but using the truncated
two-dimensional random variable (a, b). Let {(ak, bk)}∞k=1 be a sequence of inde-
pendent two-dimensional random variables distributed like (a, b). It is clear that
this sequence is independent of W , because this is true for {(ak, bk)}∞k=1.

Let νnk :=
√
nW

( k∑
l=1

H
(l)

n

)
, where the stopping time H

(l)

n , l = 1, 2 . . . , is defined

from the Brownian motion

W
(l)

(s) := W
(
s+

l−1∑
j=1

H
(j)

n

)
−W

( l−1∑
j=1

H
(j)

n

)
, s ≥ 0,

and the random variables (al, bl) as follows: H
(l)

n := H
(l)

1,n +H
(l)

2,n,

H
(l)

1,n := min
{
s ≥ 0 : W

(l)
(s) /∈

(
− p0al√

n
,
p0bl√
n

)}
,

H
(l)

2,n := min
{
s ≥ 0 : W

(l)
(s+H

(l)

1,n) ∈
{
− al√

n
, 0, bl√

n

}}
.

We denote ξ
n

k := νnk − νn−1
k , Ωn := {νnk = νnk , k = 1, 2, . . . , n}. Observe that

|ξnk | ≤ θ
√
n. We explain the choice of the set Ωn. Suppose that p0 = 1 and hence,

H
(l)

n = min
{
s : W

(l)
(s) /∈

(
− al√

n
,
bl√
n

)}
.

At first glance we can take the set Ω0,n :=
n⋂
k=1

{ak≤θ
√
n, bk≤θ

√
n} instead of Ωn.

It is clear that Ω0,n ⊂ Ωn. However, if ξ1 has only the second moment, then the
probability of Ω0,n does not tend to 1 as n→∞. Indeed, by (2.9),

P(Ω0,n)=
n∏
k=1

P
(
ak ≤ θ

√
n, bk ≤ θ

√
n
)
=
(

2

E|�1|
E
{
(µ+ η)1I{0<µ≤θ√n,0<η≤θ√n}

})n
=
(
1− 2

E|�1|
E
{
(µ+ η)1I{µ>θ√n}⋃

{η>θ
√
n}1I{µ>0,η>0}

})n
∼exp

{
−nP

(
|ξ1| > θ

√
n
)

− 2n

E|�1|
E{ξ1; ξ1>θ

√
n}P(−θ

√
n ≤ ξ1<0)+ 2n

E|�1|
E{ξ1; ξ1<−θ

√
n}P(0<ξ1≤θ

√
n)
}
.
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Thus P(Ω0,n) 6→ 1 as θ(n) → 0.
When considering the set Ωn, in addition to the behavior of the random variable

(a, b) we also take into account the behavior of the Brownian sample paths. For
example, for p0 = 1 the set {νn1 = νn1 } will hold even if 0 < a1 ≤ θ

√
n, b1 > θ

√
n,

whereas the sample paths of W reach the level −a1 before the level θ
√
n.

Let us estimate the probability of the complement of Ωn. Applying (2.2) and
(2.9), we get

P(ν1 6= ν1) = 2

p0E|�1|
E
{

(µ+ η)
(
1I{µ>θ√n,η>θ√n} + 1I{0<µ≤θ√n,η>θ√n}

�

�+ �
√
n

+1I{µ>θ√n,0<η≤θ√n}
�

� + �
√
n

)}
≤ C

p0�2n
E
{
ξ21 ; |ξ1| > θ

√
n
}
.

Here and in what follows, C denotes positive constants, not always the same.
As a result, we have

P(Ωc
n) = P

(( n⋂
k=1

{ξnk = ξnk }
)c)

≤ nP(ν1 6= ν1) ≤
C

p0�2
E
{
ξ21 ; |ξ1| > θ

√
n
}
. (3.1)

With an appropriate choice of θ (for example, as in Theorem 3.1), the right-hand
side of this estimate tends to zero.

Similarly to the truncation operation, defined above, we set

µ :=
{
µ, for µ ≤ θ

√
n,

θ
√
n, for µ > θ

√
n,

η :=
{
η, for η ≤ θ

√
n,

θ
√
n, for η > θ

√
n.

Consider the random moments H
(l)

n , l = 1, . . . , n, that are independent and
identically distributed. For simplicity we sometimes omit the superscript (1) of the
quantities H

(1)

n , H
(1)

1,n, H
(1)

2,n. Using the strong Markov property of the Brownian
motion, (2.3) with q = 1, 2, (2.9), and (2.10), we get

EHn = EH1,n + EH2,n = 2

p0E|�1|n
E
{

(µ+ η)
(
p2
0µη + �

�+ �
p0(1− p0)µ2

+ �

�+ �
p0(1− p0)η2

)
1I{µ>0,η>0}

}
= 2

E|�1|n
E
{
(µ+ η)µη1I{µ>0,η>0}

}
= 2

E|�1|n

(
E
{
(µ+ η)µη1I{µ>0,η>0}

}
+O

(
E
{
ξ21 ; |ξ1| > θ

√
n
}))

= 1

n

(
1 + 2

E|�1|
O
(
E{ξ21 ; |ξ1| > θ

√
n}
))
, (3.2)

EH
2

n ≤ 2
(
EH

2

1,n + EH
2

2,n

)
= 4

3p0n2E|�1|
E
{
(µ+ η)

{
p4
0µη
(
µ2 + 3µη + η2

)
+(p0−p2

0)(1+p0−p2
0)µη(µ

2−µη+η2)
}
1I{µ>0,η>0}

}
≤ C

n2
E
{
|ξ1||ξ1|3

}
≤ C�2

p0n
, (3.3)
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where
|ξ1| = |ξ1|1I{|ξ1|≤θ√n} + θ

√
n1I{|ξ1|>θ√n}.

We now pass directly to the derivation of the classical invariance principle (1.2).
We recall the notation Wn(t) := 1

√
n
νn[nt], t ∈ [0, T ], introduced above. Without

loss of generality, we assume that T = 1. Set τn(t) :=
[nt]∑
l=1

H (l)
n , t ∈ [0, 1]. According

to the construction of the random walk νnk , k = 1, 2, . . . , with the help of the
Skorohod embedding scheme (see (2.12)), we have Wn(t) = W (τn(t)).

Theorem 3.1. Let Eξ21 <∞,

θ := max
{
E1/3

{
ξ21 ; |ξ1| > n1/4

}
, n−1/4

}
.

Then
P
(

sup
0≤t≤1

|Wn(t)−W (t)| > θ1/5
)
≤ C

(
1 + 2/p0

)
θ, (3.4)

where C is a constant.

Proof. Set τn(t) :=
[nt]∑
l=1

H
(l)

n , t ∈ [0, 1]. From (3.2) we deduce that

∣∣∣∣ [nt]∑
l=1

EH
(l)

n − [nt]

n

∣∣∣∣ ≤ CE{ξ21 ; |ξ1| > θ
√
n} ≤ CE{ξ21 ; |ξ1| > n1/4} ≤ Cθ3.

Then for all sufficiently large n such that Cθ3 + 1/n ≤
√
θ, we have

P
(

sup
0≤t≤1

|τn(t)− t| > 2
√
θ
)
≤ P

(
sup

1≤k≤n

∣∣∣ k∑
l=1

(
H

(l)

n −EH
(l)

n

)∣∣∣ > √
θ
)
.

Now, using (5.10) Ch. I and (3.3), we obtain

P
(

sup
0≤t≤1

|τn(t)− t| > 2
√
θ
)
≤ 1

�
E
∣∣∣ n∑
l=1

(
H

(l)

n −EH
(l)

n

)∣∣∣2 ≤ C�

p0
. (3.5)

By (3.1),
P(Ωc

n) ≤
C

p0�2
E
{
ξ21 , |ξ1| > n1/4

}
≤ C�

p0
.

On the set Ωn we have H
(l)

n = H (l)
n for all l = 1, . . . , n, and hence, τn(t) = τn(t),

t ∈ [0, 1]. Therefore,

P
(

sup
0≤t≤1

|τn(t)− t| > 2
√
θ
)
≤ P(Ωc

n) + P
(

sup
0≤t≤1

|τn(t)− t| > 2
√
θ
)
≤ 2C�

p0
. (3.6)

Then, using (3.6) and the representation Wn(t) = W (τn(t)), we have

P
(

sup
0≤t≤1

|Wn(t)−W (t)| > θ1/5
)
≤ 2C�

p0
+P

(
sup

|s−t|≤2
√
θ,t∈[0,1]

|W (s)−W (t)| > θ1/5
)
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≤ 2C�

p0
+ P

( [1/
√
θ]⋃

k=0

{
sup

s∈[tk,tk+1]

|W (s)−W (tk)| >
�1=5

3

})

≤ 2C�

p0
+ 1 +

√
�

√
�

P
(

sup
s∈[0,

√
θ]

|W (s)| > �1=5

3

)
≤ 2C�

p0
+ 3302

�6
√
�
E sup
s∈[0,

√
θ]

W 30(s), (3.7)

where {tk}, k = 0, 1, 2, . . . , is the lattice in [0, 1] with the array spacing
√
θ. The

inequality (4.25) Ch. II with h ≡ 1 and k = 15 implies the estimate

E sup
s∈[0,

√
θ]

W 30(s) ≤ C1 θ
7
√
θ.

This estimate together with (3.7) implies (3.4). �

Remark 3.1. Since θ ↓ 0 as n→∞, (3.4) implies (1.2), i.e., the weak invariance
principle for random walks holds.

Remark 3.2. Under the fourth finite moment condition Eξ41 < ∞ we can
prove the weak invariance principle without using the truncation procedure (see
the estimate (3.3)).

Further we consider the strong invariance principle for random walks, which
gives an a.s. estimate for the rate of convergence of the differences Wn(t) −W (t)
to zero.

Theorem 3.2. Assume that E ξ81 <∞. Then

lim sup
n→∞

n1=4

lnn
sup

0≤t≤1
|Wn(t)−W (t)| <∞ a.s. (3.8)

Proof. According to the first part of the Borel–Cantelli lemma (see Remark 1.1
Ch. I), it suffices to prove that for some constant K > 0

∞∑
n=1

P
(

sup
0≤t≤1

|Wn(t)−W (t)| > Kn−1/4 lnn
)
<∞. (3.9)

Indeed, from (3.9) if follows that there exists a.s. a number n0 = n0(ω) such that
for all n ≥ n0

sup
0≤t≤1

|Wn(t)−W (t)| ≤ Kn−1/4 lnn.

This implies (3.8).
We prove an auxiliary result, which characterizes closeness of t and τn(t).

Lemma 3.1. For some constant K1 > 0

∞∑
n=1

P
(

sup
0≤t≤1

|τn(t)− t| > K1
lnn
√
n

)
<∞. (3.10)
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Proof. As mentioned above, if the set Ωn holds, then τn(t) = τn(t), t ∈ [0, 1].
We estimate the probability of the complement of Ωn with the help of the estimates
(3.1)–(3.3) for θ = n−1/4. From (3.1) we have

∞∑
n=1

P(Ωc
n) ≤

C

p0

∞∑
n=1

E{ξ41 ; ξ41 > n} = C

p0

∞∑
n=1

∞∑
k=n

E
{
ξ411I{k<ξ41≤k+1}

}

= C

p0

∞∑
k=1

kE
{
ξ411I{k<ξ41≤k+1}

}
≤ C

p0
E{ξ81 ; |ξ1| > 1}. (3.11)

This estimate enables us to replace in (3.10) the moments τn(t) by the moments
τn(t). By (3.2), ∣∣∣EHn −

1

n

∣∣∣ ≤ C

n5=2
. (3.12)

Applying (2.2), (2.4) and (2.9), we get that for any integer q ≥ 2

EH
q

n ≤ 2q−1
(
EH

q

1,n + EH
q

2,n

)
≤ (q + 1)!23

p0E|�1|nq
E
{
(µ+ η)

(
p2q
0 µη(µ+ η)2q−2 + ��(1− p0)p0

�+�
(µ2q−1 + η2q−1)

)
1I{µ>0,η>0}

}
≤ (q + 1)!22q+2

E|�1|nq
E
{
(µ+ η)µη(µ2q−2 + η2q−2)1I{µ>0,η>0}

}
≤ C(q + 1)! 22q

n1+q=2
. (3.13)

We prove that for some λ > 0 and any integer 1 ≤ m ≤ n,

E exp
(
λ
∣∣∣√n m∑

k=1

(
H

(k)

n −EH
(k)

n

)∣∣∣) ≤ 2. (3.14)

To estimate the corresponding moments we use induction on the power of moments.
The induction hypothesis is the following: for all integers 1 ≤ m ≤ n and 0 ≤ p ≤
q − 1 ∣∣∣E(√n m∑

k=1

(
H

(k)

n −EH
(k)

n

))p∣∣∣ ≤ Lpp!. (3.15)

For p = 0 and p = 1 this estimate is obvious, providing the induction base. We
prove (3.15) for p = q.

For integers m ≥ 2 and q ≥ 1, we have the equalities

( m∑
k=1

xk

)q
=

q∑
j=1

q!

j!(q − j)!
xj1

( m∑
l=2

xl

)q−j
+
( m∑
l=2

xl

)q

= · · · =
q∑
j=1

q!

j!(q − j)!

m−1∑
k=1

xjk

( m∑
l=k+1

xl

)q−j
+ xqm.
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The resulting equality can be written in a more compact form, if we set 00 = 1 and
set the sums equal to zero if the upper index is less than the lower one. Then( m∑

k=1

xk

)q
=

q∑
j=1

q!

j!(q − j)!

m∑
k=1

xjk

( m∑
l=k+1

xl

)q−j
. (3.16)

Set Xk :=
√
n
(
H

(k)

n − EH
(k)

n

)
, k = 1, . . . , n. These variables are independent

and identically distributed. From (3.12) and (3.13) it follows that

E|X1|q ≤ nq/22q−1
(
E
(
H

(1)

n

)q + EqH
(1)

n

)
≤ C(q + 1)!23q

n
, q = 2, 3, . . . .

Using this estimate, (3.15) for p ≤ q − 1, (3.16), and the fact that the variables
Xk are independent and identically distributed, we conclude that for every integer
1 ≤ m ≤ n, ∣∣∣E( m∑

k=1

Xk

)q∣∣∣ = ∣∣∣ q∑
j=1

q!

j!(q − j)!

m∑
k=1

EXj
kE
( m∑
l=k+1

Xl

)q−j∣∣∣
≤ Lqq!

∞∑
j=1

L−j(j + 1)C2
3jm

n
= Lqq! Cm

n

16(1− 4=L)

L(1− 8=L)2
.

For L ≥ 8
√
C + 1

√
C + 1−

√
C

this yields (3.15) for p = q. To prove the previous estimate

we used the equality

∞∑
j=1

(j + 1)zj =
( ∞∑
l=0

zl − 1− z
)′

=
(

1

1− z

)′
− 1 = z(2− z)

(1− z)2
, 0 < z < 1.

We now pass to the derivation of the estimate analogous to (3.15) in which the
absolute moments are considered. Using Stirling’s formula

n! =
√

2πn
(
n

e

)n(
1 + �n

n

)
, n = 1, 2, . . . ,

where |αn| ≤ 1/12, we get that for some M > 1

(n!)(n−1)/n ≤Mn−1(n− 1)!. (3.17)

Indeed, the logarithm of the ratio (n!)(n−1)/n
/
(n− 1)!, n ≥ 2, has the expression(

n− 1

2

)
ln
(

n

n− 1

)
− 1

2n
ln(2πn) + ln

((
1 + �n

n

)/(
1 + �n−1

n− 1

))
− 1

n
ln
(
1 + �n

n

)
,

which is estimated by (n− 1) lnM .
Using (3.15) for even p and (3.17), we obtain

E
∣∣∣√n m∑

k=1

(
H

(k)

n −EH
(k)

n

)∣∣∣p−1

≤ E(p−1)/p
(√

n
m∑
k=1

(
H

(k)

n −EH
(k)

n

))p
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≤ Lp−1(p!)(p−1)/p ≤ (LM)p−1(p− 1)!,

and, therefore,

E
∣∣∣√n m∑

k=1

(
H

(k)

n −EH
(k)

n

)∣∣∣p ≤ (LM)pp!

for all integers p. This estimate implies (3.14) with λ = (2LM)−1.

We conclude the proof of the lemma. By (3.12), (3.14), for sufficiently large
constants K2 < K1

P
(

sup
0≤t≤1

|τn(t)−t| > K1
lnn
√
n

)
≤ P(Ωc

n)+P
(

sup
0≤t≤1

∣∣∣ [nt]∑
k=1

(
H

(k)

n −EH
(k)

n

)∣∣∣ > K2
lnn
√
n

)

≤ P(Ωc
n) +

n∑
m=1

P
(∣∣∣ m∑

k=1

(
H

(k)

n −EH
(k)

n

)∣∣∣ > K2
lnn
√
n

)
≤ P(Ωc

n) + 2n exp
(
− λK2 lnn

)
= P(Ωc

n) + 2n−1−ρ, (3.18)

where K2λ = 2 + ρ, ρ > 0. From (3.18) and (3.11) we get (3.10). �

It is not hard to derive (3.9) with the help of Lemma 3.1. Indeed, proceeding
analogously to the proof of (3.7) and using (2.15) Ch. III, we obtain

P
(

sup
0≤t≤1

|Wn(t)−W (t)| > K lnn

n1=4

)
≤ P

(
sup

0≤t≤1
|τn(t)− t| > K1

lnn
√
n

)
+ P

(
sup

|s−t|≤K1 lnn/
√
n

|W (s)−W (t)| > K lnn

n1=4

)
≤ P(Ωc

n) + 2n−1−ρ +
√
n

K1 lnn
P
(

sup
s∈[0,K1 lnn/(2

√
n)]

|W (s)| > K lnn

3n1=4

)
≤ P(Ωc

n) + 2n−1−ρ + 6
√
n

√
�K

√
K1 ln

3=2 n
exp

(
− K2 lnn

9K1

)
. (3.19)

For K2 > 27K1/2 the right-hand side of (3.19) is summable, which proves (3.9).

�

§ 4. Estimates for distributions of
maximum of sums of random variables

In order to prove weak convergence of processes it is necessary, along with con-
vergence of the finite-dimensional distributions, to estimate the deviations of these
processes on small time intervals.

We need the following two results giving estimates for the distributions of the
maximum of sums of random variables.



§ 4. DISTRIBUTIONS OF MAXIMUM OF SUMS OF RANDOM VARIABLES 515

Proposition 4.1 (Billingsley). Suppose that for some γ > 0, β > 1, and for
all λ > 0

P(|Sl − Sj | ≥ λ) ≤ 1

�

( l∑
t=j+1

vt

)β
, 0 ≤ j < l ≤ n,

where {Sl}nl=1, S0 = 0, is a sequence of random variables and {vt}nt=1 is a collection
of nonnegative numbers. Then

P
(

max
1≤l≤n

|Sl| ≥ λ
)
≤ K

�

( n∑
t=1

vt

)β
,

where K is a constant depending only on γ and β.

Proof. We prove this assertion by induction on n. For n = 1 the estimate is
obvious. Assume that the assertion holds for any integer less than n. We prove
that it holds also for n. We choose h, 1 ≤ h ≤ n, such that

v1 + · · ·+ vh−1

v
≤ 1

2
≤ v1 + · · ·+ vh

v
,

where v = v1 + · · ·+ vn > 0. Set a sum equal to zero if the upper index of the sum
is less than the lower one. Put V1 := max

1≤j≤h−1
|Sj |, V2 := max

h+1≤j≤n
|Sj − Sh|. For

h = n we set V2 := 0. Then

max
1≤l≤n

|Sl| ≤ max{V1, V2 + |Sh|}.

From this it follows that for 0 < λ1 < λ

P
(

max
1≤l≤n

|Sl| ≥ λ
)
≤ P(V1 ≥ λ) + P(V2 + |Sh| ≥ λ)

≤ P(V1 ≥ λ) + P(V2 ≥ λ1) + P(|Sh| ≥ λ− λ1).

Using the induction hypothesis, we get that

P
(

max
1≤l≤n

|Sl| ≥ λ
)
≤ Kv�

�2�
+ Kv�

�12
� + v�

(�− �1)
.

It is not hard to establish that

min
0<λ1<λ

(
K

2��1
+ 1

(�− �1)

)
= 1

�

((
K

2�

)1/(γ+1)

+ 1
)γ+1

.

We choose λ1 corresponding to this minimum value. Then

P
(

max
1≤l≤n

|Sl| ≥ λ
)
≤
(
K

2�
+
((

K

2�

)1/(γ+1)

+ 1
)γ+1) v�

�

= 1

2�

(
1 +

(
1 +

(
2�

K

)1/(1+γ))γ+1) K
�
vβ ≤ K

�
vβ .

The last inequality is valid for sufficiently large K depending only on β and γ. �

Remark 4.1. Proposition 4.1 is valid for random variables Sl taking values in
an arbitrary normed linear space, in which case the norm in the corresponding
space is denoted by | · |. This is true because the proof used only the triangle
inequality, which holds for any norm.

The next proposition is a generalization of Proposition 4.1 to the case of two
parameters.
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Proposition 4.2. For an arbitrary sequence {Skl}m,nk=1,l=1 of random variables
set

Sklij := Skl − Sil + Sij − Skj , 1 ≤ i ≤ k, 1 ≤ j ≤ l.

Suppose that for some γ > 0, α > 1, β > 1, and for all λ > 0

P
(
|Sklij | ≥ λ

)
≤ 1

�

( k∑
s=i+1

us

)α( l∑
t=j+1

vt

)β
,

0 ≤ i < k ≤ m, 0 ≤ j < l ≤ n,

where {us}ms=1, {vt}nt=1 are some collections of nonnegative numbers and Sk0 := 0,
S0l := 0 for all k and l. Then

P
(

max
1≤k≤m
1≤l≤n

|Skl| ≥ λ

)
≤ K

�

( m∑
s=1

us

)α( n∑
t=1

vt

)β
,

where K is a constant depending only on γ, α, and β.

Proof. For the proof of this proposition we can use Proposition 4.1 twice. We
fix i and k. Obviously Sklij = Skli0 − Skji0 . Then, if we set Sv := Skvi0 , we have that
Sklij = Sl − Sj , and, in view of the condition formulated in Proposition 4.2, we can

apply the preceding result. The factor
( k∑
s=i+1

us

)α
can be formally included in

each of the terms vt. By Proposition 4.1,

P
(

max
1≤l≤n

|Skli0 | ≥ λ
)
≤ K;�

�

( k∑
s=i+1

us

)α( n∑
t=1

vt

)β
. (4.1)

As mentioned in Remark 4.1, Proposition 4.1 is valid not only for real-valued
variables but also for function-valued variables with arbitrary norm. For a fixed k
we consider the sequence Sk(l) := Skl00 = Skl, 1 ≤ l ≤ n, with the norm ‖Sk(·) −
Si(·)‖ = max

1≤l≤n
|Sk(l)− Si(l)|. In the new terms (4.1) takes the form

P
(
‖Sk(·)− Si(·)‖ ≥ λ

)
≤ K;�

�

( n∑
t=1

vt

)β( k∑
s=i+1

us

)α
for any 0 ≤ i < k ≤ m.

We again use Proposition 4.1, formally including the factor Kγ,β

( n∑
t=1

vt

)β
in

each of the terms us. This yields

P
(

max
1≤k≤m

‖Sk(·)‖ ≥ λ
)
≤ K;�K;�

�

( n∑
t=1

vt

)β( m∑
s=1

us

)α
,

i.e., the assertion of Proposition 4.2. �
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§ 5. Auxiliary results

Let ϕ(v) = Eeivξ1 , v ∈ R, be the characteristic function of the step of the
random walk νk, k = 0, 1, 2 . . . , with mean zero and variance one. We consider
only integer (D) or continuous (C) random walks, assuming that

(D) |ϕ(v)| = 1 iff v is a multiple of 2π,

(C)
∞∫

−∞

|ϕ(v)| dv <∞.

Further, we will consider separately the cases (D) and (C). We assume in con-
dition (D) that the random walk takes values in the integer lattice. Condition (C)
means that the distribution function of a step of the random walk has a density.

The significance of the auxiliary results given below is the following: they provide
a recursion relations that enable us to estimate the moments of additive functionals
of a random walk. An important part of the method for constructing such a
recursion relations is the application of the Fourier transform to a function, in which
the argument is replaced by the random walk. This transform relocates the random
walk from the argument of this function to the argument of the exponential function
eivx, x ∈ R. Due to this, when computing the expectation of such a function of the
random walk νk, k = 0, 1, 2 . . . , we get the powers of the characteristic function ϕ.
Then for the sum with respect to the steps of the random walk we can apply the
formula for the sum of a geometric progression.

1. Integer random walk.
For an arbitrary summable function z(v) set

Z(u) :=
∞∑

v=−∞
e−ivuz(v), u ∈ R. (5.1)

Then, using the inversion formula

P(νk = v) = 1

2�

π∫
−π

e−iuvϕk(u) du, k = 0, 1, . . . , (5.2)

it is easy to get that for any β and any integer κ,

E
n∑
k=1

βn−kz(νk−1 − κ) = 1

2�

π∫
−π

e−iuκZ(u)�
n − 'n(u)

� − '(u)
du. (5.3)

By the condition (D) and the fact that ϕ(u) = 1− u2/2 + o(u2) as u→ 0,∣∣∣1− 'n(u)

1− '(u)

∣∣∣ ≤ C(n ∧ u−2), u ∈ [−π, π], (5.4)

1− |'(u)|n

1− |'(u)|
≤ C(n ∧ u−2), u ∈ [−π, π], (5.5)
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where C is a constant depending on the distribution of the step of the random
walk. Here and below we use the notation c ∧ d = min{c, d}.

For any ∆ > 0 and m ≥ 1

π∫
−π

(m ∧ v−2) dv ≤ 4
√
m, (5.6)

π∫
−π

(1 ∧ |v|∆)(m ∧ v−2) dv ≤ 2
{

1I{√m≤∆}

π∫
0

(m ∧ v−2) dv

+1I{∆<√m}

( 1/
√
m∫

0

v∆mdv +

1/∆∫
1/
√
m

�

v
dv +

π∫
1/∆

1

v2
dv

)}

≤ 2
{

21I{√m≤∆}
√
m+ 1I{∆<√m}

(
3�

2
+ ∆ ln

√
m

�

)}
≤ 9(∆

√
m)1/2, (5.7)

π∫
−π

(1 ∧ |v|∆)2(m ∧ v−2) dv ≤ 9∆. (5.8)

To estimate moments of the processes considered in this chapter we will use an
approach formulated in general form to fit various applications. We assume that
expectations appeared in the subsequent formulas in this section are finite and that
the series under consideration converge.

For a fixed n and v ∈ R let ζn(k, v), k = 1, . . . , n, be independent identically
distributed real-valued variables measurable for every k with respect to the σ-
algebra of events generated by the Brownian motion

W (k)(s) := W
(
s+

k−1∑
l=1

H (l)
n

)
−W

( k−1∑
l=1

H (l)
n

)
for s ∈ [0,H (k)

n ]. Note that, by construction (see (2.11)), the variables ξnk are also
measurable for every k with respect to this σ-algebra. Below we derive recursion
relations that enable us to estimate by induction the variables

Z(q)
n (m,κ) := E

( m∑
k=1

ζn(k, νnk−1 − κ)
)q
, (5.9)

where 1 ≤ m ≤ n and q ≥ 1 are integers. For integer random walks it is assumed
that κ ∈ Z, where Z is the lattice of integers. We set

gn(v, y) := eiyvE
{
eiyξ

n
1 ζn(1, v)

}
, (5.10)

Gn(u, y) :=
∞∑

v=−∞
e−iuvgn(v, y), (5.11)
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and for 1 ≤ k ≤ m, j = 1, 2, . . . , r = 0, 1, 2, . . . , set

zj,rn (m, v) := E
{
ζjn(k, v)Z

(r)
n (m,−(v + ξnk ))

}
, (5.12)

Zj,rn (m,u) :=
∞∑

v=−∞
e−iuvzj,rn (m, v). (5.13)

Note that zj,rn (m, v) = E
{
ζjn(1, v)Z

(r)
n (m,−(v + ξ1))

}
. According to the agree-

ment stated before (3.16), we must set zj,rn (0, v) = 0 for r 6= 0 and zj,0n (0, v) =
E
{
ζjn(1, v)

}
. This implies that Zj,rn (0, u) = 0 for r 6= 0 and Zj,0n (0, u) = Gn(u, 0).

Using (3.16), we can see that

Z(q)
n (m,κ) =

q∑
j=1

q!

j!(q − j)!
Ij,q−jn (m,κ), q ≥ 1, (5.14)

where

Ij,rn (m,κ) := E
{ m∑
k=1

ζjn(k, ν
n
k−1 − κ)

( m∑
l=k+1

ζn(l, νnl−1 − κ)
)r}

.

Taking into account the independence of the steps of the random walk νnk , k =
0, 1, 2, . . . , and applying Lemma 2.1 Ch. I twice, we obtain

Ij,rn (m,κ) =
m∑
k=1

E
{
ζjn(k, ν

n
k−1 − κ)E

{( m∑
l=k+1

ζn(l, νnl−1 − κ)
)r∣∣∣Fn

k

}}

=
m∑
k=1

E
{
ζjn(k, ν

n
k−1 − κ)Z(r)

n (m− k,−(νnk−1 − κ + ξnk ))
}

=
m∑
k=1

E
{
E
{
ζjn(k, ν

n
k−1 − κ)Z(r)

n (m− k,−(νnk−1 − κ + ξnk ))
∣∣Fn
k−1

}}
=

m∑
k=1

Ezj,rn (m− k, νnk−1 − κ),

where Fn
k is the σ-algebra of events generated by the Brownian motion W up to

the moment
k∑
l=1

H (l)
n . Now, applying (5.2), we get for Ij,rn the formula

Ij,rn (m,κ) = 1

2�

π∫
−π

e−iuκ
m∑
k=1

Zj,rn (m− k, u)ϕk−1(u) du. (5.15)

Substituting this into (5.14), we have

Z(q)
n (m,κ) =

q∑
j=1

q!

j!(q − j)!2�

π∫
−π

e−iuκ
m∑
k=1

Zj,q−jn (m− k, u)ϕk−1(u) du. (5.16)
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In view of (5.12), (5.13), formula (5.16) give a recursion relation expressing Z(q)
n

in terms of the variables Z(r)
n with r < q. Estimates of Z1,r

n will be especially
significant in estimating the right-hand side of (5.15). We also write a formula for
Z1,r
n , expressing it in terms of the variables Zj,ln with l < r. Note that Z1,0

n (m,u) =
Gn(u, 0), m = 0, 1, 2, . . . . Using (5.16), we have

Z1,r
n (m,u) =

∞∑
v=−∞

e−iuvE
{
ζn(1, v)Z(r)

n (m,−(v + ξn1 ))
}

=
∞∑

v=−∞
e−iuvE

{
ζn(1, v)

r∑
j=1

r!

j!(r − j)!2�

π∫
−π

eis(v+ξ
n
1 )

m∑
l=1

Zj,r−jn (m− l, s)ϕl−1(s) ds
}

=
r∑
j=1

r!

j!(r − j)!2�

π∫
−π

Gn(u, s)
m∑
l=1

Zj,r−jn (m− l, s)ϕl−1(s) ds. (5.17)

We consider separately the estimate of the variable (5.9) for q = 2. Set

bn(v) := Eζ2
n(1, v), Bn(u) :=

∞∑
v=−∞

e−iuvbn(v).

Applying (5.14) and (5.15) with j = 1, r = 1, and then using (5.3) with β = 1,
we get

Z(2)
n (m,κ) =

m∑
k=1

Eζ2
n(k, ν

n
k−1 − κ) + 2I1,1

n (m,κ)

= 1

2�

π∫
−π

e−iuκBn(u)
1− 'm(u)

1− '(u)
du+ 1

�

π∫
−π

e−iuκ
m∑
k=1

Z1,1
n (m− k, u)ϕk−1(u) du.

Now, using (5.17) with r = 1, i.e., the formula

Z1,1
n (m− k, u) = 1

2�

π∫
−π

Gn(u, s)Gn(s, 0)1− 'm−k(s)

1− '(s)
ds,

we finally have

Z(2)
n (m,κ) = 1

2�

π∫
−π

e−iuκBn(u)
1− 'm(u)

1− '(u)
du+ 1

2�2

π∫
−π

ds
Gn(s; 0)

1− '(s)

×
π∫

−π

du e−iuκGn(u, s)
{
1− 'm(u)

1− '(u)
− 'm(s)− 'm(u)

'(s)− '(u)

}
.
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Using (5.4) and (5.5), we obtain∣∣∣ 1

1− '(s)

(
1− 'm(u)

1− '(u)
− 'm(s)− 'm(u)

'(s)− '(u)

)∣∣∣
=
∣∣∣ m∑
k=1

ϕk−1(u)1− 'm−k(s)

1− '(s)

∣∣∣ ≤ C(m ∧ u−2)(m ∧ s−2), s, u ∈ [−π, π].

As a result, we have the estimate

Z(2)
n (m,κ) ≤ CBn(0)

√
m+ C

π∫
−π

π∫
−π

|Gn(s, 0)||Gn(u, s)|(m ∧ u−2)(m ∧ s−2) ds du.

(5.18)

2. Continuous random walk.
The following formulas concern random walks satisfying the condition (C). For

an arbitrary integrable function z(v), v ∈ R, we set

Z(u) :=

∞∫
−∞

e−iuvz(v) dv, u ∈ R.

Since each of the random variables νk, k = 1, 2, . . . , has a bounded density, repre-
senting in the form

pk(x) = 1

2�

∞∫
−∞

e−iuxϕk(u) du,

we have

Ez(νk − κ) = 1

2�

∞∫
−∞

e−iuκZ(u)ϕk(u) du.

