Práctico 6

- 1. Sea L un álgebra y κ su forma de Killing.
 - a) Probar que si $\delta: L \to L$ una derivación, entonces $\kappa(\delta(x), y) + \kappa(x, \delta(y)) = 0, \ \forall x, y \in L$.
 - b) Probar que si $\varphi: L \to L$ es un automorfismo, entonces $\kappa(\varphi(x), \varphi(y)) = \kappa(x, y), \ \forall x, y \in L$.
- 2. Probar que la forma de Killing de $\mathfrak{gl}_n(\mathbb{k})$ es

$$\kappa(x,y) = 2n\operatorname{tr}(xy) - 2\operatorname{tr}(x)\operatorname{tr}(y), \quad \forall x,y \in \mathfrak{gl}_n(\mathbb{k}).$$

Sugerencia: probar que si $\{e_1, \ldots, e_n\}$ es una base de un espacio vectorial V y $\varphi \in \mathfrak{gl}(V)$, entonces $\operatorname{tr}(\varphi) = \sum_{i=1}^n e_i^*(\varphi(e_i))$. Deducir que la forma de Killing de $\mathfrak{sl}_n(\mathbb{k})$ es

$$\kappa(x,y) = 2n \operatorname{tr}(xy), \quad \forall x, y \in \mathfrak{sl}_n(\mathbb{k})$$

- 3. Probar que $\beta : \operatorname{gl}_n(\mathbb{k}) \times \operatorname{gl}_n(\mathbb{k}) \to \mathbb{k}$ definida por $\beta(x,y) = \operatorname{tr}(xy)$ es una forma bilineal no degenerada. Deducir que $\mathfrak{sl}_n(\mathbb{k})$ es semisimple.
- 4. Probar que si L es nilpotente, entonces la forma de Killing de L es idénticamente nula.
- 5. Hallar la forma de Killing para cada una de las álgebras complejas de dimensión 3.
- 6. Dar ejemplos de:
 - a) Un álgebra L para la cual $L' \subsetneq L^{\perp}$.
 - b) Un álgebra no nilpotente cuya forma de Killing sea nula.
 - c) Un álgebra L que contenga una subálgebra H, tal que la forma de Killing de H no coincide con la restricción a H de la forma de Killing de L.
- 7. Sea L un álgebra y K, H dos ideales tales que $L = K \oplus H$. El objetivo del ejercicio es probar $rad(L) = rad(K) \oplus rad(H)$.
 - a) Probar $rad(K) \oplus rad(H) \subset rad(L)$.
 - b) Probar que si $A \subset \operatorname{rad}(L)$ es un ideal de L tal que $\operatorname{rad}(L/A) = 0$, entonces $A = \operatorname{rad}(L)$.
 - c) Probar que si $I\subset K$ y $J\subset H$ son ideales, entonces $\frac{L}{I\oplus J}\simeq K/I\oplus H/J$ como álgebras.
 - d) Probar $rad(L) = rad(K) \oplus rad(H)$.
- 8. Probar $\operatorname{rad}(\mathfrak{gl}_n(\Bbbk))=\mathfrak{e}_n(\Bbbk)=Z(\mathfrak{gl}_n(\Bbbk)).$ Sugerencia: recordar el ejercicio 4 del práctico 3.