Práctico 3

Dinámica en el intervalo y endomorfismos del círculo.

La fecha de entrega de este práctico será el miércoles 6 de Diciembre. Habrá que entregar 6 ejercicios. La alternativa será hacer una entrega con 10 ejercicios el día del examen.

- 1. Mostar que si un mapa $f: S^1 \to S^1$ cumple que tiene un levantado $F: \mathbb{R} \to \mathbb{R}$ que cumple que F(x+1) = F(x) + n con n > 2 entonces se cumple que f tiene puntos periódicos de todos los períodos.
- 2. Sea $q_{\mu}(x) = \mu x(1-x)$. Mostrar que si $\mu > 4$ entonces q_{μ} tiene puntos periódicos de todos los períodos.
- 3. Sea $g:[0,1] \to [0,1]$ la transformación de Gauss, es decir, g(0)=0 y $g(x)=\frac{1}{x}-\left[\frac{1}{x}\right]$ donde [y] denota la parte entera de $y \in \mathbb{R}$.
 - a) Estudiar los puntos fijos de g.
 - b) Mostrar que $x \in [0,1]$ es racional si y solamente sí existe m > 0 tal que $g^m(x) = 0$.
 - c) Mostrar que si $x \in [0,1]$ es periódico, entonces verifica una ecuación cuadrática con coeficientes enteros.
- 4. Mostrar que dado un $n \in \mathbb{Z}_{>0}$ existe un mapa del intervalo que contiene solamente los puntos de período n o mayores según el orden de Sharkovsky.
- 5. Sea $f:[0,1] \to [0,1]$ el tent map que está definido como f(x) = 2x si $x \in [0,1/2]$ y como f(x) = 2 2x si $x \in [1/2,2]$. Mostrar que f es topológicamente mixing y determinar exactamente cuántos puntos periódicos de período n tiene.
- 6. Estudiar la familia $q_{\mu}: \mathbb{R} \to \mathbb{R}$ dada por $q_{\mu}(x) = \mu x(1-x)$, cuyos puntos fijos son x=0 y $x=p_{\mu}=\frac{\mu-1}{\mu}$. Sea Λ_{μ} el conjunto de puntos cuya órbita futura se queda en el intervalo [0,1].
 - a) Mostrar que para $\mu \in (0,1)$ el punto x=0 es un fijo atractor y p_{μ} es repulsor. (Sugerencia: Calcular la derivada de q_{μ} en p_{μ} y en 0.) Describir la dinámica de q_{μ} en este caso.
 - b) Estudiar la dinámica para $\mu = 1$.
 - c) Describir la dinámica para $\mu \in (1,3)$.
 - d) Mostrar que para $\mu \in (3,4)$ hay un punto periódico de período 2.
 - e) Mostrar que para $\mu > 4$ hay puntos periódicos de todos los períodos y que el conjunto Λ_{μ} es un conjunto de cantor donde q_{μ} es conjugado al shift unilateral.
- 7. Sea $f: \mathbb{R} \to \mathbb{R}$ de clase C^3 . Definimos su derivada Schwarziana como

$$Sf(x) = \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left(\frac{f''(x)}{f'(x)}\right)^2.$$