For k = 0 this formula is not true in the general case. If we assume that Z(u),
u ∈ R, is an integrable function, then there exists the inverse Fourier transform

z(v) = 1

2�

∞∫
−∞

eiuvZ(u) du,

and for any β and κ

E
n∑
k=1

βn−kz(νk−1 − κ) = 1

2�

∞∫
−∞

e−iuκZ(u)�
n − 'n(u)

� − '(u)
du.

This relation is identical to (5.3) and in the continuous case it enables us to keep
the structure of all the formulas of the discrete case. However, if the inverse Fourier
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transform of the function z does not exist, we must estimate some terms in these
formulas separately. Therefore, we start with the following formulas:

E
n∑
k=2

βn−kz(νk−1 − κ) = 1

2�

∞∫
−∞

e−iuκZ(u)ϕ(u)�
n−1 − 'n−1(u)

� − '(u)
du. (5.19)

E
n∑
k=1

βn−kz(νk−1 − κ) = βn−1z(−κ) + 1

2�

∞∫
−∞

e−iuκZ(u)ϕ(u)�
n−1 − 'n−1(u)

� − '(u)
du.

(5.20)
The function |ϕ(u)|, u ∈ R, is integrable and by the Riemann–Lebesgue theorem
lim

u→±∞
|ϕ(u)| → 0. Since ϕ(u) = 1− u2/2 + o(u2) as u→ 0, we have∣∣∣1− 'n(u)

1− '(u)

∣∣∣ ≤ C(n ∧ (1 + u−2), u ∈ R, (5.21)

1− |'(u)|n

1− |'(u)|
≤ C(n ∧ (1 + u−2), u ∈ R. (5.22)

For any ∆ > 0 and m ≥ 1 the analogs of (5.6)–(5.8) are the following estimates:

∞∫
−∞

(
m ∧ (1 + v−2)

)
|ϕ(v)| dv ≤ C

√
m, (5.23)

∞∫
−∞

(1 ∧ |v|∆)
(
m ∧ (1 + v−2)

)
|ϕ(v)| dv ≤ C

(
1 + (∆

√
m)1/2

)
, (5.24)

∞∫
−∞

(1 ∧ |v|∆)2
(
m ∧ (1 + v−2)

)
|ϕ(v)| dv ≤ C(1 + ∆). (5.25)

The approach described by means of (5.9)–(5.17) in the discrete case requires the
following changes when estimating the moments of the processes in the continuous
case. Let the variables Z(q)

n , gn and zj,rn be defined by (5.9), (5.10) and (5.12),
respectively, and κ ∈ R. We set

Gn(u, y) :=

∞∫
−∞

e−iuvgn(v, y) dv, (5.26)

Zj,rn (m,u) :=

∞∫
−∞

e−iuvzj,rn (m, v) dv. (5.27)

Using (3.16), we get the following analog of (5.14) and (5.15) for the case (C):

Z(q)
n (m,κ) =

q∑
j=1

q!

j!(q − j)!

{
zj,q−jn (m− 1,−κ) + Ij,q−jn (m,κ)

}
, (5.28)
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where

Ij,rn (m,κ) := E
{ m∑
k=2

ζjn(k, ν
n
k−1 − κ)

( m∑
l=k+1

ζn(l, νnl−1 − κ)
)r}

= 1

2�

∞∫
−∞

e−iuκ
m∑
k=2

Zj,rn (m− k, u)ϕk−1(u) du. (5.29)

The first term in (5.28) is considered separately. The relation corresponding to
(5.17) in this connection has the form:

Z1,r
n (m,u) =

∞∫
−∞

e−iuvE
{
ζn(1, v)Z(r)

n (m,−(v + ξn1 ))
}
dv

=

∞∫
−∞

e−iuvE
{
ζn(1, v)

r∑
j=1

r!

j!(r − j)!

{
zj,r−jn (m− 1, ξn1 + v) + Ij,r−jn (m,−(ξn1 + v))

}}
dv

=
r∑
j=1

r!

j!(r − j)!

{ ∞∫
−∞

e−iuvE
{
ζn(1, v)zj,r−jn (m− 1, ξn1 + v)

}
dv

+ 1

2�

∞∫
−∞

Gn(u, v)
m∑
l=2

Zj,r−jn (m− l, v)ϕl−1(v) dv
}
. (5.30)

We consider separately the estimate of the variable (5.9) for q = 2. We slightly
modify this variable, removing the first term. This simplifies a little the expression.
We set

Bn(u) :=

∞∫
−∞

e−iuvbn(v) dv.

Then, applying (5.19) with β = 1 and (5.29), we get

E
( m∑
k=2

ζn(k, νnk−1 − κ)
)2

=
m∑
k=2

Ebn(νnk−1 − κ) + 2I1,1
n (m,κ)

= 1

2�

∞∫
−∞

e−iuκBn(u)ϕ(u)1− 'm−1(u)

1− '(u)
du+ 1

�

∞∫
−∞

e−iuκ
m−1∑
k=2

Z1,1
n (m− k, u)ϕk−1(u) du.

Now, using (5.30) with r = 1, i.e., the formula

Z1,1
n (m− k, u) =

∞∫
−∞

e−iuvE
{
ζn(1, v) gn(ξn1 + v, 0)

}
dv
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+ 1

2�

∞∫
−∞

Gn(u, v)
m−k∑
l=2

Gn(v, 0)ϕl−1(v) dv

= Z1,1
n (1, u) + 1

2�

∞∫
−∞

Gn(u, v)Gn(v, 0)ϕ(v)1− 'm−k−1(v)

1− '(v)
dv,

we finally get

E
( m∑
k=2

ζn(k, νk−1 − κ)
)2

= 1

2�

∞∫
−∞

e−iuκ(Bn(u) + 2 Z1,1
n (1, u)

)
ϕ(u) 1− 'm−1(u)

1− '(u)
du

+ 1

2�2

∞∫
−∞

'(v)Gn(v; 0)

1− '(v)

∞∫
−∞

e−iuκGn(u, v)
m−1∑
k=2

ϕk−1(u)(1− ϕm−k−1(v)) du dv.

(5.31)
It is easy to see that

Z1,1
n (1, u)≤

∞∫
−∞

E
∣∣ζn(1, v) gn(ξn1 + v, 0)

∣∣dv≤2

∞∫
−∞

(
Eζ2

n(1, v) + |gn(v, 0)|2
)
dv≤4Bn(0).

This together with (5.19)–(5.23) imply

E
( m∑
k=2

ζn(k, νk−1 − κ)
)2

≤ CBn(0)
√
m

(5.32)

+C

∞∫
−∞

|ϕ(v)||Gn(v, 0)|
∞∫

−∞

|Gn(u, v)||ϕ(u)|(m ∧ (1 + v−2))(m ∧ (1 + u−2)) du dv.

§ 6. Weak invariance principle for local times (integer random walk)

The weak invariance principle for local times is described by the formula (1.3).
In this section we assume that the condition (D) holds and that the random walk
has just a second moment. We start with the presentation of the special and the
most natural case when the local time of the integer random walk is treated as the
normalized number of times the random walk hits the selected point. We set

`n(t, x) := 1
√
n

[nt]∑
k=1

1I{0}
(
νnk−1 − [x

√
n]
)
, (t, x) ∈ [0,∞)×R. (6.1)

The variable `n(t, x) is the normalized by
√
n number of times the random walk

νnk hits the point [x
√
n] up to the time [nt].
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The special meaning of the process `n(t, x) in the study of additive functionals
of random walks is determined by the following relation, which is the analogue of
(1.2) of Ch. V for the Brownian local time.

For an arbitrary function f and tn := [nt]/n

tn∫
0

f(Wn(s)) ds = 1

n

[nt]∑
k=1

f
(

1
√
n
νnk−1

)
= 1

n

[nt]∑
k=1

∞∑
l=−∞

f
( l
√
n

)
1I{0}

(
νnk−1−l)

=

∞∫
−∞

f
(
[x
√
n]

√
n

)
1
√
n

[nt]∑
k=1

1I{0}
(
νnk−1 − [x

√
n]
)
dx =

∞∫
−∞

f
(
[x
√
n]

√
n

)
`n(t, x) dx. (6.2)

The convergence `n(t, x) → `(t, x) in probability for a fixed t ∈ [0, 1] and x ∈ R
can be established as follows.

We use the obvious equality

1I0(m) = 1

2�

π∫
−π

eium du, m ∈ Z.

Let xn := [x
√
n]/

√
n be the nearest to the left of x point from the lattice with the

array spacing 1/
√
n. Then

`n(t, x) = 1

2�
√
n

[nt]∑
k=1

π∫
−π

eiu(νn
k−1−[x

√
n]) du = 1

2�

π
√
n∫

−π
√
n

tn∫
0

eiλ(νn
[ns]/

√
n−xn) ds dλ

= 1

2�

π
√
n∫

−π
√
n

e−iλxn

tn∫
0

eiλWn(s) ds dλ. (6.3)

For A > 0 we set

`(A)
n (t, x) := 1

2�

A∫
−A

e−iλxn

tn∫
0

eiλWn(s) ds dλ,

`(A)(t, x) := 1

2�

A∫
−A

e−iλx
t∫

0

eiλW (s) ds dλ.

By the invariance principle for random walks (see (3.4)), we have that for an
arbitrarily large A, any fixed t, and x

`(A)
n (t, x) → `(A)(t, x)
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in probability. By Lemma 1.1 of Ch. V, the process `(A)(t, x) converges in the
mean square as A → ∞ to the Brownian local time `(t, x). Therefore, to prove
the convergence `n(t, x) → `(t, x) in probability it is sufficient to prove that
E
(
`n(t, x)− `(A)

n (t, x)
)2 → 0 as n → ∞ and A → ∞. For this, in particular, we

must be able to estimate the value

E
( B∫
A

e−iλxn

tn∫
0

eiλWn(s) ds dλ

)2

, B > A.

For the Brownian motionW the corresponding estimate was given in (1.4) Ch. V.
The approach for obtaining an analogous estimate for the process Wn has been
developed in § 5 (see (5.18)), and is based on the Fourier transform. It has been
mentioned that the use of the Fourier transform enables us to relocate (this is
clearly illustrated by the equality (6.3)) the random walk from the argument of the
indicator or some other function to the argument of the exponential function.

Since we need stronger results than convergence in probability, we will also
estimate the mean square distance E

(
`n(t, x) − `(τn(t), xn)

)2, where τn(t) is the
random moment close to t (see (3.6)). The convergence of `n(t, x) → `(t, x) in
probability is proved in Lemma 6.1.

The main assertion of this section is the following particular case of the weak
invariance principle for local times of random walks.

Theorem 6.1. For any ε > 0

lim
n→∞

P
(

sup
(t,x)∈[0,1]×R

|`n(t, x)− `(t, x)| > ε
)

= 0. (6.4)

Proof. We first prove a preliminary statement.

Lemma 6.1. For any (t, x) ∈ [0, 1]×R

`n(t, x) → `(t, x), n→∞, (6.5)

in probability.

Proof. To simplify formulas, we first assume that P(ξ1 = 0) = 0. In this case
in the formulas of § 2 we have p0 = 1. The necessary changes needed for the
investigation of the general case will be specified at the end of the proof. Let
H (l)
n be the sequence of random moments and {(ak, bk)}∞k=1 be the sequence of

independent two-dimensional truncated random variables defined in § 3. Set

H̃ (k)
n := min

{
s ≥ 0 : W (k)(s) /∈

(
− ak/

√
n, bk/

√
n
)}
,

where W (k)(s) = W
(
s +

k−1∑
l=1

H (l)
n

)
− W

( k−1∑
l=1

H (l)
n

)
, W (1)(s) = W (s). Note that

H̃ (k)
n ≤ H (k)

n and hence (see § 4 Ch. I, property 9),

σ(W (k)(s), 0 ≤ s ≤ H̃ (k)
n ) ⊆ σ(W (k)(s), 0 ≤ s ≤ H (k)

n ).
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The moments H̃ (k)
n differs from the moments H

(k)

n defined in § 3, because H̃ (k)
n are

constructed from the processes W (k) instead of the processes W
(k)

.
Let `(k)(H̃ (k)

n , x) be the local time of the Brownian motion W (k) at x before time
H̃ (k)
n . We set

ζn(k, v) := 1
√
n
1I{0}(v)− `(k)(H̃ (k)

n ,−v/
√
n),

Vn(t, x) :=
[nt]∑
k=1

ζn(k, νnk−1 − [x
√
n]).

Note that the kth term of this sum involves the local time at the moment H̃ (k)
n

instead of the moment H (k)
n , which would be more natural. This comes from the

necessity to estimate the second moment of `(k)(H̃ (k)
n ,−v/

√
n) under the assumption

that the step of the random walk νk has only the second moment. If higher finite
moments exist, one can use H (k)

n .
For a fixed n and v ∈ R the variables ζn(k, v), k = 1, . . . , n, are independent

and identically distributed, and for every k they are measurable with respect to
the σ-algebra of events σ(W (k)(s), 0 ≤ s ≤ H (k)

n ). By construction (the Skorohod
embedding scheme (see (2.11))), the variables ξnk = νnk − νnk−1 are also measurable
with respect to this σ-algebra.

It is clear that the equalities H̃ (k)
n = H (k)

n , k = 1, . . . , n, hold on the set Ωn =
{νnk = νnk , k = 1, 2, . . . , n} (see § 3) and on this set

Vn(t, x) = `n(t, x)− `(τn(t), [x
√
n]/

√
n),

where τn(t) =
[nt]∑
k=1

H (k)
n .

We choose θ as in Theorem 3.1. Then, by (3.6) and by the properties of a.s.
uniform continuity of `(t, x) (see (10.1) and (11.1) of Ch. V), we get that for any
ε1 > 0

lim
n→∞

P
(

sup
(t,x)∈[0,1]×R

∣∣∣`(τn(t), [x√n]/
√
n)− `(t, x)

∣∣∣ > ε1

)
= 0. (6.6)

This enables us to reduce the investigation of the asymptotic behavior of the dif-
ference `n(t, x)− `(t, x) to that of the limit behavior of the process Vn(t, x). Thus
for the validity of (6.5) it is sufficient to verify that

EV 2
n (t, x) → 0, n→∞. (6.7)

We now use the notations and formulas of Subsection 1 of § 5. Then, by (5.9),
EV 2

n (t, x) = Z(2)
n ([nt], [x

√
n]) and we can apply formula (5.18). For this we need

some estimates.

Proposition 6.1. For all n ∈ N,

Bn(0) ≤ C
√
n

(
1
√
n

+ θ
)
. (6.8)
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Proof. Obviously,

Bn(0) ≤ 1

n
+

∞∑
v=−∞

E`2
(
H̃ (1)
n − v

√
n

)
.

In this sum it is convenient to replace the summation index v to −v. Then
the Brownian local time should be computed at the level v/

√
n. By the scaling

property of the Brownian local time (see § 1 Ch. V), (2.2), (2.5), (2.9), and by the
strong Markov property of the Brownian motion, we have

nE`2
(
H̃ (1)
n ,

v
√
n

)
=E`2

(
H̃ (1)

1 , v
)

= 16

E|�1|
E
{

(µ+ η) (�+ v)2(� − v)2

(�+ �)2

(
�

�+ v
1I{0≤v≤η,µ>0} + �

� − v
1I{−µ≤v<0,η>0}

)}
≤ 16

E|�1|
E
{
(µ+ η)

(
ηµ1I{0≤v≤η,µ>0} + µη1I−µ≤v<0,η>0}

)}
. (6.9)

Here we have taken into account that the exit boundaries for the moment H̃ (1)
1 are

determined by the independent random variables −µ and η with µ > 0 and η > 0.
Moreover, these variables are also independent of the Brownian motion W (1) ≡W .
If v 6= 0, then the Brownian motion first hits the point v and only after that it hits
one of the boundaries, otherwise the local time equals zero. The exit probabilities
are given by (2.2). In our case these probabilities are �

�+ v
for v ≥ 0 and �

� − v
for v < 0. Then, restarting from the point v (the strong Markov property), the
Brownian motion accumulate the local time at this point up to the first exit time
from the interval (−µ, η). In conclusion, to compute the second moment of the
Brownian local time we use the formula (2.5), q = 2.

From (6.9) it follows that

n
∞∑

v=−∞
E`2

(
H̃ (1)
n

v
√
n

)
≤ CE{(|µ|+ |η|)(η2|µ|+ µ2|η|)} ≤ Cθ

√
n.

This proves (6.8). �

Proposition 6.2. For any y, u ∈ R,

|Gn(u, y)| ≤
C
√
n

(
(1 ∧ |y|θ

√
n) + (1 ∧ |u|θ

√
n) + θ

)
. (6.10)

Proof. Since ξn1 =
√
nW (H (1)

n ), using (5.10), the scaling property of the Brown-
ian motion and its local time, we deduce from (2.2), (2.5), q = 1, and (2.9) that

√
ngn(−v, y) = e−ivyϕ(y)1I{0}(v)−

√
ne−ivyE

{
eiy

√
nW (H(1)

n )`
(
H̃ (1)
n ,

v
√
n

)}
= e−ivyϕ(y)1I{0}(v)− e−ivyE

{
eiyW (H

(1)
1 )`

(
H̃ (1)

1 , v
)}
. (6.11)
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Of special importance here is the function
√
n gn(−v, 0), therefore we compute it

separately. Arguing as in the derivation of (6.9), we have

√
ngn(−v, 0) = 1I{0}(v)−E`

(
H̃ (1)

1 , v
)

= 1I{0}(v)

− 4

E|�1|
E
{
(�+ �)�(� − v)

(�+ �)
1I{0≤v≤η,µ>0} + (�+ �)�(�+ v)

(�+ �)
1I{−µ≤v<0,η>0}

)}
. (6.12)

Then, taking into account (2.10), we obtain

√
nGn(0, 0) = 1− 4

E|�1|
E
{
�+ �

�+ �

(
µ

η∑
v=0

(η− v) + η
−1∑

v=−µ
(µ+ v)

)
1I{µ>0,η>0}

}
= 1

− 4

E|�1|
E
{
�+ �

�+ �

(
µ
� + 1

2
η+η �− 1

2
µ
)
1I{µ>0,η>0}

}
=1− 2

E|�1|
E
{
(µ+η)µη1I{µ>0,η>0}

}
= 1− 2

E|�1|
E
{
(µ+ η)µη1I{µ>0,η>0}

}
+O

(
E
{
ξ211I{|ξ1|>θ√n}

})
= O

(
E
{
ξ211I{|ξ1|>θ√n}

})
= O

(
E
{
ξ21 ; |ξ1| > n1/4

})
= O(θ3). (6.13)

The computation of the function
√
n gn(−v, y) is similar, but slightly more com-

plicated. For it we derive the following expression:

√
ngn(−v, y) = e−ivyϕ(y)1I{0}(v)−

4

E|�1|
E
{

(µ+η) (�+ v)(� − v)

�+ �

×
(

�

�+ v
1I{η≥v≥0,µ>0} + �

� − v
1I{−µ≤v<0,η>0}

)(
� − v

�+ �
e−iy(µ+v) + �+ v

�+ �
eiy(η−v)

)}
.

In order to prove (6.10), it now suffices to estimate Gn(u, y) − Gn(0, 0). Using
the inequality

∣∣eix − 1
∣∣ ≤ 2(1 ∧ |x|), we get

√
n|Gn(u, y)−Gn(0, 0)| =

√
n
∣∣∣ ∞∑
v=−∞

(
eiuvgn(−v, y)− gn(−v, 0)

)∣∣∣ ≤ 2(1∧ |y|E|ξ1|)

+ 4

E|�1|
E
{

1

�+ �
1I{η>0,µ>0}

η∑
v=−µ

∆v

(
µ(η − v)1I{v≥0}+η(µ+ v)1I{v<0}

)}
, (6.14)

where
∆v := (η − v)

(
eivu−iy(µ+v) − 1

)
+ (µ+ v)

(
eivu+iy(η−v) − 1

)
.

For −µ ≤ v ≤ η

|∆(v)| ≤ 2(η − v)
(
(1 ∧ (|vu|+ |y|(µ+ v)))1I{0<µ≤θ√n} + 1I{θ√n<µ}

)
+2(µ+ v)

(
(1 ∧ (|vu|+ |y|(η − v)))1I{0<η≤θ√n} + 1I{θ√n<η}

)
≤ 2(µ+ η)

(
(1 ∧ (|u|+ 2|y|)θ

√
n) + 1I{θ√n<µ} + 1I{θ√n<η}

)
.
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Therefore,

√
n|Gn(u, y)−Gn(0, 0)| ≤ 2(1 ∧ |y|E|ξ1|)

+ 4

E|�1|
E
{

(µ+ η)
1I{�>0;�>0}

�+ �

(
(1 ∧ (|u|+ 2|y|)θ

√
n)) + 1I{θ√n<µ} + 1I{θ√n<η}

)
×

η∑
v=−µ

(
µ(η − v)1I{v≥0} + η(µ+ v)1I{v<0}

)}
= 2(1 ∧ |y|E|ξ1|)

+ 2

E|�1|
E
{
(µ+ η)µη1I{η>0,µ>0}

(
(1 ∧ (|u|+ 2|y|)θ

√
n) + 1I{θ√n<µ} + 1I{θ√n<η}

)}
≤ C

{
(1 ∧ |y|θ

√
n) + (1 ∧ |u|θ

√
n) + θ

}
. (6.15)

Here we used the estimate E|ξ1| ≤ 1 ≤ θ
√
n. Proposition 6.2 is proved. �

Now, using (5.18) and (5.6)–(5.8), we find that

EV 2
n (t, x) = Z(2)

n ([nt], [x
√
n]) ≤ C

√
n

(
θ+ 1

√
n

) π∫
−π

(n∧u−2) du+ C

n

π∫
−π

du

π∫
−π

dv

×
(
(1 ∧ |u|θ

√
n) + θ

)(
(1 ∧ |v|θ

√
n) + (1 ∧ |u|θ

√
n) + θ

)
(n ∧ u−2)(n ∧ v−2) ≤ Cθ.

Thus (6.7) holds and therefore (6.5) is proved. �

The relation (6.4) will be proved as follows. We deduce from the uniform bound-
edness in probability of the process W (t), t ∈ [0, 1], and from (3.4) that for any
ρ > 0 there is a constant A = A(ρ) such that for all n

P
(

sup
t∈[0,1]

|W (t)| > A
)
< ρ, P

(
sup
t∈[0,1]

|Wn(t)| > A
)
< ρ. (6.16)

Then on the set

Ωn(ρ) :=
{

sup
t∈[0,1]

|W (t)| ≤ A
}⋂{

sup
t∈[0,1]

|Wn(t)| ≤ A
}

the Brownian local time `(t, x) and the process `n(t, x) are equal to zero for x 6∈
[−A,A]. This enables us to replace in (6.4) the supremum over x ∈ R by the
supremum over x ∈ [−A,A], because the probability of the complementary event
obeys the estimate P

(
Ωc
n(ρ)

)
≤ 2ρ. Now, in view of (6.5), the following assertion

plays a key role in the proof of Theorem 6.1.

Lemma 6.2. For any ε > 0 and ρ > 0 there exist % = %(ε, ρ) and n0 =
n0(ε, ρ, %), such that for all n > n0

P
(

sup
Q(%)

|`n(t, x)− `n(s, y)| > ε
)
< ρ, (6.17)
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where Q(%) = {(s, t), (x, y) : |t− s| ≤ %, |x− y| ≤ %, s, t ∈ [0, 1], x, y ∈ [−A,A]}.

From this and (6.5) it is not hard to deduce Theorem 6.1. Indeed, since the
process `(t, x) is uniformly continuous,

P
(

sup
Q(%)

|`(t, x)− `(s, y)| > ε
)
< ρ (6.18)

for all sufficiently small %. On the rectangle [0, 1]× [−A,A] we consider the lattice
Σ = {tj , xj}nj=1 with the array spacing % and, using (6.5), we choose n1 = n1(ε, ρ, %)
such that for all n > n1

P
(

sup
(tj ,xj)∈Σ

|`n(tj , xj)− `(tj , xj)| > ε
)
< ρ. (6.19)

It follows from the definition of the processes `(t, x) and `n(t, x) that

{(t, x) : `(t, x) > 0, 0 ≤ t ≤ 1} ⊂ {0 ≤ t ≤ 1, inf
0≤s≤t

W (s) ≤ x ≤ sup
0≤s≤t

W (s)},

{(t, x) : `n(t, x) > 0, 0 ≤ t ≤ 1} ⊂ {0 ≤ t ≤ 1, inf
0≤s≤t

Wn(s) ≤ x ≤ sup
0≤s≤t

Wn(s)}.

Therefore, we get from (6.16)–(6.19) that for n > n0 ∨ n1

P
(

sup
[0,1]×R

|`n(t, x)− `(t, x)| > 3ε
)
≤ 5ρ,

and this is the assertion of the theorem.

Proof of Lemma 6.2. In view of the estimate

P
(

sup
Q(%)

|`n(t, x)− `n(s, y)| > ε
)

≤ 2
∑
k≤1/%

∑
|l|≤A/%

P
(

sup
k%≤t≤(k+1)%
l%≤x≤(l+1)%

|`n(t, x)− `n(k%, l%)| >
"

3

)
,

it suffices to verify that for any k and l

P
(

sup
k%≤t≤(k+1)%
l%≤x≤(l+1)%

|`n(t, x)− `n(k%, l%)| >
"

3

)
≤ K̃

"6
%3, 1/

√
n < %, (6.20)

where K̃ is a constant. Set

�n(s, t, x, y) := `n(t, y)− `n(t, x)− `n(s, y) + `n(s, x).

Since

|`n(t, y)− `n(s, x)| ≤ |�n(s, t, x, y)|+ |`n(s, y)− `n(s, x)|+ |`n(t, x)− `n(s, x)|,
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to establish (6.20) it suffices to prove that for any fixed (s, x) ∈ [0, 1]× [−A,A] and
all λ > 0, 1/n ≤ %1 ≤ 1, 1/

√
n ≤ %2 ≤ 1

P
(

sup
s≤t≤s+%1
x≤y≤x+%2

|�n(s, t, x, y)| > λ

)
≤ K1

�6
%
3/2
1 %3

2, (6.21)

P
(

sup
x≤y≤x+%2

|`n(s, y)− `n(s, x)| > λ
)
≤ K1

�6
%3
2, (6.22)

P
(

sup
s≤t≤s+%1

|`n(t, x)− `n(s, x)| > λ
)
≤ K2

�6
%3
1. (6.23)

Indeed, from these estimates with λ = ε/9 it follows that

P
(

sup
k%≤t≤(k+1)%
l%≤x≤(l+1)%

|`n(t, x)− `n(k%, l%)| >
"

3

)
≤ K196

"6
%4+1/2 + K196

"6
%3 + K296

"6
%3.

Thus for K̃ = (2K1 +K2)96

P
(

sup
Q(%)

|`n(t, x)− `n(s, y)| > ε
)
≤ 4A(ρ)K̃ %

"6
.

Choosing % = %(ε, ρ) such that 4A(ρ)K̃ %

"6
≤ ρ, we get (6.17).

As to the estimates (6.21)–(6.23) it should be noticed that the process `n(t, y) is
constant on the rectangles (t, y) ∈

[
k

n
,
k + 1

n

)
×
[
l

√
n
,
l + 1
√
n

)
, l ∈ Z, k = 0, 1, 2, . . . ,

i.e., it is determined by the values on the lattice vertices
{
k

n
,
l

√
n

}
.

By Proposition 4.2, the estimate (6.21) is valid if

P(|�n(s, t, x, y)| > λ) ≤ Cpλ
−p(|y − x|

√
t− s

)p/2 (6.24)

holds for some p ≥ 6 and for any (s, x), (t, y) such that 1/n ≤ t−s ≤ 1, 1/
√
n ≤ |y−

x| ≤ 1. We derive (6.24) by Chebyshev’s inequality from the following statement.

Proposition 6.3. For any 1/
√
n ≤ |y − x| ≤ 1, 1/n ≤ t− s ≤ 1

E|�n(s, t, x, y)|p ≤ Lpp!
(
|y − x|

√
t− s

)p/2
, p = 1, 2, . . . , (6.25)

where L is a constant.

Since `n(0, x) = 0, the estimate (6.22) follows from (6.21) with s = 0, t = s,
%1 = 1. By the monotonicity of the processes `n(t, x) with respect to t, the estimate
(6.23) is a consequence of Chebyshev’s inequality and the following result. Actually,
the monotonicity is not needed in view of the Proposition 4.1.
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Proposition 6.4. For any s ∈ [0, 1] and 1/n ≤ %,

E
(
`n(s+ %, x)− `n(s, x)

)p ≤ 23p/2p!%p/2, p = 1, 2, . . . , (6.26)

Proof of Proposition 6.3. Suppose for definiteness that y > x. Let ∆ := [y
√
n]−

[x
√
n], d(v) := 1I{0}(v −∆)− 1I{0}(v), v ∈ Z. Then

�n(s, t, x, y) = 1
√
n

[nt]∑
k=[ns]+1

d(νnk−1− [x
√
n]) = 1

√
n

[nt]−[ns]∑
l=1

d
(
νn+
l−1−

(
[x
√
n]−νn[ns]

))
,

where νn+
l := νn[ns]+l − νn[ns], l = 1, . . . , n, is a random walk independent of νn[ns].

We can use Lemma 2.1 Ch. I. Therefore, it suffices to prove that for any 1/
√
n ≤

|y − x| ≤ 1, 1/n ≤ t ≤ 1, p = 1, 2, . . . , and some constant L

∣∣∣E( 1
√
n

[nt]∑
l=1

d
(
νl−1 − [x

√
n]
))p∣∣∣ ≤ Lpp!

(
|y − x|

√
t
)p/2

. (6.27)

We prove (6.27) by induction on p. For this we use the relations (5.9)–(5.17). We
take ζn(k, v), k = 1, . . . , n, to be the nonrandom functions n−1/2d(v) not depending
on k, and let m := [nt], κ := [x

√
n].

With the introduced notations,

Z(p)
n (m,κ) = E

(
1
√
n

[nt]∑
l=1

d
(
νl−1 − [x

√
n]
))p

.

We have the estimate

|Gn(z, y)| =
1
√
n

∣∣∣ ∞∑
v=−∞

ei(y−z)vϕ(y)
(
1I{0}(v −∆)− 1I{0}(v)

)∣∣∣
= 1

√
n
|ϕ(y)(ei(y−z)∆ − 1)| ≤ 2

√
n
((1 ∧ |z|∆) + (1 ∧ |y|∆)). (6.28)

Let q ≥ 2. Suppose that for all 1 ≤ k ≤ m∣∣Z1,q−2
n (k, z)

∣∣ ≤ 2Lq−2(q− 2)!
(
|x− y|

√
t
)(q−2)/2 1

√
n

(
(1∧ |z|∆)+

√
|x− y|
t1=4

)
, (6.29)

∣∣Z(p)
n (k,κ)

∣∣ ≤ Lpp!
(
|y − x|

√
t
)p/2

, 1 ≤ k ≤ m, κ ∈ Z, p ≤ q − 1. (6.30)

Using this induction hypothesis, we prove (6.29) for q + 1 instead of q and prove
(6.30) for p = q.

Consider the induction base for q = 2. We note that Z1,0
n (k, z) = Gn(z, 0).

Moreover, by (5.3), β =1, (5.4), (5.7) and (6.28), y = 0,

∣∣Z(1)
n (k,κ)

∣∣ = ∣∣∣E( 1
√
n

k∑
l=1

d(νl−1 − κ)
)∣∣∣ = 1

2�

∣∣∣∣
π∫

−π

e−izκGn(z, 0)1− 'k(z)

1− '(z)
dz

∣∣∣∣



534 VII INVARIANCE PRINCIPLE

≤ 1

�
√
n

π∫
−π

(1 ∧ |z|∆)(m ∧ z−2) dz ≤ 9

�
√
n
(∆

√
m)1/2 ≤ 4

(
|y − x|

√
t
)1/2

.

Thus, if q = 2 the induction hypothesis holds for L ≥ 4.
For j ≥ 2, r ≤ q − 1, 1 ≤ k ≤ m, using the notation (5.13) and the estimate

(6.30), we get that

∣∣Zj,rn (k, z)
∣∣ ≤ 1

nj=2

∞∑
v=−∞

E|dj(v)|Lrr!
(
|y − x|

√
t
)r/2

≤ 2Lrr!

n

(
|y − x|

√
t
)(r+j−2)/2 ≤ 2Lrr!

(
|y − x|

√
t
)(r+j−1)/2 1

√
n

( |y − x|
√
t

)1/2

.

We now estimate
∣∣Z1,q−1
n (k, z)

∣∣. Applying (5.17), using (5.5), (6.28) and the pre-
ceding estimates for the variables Zj,q−1−j

n , j = 1, . . . , q − 1, we get

∣∣Z1,q−1
n (k, z)

∣∣ ≤ 1

2�

q−1∑
j=1

(q − 1)!

j!(q − 1− j)!

π∫
−π

|Gn(z, u)|
k∑
l=1

∣∣Zj,q−1−j
n (k − l, u)

∣∣|ϕ(u)|l−1 du

≤ 2

�

q−1∑
j=1

(q − 1)!

j!(q − 1− j)!

π∫
−π

1
√
n
((1 ∧ |z|∆) + (1 ∧ |u|∆))Lq−1−j(q − 1− j)!

×
(
|y − x|

√
t
)(q−2)/2

(
(1 ∧ |u|�)

√
n

+ 1
√
n

( |y − x|
√
t

)1/2) k∑
l=1

|ϕ(u)|l−1 du

≤ Lq−1(q − 1)!
(
|y − x|

√
t
)(q−2)/2 2

�n

π∫
−π

(
(1 ∧ |z|∆) + (1 ∧ |u|∆)

)(
(1 ∧ |u|∆)

+
( |y − x|

√
t

)1/2)(
k ∧ 1

u2

)
du

q−1∑
j=1

1

Lj
.

