
Procesos estocásticos (2023) Cmat Udelar

Práctico 3: Integrales estocásticas12

1. Let 0 = t0 < t1 < · · · < tn = T and sj is an arbitrary point in [tj, tj+1] for
each j. The value of the Riemann integral does not depend on the choice of
the points sj in [tj, tj+1]. In the stochastic case the approximating sums will
have the form

n−1∑
j=0

f(sj)(W (tj+1)−W (tj)).

It turns out that the limit of such approximations does depend on the choice
of the intermediate points sj in [tj, tj+1]. In the next exercise we take f(t) =
W (t) and consider two different choices of intermediate points.

Let 0 = tn0 < tn1 < · · · < tnn = T with tnj = Tj
n

be a partition of the interval
[0, T ] into n equal parts. Find the following limits in mean square L2:

lim
n→∞

n−1∑
j=0

W (tj)(W (tj+1)−W (tj))

lim
n→∞

n−1∑
j=0

W (tj+1)(W (tj+1)−W (tj))

Hint: Apply the quadratic variation limit

lim
n→∞

n−1∑
j=0

(W (tj+1)−W (tj))
2 = T, in L2.

You will need to transform the sums to make this possible. The identities

a(b− a) =
1

2
(b− a)2 − 1

2
(a− b)2,

b(b− a) =
1

2
(b− a)2 +

1

2
(a− b)2,
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may be of help.

2. (a) Demostrar que los procesos y {W (t)}0≤t≤T y {W (t)2}0≤t≤T pertenecen
a la clase de integrandos H2[0, T ].

(b) Sea f : R → R tal que |f(x)| ≤ A|x|n + B para algún n natural. De-
mostrar que {f(W (t))}0≤t≤T está también en H2[0, T ].

3. Denote

I(f) =

∫ T

0

f(s) dW (s).

The isometry property proved in class reads

E
(
I(f)2

)
= E

∫ T

0

f(s)2 ds.

for any simple process. Verify that for any simple processes f , g

E (I(f)I(g)) = E

∫ T

0

f(s)g(s) ds.

Hint 1: Try to adapt the proof of the isometry property. Use a common
partition 0 = t0 < t1 < · · · < tn in which to represent both f and g.

Hint 2: Alternatively, use the polarization identity (valid for any space with
norm ∥x∥ =

√
⟨x, x⟩):

⟨x, y⟩ = 1

4

(
∥x+ y∥2 − ∥x− y∥2

)
.

4. (a) Calcular la distribución de∫ t

0

f(s) dW (s).

(b) Calcular la distribución de ∫ t

0

s dW (s),

condicional a W (t) = z.



5. Fórmula de partes. Proof departing from the definition of stochastic
integral that ∫ t

0

s dW (s) = tW (t)−
∫ t

0

W (s) ds.

The integral on the right-hand side is understood as a Riemann integral
defined pathwise, i.e. separately for each ω ∈ Ω.)

Hint: You may want to use the partition of [0, T ] into n equal parts. The
sums approximating the stochastic integral can be transformed with the aid
of the identity

c(b− a) = (db− ca)− b(d− c).

6. Obtain directly from the definition of Itô integral:

2

∫ t

0

W (s) dW (s) = W (t)2 − t.

Hint: It is convenient to use a partition of the interval [0, T ] into n equal
parts. The limit of the sums approximating the integral has been found in
Exercise 1.

7. Verify the equality∫ T

0

W (t)2 dW (t) =
1

3
W (T )3 −

∫ T

0

W (t) dt,

where the integral on the right-hand side is a Riemann integral.

Hint: As in the exercises above, it is convenient to use the partition of [0, T ]
into n equal parts. You may also need the following identity:

(a2 − b2)2 = (a− b)4 + 4(a− b)3b+ 4(a− b)2b2,

8. Wiener integral. (a) Use Itô’s formula to prove that∫ T

0

eW (t)−t/2dW (t) = eW (T )−T/2 − 1.

(b) Use the Euler scheme to simulate the integral

I =

∫ 1

0

eW (t)−t/2dW (t).



Plot a histogram and estimate the expectation and the variance of I.

(c) Consider the random variable

J = eW (1)−1/2 − 1.

Plot a histogram, compute the expectation and variance of J .

(d) Plot the two histograms in the same figure and comment the results.

9. We consider the stochastic integral

I =

∫ 1

0

etdW (t).

(a) Compute µ = E(I) and σ2 = var(I).

(b) Simulate values of I using the Euler scheme for stochastic integrals and
estimate approximately µ and σ2.

(c) Plot in the same figure a histogram of the sample for I with the corre-
sponding normal density.

10. Itô isometry. We check the isometry property in an example using
simulation. Consider the process {h(t) = eW (t) : 0 ≤ t ≤ 1}. The property
states

E

(∫ 1

0

eW (t)dW (t)

)2

=

∫ 1

0

E[(eW (t))2]dt =

∫ T

0

E(e2W (t))dt.

(a) First, using that E(eN (µ,σ2)) = eµ+σ2/2, compute
∫ 1

0
E(e2W (s))ds.

(b) Compute by simulation

E

(∫ 1

0

eW (s)dW (s)

)2

, 0 ≤ t ≤ 1,

with the corresponding error, and check that the numbers coincide.

11. We want to check numerically that∫ 1

0

W (t)dW (t) =
1

2
(W (1)2 − 1).



Write then a code to compute a Brownian trajectory, compute both the
integral and the result. Repeat the previous experiment a reasonable number
of times, and plot the results in an (x, y) plot.

12. Hermite polynomial of degree three. (a) Write a code to simulate the
integral

I =

∫ 1

0

(W (t)2 − t)dW (t).

Plot a histogram and compute the expectation and the variance of I.

(b) Consider the random variable

J =
1

3
W (1)3 −W (1).

Plot a histogram, compute the expectation and variance of J .

(c) Use Itô formula with the function3 H3(t, x) =
1
3
x3 − tx to prove that in

fact I = J .

13. Hermite polynomial of degree four. Define

H4(t, x) = x4 − 6x2t+ 3t2.

Use Itô’s formula to prove that

H4(t,W (t)) = 12

∫ t

0

H3(s,W (s))dW (s)

Conclude that EH4(t,W (t)) = 0.

14. Brownian Bridge. (a) Let {W (t) : 0 ≤ t ≤ 1} be a Brownian motion.
Prove that the process

R(t) = (1− t)

∫ t

0

1

1− r
dW (r), 0 ≤ t ≤ 1,

is a Brownian bridge.

(b) We are interested in the random variable

A =

∫ 1

0

R(t)dt.

3H3(t, x) is the Hermite polynomial of degree 3.



Prove that E(A) = 0, and device a simulation scheme using the representa-
tion of part (a) to estimate var(A) (True value 1/12).