- a) Mostrar que $S(f \circ g) = (Sf \circ g)(g')^2 + Sg$.
- b) Deducir que $S(f^n)(x) = \sum_{i=0}^{n-1} Sf(f^i(x)) \cdot ((f^i)'(x))^2$.
- c) Si Sf < 0 entonces $S(f^n) < 0$ para todo $n \ge 1$.
- 8. Mostrar que un polinomio con raices reales diferentes tiene derivada Schwarziana negativa.
- 9. Una transformación racional (o de Möbius) es una función $\varphi : \mathbb{R} \cup \{\infty\} \to \mathbb{R} \cup \{\infty\}$ definida como $\varphi(x) = \frac{ax+b}{cx+d}$ con $a, b, c, d \in \mathbb{R}$ y ad-bc > 0.
 - a) Mostrar que dados $x, y, z \in \mathbb{R} \cup \{\infty\}$ diferentes existe una transformación racional tal que $\varphi(x) = 0$, $\varphi(y) = 1$ y $\varphi(z) = \infty$.
 - b) Mostrar que las transformaciones racionales tienen derivada Schwarziana nula.
- 10. Sea $f_{\mu} = 1 \mu x^2$.
 - a) Mostrar que $x_0 = 2/3$ es fijo para f_{μ} con $\mu = 3/4$.
 - b) Estudiar que pasa al variar μ en ambas direcciones cerca de x_0 .
- 11. Mostrar que si $f:[0,1] \to [0,1]$ tiene un punto periódico de período impar, entonces, el número de puntos fijos de f^n crece exponencialmente con n.
- 12. Consideramos $P:\mathbb{C}\to\mathbb{C}$ un polinomio complejo de grado mayor o igual a 2. Definimos la cuenca a infinito como el conjunto

$$\Omega_{\infty} = \Omega_{\infty}(P) = \{ z \in \mathbb{C} : P^n(z) \to \infty \}.$$

- a) Probar que Ω_{∞} es abierto, invariante $(P^{-1}(\Omega_{\infty}) \subset \Omega_{\infty})$ y tiene complemento acotado.
- b) Se define el conjunto de Julia de P como $J(P) = \partial \Omega_{\infty}$ y el conjunto de Fatou de P como $F(P) = \mathbb{C} \setminus J(P)$. Calcular los conjuntos de Julia y Fatou para el polinomio $P(z) = z^n \ (n \geq 2)$.
- 13. Una función racional en la esfera $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ es un cociente de polinomios complejos $f(z) = \frac{P(z)}{Q(Z)}$. Suponemos además que máx $\{gr(P), gr(Q)\} \geq 2$. Definimos el conjunto de Fatou de f, notado por F(f), como el conjunto de puntos $z \in \overline{\mathbb{C}}$ para los cuales existe $\epsilon > 0$ tal que la familia de funciones $\{f^n|_{B(z,\epsilon)} : n \in \mathbb{N}\}$ es normal. Recordar que una familia de funciones es normal si toda sucesión tiene una subsucesión que converge uniformemente en compactos. El conjunto de Julia se define por $J(f) = \overline{\mathbb{C}} \setminus F(f)$.
 - a) Probar que F(f) es abierto y cumple $f^{-1}(F(f)) = F(f)$ (por lo tanto que J(f) y $f^{-1}(J(f)) = J(f)$).
 - b) Probar que $z \in F(f)$ si y solo si z es estable, es decir, para todo $\epsilon > 0$ existe $\delta > 0$ tal que si $dist(z,w) < \delta$, entonces $dist(f^n(z),f^n(w)) < \epsilon$ (dist es la distancia esférica). Recordar el Teorema de Montel: una familia de funciones holomorfas que es uniformemente acotada en compactos es norma.
 - c) Probar que si $K \subset \overline{\mathbb{C}}$ es cerrado con tres puntos o más y cumple $f^{-1}(K) \subset K$, entonces $J \subset K$. Sugerencia: Usar el siguiente resultado: Si \mathcal{F} es una famlia de funciones holomorfas definidas en $\Omega \subset \overline{\mathbb{C}}$ de forma tal que $f(\Omega) \subset \Omega$ para todo $f \in \mathcal{F}$ y Ω^c tiene al menos tres puntos, entonces \mathcal{F} es normal.
 - d) Probar que las definiciones de F(f) y J(f) coinciden con las del ejercicio anterior en el caso de polinomios (si nos restringimos a \mathbb{C}).

e) Probar que si $z \in J(f)$, entonces

$$J = \overline{\bigcup_{n \in \mathbb{N}} f^{-n}(z)}.$$

- f) Probar que J(f) es perfecto.
- g) Probar que el conjunto de Julia del polinomio $z\mapsto z^2-2$ es el intervalo [-2,2].