Using the estimates (5.6)–(5.8) and the inequalities ∆ ≤ 2|x − y|
√
n, |y − x|

√
t ≥

1/n, we get that for 1 ≤ k ≤ m∣∣Z1,q−1
n (k, z)

∣∣ ≤ Lq−1(q − 1)!
(
|y − x|

√
t
)(q−2)/2 2

�n

{(
(1 ∧ |z|∆)

+
( |y − x|

√
t

)1/2)
9(∆

√
m)1/2 + 4(1 ∧ |z|∆)

( |y − x|
√
t

)1/2√
m+ 9∆

}
1

L− 1

≤ Lq−1(q − 1)!
(
|y − x|

√
t
)(q−1)/2 1

(L− 1)
√
n

{(
(1 ∧ |z|∆) +

( |y − x|
√
t

)1/2)
9
√

2

+ (1 ∧ |z|∆)4 +
( |y − x|

√
t

)1/2 9�

|y − x|
√
n

}
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≤ Lq−1(q − 1)!
(
|y − x|

√
t
)(q−1)/2 32

L− 1

1
√
n

(
(1 ∧ |z|∆) +

( |y − x|
√
t

)1/2)
.

For L = 17 this estimate takes the necessary form (6.29).
Substituting the estimates for Zj,q−jn , j = 1, . . . , q, in (5.16) and using (5.6),

(5.7), we have

∣∣Z(q)
n (m,κ)

∣∣ ≤ q∑
j=1

q!Lq−j

j!�
√
n

(
|x−y|

√
t
)(q−1)/2

π∫
−π

(
(1∧|z|∆)+

( |y − x|
√
t

)1/2)
(m∧z−2) dz

≤ Lqq!

�(L− 1)

(
|x− y|

√
t
)q/2( 9(�

√
m)1=2

(|x− y|
√
t)1=2

√
n

+ 4
√
m

√
nt

)
≤ (9

√
2 + 4)

�(L− 1)
Lqq!

(
|x− y|

√
t
)q/2

.

Since L ≥ 17, this yields (6.30) for p = q. This completes the induction proof,
because, with our notations, the estimate (6.30) coincide with (6.27). �

Proof of Proposition 6.4. In the relations (5.9)–(5.17) we set ζn(k,v) := 1
√
n
1I{0}(v).

To verify (6.26) it suffices to prove that for any integers 1 ≤ m ≤ n and κ

Z(p)
n (m,κ) = E

(
1
√
n

m∑
k=1

1I{0}(νk−1 − κ)
)p

≤ 2pp!
(
m

n

)p/2
, p = 1, 2, . . . (6.31)

Indeed, by Lemma 2.1 of Ch. I, we get

E
(
`n(s+%, x)− `n(s, x)

)p=E
{
E
(

1
√
n

[n(s+%)]−[ns]∑
k=1

1I{0}
(
νn+
k−1−

(
[x
√
n]−νn[ns]

)))p∣∣∣Fs}
= EZ(p)

n

(
[n(s+ %)]− [ns], [x

√
n]− νn[ns]

)
≤ 2pp!(2%)p/2.

We assume that (6.31) holds for all p ≤ q − 1 and prove it for p = q. By the
induction hypothesis and (5.13) for 1 ≤ k ≤ m, we have

Zj,q−jn (m−k, z) = 1

nj=2
EZ(q−j)

n (m−k,−ξ1) ≤
2q−j(q − j)!

nj=2

(
m

n

)(q−j)/2
, 1≤j≤q−1,

and therefore, by (5.16) and (5.5), (5.6),

Z(q)
n (m,κ) ≤

q∑
j=1

q!2q−j

j!2�

m(q−j)=2

nq=2

π∫
−π

1− |'(z)|m

1− |'(z)|
dz≤ 2qq!

(
m

n

)q/2 q∑
j=1

2−j .

Thus we have (6.31) for p = q. This completes the proof by induction. Thus the
estimate (6.26) is valid and Proposition 6.4 is proved. �

The estimate (6.17), as already explained, follows from (6.25) and (6.26). �

Theorem 6.1 is proved for the case P(ξ1 = 0) = 0.
It is time to mention that Remark 3.2 is valid for the proof of the weak in-

variance principle for the local times. Indeed, for the proof of (6.6) we used the
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estimate (3.5), which can be established under the condition Eξ41 <∞ without the
truncation procedure of the steps of the random walk. Propositions 6.1 and 6.2 are
proved without the truncation procedure if E|ξ1|3 <∞.

Let us consider the case p0 = 1−P(ξ1 = 0) < 1. This case leads only to compli-
cation in the formulas used for proving Propositions 6.1 and 6.2. The formulations
of the lemmas and the structure of the proofs remain the same.

Taking into account the method of constructing the random walk νnk and the
strong Markov property of the Brownian motion, we get in this case that for v ≥ 0

nE`2
(
H̃ (1)
n ,

v
√
n

)
= E`2

(
H̃ (1)

1 , v
)

= 16

E|�1|
E
{
�+ �

�+ �

{(
�(p0�+ v)(p0� − v)(� − v)

p0(�+ �)

+�(1− p0)

�p0
(η − v)v2

)
1I{0≤v<p0η,µ>0} + �v

�
(η − v)21I{0<p0η≤v≤η,µ>0}

}}
. (6.32)

For v < 0, using the symmetry property of the Brownian motion, it is not hard to
get by the substitution µ 7→ η, η 7→ µ, v 7→ −v in (6.32) that

nE`2
(
H̃ (1)
n ,

v
√
n

)
= 16

E|�1|
E
{
�+ �

�+ �

{(
�(p0� − v)(p0�+ v)(�+ v)

p0(�+ �)

+�(1− p0)

�p0
(µ+ v)v2

)
1I{−p0µ<v<0,η>0} + �|v|

�
(µ+ v)21I{−µ≤v≤−p0µ<0,η>0}

}}
.

With the help of these expressions we can derive the estimate (6.9), which enables
us to prove Proposition 6.1 for p0 < 1.

As for the proof of Proposition 6.2, we present a detailed computation for the ex-
pectation E`

(
H̃ (1)

1 , v
)
. Applying (2.9), the strong Markov property of the Brownian

motion, and the formula for the probability of the first exit to the corresponding
boundary, we get that for v ≥ 0

E`
(
H̃ (1)

1 , v
)
= 2

p0E|�1|
E
{
(µ+η)

(
1I{0≤v<p0η,µ>0}

p0�

(p0�+ v)

{
(p0� − v)

p0(�+ �)

2(p0� − v)(v + p0�)

p0(�+ �)

+ (v + p0�)

p0(�+ �)

[
2(p0� − v)(v + p0�)

p0(�+ �)
+ �(1− p0)

(� − v)

2(� − v)v

�

]}
(6.33)

+1I{p0η≤v≤η,µ>0}
p0�

p0(� + �)

p0�

v

2(� − v)v

�

)}
= 4

E|�1|
E
{
(�+ �)�(� − v)

(�+ �)
1I{0≤v≤η,µ>0}

}
.

By the symmetry property of the Brownian motion,

E`
(
H̃ (1)

1 , v
)

= 4

E|�1|
E
{
(�+ �)�(�+ v)

�+ �
1I{−µ≤v<0,η>0}

}
, v ≤ 0. (6.34)

From here it follows that the expression for
√
ngn(−v, 0) = 1I{0}(v) − E`

(
H̃ (1)

1 , v
)

is the same as for p0 =1. Then the equality (6.13) holds, i.e.,

√
nGn(0, 0) =1− 2

DE|�1|
E
{
(µ+η)µη1I{µ>0,η>0}

}
= O

(
E
{
ξ21 ; |ξ1| > n1/4

})
= O(θ3).

This formula plays a key role in the proof of Proposition 6.2.
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To compute
√
ngn(−v, y) explicitly is very difficult, but in fact is not necessary.

We need only the estimate (6.15). Applying (6.11), we have

√
n|Gn(u, y)−Gn(0, 0)| =

∣∣∣√n ∞∑
v=−∞

(
eiuvgn(−v, y)− gn(−v, 0)

)∣∣∣ = ∣∣∣E(eiyξ1 − 1
)

−
∞∑

v=−∞
E
{(
eiv(u−y)+iyW (H

(1)
1 ) − 1

)
`
(
H̃ (1)

1 , v
)}∣∣∣ ≤ 2(1 ∧ |y|E|ξ1|)

+
∞∑

v=−∞
2
(
(1∧ (|uv|+ |yv|+ |y|θ

√
n))E`

(
H̃ (1)

1 , v
)
+E

{
1I{θ√n≤|W (H

(1)
1 )|}`

(
H (1)

1 , v
)})

.

It is important that in the last term of this estimate the stopping moment H̃ (1)
1 of the

local time is replaced by the larger moment H (1)
1 . Although the local time increases,

it enables us to simplify the computations, because this stopping time coincides
with the time in the argument of the Brownian motion located in the indicator
function in front of the local time. The term 2(1∧ |y|E|ξ1|) was already considered
in (6.15). Besides that, there are, in fact, two different sums of terms. The first
sum, in view of (6.33), (6.34) and the inequalities 0 < µ ≤ θ

√
n, 0 < η ≤ θ

√
n, is

bounded by 2(1∧(|u|θ
√
n+ |y|θ

√
n)), which corresponds to (6.15). To estimate the

second sum one must compute E
{
1I{θ√n≤|W (H

(1)
1 )|}`

(
H (1)

1 , v
)}

. Here the presence
of the indicator function excludes from the consideration those sample paths which
at the time H (1)

1 hit zero. Proceeding as in the derivation of the formula (6.33), we
get that for 0 ≤ v

E
{
1I{θ√n≤|W (H

(1)
1 )|}`

(
H (1)

1 , v
)}

= 2

p0E|�1|
E
{
(µ+ η)

(
1I{0≤v<p0η,µ>0}

p0�

(p0�+ v)

{
(p0� − v)

p0(�+ �)

2(p0� − v)(v + p0�)p0

p0(�+ �)
1I{θ√n≤µ}

+ (v + p0�)

p0(�+ �)

{
2(p0� − v)(v + p0�)

p0(�+ �)

p0� − v

� − v
1I{θ√n≤η} + �(1− p0)

(� − v)

[
2(p0� − v)(v + p0�)

p0(�+ �)

+ 2(� − v)v

�

]
v

�
1I{θ√n≤η}

}}
+ 1I{p0η≤v≤η,µ>0}

p0�

p0(� + �)

p0�

v

2(� − v)v

�

v

�
1I{θ√n≤η}

)}
= 4

E|�1|
E
{

1I{0≤v<p0η,µ>0}

(
�(p0� − v)(v + p0�)

p0(�+ �)
1I{θ√n≤η} + �(p0� − v)2

p0(�+ �)
1I{θ√n≤µ}

)
+1I{p0η≤v≤η,µ>0}

�(� − v)v

�
1I{θ√n≤η}

}
≤ 4

E|�1|
E
{
µ(η − v)1I{0≤v<η}

(
1I{θ√n≤η,µ>0} + 1I{θ√n≤µ}

)}
.

For v < 0, using the symmetry property of the Brownian motion, it is easy to get
(in the above relation one should replace µ 7→ η, η 7→ µ, v 7→ −v) that

E
{
1I{θ√n≤|W (H

(1)
1 )|}`

(
H (1)

1 , v
)}

= E
{
41I{−p0�≤v<0;�>0}

E|�1|

(
�(p0� − v)(v + p0�)

p0(�+ �)
1I{θ√n≤µ}
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+ �(v + p0�)2

p0(�+ �)
1I{θ√n≤η}

)
+ 1I{−µp0<v<0,η>0}

�(v + �)|v|
�

1I{θ√n≤µ}
}

≤ 4

E|�1|
E
{
η(v + µ)1I{−µ≤v<0}

(
1I{θ√n≤µ,η>0} + 1I{θ√n≤η}

)}
.

These relations enable us to estimate the second sum by Cθ. This completes the
proof of (6.15) for p0 6= 1, and hence proves Proposition 6.2 for this case. Thus
Theorem 6.1 is completely proved. �

We now prove the weak invariance principle for local times of random walks in
a more general case. We recall our notations

h(v) := Ef(v, v + ξ1), h :=
∞∑

v=−∞
h(v),

qn(t, x) := 1
√
n

[nt]∑
k=1

f
(
νnk−1 − [x

√
n], νnk − [x

√
n]
)
, (t, x) ∈ [0, 1]×R.

Theorem 6.2. Suppose that

∞∑
l=−∞

E|f(l, l + ξ1)| <∞, (6.35)

∞∑
l=−∞

Ef2(l, l + ξ1) <∞. (6.36)

Then for any ε > 0

lim
n→∞

P
(

sup
t∈[0,1]

|Wn(t)−W (t)| > ε
)

= 0, (6.37)

lim
n→∞

P
(

sup
(t,x)∈[0,1]×R

|qn(t, x)− h`(t, x)| > ε
)

= 0. (6.38)

Remark 6.1. The invariance principle for random walks is included in Theo-
rem 6.2 especially. The fact that (6.37) is realized jointly with (6.38) significantly
strengthens the result. Here it is important that the processes Wn(t), qn(t, x),
(t, x) ∈ [0, 1] × R, are determined by the same sequences of random walks con-
structed from the Brownian motion W (t), t ∈ [0, 1] with the help of the Skorohod
embedding scheme.

Theorem 6.2 can be formulated differently. This is connected with the scaling
property of the Brownian motion: for any fixed c > 0 the process c−1/2W (ct) is
a Brownian motion, and the process c−1/2`(tc, x

√
c) is its local time. We consider

instead of the sequences of random walks νnk , k = 0, 1, . . . , n, the first representative,
i.e., the random walk ν1

k , k = 0, 1, . . . , n. We set

q̃n(t, x) :=
[nt]∑
k=1

f
(
ν1
k−1 − [x

√
n], ν1

k − [x
√
n]
)
, (t, x) ∈ [0, 1]×R.
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By the scaling property of the Brownian motion and by the method of construction
of the random walk νnk (see § 2), the finite-dimensional distributions of the processes
n−1/2

(
ν1
[ns] −W (ns), q̃n(t, x) − h`(nt, x

√
n)
)

coincide with those of the processes(
Wn(s) −W (s), qn(t, x) − h`(t, x)

)
, (s, t, x) ∈ [0, 1]2 ×R. Therefore, Theorem 6.2

can be reformulated as follows.

Theorem 6.3. Suppose that the conditions (6.35), (6.36) hold. Then for any
ε > 0

lim
n→∞

P
(

sup
t∈[0,1]

|ν1
[nt] −W (nt)| > ε

√
n
)

= 0,

lim
n→∞

P
(

sup
(t,x)∈[0,1]×R

|q̃n(t, x)− h`(nt, x
√
n)| > ε

√
n
)

= 0.

Proof of Theorem 6.2. We set

Hn(t, x) := 1
√
n

[nt]∑
k=1

h(νnk−1 − [x
√
n]), (t, x) ∈ [0, 1]×R,

rn(y, z) := 1
√
n
(f(y, z)− h(y)), y ∈ Z, z ∈ Z,

Rn(t, x) :=
[nt]∑
k=1

rn(νnk−1 − [x
√
n], νnk − [x

√
n]), (t, x) ∈ [0, 1]×R.

Proposition 6.5. For any ε > 0

lim
n→∞

P
(

sup
(t,x)∈[0,1]×R

|Hn(t, x)− h`(t, x)| > ε
)

= 0.

Proof. Using the identity

1
√
n

[nt]∑
k=1

h
(
νnk−1 − [x

√
n]
)

=
∞∑

j=−∞
h(j) 1

√
n

[nt]∑
k=1

1I{0}
(
νnk−1 −

[
j + x

√
n
])

=
∞∑

j=−∞
h(j)`n

(
t,

j
√
n

+ x
)
,

we get

sup
(t,x)∈[0,1]×R

|Hn(t, x)− h`(t, x)| ≤
∞∑

j=−∞
|h(j)| sup

(t,x)∈[0,1]×R

∣∣∣`n(t, j
√
n

+ x
)
− `(t, x)

∣∣∣
≤

∞∑
j=−∞

|h(j)|
(

sup
(t,x)∈[0,1]×R

|`n(t, x)− `(t, x)|+ sup
(t,x)∈[0,1]×R

∣∣∣`(t, j
√
n

+x
)
− `(t, x)

∣∣∣).
The right-hand side of this estimate tends to zero in probability in view of (6.4),
the uniform continuity of `(t, x), and condition (6.35). �

The next lemma together with Proposition 6.5 proves Theorem 6.2.
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Lemma 6.3. For any ε > 0

lim
n→∞

P
(

sup
(t,x)∈[0,1]×R

|Rn(t, x)| > ε
)

= 0. (6.39)

Proof. We divide the proof of this lemma into several parts. We consider first the
supremum of the random function Rn(t, x) over the set {0 ≤ t ≤ 1} × {|x| > 2A},
where for an arbitrary ρ > 0 the value A = A(ρ) is defined in (6.16).

Proposition 6.6. For any ε > 0

lim
n→∞

P
(

sup
|x|>2A

sup
0≤t≤1

|Rn(t, x)| > ε
)

= 0. (6.40)

Proof. Set χk := 1I{|νn
k |≤A

√
n},

sn(j, l) :=
j∑

k=1

χk−1rn(νnk−1 − l, νnk − l), h(2)(l) := Ef2(l, l + ξ1).

Since Ern(y, y + ξk) = 0, for fixed l and n the variables sn(j, l), j = 1, . . . , n,
form a martingale with respect to the family of σ-algebras Fj generated by the
random walk νnk , k = 1, 2, . . . , up to the time j. Using (6.16), Doob’s inequality for
martingales (see (5.8) of Ch. I), Lemma 2.1 of Ch. I, and (5.3) with β = 1, κ = 0,
we get

P
(

sup
|x|>2A

sup
0≤t≤1

∣∣∣ [nt]∑
k=1

rn(νnk−1 − [x
√
n], νnk − [x

√
n])
∣∣∣ > ε

)

≤ ρ+
∑

|l|>2A
√
n

P
(

sup
0≤j≤n

|sn(j, l)| > ε
)
≤ ρ+

∑
|l|>2A

√
n

1

"2
Es2n(n, l)

= ρ+
∑

|l|>2A
√
n

1

"2n
E

n∑
k=1

χk−1(h(2)(νnk−1 − l)− h2(νnk−1 − l))

= ρ+ 1

"2

∑
|l|>2A

√
n

1

2�n

π∫
−π

Zl(u)
1− 'n(u)

1− '(u)
du, (6.41)

where
Zl(u) :=

∑
|v|≤A

√
n

e−iuv(h(2)(v − l)− h2(v − l)).

Substituting the estimate∑
|l|>2A

√
n

|Zl(u)| ≤ 2A
√
n

∑
|l|≥A

√
n

Ef2(l, l + ξ1)
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in (6.41) and using (5.4), (5.6), we get

P
(

sup
|x|>2A

sup
0≤t≤1

|Rn(t, x)| > ε
)
≤ ρ+ 4A

�"2

∑
|l|≥A

√
n

Ef2(l, l + ξ1).

Since ρ is arbitrary, this together with (6.36) implies (6.40). �

We now estimate the supremum of the random function Rn(t, x) over the set
{0 ≤ t ≤ 1} × {|x| ≤ 2A}. We start with the explanation of the forthcoming
conclusions. If the condition

∞∑
l=−∞

Ef4(l, l + ξ1) <∞,

would be satisfied, then one could prove the estimate

ER4
n(1,κ/

√
n) ≤ C

n
.

Since Ern(y, y + ξk) = 0, for a fixed κ and n the variables Rn(j/n,κ/
√
n),

j = 1, . . . , n, form a martingale with respect to the family of the σ-algebras Fj
generated by the random walk νk up to the time j. By Doob’s inequality for
martingales (see (5.8), p = 4, Ch. I),

P
(

sup
|x|≤2A

sup
0≤t≤1

∣∣Rn(t, x)∣∣ > ε
)
≤ 1

"4

∑
|κ|≤2A

√
n

ER4
n(1,κ/

√
n) ≤ 4AC

"4
√
n
. (6.42)

This together with Proposition 6.6 is sufficient for the proof of Lemma 6.3.
Since the above condition is not required to be satisfied, we must use the method

of truncation of the function f(y, z), representing it as the sum of two functions:

f̂n(y, z) := f(y, z)1I{|f(y,z)|≤n1/4} and f̌n(y, z) := f(y, z)1I{|f(y,z)|>n1/4}.

Set ĥ(2)
n (y) := Ef̂2

n(y, y + ξ1), ĥn(y) := Ef̂n(y, y + ξ1), ȟ(2)
n (y) := Ef̌2

n(y, y + ξ1),
ȟn(y) := Ef̌n(y, y + ξ1). We decompose the function rn(y, z) into a sum of two
functions:

r̂n(y, z) := 1
√
n

(
f̂n(y, z)− ĥn(y)

)
and řn(y, z) := 1

√
n

(
f̌n(y, z)− ȟn(y)

)
.

In this decomposition the equalities Er̂n(y, y + ξ1) = 0, Eřn(y, y + ξ1) = 0 and
the level of truncation n1/4 are important. We denote by R̂n(t, x) and Řn(t, x) the
processes, corresponding to the functions r̂n and řn. Since Rn(t, x) = R̂n(t, x) +
Řn(t, x), it is sufficient to prove the analogue of (6.39) for each of these summands.

Proposition 6.7. For any ε > 0,

lim
n→∞

P
(

sup
|x|≤2A

sup
0≤t≤1

∣∣Řn(t, x)∣∣ > ε
)

= 0. (6.43)
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Proof. We set

Žn(u) :=
∞∑

v=−∞
e−iuvEř2n(v, v + ξ1) =

∞∑
v=−∞

e−iuv
(
ȟ(2)
n (v)− ȟ2

n(v)
)
.

Using Doob’s inequality for martingales, (5.3) with β = 1, and (5.4), we get

P
(

sup
|x|≤2A

sup
0≤t≤1

|Řn(t, x)| > ε
)
≤ 1

"2

∑
|l|≤2A

√
n

E
( n∑
k=1

řn(νk−1 − l, νk − l)
)2

= 1

"2

∑
|l|≤2A

√
n

1

2�n

π∫
−π

e−iulŽn(u)
1− 'n(u)

1− '(u)
du ≤ A

�"2
√
n

π∫
−π

∣∣Žn(u)∣∣(n ∧ u−2) du.

Obviously, ∣∣Žn(u)∣∣ ≤ ∞∑
v=−∞

E
{
f2(v, v + ξ1)1I{|f(v,v+ξ1)|>n1/4}

}
.

Therefore, in view of (5.6), we have

P
(

sup
|x|≤2A

sup
0≤t≤1

∣∣Řn(t, x)∣∣ > ε
)
≤ 4A

�"2

∞∑
v=−∞

E
{
f2(v, v + ξ1)1I{|f(v,v+ξ1)|>n1/4}

}
.

By (6.36), this implies (6.43). �

The analogous assertion for the process R̂n(t, x) is the following.

Proposition 6.8. For any ε > 0,

lim
n→∞

P
(

sup
|x|≤2A

sup
0≤t≤1

∣∣R̂n(t, x)∣∣ > ε
)

= 0. (6.44)

Proof. By Doob’s inequality for martingales (see (5.8), p = 4, Ch. I),

P
{

sup
|x|≤2A

sup
0≤t≤1

∣∣R̂n(t, x)∣∣ > ε
}
≤ ε−4

∑
|κ|≤2A

√
n

ER̂4
n(1,κ/

√
n). (6.45)

To estimate the fourth moment of R̂n(1,κ/
√
n) we use the relations (5.9)–(5.17)

and the notations introduced there. We set ζn(k, v) := r̂n(v, v + ξk). According to
(5.9), ER̂qn(m/n,κ/

√
n) = Z(q)

n (m,κ). From (5.16) it follows that

Z(4)
n (m,κ) ≤

4∑
j=1

4!

j!(4− j)!

1

2�

π∫
−π

m∑
k=1

∣∣Zj,4−jn (m− k, u)
∣∣|ϕ(u)|k−1 du. (6.46)

The goal is to estimate the variables
∣∣Zj,4−jn (m − k, u)

∣∣, j = 1, 2, 3, 4. We remark
that, in view of the equality v̂n(y) := Er̂n(y, y + ξ1) = 0 and Lemma 2.1 Ch. I,

Z(1)
n (m,κ) := E

m∑
k=1

ζn(k, νk−1 − κ) =
m∑
k=1

Ev̂n(νk−1 − κ) = 0,
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and therefore Zj,1n ≡ 0, j = 1, 2, 3, 4.
If j ≥ 2, then using (6.36) we get

∣∣Zj,0n (m− k, u)
∣∣ ≤ 16

nj=2

∞∑
v=−∞

E
{
|f(v, v+ ξ1)|j1I{|f(v,v+ξ1)|≤n1/4} ≤

C

nj=4
√
n
. (6.47)

Since for m ≤ n

Z(2)
n (m,κ) = 1

n

m∑
k=1

E(ĥ(2)
n (νk−1 − κ)− ĥ2

n(νk−1 − κ)),

using (5.3), (5.4), and (5.6), we have

Z(2)
n (m,κ) ≤ 1

2�n

∞∑
v=−∞

Ef2(v, v + ξ1)

π∫
−π

∣∣∣1− 'm(u)

1− '(u)

∣∣∣du ≤ C
√
n
.

Therefore, ∣∣Z2,2
n (m− k, u)

∣∣ ≤ C

n3=2

∞∑
v=−∞

Ef2(v, v + ξ1) ≤
C

n3=2
. (6.48)

Further, since Er̂n(y, y + ξ1) = 0, we have

Gn(u, y) =
∞∑

v=−∞
ei(y−u)vE

{
(eiyξ1 − 1)r̂n(v, v + ξ1)

}
.

We choose θ as in Theorem 3.1. Then

|Gn(u, y)| ≤
2
√
n

∞∑
v=−∞

E
{(

(1 ∧ |y||ξ1|)1I{|ξ1|≤θ√n} + 1I{θ√n<|ξ1|}
)
|f(v, v + ξ1)|

}
≤ C

√
n
((1 ∧ |y|θ

√
n) + αn(θ)), (6.49)

where

αn(θ) :=
∞∑

v=−∞
E
{
|f(v, v + ξ1)|1I{θ√n<|ξ1|}

}
→ 0.

This limit holds in view of (6.35) and the inequality θ ≥ n−1/4.
Using the equality Z1,1

n ≡ 0, formula (5.17) with r = 2, the estimates (6.47) with
j = 2, (6.49), and (5.5)–(5.7), we get

∣∣Z1,2
n (m− k, u)

∣∣ ≤ 1

2�

π∫
−π

|Gn(u, s)|
m−k∑
l=1

∣∣Z2,0
n (m− k − l, s)

∣∣|ϕ(s)|l−1ds

≤ C

n3=2

π∫
−π

((1 ∧ |s|θ
√
n) + αn(θ))

1− |'n(s)|
1− |'(s)|

ds ≤ C

n

(√
θ + αn(θ)

)
.
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Substituting this estimate in (5.17) with r = 3, we obtain∣∣Z1,3
n (m− k, u)

∣∣
≤ 1

2�

π∫
−π

|Gn(u, s)|
m−k∑
l=1

(
3
∣∣Z1,2
n (m− k − l, s)

∣∣+ ∣∣Z3,0
n (m− k − l, s)

∣∣)|ϕl−1(s)| ds

≤ C

n
√
n

π∫
−π

(
(1 ∧ |s|θ

√
n) + αn(θ)

)(
αn(θ) +

√
θ
)(
n ∧ 1

s2

)
ds ≤ C

n

(
αn(θ) +

√
θ
)2
.

We now have all the estimates we need to use in the inequality (6.46) and thus to
estimate ER̂4

n(1,κ/
√
n) = Z(4)

n (n,κ). We get

Z(4)
n (n,κ) ≤ C

n

(
αn(θ) +

√
θ
) π∫
−π

(n ∧ u−2) du ≤ C
√
n

(
αn(θ) +

√
θ
)
.

Substituting this estimate in the right-hand side of (6.45), we get

P
(

sup
|x|≤2A

sup
0≤t≤1

∣∣R̂n(t, x)∣∣ > ε
)
≤ 4AC

"4

(
αn(θ) +

√
θ
)
.

Proposition 6.8 and therefore Lemma 6.3 are proved. �
This, in turn, completes the proof of Theorem 6.2. �

§ 7. Weak invariance principle for
local times (continuous random walk)

In this section we assume that the condition (C) holds and the random walk νk
has a second moment. The essential difference from the condition (D) is that the
local time of the random walk depends on the parameter x belonging to R instead
of the discrete lattice. The proof of the convergence of local times of random
walks is essentially based on the results of § 4, having the lattice structure of the
parameter of the process. In this regard we consider first a discrete lattice as a
domain for the parameter x. Let h(v), v ∈ R, be a bounded integrable function.

Set

Hn(t, x) := 1
√
n

[nt]∑
k=1

h
(
νnk−1 −

[
x
√
n

�

]
δ
)
, t ∈ [0, 1], x ∈ R,

where 0<δ<1 is an arbitrary number. The process Hn(t, x) is determined by the
parameter x taking values in the discrete lattice Zδn={jδ/

√
n}j∈Z.
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Theorem 7.1. Suppose that

∞∫
−∞

√
|v||h(v)| dv <∞. (7.1)

Then for any ε > 0 and 0 < δ < 1

lim
n→∞

P
(

sup
(t,x)∈[0,1]×R

|Hn(t, x)− h`(t, x)| > ε
)

= 0, (7.2)

where h =
∞∫

−∞

h(v) dv.

Proof. The proof of (7.2) is quite analogous to the proof of (6.4), so we keep the
structure of the proof of Theorem 6.1. It suffices to point out the essential aspects.

Lemma 7.1. For any (t, x) ∈ [0, 1]×R

Hn(t, x) → h`(t, x), n→∞, (7.3)

in probability.

Proof. We use the notations and formulas of § 5 for continuous random walks.
We note first that for the continuous random walk P(ξ1 = 0) = 0, i.e., p0 =1. Let

θ := max
{ ∫
|v|>n1/4

|h(v)| dv, E1/3
{
ξ21 ; |ξ1| > n1/4

}
, n−1/4

}
.

Set
ζn(k, v) := 1

√
n
h(v)− h `(k)(H̃ (k)

n ,−v/
√
n),

where the random time H̃ (k)
n and the local time `(k)(H̃ (k)

n , x) are defined in the
beginning of the proof of Lemma 6.1. Set, in addition,

Vn(t, x) :=
[nt]∑
k=2

ζn

(
k, νnk−1 −

[
x
√
n

�

]
δ
)
, x ∈ R.

This process, like in the case of the integer random walk, plays an important role
in the proof of (7.3). We don’t include the term corresponding to k = 1 in the
definition of the function Vn for the reason discussed in § 5 before the formula
(5.19). For the proof of (7.3) this term is negligible, because, by the boundedness
of the function h and the estimate (6.9),

sup
v∈R

1
√
n
|h(v)| ≤ K

√
n
, sup

v∈R
E`2(H̃ (1)

n , v) ≤ C

n
.
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As it was explained in the proof of Lemma 6.1 relation (7.3) is a consequence of
(6.7). To derive (6.7) we apply (5.32). Propositions 6.1 and 6.2 are valid. Indeed,

Bn(0) ≤ 2

n

∞∫
−∞

h2(v) dv + 2h2

∞∫
−∞

E`2
(
H̃1
n,−

v
√
n

)
dv.

Now to prove (6.8) one should use the estimate (6.9).
Let us prove (6.10). The analog of (6.12) is the formula

√
ngn(−v, 0) = h(v)− hE`

(
H̃ (1)

1 , v
)

= h(v)

− 4h

E|�1|
E
{
(�+ �)�(� − v)

(�+ �)
1I{0≤v≤η,µ>0} + (�+ �)�(�+ v)

(�+ �)
1I{−µ≤v<0,η>0}

)}
. (7.4)

Therefore, the analog of (6.13) has the form

√
nGn(0, 0) = h− 4h

E|�1|
E
{
�+ �

�+ �

(
µ

η∫
0

(η− v) + η

0∫
−µ

(µ+ v)
)

1I{µ>0,η>0}

}

= h− 2h

E|�1|
E
{
(µ+ η)µη1I{µ>0,η>0}

}
= hO

(
E
{
ξ211I{|ξ1|>θ√n}

})
= hO(θ3). (7.5)

Next we prove (6.15). We have

√
n|Gn(u, y)−Gn(0, 0)| =

√
n

∣∣∣∣
∞∫

−∞

E
{(
ei(u−y)v+iyξ1 − 1

)
ζn(1, v)

}
dv

∣∣∣∣

≤
∞∫

−∞

E
{∣∣ei(u−y)v+iyξ1 − 1

∣∣|h(v)| dv + |h|
∣∣∣∣

∞∫
−∞

E
{(
ei(u−y)v+iyξ1 − 1

)
`(H̃ (1)

1 , v)
}
dv

∣∣∣∣
≤ C(1 ∧ (|u|+ |y|)θ

√
n) + 2

∫
|v|>n1/4

|h(v)| dv

+ 4|h|
E|�1|

E
{

1

�+ �
1I{η>0,µ>0}

η∫
−µ

∆v

(
µ(η − v)1I{v≥0} + η(µ+ v)1I{v<0}

)}
dv,

where the variables ∆v are defined in § 6 after the formula (6.14). In order to get the
first term on the right-hand side of this relation the estimates

∣∣eix− 1
∣∣ ≤ 2(1∧ |x|)

and n1/4 ≤ θ
√
n were used. The second term is estimated by 2θ and the third one

is evaluated like the similar term in the estimate (6.15). As a result, the estimate
(6.15) holds for the continuous random walk and therefore (6.10) is valid. This
completes the proof of Propositions 6.1 and 6.2.



§ 7. LOCAL TIME OF CONTINUOUS RANDOM WALK 547

Applying (5.32), (6.8), (6.10) and (5.21)–(5.25), we obtain

EV 2
n (t, x) ≤ C

(
θ + 1

√
n

)
+ C

n

∞∫
−∞

du

∞∫
−∞

dv
(
(1 ∧ |u|θ

√
n) + θ

)(
(1 ∧ |v|θ

√
n)

+ (1 ∧ |u|θ
√
n) + θ

)
|ϕ(u)||ϕ(v)|(n ∧ (1 + u−2))(n ∧ (1 + v−2)) ≤ Cθ.

Thus (6.7) holds and therefore (7.3) is proved. �

Another key result in the proof of Theorem 6.1 is Lemma 6.2. Here a significant
peculiarity arises: because the support of the function h(v), v ∈ R, is unbounded,
it is necessary to use the truncation of the function h(v). Thus we represent the
function h(v), v ∈ R, as the sum of two functions:

ĥn(v) := h(v)1I{|v|≤3A
√
n} and ȟn(v) := h(v)1I{|v|>3A

√
n},

where the constant A = A(ρ) is chosen such that (6.16) holds. The processes,
corresponding to the functions ĥn and ȟn, are denoted by Ĥn(t, x) and Ȟn(t, x)
respectively. Clearly, Hn(t, x) = Ĥn(t, x) + Ȟn(t, x). On the set Ωn(ρ), defined
just after (6.16), Ĥn(t, x) = 0 for |x| > 4A, because on this set sup

1≤k≤n
|νnk | ≤ A

√
n.

Therefore, it is sufficient to consider the process Ĥn only for |x| ≤ 4A. For this
process we establish the following analogue of Lemma 6.2.

Lemma 7.2. For any ε > 0, ρ > 0, and δ > 0, there exist % = %(ε, ρ, δ) and
n0 = n0(ε, ρ, %), such that for all n > n0

P
(

sup
Q(%)

|Ĥn(t, x)− Ĥn(s, y)| > ε
)
< ρ, (7.6)

where

Q(%) =
{
(s, t), (x, y) : |t− s| ≤ %, |x− y| ≤ %, s, t ∈ [0, 1], x, y ∈ [−4A, 4A]

}
.

Proof. We use the same arguments as in the discrete case. The distinctive
feature in this case is that the process Ĥn(t, x), (t, x) ∈ [0, 1] × R, is defined on
the lattice

{
k

n
,
l�
√
n

}
, whose array spacing with respect to the second coordinate is

proportional to δ. The variable �n(s, t, x, y) is defined by the process Ĥn similarly
to that it was defined in the proof of Lemma 6.2 by the local time `n.

In this case the analog of Proposition 6.3 is the following assertion.

Proposition 7.1. For any
�
√
n
≤ |y − x| ≤ 1,

1

n
≤ t− s ≤ 1

E|�n(s, t, x, y)|p ≤ Cp

( |y − x|
√
t− s

�

)p/2
, p = 1, 2, . . . . (7.7)
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where Cp depends only on the parameter p.

Proof. For y > x set ∆ := (y−x)
√
n, d(v) := ĥn(v−∆)− ĥn(v), v ∈ R. For the

proof of (7.7) it is sufficient to check (see (6.27)) that for any δ/
√
n ≤ y − x ≤ 1,

1/n ≤ t ≤ 1, p = 1, 2, . . . , and some constant L

∣∣∣E( 1
√
n

[nt]∑
l=1

d
(
νl−1 −

[
x
√
n

�

]
δ
))p∣∣∣ ≤ Lpp!

( |y − x|
√
t

�

)p/2
. (7.8)

As in § 6, to prove (7.8) we use induction on p. For this we apply the relations
(5.19)–(5.30). We set ζn(k, v) := n−1/2d(v), k = 1, . . . , n, and m := [nt], κ :=
[x
√
n/δ]δ. In view of our notations, zj,0n (m, v) = n−j/2dj(v),

Z(p)
n (m,κ) = E

(
1
√
n

[nt]∑
l=1

d
(
νl−1 −

[
x
√
n

�

]
δ
))p

.

Since the function h(v), v ∈ R, is integrable, we have the estimate

|Gn(z, y)| =
1
√
n

∣∣∣∣
∞∫

−∞

ei(y−z)vϕ(y) d(v) dv
∣∣∣∣

(7.9)

= 1
√
n

∣∣∣∣
∞∫

−∞

ϕ(y)
(
ei(y−z)(u+∆) − ei(y−z)u

)
ĥn(u) du

∣∣∣∣ ≤ 2K
√
n
((1 ∧ |z|∆) + (1 ∧ |y|∆)),

where K is the constant bounding the function h.
Let q ≥ 2. The induction hypothesis is: for all 1 ≤ k ≤ m,∣∣Z1,q−2
n (k, z)

∣∣ ≤ 2Lq−2(q − 2)!
( |x− y|

√
t

�

)(q−2)/2( (1 ∧ |z|�)
√
n

+
√
|x− y|

t1=4
√
�
√
n

)
, (7.10)

∣∣Z(p)
n (k,κ)

∣∣ ≤ Lpp!
( |y − x|

√
t

�

)p/2
, 1 ≤ k ≤ m, κ ∈ Z, p ≤ q − 1. (7.11)

We must prove (7.10) for q + 1 instead of q and prove (7.11) for p = q.
Consider the induction base with q = 2. Note that Z1,0

n (k, z) = Gn(z, 0). More-
over, by (5.28), q = 1, (5.29), (5.21), (5.24), and (7.9), y = 0,

∣∣Z(1)
n (k,κ)

∣∣ = ∣∣∣∣z1,0n (k−1,−κ)+ 1

2�

∞∫
−∞

e−izκGn(z, 0)ϕ(z)1− 'k−1(z)

1− '(z)
dz

∣∣∣∣ ≤ 2K
√
n

+ K

�
√
n

∞∫
−∞

(1∧ |z|∆)
(
m∧

(
1+ 1

z2

))
dz ≤ KC

√
n

(3+ (∆
√
m)1/2) ≤ 4KC

( |y − x|
√
t

�

)1/2

.

Here we used the estimate 1
√
n
≤
( |y − x|

√
t

�

)1/2

. Thus for q = 2 the induction

hypothesis holds for L ≥ 4KC.
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For j ≥ 2, r ≤ q − 1, 1 ≤ k ≤ m, using (5.27) and (7.11), we get that

∣∣Zj,rn (k, z)
∣∣ ≤ 1

nj=2

∞∫
−∞

|dj(v)| dvLrr!
( |y − x|

√
t

�

)r/2

≤ (2K)jLrr!

n

( |y − x|
√
t

�

)(r+j−2)/2

≤ (2K)jLrr!
( |y − x|

√
t

�

)(r+j−1)/2 1
√
n

( |y − x|
�
√
t

)1/2

,

where, to simplify the notation, we assume that the integral of the function |h(v)|,
v ∈ R, is estimated by the same constant K as the function itself. Here in the last
inequality we used the estimate 1

√
n
≤ |y − x|

�
.

The estimation of
∣∣Z1,q−1
n (k, z)

∣∣ is done in much the same way as in the proof of
Proposition 6.3. However, according to formula (5.30), it is necessary to estimate
the additional term, which we consider now. Applying (7.11), we obtain

∣∣∣∣ q−1∑
j=1

(q − 1)!

j!(q − 1− j)!

∞∫
−∞

e−iuvE
{
ζn(1, v)zj,q−1−j

n (m− 1, ξ1 + v)
}
dv

∣∣∣∣
≤

q−1∑
j=1

(q − 1)!

j!

(2K)j

n(j+1)=2

∞∫
−∞

|d(v)| dvLq−1−j
( |y − x|

√
t

�

)(q−1−j)/2

≤ Lq(q − 1)!
q−1∑
j=1

(2K)j+1

Lj
1

n

( |y − x|
√
t

�

)(q−2)/2

≤ Lq(q − 1)!
( |y − x|

√
t

�

)(q−1)/2 1
√
n

( |y − x|
�
√
t

)1/2 (2K)2

L− 2K
.

It is clear that the constant L is chosen according to the inequality (2K)2

L− 2K
< 1 and

the inequalities that arise when evaluating
∣∣Z1,q−1
n (k, z)

∣∣.
The inductive proof of (7.11) is completed in the same way as in the proof of

Proposition 6.3 with the help of (5.28) and (5.29). �

The following analog of Proposition 6.4 is also true.

Proposition 7.2. For any s ∈ [0, 1] and 1/n ≤ %

E
(
Ĥn(s+ %, x)− Ĥn(s, x)

)p ≤ (2K
√

2)pp!%p/2, p = 1, 2, . . . . (7.12)

Therefore, in the continuous case the analog of (6.20) turns into the following
inequality: for any k and l

P
(

sup
l%≤x≤(l+1)%
k%≤t≤(k+1)%

|Ĥn(t, x)− Ĥn(k%, l%)| >
"

3

)
≤ K̃

"6

(
%

�

)3

,
�
√
n
< %,
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where K̃ is a constant. As a result, we have

P
(

sup
Q(%)

|Ĥn(t, x)− Ĥn(s, y)| > ε
)
≤ 16A(ρ)K̃ %

"6�3
.

Choosing % = %(ε, ρ, δ) such that 16A(ρ)K̃ %

"6�3
≤ ρ, we get (7.6). Lemma 7.2 is

proved. �

We now consider the process Ȟn(t, x), t ∈ [0, 1], x ∈ R, and verify that it is
uniformly small for large n. It is sufficient to consider this process for x ∈ Zδn. We
set

Ȟn(z) := 1
√
n

n∑
k=2

|ȟn(νnk−1 − z
√
n)|, z ∈ Zδn.

Then
sup
t∈[0,1]

|Ȟn(t, z)| ≤
K
√
n

+ Ȟn(z). (7.13)

Proposition 7.3. For any ε > 0, ρ > 0, and for all 0 < δ < 1,

lim sup
n→∞

P
(

sup
z∈Zδ

n

Ȟn(z) ≥ ε
)
≤ ρ. (7.14)

Proof. Let χk := 1I{|νn
k |≤A

√
n} and

ζn(k, v) := 1
√
n
1I{|v|≤A√n}|ȟn(v − z

√
n)|.

We apply the results of § 5. The estimates

|Bn(u)| =
∣∣∣∣

∞∫
−∞

e−iuv
1

n
1I{|v|≤A√n}ȟ

2
n(v − z

√
n) dv

∣∣∣∣ ≤ 1

n

A
√
n∫

−A
√
n

ȟ2
n(v − z

√
n) dv,

|Gn(s, u)|=
∣∣∣∣
A
√
n∫

−A
√
n

ei(u−s)v
'(u)
√
n
|ȟn(v − z

√
n)| dv

∣∣∣∣ ≤ 1
√
n

A
√
n∫

−A
√
n

|ȟn(v − z
√
n)| dv

hold. We use (6.16) and (5.32). Then, applying the Chebyshev inequality, we get

P
(

sup
z∈Zδ

n

Ȟn(z) ≥ ε
)
≤ ρ+ 1

"2

∑
z∈Zδ

n

E
(

1
√
n

n∑
k=2

χk−1|ȟn(νk−1 − z
√
n)|
)2

≤ ρ

+ C

"2

∑
z∈Zδ

n

[
1
√
n

A
√
n∫

−A
√
n

(
ȟ2
n(v−z

√
n)+|ȟn(v−z

√
n)|
)
dv+

( A
√
n∫

−A
√
n

|ȟn(v−z
√
n)| dv

)2]
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≤ ρ+ C

"2
√
n

∑
|z|>2A

z∈Zδ
n

[ (A−z)
√
n∫

−(A+z)
√
n

(
h2(u) + |h(u)|

)
1I{|u|>3A

√
n} du

+
√
n

( (A−z)
√
n∫

−(A+z)
√
n

|h(u)|1I{|u|>3A
√
n} du

)2]
.

Here the important feature is that the integrals in the right-hand side of this
inequality are equal to zero for −2A ≤ z ≤ 2A, so they are not present in the sum.

Since in the interval (kA, (k + 1)A), k ∈ Z, there are [A
√
n/δ] points of the

lattice Zδn, we have the estimate

∑
z≤−2A

z∈Zδ
n

(A−z)
√
n∫

−(A+z)
√
n

h2(u) du ≤ 2A
√
n

�

∞∑
k=1

A(k+1)
√
n∫

Ak
√
n

h2(v) dv = 2A
√
n

�

∞∫
A
√
n

h2(v) dv.

Then from this and a similar estimate for the sum over z > 2A, z ∈ Zδn we get

P
(

sup
z∈Zδ

n

Ȟn(z) ≥ ε
)
≤ ρ+ CA

"2�

{ ∫
|v|≥A

√
n

(
h2(v) + |h(v)|

)
dv

+ 1

A

( ∫
|v|≥A

√
n

√
|v| |h(v)| dv

)2}
≤ ρ+ A

"2�
o(1).

Proposition 7.3 is proved. �

We complete the proof of Theorem 7.1. As already mentioned, on the set Ωn(ρ)
the process Ĥn(t, x), (t, x) ∈ [0, 1] × R, differs from zero only if x ∈ [−4A, 4A].
Since by (6.16) P

(
Ωc
n(ρ)

)
≤ 2ρ, we have

lim
n→∞

P
(

sup
(t,z)∈[0,1]×Zδ

n

|Hn(t, z)− h`(t, z)| > 4ε
)
≤ 2ρ+ lim

n→∞
P
(

sup
z∈Zδ

n

|Ȟn(z)| > ε
)

+P
(

sup
Q(%)

|`(t, x)− `(s, y)| > ε
)

+ lim
n→∞

P
(

sup
Q(%)

|Ĥn(t, x)− Ĥn(s, y)| > ε
)

+ lim
n→∞

P
(

sup
(tj ,xj)∈Σ

|Ĥn(tj , xj)− h`(tj , xj)| > ε
)
≤ 6ρ, (7.15)

where Σ = {tj , xj}Nj=1 is a lattice on [0, 1] × {[−4A, 4A] with array spacing not
greater than %. To derive (7.15) we used (7.13), (7.14), (6.18) and (7.6). In addition,
we used the fact that (7.13), (7.14), and (7.3) imply

Ĥn(t, z) → h`(t, z)
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in probability, and we can choose n1 = n1(ε, ρ, %) such that for all n > n1

P
(

sup
(tj ,xj)∈Σ

|Ĥn(tj , xj)− h`(tj , xj)| > ε
)
< ρ.

Since ε and ρ are arbitrary, from (7.15) it follows (7.2). Theorem 7.1 is proved. �

From Theorem 7.1 it is easy to deduce the analogue of Theorem 6.1 for the
continuous random walk.

Let

`(σ)
n (t, x) := 1

√
n

[nt]∑
k=1

1I[0,σ)(νnk−1 − x
√
n), σ ∈ R, x ∈ R,

where for σ < 0 we set 1I[0,σ)(v) := 1I(σ,0](v), v ∈ R.

Theorem 7.2. For any ε > 0

lim
n→∞

P
(

sup
(t,x)∈[0,1]×R

|`(σ)
n (t, x)− |σ|`(t, x)| > ε

)
= 0. (7.16)

Proof. Let 0 < δ < 1 be an arbitrary number. We consider Zδn={jδ/
√
n}j∈Z.

From Theorem 7.1 it follows that for any ε > 0 and σ

lim
n→∞

P
(

sup
(t,z)∈[0,1]×Zδ

n

|`(σ)
n (t, z)− |σ|`(t, z)| > ε

)
= 0. (7.17)

Let us prove that (7.17) implies (7.16). Indeed, for z ∈ Zδn

sup
z≤x<z+ δ√

n

|`(σ)
n (t, x)−`(σ)

n (t, z)|≤ 1
√
n

[nt]∑
k=1

(
1I[σ,σ+δ)(νnk−1−z

√
n)+1I[0,δ)(νnk−1−z

√
n)
)

≤ 1
√
n

[nt]∑
k=1

1I[0,2δ)(νnk−1 − (z + zn)
√
n) + 1

√
n

[nt]∑
k=1

1I[0,δ)(νnk−1 − z
√
n),

where zn ∈ Zδn is the nearest point to the left of σ/
√
n, i.e., the point such that

zn
√
n ≤ σ < zn

√
n+ δ. Therefore, for δ < σ/2,

sup
z∈Zδ

n

sup
z≤x<z+ δ√

n

|`(σ)
n (t, x)− `(σ)

n (t, z)| ≤ 2 sup
z∈Zδ

n

`(2δ)
n (t, z)

≤ 4δ sup
z∈Zδ

n

`(t, z) + 2 sup
z∈Zδ

n

|`(2δ)
n (t, z)− 2δ`(t, z)|.

Consequently,

sup
(t,x)∈[0,1]×R

|`(σ)
n (t, x)− |σ|`(t, x)| ≤ sup

(t,z)∈[0,1]×Zδ
n

|`(σ)
n (t, z)− |σ|`(t, z)|
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+4 δ sup
z∈Zδ

n

`(1, z) + 2 sup
(t,z)∈[0,1]×Zδ

n

|`(2δ)
n (t, z)− 2δ`(t, z)|

+ |σ| sup
t∈[0,1]

sup
|x−z|≤ δ√

n

|`(t, x)− `(t, z)|. (7.18)

According to (7.17), the first and the third terms on the right-hand side of (7.18)
tend to zero in probability. By (11.1) Ch. V, the fourth term tends to zero a.s.
According to the estimate (5.27) Ch. V, for any ε > 0

P
(
4δ sup

z∈R
`(1, z) > "

2

)
≤ L"2

64 �2
exp

(
− "2

128 �2

)
.

The right-hand side of this inequality can be made arbitrarily small by suitable
choosing δ. Thus (7.16) follows from (7.17). �

We now derive the analogue of Theorem 6.2 for the continuous random walk.
We set

qn(t, x) := 1
√
n

[nt]∑
k=1

f(νnk−1 − x
√
n, νnk − x

√
n), (t, x) ∈ [0, T ]×R.

In this case we impose an additional restrictions on the function f(y, z). Suppose
that there exists nonnegative functions C(y, z), Dj(y, z), (y, z) ∈ R2, and numbers
αj , βj , j = 1, 2, . . . , r, such that

sup
−δ<v<δ

|f(y + v, z + v)− f(y, z)| ≤ C(y, z)δ

+
r∑
j=1

Dj(y, z)
(
1I(αj−δ,αj+δ)(y) + 1I(βj−δ,βj+δ)(z)

)
(7.19)

for all (y, z) ∈ R2 and all sufficiently small δ > 0.
Condition (7.19) imposes a restriction that the function f has discontinuities

only along lines parallel to the coordinate axes. All the examples given in § 1
satisfy this condition.

Theorem 7.3. Let (7.19) holds. Assume that

∞∫
−∞

(
1 +

√
|v|
)
E|f(v, v + ξ1)| dv <∞, (7.20)

∞∫
−∞

Ef2(v, v + ξ1) dv <∞, (7.21)

P
(

sup
v∈R

|f(v, v + ξ1)| > L
)
→ 0 as L→∞. (7.22)
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Moreover, suppose that for all (y, z) ∈ R2,

|Ef(y, y + ξ1)| ≤ Q, C(y, z) ≤ Q, Dj(y, z) ≤ Q, j = 1, . . . , r, (7.23)

and
∞∫

−∞

(
1 +

√
|v|
)
EC(v, v + ξ1) dv <∞, (7.24)

∞∫
−∞

EC2(v, v + ξ1) dv <∞, (7.25)

where Q is a constant.
Then

lim
n→∞

P
(

sup
t∈[0,1]

|Wn(t)−W (t)| > ε
)

= 0, (7.26)

lim
n→∞

P
(

sup
(t,x)∈[0,1]×R

|qn(t, x)− h`(t, x)| > ε
)

= 0 (7.27)

for any ε > 0.

Remark 7.1. Condition (7.22) is necessary for (7.27) to hold. Indeed, qn(1/n,x)
= 1

√
n
f(−x

√
n, ξn1 − x

√
n) and

P
(

sup
v∈R

|f(v, v + ξ1)| > 2ε
√
n
)
≤ P

(
sup
x∈R

|`(1/n, x)| > ε/h
)

+P
(

sup
x∈R

|qn(1/n, x)− h`(1/n, x)| > ε
)
.

In view of (7.27) and the continuity of the process `(t, x), t ≥ 0, x ∈ R, the
right-hand side of this inequality tends to zero as n→∞.

Proof of Theorem 7.3. The relation (7.26) was proved in § 3 for an arbitrary
random walk for which the second moment exists. We prove (7.27). We can
assume without loss of generality that r = 1, α1 = β1 = 0 in condition (7.19).
The condition (7.19) enables us to reduce the proof of (7.27) to the case when
the supremum with respect to x in (7.27) is taken only over the lattice Zδn =
{jδ/

√
n}j∈Z with the array spacing δ/

√
n. To prove (7.27) it suffices to establish

that for any ε > 0, ρ > 0, and for all sufficiently small δ = δ(ε, ρ)

lim sup
n→∞

P
(

sup
(t,z)∈[0,1]×Zδ

n

|qn(t, z)− h`(t, z)| > ε
)
≤ ρ. (7.28)

Let us prove this. Set

Cn(m, z) := δ
m∑
k=1

C(νnk−1 − z
√
n, νnk − z

√
n), q(C)

n (t, z) := 1
√
n
Cn([nt], z).
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We assume for convenience that the integral in (7.24) is estimated by the same
constant Q as in (7.23). By (7.23) and (7.24),

hC := δ

∞∫
−∞

EC(v, v + ξ1) dv ≤ δQ,

1
√
n

m∑
k=1

D1(νnk−1 − z
√
n, νnk − z

√
n)
(
1I(−δ,δ)(νnk−1 − z

√
n) + 1I(−δ,δ)(νnk − z

√
n)
)

≤ 2Q
(
`(δ)
n

(m
n
, z
)

+ `(−δ)
n

(m
n
, z
)

+ 1
√
n

)
.

From (7.19) it follows that for any t ∈ [0, 1]

sup
z∈Zδ

n

sup
z≤x<z+ δ√

n

|qn(t, x)− qn(t, z)|

≤ 1
√
n

[nt]∑
k=1

sup
z∈Zδ

n

sup
0≤v≤δ

∣∣f(νnk−1−(z
√
n+v), νnk−(z

√
n+v))−f(νnk−1−z

√
n, νnk−z

√
n)
∣∣

≤ sup
z∈Zδ

n

q(C)
n (t, z) + 2Q sup

z∈Zδ
n

`(δ)
n (t, z) + 2Q sup

z∈Zδ
n

`(−δ)
n (t, z) + 2Q

√
n
. (7.29)

We set δ := hC + 4Qδ. Then

sup
(t,x)∈[0,1]×R

|qn(t, x)− h`(t, x)| ≤ sup
(t,z)∈[0,1]×Zδ

n

|qn(t, z)− h`(t, z)|+ δ sup
z∈Zδ

n

`(1, z)

+ sup
(t,z)∈[0,1]×Zδ

n

|q(C)
n (t, z)− hC`(t, z)|+ 2Q sup

(t,z)∈[0,1]×Zδ
n

|`(δ)
n (t, z)− δ`(t, z)|

+ 2Q
√
n

+ 2Q sup
(t,z)∈[0,1]×Zδ

n

|`(−δ)
n (t, z)− δ`(t, z)|

+h sup
t∈[0,1]

sup
|x−z|≤ δ√

n

|`(t, x)− `(t, z)|. (7.30)

The function C(y, z) satisfies (7.20)–(7.22). Therefore, if we have (7.28), the first
and the third terms on the right-hand side of (7.30) tend to zero in probability. By
(7.16), the fourth and the sixth terms converge to zero. In view of (11.1) of Ch. V,
the 7th term tends to zero a.s. According to (5.27) of Ch. V, for any ε > 0 and
δ > 0

P
(
δ sup
z∈R

`(1, z) > "

2

)
≤ L"2

4 �
2 exp

(
− "2

8 �
2

)
. (7.31)

Since δ ≤ 5Qδ, the right-hand side of this inequality can be made as small as
necessary by choosing δ. Thus for the validity of (7.27) it suffices to prove (7.28).
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Let us pass to the proof of (7.28). Set

rn(y, z) := 1
√
n
(f(y, z)− h(y)), Rn(t, z) :=

[nt]∑
k=2

rn(νnk−1 − z
√
n, νnk − z

√
n),

Hn(t, z) := 1
√
n

[nt]∑
k=1

h(νnk−1 − z
√
n).

In the definition of the processRn we excluded the first term, since by the conditions
(7.22) and the boundedness of h(y), y ∈ R, (see (7.23)) it does not play a significant
role. The necessity of such an exclusion was discussed in the Subsection 2 of § 5.

For the process Hn(t, z), (t, z) ∈ [0, 1]×Zδn, we can apply Theorem 7.1, i.e., the
relation (7.2) holds. Since

qn(t, z) = Hn(t, z) +Rn(t, z) + 1
√
n
f(−z

√
n, ξn1 − z

√
n)− 1

√
n
h(−z

√
n),

to establish (7.28) it suffices to prove the following statement.

Lemma 7.3. For any ε > 0 and 0 < δ < 1

lim
n→∞

P
(

sup
(t,z)∈[0,1]×Zδ

n

|Rn(t, z)| > ε
)

= 0. (7.32)

Proof. This lemma is proved analogously to Lemma 6.3, so we point out only
significant differences.

We first consider the supremum of the random process Rn(t, z) over the set
{0 ≤ t ≤ 1}× {{|z| > 2A}

⋂
Zδn}, where for an arbitrary ρ > 0 the value A = A(ρ)

is defined by (6.16).

Proposition 7.4. For any ε > 0 and 0 < δ < 1

lim
n→∞

P
(

sup
{|z|>2A}

⋂
Zδ

n

sup
0≤t≤1

|Rn(t, x)| > ε
)

= 0. (7.33)

Proof. Applying (5.19) for β = 1 and κ = 0, we get the following analog of
(6.41):

P
(

sup
{|z|>2A}

⋂
Zδ

n

sup
0≤t≤1

|Rn(t, x)| > ε
)

≤ ρ+ 1

"2

∑
|l|>2A

√
n/δ

1

2�n

∞∫
−∞

Zl(u)ϕ(u)1− 'n−1(u)

1− '(u)
du,

where

Zl(u) :=

A
√
n∫

−A
√
n

e−iuv(h(2)(v − lδ)− h2(v − lδ)) dv.
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Substituting the estimate∑
|l|>2A

√
n/δ

|Zl(u)| ≤
2A

√
n

�

∫
|v|≥A

√
n

Ef2(v, v + ξ1) dv

in the previous inequality and using (5.21), (5.23), we obtain

P
(

sup
{|x|>2A}

⋂
Zδ

n

sup
0≤t≤1

|Rn(t, x)| > ε
)
≤ ρ+ 4A

��"2

∫
|v|≥A

√
n

Ef2(v, v + ξ1) dv.

Hence, in view of the arbitrariness of ρ and the condition (7.21), this implies (7.33).
�

We define the processes R̂n(t, x) and Řn(t, x) analogously to how it was done
in § 6. The summation is carried out from k = 2. We consider the analog of
Proposition 6.7.

Proposition 7.5. For any ε > 0

lim
n→∞

P
(

sup
{|z|≤2A}

⋂
Zδ

n

sup
0≤t≤1

∣∣Řn(t, z)∣∣ > ε
)

= 0. (7.34)

We provide only the final estimate, which implies (7.34), because the main as-
pects of the proof were described in the proof of Proposition 7.4. The estimate has
the form

P
(

sup
{|x|≤2A}

⋂
Zδ

n

sup
0≤t≤1

∣∣Řn(t, x)∣∣>ε)≤ 4A

��"2

∞∫
−∞

E
{
f2(v, v+ ξ1)1I{|f(v,v+ξ1)|>n1/4}

}
dv.

The analog of Proposition 6.8 is the following assertion.

Proposition 7.6. For any ε > 0

lim
n→∞

P
(

sup
{|x|≤2A}

⋂
Zδ

n

sup
0≤t≤1

∣∣R̂n(t, x)∣∣ > ε
)

= 0. (7.35)

Proof. Using Doob’s inequality for martingales (see (5.8), p = 4, Ch. I), we get

P
(

sup
{|z|≤2A}

⋂
Zδ

n

sup
0≤t≤1

∣∣∣R̂n(t, z)∣∣ > ε
)
≤ ε−4

∑
|κ|≤2A

√
n/δ

ER̂4
n(1,κδ/

√
n). (7.36)

To estimate the fourth moment of R̂n(1,κδ/
√
n) we use the relations (5.19)–(5.30)

and the notations introduced there. Set ζn(k, v) := r̂n(v, v + ξk). In this case we
have a special situation, due to the absence of the first term. Therefore,

ER̂qn(m/n,κδ/
√
n) = Z̃(q)

n (m,κδ), κ ∈ Z,
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where Z̃(q)
n is defined by (5.9) with the summation from k = 2. Then from (5.28)

and (5.29) we have

Z̃(4)
n (m,κδ) ≤

4∑
j=1

4!

j!(4− j)!

1

2�

∞∫
−∞

m∑
k=2

∣∣Zj,4−jn (m− k, u)
∣∣|ϕ(u)|k−1 du. (7.37)

The goal now is to estimate the variables
∣∣Zj,4−jn (m− k, u)

∣∣, j = 1, 2, 3, 4. To this
end we are forced to use the variables Z(r)

n instead of the variables Z̃(r)
n , r = 0, 1, 2, 3,

because in this case the first term in the sum is significant.
Analogously to the corresponding part of the proof of Proposition 6.8, we get

that Z(1)
n (m,κδ) = 0. Then zj,1n ≡ 0, Zj,1n ≡ 0, j = 1, 2, 3, 4.

For j ≥ 2

∣∣∣Zj,0n (m−k, u)
∣∣ ≤ 16

nj=2

∞∫
−∞

E
{
|f(v, v+ξ1)|j1I{|f(v,v+ξ1)|≤n1/4} dv ≤

C

nj=4
√
n
. (7.38)

For m ≤ n we have

Z(2)
n (m,κδ) = 1

n
(ĥ(2)
n (−κδ)− ĥ2

n(−κδ))+ 1

n

m∑
k=2

E(ĥ(2)
n (νk−1−κδ)− ĥ2

n(νk−1−κδ)).

Then, using (5.19), (5.21) and (5.23), we get

Z(2)
n (m,κδ) ≤ 1

√
n

+ 1

2�n

∞∫
−∞

Ef2(v, v + ξ1) dv

∞∫
−∞

|ϕ(u)|
∣∣∣1− 'm−1(u)

1− '(u)

∣∣∣du ≤ C
√
n
.

Therefore, the estimate (6.48) is valid. In addition, the estimate (6.49) holds, where

αn(θ) :=

∞∫
−∞

E
{
|f(v, v + ξ1)|1I{θ√n<|ξ1|}

}
dv → 0.

Using the equalities z1,1n ≡ 0, Z1,1
n ≡ 0, (5.30) with r = 2, the estimate (7.38) for

j = 2, (6.49), and (5.22)–(5.24), we get

∣∣Z1,2
n (m− k, u)

∣∣ ≤ ∞∫
−∞

E
∣∣ζn(1, v)z2,0n (m− k − 1, ξ1 + v)

∣∣dv

+ 1

2�

∞∫
−∞

|Gn(u, s)|
m−k∑
l=2

∣∣Z2,0
n (m− k− l, s)

∣∣|ϕ(s)|l−1 ds ≤ 2

nn1=4

∞∫
−∞

Ef2(v, v+ ξ1) dv

+ C

n3=2

∞∫
−∞

((1 ∧ |s|θ
√
n) + αn(θ))|ϕ(s)|1− |'n−1(s)|

1− |'(s)|
ds ≤ C

n

(√
θ + αn(θ)

)
.
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Substituting this in (5.30), r = 3, we obtain

∣∣Z1,3
n (m− k, u)

∣∣ ≤ ∞∫
−∞

E
∣∣ζn(1, v)(3z1,2n (m− k− 1, ξ1 + v)+ z3,0n (m− k− 1, ξ1 + v)

)∣∣dv
+ 1

2�

∞∫
−∞

|Gn(u, s)|
m−k∑
l=2

(
3
∣∣Z1,2
n (m− k − l, s)

∣∣+ ∣∣Z3,0
n (m− k − l, s)

∣∣)|ϕl−1(s)| ds

≤ C

nn1=4
+ C

n
√
n

∞∫
−∞

(
(1 ∧ |s|θ

√
n) + αn(θ)

)(
αn(θ) +

√
θ
)
|ϕ(s)|

(
n ∧

(
1 + 1

s2

))
ds

≤ C

n

(
αn(θ) +

√
θ
)2
.

We now have all estimates needed for the right-hand side of the inequality (7.37)
and we can estimate R̃4

n(n,κδ). We have

Z̃(4)
n (n,κδ) ≤ C

n

(
αn(θ) +

√
θ
) ∞∫
−∞

|ϕ(u)|
(
n ∧

(
1 + 1

u2

))
du ≤ C

√
n

(
αn(θ) +

√
θ
)
.

Substituting this estimate in the right-hand side of (7.36), we get

P
(

sup
{|z|≤2A}

⋂
Zδ

n

sup
0≤t≤1

∣∣R̂n(t, x)∣∣ > ε

)
≤ 4AC

"4�

(
αn(θ) +

√
θ
)
.

Proposition 7.6 and therefore Lemma 7.3 are proved. �
This, in turn, completes the proof of Theorem 7.3. �

§ 8. Strong invariance principle for local times

Under the name of a strong invariance principle for local times we combine
results that do not simply establish weak convergence of processes to the Brownian
local time, but also give an explicit form for the order of the rate of convergence. In
this section, we derive an a.s. estimate of the rate of convergence of the difference
qn(t, x)− h`(t, x) to zero under the condition that the 8th moment of the random
walk νk exists.

Theorem 8.1. Assume that the condition (D) holds, E|ξ1|8 <∞,

∞∑
v=−∞

Ef2(v, v + ξ1) <∞ (8.1)

and
∞∑

v=−∞
E
[(
|v|+ |ξ1|

)
|f(v, v + ξ1)|

]
<∞. (8.2)
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Suppose that
∞∑
n=1

P
(

sup
1≤k≤n

sup
v

|f(v, v + ξk)| > n1/4
)
<∞. (8.3)

Then a.s.
lim sup
n→∞

n1=4

lnn
sup

0≤t≤1
|Wn(t)−W (t)| <∞, (8.4)

lim sup
n→∞

n1=4

lnn
sup

(t,x)∈[0,1]×R

|qn(t, x)− h`(t, x)| <∞. (8.5)

Remark 8.1. The condition

E sup
v
f8(v, v + ξ1) <∞

suffices for (8.3).

Indeed, the left-hand side of (8.3) can be estimated as follows:

∞∑
n=1

nP
(
sup
v
f4(v, v + ξ1) ≥ n

)

≤
∞∑
n=1

E
{

sup
v
f4(v, v + ξ1); sup

v
f4(v, v + ξ1) ≥ n

}
≤ E sup

v
f8(v, v + ξ1). (8.6)

Remark 8.2. In view of the expression for the exact modulus of continuity
of the Brownian local time (Theorem 11.1 Ch. V) the oscillation of the function
`(t, x) has order n−1/4

√
lnn for x varying in an interval of length 1

√
n
. Since the

function qn(t, x) is not varying for x ∈
[
k
√
n
,
k + 1
√
n

)
, k ∈ Z, the rate of convergence

determined by (8.5) is optimal up to the factor
√

lnn.

Theorem 8.2. Assume that the conditions (C ), (7.19), (7.23)–(7.25), and (8.3)
are satisfied. Suppose that E|ξ1|8 <∞, the function Ef2(y, y + ξ1) is bounded,

∞∫
−∞

Ef2(v, v + ξ1) dv <∞, (8.7)

and
∞∫

−∞

E
{(

1 + |v|+ |ξ1|
)
|f(v, v + ξ1)|

}
dv <∞. (8.8)

Then the relations (8.4) and (8.5) hold a.s.

Our main goal is to prove (8.5). The relation (8.4) was proved in § 3 (formula
(3.8)).
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Remark 8.3. In both cases (D) and (C) we derive (8.5) with the help of the
first part of the Borel–Cantelli lemma (see § 1 Ch. I) from the following relation:
for a nonrandom constant K > 0

∞∑
n=1

P
(

sup
(t,x)∈[0,1]×R

|qn(t, x)− h`(t, x)| > Kn−1/4 lnn
)
<∞. (8.9)

Remark 8.4. It follows from (8.9) that for some constant K > 0
∞∑
n=1

P
(

sup
1≤k≤n

sup
v∈R

|f(v, v + ξk)| > Kn1/4 lnn
)
<∞,

i.e., the condition (8.3) is close to unimprovable one.

Indeed,
1
√
n

sup
1≤k≤n

sup
v∈R

|f(v, v + ξnk )| ≤ sup
1≤k≤n

sup
x∈R

∣∣∣qn( kn , x)− h`
(
k

n
, x
)∣∣∣

+ sup
1≤k≤n

sup
x∈R

∣∣∣qn(k − 1

n
, x
)
− h`

(
k − 1

n
, x
)∣∣∣+ sup

1≤k≤n
sup
x∈R

h
∣∣∣`( k

n
, x
)
− `
(
k − 1

n
, x
)∣∣∣.

Now we can use (8.9) and Theorem 10.1 of Ch. V.

Let q̃n(t, x), (t, x) ∈ [0, 1] × R, be the process defined in Theorem 6.3. Then
it follows from the scaling property described before Theorem 6.3 and from (8.9)
that the following assertion is true.

Proposition 8.1. Under the conditions of Theorem 8.1
∞∑
n=1

P
(

sup
(t,x)∈[0,1]×R

|q̃n(t, x)− h`(nt, x
√
n)| > Kn1/4 lnn

)
<∞ (8.10)

for some nonrandom constant K > 0.

By the first part of the Borel–Cantelli lemma (see § 1 Ch. I), this result implies
the next assertion.

Proposition 8.2. Under the conditions of Theorem 8.1

lim sup
n→∞

1

n1=4 lnn
sup

(t,x)∈[0,1]×R

|q̃n(t, x)− h`(nt, x
√
n)| <∞ a.s. (8.11)

Proof of Theorem 8.1. By the construction of the random walk νnk (see § 2),

Wn(t) = W (τn(t)), where τn(t) =
[nt]∑
l=1

H (l)
n .

Set

ζn(k, v) := n1/4
{
n−1/2f(v, v + ξnk )1I{|f(v,v+ξn

k )|≤n1/4} − h`(k)(H̃ (k)
n ,−v/

√
n)
}
,

Vn(t, x) =
[nt]∑
k=1

ζn(k, νnk−1 − [x
√
n]),

where the moments H̃ (k)
n and the variables `(k)(H̃ (k)

n ,−v/
√
n) were defined at the

beginning of the proof of Theorem 6.1. Here let θ = n−1/4.
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Lemma 8.1. For any (t, x) ∈ [0, 1]×R and some λ > 0

E exp(λ|Vn(t, x)|) ≤ 2. (8.12)

Proof. In order to prove (8.12), it suffices to prove that for all 0 ≤ t ≤ 1 and
p = 1, 2, . . .

|EV pn (t, x)| ≤ Lpp! (8.13)

for some L > 0. The inequality (8.12) is derived from (8.13) in the same way as
(3.14) was obtained from (3.15). We prove (8.13) by induction with respect to p.
For this we use the notations of § 5 and the relations (5.9)–(5.17). Let m = [nt],
κ = [x

√
n].

Further we assume for simplicity that P(ξ1 = 0) = 0, i.e., p0 = 1.

Proposition 8.3. For any u, y ∈ R

|Gn(u, y)| ≤
B

n1=4

(
(1 ∧ |y|) + (1 ∧ |u|) + 1

n1=4

)
, (8.14)

where B is a constant.

Proof. Since, in view of (8.1),

∞∑
v=−∞

E
{
|f(v, v + ξ1)|1I{|f(v,v+ξ1)|>n1/4}

}
≤ C

n1=4
,

by analogy with (6.12) and (6.13) (θ = n−1/4) we obtain

n1/4Gn(0, 0) =
∞∑

v=−∞
E
{
f(v, v + ξ1)1I{|f(v,v+ξ1)|≤n1/4}

}

− 4h

E|�1|
E
{
�+ �

�+ �

(
µ

η∑
v=0

(η − v) + η
−1∑

v=−µ
(µ+ v)

)
1I{µ>0,η>0}

}
= h+O(n−1/4)

− 4h

E|�1|
E
{
(µ+ η)µη1I{µ>0,η>0}

}
= O(n−1/4) +O

(
E
{
ξ21 ; |ξ1| > n1/4

})
= O(n−1/4).

Analogously to (6.14) we get

n1/4|Gn(u, y)−Gn(0, 0)| ≤
∞∑

v=−∞
E
{∣∣eiv(yu)+iyξ1 −1

∣∣|f(v, v+ξ1)|1I{|f(v,v+ξ1)|≤n1/4}

}

+ 4

E|�1|
E
{

2��

�+ �
1I{η>0,µ>0}

η∑
v=−µ

∆v

}
,

where for −µ ≤ v ≤ η the estimate

|∆(v)| ≤ 2(η − v)
(
(1 ∧ (|vu|+ |y|(µ+ v)))

)
+ 2(µ+ v)

(
(1 ∧ (|vu|+ |y|(η − v)))

)
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≤ (µ+ η)
(
(1 ∧ (|vu|+ |y|(µ+ η)))

)
≤ (µ+ η)2

(
(1 ∧ (|u|+ |y|)

)
holds. Then, using the inequality

∣∣eix − 1
∣∣ ≤ 2(1 ∧ |x|), we have

n1/4|Gn(u, y)−Gn(0, 0)| ≤ 2
(
C ∧

∞∑
v=−∞

E
{(
|v|(|y|+ |u|) + |y||ξ1|

)
|f(v, v + ξ1)|

)

+
(
(1 ∧ (|u|+ |y|)

) 8

E|�1|
E
{
µη(µ+ η)2

}
≤ C

{
(1 ∧ |y|) + (1 ∧ |u|)

}
.

The estimates for |Gn(0, 0)| and |Gn(u, y)−Gn(0, 0)| yield (8.14). �

We start to prove (8.13) by induction on p. According to our notation, EV pn (t, x)
= Z(p)

n (m,κ). The induction hypothesis is

|Z1,q−2
n (k, z)| ≤ BLq−2(q − 2)! 1

n1=4

(
(1 ∧ |z|) + 1

n1=4

)
, q ≥ 2, (8.15)

|Z(p)
n (m,κ)| ≤ Lpp!, 1 ≤ m ≤ n, κ ∈ Z, p ≤ q − 1, (8.16)

where B is the constant from (8.14) and L is some constant, L > B. We must prove
(8.15) for q + 1 instead of q and (8.16) for p = q. Note that Z1,0

n (k, z) = Gn(z, 0).
Moreover, in view of (5.3) with β = 1 and (5.4)–(5.7), we have

|Z(1)
n (m,κ)| = 1

2�

∣∣∣∣
π∫

−π

e−izκGn(z, 0)1− 'm(z)

1− '(z)
dz

∣∣∣∣
≤ C

n1=4

π∫
−π

((1 ∧ |z|) + n−1/4)(m ∧ z−2) dz ≤ C

n1=4

(
9m1/4 + 4

n1=4

√
m
)
≤ L.

Therefore, when q = 2 the induction hypothesis holds.
Obviously H̃ (1)

n = H
(1)

n . Then taking into account (2.2), (2.5) and (2.9), we get
analogously to (6.9) that for j ≥ 2

nj/2E`j
(
H̃ (1)
n ,

v
√
n

)
= 2j+1j!

E|�1|
E
{

(µ+ η) (�+ v)j(� − v)j

(�+ �)j

(
�

�+ v
1I{0≤v≤η,µ>0} + �

� − v
1I{−µ≤v<0,η>0}

)}
≤ 2j+1j!

E|�1|
E
{
(µ+ η){µηj−11I{0≤v≤η,µ>0} + ηµj−11I−µ≤v<0,η>0}}

}
.

Consequently,

∞∑
v=−∞

E`j
(
H̃ (1)
n ,− v

√
n

)
≤ 2j+1j!

E|�1|nj=2
E
{

(µ+ η)(µηj + ηµj)1I{µ>0,η>0}

}

≤ 2j+1j!E|�1|3

n(j+2)=4E|�1|
.
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For j ≥ 2, r ≤ q − 1,

|Zj,rn (k, z)| ≤
∞∑

v=−∞
E|ζn(k, v)|j Lrr!

≤ C4jj!Lrr!
√
n

( ∞∑
v=−∞

Ef2(v, v + ξ1) + E|ξ1|3
)
≤ Lr Bj r!j!

√
n

,

where we can suppose that B is the constant figuring in (8.14).
Applying (5.17) and using the estimates obtained above for the variables Zj,q−1−j

n ,
j = 1, . . . , q − 1, and (5.5)–(5.8), we get

|Z1,q−1
n (k, z)| ≤ Lq−1(q − 1)!

q−1∑
j=1

(
B

L

)j B

2�
√
n

π∫
−π

(
(1 ∧ |z|) + (1 ∧ |s|) + 1

n1=4

)

×
(
(1 ∧ |s|) + 1

n1=4

)
1− |'(s)|k

1− |'(s)|
ds ≤ Lq−1(q − 1)!B2

(L−B)n1=4

(
(1 ∧ |z|) + 1

n1=4

)
.

For L ≥ 2B this estimate takes the desired form (8.15). Substituting the estimates
for Zj,q−jn , j = 1, . . . , q, in (5.16), we obtain

∣∣Z(q)
n (m,κ)

∣∣ ≤ q∑
j=1

q!Lq−j Bj+1

2�n1=4

π∫
−π

(
(1 ∧ |z|) + 1

n1=4

)
1− |'(z)|m

1− |'(z)|
dz

≤ BLqq!
q∑
j=1

(
B

L

)j
≤ Lqq! B2

L−B
.

We choose L such that L ≥ B(1 + B). Therefore, the estimate (8.16) holds for
p = q. This completes the proof by induction and, consequently, proves (8.13).
Lemma 8.1 is proved. �

We proceed to the proof of (8.9). Set

Ω̃n := Ωn
⋂(

sup
1≤k≤n

sup
v

|f(v, v + ξnk )| ≤ n1/4
)
.

Recall that Ωn = {νnk = νnk , k = 1, 2, . . . , n} (see § 3), where θ = n−1/4. We use the
fact that |νnk | ≤ n5/4, k = 1, 2, . . . , n, on the set Ωn and therefore,

`(k)
(
H̃ (k)
n , ([x

√
n]− νnk−1)/

√
n
)

= 0

on this set for |[x
√
n]| ≥ n2. Let Vn(t, x) be the process defined at the beginning

of the proof of Theorem 8.1. We set

Ṽn(t, x) = n1/4
(
qn(t, x)− h`(τn(t), [x

√
n]/

√
n)
)
,
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where τn(t) :=
[nt]∑
l=1

H (l)
n , t ∈ [0, 1]. On the set Ω̃n the processes Ṽn and Vn coincide.

Therefore, for any K > 0,

P
(

sup
(t,x)∈[0,1]×R

|Ṽn(t, x)| > K lnn
)
≤ P(Ω̃c

n)+P
(

sup
|x|≤n3/2

sup
0≤t≤1

|Vn(t, x)|>K lnn
)

+P
(

sup
|x|>n3/2

n∑
k=1

|f(νnk−1 − [x
√
n], νnk − [x

√
n])| > Kn1/4 lnn,Ωn

)
=:

3∑
j=1

pj,n.

(8.17)
It follows from (3.11) and (8.3) that

∞∑
n=1

p1,n <∞. (8.18)

Applying (8.12), we get that for K ≥ 5/λ

p2,n ≤
n∑
k=1

∑
|v|≤n2

P(|Vn(k/n, v/
√
n)| > K lnn) ≤ 4n3e−λK lnn ≤ 4

n2
. (8.19)

From (8.2) we get

p3,n ≤
1

Kn1=4 lnn

n∑
k=1

E sup
|v|≥n2/2

|f(v, v + ξk)|

≤ 2n

n2Kn1=4 lnn

∑
|v|≥n2/2

|v|E|f(v, v + ξ1)| ≤
C

n5=4 lnn
. (8.20)

In view of (8.17)–(8.20) and the equality

n1/4(qn(t, x)−h`(t, x)) = Ṽn(t, x)+h
(
`(τn(t), xn)−`(t, xn)

)
+h
(
`(t, xn)−`(t, x))

)
,

where xn = [x
√
n]/

√
n, we have that to prove (8.9) it suffices to verify that for

some constant K > 0

∞∑
n=1

P
(

sup
(t,x)∈[0,1]×R

|`(τn(t), x)− `(t, x)| > Kn−1/4 lnn
)
<∞, (8.21)

∞∑
n=1

P
(

sup
t∈[0,1]

sup
|x−y|≤1/

√
n

|`(t, y)− `(t, x)| > Kn−1/4 lnn
)
<∞. (8.22)

Using the monotonicity of `(t, x) with respect to t, applying (3.18), and the estimate
(5.27) of Ch. V together with the Remark 5.3 of Ch. V, we get

P
(

sup
(t,x)∈[0,1]×R

|`(τn(t), x)−`(t, x)| >
K lnn

n1=4

)
≤ P(Ωc

n)+
2

n1+�
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+P
(

sup
(t,x)∈[0,1]×R

∣∣∣`(t+ K1 lnn√
n

, x
)
− `
(
t− K1 lnn√

n
, x
)∣∣∣ > K lnn

n1=4

)
≤ P(Ωc

n) + 2

n1+�
+

√
n

K1 lnn
P
(

sup
x∈R

`
(
3K1 lnn√

n
, x
)
>

K lnn

n1=4

)
≤ P(Ωc

n) + 2

n1+�
+ LK2√n

3K2
1

exp
(
− K2 lnn

6K1

)
.

For the validity of (8.21), it is sufficient to choose K2 > 9K1.

We prove (8.22). Set ‖ · ‖ := sup
t∈[0,1]

| · |. Let 0 < ∆ ≤ 1, r ∈ [0,∞). Note that

W (0) = 0. It is not hard to derive from the estimate (8.4) of Ch. V that

P(‖`(t, r + ∆)− `(t, r)‖ > h) ≤ 4 exp
(
− r

2
− 3h

8
√
�

)
(8.23)

for
√

∆ ≤ h ≤ 1

�
. Now, using this estimate, we prove that

P
(

sup
r<x≤r+∆

‖`(t, x)− `(t, r)‖ > h
)
≤ 8 exp

(
− r

2
− 3�h

8
√
�

)
(8.24)

for B
√

∆ ≤ h ≤ 1

�
with some α ∈ (0, 1) and B ≥ 1.

Let m be an arbitrary positive integer. Since the process `(t, x) is continuous,
it suffices to prove the estimate (8.24) for the case when the supremum is taken
over the set [r, r + ∆] ∩ D2m , where D2m = {j/2m|j ∈ Z}, ∆ ∈ D2m , r ∈ D2m ,
∆ ≥ 1/2m. The proof is carried out by induction with respect to ∆. For ∆ =
1/2m the estimate (8.24) follows from (8.23). Assume that (8.24) holds for all ∆′

strictly less than ∆ and prove (8.24). Set ∆0 := [∆2m−1]/2m, h1 := αh
√

∆0/∆,
h2 := h(1− α

√
∆0/∆), where α will be chosen later. Then

P
(

sup
r<x≤r+∆
x∈D2m

‖`(t, x)−`(t, r)‖ > h

)
≤ P

(
sup

r<x≤r+∆0
x∈D2m

‖`(t, x)−`(t, r)‖ > h

)

+P(‖`(t, r + ∆0)− `(t, r)‖ > h1) + P
(

sup
r+∆0<x≤r+∆

x∈D2m

‖`(t, x)− `(t, r + ∆0)‖ > h2

)

≤ 4e−r/2
{

2 exp
(
− 3�h

8
√
�0

)
+exp

(
− 3�h

8
√
�

)
+2 exp

(
− �h

(
1− �

√
�0=�

)
8
√
�−�0

)}
. (8.25)

We must not only prove (8.24) but, using the induction hypothesis, also satisfy the
inequalities h1 ≥

√
∆0 and h2 ≥ B

√
∆−∆0. They will be valid if 1/α ≤ B and√

∆−α
√

∆0 ≥
√

∆−∆0. We choose α small enough, then choose B so large that
in addition to these inequalities we have for all ∆ and m the estimates

exp
(
− 3�B

√
�

8

(
1

√
�0

− 1
√
�

))
≤ 1

4
,
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exp
(
− 3�B

√
�

8

(
1− �

√
�0=�√

�−�0
− 1

√
�

))
≤ 1

4
.

This is possible, because 1/3 ≤ ∆0/∆ ≤ 1/2. Then (8.25) implies (8.24).
We now prove with the help of (8.24) that (8.22) holds for sufficiently large K.

Using the symmetry property of the Brownian motion, we get

P
(

sup
|x−y|≤ 1√

n

‖`(t, y)− `(t, x)‖ > K lnn

n1=4

)

≤ 2
∞∑
k=0

P
(

sup
k√
n
<x≤ k+1√

n

‖`(t, x)− `(t, k/
√
n)‖ > K lnn

3n1=4

)

≤ 16 exp
(
− �K lnn

8

) ∞∑
k=0

e−k/(2
√
n) = 16n−�K=8

1− e−1=(2
√
n)

≤ 64
√
nn−αK/8.

For K > 12/α the right-hand side of this inequality is the element of a convergent
series, which proves (8.22). Theorem 8.1 is proved. �

Proof of Theorem 8.2. We can assume without loss of generality that r = 1,
α1 = β1 = 0 in condition (7.19). Set δ := 1

√
n
, Zn :=

{ j
n

∣∣j ∈ Z
}
. As in the case

of the weak invariance principle, the condition (7.19) gives us the opportunity to
consider in (8.9) the supremum only over x ∈ Zn instead of the supremum over all
real values x.

From (7.19) and (7.23) it follows analogously to (7.29) that

sup
t∈[0,1]

sup
z∈Zn

sup
z≤x<z+1/n

|qn(t, x)− qn(t, z)|

≤ sup
z∈Zn

Cn(z) + 2Q sup
z∈Zn

`(1/
√

n)
n (1, z) + 2Q sup

z∈Zn

`(−1/
√

n)
n (1, z) + 2Q

n
, (8.26)

where

Cn(z) := 1

n

n∑
k=2

C(νnk−1 − z
√
n, νnk − z

√
n),

and the constant Q is taken from (7.23). Here, in view of (7.23), we estimated the
term corresponding to k = 1 by the value Q

n
.

In view of (8.3), (8.22) and (8.26), it suffices to prove the following assertions.

Proposition 8.4. For some nonrandom constant K > 0,

∞∑
n=1

P
(

sup
(t,z)∈[0,1]×Zn

|qn(t, z)− h`(t, z)| > Kn−1/4 lnn
)
<∞. (8.27)

Proposition 8.5. The following series of probabilities converges:

∞∑
n=1

P
(

sup
z∈Zn

Cn(z) > n−1/4 lnn
)
<∞. (8.28)
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Proposition 8.6. The following series of probabilities converges:

∞∑
n=1

P
(

sup
z∈Zn

`(±1/
√

n)
n (1, z) > n−1/4 lnn

)
<∞. (8.29)

Proof of Proposition 8.4. Since the supremum with respect to z is taken over a
discrete lattice, the proof of (8.27) is analogous to that of (8.9) for integer random
walk. The fact that here the lattice has the array spacing 1/n does not lead to
essential changes in the proof. Therefore we mention only a few details.

Like in the integer random walk case one shows that the process Vn(t, x) satisfies
(8.12). In the definition of the process Vn(t, x) we should replace [x

√
n] by x

√
n.

The estimate (8.13) is proved by induction. The difference in this case is only that
some terms must be estimated separately. The induction hypothesis consists of
the inequalities (8.15) and (8.16). The estimate (8.14) holds. We have Z1,0

n (k, z) =
Gn(z, 0) and, in view of (5.28), (5.29), and (5.22)–(5.24), we get

|Z(1)
n (m,κ)| =

∣∣∣∣z1,0n (m− 1,−κ) + 1

2�

∞∫
−∞

e−izκGn(z, 0)ϕ(z)1− 'm−1(z)

1− '(z)
dz

∣∣∣∣
≤ Cn−1/4 + Cn−1/4

∞∫
−∞

((1 ∧ |z|) + n−1/4)(m ∧ (1 + z−2))|ϕ(z)| dz ≤ L.

Here for the first term we used the estimate (6.9). Therefore, when q = 2 the
induction hypothesis holds.

Applying (5.30) and using the estimates for the variables Zj,q−1−j
n , j ≥ 2, anal-

ogous to those obtained in the proof of Lemma 8.1, we get

|Z1,q−1
n (k, z)| ≤ Lq−1(q−1)!

q−1∑
j=1

(
B

L

)j( B

n1=4
+ B

2�
√
n

∞∫
−∞

(
(1∧|z|)+(1∧|s|)+ 1

n1=4

)

×
(
(1 ∧ |s|) + 1

n1=4

)
|ϕ(s)|1− |'(s)|k−1

1− |'(s)|
ds

)
≤ Lq−1(q − 1)!B2

(L−B)n1=4

(
(1 ∧ |z|) + 1

n1=4

)
.

For L ≥ 2B this estimate takes the required form (8.15). Substituting into (5.29)
the estimates for Zj,q−jn , j = 1, . . . , q, we get

∣∣Ij,q−jn (m,κ)
∣∣ ≤ Lq−j(q − j)!j! B

j+1

2�n1=4

∞∫
−∞

(
(1 ∧ |z|) + 1

n1=4

)
|ϕ(z)|1− |'(z)|m−1

1− |'(z)|
dz

≤ Lq−j(q − j)!j!Bj+1.

It is easy to derive the estimate

|zj,q−jn (m− 1,−κ)| ≤ Bjj!Lq−j(q − j)!.
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We now choose L such that 2B
∞∑
j=1

(B/L)j ≤ 1, i.e., L ≥ B(1 + 2B). Then from

(5.28) we deduce (8.16) for p = q. Thus the estimate (8.13) holds and therefore
the estimate (8.12) is proved.

Next we use the analogue of (8.17) in which the term p1,n has the same form,
the supremum in p2,n is taken over the set {{|z| ≤ n3}

⋂
{z ∈ Zn}} instead of the

set {|x| ≤ n3/2}, and

p3,n := P
(

sup
|z|>n3

z∈Zn

n∑
k=1

|f(νnk−1 − z
√
n, νnk − z

√
n)| > Kn1/4 lnn,Ωn

)
.

In view of (3.11) and condition (8.3), we have (8.18). When estimating p2,n the
constant K must be chosen greater or equal than 7/λ, because in this case the
lattice array spacing equals 1/n, in contrast to the array spacing 1/

√
n in the

discrete case.
We estimate the probability p3,n. The estimation of this probability for contin-

uous random walks differs from that proposed in (8.20). The term corresponding
to k = 1, is estimated with the help of the condition (8.3). Excluding this term
and using (5.19) with β = 1, (5.21), and (5.23), we get

p̃3,n := P
(

sup
|z|>n3

z∈Zn

n∑
k=2

|f(νk−1 − z
√
n, νk − z

√
n)| > Kn1/4 lnn,Ωn

)

≤ 1

Kn1=4 lnn

∑
|z|>n3

z∈Zn

E
n∑
k=2

(
|f(νk−1 − z

√
n, νk − z

√
n)|1I{|νk−1|≤n5/4}

)

≤ Cn1=4

K lnn

∑
|z|>n3

z∈Zn

n5/4∫
−n5/4

E|f(y − z
√
n, y − z

√
n+ ξ1)| dy

≤ Cn1=4

K lnn

∑
|j|>n4

n5/4−j/
√
n∫

−n5/4−j/
√
n

E|f(v, v + ξ1)| dv.

Since Zn is the lattice with the array spacing n−1, there are less than 2n7/4 points
of the form z

√
n in the interval (−n5/4, n5/4). Therefore, using (8.8), we have

p̃3,n ≤
2Cn7=4n1=4

K lnn

∫
|v|>n7/2

E|f(v, v + ξ1)| dv

≤ 4Cn2

Kn7=2 lnn

∞∫
−∞

(1 + |v|)E|f(v, v + ξ1)| dv ≤
4C

n
√
n lnn

. (8.30)
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Proposition 8.4 is proved. �

Proof of Proposition 8.5. The following arguments are analogous to the deriva-
tion of the estimate (8.30). Using (5.19) with β = 1, (5.21), (5.23) and (7.24), we
get

P
(

sup
|z|>n5

z∈Zn

Cn(z) > n−1/4 lnn
)
≤ P(Ωc

n)

+ 1

n3=4 lnn

∑
|z|>n5

z∈Zn

E
n∑
k=2

(
C(νk−1 − z

√
n, νk − z

√
n)1I{|νk−1|≤n5/4}

)

≤ P(Ωc
n) + C

n1=4 lnn

∑
|z|>n5

z∈Zn

n5/4∫
−n5/4

EC(y − z
√
n, y − z

√
n+ ξ1) dy

≤ P(Ωc
n) + C

n1=4 lnn

∑
|j|>n6

n5/4−j/
√
n∫

−n5/4−j/
√
n

EC(v, v + ξ1) dv ≤ P(Ωc
n)

+ 2Cn7=4

n1=4 lnn

∫
|v|>n11/2/2

EC(v, v + ξ1) dv ≤ P(Ωc
n)

+ 2
√
2C

n5=4 lnn

∞∫
−∞

(
1 +

√
|v|
)
EC(v, v + ξ1) dv ≤ P(Ωc

n) + C

n5=4 lnn
.

Taking into account conditions (7.23), (7.25) and using relations (5.28), (5.29), we
can prove by induction as in (7.8) that for p = 1, 2, . . .

E
(

1
√
n

n∑
k=2

C(νk−1 − z
√
n, νk − z

√
n)
)p

≤ Lpp!.

This implies the estimate EC28
n (z) ≤ C

n14
. Then

P
(

sup
|z|≤n5

z∈Zn

Cn(z) > n−1/4 lnn
)
≤
∑

|z|≤n5

z∈Zn

n7

ln28 n
EC28

n (z) ≤ 2Cn6

n7 ln28 n
= 2C

n ln28 n
.

The required result (8.28) follows from these estimates. �

Proof of Proposition 8.6. Since

`(1/
√

n)
n (1, z) = 1

√
n

n∑
k=1

1I[0,1/√n)

(
νnk−1 − z

√
n
)

= 1
√
n

n∑
k=1

1I[0,1/n)

(�nk−1√
n

− z
)
,
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and on the set Ωn one has the estimates |νnk−1| ≤ n5/4, k = 1, 2, . . . , n, we have

P
(

sup
z∈Zn

`(1/
√

n)
n (1, z) > lnn

n1=4
,Ωn

)
= P

(
sup

|z|<2n3/4

z∈Zn

`(1/
√

n)
n (1, z) > lnn

n1=4
,Ωn

)

≤
∑

|j|≤2n7/4

P
(
`(1/

√
n)

n (1, j/
√
n) > lnn

n1=4

)
. (8.31)

We now prove that for any integer p ≥ 1

E(`(1/
√

n)
n (1, z))p ≤ Lpp!

np=2
. (8.32)

We use (5.9) and (5.26)–(5.29). Set

ζn(k, v) := 1I[0,1/√n)(v), κ = z
√
n.

Then

Z(p)
n (m,κ) = E

( n∑
k=1

1I[0,1/√n)

(
νk−1 − κ

))p
.

Applying (5.28) and (5.29), we prove by induction that for any integer p ≥ 1

Z(p)
n (m,κ) ≤ Lpp!. (8.33)

By (5.26),

Gn(u, y) =

∞∫
−∞

ei(y−u)vEeiyξ11I[0,1/√n)(v) dv.

Therefore, |Gn(u, y)| ≤ 1/
√
n. In addition, Z1,0

n (k, z) = Gn(z, 0) and, in view of
(5.28), (5.29) and (5.22)–(5.24),

|Z(1)
n (m,κ)| =

∣∣∣∣z1,0n (m− 1,−κ) + 1

2�

∞∫
−∞

e−izκGn(z, 0)ϕ(z)1− 'm−1(z)

1− '(z)
dz

∣∣∣∣
≤ 1I[0,1/n)(v) + 1

√
n

∞∫
−∞

(m ∧ (1 + z−2))|ϕ(z)| dz ≤ C.

Consequently, for p = 1 and L ≥ C the induction hypothesis holds. We assume
that (8.33) holds for all p ≤ q − 1 and prove it for p = q.

By (8.33), with j = 1, 2, . . . q,

|Zj,q−jn (k, z)| =
∣∣∣∣

∞∫
−∞

e−iuvzj,q−jn (k, z) dv
∣∣∣∣ ≤ C

√
n
Lq−j(q − j)!.
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Therefore, by (5.29),

|Ij,q−jn (m,κ)| = 1

2�

∣∣∣∣
∞∫

−∞

e−iuκ
m∑
k=2

Zj,q−jn (m− k, u)ϕk−1(u) du
∣∣∣∣ ≤ CLq−j(q − j)!.

Substituting these estimates and estimates |zj,q−jn (m− 1,−κ)| ≤ Lq−j(q − j)! into
(5.28), we get that (8.33) holds for p = q and L ≥ C + 2. Thus (8.33) is proved,
and, consequently, so is (8.32). Applying (8.31) and (8.32) with p = 11, we get

P
(

sup
|z|<2n3/4

z∈Zn

`(1/
√

n)
n (1, z) > n−1/4 lnn

)
≤ L1111!n11=4

ln11=2 n

2n7=4

n11=2
= 2L1111!

n ln11=2 n
.

Similar arguments work for the process `(−1/
√

n)
n (1, z), z ∈ Zn. Proposition 8.6 is

proved. This completes the proof of Theorem 8.2. �

§ 9. Applications of invariance principle

This section is devoted to various applications of the invariance principle for
local times. The proofs of these results clearly illustrate how the concept of weak
convergence of a process, introduced in § 1, is much more effective than the classical
definition.

In practical applications of the concept of weak convergence of processes it should
be kept in mind that in view of the Proposition 1.1 of Ch. I, the validity of (1.1)
for any ε > 0 is equivalent to the following assertion: for any sequence of positive
integers tending to infinity there exists a subsequence nk such that

lim
n→∞

sup
s∈Σ

|X ′
nk

(s)−X ′
∞(s)| = 0 a.s.

Throughout this section, νk =
k∑
l=1

ξl, k = 0, 1, 2, . . . , is an integer recurrent

random walk with unit variance satisfying the condition (D). Let `n(t, x), (t, x) ∈
[0,∞)×R, be the process defined in (6.1), W (t), t ≥ 0, be a Brownian motion and
`(t, x), (t, x) ∈ [0,∞)×R, be its local time.

We consider the following examples.
1. Let σn(k) and fn(l, k), (l, k) ∈ Z2, be sequences of functions defined at points

with integer coordinates. Consider the processes

ηn(t) :=
[nt]∑
k=1

σn(k) fn(νk−1, νk), t ∈ [0, 1]. (9.1)

Here we restrict ourselves to the case when the functions fn depend only on two
successive steps of the random walk. It is also possible to consider dependence on
a greater number of steps, but this does not lead to any fundamental changes.

Set gn(l) := Efn(l, l + ξ1), g(2)
n (l) := Ef2

n(l, l + ξ1),

Gn(x) :=
√
n signx

∑
(x−|x|)

√
n/2≤l<(x+|x|)

√
n/2

gn(l).
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Theorem 9.1. Let

lim
n→∞

sup
0≤s≤1

|σn([ns])− σ(s)| = 0, (9.2)

where σ(s), s ∈ [0, 1], is a bounded function. Suppose that for every x ∈ R

Gn(x) → G(x), (9.3)

and that for any A > 0

sup
n

√
n

∑
|l|≤A

√
n

|gn(l)| <∞, (9.4)

lim
n→∞

√
n

∑
|l|≤A

√
n

(
g(2)
n (l)− g2

n(l)
)

= 0. (9.5)

Then the processes ηn(t), t ∈ [0, 1], converge weakly as n→∞ to the process

η(t) :=

∞∫
−∞

t∫
0

σ(s) `(ds, x) dG(x), t ∈ [0, 1]. (9.6)

Remark 9.1. From (9.4) it follows that the function G has bounded variation
on any finite interval and the integral (9.6) is finite, because the Brownian local
time `(t, x) is continuous in (t, x) a.s. and for any t > 0 it is nonzero only on the
set
(

inf
0≤s≤t

W (s), sup
0≤s≤t

W (s)
)
.

Proof of Theorem 9.1. For each n we take instead of the random walk νk the
random walk νnk , constructed from the Brownian motion W in § 2. After this
replacement the process ηn(t) is denoted by η′n(t). This replacement corresponds
to the reconstruction of processes, involved in the definition of weak convergence.
By (3.4), for any ρ > 0 one can choose A = A(ρ) such that

P
(

sup
0≤l≤n

|νnl | > A
√
n
)
< ρ, P

(
sup

0≤s≤1
|W (s)| > A

)
< ρ. (9.7)

Set

χk := 1I{
sup

0≤l≤k
|νn

l |≤A
√
n
}, ηn(t) :=

[nt]∑
k=1

σn(k)gn(νnk−1),

sn(l) :=
l∑

k=1

χk−1σn(k) (fn(νnk−1, ν
n
k )− gn(νnk−1)), l = 1, 2, . . . , n.

The variables sn(l), l = 1, 2, . . . , n, form a martingale with respect to the family
of σ-algebras Fl generated by the random walk νnk up to the time l. Therefore,
using Doob’s inequality for martingales (see (5.8), p = 2, Ch. I), we get

P
(

sup
0≤l≤n

|sn(l)| > ε
)
≤ 1

"2
Es2n(n) ≤ C

"2
E

n∑
k=1

χk−1

(
g(2)
n (νk−1)− g2

n(νk−1)
)
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≤ C

"2

∑
j≤A

√
n

(
g(2)
n (j)− g2

n(j)
)
E

n∑
k=1

1I{j}(νk−1)

≤ C
√
n

"2

∑
|j|≤A

√
n

(g(2)
n (j)− g2

n(j)) −→
n→∞

0. (9.8)

Here we used the estimate

1
√
n
E

n∑
k=1

1I{j}(νk−1) ≤ C,

which follows from (5.3) with β = 1 and from the estimates (5.4), (5.6). By (9.5),
(9.7), (9.8) and the estimate

P
(

sup
0≤t≤1

|η′n(t)− ηn(t)| > ε
)
≤ P

(
sup

0≤l≤n
|νnl | > A

√
n
)

+ P
(

sup
0≤l≤n

|sn(l)| > ε
)

it follows that to prove the theorem it suffices to establish the uniform convergence
of ηn(t) to η(t), t ∈ [0, 1], in probability.

The process ηn(t) is represented (see for the comparison (6.2)) in the form

ηn(t) =
∞∑

l=−∞

√
n gn(l)

[nt]∑
k=1

σn(k)
1
√
n
1I{l}(νnk−1)

=

∞∫
−∞

dGn(x)
[nt]∑
k=1

σn(k)
1
√
n
1I{0}(νnk−1 − [x

√
n]) =

∞∫
−∞

t∫
0

σn([ns]) `n(ds, x) dGn(x),

where dGn(x) is taken to be nonzero only at the jump points of the function Gn(x)
and is equal there to the size of the jump. We set

Ω1,n :=
{

sup
0≤l≤n

|νnl | ≤ A
√
n
}⋂{

sup
0≤s≤1

|W (s)| ≤ A
}
,

Un(t, x) :=

t∫
0

σn([ns]) `n(ds, x)−
t∫

0

σ(s) `(ds, x).

By (9.7), P
(
Ωc

1,n

)
≤ 2ρ. On the set Ω1,n for all 1 ≤ k ≤ n we have

ηn(t)− η(t) =

A∫
−A

(Un(t, x)− Uk(t, x)) dGn(x)

+

A∫
−A

t∫
0

σk([ks]) `k(ds, x)(dGn(x)− dG(x)) +

A∫
−A

Uk(t, x) dG(x). (9.9)
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In view of (9.3), the second integral in (9.9) converges a.s. to zero as n → ∞
uniformly in t ∈ [0, 1].

For 0 < m < n we use the estimate

sup
t∈[0,1]

|Un(t, x)| ≤
1∫

0

|σn([ns])− σm([ms])| `n(ds, x)

+ sup
t∈[0,1]

∣∣∣∣
t∫

0

σm([ms]) (`n(ds, x)− `(ds, x))
∣∣∣∣+

1∫
0

|σm([ms])− σ(s)| `(ds, x).

By (9.2), the function σm([ms]), s ∈ [0, 1], is uniformly bounded, therefore the
second term on the right-hand side of this estimate does not exceed

K sup
0≤s≤1

∣∣`n(s, x)− `(s, x)
∣∣,

where K is a constant. Now from (9.2) and (6.4) we deduce, by letting first n and
then m tend to infinity, that

sup
(t,x)∈[0,1]×R

Un(t, x) → 0

in probability. This together with (9.4) implies that the first and third integrals in
(9.9) tend to zero in probability as n→∞ and k →∞, uniformly in t ∈ [0, 1]. �

2. We consider the limit behavior of the process

µn(s, t) :=
[ns]∑
k=1

[nt]∑
l=1

fn(νk−1, νl−1), s, t ∈ [0, 1].

Set

Fn(x, y) := n signx
∑

(x−|x|)
√
n/2≤p<(x+|x|)

√
n/2

sign y
∑

(y−|y|)
√
n/2≤q<(y+|y|)

√
n/2

fn(p, q).

Theorem 9.2. Suppose that Fn(x, y) → F (x, y) for all (x, y) ∈ R2 and for any
A > 0

sup
n

n
∑

|p|≤A
√
n

∑
|q|≤A

√
n

|fn(p, q)| <∞. (9.10)

Then the processes µn(s, t), (s, t) ∈ [0, 1]2, converge weakly as n → ∞ to the
process

µ(s, t) =

∞∫
−∞

∞∫
−∞

`(s, x)`(t, y)F (dx, dy), (s, t) ∈ [0, 1]2.

Remark 9.2. It follows from (9.10) that F has bounded variation on any rec-
tangle in R2 and hence the process µ(s, t), (s, t) ∈ [0, 1]2, is well defined.
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To prove Theorem 9.2 it suffices only to observe that after the replacement of
the random walk νk by the random walk νnk in the definition of the process µn(s, t)
we can denote it by µ′n(s, t) and get the following representation:

µ′n(s, t) =

∞∫
−∞

∞∫
−∞

`n(s, x)`n(t, x)Fn(dx, dy).

The subsequent arguments are analogous to the corresponding arguments in the
proof of Theorem 9.1.

3. We consider the number L(l,m, r) of pairs (i, j) for which νi−νj = r for i < l
and j < m. The quantity L(m,m, 0) can be interpreted as twice the number of
self-crossings of the random walk νk up to the time m. As is not hard to show, the
two-parameter process V (s, t) := W (s) −W (t), (s, t) ∈ [0,∞)2, has a local time,
i.e., the following limit exists a.s.:

l(s, t, z) := lim
ε↓0

1

"

s∫
0

du

t∫
0

dv1I[z,z+ε)(V (u, v)), (s, t, z) ∈ [0,∞)2 ×R.

Using (1.2) of Ch. V, it is not hard to see that

l(s, t, z) =

t∫
0

`(s, z +W (v)) dv =

∞∫
−∞

`(s, z + y)`(t, y) dy.

Theorem 9.3. The processes n−3/2L([ns], [nt], [z
√
n]) converge weakly to the

process l(s, t, z), (s, t, z) ∈ [0, 1]2 ×R.

Using the definition of the process `n(t, x) (see § 6), we have

n−3/2L′([ns], [nt], [z
√
n]) := 1

n3=2

[ns]∑
i=1

[nt]∑
j=1

1I{[z√n]}(ν
n
i−1−νnj−1)

=
∞∑

l=−∞

1

n3=2

[ns]∑
i=1

1I{[z√n]+l}(ν
n
i−1)

[nt]∑
j=1

1I{l}(νnj−1) =

∞∫
−∞

`n

(
s,

[z
√
n] + [y

√
n]

√
n

)
`n(t, y) dy.

Now Theorem 9.3 is an obvious consequence of this representation and (6.4), (9.7).

Remark 9.3. For any fixed z the weak convergence of n−3/4L([ns], [nt], [z
√
n])

as a processes of the variables (s, t) ∈ [0, 1]2 follows from Theorem 9.2 with
fn(m, q) = 1

n3=2
1I{r}(m− q), r = [z

√
n].

4. We consider the limit behavior of sums of independent random variables
defined on the random walk νk, k = 0, . . . , n. Let {Xj}∞j=−∞ be a sequence of
independent random variables and let

Sn :=
n∑
k=1

Xνk−1 .
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Assume that the variables Xj , j ∈ Z, do not depend on the random walk νk and
are identically distributed with zero mean and unit variance.

We define the processes Bn(t), t ∈ [0, 1], by

Bn(t) := n−3/4 S[nt].

Let W (x) and W (−x), x ≥ 0, be independent Brownian motions with zero
initial value. Moreover, we assume that the processes W (x), x ∈ R, and `(t, z),
(t, z) ∈ [0, 1]×R, are independent.

Theorem 9.4. The processes Bn(t), t ∈ [0, 1], converge weakly as n → ∞ to
the process

B(t) :=

∞∫
−∞

`(t, x) dW (x), t ∈ [0, 1]. (9.11)

Remark 9.4. The stochastic integral in (9.11) is actually taken over the random
interval

(
inf

s∈[0,t]
W (s), sup

s∈[0,t]

W (s)
)
, which is the support of the local time `(t, x),

x ∈ R, of the Brownian motion W .

Proof of Theorem 9.4. Set

Wn(x) := n−1/4

[x
√
n]∑

j=0

Xj , x ≥ 0, Wn(x) := −n−1/4
−1∑

j=[x
√
n]+1

Xj , x < 0.

According to the invariance principle for random walks (1.2), one can construct
from the Brownian motions W (x), x ≥ 0 and W (x), x ≤ 0, (the Skorohod em-
bedding scheme) the processes W

′
n(x), n = 1, 2, . . . , such that for each n their

finite-dimensional distributions coincide with those of the process Wn(x), and for
any A > 0 and ε > 0

lim
n→∞

P
(

sup
x∈[−A,A]

|W ′
n(x)−W (x)| > ε

)
= 0. (9.12)

Due to this construction, for each n the variables

Xn
j := n1/4

(
W

′
n

( j
√
n

)
−W

′
n

( j − 1
√
n

))
, j ∈ Z,

are independent and identically distributed with the variables Xj .
For each n we take instead of νk the random walk νnk constructed from the

Brownian motion process W in § 2. The Brownian motion W is independent of the
process W .

We represent the process B′
n(t) constructed from νnk and W

′
n(x) as follows:

B′
n(t) := 1

n3=4

[nt]∑
k=1

Xn
νn

k−1
= 1

n3=4

∞∑
j=−∞

Xn
j

[nt]∑
k=1

1I{0}(νnk−1 − j)
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= 1

n1=4

∞∑
j=−∞

Xn
j `n

(
t,

j
√
n

)
=

∞∫
−∞

`n(t, x) dW
′
n(x).

The differential dW
′
n(x) is taken to be nonzero only at the points of jumps of

the process W
′
n(x) and is equal to the size of the jump. The finite-dimensional

distributions of the processes Bn(t) and B′
n(t), t ∈ [0, 1], coincide.

We first prove that
B′
n(t) → B(t) (9.13)

in probability for any t ∈ [0, 1].
By (3.4), for any ρ > 0 we can choose A > 0 such that (9.7) holds. Set as before

Ω1,n :=
{

sup
0≤l≤n

|νnl | ≤ A
√
n
}⋂{

sup
0≤s≤1

|W (s)| ≤ A
}
,

In view of (9.7),
P(Ωc

1,n) ≤ 2ρ. (9.14)

On the set Ω1,n we have

{x : `n(1, x) > 0} ∪ {x : `(1, x) > 0} ⊂ [−A,A] (9.15)

and, consequently,

B′
n(t)−B(t) =

A∫
−A

(`n(t, x)− `m(t, x)) dW
′
n(x) +

A∫
−A

`m(t, x)
(
dW

′
n(x)− dW (x)

)

+

A∫
−A

(`m(t, x)− `(t, x)) dW (x), 0 < m < n. (9.16)

Letting first n and then m tend to ∞, we get that the second integral in (9.16)
tends to zero by virtue of the convergence W

′
n(x) →W (x) in probability, and the

third tends to zero in view of (6.4) and (3.6) Ch. II. For the first integral in (9.16)
we have

E
∣∣∣∣
A∫

−A

(`n(t, x)− `m(t, x)) dW
′
n(x)

∣∣∣∣2 ≤
A∫

−A

E
(
`n(t, x)− `m(t, [x

√
n]/

√
n)
)2
dx,

which in conjunction with (6.4), (6.31) implies that the first integral in (9.16) tends
to zero in mean square. Now (9.13) is a consequence of (9.14) and the convergence
to zero of the integrals in (9.16).

In view of (9.13), to establish the uniform convergence in probability of the
processes B′

n(t) to the process B(t) it suffices to verify the weak compactness
condition: for any ε > 0

lim
h→0

lim sup
n→∞

P
(

sup
|t−s|<h

|B′
n(t)−B′

n(s)| > ε
)

= 0. (9.17)
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Indeed, this condition implies that for any ε > 0 and ρ > 0 there exist h = h(ε, ρ)
and n0 = n0(ε, ρ, h) such that for all n > n0

P
(

sup
T (h)

|B′
n(t)−B′

n(s)| > ε
)
< ρ,

where T (h) := {(s, t) : |t − s| ≤ h; s, t ∈ [0, 1]}. In view of the uniform continuity
of B(t) in probability which, in turn, is the consequence (see (3.6) Ch. II) of (9.14)
and the continuity of the Brownian local time `(t, x), (t, x) ∈ [0,∞)×R, we have

P
(

sup
T (h)

|B(t)−B(s)| > ε
)
< ρ

for all sufficiently small h. In [0, 1] we take the lattice Σ = {ti}Ni=0 with the array
spacing h = 1/N , where N is large enough to guarantee the uniform closeness of
B′
n(t) and B(t) on the lattice Σ. Using (9.13), we choose n1 = n1(ε, ρ, h) such that

for all n > n1

P
(

sup
ti∈Σ

|B′
n(ti)−B(ti)| > ε

)
< ρ.

These estimates imply that for n > n0 ∨ n1

P
(

sup
t∈[0,1]

|B′
n(t)−B(t)| > 3ε

)
< 3ρ,

and this means that the processes Bn(t), t ∈ [0, 1], converge weakly to the process
B(t), because ε and ρ are arbitrary (see (1.1)).

We now prove (9.17). Since

∞∫
−∞

`n(t, x) dx = [nt]/n,

to prove (9.17) it suffices, in view of (9.14), to verify that

lim
h→0

lim sup
n→∞

P
(

sup
|t−s|<h

∣∣∣∣
A∫

−A

(`n(t, x)− `n(s, x)) dW
′
n(x)

∣∣∣∣ > ε

)
= 0.

It is not hard to get from Proposition 4.1 that for this it suffices to verify the
following estimate: for all ε > 0, t, s, |t− s| ≥ 1/n

P
(∣∣∣∣

A∫
−A

(`n(t, x)− `n(s, x)) dW
′
n(x)

∣∣∣∣ > ε

)
≤ C

"2
|t− s|3/2. (9.18)

We first prove the estimate
P(νn = 0) ≤ C

√
n
. (9.19)
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Since ϕ(u) = 1 − u2/2 + o(u2) as u → 0, in view of condition (D) (see § 5), we
have 1− |ϕ(u)| ≥ ρ̃u2, u ∈ [−π, π], for some ρ̃ > 0. Then for some ρ̃ ≤ 1/π2,

0 ≤ |ϕ(u)| ≤ 1− ρ̃u2 ≤ e−ρ̃u
2
, u ∈ [−π, π].

By (5.2),

P(νn = 0) ≤ 1

2�

π∫
−π

∣∣ϕn(u)∣∣ du ≤ 1

2�

π∫
−π

e−nρ̃u
2
du = 1

2�
√
n

πn∫
−πn

e−ρ̃v
2
dv.

This implies (9.19).
Now, using the Markov property of the random walk and (9.19), we obtain

E
∣∣∣∣
A∫

−A

(`n(t, x)− `n(s, x)) dWn(x)
∣∣∣∣2 ≤ E

∞∫
−∞

`2n

(
[nt]− [ns]

n
, x
)
dx

=E
∞∑

k=−∞

1
√
n

(
1
√
n

[nt]−[ns]∑
j=0

1I{νj=k}

)2

= 1

n3=2
E

∞∑
k=−∞

[nt]−[ns]∑
i=0

[nt]−[ns]∑
j=0

1I{νj=νi}1I{νj=k}

= 1

n3=2

[nt]−[ns]∑
i=0

[nt]−[ns]∑
j=0

P
(
νi − νj = 0

)
≤ 2C

n3=2

[nt]−[ns]∑
i=0

i∑
j=1

1
√
j
≤ C1|t− s|3/2

for |t− s| ≥ 1/n, and, hence (9.18) holds. �

5. The range Rn of the random walk νk at time n is defined to be the number
of points of the random set {0, ν1, . . . , νn}.

Let R(t) = sup
0≤s≤t

W (s)− inf
0≤s≤t

W (s) be the range of the Brownian motion W at

time t.

Theorem 9.5. The processes
1
√
n
R[nt], t ∈ [0, 1], converge weakly as n→∞ to

the process R(t), t ∈ [0, 1].

Remark 9.5. From the invariance principle for random walks (3.4) it follows
that the processes sup

0≤s≤t
Wn(s)− inf

0≤s≤t
Wn(s), t ∈ [0, 1] converge weakly as n→∞

to the process R(t), t ∈ [0, 1]. Theorem 9.5 states that in the random interval(
inf

0≤s≤t
Wn(s), sup

0≤s≤t
Wn(s)

)
there are only o(

√
n) points not visited by the random

walk.

Proof of Theorem 9.5. By (6.4), there is a sequence εn such that εn → 0 and
the probability of the set

Ω2,n :=
{

sup
(t,x)∈[0,1]×R

|`n(t, x)− `(t, x)| ≤ εn

}
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tends to 1. We set

W̌ (t) := sup
0≤s≤t

W (s), Ŵ (t) := inf
0≤s≤t

W (s),

W̌n(t) := sup
0≤s≤t

Wn(s), Ŵn(t) := inf
0≤s≤t

W (s),

∆n(t) :=

∞∫
−∞

1I(0,εn](`(t, x)) dx.

The quantity ∆n(t) is the Lebesgue measure of the set of points x, in which the
strictly positive local time at the moment t does not exceed εn. We prove that

sup
0<t≤1

∆n(t) → 0, for n→∞, a.s. (9.20)

Taking into account the continuity of the process ` and that a.s.

{(t, x) : `(t, x) > 0, 0 < t ≤ 1} = {(t, x) : Ŵ (t) < x < W̌ (t), 0 < t ≤ 1}, (9.21)

we get that ∆n(t) → 0 a.s. for every t ∈ (0, 1]. For any ρ > 0 one can choose h > 0
and n0 = n0(h) such that for every 0 ≤ l ≤ 1/h

W̌ ((l + 1)h)− W̌ (lh) < ρ/4, Ŵ (lh)− Ŵ ((l + 1)h) < ρ/4,

sup
1≤l≤1/h

sup
n>n0

∆n(lh) < ρ/2.

Since `(lh, x) ≤ `(t, x) for t ∈ [lh, (l + 1)h), we have

∆n(t) ≤ ∆n(lh) + W̌ ((l + 1)h)− W̌ (lh) + Ŵ (lh)− Ŵ ((l + 1)h) < ρ,

for n > n0 that proves (9.20).
Let R′

n be the range of the random walk νnk , k = 1, . . . , n, i.e., the number of
points of the random set {0, νn1 , . . . , νnn}. We use the relations

1
√
n
R′

[nt] =

∞∫
−∞

1I(0,∞)(`n(t, x)) dx, R(t) =

∞∫
−∞

1I(0,∞)(`(t, x)) dx.

Then
1
√
n
R′

[nt] −R(t) =

∞∫
−∞

(
1I(0,∞)(`n(t, x))− 1I(0,∞)(`(t, x))

)
dx.

Consequently,

∣∣∣ 1
√
n
R′

[nt]−R(t)
∣∣∣ ≤ ∆n(t)+

∞∫
−∞

1I(εn,∞)(`(t, x))
∣∣1I(0,∞)(`n(t, x))−1I(0,∞)(`(t, x))

∣∣ dx.
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On the set Ω2,n the second term on the right-hand side of this relation is equal to
zero. Thus for any ε > 0

lim
n→∞

P
(

sup
t∈[0,1]

∣∣∣ 1
√
n
R′

[nt] −R(t)
∣∣∣ > ε

)
≤ lim
n→∞

P(Ωc
2,n) + lim

n→∞
P
(

sup
t∈[0,1]

∆n(t) > ε
)
.

Since the probability of the complement of Ω2,n tends to zero, (9.20) shows that
Theorem 9.5 is valid. �

6. We consider an example of application of the strong invariance principle. Let

q̃n(t, x) :=
[nt]∑
k=1

f
(
ν1
k−1 − [x

√
n], ν1

k − [x
√
n]
)
, (t, x) ∈ [0, 1]×R.

The next result shows that the rate of growth of the maximum values of the pro-
cesses q̃n(1, x), x ∈ R, is asymptotically bounded by the quantity h

√
2n ln lnn,

where

h :=
∞∑

l=−∞

Ef(l, l + ξ1).

Theorem 9.6. Under the conditions of Theorem 8.1

lim sup
n→∞

1
√
2n ln lnn

sup
x∈R

q̃n(1, x) = h a.s. (9.22)

Proof. Indeed,

1
√
2n ln lnn

sup
x∈R

q̃n(1, x) = 1
√
2n ln lnn

sup
x∈R

{
q̃n(1, x)− h`(n, x

√
n) + h`(n, x

√
n)
}
.

According to Proposition 8.2,

lim
n→∞

1
√
2n ln lnn

sup
x∈R

∣∣q̃n(1, x)− h`(n, x
√
n)
∣∣ = 0 a.s.,

and by Theorem 9.1 of Ch. V,

lim sup
n→∞

`(n; 0)
√
2n ln lnn

= lim sup
n→∞

1
√
2n ln lnn

sup
x∈R

`(n, x) = 1 a.s.

From these relations we get (9.22). �



APPENDIX 1

HEAT TRANSFER PROBLEM

In 1827 the British botanist Robert Brown observed that a grain of pollen located
on the surface of a liquid performs a random motion. This motion of a very light
grain of pollen (a particle) is the result of collisions with molecules of the liquid. The
collisions occur within a short period of time and are uniformly distributed in all
directions. This leads to instantaneous changes in the direction of the motion. The
particle wanders on the surface, executing rectilinear motions (steps) and changing
its direction randomly.

From the mathematical point of view, we can describe this motion by a random
walk on a plane. If we are interested in the description of only one of the coordinates
of a two-dimensional random walk, then we deal with a one-dimensional random
walk. A model of a simple one-dimensional random walk can be described as
follows. Suppose that a particle moves along the vertical axis of the coordinate
plane. The particle is moving abruptly up and down. Making a step in one of these
directions, the particle has approximately equal chances to make the next step,
either up or down, regardless of the directions of the previous steps. The values
of these steps are sufficiently small, they are comparable with the intermolecular
distances. For simplicity, one can consider them to be equal. Denote the step
size by h. Each step is carried out almost instantly. This means that the particle
performs the step h up or down during a time of second order of smallness compared
with the step size. It appears that most models, accurately representing the motion
of light particles in a liquid, are based on a random walk with steps h executed
during a time of order h2. For simplicity, we assume that this time is exactly equal
to h2.

As a result of the previous assumptions, we arrive at the following model of a
simple random walk. Let the motion start from a point x and take a step of length
h up or down with probability 1/2 during the time h2. Assume that each step is
independent of all previous steps. This random walk is represented in the form

x+ hνk, where νk =
k∑
l=1

ξl, ν0 = 0, and ξl, l = 1, 2, . . . , are independent identically

distributed random variables with P(ξ1 = 1) = 1/2, P(ξ1 = −1) = 1/2.
Denote by Wh(s), s ∈ [0, T ], a random process given by the linear interpolation

(random polygonal line) constructed from the points (kh2, x+hνk), k = 0, 1, 2, . . . .
This process is easier to depict graphically compared to the analogous step process
W̃h(s) := x+ hν[s/h2], where [u] is the largest integer not exceeding u.

The asymptotic behavior as h→ 0 of these processes is the same, because

sup
0≤s≤T

|Wh(s)− W̃h(s)| ≤ h. (1.1)

From the weak invariance principle for random walks (see § 3 Ch. VII) with
h2 = 1/n, n = 1, 2, . . . , it follows that the processes Wh(s), s ∈ [0, T ], converge
weakly as h→ 0 to a Brownian motion W (s), s ∈ [0, T ], W (0) = x.
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This means that for a broad class of continuous functionals of Wh(s), s ∈ [0, T ],
the distributions of every functional of these processes converge to the correspond-
ing distribution of the same functional of W (s), s ∈ [0, T ].

Thus, when h decreases the process Wh becomes increasingly similar to the
Brownian motion W , i.e., the continuous process with independent increments
having the normal distribution,

P
(
W (v)−W (u) ∈ [y, y + dy)

)
= e−y

2=2(v−u)√
2�(v − u)

dy. (1.2)

Mathematics is a extremely formalized science. This enables us to carry out very
rigorous proofs. However, in a formal approach it is difficult to clarify essential
details of the problem under investigation and to see possible applications. We
will focus on an informal, although quite rigorous, description of the heat transfer
problem. For this we make certain assumptions. It is important that we represent
the physical phenomena of the heat transfer problem by means of exchange of
energy (via collisions) between molecules of a substance.

We have already considered the representation of the movement of a light par-
ticle in a liquid under the influence of collisions with molecules as a Brownian
motion. An analogous interpretation can be given for heat transfer. We consider
the physical problem of heat transfer in a thin homogeneous rod of infinite length
and solve this problem by probabilistic methods. We place the rod vertically so
that the vertical axis corresponds to the coordinate specifying the position of a
molecule on the rod. The horizontal axis describes the time. We assume that the
molecules are disposed in horizontal layers (levels) one above the other. Denote
the distance between the layers by h.

We consider an arbitrary horizontal layer. The temperature of this layer is
defined to be the total energy of its molecules. Since the rod is thin, one can neglect
the differences in the energy between molecules in different parts of any selected
layer. In this regard, we assume that at the initial moment the energy of molecules
inside the layer is the same. Denote by Φ(y), where y is the coordinate of a layer,
the initial value of the temperature at t = 0. Let Φ(y), y ∈ R, be a continuous
function. We assume also that there is no energy exchange between the rod and the
external environment. The question is what will be the temperature at the time
t on the layer x? Let each layer consists of m molecules, where m is sufficiently
large. It is clear that m is comparable with 1/h2, because h characterizes the
intermolecular distance in the rod of a fixed thickness. The energy of any molecule
in the layer y at the initial moment is equal to 1

m
Φ(y). Assume that during the

time h2 each molecule of the layer y exchanges its energy by elastic collision with
probability 1/2 with the molecule located above it in the layer y + h and with
probability 1/2 with the molecule below it in the layer y − h.

Assume for simplicity that along the same layer no energy transfer occurs. Let
us consider a particular molecule in the layer y. We are interested in how the
energy of this molecule is transferred along the rod by means of elastic collisions
between molecules.

By the above assumptions, the selected value 1

m
Φ(y) of the energy of a particular

molecule is transferred along the rod according to a random walk. One can even



imagine that the molecule itself wanders and carries its energy. However, the
molecules are rigidly attached to the lattice sites.

Our mathematical model of the heat transfer, involves two parameters, m and
h. Since intermolecular distances are very small, in what follows we consider the
limiting case as m → ∞ and h → 0. This case serves as a good enough approxima-
tion of the real heat transfer process. In our model we compute the temperature
um,h(t, x) of the layer with the coordinate x at the time t. We can assume that
the number of molecules in the layer does not change in time, so at any moment
there are m molecules in every layer. We ask, from which points of the initial state
the molecules got their energy? To answer this question we choose the paths of
random walks, along which the initial energies were transferred to the molecules
in the layer with the coordinate x at the time t. Then we consider these sample
paths in the inverse time direction, i.e., we simply invert the time on these paths.

The simple random walk considered in inverse time does not change its proba-
bilistic properties, i.e., it is a simple random walk. The same is true for a Brownian
motion. Consider the layer with the coordinate x (briefly the layer x). Denote by
W

(l)
h (s), s ∈ [0, t], l = 1, 2, . . . ,m, the paths along which the molecules of this

layer got their energy, where l is the index assigned to every molecule in the layer
x = W

(l)
h (0). In this case um,h(t, x) is the temperature of the layer x at time

t and W
(l)
h (t) is the initial position from which the energy of the molecule was

obtained. Since the different molecules transfer the energy independently, the pro-
cesses W

(l)
h (s), s ∈ [0, t], are independent for different l. They are identically

distributed as well as the process Wh(s) defined above by the random walk νk.
Several of these paths are shown in the figure below, where the left and the right

rods are represented at the initial and final moments, respectively.

Fig.1

The process of energy transfer of a particular molecule is represented here in the
inverse time. It starts at x on the right-hand side and ends at the location of the
rod at the initial time. Such a representation reflects our interest in those paths,
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along which the energy was acquired by molecules in the layer x at time t. In a
real situation, the transfer of heat energy flows from left to right.

Along the path W (l)
h (s), s ∈ [0, t], the energy 1

m
Φ
(
W

(l)
h (t)

)
is transferred to the

lth molecule in the layer x at time t, because for the heat transfer process this path
starts at the layer with the coordinate W (l)

h (t) and the molecule at this point has

the energy 1

m
Φ
(
W

(l)
h (t)

)
. The temperature in the layer x is the sum of the energies

of individual molecules, i.e.,

um,h(t, x) = 1

m

m∑
l=1

Φ
(
W

(l)
h (t)

)
. (1.3)

Since the processes W (l)
h (s), s ∈ [0, t], l = 1, 2, . . . ,m, are independent, application

of the strong law of large numbers yields

um,h(t, x) → ExΦ(Wh(t)) as m→∞. (1.4)

Here and in what follows the subscript x means that the expectation is computed
with respect to the process starting from the point x. Since the processes Wh(s),
s ∈ [0, t], converge weakly as h → 0 (see § 3 Ch. VII) to the Brownian motion
W (s), s ∈ [0, t], we have

ExΦ(Wh(t)) → ExΦ(W (t)). (1.5)

Thus for large m and small h,

um,h(t, x) ≈ u(t, x) := ExΦ(W (t)).

This enables us to consider u(t, x) as the approximate value of the temperature in
the rod in the layer x at time t.

By (1.2),

u(t, x) = ExΦ(W (t)) = EΦ(W (t)−W (0) + x) =

∞∫
−∞

Φ(y) e
−(y−x)2=2t
√
2�t

dy.

By direct differentiation, it can easily be verified that this function satisfies the
heat equation

@

@t
u(t, x) = 1

2

@2

@x2
u(t, x), t ∈ (0,∞), x ∈ R, (1.6)

with the initial condition

u(0, x) = Φ(x), x ∈ R. (1.7)

Thus we come to the well-known solution of the heat transfer problem in a thin
homogeneous isolated rod of infinite length.
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We now complicate the problem. Assume that a thin layer (crack) divides the
rod at some level q, through which the energy is transferred with loss. For example,
part of the energy is taken by air molecules, filling the crack, and then is removed
from the rod. The question is how the energy is distributed along the rod at the
time t if the initial temperature is given by the function Φ(y)? To answer this
question we will consider the transfer of the energy 1

m
Φ(y) of a single molecule

from the layer y. As already explained, the transfer of energy along the rod is
described by a simple random walk. However, in our case some amount of the
energy is lost when transferred through the layer q. We assume that this amount is
proportional to h multiplied by some coefficient β. Thus after crossing the layer q,
the energy 1

m
Φ(y) is reduced to the energy (1−βh) 1

m
Φ(y). Denote by φh(t, q) the

number of crossings of the level q by the process Wh(s), s ∈ [0, t]. Then according
to our mathematical model, the amount of energy transferred to the molecule at
the time t in the layer x along the path Wh(·) equals 1

m
Φ(Wh(t))(1 − βh)φh(t,q).

The temperature um,h(t, x) in the layer x at the time t is the sum of such energies
for individual molecules. By analogy with (1.3) and (1.4), we have

um,h(t, x) → Ex
[
Φ(Wh(t))(1− βh)φh(t,q)

]
as m →∞. (1.8)

Since the number of different points of the lattice kh, k = 0,±1,±2, . . ., that are
visited by the process Wh during the time t is proportional to 1/h and there are
t/h2 steps, the number of crossings of a level is also proportional to 1/h, i.e.,
φh(t, q) � 1/h. The number φh(t, q) of crossings is a functional of sample paths of
the random walkWh(kh2), k = 0, 1, . . . , [t/h2]. Since the processesWh(s), s ∈ [0, t],
converge weakly as h → 0 to the Brownian motion W (s), s ∈ [0, t], the processes
`h(t, q) := hφh(t, q), (t, q) ∈ [0,∞) × R, converge weakly to the Brownian local
time process `(t, q) (see § 6 Ch. VII). Here we again come to the same situation as
for a random walk and a Brownian motion (see Preface). The process `h(t, q) is
easily described constructively: it is the number of crossings of the level q by the
processWh(s) up to the time t, multiplied by h. At the same time, explicit formulas
for the finite-dimensional distributions of the process `h(t, q), (t, q) ∈ [0,∞) × R,
apparently cannot be obtained. The limit process `(t, q) is impossible to visualize,
but it admits a probabilistic description in terms of finite-dimensional distributions.
Moreover, we can write out some other characteristics (see Ch. V).

Passing in (1.8) to the limit as h→ 0, we get

Ex
[
Φ(Wh(t))(1− βh)φh(t,q)

]
→ Ex

[
Φ(W (t))e−β`(t,q)

]
.

Consequently, the temperature in the layer x at time t in the rod divided by the
crack is determined with a high degree of accuracy by the function

u(t, x) = Ex
[
Φ(W (t))e−β`(t,q)

]
. (1.9)

This function is the solution of the corresponding differential problem (see § 3
Ch. III). We find an expression for u(t, x) in the case Φ(y) ≡ 1, i.e., when at
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the initial moment the temperature is distributed along the rod uniformly. Ac-
cording to (3.13) of Ch. III, the explicit form of the Laplace transform M(x) :=

λ

∞∫
0

e−λtu(t, x) dt of this function with respect to time is given by

M(x) = 1− �

� +
√
2�
e−|x−q|

√
2λ.

Dividing this expression by λ and inverting the Laplace transform with respect to
λ (see Appendix 3, formula 12), we obtain

u(t, x) =
√
2

√
�t

|x−q|∫
0

e−v
2/2tdv +

√
2

√
�t
e(2|x−q|βt+β

2t2)/2t

∞∫
|x−q|+βt

e−v
2/2tdv. (1.10)

This shows that the rod is cooling most rapidly in the neighborhood of q. It is
interesting that (see (10.7) Ch. I)

u(t, x) ≈
√
2

√
�t

|x−q|∫
0

e−v
2/2t dv+

√
2

√
�t

e−(x−q)2=2t

(� + |x− q|=t)
, u′x(t, q+0) ≈

√
2

√
�t

as β →∞.

This formula implies that if all the energy transferring through the layer q (through
the crack) gets lost (β → ∞), then the temperature in the rod at time t is given
by the formula

u(t, x) =
√
2

√
�t

|x−q|∫
0

e−v
2/2t dv.

Further we focus on the problem of heat transfer with a loss of energy along
the rod. Assume, for example, that the rod is made of a material with pores,
through which heat is transported outside the rod. In particular, the material
can be impregnated with a liquid that vaporizes when heated. Suppose that in
any layer y the part of energy lost by a single molecule during the transfer is
proportional to h2f(y), where f is a continuous nonnegative function. Then in
the layer y the available energy transferred by collision is multiplied by the factor
1 − h2f(y). Therefore, along the path Wh(s), s ∈ [0, t], a molecule in the layer x

receives the initial energy 1

m
Φ(Wh(t)) multiplied by

t/h2∏
j=0

(1 − h2f(Wh(t − jh2))).

Thus at the time t, the amount of energy transferred to the lth molecule in the
layer x, l = 1, 2, . . . ,m, along the path W (l)

h (s) is equal to

1

m
Φ(W (l)

h (t))
t/h2∏
j=0

(
1− h2f

(
W

(l)
h (t− jh2)

))
.
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The total energy (the temperature in the layer x at time t) is

um,h(t, x) = 1

m

m∑
l=1

Φ(W (l)
h (t))

t/h2∏
j=0

(
1− h2f

(
W

(l)
h (jh2)

))
,

after the substitution t− jh2 by jh2.
Since the processes W (l)

h (s), s ∈ [0, t], describing the paths along which the
lth molecule acquires its energy, are independent and identically distributed, the
temperature in the layer x satisfies the relation

um,h(t, x) → Ex

[
Φ(Wh(t))

t/h2∏
j=0

(
1− h2f(Wh(jh2))

)]
as m→∞, (1.11)

thanks to the strong law of large numbers. Passing to the limit as h→ 0 with the
help of the weak invariance principle (see § 3 Ch. VII for h2 = 1/n, n = 1, 2, . . . ),
we obtain

Ex

[
Φ(Wh(t))

t/h2∏
j=0

(
1− h2f(Wh(jh2))

)]

≈ Ex

[
Φ(Wh(t)) exp

(
−
t/h2∑
j=0

f(Wh(jh2))h2

)]

≈ Ex

[
Φ(Wh(t)) exp

(
−

t∫
0

f(Wh(s)) ds
)]

≈ Ex

[
Φ(W (t)) exp

(
−

t∫
0

f(W (s)) ds
)]

=: u(t, x).

Thus for heat transfer with a loss of energy along the rod, this limit determines
with a high accuracy the temperature in the rod in the layer x at time t.

In § 13 Ch. II (Theorem 13.2 with b(x) ≡ 1 and a(x) ≡ 0) it is proved that the
function u(t, x) is the solution of the heat equation

@

@t
u(t, x) = 1

2

@2

@x2
u(t, x)− f(x)u(t, x), (t, x) ∈ (0,∞)×R, (1.12)

with the initial condition

u(0, x) = Φ(x), x ∈ R. (1.13)

It is quite natural to assume that the initial temperature is bounded. In this case
the function Φ(x), x ∈ R, is bounded and the problem (1.12), (1.13) is reduced by
means of the Laplace transform

U(x) = λ

∞∫
0

e−λtu(t, x)dt, λ > 0,
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(see § 12 Ch. II, Theorem 12.4) to the ordinary differential equation

1

2
U ′′(x)− (λ+ f(x))U(x) = −λΦ(x), x ∈ R, (1.14)

which has a unique bounded solution on the real line.
Of course, in order to get the temperature at time t we need to solve the problem

of inverting the Laplace transform with respect to the parameter λ.

The heat transfer problem with a loss of energy can also be considered for a rod
of finite length, for example, when a constant temperature is imposed at the ends
of the rod.

First we consider the case when there is no heat loss. Suppose that the rod is
located along the vertical axis. Let the coordinates of the bottom and top endpoints
be a and b, respectively. In this situation a peculiarity of the heat transfer is the
following. Let the initial energy be transferred along a path of a random walk that
ends at time t at the point x. If the path reaches the coordinate b, then the energy
at this moment is set to be 1

m
Φ(b) no matter what it was before. This new value

of energy is passed along the path to the corresponding molecule in the layer x if
the path does not reach the coordinate a till time t. If the lower coordinate a is
reached, then the energy is set to be the new value 1

m
Φ(a).

In order to understand what amount of energy each of the molecules in the layer
x gets, we invert the time of the random path. As usual, we denote the path in
inverse time by W (l)

h (s), s ∈ [0, t], l = 1, 2, . . . ,m. In this case, W (l)
h (0) = x, where

x is the coordinate of the layer, the temperature of which we are interested in.
Along the path W (l)

h (s), s ∈ [0, t], the lth molecule gets the energy 1

m
Φ(W (l)

h (t)) if
the path does not reach the boundary of the interval (a, b) at time t and the energy
1

m
Φ(a) or 1

m
Φ(b) if the path considered in direct time reaches the corresponding

endpoint during the latest visit before the time t. After inverting the time the
last visiting moment becomes the first one. Let Hh,l

a,b := min{s : W (l)
h (s) 6∈ (a, b)}.

As a result of what we said above, the energy 1

m
Φ
(
W

(l)
h

(
t ∧Hh,l

a,b

))
is transferred

along the path W (l)
h (s), s ∈ [0, t], to the lth molecule in the layer x. Recall that the

symbol ∧ denotes the minimum of the values under consideration. The temperature
in the layer x equals the sum of the energies of the individual molecules, i.e.,

um,h(t, x) = 1

m

m∑
l=1

Φ(W (l)
h (t ∧Hh,l

a,b)). (1.15)

For different values of l the processes W (l)
h (s), s ∈ [0, t], are independent and

distributed as the process Wh(s), s ∈ [0, t]. Therefore, applying the strong law of
large numbers, we find that

um,h(t, x) → ExΦ
(
Wh

(
t ∧Hh

a,b

))
as m →∞, (1.16)

where Hh
a,b is the time of the first exit to the boundary of the interval (a, b) for the

process Wh(s), s ≥ 0, Wh(0) = x.
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Since for any t > 0 the processes Wh(s), s ∈ [0, t], converge weakly as h → 0
(see § 3 Ch. VII) to the Brownian motion W (t), s ∈ [0, t], we conclude that Hh

a,b →
Ha,b, where Ha,b := min{s : W (s) 6∈ (a, b)} is the first exit time of the Brownian
motion W (s), s ≥ 0, W (0) = x, from the interval (a, b). Moreover,

ExΦ
(
Wh

(
t ∧Hh

a,b

))
→ ExΦ(W (t ∧Ha,b)). (1.17)

It is natural to treat u(t, x) := ExΦ(W (t ∧ Ha,b)) as an approximate value of
the temperature in the layer x at time t in a rod of finite length and with fixed
temperature at its ends.

Let us return to the problem of the heat transfer with a loss of energy. In
contrast to the previous case, during each collision at a layer y a molecule gets
the energy available to this moment multiplied by the factor 1 − h2f(y), which
reflects the loss of energy. However, when a path reaches the boundary of the
interval (a, b), the molecule gets either the energy 1

m
Φ(a), or the energy 1

m
Φ(b),

depending on whether a or b is reached. During the further transfer of energy,
produced by collisions at any layer y, it decreases each time proportionally to the
factor 1 − h2f(y). The key point here is the last time before t when the path hits
the boundary. After this moment the boundary temperatures do not affect the
process of energy transfer.

Thus the energy transferred along the path W (l)
h (s), s ∈ [0, t], to the lth molecule

in the layer x is equal to

1

m
Φ
(
W

(l)
h

(
t ∧Hh,l

a,b

)) (t∧Hh,l
a,b)/h

2∏
j=0

(
1− h2f

(
W

(l)
h (jh2)

))
, W

(l)
h (0) = x.

The temperature in the layer x is the sum of the energies of individual molecules,
i.e.,

um,h(t, x) = 1

m

m∑
l=1

Φ
(
W

(l)
h

(
t ∧Hh,l

a,b

)) (t∧Hh,l
a,b)/h

2∏
j=0

(
1− h2f

(
W

(l)
h (jh2)

))
. (1.18)

Applying the strong law of large numbers, we get

um,h(t, x) → Ex

{
Φ(Wh(t ∧Hh

a,b))
(t∧Hh

a,b)/h
2∏

j=0

(
1− h2f

(
Wh(jh2)

))}
(1.19)

as m →∞. Passing to the limit as h→ 0, we obtain

Ex

[
Φ(Wh(t ∧Hh

a,b))
(t∧Hh

a,b)/h
2∏

j=0

(
1− h2f

(
Wh(jh2)

))]

→ Ex

[
Φ(W (t ∧Ha,b)) exp

(
−

t∧Ha,b∫
0

f(W (s)) ds
)]

=: u(t, x).
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This limit is taken as the temperature in the layer x at time t of the rod of a finite
length during the heat transfer with a loss of energy. As was proved in § 11 Ch. II
(Theorem 11.1, σ(x) ≡ 1, µ(x) ≡ 0), the function u(t, x), (t, x) ∈ [0,∞) × [a, b], is
the solution of the heat equation

@

@t
u(t, x) = 1

2

@2

@x2
u(t, x)− f(x)u(t, x), x ∈ (a, b), (1.20)

with the boundary conditions

u(0, x) = Φ(x), (1.21)

u(t, a) = Φ(a), u(t, b) = Φ(b). (1.22)

In conclusion, we note that in the case of a rod made from an inhomogeneous
material, the energy exchange between a molecule in the layer y and molecules of
the upper or lower layers is realized with unequal probabilities. These probabilities
may depend on y. The energy transfer goes along paths, which no longer constitute
a simple random walk. Such paths converge as h→ 0 to a diffusion process X(s),
s ∈ [0, t]. Let the drift coefficient of this process be µ(x), x ∈ R, and the diffusion
coefficient be σ2(x), x ∈ R. Then these coefficients completely determine the heat
transfer in the inhomogeneous rod. As it was explained above, to derive the heat
equation we must invert the time of the paths along which the energy is transferred.
It is important that the time reversed diffusion X∗(s) = X(t− s), s ∈ [0, t], has a
generator conjugate to the generator of the diffusion in the direct time. Then the
temperature of the inhomogeneous rod is defined by the function

Ex

[
Φ(X∗(t ∧H∗

a,b)) exp
(
−

t∧H∗
a,b∫

0

f(X∗(s))ds
)]

=: u∗(t, x),

where H∗
a,b := min{s : X∗(s) 6∈ (a, b)}. According to Theorem 11.1 Ch. II, this

function is the solution of the Cauchy problem (11.4)–(11.6) Ch. II, in which equa-
tion (11.4) is replaced by the conjugate one.
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SPECIAL FUNCTIONS

1. Hyperbolic functions

shx := 1

2
(ex − e−x) =

∞∑
k=0

x2k+1

(2k + 1)!

chx := 1

2
(ex + e−x) =

∞∑
k=0

x2k

2k!

thx := shx

chx

cthx := chx

shx

2. Gamma function

Γ(x) :=
∞∫
0

ux−1e−u du, Rex > 0

Γ(x+ 1) = xΓ(x), 1

�(x)
' x as x→ 0

Γ(x)Γ(1− x) = �

sin(�x)

Γ(2x) = 22x−1
√
�

Γ(x)Γ
(
x+ 1

2

)
Γ(ax+ b) '

√
2πe−ax(ax)ax+b−1/2 as x→∞, a > 0

Γ(n+ 1) = n!, Γ(n+ 1/2) = 1 · 3 · · · (2n− 1)2−n
√
π, n = 1, 2, . . .

Γ(1/2) =
√
π, Γ(3/2) =

√
π/2, Γ(−1/2) = −2

√
π

3. Bessel functions

Jν(x) :=
∞∑
k=0

(−1)k(x=2)�+2k

k! �(� + k + 1)

Yν(x) := 1

sin(��)

(
Jν(x) cos(νπ)− J−ν(x)

)
Y ′
ν(x)Jν(x)− Yν(x)J ′ν(x) = Yν(x)Jν+1(x)− Yν+1(x)Jν(x) = 2/(πx)

0 < jν,1 < jν,2 < · · · – positive zeros of Jν(x) for ν ≥ 0

© Springer International Publishing AG 2017
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4. Modified Bessel functions

Iν(x) :=
∞∑
k=0

(x=2)�+2k

k! �(� + k + 1)
= i−νJν(ix)

Kν(x) := �

2 sin(��)

(
I−ν(x)− Iν(x)

)
are linearly independent solutions of the Bessel equation

x2Y ′′(x) + xY ′(x)− (x2 + ν2)Y (x) = 0

Integral representations: for x > 0

Iν(x) = (x=2)�
√
��(�+1=2)

1∫
−1

(1− t2)ν−1/2extdt, Re ν > −1/2

Kν(x) =
√
�(x=2)�

�(�+1=2)

∞∫
1

(t2 − 1)ν−1/2e−xtdt, Re ν > −1/2

Properties:

I−ν(x) = Iν(x), ν = 1, 2, . . .

K−ν(x) = Kν(x)

I ′ν(x)Kν(x)− Iν(x)K ′
ν(x) = Iν(x)Kν+1(x) + Iν+1(x)Kν(x) = 1/x(

x−νIν(x)
)′ = x−νIν+1(x),

(
xνIν(x)

)′ = xνIν−1(x)(
x−νKν(x)

)′ = −x−νKν+1(x),
(
xνKν(x)

)′ = −xνKν−1(x)

Iν−1(x)− Iν+1(x) = 2�

x
Iν(x), Kν+1(x)−Kν−1(x) = 2�

x
Kν(x)

Iν(x) '
1

�(� + 1)

(
x

2

)ν
as x→ 0, ν 6= −1,−2, . . .

Kν(x) '
�(�)

2

(
x

2

)−ν
, ν > 0 as x→ 0

K0(x) ' − ln(x/2)− γ as x→ 0, where γ is the Euler constant

Iν(x) '
1

√
2�x

ex as x→∞

Kν(x) '
√
�

√
2x
e−x as x→∞
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Iν
√
λ

(
ν
√
γ ex/ν

)
' 1

√
2�(�+ )1=4

√
�

( √


√
�+

√
�+ 

)ν√λ
e(ν+x)

√
λ+γ as ν →∞

Kν
√
λ

(
ν
√
γ ex/ν

)
'

√
�

(�+ )1=4
√
2�

( √


√
�+

√
�+ 

)−ν√λ
e−(ν+x)

√
λ+γ as ν →∞

Special cases:

I 1
2
(x) =

√
2

√
�x

shx; K 1
2
(x) = K− 1

2
(x) =

√
�

√
2x
e−x; I− 1

2
(x) =

√
2

√
�x

chx;

I 3
2
(x) =

√
2

√
�x3=2

(x chx− shx); K 3
2
(x) =

√
�

√
2x3=2

e−x(x+ 1)

5. Airy function

Ai(x) := 1

3

√
x
(
I−1/3

(2
3
x3/2

)
− I1/3

(2
3
x3/2

))
=

√
x

�
√
3
K1/3

(2
3
x3/2

)
· · ·αk < · · · < α2 < α1 < 0 – zeros of the Airy function Ai(x)

· · ·α′k < · · · < α′2 < α′1 < 0 – zeros of the derivative of the Airy function Ai′(x)

6. Hermite polynomials and related functions

Hen(x) := (−1)nex
2/2 dn

dxn

(
e−x

2/2
)

=
∑

0≤k≤n/2

(−1)k2−kn!
k!(n− 2k)!

xn−2k

hy(n, v) := L−1
γ

(
(2γ)n/2−1/2e−v

√
2γ
)

= 1
√
2�y(n+1)=2

e−v
2/2y Hen

(
v
√
y

)
, 0 < v

7. Binomial series

(1 + x)µ =
∞∑
k=0

�(�+1)

�(�+1− k) k!
xk =

∞∑
k=0

(−1)k�(−�+ k)
�(−�) k!

xk, |x| < 1

8. Error functions

Erf(x) := 2
√
�

x∫
0

e−v
2
dv = 2

√
�

∞∑
k=0

(−1)kx2k+1

k!(2k + 1)
= 2

√
�
e−x

2 ∞∑
k=0

2kx2k+1

1 · 3 · 5 · · · (2k + 1)

Erfc(x) := 2
√
�

∞∫
x

e−v
2
dv = 1− Erf(x)

Erfi(x) := 2
√
�

x∫
0

ev
2
dv = 2

√
�

∞∑
k=0

x2k+1

k!(2k + 1)
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Erfid(x, y) := Erfi
(
x
√
2

)
− Erfi

(
y
√
2

)
Erfc(x) ' 1

√
�x
e−x

2
as x→∞

9. Parabolic cylinder functions

D−ν(x) := e−x
2/42−ν/2

√
π
{

1

�((� + 1)=2)

(
1 +

∞∑
k=1

�(� + 2) · · · (� + 2k − 2)

(2k)!
x2k
)

− x
√
2

�(�=2)

(
1 +

∞∑
k=1

(� + 1)(� + 3) · · · (� + 2k − 1)

(2k + 1)!
x2k
)}

and D−ν(−x) are linearly independent solutions of the differential equation

Y ′′(x)−
(
x2

4
+ 2� − 1

2

)
Y (x) = 0, x ∈ R

Integral representation: for x ∈ R

D−ν(x) = 1

�(�)
e−x

2/4

∞∫
0

tν−1e−xt−t
2/2dt, Re ν > 0

Properties:

D′
−ν(x) = −x

2
D−ν(x)− νD−ν−1(x) = x

2
D−ν(x)−D−ν+1(x)(

ex
2/4D−ν(x)

)′ = −νex2/4D−ν−1(x),
(
e−x

2/4D−ν(x)
)′ = −e−x2/4D−ν+1(x)(

x1−νe−x
2/4D−ν(x)

)′ = −x−νe−x2/4D−ν+2(x)

D′
−ν(−x)D−ν(x) +D−ν(−x)D′

−ν(x) = −
√
2�

�(�)

lim
θ↓0

2α/4θΓ
( �
4�

+ 1

2

)
D−α/2θ(x

√
2θ) =

√
πe−x

√
α, x ∈ R

Special cases:

Dn(x)=e−x
2/4Hen(x), D−n−1(x)=

√
�e−x

2=4

(−1)n
√
2n!

dn

dxn

(
ex

2/2Erfc
( x
√
2

))
, n = 0, 1, . . .

D−1/2(x) =
√
x

√
2�
K1/4

(x2
4

)
, D−1/2(−x)−D−1/2(x) =

√
πxI1/4

(x2
4

)
, x ≥ 0

D−1/2(−x) +D−1/2(x) =
√
πxI−1/4

(x2
4

)
, x ≥ 0



SPECIAL FUNCTIONS 597

10. Kummer and Whittaker functions

M(a, b, x) := 1 +
∞∑
k=1

a(a+ 1) · · · (a+ k − 1)xk

b(b+ 1) · · · (b+ k − 1)k!

U(a, b, x) := �(1− b)

�(1 + a− b)
M(a, b, x) + x1−b �(b− 1)

�(a)
M(1 + a− b, 2− b, x)

are linearly independent solutions of the Kummer equation

xY ′′(x) + (b− x)Y ′(x)− aY (x) = 0, x > 0

Kummer transformations:

M(a, b, x) = exM(b− a, b,−x), U(a, b, x) = x1−bU(1 + a− b, 2− b, x)

x1−bM(1 + a− b, 2− b, x) = x1−bexM(1− a, 2− b,−x)

e−xU(b− a, b, x) = x1−be−xU(1− a, 2− b, x), x > 0

Whittaker functions:

Mn,m(x) := xm+1/2e−x/2M(m− n+ 1/2, 2m+ 1, x)

Wn,m(x) := xm+1/2e−x/2U(m− n+ 1/2, 2m+ 1, x)

Integral representations:

M(a, b, x) = �(b)

�(a)�(b− a)

1∫
0

extta−1(1− t)b−a−1dt, Re b > Re a > 0

U(a, b, x) = 1

�(a)

∞∫
0

e−xtta−1(1 + t)b−a−1dt, Re a > 0, Rex > 0

Properties:

Wn,m(x) = �(−2m)

�(1=2−m− n)
Mn,m(x) + �(2m)

�(1=2 +m− n)
Mn,−m(x)

@

@x
M(a, b, x)U(a, b, x)−M(a, b, x) @

@x
U(a, b, x) = �(b)

�(a)
x−bex

M ′
n,m(x)Wn,m(x)−Mn,m(x)W ′

n,m(x) = �(2m+ 1)

�(m− n+ 1=2)

@

@x
M(a, b, x) = a

b
M(a+ 1, b+ 1, x), @

@x
U(a, b, x) = −aU(a+ 1, b+ 1, x)



598 APPENDIX 2

@

@x
(xbM(a, b+ 1, x)) = b xb−1M(a, b, x)

@

@x
(xbU(a, b+ 1, x)) = (b− a)xb−1U(a, b, x)

@

@x
(e−xM(a, b, x)) = a− b

b
e−xM(a, b+ 1, x)

@

@x
(e−xU(a, b, x)) = −e−xU(a, b+ 1, x)

@

@x

(
xbe−xM(a+ 1, b+ 1, x)

)
= bxb−1e−xM(a, b, x)

@

@x

(
xbe−xU(a+ 1, b+ 1, x)

)
= −xb−1e−xU(a, b, x)

lim
θ↓0

M
( a
4�
, b+ 1, θx

)
= 2bΓ(b+ 1)(xa)−b/2Ib(

√
xa)

lim
θ↓0

θbΓ
( a
4�

)
U
( a
4�
, b+ 1, θx

)
= 21−b(a/x)b/2Kb(

√
xa)

Special cases:

M0,m(2x) = 22mΓ(m+ 1)
√

2xIm(x), x ≥ 0

W0,m(2x) =
√

2x/πKm(x), x ≥ 0

M1/4−ν/2,1/4(x2/2) = �(�=2)

4
√
�

2ν/2−1/4
√
x
(
D−ν(−x)−D−ν(x)

)
, x ≥ 0

M1/4−ν/2,−1/4(x2/2) = �((� + 1)=2)

2
√
�

2ν/2−1/4
√
x
(
D−ν(−x) +D−ν(x)

)
, x ≥ 0

W1/4−ν/2,1/4(x2/2) = W1/4−ν/2,−1/4(x2/2) = 2ν/2−1/4
√
xD−ν(x), x ≥ 0

M−1/4,1/4(x2) =
√
�x

2
ex

2/2 Erf(x), M1/4,1/4(x2) =
√
�x

2
e−x

2/2 Erfi(x)

W−1/4,1/4(x2) =
√
πx ex

2/2 Erfc(x), W1/4,1/4(x2) =
√
x e−x

2/2, x ≥ 0

11. Hypergeometric functions

For −1 < x < 1

F (α, β, γ, x) := 1 +
∞∑
k=1

�(�+1) · · · (�+ k− 1)�(�+1) · · · (�+ k− 1)xk

(+1) · · · (+ k− 1)k!
,

for 0 < x < 2
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G(α, β, γ, x) := 1

�(�+�+1− )
F (α, β, α+ β+ 1− γ, 1− x), Re(α+ β+ 1− γ) > 0

are linearly independent solutions of the hypergeometric differential equation

x(1− x)Y ′′(x) + (γ− (α+ β+ 1)x)Y ′(x)− αβY (x) = 0, 0 < x < 1

Integral representations: for −1 < x < 1

F (α, β, γ, x) = �()

�(�)�(−�)

1∫
0

tα−1(1− t)γ−α−1(1− tx)−βdt, Re γ > Reα > 0

for 0 < x <∞

G(α, β, γ, x) = 1

�(�)�(�+1− )

∞∫
0

tα−1(1 + t)γ−α−1(1 + tx)−βdt, Re(β+ 1− γ) > 0,

Reα > 0

Properties:

@

@x
F (α, β, γ, x)G(α, β, γ, x)− F (α, β, γ, x) @

@x
G(α, β, γ, x) = �()x−(1−x)−�−�−1

�(�)�(�)

@

@x
F (α, β, γ, x) = ��


F (α+ 1, β+ 1, γ+ 1, x)

@

@x
G(α, β, γ, x) = −αβG(α+ 1, β+ 1, γ+ 1, x)

@

@x

(
(1− x)αF (α, β, γ, x)

)
= �(� − )


(1− x)α−1F (α+ 1, β, γ+ 1, x)

@

@x

(
(1− x)αG(α, β, γ, x)

)
= −α(1− x)α−1G(α+ 1, β, γ+ 1, x)

@

@x

(
xγ(1− x)1+α+β−γF (α+ 1, β+ 1, γ+ 1, x)

)
= γxγ−1(1− x)α+β−γF (α, β, γ, x)

@

@x

(
xγ(1− x)1+α+β−γG(a+ 1, b+ 1, γ+ 1, x)

)
= −x−1(1− x)�+�−

1+�+�− 
G(α, β, γ, x)

F (α, β, γ, x) = (1− x)γ−α−βF (γ − α, γ − β, γ, x), 0 ≤ x < 1

G(α, β, γ, x) = x1−γG(α+ 1− γ, β+ 1− γ, 2− γ, x), 0 < x ≤ 1

F (α, β, γ, 1/x) = x�

�(�)

∞∫
0

e−xttβ−1M(α, γ, t) dt, 1 ≤ x, Reβ > 0

G(α, β, γ, 1/x) = x�

�(�)�(�+1− )

∞∫
0

e−xttβ−1U(α, γ, t) dt, 0 ≤ x, Reβ > 0
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G(α, β, γ, x) = �(1− )F (�; �; ; x)
�(�+1− )�(�+1− )

+ �(− 1)x1−F (�+1− ; �+1− ; 2− ; x)
�(�)�(�)

,
0 < x < 1

lim
β→∞

F
(
α, β, γ,

x

�

)
= M(α, γ, x), lim

β→∞
Γ(β+ 1− γ)G

(
α, β, γ,

x

�

)
= U(α, γ, x)

Special cases:

F (α, β, γ, 1) = �()�(−�−�)
�(−�)�(−�)

, F (α, β, β, x) = (1− x)−α, G(α, β, β+ 1, x) = x−�

�(�)

G(α, β, γ, 0) = �(1− )
�(�+1− )�(�+1− )

, G(α, β, γ, 1) = 1

�(�+�+1− )

12. Legendre functions

Legendre function of the first kind
for −1 < x < 1,

P̃ qp (x) := 1

�(1− q)

(
1 + x

1− x

)q/2
F
(
− p, 1 + p, 1− q,

1− x

2

)
, Re q < 1,

for 1 < x

P qp (x) := 2qxq−p−1

(x2 − 1)q=2�(1− q)
F
(p− q + 1

2
,
p− q + 2

2
, 1− q, 1− 1

x2

)
, Re q < 1,

Legendre function of the second kind, divided by eiqπ, for 1 < x

Q̃qp(x) :=
√
��(p+ q + 1)(x2 − 1)q=2

2p+1�(p+ 3=2)xp+q+1
F
(p+ q + 1

2
,
p+ q + 2

2
, p+ 3

2
,
1

x2

)
are linearly independent solutions of the Legendre equation

(1− x2)Y ′′(x)− 2xY ′(x) +
(
p(1 + p)− q2

1− x2

)
Y (x) = 0

Integral representations: for −1 < x < 1

P̃ qp (x) = 2−p(1− x2)−q=2

�(−p− q)�(1 + p)

∞∫
0

(x+ ch t)q−p−1 sh1+2p t dt, Re q < Re(−p) < 1

for 1 < x

Q̃qp(x) = 2−q(x2 − 1)q=2
√
��(p+ q + 1)

�(p− q + 1)�(q + 1=2)

∞∫
0

(x+
√
x2 − 1 ch t)−q−p−1 sh2q t dt

Re(p± q + 1) > 0

Properties:

d

dx
P qp (x)Q̃qp(x)− P qp (x) d

dx
Q̃qp(x) = �(1 + p+ q)

�(1 + p− q)(x2 − 1)
, 1 < x
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d

dx
P̃ qp (−x)P̃ qp (x)− P̃ qp (−x) d

dx
P̃ qp (x) = 2

�(−p− q)�(1 + p− q)(1− x2)
, −1 < x < 1

Q̃−q
p (x) = �(p− q + 1)

�(p+ q + 1)
Q̃qp(x), P qp (x) = P q−p−1(x), P̃ qp (x) = P̃ q−p−1(x)

lim
x↓1

(x2 − 1)q/2P qp (x) = 2q

�(1− q)
, P̃−p

p (x) = (1− x2)p=2

2p�(p+ 1)
, −1 < x < 1

P̃−p
−p (−x)+ P̃−p

−p (x)= 2p�(p)

�(2p)(1− x2)p=2
, P̃−p

1−p(−x)− P̃
−p
1−p(x)= 2p�(p)x

�(2p− 1)(1− x2)p=2

d

dx

(
P qp (x)

(x2 − 1)q=2

)
=

P q+1p (x)

(x2 − 1)(q+1)=2
,

d

dx

(
Q̃qp(x)

(x2 − 1)q=2

)
=− Q̃q+1p (x)

(x2 − 1)(q+1)=2
, 1 < x

d

dx

(
(x2 − 1)q/2P qp (x)

)
= (p+ q)(p− q + 1)(x2 − 1)(q−1)/2P q−1

p (x), 1 < x

d

dx

(
(1− x2)q/2P̃ qp (x)

)
= (p+ q)(p− q + 1)(1− x2)(q−1)/2P̃ q−1

p (x), −1 < x < 1

d

dx

(
(1− x2)(p+1)/2P̃ qp (x)

)
= (q − p− 1)(1− x2)(p−1)/2P̃ qp+1(x), −1 < x < 1

d

dx

(
(x2 − 1)q/2Q̃qp(x)

)
= −(p+ q)(p− q + 1)(x2 − 1)(q−1)/2Q̃q−1

p (x), 1 < x

lim
p→∞

pqP−q
p

(
ch
( z
p

))
= Iq(z), lim

p→∞
p−qQ̃qp

(
ch
( z
p

))
= Kq(z)

Special cases:

P
−1/2
p (chx) = 2

√
2 sh(x(p+ 1=2))

√
�(2p+ 1) sh1=2 x

, P
1/2
p (chx) =

√
2 ch(x(p+ 1=2))
√
� sh1=2 x

Q̃
−1/2
p (chx) =

√
2�e−x(p+1=2)

(2p+ 1) sh1=2 x
, Q̃

1/2
p (chx) =

√
�e−x(p+1=2)
√
2 sh1=2 x

13. Theta functions of imaginary argument

csy(u, v) := L−1
γ

(
ch(u

√
2)

√
2 sh(v

√
2)

)
= 1

√
2�y

∞∑
k=−∞

e−(u+v+2kv)2/2y

scy(u, v) := L−1
γ

(
sh(u

√
2)

√
2 ch(v

√
2)

)
= 1

√
2�y

∞∑
k=−∞

(−1)ke−(v−u+2kv)2/2y

ssy(u, v) := L−1
γ

(
sh(u

√
2)

sh(v
√
2)

)
=

∞∑
k=−∞

v − u+ 2kv
√
2�y3=2

e−(v−u+2kv)2/2y, u < v

s̃sy(u, v) := L−1
γ

(
sh(u

√
2)

 sh(v
√
2)

)
=

∞∑
k=−∞

sign(v− u+ 2kv) Erfc
( |v − u+ 2kv|

√
2y

)
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ccy(u, v) := L−1
γ

(
ch(u

√
2)

ch(v
√
2)

)
=

∞∑
k=−∞

(−1)k u+ v + 2kv
√
2�y3=2

e−(u+v+2kv)2/2y, u < v

c̃cy(u, v) := L−1
γ

(
ch(u

√
2)

 ch(v
√
2)

)
=

∞∑
k=−∞

(−1)k sign(u+ v+ 2kv) Erfc
( |u+ v+2kv|

√
2y

)
sy(v) := L−1

γ

( √
2

sh(v
√
2)

)
=

√
2

√
�y5=2

∞∑
k=0

((2k + 1)2v2 − y)e−(2k+1)2v2/2y, 0 < v

14. Two parameter functions connected to the Bessel functions

Sν(x, y) := (xy)−ν
(
Iν(x)Kν(y)−Kν(x)Iν(y)

)
Cν(x, y) := (xy)−ν

(
Iν+1(x)Kν(y) +Kν+1(x)Iν(y)

)
Fν(x, z) := (xz)−νIν((x+ z − |x− z|)/2)Kν((x+ z + |x− z|)/2)

=
{

(xz)−νIν(x)Kν(z), x ≤ z

(xz)−νKν(x)Iν(z), z ≤ x

Properties:

Cν(x, y) as a function of y and Sν(x, y), Fν(x, z) as functions of both variables
satisfy the Bessel equation

Z ′′(x) + 2� + 1

x
Z ′(x)− Z(x) = 0. (B)

Sν(x, x) = 0, Cν(x, x) = x−1−2ν , Sν(x, y) = −Sν(y, x), Fν(x, z) = Fν(z, x)

@

@x
Sν(x, y) = Cν(x, y),

@

@y
Sν(x, y) = −Cν(y, x),

@

@y
Cν(x, y) = −xySν+1(x, y)

@

@x

(
x2ν+1Cν(x, y)

)
= x2ν+1Sν(x, y),

@

@x
Fν(z + 0, z)− @

@x
Fν(z − 0, z) = −z−1−2ν

Sν(q, p)Sν(r, z) + Sν(q, r)Sν(z, p) = Sν(q, z)Sν(r, p)

Sν(q, r)Cν(r, p) + Cν(r, q)Sν(r, p) = r−1−2νSν(q, p)

lim
θ↓0

S0(xθ, yθ) = ln(x/y)

lim
θ↓0

θ2νSν(xθ, yθ) = 1

2�
(y−2ν − x−2ν), ν 6= 0

Special cases:

S−1/2(x, y) = sh(x− y), C−1/2(x, y) = ch(x− y)

S1/2(x, y) = 1

xy
sh(x− y), C1/2(x, y) = 1

x2y
(x ch(x− y)− sh(x− y))

F−1/2(x, z) = 1

2
(e−|x−z| + e−(x+z)), F1/2(x, z) = 1

2xz
(e−|x−z| − e−(x+z))
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General formulas

L−1
γ

(
F (γ)

)
=: f(y), where F (γ) =

∞∫
0

e−γyf(y)dy, Re γ ≥ σ ≥ 0

0. f(y) = 1

2�i

c+i∞∫
c−i∞

eγyF (γ)dγ, c > σ

a. L−1
γ

(
F (αγ + β)

)
= 1

�
e−βy/αf

( y
�

)
, α > 0

b. L−1
γ

(
e−βγF (γ)

)
= f(y − β)1I[β,∞)(y), β > 0

c. L−1
γ

( ∞∫


F (x)dx
)

= 1

y
f(y)

d. L−1
γ

(
F ()



)
=

y∫
0

f(x)dx

e. L−1
γ

(
γF (γ)− f(+0)

)
= f ′(y)

f. L−1
γ

(
F1(γ)F2(γ)

)
=

y∫
0

f1(x)f2(y − x)dx =
y∫
0

f1(y − x)f2(x)dx = f1(y) ∗ f2(y)

g. L−1
γ

(
F (

√
γ)
)

= 1

2
√
�y3=2

∞∫
0

xe−x
2/4yf(x)dx

i. L−1
γ

(
γµF (

√
γ)
)

=
√
2

√
�(2y)�+1

∞∫
0

e−x
2/8yD2µ+1

(
x

√
2y

)
f(x)dx

j. L−1
γ L−1

η

(
F1(γ + η)F2(η)

)
= f1(y)f2(g − y)1I[0,g](y)

k. L−1
γ L−1

η

(
F1(pγ + η)F2(qγ + η)

)
= f1

( |y − qg|
|p− q|

)
f2

( |y − pg|
|q − p|

)
1I[(p∧q)g;(p∨q)g](y)

|p− q|

l. L−1
γ L−1

η L−1
λ

(
F1(γ + η + λ)F2(η + λ)F3(λ)

)
= f1(y)f2(g − y)f3(t− g)1I[0,g](y)1I[y,t](g)

© Springer International Publishing AG 2017
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1. L−1
γ

(
1

 + �

)
= e−βy

2. L−1
γ

(
e−

√
α
√
γ
)

=
√
�

2
√
�y3=2

e−α/4y, α > 0

3. L−1
γ

(√
γe−

√
α
√
γ
)

= 1
√
�y5=2

(
�

4
− y

2

)
e−α/4y, α > 0

4. L−1
γ

(
γe−

√
α
√
γ
)

=
√
�

4
√
�y5=2

(
�

2y
− 3
)
e−α/4y, α > 0

5. L−1
γ

(
1
√

e−

√
α
√
γ
)

= 1
√
�y
e−α/4y, α ≥ 0

6. L−1
γ

(
1


e−

√
α
√
γ
)

= Erfc
( √

�

2
√
y

)
, α ≥ 0

7. L−1
γ

(
1

3=2
e−

√
α
√
γ
)

=
2
√
y

√
�
e−α/4y −

√
αErfc

( √
�

2
√
y

)
, α ≥ 0

8. L−1
γ

(
γµ/2e−

√
α
√
γ
)

=
√
2

√
�(2y)�=2+1

e−α/8yDµ+1

( √
�

√
2y

)
, α > 0

9. L−1
γ

(
e−

√
�
√


 − �

)
= e�y+

√
��

2
Erfc

( √
�

2
√
y

+
√
βy
)

+ e�y−
√
��

2
Erfc

( √
�

2
√
y
−
√
βy
)

10. L−1
γ

(
1

√
 + �

e−α
√
γ
)

= 1
√
�y
e−α

2/4y − βeαβ+β2y Erfc
(

�

2
√
y

+ β
√
y
)
, α ≥ 0

11. L−1
γ

(
1

√
(
√
 + �)

e−α
√
γ
)

= eαβ+β2y Erfc
(

�

2
√
y

+ β
√
y
)
, α ≥ 0

12. L−1
γ

(
�

(
√
 + �)

e−α
√
γ
)

= Erfc
(

�

2
√
y

)
− eαβ+β2y Erfc

(
�

2
√
y

+ β
√
y
)
, α ≥ 0

13. L−1
γ

(
1

√
 + �+

√
 + �

)
= e−�y − e−�y

2
√
�(�− �)y3=2

14. L−1
γ

(√
 + �

√
 − �

− 1
)

= α
(
I0(αy) + I1(αy)

)
, α > 0

15. L−1
γ

(
eα/γ − 1

)
=

√
�

√
y
I1(2

√
αy), α > 0

16. L−1
γ

(
1

�+1
eα/γ

)
=
( y
�

)µ/2
Iµ(2

√
αy), α > 0 µ > −1

17. L−1
γ

(
��e−�

√
2−�2√

2 − �2
(
 +

√
2 − �2

)�) =
(
y − �

y + �

)µ/2
Iµ(β

√
y2 − α2)1I(α,∞)(y)

18. L−1
γ

(
D−2ν(2

√
αγ)

)
= 21=2−�

√
�(y − �)�−1

�(�)(y + �)�+1=2
1I(α,∞)(y), α > 0, ν > 0

19. L−1
γ

(
Erfc

(√
αγ
))

=
√
�

�y
√
y − �

1I(α,∞)(y), α > 0
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20. L−1
γ

(
e−αγ −√

παγ Erfc
(√
αγ
))

=
√
�

2y3=2
1I(α,∞)(y), α > 0

21. L−1
γ

(√
γe−2α

√
γ Erfc

(
β+

√
γ
))

α+ β > 0

=
{(

�+�

�y(y− 1)3=2
+ �

�y2
√
y− 1

)
e−β

2−(α+β)2/(y−1)

+
(

�2
√
�y5=2

− 1

2
√
�y3=2

)
e−α

2/y Erfc
(

�√
y(y− 1)

+
�
√
y

√
y− 1

)}
1I[1,∞)(y)

22. L−1
γ

(
γµ−1K2ν(2

√
αγ)

)
= 1

2
√
�
y1/2−µe−α/2yWµ−1/2,ν(α/y), α > 0

23. L−1
γ

(
γ−1/2K2ν(2

√
αγ)

)
= 1

2
√
�y
e−α/2yKν(α/2y), α > 0

24. L−1
γ

(
γν/2Kν(

√
αγ)

)
= ��=2

(2y)�+1
e−α/4y, α > 0, ν ≥ 0

25. L−1
γ

(
e�=2

�
M−µ,ν

(�


))
=

√
��(2�+1)

�(�+ �+1=2)
yµ−1/2I2ν(2

√
αy), µ+ ν >−1/2

26. L−1
γ

(
Γ(γ − β)W−γ,β+1/2(4α)

)
= α−β(sh(y/2))2βe−2α cth(y/2), α > 0 ≥ β

27. L−1
γ

(
1


exp
(�+�

2

)
Iν
(√��



))
= Iν(

√
2αy)Iν(

√
2βy), ν >−1

28. L−1
γ

(
Iν(x

√
2γ)Kν(z

√
2γ)
)

= 1

2y
exp
(
−x2+ z2

2y

)
Iν

(
xz

y

)
, 0 ∨ x ≤ z

29. L−1
γ

(
Γ(γ)D−γ(x)D−γ(z)

)
= ey=2

√
2 sh y

exp
(
−(x2+ z2) ch y+2xz

4 sh y

)
30. L−1

γ

(
γ−12γ/2Γ

(
γ
2 + 1

2

)
D−γ(x)

)
=
√
π e−x

2/4 Erfc
(

x√
2(e2y − 1)

)
, x ≥ 0

31. L−1
γ

(
D−(x)

D−(0)

)
= xey=2

2
√
� sh3=2y

exp
(
−x2 ch y

4 sh y

)
, x ≥ 0

32. L−1
γ

(
Γ(1/2 + ν + γ)M−γ,ν(x2)W−γ,ν(z2)

)
0 ≤ x ≤ z

= �(2�+1)xz

2 sh(y=2)
exp
(
−(x2+ z2) ch(y=2)

2 sh(y=2)

)
I2ν

(
xz

sh(y=2)

)
, ν >−1/2

33. L−1
γ

(
Γ(γ)M(γ, ν + 1, x2)U(γ, ν + 1, z2)

)
0 ≤ x ≤ z

= �(�+1)e(�+1)y=2

2x�z� sh(y=2)
exp
(
x2+ z2

2
− (x2+ z2) ch(y=2)

2 sh(y=2)

)
Iν

(
xz

sh(y=2)

)
, ν >−1

34. L−1
γ L−1

η

(
1

�+ a+ b�+ c

)
= e−by−agI0(2

√
(ab− c)yg)

35. L−1
γ L−1

η

(
+ b

�+ a+ b�+ c
− 1

�+ a

)
= e−by−ag

√
(ab− c)g/y I1(2

√
(ab− c)yg)



APPENDIX 4

DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

Below ψ and ϕ denote a nonnegative increasing and decreasing, respectively,
solution of the following differential equations, w = ψ′ϕ− ψϕ′ is
the Wronskian, λ and q are given positive parameters:

1. 1

2
Y ′′(x)− λY (x) = 0, x ∈ R

ψ(x) = ex
√

2λ, ϕ(x) = e−x
√

2λ, w = 2
√

2λ

2. 1

2
Y ′′(x)− (λ+ γx)Y (x) = 0, x > 0

ψ(x) =
√
λ+ γxI1/3

(2√2
3

(λ+ γx)3/2
)
, w = 3γ/2, γ > 0,

ϕ(x) =
√
λ+ γxK1/3

(2√2
3

(λ+ γx)3/2
)

= π
√

3 Ai
(
21/3γ−2/3(λ+ γx)

)

3. 1

2
Y ′′(x)−

(
λ+ 2

2
x2
)
Y (x) = 0, x ∈ R

ψ(x) = D−1/2−λ/γ(−x
√

2γ), ϕ(x) = D−1/2−λ/γ(x
√

2γ),

w =
2
√
�

�(1=2 + �=)
, γ > 0

4. 1

2
Y ′′(x)−

(
λ+ 2− 2−2

2x2

)
Y (x) = 0, x > 0

ψ(x) =
√
xIγ
(
x
√

2λ
)
, ϕ(x) =

√
xKγ

(
x
√

2λ
)
, w = 1, γ ≥ 1

2

a.
1

2
Y ′′(x)− 2− 2−2

2x2
Y (x) = 0, x > 0

ψ(x) = x1/2+γ , ϕ(x) = x1/2−γ , w = 2γ, γ ≥ 1

2

5. 1

2
Y ′′(x)−

(
λ+ p2− 2−2

2x2
+ q2x2

2

)
Y (x) = 0, x > 0

ψ(x) = x−1/2M−λ/2q,p/2(qx2), ϕ(x) = x−1/2W−λ/2q,p/2(qx2),

© Springer International Publishing AG 2017
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w = 2q�(1 + p)

�((1+ p+�=q)=2)
, p ≥ 1

2

a.
1

2
Y ′′(x)−

(p2− 2−2

2x2
+ q2x2

2

)
Y (x) = 0, x > 0

ψ(x) =
√
xIp/2(qx2/2), ϕ(x) =

√
xKp/2(qx2/2), w = 2, p ≥ 1

2

6. 1

2
Y ′′(x)−

(
λ+ p2− 2−2

2x2
+ q

x

)
Y (x) = 0, x > 0

ψ(x) = M−q/
√

2λ,p(2x
√

2λ), ϕ(x) = W−q/
√

2λ,p(2x
√

2λ),

w = 2
√
2��(2p+1)

�(p+1=2+ q=
√
2�)

, p ≥ 1

2

a.
1

2
Y ′′(x)−

(p2− 2−2

2x2
+ q

x

)
Y (x) = 0, x > 0

ψ(x) =
√
xI2p(2

√
2qx), ϕ(x) =

√
xK2p(2

√
2qx), w = 1

2
, p ≥ 1

2

7. 1

2
Y ′′(x)− (λ+ γe2βx)Y (x) = 0, x ∈ R

ψ(x) = I√2λ/|β|

(√
2

|�|
eβx
)
, ϕ(x) = K√

2λ/|β|

(√
2

|�|
eβx
)
, w = β, γ > 0

8. 1

2
Y ′′(x)−

(
λ+ p2

2
e2βx + qeβx

)
Y (x) = 0, x ∈ R

ψ(x) = e−βx/2M−q/p|β|,
√

2λ/|β|
(

2p
|β|e

βx
)
, w = 2p�(2

√
2�=|�|+ 1)

�(
√
2�=|�|+ 1=2 + q=p|�|)

,

ϕ(x) = e−βx/2W−q/p|β|,
√

2λ/|β|
(

2p
|β|e

βx
)
, p > 0

9. 1

2
Y ′′(x) + µY ′(x)− (λ+ f(x))Y (x) = 0, x ∈ R

the solution Yµ,λ(x) of this equation satisfies the relation

Yµ,λ(x) = e−µxY0,λ+µ2/2(x)

10. 1

2
Y ′′(x) + 1

x
Y ′(x)− (λ+ f(x))Y (x) = 0, x > 0

the solution of this equation is x−1Y0,λ(x), where Y0,λ(x) is the solution of

Equation 9 for µ = 0



608 APPENDIX 4

11. Y ′′(x) + 1

x
Y ′(x)−

(
1 + �2

x2

)
Y (x) = 0, x > 0

ψ(x) = Iν(x), ϕ(x) = Kν(x), w = 1

x
, ν > 0

12. 1

2
Y ′′(x) + 2�+1

2x
Y ′(x)− λY (x) = 0, x > 0

ψ(x) = x−νIν(x
√

2λ), ϕ(x) = x−νKν(x
√

2λ), w = 1

x2�+1
, ν > −1

a.
1

2
Y ′′(x) + 2�+1

2x
Y ′(x) = 0, x > 0

ψ(x) = 1, ϕ(x) = x−2ν , w = 2�

x2�+1
, ν > 0

b.
1

2
Y ′′(x) + 1

2x
Y ′(x) = 0, x > 1

ψ(x) = lnx, ϕ(x) = 1, w = 1

x

c.
1

2
Y ′′(x) + 1

x
Y ′(x)− λY (x) = 0, x > 0

ψ(x) = 1

x
sh(x

√
2λ), ϕ(x) = 1

x
e−x

√
2λ, w = 2

√
2�

x2

13. 1

2
Y ′′(x) + 2�+1

2x
Y ′(x)− γxY (x) = 0, x > 0

ψ(x) = x−νI2ν/3
(2
3
x3/2

√
2γ
)
, ϕ(x) = x−νK2ν/3

(2
3
x3/2

√
2γ
)
,

w = 3

2
x−2ν−1, ν > −1, γ > 0

14. 1

2
Y ′′(x) + 2�+1

2x
Y ′(x)−

(
λ+ 2

2x2

)
Y (x) = 0, x > 0

ψ(x) = x−νI√
ν2+γ2

(
x
√

2λ
)
, ϕ(x) = x−νK√

ν2+γ2

(
x
√

2λ
)
,

w = x−2ν−1, ν ≥ 0

a.
1

2
Y ′′(x) + 2�+1

2x
Y ′(x)− 2

2x2
Y (x) = 0, x > 0
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ψ(x) = x
√
ν2+γ2−ν , ϕ(x) = x−

√
ν2+γ2−ν , w = 2

√
�2+ 2

x2�+1
, ν ≥ 0

15. 1

2
Y ′′(x) + 2�+1

2x
Y ′(x)−

(
λ+ p2

2x2
+ q2x2

2

)
Y (x) = 0, x > 0

ψ(x) = x−ν−1M−λ/2q,
√
p2+ν2/2

(qx2), w = 2q�(1 +
√
p2+ �2)x−2�−1

�((1 +
√
p2+ �2 + �=q)=2)

,

ϕ(x) = x−ν−1W−λ/2q,
√
p2+ν2/2

(qx2), ν ≥ 0

a.
1

2
Y ′′(x) + 2�+1

2x
Y ′(x)−

( p2
2x2

+ q2x2

2

)
Y (x) = 0, x > 0

ψ(x) = x−νI√
ν2+p2/2

(qx2/2), w = 2x−2ν−1,

ϕ(x) = x−νK√
ν2+p2/2

(qx2/2), ν ≥ 0

16. 1

2
Y ′′(x) + 2�+1

2x
Y ′(x)−

(
λ+ p2

2x2
+ q

x

)
Y (x) = 0, x > 0

ψ(x) = 1

x�+1=2
M−q/

√
2λ,
√
ν2+p2

(2x
√

2λ), w= 2x1−2�
√
2��(2

√
�2+ p2+1)

�(
√
�2+ p2+1=2+ q=

√
2�)

,

ϕ(x) = 1

x�+1=2
W−q/

√
2λ,
√
ν2+p2

(2x
√

2λ), ν ≥ 0

a.
1

2
Y ′′(x) + 2�+1

2x
Y ′(x)−

( p2
2x2

+ q

x

)
Y (x) = 0, x > 0

ψ(x) = x−νI
2
√
ν2+p2

(2
√

2qx), w = 2−1x−2ν−1,

ϕ(x) = x−νK
2
√
ν2+p2

(2
√

2qx), ν ≥ 0

17. Y ′′(x)−
(
x2

4
+ 2� − 1

2

)
Y (x) = 0, x ∈ R

ψ(x) = D−ν(−x), ϕ(x) = D−ν(x), w =
√
2�

�(�)
ν > 0

18. σ2Y ′′(x)− xY ′(x)−
(
λ+ (2 − 1)x2

4�2

)
Y (x) = 0, x ∈ R

ψ(x) = ex
2/4σ2

D− 1
2+ 1

2γ −
λ
γ

(
− x

√


�

)
, ϕ(x) = ex

2/4σ2
D− 1

2+ 1
2γ −

λ
γ

(x√
�

)
,
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w =
√
2�

��
( 1
2 −

1
2 + �



) ex2/2σ2
, σ > 0, γ ≥ 1

a. σ2Y ′′(x)− xY ′(x) = 0, x ∈ R

ψ(x) = 2
√
�

x=�
√
2∫

0

ev
2
dv, ϕ(x) = 1, w =

√
2

√
��
ex

2/2σ2
, σ > 0

19. σ2Y ′′(x)− xY ′(x)−
(
λ+ x

�

)
Y (x) = 0, x ∈ R

ψ(x) = ex
2/4σ2

Dγ2−λ
(
− x

�
− 2γ

)
, ϕ(x) = ex

2/4σ2
Dγ2−λ

(x
�

+ 2γ
)
,

w =
√
2�

��
(
�− 2

) ex2/2σ2
, σ > 0,

√
λ > γ ≥ 0

20. σ2Y ′′(x)− xY ′(x)−
(
λ+ (p2− 2−2)�2

x2
+ (q2− 1)x2

4�2

)
Y (x) = 0, x > 0

ψ(x) = x−1/2ex
2/4σ2

M 1−2λ
4q , p

2

(
qx2

2�2

)
, w = q�(p+1)ex

2=2�2

�2�
(
p+1
2 + 2�−1

4q

) ,

ϕ(x) = x−1/2ex
2/4σ2

W 1−2λ
4q , p

2

(
qx2

2�2

)
, p ≥ 1

2
, q ≥ 1

21. σ2Y ′′(x)+
(
�2(2�+1)

x
−x
)
Y ′(x)−

(
λ+ p2�2

x2
+ (q2− 1)

4�2
x2
)
Y (x) = 0, x > 0

ψ(x) = x−ν−1ex
2/4σ2

M ν+1−λ
2q , 12

√
ν2+p2

(
qx2

2�2

)
,

ϕ(x) = x−ν−1ex
2/4σ2

W ν+1−λ
2q , 12

√
ν2+p2

(
qx2

2�2

)
,

w =
qex

2=2�2
�
(√

�2+ p2+1
)

�2x2�+1�
(
1
2

√
�2+ p2+ 1

2 +
�−�−1
2q

) , q ≥ 1, ν ≥ 0

22. 1

2
Y ′′(x) +

(
2�+1

2x
− γx

)
Y ′(x)− λY (x) = 0, x > 0

for γ > 0, ν > −1

ψ(x) = M
(
λ
2γ , ν + 1, γx2

)
, ϕ(x) = U

(
λ
2γ , ν + 1, γx2

)
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w = 2�(�+1)x−2�−1

�(�=2)�
eγx

2

for γ > 0, ν < 0

ψ(x) = x−2νM
(
λ
2γ−ν, 1−ν, γx

2
)
, ϕ(x) = x−2νU

(
λ
2γ−ν, 1−ν, γx

2
)

w = 2�(1− �)x−2�−1

�(�=2 − �)�
eγx

2

for γ < 0, ν > −1

ψ(x)=eγx
2
M
(
ν+1− λ

2γ , ν+1,−γx2
)
, ϕ(x)=eγx

2
U
(
ν+1− λ

2γ , ν+1,−γx2
)

w = 2�(�+1)x−2�−1

�(�+1−�=2)||�
e−γx

2

for γ < 0, ν < 0

ψ(x)=x−2νeγx
2
M
(
1− λ

2γ , 1−ν,−γx
2
)
, ϕ(x)=x−2νeγx

2
U
(
1− λ

2γ , 1−ν,−γx
2
)

w = 2�(1− �)x−2�−1

�(1− �=2)||�
e−γx

2

23. 1

2
Y ′′(x) + ρ cth(x)Y ′(x)− 1

2
(µ2 − ρ2)Y (x) = 0, x > 0

ψ(x) =
P
−�+1=2
�−1=2 (chx)

sh�−1=2 x
, ϕ(x) =

Q̃
�−1=2
�−1=2(chx)

sh�−1=2 x
, ω = 1

sh2� x
, µ ≥ ρ > −1

2

24. 1

2
Y ′′(x)− ρ th(x)Y ′(x)− 1

2
(µ2 − ρ2)Y (x) = 0, x > 0

ψ(x) = chρ x
(
P̃µρ (− thx) + P̃µρ (thx)

)
, µ− ρ < 0, µ+ ρ < 0

ϕ(x) = chρ x P̃µρ (thx), ω = 2 ch2� x

�(−�− �)�(1− �+ �)

25. 1

2
Y ′′(x) +

(
cthx− ρ thx)Y ′(x)− 1

2
(µ2 − (ρ− 1)2)Y (x) = 0, x > 0

ψ(x) = ch� x

shx

(
P̃µρ (− thx)− P̃µρ (thx)

)
, µ− ρ+ 1 < 0, µ+ ρ < 1

ϕ(x) = ch� x

shx
P̃µρ (thx), ω = 2 ch2� x

sh2 x�(−�− �)�(1− �+ �)

26. 1

2
Y ′′(x) +

((
γ − 1

2

)
cthx−

(
β − α− 1

2

)
thx

)
Y ′(x)− 2α(β − γ)Y (x) = 0
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ψ(x) = 1

ch2� x
F
(
α, β, γ, th2 x

)
, ϕ(x) = 1

ch2� x
G
(
α, β, γ, th2 x

)
,

w = 2�() ch2(�−�−1=2) x

�(�)�(�) sh2−1 x
, α > 0, β ≥ γ > 0

For the differential equations in 27–29 it is assumed that αβ > 0, α+β ≥ 0,
α+ β + 1 > γ > 0, and α, β can be complex conjugate.

27. x(1− x)Y ′′(x) + (γ− (α+β+1)x)Y ′(x)− αβY (x) = 0, 0 < x < 1

ψ(x) = F (α, β, γ, x), ϕ(x) = G(α, β, γ, x), ω = �()(1−x)−�−�−1

x�(�)�(�)

28. Y ′′(x) +
(
1− γ + �+ � − 1

ex+1

)
Y ′(x)− ��ex(

ex+1
)2Y (x) = 0, x ∈ R

ψ(x) = G
(
α, β, γ,

1

ex + 1

)
, ϕ(x) = F

(
α, β, γ,

1

ex + 1

)
,

w = �() (ex + 1)�+�−1

�(�)�(�) ex(�+�−)

29. Y ′′(x) +
(



1− e−x
− α− β

)
Y ′(x)− ��e−x

1− e−x
Y (x) = 0, x > 0

ψ(x) = F
(
α, β, γ, 1− e−x

)
, ϕ(x) = G

(
α, β, γ, 1− e−x

)
,

w = �() ex(�+�−)

�(�)�(�) (1− e−x)



APPENDIX 5

EXAMPLES OF TRANSFORMATIONS OF MEASURES

ASSOCIATED WITH DIFFUSION PROCESSES

Let ℘(·) be a continuous bounded functional of the processes of § 16 Ch. IV. For
brevity the time parameter of a process is placed in subscript.

Ex℘(W (µ)
s , 0 ≤ s ≤ t) = e−µx−µ

2t/2Ex
{
℘(Ws, 0 ≤ s ≤ t)eµWt

}
Ex
{
℘(W (µ)

s , 0 ≤ s ≤ t);W (µ)
t ∈ dz} = eµ(z−x)−µ2t/2Ex{℘(Ws, 0 ≤ s ≤ t);Wt ∈ dz}

Ex
{
℘(Ws +µs+ ηs2, 0 ≤ s ≤ t);Wt +µt+ ηt2 ∈ dz}

= eµ(z−x)−2η2t3/3−µηt2−µ2t/2+2ηtzEx
{
℘(Ws, 0≤s≤ t) exp

(
−2η

t∫
0

Ws ds
)
;Wt∈dz

}
Ex℘(R(3)

s , 0 ≤ s ≤ t) = x−1Ex{Wt℘(Ws, 0 ≤ s ≤ t); 0 < inf
0≤s≤t

Ws}

Ex
{
℘(R(3)

s , 0 ≤ s ≤ t);R(3)
t ∈ dz

}
= z

x
Ex{℘(Ws, 0 ≤ s ≤ t); 0 < inf

0≤s≤t
Ws,Wt ∈ dz}

Ex℘(R(n)
s , 0 ≤ s ≤ t)

= x(1−n)/2Ex
{
W

(n−1)/2
t ℘(Ws, 0 ≤ s ≤ t) exp

(
−(n− 1)(n− 3)

8

t∫
0

ds

W 2
s

)
; 0 < inf

0≤s≤t
Ws

}
Ex
{
℘(R(n)

s , 0 ≤ s ≤ t);R(n)
t ∈ dz

}
= z(n−1)=2

x(n−1)=2Ex
{
℘(Ws, 0≤s≤ t) exp

(
− (n− 1)(n− 3)

8

t∫
0

ds

W 2
s

)
; 0< inf

0≤s≤t
Ws,Wt∈dz

}
Ex℘(Q(3)

s , 0 ≤ s ≤ t) = et

x
Ex{Ut℘(Us, 0 ≤ s ≤ t); 0 < inf

0≤s≤t
Us}

Ex
{
℘(Q(3)

s , 0 ≤ s ≤ t);Q(3)
t ∈ dz

}
= zet

x
Ex{℘(Us, 0 ≤ s ≤ t); 0< inf

0≤s≤t
Us, Ut ∈ dz}

Ex℘(Q(n)
s , 0 ≤ s ≤ t)x(n−1)/2e−γ(n−1)t/2

= Ex
{
U

(n−1)/2
t ℘(Us, 0 ≤ s ≤ t) exp

(
− (n− 1)(n− 3)�2

8

t∫
0

ds

U2
s

)
; 0 < inf

0≤s≤t
Us

}
Ex
{
℘(Q(n)

s , 0 ≤ s ≤ t);Q(n)
t ∈ dz

}
e−γ(n−1)t/2

= z(n−1)=2

x(n−1)=2Ex
{
℘(Us, 0≤s≤ t) exp

(
− (n− 1)(n− 3)�2

8

t∫
0

ds

U2
s

)
; 0< inf

0≤s≤t
Us, Ut∈dz

}
Ex℘(Us, 0 ≤ s ≤ t)

= ex
2γ/2σ2+γt/2Ex/σ

{
e−γW

2
t /2℘(σWs, 0 ≤ s ≤ t) exp

(
−2

2

t∫
0

W 2
s ds
)}

Ex
{
℘(Us, 0 ≤ s ≤ t);Ut ∈ dz

}
= e(x

2−z2)γ/2σ2+γt/2Ex/σ
{
℘(σWs, 0 ≤ s ≤ t) exp

(
−2

2

t∫
0

W 2
s ds

)
;Wt ∈

dz

�

}
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APPENDIX 6

n-FOLD DIFFERENTIATION FORMULAS

Let f (n)(x) := dn

dxn
f(x), n = 1, 2, 3, . . . , f (0)(x) := f(x), 0! = 1.

1. Leibniz’s formula for the nth derivative of the product of two functions:(
f(x)g(x)

)(n) =
n∑
k=0

n !

k ! (n− k) !
f (k)(x) g(n−k)(x).

2. de Bruno’s formula for the nth derivative of the composition of two functions:(
F (f(x))

)(n) = n !
n∑

m=1

F (m)(f(x))
∑

k1+2k2+···+nkn=n
k1+k2+···+kn=m

n∏
j=1

1

kj !

(
f (j)(x)

j !

)kj

.

3. The nth derivative of the ratio of two functions:(
f(x)

g(x)

)(n)

= f (n)(x)

g(x)
+

∑
1≤m≤l≤n

(−1)mm!n!f (n−l)(x)

(n− l)!gm+1(x)

∑
k1+2k2+···+lkl=l
k1+k2+···+kl=m

l∏
j=1

1

kj !

(
g(j)(x)

j!

)kj

.

4. The (n+ 1)th derivative of the inverse function (see Bödewadt (1942)). Let F
be a given smooth function with the inverse f. Then

f (n+1)(x) =
n∑

m=1

(−1)m(n+m)!

(F ′(f(x)))n+m+1

∑
k1+2k2+···+nkn=n
k1+k2+···+kn=m

n∏
j=1

1

kj !

(
F (j+1)(f(x))

(j + 1)!

)kj

.

The second sum in formulas 2–4 is taken over all combinations of nonnegative
integers k1, k2, . . . such that the indicated equalities hold.

5. The nth derivative of the composition of two functions (see Adams (1947)):(
F (f(x))

)(n) =
n∑

m=1

(−1)mF (m)(f(x))
m∑
l=1

(−1)l

l!(m− l)!

(
f l(x)

)(n)
fm−l(x).

Consequences of formula 5:(
F
(

1
x

))(n)=
n−1∑
k=0

(−1)n(n− 1)!n!F (n−k)(1=x)

k!(n− 1− k)!(n− k)!x2n−k
;
(
ea/x

)(n)=
n−1∑
k=0

(−1)n(n− 1)!n!an−kea=x

k!(n− 1− k)!(n− k)!x2n−k
;

(
F (x2)

)(n) =
∑

0≤k≤n/2

n!F (n−k)(x2)

k!(n− 2k)!(2x)2k−n
;
(
eax

2)(n) = eax
2 ∑
0≤k≤n/2

n!an−k(2x)n−2k

k!(n− 2k)!
;

(
F (

√
x)
)(n) =

n−1∑
k=0

(−1)k(n− 1+ k)!F (n−k)(
√
x)

k!(n− 1− k)!(2
√
x)n+k

;
(
c+ dx

a+ bx

)(n)

= (−1)nn!(cb− ad)bn−1

(a+ bx)n+1
;

(
c+ d

√
x

a+ b
√
x

)(n)

=
n−1∑
k=0

(−1)n(n− 1+ k)!(n− k)(cb− ad)bn−k−1

k!(a+ b
√
x)n−k+1(2

√
x)n+k

.
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